mirror of
https://github.com/MarlinFirmware/Marlin.git
synced 2024-11-27 13:56:24 +00:00
dcde202157
Right now G26 doesn't send a notice to the host that it's running. It's not until the heaters are at temperature that you know for sure if it's running or not. Added host temperature prints so that someone watching the host interface will see the temperatures change during the warm up period. Updates are sent every 5 seconds.
877 lines
35 KiB
C++
Executable File
877 lines
35 KiB
C++
Executable File
/**
|
|
* Marlin 3D Printer Firmware
|
|
* Copyright (C) 2016 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
|
|
*
|
|
* Based on Sprinter and grbl.
|
|
* Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
|
|
*
|
|
* This program is free software: you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License as published by
|
|
* the Free Software Foundation, either version 3 of the License, or
|
|
* (at your option) any later version.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program. If not, see <http://www.gnu.org/licenses/>.
|
|
*
|
|
*/
|
|
|
|
/**
|
|
* Marlin Firmware -- G26 - Mesh Validation Tool
|
|
*/
|
|
|
|
#include "MarlinConfig.h"
|
|
|
|
#if ENABLED(AUTO_BED_LEVELING_UBL) && ENABLED(UBL_G26_MESH_EDITING)
|
|
|
|
#include "ubl.h"
|
|
#include "Marlin.h"
|
|
#include "planner.h"
|
|
#include "stepper.h"
|
|
#include "temperature.h"
|
|
#include "ultralcd.h"
|
|
|
|
#define EXTRUSION_MULTIPLIER 1.0
|
|
#define RETRACTION_MULTIPLIER 1.0
|
|
#define NOZZLE 0.4
|
|
#define FILAMENT 1.75
|
|
#define LAYER_HEIGHT 0.2
|
|
#define PRIME_LENGTH 10.0
|
|
#define BED_TEMP 60.0
|
|
#define HOTEND_TEMP 205.0
|
|
#define OOZE_AMOUNT 0.3
|
|
|
|
#define SIZE_OF_INTERSECTION_CIRCLES 5
|
|
#define SIZE_OF_CROSSHAIRS 3
|
|
|
|
#if SIZE_OF_CROSSHAIRS >= SIZE_OF_INTERSECTION_CIRCLES
|
|
#error "SIZE_OF_CROSSHAIRS must be less than SIZE_OF_INTERSECTION_CIRCLES."
|
|
#endif
|
|
|
|
/**
|
|
* G26 Mesh Validation Tool
|
|
*
|
|
* G26 is a Mesh Validation Tool intended to provide support for the Marlin Unified Bed Leveling System.
|
|
* In order to fully utilize and benefit from the Marlin Unified Bed Leveling System an accurate Mesh must
|
|
* be defined. G29 is designed to allow the user to quickly validate the correctness of her Mesh. It will
|
|
* first heat the bed and nozzle. It will then print lines and circles along the Mesh Cell boundaries and
|
|
* the intersections of those lines (respectively).
|
|
*
|
|
* This action allows the user to immediately see where the Mesh is properly defined and where it needs to
|
|
* be edited. The command will generate the Mesh lines closest to the nozzle's starting position. Alternatively
|
|
* the user can specify the X and Y position of interest with command parameters. This allows the user to
|
|
* focus on a particular area of the Mesh where attention is needed.
|
|
*
|
|
* B # Bed Set the Bed Temperature. If not specified, a default of 60 C. will be assumed.
|
|
*
|
|
* C Current When searching for Mesh Intersection points to draw, use the current nozzle location
|
|
* as the base for any distance comparison.
|
|
*
|
|
* D Disable Disable the Unified Bed Leveling System. In the normal case the user is invoking this
|
|
* command to see how well a Mesh as been adjusted to match a print surface. In order to do
|
|
* this the Unified Bed Leveling System is turned on by the G26 command. The D parameter
|
|
* alters the command's normal behaviour and disables the Unified Bed Leveling System even if
|
|
* it is on.
|
|
*
|
|
* H # Hotend Set the Nozzle Temperature. If not specified, a default of 205 C. will be assumed.
|
|
*
|
|
* F # Filament Used to specify the diameter of the filament being used. If not specified
|
|
* 1.75mm filament is assumed. If you are not getting acceptable results by using the
|
|
* 'correct' numbers, you can scale this number up or down a little bit to change the amount
|
|
* of filament that is being extruded during the printing of the various lines on the bed.
|
|
*
|
|
* K Keep-On Keep the heaters turned on at the end of the command.
|
|
*
|
|
* L # Layer Layer height. (Height of nozzle above bed) If not specified .20mm will be used.
|
|
*
|
|
* Q # Multiplier Retraction Multiplier. Normally not needed. Retraction defaults to 1.0mm and
|
|
* un-retraction is at 1.2mm These numbers will be scaled by the specified amount
|
|
*
|
|
* N # Nozzle Used to control the size of nozzle diameter. If not specified, a .4mm nozzle is assumed.
|
|
*
|
|
* O # Ooooze How much your nozzle will Ooooze filament while getting in position to print. This
|
|
* is over kill, but using this parameter will let you get the very first 'cicle' perfect
|
|
* so you have a trophy to peel off of the bed and hang up to show how perfectly you have your
|
|
* Mesh calibrated. If not specified, a filament length of .3mm is assumed.
|
|
*
|
|
* P # Prime Prime the nozzle with specified length of filament. If this parameter is not
|
|
* given, no prime action will take place. If the parameter specifies an amount, that much
|
|
* will be purged before continuing. If no amount is specified the command will start
|
|
* purging filament until the user provides an LCD Click and then it will continue with
|
|
* printing the Mesh. You can carefully remove the spent filament with a needle nose
|
|
* pliers while holding the LCD Click wheel in a depressed state.
|
|
*
|
|
* R # Random Randomize the order that the circles are drawn on the bed. The search for the closest
|
|
* undrawn cicle is still done. But the distance to the location for each circle has a
|
|
* random number of the size specified added to it. Specifying R50 will give an interesting
|
|
* deviation from the normal behaviour on a 10 x 10 Mesh.
|
|
*
|
|
* X # X coordinate Specify the starting location of the drawing activity.
|
|
*
|
|
* Y # Y coordinate Specify the starting location of the drawing activity.
|
|
*/
|
|
|
|
extern float feedrate;
|
|
extern Planner planner;
|
|
//#if ENABLED(ULTRA_LCD)
|
|
extern char lcd_status_message[];
|
|
//#endif
|
|
extern float destination[XYZE];
|
|
extern void set_destination_to_current();
|
|
extern void set_current_to_destination();
|
|
extern float code_value_float();
|
|
extern bool code_value_bool();
|
|
extern bool code_has_value();
|
|
extern void lcd_init();
|
|
extern void lcd_setstatuspgm(const char* const message, const uint8_t level);
|
|
#define PLANNER_XY_FEEDRATE() (min(planner.max_feedrate_mm_s[X_AXIS], planner.max_feedrate_mm_s[Y_AXIS])) //bob
|
|
bool prepare_move_to_destination_cartesian();
|
|
void line_to_destination();
|
|
void line_to_destination(float );
|
|
void gcode_G28();
|
|
void sync_plan_position_e();
|
|
void un_retract_filament(float where[XYZE]);
|
|
void retract_filament(float where[XYZE]);
|
|
void look_for_lines_to_connect();
|
|
bool parse_G26_parameters();
|
|
void move_to(const float&, const float&, const float&, const float&) ;
|
|
void print_line_from_here_to_there(const float&, const float&, const float&, const float&, const float&, const float&);
|
|
bool turn_on_heaters();
|
|
bool prime_nozzle();
|
|
void chirp_at_user();
|
|
|
|
static uint16_t circle_flags[16], horizontal_mesh_line_flags[16], vertical_mesh_line_flags[16], continue_with_closest = 0;
|
|
float g26_e_axis_feedrate = 0.020,
|
|
random_deviation = 0.0,
|
|
layer_height = LAYER_HEIGHT;
|
|
|
|
bool g26_retracted = false; // We keep track of the state of the nozzle to know if it
|
|
// is currently retracted or not. This allows us to be
|
|
// less careful because mis-matched retractions and un-retractions
|
|
// won't leave us in a bad state.
|
|
|
|
float valid_trig_angle(float);
|
|
mesh_index_pair find_closest_circle_to_print(const float&, const float&);
|
|
|
|
static float extrusion_multiplier = EXTRUSION_MULTIPLIER,
|
|
retraction_multiplier = RETRACTION_MULTIPLIER,
|
|
nozzle = NOZZLE,
|
|
filament_diameter = FILAMENT,
|
|
prime_length = PRIME_LENGTH,
|
|
x_pos, y_pos,
|
|
bed_temp = BED_TEMP,
|
|
hotend_temp = HOTEND_TEMP,
|
|
ooze_amount = OOZE_AMOUNT;
|
|
|
|
int8_t prime_flag = 0;
|
|
|
|
bool keep_heaters_on = false;
|
|
|
|
/**
|
|
* G26: Mesh Validation Pattern generation.
|
|
*
|
|
* Used to interactively edit UBL's Mesh by placing the
|
|
* nozzle in a problem area and doing a G29 P4 R command.
|
|
*/
|
|
void gcode_G26() {
|
|
SERIAL_ECHOLNPGM("G26 command started. Waiting on heater(s).");
|
|
float tmp, start_angle, end_angle;
|
|
int i, xi, yi;
|
|
mesh_index_pair location;
|
|
|
|
// Don't allow Mesh Validation without homing first,
|
|
// or if the parameter parsing did not go OK, abort
|
|
if (axis_unhomed_error(true, true, true) || parse_G26_parameters()) return;
|
|
|
|
if (current_position[Z_AXIS] < Z_CLEARANCE_BETWEEN_PROBES) {
|
|
do_blocking_move_to_z(Z_CLEARANCE_BETWEEN_PROBES);
|
|
stepper.synchronize();
|
|
set_current_to_destination();
|
|
}
|
|
|
|
if (turn_on_heaters()) goto LEAVE;
|
|
|
|
current_position[E_AXIS] = 0.0;
|
|
sync_plan_position_e();
|
|
|
|
if (prime_flag && prime_nozzle()) goto LEAVE;
|
|
|
|
/**
|
|
* Bed is preheated
|
|
*
|
|
* Nozzle is at temperature
|
|
*
|
|
* Filament is primed!
|
|
*
|
|
* It's "Show Time" !!!
|
|
*/
|
|
|
|
ZERO(circle_flags);
|
|
ZERO(horizontal_mesh_line_flags);
|
|
ZERO(vertical_mesh_line_flags);
|
|
|
|
// Move nozzle to the specified height for the first layer
|
|
set_destination_to_current();
|
|
destination[Z_AXIS] = layer_height;
|
|
move_to(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], 0.0);
|
|
move_to(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], ooze_amount);
|
|
|
|
ubl.has_control_of_lcd_panel = true;
|
|
//debug_current_and_destination(PSTR("Starting G26 Mesh Validation Pattern."));
|
|
|
|
/**
|
|
* Declare and generate a sin() & cos() table to be used during the circle drawing. This will lighten
|
|
* the CPU load and make the arc drawing faster and more smooth
|
|
*/
|
|
float sin_table[360 / 30 + 1], cos_table[360 / 30 + 1];
|
|
for (i = 0; i <= 360 / 30; i++) {
|
|
cos_table[i] = SIZE_OF_INTERSECTION_CIRCLES * cos(RADIANS(valid_trig_angle(i * 30.0)));
|
|
sin_table[i] = SIZE_OF_INTERSECTION_CIRCLES * sin(RADIANS(valid_trig_angle(i * 30.0)));
|
|
}
|
|
|
|
do {
|
|
|
|
if (ubl_lcd_clicked()) { // Check if the user wants to stop the Mesh Validation
|
|
#if ENABLED(ULTRA_LCD)
|
|
lcd_setstatuspgm(PSTR("Mesh Validation Stopped."), 99);
|
|
lcd_quick_feedback();
|
|
#endif
|
|
while (!ubl_lcd_clicked()) { // Wait until the user is done pressing the
|
|
idle(); // Encoder Wheel if that is why we are leaving
|
|
lcd_reset_alert_level();
|
|
lcd_setstatuspgm(PSTR(""));
|
|
}
|
|
while (ubl_lcd_clicked()) { // Wait until the user is done pressing the
|
|
idle(); // Encoder Wheel if that is why we are leaving
|
|
lcd_setstatuspgm(PSTR("Unpress Wheel"), 99);
|
|
}
|
|
goto LEAVE;
|
|
}
|
|
|
|
location = continue_with_closest
|
|
? find_closest_circle_to_print(current_position[X_AXIS], current_position[Y_AXIS])
|
|
: find_closest_circle_to_print(x_pos, y_pos); // Find the closest Mesh Intersection to where we are now.
|
|
|
|
if (location.x_index >= 0 && location.y_index >= 0) {
|
|
const float circle_x = pgm_read_float(&(ubl.mesh_index_to_xpos[location.x_index])),
|
|
circle_y = pgm_read_float(&(ubl.mesh_index_to_ypos[location.y_index]));
|
|
|
|
// Let's do a couple of quick sanity checks. We can pull this code out later if we never see it catch a problem
|
|
#ifdef DELTA
|
|
if (HYPOT2(circle_x, circle_y) > sq(DELTA_PRINTABLE_RADIUS)) {
|
|
SERIAL_ERROR_START;
|
|
SERIAL_ERRORLNPGM("Attempt to print outside of DELTA_PRINTABLE_RADIUS.");
|
|
goto LEAVE;
|
|
}
|
|
#endif
|
|
|
|
// TODO: Change this to use `position_is_reachable`
|
|
if (!WITHIN(circle_x, X_MIN_POS, X_MAX_POS) || !WITHIN(circle_y, Y_MIN_POS, Y_MAX_POS)) {
|
|
SERIAL_ERROR_START;
|
|
SERIAL_ERRORLNPGM("Attempt to print off the bed.");
|
|
goto LEAVE;
|
|
}
|
|
|
|
xi = location.x_index; // Just to shrink the next few lines and make them easier to understand
|
|
yi = location.y_index;
|
|
|
|
if (ubl.g26_debug_flag) {
|
|
SERIAL_ECHOPAIR(" Doing circle at: (xi=", xi);
|
|
SERIAL_ECHOPAIR(", yi=", yi);
|
|
SERIAL_CHAR(')');
|
|
SERIAL_EOL;
|
|
}
|
|
|
|
start_angle = 0.0; // assume it is going to be a full circle
|
|
end_angle = 360.0;
|
|
if (xi == 0) { // Check for bottom edge
|
|
start_angle = -90.0;
|
|
end_angle = 90.0;
|
|
if (yi == 0) // it is an edge, check for the two left corners
|
|
start_angle = 0.0;
|
|
else if (yi == GRID_MAX_POINTS_Y - 1)
|
|
end_angle = 0.0;
|
|
}
|
|
else if (xi == GRID_MAX_POINTS_X - 1) { // Check for top edge
|
|
start_angle = 90.0;
|
|
end_angle = 270.0;
|
|
if (yi == 0) // it is an edge, check for the two right corners
|
|
end_angle = 180.0;
|
|
else if (yi == GRID_MAX_POINTS_Y - 1)
|
|
start_angle = 180.0;
|
|
}
|
|
else if (yi == 0) {
|
|
start_angle = 0.0; // only do the top side of the cirlce
|
|
end_angle = 180.0;
|
|
}
|
|
else if (yi == GRID_MAX_POINTS_Y - 1) {
|
|
start_angle = 180.0; // only do the bottom side of the cirlce
|
|
end_angle = 360.0;
|
|
}
|
|
|
|
for (tmp = start_angle; tmp < end_angle - 0.1; tmp += 30.0) {
|
|
int tmp_div_30 = tmp / 30.0;
|
|
if (tmp_div_30 < 0) tmp_div_30 += 360 / 30;
|
|
if (tmp_div_30 > 11) tmp_div_30 -= 360 / 30;
|
|
|
|
float x = circle_x + cos_table[tmp_div_30], // for speed, these are now a lookup table entry
|
|
y = circle_y + sin_table[tmp_div_30],
|
|
xe = circle_x + cos_table[tmp_div_30 + 1],
|
|
ye = circle_y + sin_table[tmp_div_30 + 1];
|
|
#ifdef DELTA
|
|
if (HYPOT2(x, y) > sq(DELTA_PRINTABLE_RADIUS)) // Check to make sure this part of
|
|
continue; // the 'circle' is on the bed. If
|
|
#else // not, we need to skip
|
|
x = constrain(x, X_MIN_POS + 1, X_MAX_POS - 1); // This keeps us from bumping the endstops
|
|
y = constrain(y, Y_MIN_POS + 1, Y_MAX_POS - 1);
|
|
xe = constrain(xe, X_MIN_POS + 1, X_MAX_POS - 1);
|
|
ye = constrain(ye, Y_MIN_POS + 1, Y_MAX_POS - 1);
|
|
#endif
|
|
|
|
//if (ubl.g26_debug_flag) {
|
|
// char ccc, *cptr, seg_msg[50], seg_num[10];
|
|
// strcpy(seg_msg, " segment: ");
|
|
// strcpy(seg_num, " \n");
|
|
// cptr = (char*) "01234567890ABCDEF????????";
|
|
// ccc = cptr[tmp_div_30];
|
|
// seg_num[1] = ccc;
|
|
// strcat(seg_msg, seg_num);
|
|
// debug_current_and_destination(seg_msg);
|
|
//}
|
|
|
|
print_line_from_here_to_there(LOGICAL_X_POSITION(x), LOGICAL_Y_POSITION(y), layer_height, LOGICAL_X_POSITION(xe), LOGICAL_Y_POSITION(ye), layer_height);
|
|
|
|
}
|
|
|
|
//debug_current_and_destination(PSTR("Looking for lines to connect."));
|
|
look_for_lines_to_connect();
|
|
//debug_current_and_destination(PSTR("Done with line connect."));
|
|
}
|
|
|
|
//debug_current_and_destination(PSTR("Done with current circle."));
|
|
|
|
} while (location.x_index >= 0 && location.y_index >= 0);
|
|
|
|
LEAVE:
|
|
lcd_reset_alert_level();
|
|
lcd_setstatuspgm(PSTR("Leaving G26"));
|
|
|
|
retract_filament(destination);
|
|
destination[Z_AXIS] = Z_CLEARANCE_BETWEEN_PROBES;
|
|
|
|
//debug_current_and_destination(PSTR("ready to do Z-Raise."));
|
|
move_to(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], 0); // Raise the nozzle
|
|
//debug_current_and_destination(PSTR("done doing Z-Raise."));
|
|
|
|
destination[X_AXIS] = x_pos; // Move back to the starting position
|
|
destination[Y_AXIS] = y_pos;
|
|
//destination[Z_AXIS] = Z_CLEARANCE_BETWEEN_PROBES; // Keep the nozzle where it is
|
|
|
|
move_to(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], 0); // Move back to the starting position
|
|
//debug_current_and_destination(PSTR("done doing X/Y move."));
|
|
|
|
ubl.has_control_of_lcd_panel = false; // Give back control of the LCD Panel!
|
|
|
|
if (!keep_heaters_on) {
|
|
#if HAS_TEMP_BED
|
|
thermalManager.setTargetBed(0.0);
|
|
#endif
|
|
thermalManager.setTargetHotend(0.0, 0);
|
|
}
|
|
}
|
|
|
|
|
|
float valid_trig_angle(float d) {
|
|
while (d > 360.0) d -= 360.0;
|
|
while (d < 0.0) d += 360.0;
|
|
return d;
|
|
}
|
|
|
|
mesh_index_pair find_closest_circle_to_print(const float &X, const float &Y) {
|
|
float closest = 99999.99;
|
|
mesh_index_pair return_val;
|
|
|
|
return_val.x_index = return_val.y_index = -1;
|
|
|
|
for (uint8_t i = 0; i < GRID_MAX_POINTS_X; i++) {
|
|
for (uint8_t j = 0; j < GRID_MAX_POINTS_Y; j++) {
|
|
if (!is_bit_set(circle_flags, i, j)) {
|
|
const float mx = pgm_read_float(&(ubl.mesh_index_to_xpos[i])), // We found a circle that needs to be printed
|
|
my = pgm_read_float(&(ubl.mesh_index_to_ypos[j]));
|
|
|
|
// Get the distance to this intersection
|
|
float f = HYPOT(X - mx, Y - my);
|
|
|
|
// It is possible that we are being called with the values
|
|
// to let us find the closest circle to the start position.
|
|
// But if this is not the case, add a small weighting to the
|
|
// distance calculation to help it choose a better place to continue.
|
|
f += HYPOT(x_pos - mx, y_pos - my) / 15.0;
|
|
|
|
// Add in the specified amount of Random Noise to our search
|
|
if (random_deviation > 1.0)
|
|
f += random(0.0, random_deviation);
|
|
|
|
if (f < closest) {
|
|
closest = f; // We found a closer location that is still
|
|
return_val.x_index = i; // un-printed --- save the data for it
|
|
return_val.y_index = j;
|
|
return_val.distance = closest;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
bit_set(circle_flags, return_val.x_index, return_val.y_index); // Mark this location as done.
|
|
return return_val;
|
|
}
|
|
|
|
void look_for_lines_to_connect() {
|
|
float sx, sy, ex, ey;
|
|
|
|
for (uint8_t i = 0; i < GRID_MAX_POINTS_X; i++) {
|
|
for (uint8_t j = 0; j < GRID_MAX_POINTS_Y; j++) {
|
|
|
|
if (i < GRID_MAX_POINTS_X) { // We can't connect to anything to the right than GRID_MAX_POINTS_X.
|
|
// This is already a half circle because we are at the edge of the bed.
|
|
|
|
if (is_bit_set(circle_flags, i, j) && is_bit_set(circle_flags, i + 1, j)) { // check if we can do a line to the left
|
|
if (!is_bit_set(horizontal_mesh_line_flags, i, j)) {
|
|
|
|
//
|
|
// We found two circles that need a horizontal line to connect them
|
|
// Print it!
|
|
//
|
|
sx = pgm_read_float(&(ubl.mesh_index_to_xpos[ i ])) + (SIZE_OF_INTERSECTION_CIRCLES - (SIZE_OF_CROSSHAIRS)); // right edge
|
|
ex = pgm_read_float(&(ubl.mesh_index_to_xpos[i + 1])) - (SIZE_OF_INTERSECTION_CIRCLES - (SIZE_OF_CROSSHAIRS)); // left edge
|
|
|
|
sx = constrain(sx, X_MIN_POS + 1, X_MAX_POS - 1);
|
|
sy = ey = constrain(pgm_read_float(&(ubl.mesh_index_to_ypos[j])), Y_MIN_POS + 1, Y_MAX_POS - 1);
|
|
ex = constrain(ex, X_MIN_POS + 1, X_MAX_POS - 1);
|
|
|
|
if (ubl.g26_debug_flag) {
|
|
SERIAL_ECHOPAIR(" Connecting with horizontal line (sx=", sx);
|
|
SERIAL_ECHOPAIR(", sy=", sy);
|
|
SERIAL_ECHOPAIR(") -> (ex=", ex);
|
|
SERIAL_ECHOPAIR(", ey=", ey);
|
|
SERIAL_CHAR(')');
|
|
SERIAL_EOL;
|
|
//debug_current_and_destination(PSTR("Connecting horizontal line."));
|
|
}
|
|
|
|
print_line_from_here_to_there(LOGICAL_X_POSITION(sx), LOGICAL_Y_POSITION(sy), layer_height, LOGICAL_X_POSITION(ex), LOGICAL_Y_POSITION(ey), layer_height);
|
|
bit_set(horizontal_mesh_line_flags, i, j); // Mark it as done so we don't do it again
|
|
}
|
|
}
|
|
|
|
if (j < GRID_MAX_POINTS_Y) { // We can't connect to anything further back than GRID_MAX_POINTS_Y.
|
|
// This is already a half circle because we are at the edge of the bed.
|
|
|
|
if (is_bit_set(circle_flags, i, j) && is_bit_set(circle_flags, i, j + 1)) { // check if we can do a line straight down
|
|
if (!is_bit_set( vertical_mesh_line_flags, i, j)) {
|
|
//
|
|
// We found two circles that need a vertical line to connect them
|
|
// Print it!
|
|
//
|
|
sy = pgm_read_float(&(ubl.mesh_index_to_ypos[ j ])) + (SIZE_OF_INTERSECTION_CIRCLES - (SIZE_OF_CROSSHAIRS)); // top edge
|
|
ey = pgm_read_float(&(ubl.mesh_index_to_ypos[j + 1])) - (SIZE_OF_INTERSECTION_CIRCLES - (SIZE_OF_CROSSHAIRS)); // bottom edge
|
|
|
|
sx = ex = constrain(pgm_read_float(&(ubl.mesh_index_to_xpos[i])), X_MIN_POS + 1, X_MAX_POS - 1);
|
|
sy = constrain(sy, Y_MIN_POS + 1, Y_MAX_POS - 1);
|
|
ey = constrain(ey, Y_MIN_POS + 1, Y_MAX_POS - 1);
|
|
|
|
if (ubl.g26_debug_flag) {
|
|
SERIAL_ECHOPAIR(" Connecting with vertical line (sx=", sx);
|
|
SERIAL_ECHOPAIR(", sy=", sy);
|
|
SERIAL_ECHOPAIR(") -> (ex=", ex);
|
|
SERIAL_ECHOPAIR(", ey=", ey);
|
|
SERIAL_CHAR(')');
|
|
SERIAL_EOL;
|
|
debug_current_and_destination(PSTR("Connecting vertical line."));
|
|
}
|
|
print_line_from_here_to_there(LOGICAL_X_POSITION(sx), LOGICAL_Y_POSITION(sy), layer_height, LOGICAL_X_POSITION(ex), LOGICAL_Y_POSITION(ey), layer_height);
|
|
bit_set(vertical_mesh_line_flags, i, j); // Mark it as done so we don't do it again
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
void move_to(const float &x, const float &y, const float &z, const float &e_delta) {
|
|
float feed_value;
|
|
static float last_z = -999.99;
|
|
|
|
bool has_xy_component = (x != current_position[X_AXIS] || y != current_position[Y_AXIS]); // Check if X or Y is involved in the movement.
|
|
|
|
//if (ubl.g26_debug_flag) SERIAL_ECHOLNPAIR("in move_to() has_xy_component:", (int)has_xy_component);
|
|
|
|
if (z != last_z) {
|
|
//if (ubl.g26_debug_flag) SERIAL_ECHOLNPAIR("in move_to() changing Z to ", (int)z);
|
|
|
|
last_z = z;
|
|
feed_value = planner.max_feedrate_mm_s[Z_AXIS]/(3.0); // Base the feed rate off of the configured Z_AXIS feed rate
|
|
|
|
destination[X_AXIS] = current_position[X_AXIS];
|
|
destination[Y_AXIS] = current_position[Y_AXIS];
|
|
destination[Z_AXIS] = z; // We know the last_z==z or we wouldn't be in this block of code.
|
|
destination[E_AXIS] = current_position[E_AXIS];
|
|
|
|
ubl_line_to_destination(feed_value, 0);
|
|
|
|
stepper.synchronize();
|
|
set_destination_to_current();
|
|
|
|
//if (ubl.g26_debug_flag) debug_current_and_destination(PSTR(" in move_to() done with Z move"));
|
|
}
|
|
|
|
// Check if X or Y is involved in the movement.
|
|
// Yes: a 'normal' movement. No: a retract() or un_retract()
|
|
feed_value = has_xy_component ? PLANNER_XY_FEEDRATE() / 10.0 : planner.max_feedrate_mm_s[E_AXIS] / 1.5;
|
|
|
|
if (ubl.g26_debug_flag) SERIAL_ECHOLNPAIR("in move_to() feed_value for XY:", feed_value);
|
|
|
|
destination[X_AXIS] = x;
|
|
destination[Y_AXIS] = y;
|
|
destination[E_AXIS] += e_delta;
|
|
|
|
//if (ubl.g26_debug_flag) debug_current_and_destination(PSTR(" in move_to() doing last move"));
|
|
|
|
ubl_line_to_destination(feed_value, 0);
|
|
|
|
//if (ubl.g26_debug_flag) debug_current_and_destination(PSTR(" in move_to() after last move"));
|
|
|
|
stepper.synchronize();
|
|
set_destination_to_current();
|
|
|
|
}
|
|
|
|
void retract_filament(float where[XYZE]) {
|
|
if (!g26_retracted) { // Only retract if we are not already retracted!
|
|
g26_retracted = true;
|
|
//if (ubl.g26_debug_flag) SERIAL_ECHOLNPGM(" Decided to do retract.");
|
|
move_to(where[X_AXIS], where[Y_AXIS], where[Z_AXIS], -1.0 * retraction_multiplier);
|
|
//if (ubl.g26_debug_flag) SERIAL_ECHOLNPGM(" Retraction done.");
|
|
}
|
|
}
|
|
|
|
void un_retract_filament(float where[XYZE]) {
|
|
if (g26_retracted) { // Only un-retract if we are retracted.
|
|
move_to(where[X_AXIS], where[Y_AXIS], where[Z_AXIS], 1.2 * retraction_multiplier);
|
|
g26_retracted = false;
|
|
//if (ubl.g26_debug_flag) SERIAL_ECHOLNPGM(" unretract done.");
|
|
}
|
|
}
|
|
|
|
/**
|
|
* print_line_from_here_to_there() takes two cartesian coordinates and draws a line from one
|
|
* to the other. But there are really three sets of coordinates involved. The first coordinate
|
|
* is the present location of the nozzle. We don't necessarily want to print from this location.
|
|
* We first need to move the nozzle to the start of line segment where we want to print. Once
|
|
* there, we can use the two coordinates supplied to draw the line.
|
|
*
|
|
* Note: Although we assume the first set of coordinates is the start of the line and the second
|
|
* set of coordinates is the end of the line, it does not always work out that way. This function
|
|
* optimizes the movement to minimize the travel distance before it can start printing. This saves
|
|
* a lot of time and eleminates a lot of non-sensical movement of the nozzle. However, it does
|
|
* cause a lot of very little short retracement of th nozzle when it draws the very first line
|
|
* segment of a 'circle'. The time this requires is very short and is easily saved by the other
|
|
* cases where the optimization comes into play.
|
|
*/
|
|
void print_line_from_here_to_there(const float &sx, const float &sy, const float &sz, const float &ex, const float &ey, const float &ez) {
|
|
const float dx_s = current_position[X_AXIS] - sx, // find our distance from the start of the actual line segment
|
|
dy_s = current_position[Y_AXIS] - sy,
|
|
dist_start = HYPOT2(dx_s, dy_s), // We don't need to do a sqrt(), we can compare the distance^2
|
|
// to save computation time
|
|
dx_e = current_position[X_AXIS] - ex, // find our distance from the end of the actual line segment
|
|
dy_e = current_position[Y_AXIS] - ey,
|
|
dist_end = HYPOT2(dx_e, dy_e),
|
|
|
|
line_length = HYPOT(ex - sx, ey - sy);
|
|
|
|
// If the end point of the line is closer to the nozzle, flip the direction,
|
|
// moving from the end to the start. On very small lines the optimization isn't worth it.
|
|
if (dist_end < dist_start && (SIZE_OF_INTERSECTION_CIRCLES) < abs(line_length)) {
|
|
//if (ubl.g26_debug_flag) SERIAL_ECHOLNPGM(" Reversing start and end of print_line_from_here_to_there()");
|
|
return print_line_from_here_to_there(ex, ey, ez, sx, sy, sz);
|
|
}
|
|
|
|
// Decide whether to retract.
|
|
|
|
if (dist_start > 2.0) {
|
|
retract_filament(destination);
|
|
//if (ubl.g26_debug_flag) SERIAL_ECHOLNPGM(" filament retracted.");
|
|
}
|
|
move_to(sx, sy, sz, 0.0); // Get to the starting point with no extrusion
|
|
|
|
const float e_pos_delta = line_length * g26_e_axis_feedrate * extrusion_multiplier;
|
|
|
|
un_retract_filament(destination);
|
|
|
|
//if (ubl.g26_debug_flag) {
|
|
// SERIAL_ECHOLNPGM(" doing printing move.");
|
|
// debug_current_and_destination(PSTR("doing final move_to() inside print_line_from_here_to_there()"));
|
|
//}
|
|
move_to(ex, ey, ez, e_pos_delta); // Get to the ending point with an appropriate amount of extrusion
|
|
}
|
|
|
|
/**
|
|
* This function used to be inline code in G26. But there are so many
|
|
* parameters it made sense to turn them into static globals and get
|
|
* this code out of sight of the main routine.
|
|
*/
|
|
bool parse_G26_parameters() {
|
|
|
|
extrusion_multiplier = EXTRUSION_MULTIPLIER;
|
|
retraction_multiplier = RETRACTION_MULTIPLIER;
|
|
nozzle = NOZZLE;
|
|
filament_diameter = FILAMENT;
|
|
layer_height = LAYER_HEIGHT;
|
|
prime_length = PRIME_LENGTH;
|
|
bed_temp = BED_TEMP;
|
|
hotend_temp = HOTEND_TEMP;
|
|
ooze_amount = OOZE_AMOUNT;
|
|
prime_flag = 0;
|
|
keep_heaters_on = false;
|
|
|
|
if (code_seen('B')) {
|
|
bed_temp = code_value_float();
|
|
if (!WITHIN(bed_temp, 15.0, 140.0)) {
|
|
SERIAL_PROTOCOLLNPGM("?Specified bed temperature not plausible.");
|
|
return UBL_ERR;
|
|
}
|
|
}
|
|
|
|
if (code_seen('C')) continue_with_closest++;
|
|
|
|
if (code_seen('L')) {
|
|
layer_height = code_value_float();
|
|
if (!WITHIN(layer_height, 0.0, 2.0)) {
|
|
SERIAL_PROTOCOLLNPGM("?Specified layer height not plausible.");
|
|
return UBL_ERR;
|
|
}
|
|
}
|
|
|
|
if (code_seen('Q')) {
|
|
if (code_has_value()) {
|
|
retraction_multiplier = code_value_float();
|
|
if (!WITHIN(retraction_multiplier, 0.05, 15.0)) {
|
|
SERIAL_PROTOCOLLNPGM("?Specified Retraction Multiplier not plausible.");
|
|
return UBL_ERR;
|
|
}
|
|
}
|
|
else {
|
|
SERIAL_PROTOCOLLNPGM("?Retraction Multiplier must be specified.");
|
|
return UBL_ERR;
|
|
}
|
|
}
|
|
|
|
if (code_seen('N')) {
|
|
nozzle = code_value_float();
|
|
if (!WITHIN(nozzle, 0.1, 1.0)) {
|
|
SERIAL_PROTOCOLLNPGM("?Specified nozzle size not plausible.");
|
|
return UBL_ERR;
|
|
}
|
|
}
|
|
|
|
if (code_seen('K')) keep_heaters_on++;
|
|
|
|
if (code_seen('O') && code_has_value())
|
|
ooze_amount = code_value_float();
|
|
|
|
if (code_seen('P')) {
|
|
if (!code_has_value())
|
|
prime_flag = -1;
|
|
else {
|
|
prime_flag++;
|
|
prime_length = code_value_float();
|
|
if (!WITHIN(prime_length, 0.0, 25.0)) {
|
|
SERIAL_PROTOCOLLNPGM("?Specified prime length not plausible.");
|
|
return UBL_ERR;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (code_seen('F')) {
|
|
filament_diameter = code_value_float();
|
|
if (!WITHIN(filament_diameter, 1.0, 4.0)) {
|
|
SERIAL_PROTOCOLLNPGM("?Specified filament size not plausible.");
|
|
return UBL_ERR;
|
|
}
|
|
}
|
|
extrusion_multiplier *= sq(1.75) / sq(filament_diameter); // If we aren't using 1.75mm filament, we need to
|
|
// scale up or down the length needed to get the
|
|
// same volume of filament
|
|
|
|
extrusion_multiplier *= filament_diameter * sq(nozzle) / sq(0.3); // Scale up by nozzle size
|
|
|
|
if (code_seen('H')) {
|
|
hotend_temp = code_value_float();
|
|
if (!WITHIN(hotend_temp, 165.0, 280.0)) {
|
|
SERIAL_PROTOCOLLNPGM("?Specified nozzle temperature not plausible.");
|
|
return UBL_ERR;
|
|
}
|
|
}
|
|
|
|
if (code_seen('R')) {
|
|
randomSeed(millis());
|
|
random_deviation = code_has_value() ? code_value_float() : 50.0;
|
|
}
|
|
|
|
x_pos = current_position[X_AXIS];
|
|
y_pos = current_position[Y_AXIS];
|
|
|
|
if (code_seen('X')) {
|
|
x_pos = code_value_float();
|
|
if (!WITHIN(x_pos, X_MIN_POS, X_MAX_POS)) {
|
|
SERIAL_PROTOCOLLNPGM("?Specified X coordinate not plausible.");
|
|
return UBL_ERR;
|
|
}
|
|
}
|
|
else
|
|
|
|
if (code_seen('Y')) {
|
|
y_pos = code_value_float();
|
|
if (!WITHIN(y_pos, Y_MIN_POS, Y_MAX_POS)) {
|
|
SERIAL_PROTOCOLLNPGM("?Specified Y coordinate not plausible.");
|
|
return UBL_ERR;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* We save the question of what to do with the Unified Bed Leveling System's Activation until the very
|
|
* end. The reason is, if one of the parameters specified up above is incorrect, we don't want to
|
|
* alter the system's status. We wait until we know everything is correct before altering the state
|
|
* of the system.
|
|
*/
|
|
ubl.state.active = !code_seen('D');
|
|
|
|
return UBL_OK;
|
|
}
|
|
|
|
bool exit_from_g26() {
|
|
//strcpy(lcd_status_message, "Leaving G26"); // We can't do lcd_setstatus() without having it continue;
|
|
lcd_reset_alert_level();
|
|
lcd_setstatuspgm(PSTR("Leaving G26"));
|
|
while (ubl_lcd_clicked()) idle();
|
|
return UBL_ERR;
|
|
}
|
|
|
|
/**
|
|
* Turn on the bed and nozzle heat and
|
|
* wait for them to get up to temperature.
|
|
*/
|
|
bool turn_on_heaters() {
|
|
millis_t next;
|
|
#if HAS_TEMP_BED
|
|
#if ENABLED(ULTRA_LCD)
|
|
if (bed_temp > 25) {
|
|
lcd_setstatuspgm(PSTR("G26 Heating Bed."), 99);
|
|
lcd_quick_feedback();
|
|
#endif
|
|
ubl.has_control_of_lcd_panel = true;
|
|
thermalManager.setTargetBed(bed_temp);
|
|
next = millis() + 5000;
|
|
while (abs(thermalManager.degBed() - bed_temp) > 3) {
|
|
if (ubl_lcd_clicked()) return exit_from_g26();
|
|
if (millis() > next) {
|
|
next = millis() + 5000;
|
|
print_heaterstates();
|
|
}
|
|
idle();
|
|
}
|
|
#if ENABLED(ULTRA_LCD)
|
|
}
|
|
lcd_setstatuspgm(PSTR("G26 Heating Nozzle."), 99);
|
|
lcd_quick_feedback();
|
|
#endif
|
|
#endif
|
|
|
|
// Start heating the nozzle and wait for it to reach temperature.
|
|
thermalManager.setTargetHotend(hotend_temp, 0);
|
|
while (abs(thermalManager.degHotend(0) - hotend_temp) > 3) {
|
|
if (ubl_lcd_clicked()) return exit_from_g26();
|
|
if (millis() > next) {
|
|
next = millis() + 5000;
|
|
print_heaterstates();
|
|
}
|
|
idle();
|
|
}
|
|
|
|
#if ENABLED(ULTRA_LCD)
|
|
lcd_reset_alert_level();
|
|
lcd_setstatuspgm(PSTR(""));
|
|
lcd_quick_feedback();
|
|
#endif
|
|
|
|
return UBL_OK;
|
|
}
|
|
|
|
/**
|
|
* Prime the nozzle if needed. Return true on error.
|
|
*/
|
|
bool prime_nozzle() {
|
|
float Total_Prime = 0.0;
|
|
|
|
if (prime_flag == -1) { // The user wants to control how much filament gets purged
|
|
|
|
ubl.has_control_of_lcd_panel = true;
|
|
|
|
lcd_setstatuspgm(PSTR("User-Controlled Prime"), 99);
|
|
chirp_at_user();
|
|
|
|
set_destination_to_current();
|
|
|
|
un_retract_filament(destination); // Make sure G26 doesn't think the filament is retracted().
|
|
|
|
while (!ubl_lcd_clicked()) {
|
|
chirp_at_user();
|
|
destination[E_AXIS] += 0.25;
|
|
#ifdef PREVENT_LENGTHY_EXTRUDE
|
|
Total_Prime += 0.25;
|
|
if (Total_Prime >= EXTRUDE_MAXLENGTH) return UBL_ERR;
|
|
#endif
|
|
ubl_line_to_destination(planner.max_feedrate_mm_s[E_AXIS] / 15.0, 0);
|
|
|
|
stepper.synchronize(); // Without this synchronize, the purge is more consistent,
|
|
// but because the planner has a buffer, we won't be able
|
|
// to stop as quickly. So we put up with the less smooth
|
|
// action to give the user a more responsive 'Stop'.
|
|
set_destination_to_current();
|
|
idle();
|
|
}
|
|
|
|
while (ubl_lcd_clicked()) idle(); // Debounce Encoder Wheel
|
|
|
|
#if ENABLED(ULTRA_LCD)
|
|
strcpy_P(lcd_status_message, PSTR("Done Priming")); // We can't do lcd_setstatuspgm() without having it continue;
|
|
// So... We cheat to get a message up.
|
|
lcd_setstatuspgm(PSTR("Done Priming"), 99);
|
|
lcd_quick_feedback();
|
|
#endif
|
|
|
|
ubl.has_control_of_lcd_panel = false;
|
|
|
|
}
|
|
else {
|
|
#if ENABLED(ULTRA_LCD)
|
|
lcd_setstatuspgm(PSTR("Fixed Length Prime."), 99);
|
|
lcd_quick_feedback();
|
|
#endif
|
|
set_destination_to_current();
|
|
destination[E_AXIS] += prime_length;
|
|
ubl_line_to_destination(planner.max_feedrate_mm_s[E_AXIS] / 15.0, 0);
|
|
stepper.synchronize();
|
|
set_destination_to_current();
|
|
retract_filament(destination);
|
|
}
|
|
|
|
return UBL_OK;
|
|
}
|
|
|
|
#endif // AUTO_BED_LEVELING_UBL && UBL_G26_MESH_EDITING
|