1
0
mirror of https://github.com/MarlinFirmware/Marlin.git synced 2024-11-25 04:48:31 +00:00
MarlinFirmware/Marlin/temperature.cpp

1618 lines
49 KiB
C++

/*
temperature.cpp - temperature control
Part of Marlin
Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include "Marlin.h"
#include "ultralcd.h"
#include "temperature.h"
#include "watchdog.h"
#include "language.h"
#include "Sd2PinMap.h"
//===========================================================================
//================================== macros =================================
//===========================================================================
#ifdef K1 // Defined in Configuration.h in the PID settings
#define K2 (1.0-K1)
#endif
#if defined(PIDTEMPBED) || defined(PIDTEMP)
#define PID_dT ((OVERSAMPLENR * 12.0)/(F_CPU / 64.0 / 256.0))
#endif
//===========================================================================
//============================= public variables ============================
//===========================================================================
int target_temperature[4] = { 0 };
int target_temperature_bed = 0;
int current_temperature_raw[4] = { 0 };
float current_temperature[4] = { 0.0 };
int current_temperature_bed_raw = 0;
float current_temperature_bed = 0.0;
#ifdef TEMP_SENSOR_1_AS_REDUNDANT
int redundant_temperature_raw = 0;
float redundant_temperature = 0.0;
#endif
#ifdef PIDTEMPBED
float bedKp=DEFAULT_bedKp;
float bedKi=(DEFAULT_bedKi*PID_dT);
float bedKd=(DEFAULT_bedKd/PID_dT);
#endif //PIDTEMPBED
#ifdef FAN_SOFT_PWM
unsigned char fanSpeedSoftPwm;
#endif
unsigned char soft_pwm_bed;
#ifdef BABYSTEPPING
volatile int babystepsTodo[3] = { 0 };
#endif
#ifdef FILAMENT_SENSOR
int current_raw_filwidth = 0; //Holds measured filament diameter - one extruder only
#endif
#if defined(THERMAL_PROTECTION_HOTENDS) || defined(THERMAL_PROTECTION_BED)
enum TRState { TRReset, TRInactive, TRFirstHeating, TRStable, TRRunaway };
void thermal_runaway_protection(TRState *state, millis_t *timer, float temperature, float target_temperature, int heater_id, int period_seconds, int hysteresis_degc);
#ifdef THERMAL_PROTECTION_HOTENDS
static TRState thermal_runaway_state_machine[4] = { TRReset, TRReset, TRReset, TRReset };
static millis_t thermal_runaway_timer[4]; // = {0,0,0,0};
#endif
#ifdef THERMAL_PROTECTION_BED
static TRState thermal_runaway_bed_state_machine = TRReset;
static millis_t thermal_runaway_bed_timer;
#endif
#endif
//===========================================================================
//============================ private variables ============================
//===========================================================================
static volatile bool temp_meas_ready = false;
#ifdef PIDTEMP
//static cannot be external:
static float temp_iState[EXTRUDERS] = { 0 };
static float temp_dState[EXTRUDERS] = { 0 };
static float pTerm[EXTRUDERS];
static float iTerm[EXTRUDERS];
static float dTerm[EXTRUDERS];
//int output;
static float pid_error[EXTRUDERS];
static float temp_iState_min[EXTRUDERS];
static float temp_iState_max[EXTRUDERS];
static bool pid_reset[EXTRUDERS];
#endif //PIDTEMP
#ifdef PIDTEMPBED
//static cannot be external:
static float temp_iState_bed = { 0 };
static float temp_dState_bed = { 0 };
static float pTerm_bed;
static float iTerm_bed;
static float dTerm_bed;
//int output;
static float pid_error_bed;
static float temp_iState_min_bed;
static float temp_iState_max_bed;
#else //PIDTEMPBED
static millis_t next_bed_check_ms;
#endif //PIDTEMPBED
static unsigned char soft_pwm[EXTRUDERS];
#ifdef FAN_SOFT_PWM
static unsigned char soft_pwm_fan;
#endif
#if HAS_AUTO_FAN
static millis_t next_auto_fan_check_ms;
#endif
#ifdef PIDTEMP
#ifdef PID_PARAMS_PER_EXTRUDER
float Kp[EXTRUDERS] = ARRAY_BY_EXTRUDERS(DEFAULT_Kp, DEFAULT_Kp, DEFAULT_Kp, DEFAULT_Kp);
float Ki[EXTRUDERS] = ARRAY_BY_EXTRUDERS(DEFAULT_Ki*PID_dT, DEFAULT_Ki*PID_dT, DEFAULT_Ki*PID_dT, DEFAULT_Ki*PID_dT);
float Kd[EXTRUDERS] = ARRAY_BY_EXTRUDERS(DEFAULT_Kd / PID_dT, DEFAULT_Kd / PID_dT, DEFAULT_Kd / PID_dT, DEFAULT_Kd / PID_dT);
#ifdef PID_ADD_EXTRUSION_RATE
float Kc[EXTRUDERS] = ARRAY_BY_EXTRUDERS(DEFAULT_Kc, DEFAULT_Kc, DEFAULT_Kc, DEFAULT_Kc);
#endif // PID_ADD_EXTRUSION_RATE
#else //PID_PARAMS_PER_EXTRUDER
float Kp = DEFAULT_Kp;
float Ki = DEFAULT_Ki * PID_dT;
float Kd = DEFAULT_Kd / PID_dT;
#ifdef PID_ADD_EXTRUSION_RATE
float Kc = DEFAULT_Kc;
#endif // PID_ADD_EXTRUSION_RATE
#endif // PID_PARAMS_PER_EXTRUDER
#endif //PIDTEMP
// Init min and max temp with extreme values to prevent false errors during startup
static int minttemp_raw[EXTRUDERS] = ARRAY_BY_EXTRUDERS( HEATER_0_RAW_LO_TEMP , HEATER_1_RAW_LO_TEMP , HEATER_2_RAW_LO_TEMP, HEATER_3_RAW_LO_TEMP);
static int maxttemp_raw[EXTRUDERS] = ARRAY_BY_EXTRUDERS( HEATER_0_RAW_HI_TEMP , HEATER_1_RAW_HI_TEMP , HEATER_2_RAW_HI_TEMP, HEATER_3_RAW_HI_TEMP);
static int minttemp[EXTRUDERS] = { 0 };
static int maxttemp[EXTRUDERS] = ARRAY_BY_EXTRUDERS( 16383, 16383, 16383, 16383 );
#ifdef BED_MINTEMP
static int bed_minttemp_raw = HEATER_BED_RAW_LO_TEMP;
#endif
#ifdef BED_MAXTEMP
static int bed_maxttemp_raw = HEATER_BED_RAW_HI_TEMP;
#endif
#ifdef TEMP_SENSOR_1_AS_REDUNDANT
static void *heater_ttbl_map[2] = {(void *)HEATER_0_TEMPTABLE, (void *)HEATER_1_TEMPTABLE };
static uint8_t heater_ttbllen_map[2] = { HEATER_0_TEMPTABLE_LEN, HEATER_1_TEMPTABLE_LEN };
#else
static void *heater_ttbl_map[EXTRUDERS] = ARRAY_BY_EXTRUDERS( (void *)HEATER_0_TEMPTABLE, (void *)HEATER_1_TEMPTABLE, (void *)HEATER_2_TEMPTABLE, (void *)HEATER_3_TEMPTABLE );
static uint8_t heater_ttbllen_map[EXTRUDERS] = ARRAY_BY_EXTRUDERS( HEATER_0_TEMPTABLE_LEN, HEATER_1_TEMPTABLE_LEN, HEATER_2_TEMPTABLE_LEN, HEATER_3_TEMPTABLE_LEN );
#endif
static float analog2temp(int raw, uint8_t e);
static float analog2tempBed(int raw);
static void updateTemperaturesFromRawValues();
#ifdef THERMAL_PROTECTION_HOTENDS
int watch_target_temp[EXTRUDERS] = { 0 };
millis_t watch_heater_next_ms[EXTRUDERS] = { 0 };
#endif
#ifndef SOFT_PWM_SCALE
#define SOFT_PWM_SCALE 0
#endif
#ifdef FILAMENT_SENSOR
static int meas_shift_index; //used to point to a delayed sample in buffer for filament width sensor
#endif
#ifdef HEATER_0_USES_MAX6675
static int read_max6675();
#endif
//===========================================================================
//================================ Functions ================================
//===========================================================================
void PID_autotune(float temp, int extruder, int ncycles) {
float input = 0.0;
int cycles = 0;
bool heating = true;
millis_t temp_ms = millis(), t1 = temp_ms, t2 = temp_ms;
long t_high = 0, t_low = 0;
long bias, d;
float Ku, Tu;
float Kp, Ki, Kd;
float max = 0, min = 10000;
#if HAS_AUTO_FAN
millis_t next_auto_fan_check_ms = temp_ms + 2500;
#endif
if (extruder >= EXTRUDERS
#if !HAS_TEMP_BED
|| extruder < 0
#endif
) {
SERIAL_ECHOLN(MSG_PID_BAD_EXTRUDER_NUM);
return;
}
SERIAL_ECHOLN(MSG_PID_AUTOTUNE_START);
disable_all_heaters(); // switch off all heaters.
if (extruder < 0)
soft_pwm_bed = bias = d = MAX_BED_POWER / 2;
else
soft_pwm[extruder] = bias = d = PID_MAX / 2;
// PID Tuning loop
for (;;) {
millis_t ms = millis();
if (temp_meas_ready) { // temp sample ready
updateTemperaturesFromRawValues();
input = (extruder<0)?current_temperature_bed:current_temperature[extruder];
max = max(max, input);
min = min(min, input);
#if HAS_AUTO_FAN
if (ms > next_auto_fan_check_ms) {
checkExtruderAutoFans();
next_auto_fan_check_ms = ms + 2500;
}
#endif
if (heating && input > temp) {
if (ms > t2 + 5000) {
heating = false;
if (extruder < 0)
soft_pwm_bed = (bias - d) >> 1;
else
soft_pwm[extruder] = (bias - d) >> 1;
t1 = ms;
t_high = t1 - t2;
max = temp;
}
}
if (!heating && input < temp) {
if (ms > t1 + 5000) {
heating = true;
t2 = ms;
t_low = t2 - t1;
if (cycles > 0) {
long max_pow = extruder < 0 ? MAX_BED_POWER : PID_MAX;
bias += (d*(t_high - t_low))/(t_low + t_high);
bias = constrain(bias, 20, max_pow - 20);
d = (bias > max_pow / 2) ? max_pow - 1 - bias : bias;
SERIAL_PROTOCOLPGM(MSG_BIAS); SERIAL_PROTOCOL(bias);
SERIAL_PROTOCOLPGM(MSG_D); SERIAL_PROTOCOL(d);
SERIAL_PROTOCOLPGM(MSG_T_MIN); SERIAL_PROTOCOL(min);
SERIAL_PROTOCOLPGM(MSG_T_MAX); SERIAL_PROTOCOLLN(max);
if (cycles > 2) {
Ku = (4.0 * d) / (3.14159265 * (max - min) / 2.0);
Tu = ((float)(t_low + t_high) / 1000.0);
SERIAL_PROTOCOLPGM(MSG_KU); SERIAL_PROTOCOL(Ku);
SERIAL_PROTOCOLPGM(MSG_TU); SERIAL_PROTOCOLLN(Tu);
Kp = 0.6 * Ku;
Ki = 2 * Kp / Tu;
Kd = Kp * Tu / 8;
SERIAL_PROTOCOLLNPGM(MSG_CLASSIC_PID);
SERIAL_PROTOCOLPGM(MSG_KP); SERIAL_PROTOCOLLN(Kp);
SERIAL_PROTOCOLPGM(MSG_KI); SERIAL_PROTOCOLLN(Ki);
SERIAL_PROTOCOLPGM(MSG_KD); SERIAL_PROTOCOLLN(Kd);
/*
Kp = 0.33*Ku;
Ki = Kp/Tu;
Kd = Kp*Tu/3;
SERIAL_PROTOCOLLNPGM(" Some overshoot ");
SERIAL_PROTOCOLPGM(" Kp: "); SERIAL_PROTOCOLLN(Kp);
SERIAL_PROTOCOLPGM(" Ki: "); SERIAL_PROTOCOLLN(Ki);
SERIAL_PROTOCOLPGM(" Kd: "); SERIAL_PROTOCOLLN(Kd);
Kp = 0.2*Ku;
Ki = 2*Kp/Tu;
Kd = Kp*Tu/3;
SERIAL_PROTOCOLLNPGM(" No overshoot ");
SERIAL_PROTOCOLPGM(" Kp: "); SERIAL_PROTOCOLLN(Kp);
SERIAL_PROTOCOLPGM(" Ki: "); SERIAL_PROTOCOLLN(Ki);
SERIAL_PROTOCOLPGM(" Kd: "); SERIAL_PROTOCOLLN(Kd);
*/
}
}
if (extruder < 0)
soft_pwm_bed = (bias + d) >> 1;
else
soft_pwm[extruder] = (bias + d) >> 1;
cycles++;
min = temp;
}
}
}
#define MAX_OVERSHOOT_PID_AUTOTUNE 20
if (input > temp + MAX_OVERSHOOT_PID_AUTOTUNE) {
SERIAL_PROTOCOLLNPGM(MSG_PID_TEMP_TOO_HIGH);
return;
}
// Every 2 seconds...
if (ms > temp_ms + 2000) {
int p;
if (extruder < 0) {
p = soft_pwm_bed;
SERIAL_PROTOCOLPGM(MSG_B);
}
else {
p = soft_pwm[extruder];
SERIAL_PROTOCOLPGM(MSG_T);
}
SERIAL_PROTOCOL(input);
SERIAL_PROTOCOLPGM(MSG_AT);
SERIAL_PROTOCOLLN(p);
temp_ms = ms;
} // every 2 seconds
// Over 2 minutes?
if (((ms - t1) + (ms - t2)) > (10L*60L*1000L*2L)) {
SERIAL_PROTOCOLLNPGM(MSG_PID_TIMEOUT);
return;
}
if (cycles > ncycles) {
SERIAL_PROTOCOLLNPGM(MSG_PID_AUTOTUNE_FINISHED);
const char *estring = extruder < 0 ? "bed" : "";
SERIAL_PROTOCOLPGM("#define DEFAULT_"); SERIAL_PROTOCOL(estring); SERIAL_PROTOCOLPGM("Kp "); SERIAL_PROTOCOLLN(Kp);
SERIAL_PROTOCOLPGM("#define DEFAULT_"); SERIAL_PROTOCOL(estring); SERIAL_PROTOCOLPGM("Ki "); SERIAL_PROTOCOLLN(Ki);
SERIAL_PROTOCOLPGM("#define DEFAULT_"); SERIAL_PROTOCOL(estring); SERIAL_PROTOCOLPGM("Kd "); SERIAL_PROTOCOLLN(Kd);
return;
}
lcd_update();
}
}
void updatePID() {
#ifdef PIDTEMP
for (int e = 0; e < EXTRUDERS; e++) {
temp_iState_max[e] = PID_INTEGRAL_DRIVE_MAX / PID_PARAM(Ki,e);
}
#endif
#ifdef PIDTEMPBED
temp_iState_max_bed = PID_BED_INTEGRAL_DRIVE_MAX / bedKi;
#endif
}
int getHeaterPower(int heater) {
return heater < 0 ? soft_pwm_bed : soft_pwm[heater];
}
#if HAS_AUTO_FAN
void setExtruderAutoFanState(int pin, bool state) {
unsigned char newFanSpeed = (state != 0) ? EXTRUDER_AUTO_FAN_SPEED : 0;
// this idiom allows both digital and PWM fan outputs (see M42 handling).
digitalWrite(pin, newFanSpeed);
analogWrite(pin, newFanSpeed);
}
void checkExtruderAutoFans() {
uint8_t fanState = 0;
// which fan pins need to be turned on?
#if HAS_AUTO_FAN_0
if (current_temperature[0] > EXTRUDER_AUTO_FAN_TEMPERATURE)
fanState |= 1;
#endif
#if HAS_AUTO_FAN_1
if (current_temperature[1] > EXTRUDER_AUTO_FAN_TEMPERATURE)
{
if (EXTRUDER_1_AUTO_FAN_PIN == EXTRUDER_0_AUTO_FAN_PIN)
fanState |= 1;
else
fanState |= 2;
}
#endif
#if HAS_AUTO_FAN_2
if (current_temperature[2] > EXTRUDER_AUTO_FAN_TEMPERATURE)
{
if (EXTRUDER_2_AUTO_FAN_PIN == EXTRUDER_0_AUTO_FAN_PIN)
fanState |= 1;
else if (EXTRUDER_2_AUTO_FAN_PIN == EXTRUDER_1_AUTO_FAN_PIN)
fanState |= 2;
else
fanState |= 4;
}
#endif
#if HAS_AUTO_FAN_3
if (current_temperature[3] > EXTRUDER_AUTO_FAN_TEMPERATURE)
{
if (EXTRUDER_3_AUTO_FAN_PIN == EXTRUDER_0_AUTO_FAN_PIN)
fanState |= 1;
else if (EXTRUDER_3_AUTO_FAN_PIN == EXTRUDER_1_AUTO_FAN_PIN)
fanState |= 2;
else if (EXTRUDER_3_AUTO_FAN_PIN == EXTRUDER_2_AUTO_FAN_PIN)
fanState |= 4;
else
fanState |= 8;
}
#endif
// update extruder auto fan states
#if HAS_AUTO_FAN_0
setExtruderAutoFanState(EXTRUDER_0_AUTO_FAN_PIN, (fanState & 1) != 0);
#endif
#if HAS_AUTO_FAN_1
if (EXTRUDER_1_AUTO_FAN_PIN != EXTRUDER_0_AUTO_FAN_PIN)
setExtruderAutoFanState(EXTRUDER_1_AUTO_FAN_PIN, (fanState & 2) != 0);
#endif
#if HAS_AUTO_FAN_2
if (EXTRUDER_2_AUTO_FAN_PIN != EXTRUDER_0_AUTO_FAN_PIN
&& EXTRUDER_2_AUTO_FAN_PIN != EXTRUDER_1_AUTO_FAN_PIN)
setExtruderAutoFanState(EXTRUDER_2_AUTO_FAN_PIN, (fanState & 4) != 0);
#endif
#if HAS_AUTO_FAN_3
if (EXTRUDER_3_AUTO_FAN_PIN != EXTRUDER_0_AUTO_FAN_PIN
&& EXTRUDER_3_AUTO_FAN_PIN != EXTRUDER_1_AUTO_FAN_PIN
&& EXTRUDER_3_AUTO_FAN_PIN != EXTRUDER_2_AUTO_FAN_PIN)
setExtruderAutoFanState(EXTRUDER_3_AUTO_FAN_PIN, (fanState & 8) != 0);
#endif
}
#endif // HAS_AUTO_FAN
//
// Temperature Error Handlers
//
inline void _temp_error(int e, const char *serial_msg, const char *lcd_msg) {
static bool killed = false;
if (IsRunning()) {
SERIAL_ERROR_START;
serialprintPGM(serial_msg);
SERIAL_ERRORPGM(MSG_STOPPED_HEATER);
if (e >= 0) SERIAL_ERRORLN((int)e); else SERIAL_ERRORLNPGM(MSG_HEATER_BED);
}
#ifndef BOGUS_TEMPERATURE_FAILSAFE_OVERRIDE
if (!killed) {
Running = false;
killed = true;
kill(lcd_msg);
}
else
disable_all_heaters(); // paranoia
#endif
}
void max_temp_error(uint8_t e) {
_temp_error(e, PSTR(MSG_T_MAXTEMP), PSTR(MSG_ERR_MAXTEMP));
}
void min_temp_error(uint8_t e) {
_temp_error(e, PSTR(MSG_T_MINTEMP), PSTR(MSG_ERR_MINTEMP));
}
float get_pid_output(int e) {
float pid_output;
#ifdef PIDTEMP
#ifndef PID_OPENLOOP
pid_error[e] = target_temperature[e] - current_temperature[e];
dTerm[e] = K2 * PID_PARAM(Kd,e) * (current_temperature[e] - temp_dState[e]) + K1 * dTerm[e];
temp_dState[e] = current_temperature[e];
if (pid_error[e] > PID_FUNCTIONAL_RANGE) {
pid_output = BANG_MAX;
pid_reset[e] = true;
}
else if (pid_error[e] < -PID_FUNCTIONAL_RANGE || target_temperature[e] == 0) {
pid_output = 0;
pid_reset[e] = true;
}
else {
if (pid_reset[e]) {
temp_iState[e] = 0.0;
pid_reset[e] = false;
}
pTerm[e] = PID_PARAM(Kp,e) * pid_error[e];
temp_iState[e] += pid_error[e];
temp_iState[e] = constrain(temp_iState[e], temp_iState_min[e], temp_iState_max[e]);
iTerm[e] = PID_PARAM(Ki,e) * temp_iState[e];
pid_output = pTerm[e] + iTerm[e] - dTerm[e];
if (pid_output > PID_MAX) {
if (pid_error[e] > 0) temp_iState[e] -= pid_error[e]; // conditional un-integration
pid_output = PID_MAX;
}
else if (pid_output < 0) {
if (pid_error[e] < 0) temp_iState[e] -= pid_error[e]; // conditional un-integration
pid_output = 0;
}
}
#else
pid_output = constrain(target_temperature[e], 0, PID_MAX);
#endif //PID_OPENLOOP
#ifdef PID_DEBUG
SERIAL_ECHO_START;
SERIAL_ECHO(MSG_PID_DEBUG);
SERIAL_ECHO(e);
SERIAL_ECHO(MSG_PID_DEBUG_INPUT);
SERIAL_ECHO(current_temperature[e]);
SERIAL_ECHO(MSG_PID_DEBUG_OUTPUT);
SERIAL_ECHO(pid_output);
SERIAL_ECHO(MSG_PID_DEBUG_PTERM);
SERIAL_ECHO(pTerm[e]);
SERIAL_ECHO(MSG_PID_DEBUG_ITERM);
SERIAL_ECHO(iTerm[e]);
SERIAL_ECHO(MSG_PID_DEBUG_DTERM);
SERIAL_ECHOLN(dTerm[e]);
#endif //PID_DEBUG
#else /* PID off */
pid_output = (current_temperature[e] < target_temperature[e]) ? PID_MAX : 0;
#endif
return pid_output;
}
#ifdef PIDTEMPBED
float get_pid_output_bed() {
float pid_output;
#ifndef PID_OPENLOOP
pid_error_bed = target_temperature_bed - current_temperature_bed;
pTerm_bed = bedKp * pid_error_bed;
temp_iState_bed += pid_error_bed;
temp_iState_bed = constrain(temp_iState_bed, temp_iState_min_bed, temp_iState_max_bed);
iTerm_bed = bedKi * temp_iState_bed;
dTerm_bed = K2 * bedKd * (current_temperature_bed - temp_dState_bed) + K1 * dTerm_bed;
temp_dState_bed = current_temperature_bed;
pid_output = pTerm_bed + iTerm_bed - dTerm_bed;
if (pid_output > MAX_BED_POWER) {
if (pid_error_bed > 0) temp_iState_bed -= pid_error_bed; // conditional un-integration
pid_output = MAX_BED_POWER;
}
else if (pid_output < 0) {
if (pid_error_bed < 0) temp_iState_bed -= pid_error_bed; // conditional un-integration
pid_output = 0;
}
#else
pid_output = constrain(target_temperature_bed, 0, MAX_BED_POWER);
#endif // PID_OPENLOOP
#ifdef PID_BED_DEBUG
SERIAL_ECHO_START;
SERIAL_ECHO(" PID_BED_DEBUG ");
SERIAL_ECHO(": Input ");
SERIAL_ECHO(current_temperature_bed);
SERIAL_ECHO(" Output ");
SERIAL_ECHO(pid_output);
SERIAL_ECHO(" pTerm ");
SERIAL_ECHO(pTerm_bed);
SERIAL_ECHO(" iTerm ");
SERIAL_ECHO(iTerm_bed);
SERIAL_ECHO(" dTerm ");
SERIAL_ECHOLN(dTerm_bed);
#endif //PID_BED_DEBUG
return pid_output;
}
#endif
/**
* Manage heating activities for extruder hot-ends and a heated bed
* - Acquire updated temperature readings
* - Invoke thermal runaway protection
* - Manage extruder auto-fan
* - Apply filament width to the extrusion rate (may move)
* - Update the heated bed PID output value
*/
void manage_heater() {
if (!temp_meas_ready) return;
updateTemperaturesFromRawValues();
#ifdef HEATER_0_USES_MAX6675
float ct = current_temperature[0];
if (ct > min(HEATER_0_MAXTEMP, 1023)) max_temp_error(0);
if (ct < max(HEATER_0_MINTEMP, 0.01)) min_temp_error(0);
#endif
#if defined(THERMAL_PROTECTION_HOTENDS) || !defined(PIDTEMPBED) || HAS_AUTO_FAN
millis_t ms = millis();
#endif
// Loop through all extruders
for (int e = 0; e < EXTRUDERS; e++) {
#ifdef THERMAL_PROTECTION_HOTENDS
thermal_runaway_protection(&thermal_runaway_state_machine[e], &thermal_runaway_timer[e], current_temperature[e], target_temperature[e], e, THERMAL_PROTECTION_PERIOD, THERMAL_PROTECTION_HYSTERESIS);
#endif
float pid_output = get_pid_output(e);
// Check if temperature is within the correct range
soft_pwm[e] = current_temperature[e] > minttemp[e] && current_temperature[e] < maxttemp[e] ? (int)pid_output >> 1 : 0;
// Check if the temperature is failing to increase
#ifdef THERMAL_PROTECTION_HOTENDS
// Is it time to check this extruder's heater?
if (watch_heater_next_ms[e] && ms > watch_heater_next_ms[e]) {
// Has it failed to increase enough?
if (degHotend(e) < watch_target_temp[e]) {
// Stop!
_temp_error(e, PSTR(MSG_T_HEATING_FAILED), PSTR(MSG_HEATING_FAILED_LCD));
}
else {
// Start again if the target is still far off
start_watching_heater(e);
}
}
#endif // THERMAL_PROTECTION_HOTENDS
#ifdef TEMP_SENSOR_1_AS_REDUNDANT
if (fabs(current_temperature[0] - redundant_temperature) > MAX_REDUNDANT_TEMP_SENSOR_DIFF) {
_temp_error(0, PSTR(MSG_EXTRUDER_SWITCHED_OFF), PSTR(MSG_ERR_REDUNDANT_TEMP));
}
#endif
} // Extruders Loop
#if HAS_AUTO_FAN
if (ms > next_auto_fan_check_ms) { // only need to check fan state very infrequently
checkExtruderAutoFans();
next_auto_fan_check_ms = ms + 2500;
}
#endif
// Control the extruder rate based on the width sensor
#ifdef FILAMENT_SENSOR
if (filament_sensor) {
meas_shift_index = delay_index1 - meas_delay_cm;
if (meas_shift_index < 0) meas_shift_index += MAX_MEASUREMENT_DELAY + 1; //loop around buffer if needed
// Get the delayed info and add 100 to reconstitute to a percent of
// the nominal filament diameter then square it to get an area
meas_shift_index = constrain(meas_shift_index, 0, MAX_MEASUREMENT_DELAY);
float vm = pow((measurement_delay[meas_shift_index] + 100.0) / 100.0, 2);
if (vm < 0.01) vm = 0.01;
volumetric_multiplier[FILAMENT_SENSOR_EXTRUDER_NUM] = vm;
}
#endif //FILAMENT_SENSOR
#ifndef PIDTEMPBED
if (ms < next_bed_check_ms) return;
next_bed_check_ms = ms + BED_CHECK_INTERVAL;
#endif
#if TEMP_SENSOR_BED != 0
#ifdef THERMAL_PROTECTION_BED
thermal_runaway_protection(&thermal_runaway_bed_state_machine, &thermal_runaway_bed_timer, current_temperature_bed, target_temperature_bed, -1, THERMAL_PROTECTION_BED_PERIOD, THERMAL_PROTECTION_BED_HYSTERESIS);
#endif
#ifdef PIDTEMPBED
float pid_output = get_pid_output_bed();
soft_pwm_bed = current_temperature_bed > BED_MINTEMP && current_temperature_bed < BED_MAXTEMP ? (int)pid_output >> 1 : 0;
#elif defined(BED_LIMIT_SWITCHING)
// Check if temperature is within the correct band
if (current_temperature_bed > BED_MINTEMP && current_temperature_bed < BED_MAXTEMP) {
if (current_temperature_bed >= target_temperature_bed + BED_HYSTERESIS)
soft_pwm_bed = 0;
else if (current_temperature_bed <= target_temperature_bed - BED_HYSTERESIS)
soft_pwm_bed = MAX_BED_POWER >> 1;
}
else {
soft_pwm_bed = 0;
WRITE_HEATER_BED(LOW);
}
#else // BED_LIMIT_SWITCHING
// Check if temperature is within the correct range
if (current_temperature_bed > BED_MINTEMP && current_temperature_bed < BED_MAXTEMP) {
soft_pwm_bed = current_temperature_bed < target_temperature_bed ? MAX_BED_POWER >> 1 : 0;
}
else {
soft_pwm_bed = 0;
WRITE_HEATER_BED(LOW);
}
#endif
#endif //TEMP_SENSOR_BED != 0
}
#define PGM_RD_W(x) (short)pgm_read_word(&x)
// Derived from RepRap FiveD extruder::getTemperature()
// For hot end temperature measurement.
static float analog2temp(int raw, uint8_t e) {
#ifdef TEMP_SENSOR_1_AS_REDUNDANT
if (e > EXTRUDERS)
#else
if (e >= EXTRUDERS)
#endif
{
SERIAL_ERROR_START;
SERIAL_ERROR((int)e);
SERIAL_ERRORLNPGM(MSG_INVALID_EXTRUDER_NUM);
kill(PSTR(MSG_KILLED));
return 0.0;
}
#ifdef HEATER_0_USES_MAX6675
if (e == 0) return 0.25 * raw;
#endif
if (heater_ttbl_map[e] != NULL) {
float celsius = 0;
uint8_t i;
short (*tt)[][2] = (short (*)[][2])(heater_ttbl_map[e]);
for (i = 1; i < heater_ttbllen_map[e]; i++) {
if (PGM_RD_W((*tt)[i][0]) > raw) {
celsius = PGM_RD_W((*tt)[i-1][1]) +
(raw - PGM_RD_W((*tt)[i-1][0])) *
(float)(PGM_RD_W((*tt)[i][1]) - PGM_RD_W((*tt)[i-1][1])) /
(float)(PGM_RD_W((*tt)[i][0]) - PGM_RD_W((*tt)[i-1][0]));
break;
}
}
// Overflow: Set to last value in the table
if (i == heater_ttbllen_map[e]) celsius = PGM_RD_W((*tt)[i-1][1]);
return celsius;
}
return ((raw * ((5.0 * 100.0) / 1024.0) / OVERSAMPLENR) * TEMP_SENSOR_AD595_GAIN) + TEMP_SENSOR_AD595_OFFSET;
}
// Derived from RepRap FiveD extruder::getTemperature()
// For bed temperature measurement.
static float analog2tempBed(int raw) {
#ifdef BED_USES_THERMISTOR
float celsius = 0;
byte i;
for (i = 1; i < BEDTEMPTABLE_LEN; i++) {
if (PGM_RD_W(BEDTEMPTABLE[i][0]) > raw) {
celsius = PGM_RD_W(BEDTEMPTABLE[i-1][1]) +
(raw - PGM_RD_W(BEDTEMPTABLE[i-1][0])) *
(float)(PGM_RD_W(BEDTEMPTABLE[i][1]) - PGM_RD_W(BEDTEMPTABLE[i-1][1])) /
(float)(PGM_RD_W(BEDTEMPTABLE[i][0]) - PGM_RD_W(BEDTEMPTABLE[i-1][0]));
break;
}
}
// Overflow: Set to last value in the table
if (i == BEDTEMPTABLE_LEN) celsius = PGM_RD_W(BEDTEMPTABLE[i-1][1]);
return celsius;
#elif defined BED_USES_AD595
return ((raw * ((5.0 * 100.0) / 1024.0) / OVERSAMPLENR) * TEMP_SENSOR_AD595_GAIN) + TEMP_SENSOR_AD595_OFFSET;
#else
return 0;
#endif
}
/* Called to get the raw values into the the actual temperatures. The raw values are created in interrupt context,
and this function is called from normal context as it is too slow to run in interrupts and will block the stepper routine otherwise */
static void updateTemperaturesFromRawValues() {
#ifdef HEATER_0_USES_MAX6675
current_temperature_raw[0] = read_max6675();
#endif
for (uint8_t e = 0; e < EXTRUDERS; e++) {
current_temperature[e] = analog2temp(current_temperature_raw[e], e);
}
current_temperature_bed = analog2tempBed(current_temperature_bed_raw);
#ifdef TEMP_SENSOR_1_AS_REDUNDANT
redundant_temperature = analog2temp(redundant_temperature_raw, 1);
#endif
#if HAS_FILAMENT_SENSOR
filament_width_meas = analog2widthFil();
#endif
//Reset the watchdog after we know we have a temperature measurement.
watchdog_reset();
CRITICAL_SECTION_START;
temp_meas_ready = false;
CRITICAL_SECTION_END;
}
#ifdef FILAMENT_SENSOR
// Convert raw Filament Width to millimeters
float analog2widthFil() {
return current_raw_filwidth / 16383.0 * 5.0;
//return current_raw_filwidth;
}
// Convert raw Filament Width to a ratio
int widthFil_to_size_ratio() {
float temp = filament_width_meas;
if (temp < MEASURED_LOWER_LIMIT) temp = filament_width_nominal; //assume sensor cut out
else if (temp > MEASURED_UPPER_LIMIT) temp = MEASURED_UPPER_LIMIT;
return filament_width_nominal / temp * 100;
}
#endif
/**
* Initialize the temperature manager
* The manager is implemented by periodic calls to manage_heater()
*/
void tp_init() {
#if MB(RUMBA) && ((TEMP_SENSOR_0==-1)||(TEMP_SENSOR_1==-1)||(TEMP_SENSOR_2==-1)||(TEMP_SENSOR_BED==-1))
//disable RUMBA JTAG in case the thermocouple extension is plugged on top of JTAG connector
MCUCR=BIT(JTD);
MCUCR=BIT(JTD);
#endif
// Finish init of mult extruder arrays
for (int e = 0; e < EXTRUDERS; e++) {
// populate with the first value
maxttemp[e] = maxttemp[0];
#ifdef PIDTEMP
temp_iState_min[e] = 0.0;
temp_iState_max[e] = PID_INTEGRAL_DRIVE_MAX / PID_PARAM(Ki,e);
#endif //PIDTEMP
#ifdef PIDTEMPBED
temp_iState_min_bed = 0.0;
temp_iState_max_bed = PID_BED_INTEGRAL_DRIVE_MAX / bedKi;
#endif //PIDTEMPBED
}
#if HAS_HEATER_0
SET_OUTPUT(HEATER_0_PIN);
#endif
#if HAS_HEATER_1
SET_OUTPUT(HEATER_1_PIN);
#endif
#if HAS_HEATER_2
SET_OUTPUT(HEATER_2_PIN);
#endif
#if HAS_HEATER_3
SET_OUTPUT(HEATER_3_PIN);
#endif
#if HAS_HEATER_BED
SET_OUTPUT(HEATER_BED_PIN);
#endif
#if HAS_FAN
SET_OUTPUT(FAN_PIN);
#ifdef FAST_PWM_FAN
setPwmFrequency(FAN_PIN, 1); // No prescaling. Pwm frequency = F_CPU/256/8
#endif
#ifdef FAN_SOFT_PWM
soft_pwm_fan = fanSpeedSoftPwm / 2;
#endif
#endif
#ifdef HEATER_0_USES_MAX6675
#ifndef SDSUPPORT
OUT_WRITE(SCK_PIN, LOW);
OUT_WRITE(MOSI_PIN, HIGH);
OUT_WRITE(MISO_PIN, HIGH);
#else
pinMode(SS_PIN, OUTPUT);
digitalWrite(SS_PIN, HIGH);
#endif
OUT_WRITE(MAX6675_SS,HIGH);
#endif //HEATER_0_USES_MAX6675
#ifdef DIDR2
#define ANALOG_SELECT(pin) do{ if (pin < 8) DIDR0 |= BIT(pin); else DIDR2 |= BIT(pin - 8); }while(0)
#else
#define ANALOG_SELECT(pin) do{ DIDR0 |= BIT(pin); }while(0)
#endif
// Set analog inputs
ADCSRA = BIT(ADEN) | BIT(ADSC) | BIT(ADIF) | 0x07;
DIDR0 = 0;
#ifdef DIDR2
DIDR2 = 0;
#endif
#if HAS_TEMP_0
ANALOG_SELECT(TEMP_0_PIN);
#endif
#if HAS_TEMP_1
ANALOG_SELECT(TEMP_1_PIN);
#endif
#if HAS_TEMP_2
ANALOG_SELECT(TEMP_2_PIN);
#endif
#if HAS_TEMP_3
ANALOG_SELECT(TEMP_3_PIN);
#endif
#if HAS_TEMP_BED
ANALOG_SELECT(TEMP_BED_PIN);
#endif
#if HAS_FILAMENT_SENSOR
ANALOG_SELECT(FILWIDTH_PIN);
#endif
#if HAS_AUTO_FAN_0
pinMode(EXTRUDER_0_AUTO_FAN_PIN, OUTPUT);
#endif
#if HAS_AUTO_FAN_1 && (EXTRUDER_1_AUTO_FAN_PIN != EXTRUDER_0_AUTO_FAN_PIN)
pinMode(EXTRUDER_1_AUTO_FAN_PIN, OUTPUT);
#endif
#if HAS_AUTO_FAN_2 && (EXTRUDER_2_AUTO_FAN_PIN != EXTRUDER_0_AUTO_FAN_PIN) && (EXTRUDER_2_AUTO_FAN_PIN != EXTRUDER_1_AUTO_FAN_PIN)
pinMode(EXTRUDER_2_AUTO_FAN_PIN, OUTPUT);
#endif
#if HAS_AUTO_FAN_3 && (EXTRUDER_3_AUTO_FAN_PIN != EXTRUDER_0_AUTO_FAN_PIN) && (EXTRUDER_3_AUTO_FAN_PIN != EXTRUDER_1_AUTO_FAN_PIN) && (EXTRUDER_3_AUTO_FAN_PIN != EXTRUDER_2_AUTO_FAN_PIN)
pinMode(EXTRUDER_3_AUTO_FAN_PIN, OUTPUT);
#endif
// Use timer0 for temperature measurement
// Interleave temperature interrupt with millies interrupt
OCR0B = 128;
TIMSK0 |= BIT(OCIE0B);
// Wait for temperature measurement to settle
delay(250);
#define TEMP_MIN_ROUTINE(NR) \
minttemp[NR] = HEATER_ ## NR ## _MINTEMP; \
while(analog2temp(minttemp_raw[NR], NR) < HEATER_ ## NR ## _MINTEMP) { \
if (HEATER_ ## NR ## _RAW_LO_TEMP < HEATER_ ## NR ## _RAW_HI_TEMP) \
minttemp_raw[NR] += OVERSAMPLENR; \
else \
minttemp_raw[NR] -= OVERSAMPLENR; \
}
#define TEMP_MAX_ROUTINE(NR) \
maxttemp[NR] = HEATER_ ## NR ## _MAXTEMP; \
while(analog2temp(maxttemp_raw[NR], NR) > HEATER_ ## NR ## _MAXTEMP) { \
if (HEATER_ ## NR ## _RAW_LO_TEMP < HEATER_ ## NR ## _RAW_HI_TEMP) \
maxttemp_raw[NR] -= OVERSAMPLENR; \
else \
maxttemp_raw[NR] += OVERSAMPLENR; \
}
#ifdef HEATER_0_MINTEMP
TEMP_MIN_ROUTINE(0);
#endif
#ifdef HEATER_0_MAXTEMP
TEMP_MAX_ROUTINE(0);
#endif
#if EXTRUDERS > 1
#ifdef HEATER_1_MINTEMP
TEMP_MIN_ROUTINE(1);
#endif
#ifdef HEATER_1_MAXTEMP
TEMP_MAX_ROUTINE(1);
#endif
#if EXTRUDERS > 2
#ifdef HEATER_2_MINTEMP
TEMP_MIN_ROUTINE(2);
#endif
#ifdef HEATER_2_MAXTEMP
TEMP_MAX_ROUTINE(2);
#endif
#if EXTRUDERS > 3
#ifdef HEATER_3_MINTEMP
TEMP_MIN_ROUTINE(3);
#endif
#ifdef HEATER_3_MAXTEMP
TEMP_MAX_ROUTINE(3);
#endif
#endif // EXTRUDERS > 3
#endif // EXTRUDERS > 2
#endif // EXTRUDERS > 1
#ifdef BED_MINTEMP
while(analog2tempBed(bed_minttemp_raw) < BED_MINTEMP) {
#if HEATER_BED_RAW_LO_TEMP < HEATER_BED_RAW_HI_TEMP
bed_minttemp_raw += OVERSAMPLENR;
#else
bed_minttemp_raw -= OVERSAMPLENR;
#endif
}
#endif //BED_MINTEMP
#ifdef BED_MAXTEMP
while(analog2tempBed(bed_maxttemp_raw) > BED_MAXTEMP) {
#if HEATER_BED_RAW_LO_TEMP < HEATER_BED_RAW_HI_TEMP
bed_maxttemp_raw -= OVERSAMPLENR;
#else
bed_maxttemp_raw += OVERSAMPLENR;
#endif
}
#endif //BED_MAXTEMP
}
#ifdef THERMAL_PROTECTION_HOTENDS
/**
* Start Heating Sanity Check for hotends that are below
* their target temperature by a configurable margin.
* This is called when the temperature is set. (M104, M109)
*/
void start_watching_heater(int e) {
if (degHotend(e) < degTargetHotend(e) - (WATCH_TEMP_INCREASE + TEMP_HYSTERESIS + 1)) {
watch_target_temp[e] = degHotend(e) + WATCH_TEMP_INCREASE;
watch_heater_next_ms[e] = millis() + WATCH_TEMP_PERIOD * 1000;
}
else
watch_heater_next_ms[e] = 0;
}
#endif
#if defined(THERMAL_PROTECTION_HOTENDS) || defined(THERMAL_PROTECTION_BED)
void thermal_runaway_protection(TRState *state, millis_t *timer, float temperature, float target_temperature, int heater_id, int period_seconds, int hysteresis_degc) {
static float tr_target_temperature[EXTRUDERS+1] = { 0.0 };
/*
SERIAL_ECHO_START;
SERIAL_ECHOPGM("Thermal Thermal Runaway Running. Heater ID: ");
if (heater_id < 0) SERIAL_ECHOPGM("bed"); else SERIAL_ECHOPGM(heater_id);
SERIAL_ECHOPGM(" ; State:");
SERIAL_ECHOPGM(*state);
SERIAL_ECHOPGM(" ; Timer:");
SERIAL_ECHOPGM(*timer);
SERIAL_ECHOPGM(" ; Temperature:");
SERIAL_ECHOPGM(temperature);
SERIAL_ECHOPGM(" ; Target Temp:");
SERIAL_ECHOPGM(target_temperature);
SERIAL_EOL;
*/
int heater_index = heater_id >= 0 ? heater_id : EXTRUDERS;
// If the target temperature changes, restart
if (tr_target_temperature[heater_index] != target_temperature)
*state = TRReset;
switch (*state) {
case TRReset:
*timer = 0;
*state = TRInactive;
// Inactive state waits for a target temperature to be set
case TRInactive:
if (target_temperature > 0) {
tr_target_temperature[heater_index] = target_temperature;
*state = TRFirstHeating;
}
break;
// When first heating, wait for the temperature to be reached then go to Stable state
case TRFirstHeating:
if (temperature >= tr_target_temperature[heater_index]) *state = TRStable;
break;
// While the temperature is stable watch for a bad temperature
case TRStable:
// If the temperature is over the target (-hysteresis) restart the timer
if (temperature >= tr_target_temperature[heater_index] - hysteresis_degc)
*timer = millis();
// If the timer goes too long without a reset, trigger shutdown
else if (millis() > *timer + period_seconds * 1000UL)
*state = TRRunaway;
break;
case TRRunaway:
_temp_error(heater_id, PSTR(MSG_T_THERMAL_RUNAWAY), PSTR(MSG_THERMAL_RUNAWAY));
}
}
#endif // THERMAL_PROTECTION_HOTENDS || THERMAL_PROTECTION_BED
void disable_all_heaters() {
for (int i=0; i<EXTRUDERS; i++) setTargetHotend(0, i);
setTargetBed(0);
#define DISABLE_HEATER(NR) { \
target_temperature[NR] = 0; \
soft_pwm[NR] = 0; \
WRITE_HEATER_ ## NR (LOW); \
}
#if HAS_TEMP_0
target_temperature[0] = 0;
soft_pwm[0] = 0;
WRITE_HEATER_0P(LOW); // Should HEATERS_PARALLEL apply here? Then change to DISABLE_HEATER(0)
#endif
#if EXTRUDERS > 1 && HAS_TEMP_1
DISABLE_HEATER(1);
#endif
#if EXTRUDERS > 2 && HAS_TEMP_2
DISABLE_HEATER(2);
#endif
#if EXTRUDERS > 3 && HAS_TEMP_3
DISABLE_HEATER(3);
#endif
#if HAS_TEMP_BED
target_temperature_bed = 0;
soft_pwm_bed = 0;
#if HAS_HEATER_BED
WRITE_HEATER_BED(LOW);
#endif
#endif
}
#ifdef HEATER_0_USES_MAX6675
#define MAX6675_HEAT_INTERVAL 250u
static millis_t next_max6675_ms = 0;
int max6675_temp = 2000;
static int read_max6675() {
millis_t ms = millis();
if (ms < next_max6675_ms)
return max6675_temp;
next_max6675_ms = ms + MAX6675_HEAT_INTERVAL;
max6675_temp = 0;
#ifdef PRR
PRR &= ~BIT(PRSPI);
#elif defined(PRR0)
PRR0 &= ~BIT(PRSPI);
#endif
SPCR = BIT(MSTR) | BIT(SPE) | BIT(SPR0);
// enable TT_MAX6675
WRITE(MAX6675_SS, 0);
// ensure 100ns delay - a bit extra is fine
asm("nop");//50ns on 20Mhz, 62.5ns on 16Mhz
asm("nop");//50ns on 20Mhz, 62.5ns on 16Mhz
// read MSB
SPDR = 0;
for (;(SPSR & BIT(SPIF)) == 0;);
max6675_temp = SPDR;
max6675_temp <<= 8;
// read LSB
SPDR = 0;
for (;(SPSR & BIT(SPIF)) == 0;);
max6675_temp |= SPDR;
// disable TT_MAX6675
WRITE(MAX6675_SS, 1);
if (max6675_temp & 4) {
// thermocouple open
max6675_temp = 4000;
}
else {
max6675_temp = max6675_temp >> 3;
}
return max6675_temp;
}
#endif //HEATER_0_USES_MAX6675
/**
* Stages in the ISR loop
*/
enum TempState {
PrepareTemp_0,
MeasureTemp_0,
PrepareTemp_BED,
MeasureTemp_BED,
PrepareTemp_1,
MeasureTemp_1,
PrepareTemp_2,
MeasureTemp_2,
PrepareTemp_3,
MeasureTemp_3,
Prepare_FILWIDTH,
Measure_FILWIDTH,
StartupDelay // Startup, delay initial temp reading a tiny bit so the hardware can settle
};
static unsigned long raw_temp_value[4] = { 0 };
static unsigned long raw_temp_bed_value = 0;
static void set_current_temp_raw() {
#if HAS_TEMP_0 && !defined(HEATER_0_USES_MAX6675)
current_temperature_raw[0] = raw_temp_value[0];
#endif
#if HAS_TEMP_1
#ifdef TEMP_SENSOR_1_AS_REDUNDANT
redundant_temperature_raw = raw_temp_value[1];
#else
current_temperature_raw[1] = raw_temp_value[1];
#endif
#if HAS_TEMP_2
current_temperature_raw[2] = raw_temp_value[2];
#if HAS_TEMP_3
current_temperature_raw[3] = raw_temp_value[3];
#endif
#endif
#endif
current_temperature_bed_raw = raw_temp_bed_value;
temp_meas_ready = true;
}
/**
* Timer 0 is shared with millies
* - Manage PWM to all the heaters and fan
* - Update the raw temperature values
* - Check new temperature values for MIN/MAX errors
* - Step the babysteps value for each axis towards 0
*/
ISR(TIMER0_COMPB_vect) {
static unsigned char temp_count = 0;
static TempState temp_state = StartupDelay;
static unsigned char pwm_count = BIT(SOFT_PWM_SCALE);
// Static members for each heater
#ifdef SLOW_PWM_HEATERS
static unsigned char slow_pwm_count = 0;
#define ISR_STATICS(n) \
static unsigned char soft_pwm_ ## n; \
static unsigned char state_heater_ ## n = 0; \
static unsigned char state_timer_heater_ ## n = 0
#else
#define ISR_STATICS(n) static unsigned char soft_pwm_ ## n
#endif
// Statics per heater
ISR_STATICS(0);
#if (EXTRUDERS > 1) || defined(HEATERS_PARALLEL)
ISR_STATICS(1);
#if EXTRUDERS > 2
ISR_STATICS(2);
#if EXTRUDERS > 3
ISR_STATICS(3);
#endif
#endif
#endif
#if HAS_HEATER_BED
ISR_STATICS(BED);
#endif
#if HAS_FILAMENT_SENSOR
static unsigned long raw_filwidth_value = 0;
#endif
#ifndef SLOW_PWM_HEATERS
/**
* standard PWM modulation
*/
if (pwm_count == 0) {
soft_pwm_0 = soft_pwm[0];
if (soft_pwm_0 > 0) {
WRITE_HEATER_0(1);
}
else WRITE_HEATER_0P(0); // If HEATERS_PARALLEL should apply, change to WRITE_HEATER_0
#if EXTRUDERS > 1
soft_pwm_1 = soft_pwm[1];
WRITE_HEATER_1(soft_pwm_1 > 0 ? 1 : 0);
#if EXTRUDERS > 2
soft_pwm_2 = soft_pwm[2];
WRITE_HEATER_2(soft_pwm_2 > 0 ? 1 : 0);
#if EXTRUDERS > 3
soft_pwm_3 = soft_pwm[3];
WRITE_HEATER_3(soft_pwm_3 > 0 ? 1 : 0);
#endif
#endif
#endif
#if HAS_HEATER_BED
soft_pwm_BED = soft_pwm_bed;
WRITE_HEATER_BED(soft_pwm_BED > 0 ? 1 : 0);
#endif
#ifdef FAN_SOFT_PWM
soft_pwm_fan = fanSpeedSoftPwm / 2;
WRITE_FAN(soft_pwm_fan > 0 ? 1 : 0);
#endif
}
if (soft_pwm_0 < pwm_count) { WRITE_HEATER_0(0); }
#if EXTRUDERS > 1
if (soft_pwm_1 < pwm_count) WRITE_HEATER_1(0);
#if EXTRUDERS > 2
if (soft_pwm_2 < pwm_count) WRITE_HEATER_2(0);
#if EXTRUDERS > 3
if (soft_pwm_3 < pwm_count) WRITE_HEATER_3(0);
#endif
#endif
#endif
#if HAS_HEATER_BED
if (soft_pwm_BED < pwm_count) WRITE_HEATER_BED(0);
#endif
#ifdef FAN_SOFT_PWM
if (soft_pwm_fan < pwm_count) WRITE_FAN(0);
#endif
pwm_count += BIT(SOFT_PWM_SCALE);
pwm_count &= 0x7f;
#else // SLOW_PWM_HEATERS
/*
* SLOW PWM HEATERS
*
* for heaters drived by relay
*/
#ifndef MIN_STATE_TIME
#define MIN_STATE_TIME 16 // MIN_STATE_TIME * 65.5 = time in milliseconds
#endif
// Macros for Slow PWM timer logic - HEATERS_PARALLEL applies
#define _SLOW_PWM_ROUTINE(NR, src) \
soft_pwm_ ## NR = src; \
if (soft_pwm_ ## NR > 0) { \
if (state_timer_heater_ ## NR == 0) { \
if (state_heater_ ## NR == 0) state_timer_heater_ ## NR = MIN_STATE_TIME; \
state_heater_ ## NR = 1; \
WRITE_HEATER_ ## NR(1); \
} \
} \
else { \
if (state_timer_heater_ ## NR == 0) { \
if (state_heater_ ## NR == 1) state_timer_heater_ ## NR = MIN_STATE_TIME; \
state_heater_ ## NR = 0; \
WRITE_HEATER_ ## NR(0); \
} \
}
#define SLOW_PWM_ROUTINE(n) _SLOW_PWM_ROUTINE(n, soft_pwm[n])
#define PWM_OFF_ROUTINE(NR) \
if (soft_pwm_ ## NR < slow_pwm_count) { \
if (state_timer_heater_ ## NR == 0) { \
if (state_heater_ ## NR == 1) state_timer_heater_ ## NR = MIN_STATE_TIME; \
state_heater_ ## NR = 0; \
WRITE_HEATER_ ## NR (0); \
} \
}
if (slow_pwm_count == 0) {
SLOW_PWM_ROUTINE(0); // EXTRUDER 0
#if EXTRUDERS > 1
SLOW_PWM_ROUTINE(1); // EXTRUDER 1
#if EXTRUDERS > 2
SLOW_PWM_ROUTINE(2); // EXTRUDER 2
#if EXTRUDERS > 3
SLOW_PWM_ROUTINE(3); // EXTRUDER 3
#endif
#endif
#endif
#if HAS_HEATER_BED
_SLOW_PWM_ROUTINE(BED, soft_pwm_bed); // BED
#endif
} // slow_pwm_count == 0
PWM_OFF_ROUTINE(0); // EXTRUDER 0
#if EXTRUDERS > 1
PWM_OFF_ROUTINE(1); // EXTRUDER 1
#if EXTRUDERS > 2
PWM_OFF_ROUTINE(2); // EXTRUDER 2
#if EXTRUDERS > 3
PWM_OFF_ROUTINE(3); // EXTRUDER 3
#endif
#endif
#endif
#if HAS_HEATER_BED
PWM_OFF_ROUTINE(BED); // BED
#endif
#ifdef FAN_SOFT_PWM
if (pwm_count == 0) {
soft_pwm_fan = fanSpeedSoftPwm / 2;
WRITE_FAN(soft_pwm_fan > 0 ? 1 : 0);
}
if (soft_pwm_fan < pwm_count) WRITE_FAN(0);
#endif //FAN_SOFT_PWM
pwm_count += BIT(SOFT_PWM_SCALE);
pwm_count &= 0x7f;
// increment slow_pwm_count only every 64 pwm_count circa 65.5ms
if ((pwm_count % 64) == 0) {
slow_pwm_count++;
slow_pwm_count &= 0x7f;
// EXTRUDER 0
if (state_timer_heater_0 > 0) state_timer_heater_0--;
#if EXTRUDERS > 1 // EXTRUDER 1
if (state_timer_heater_1 > 0) state_timer_heater_1--;
#if EXTRUDERS > 2 // EXTRUDER 2
if (state_timer_heater_2 > 0) state_timer_heater_2--;
#if EXTRUDERS > 3 // EXTRUDER 3
if (state_timer_heater_3 > 0) state_timer_heater_3--;
#endif
#endif
#endif
#if HAS_HEATER_BED
if (state_timer_heater_BED > 0) state_timer_heater_BED--;
#endif
} // (pwm_count % 64) == 0
#endif // SLOW_PWM_HEATERS
#define SET_ADMUX_ADCSRA(pin) ADMUX = BIT(REFS0) | (pin & 0x07); ADCSRA |= BIT(ADSC)
#ifdef MUX5
#define START_ADC(pin) if (pin > 7) ADCSRB = BIT(MUX5); else ADCSRB = 0; SET_ADMUX_ADCSRA(pin)
#else
#define START_ADC(pin) ADCSRB = 0; SET_ADMUX_ADCSRA(pin)
#endif
// Prepare or measure a sensor, each one every 12th frame
switch(temp_state) {
case PrepareTemp_0:
#if HAS_TEMP_0
START_ADC(TEMP_0_PIN);
#endif
lcd_buttons_update();
temp_state = MeasureTemp_0;
break;
case MeasureTemp_0:
#if HAS_TEMP_0
raw_temp_value[0] += ADC;
#endif
temp_state = PrepareTemp_BED;
break;
case PrepareTemp_BED:
#if HAS_TEMP_BED
START_ADC(TEMP_BED_PIN);
#endif
lcd_buttons_update();
temp_state = MeasureTemp_BED;
break;
case MeasureTemp_BED:
#if HAS_TEMP_BED
raw_temp_bed_value += ADC;
#endif
temp_state = PrepareTemp_1;
break;
case PrepareTemp_1:
#if HAS_TEMP_1
START_ADC(TEMP_1_PIN);
#endif
lcd_buttons_update();
temp_state = MeasureTemp_1;
break;
case MeasureTemp_1:
#if HAS_TEMP_1
raw_temp_value[1] += ADC;
#endif
temp_state = PrepareTemp_2;
break;
case PrepareTemp_2:
#if HAS_TEMP_2
START_ADC(TEMP_2_PIN);
#endif
lcd_buttons_update();
temp_state = MeasureTemp_2;
break;
case MeasureTemp_2:
#if HAS_TEMP_2
raw_temp_value[2] += ADC;
#endif
temp_state = PrepareTemp_3;
break;
case PrepareTemp_3:
#if HAS_TEMP_3
START_ADC(TEMP_3_PIN);
#endif
lcd_buttons_update();
temp_state = MeasureTemp_3;
break;
case MeasureTemp_3:
#if HAS_TEMP_3
raw_temp_value[3] += ADC;
#endif
temp_state = Prepare_FILWIDTH;
break;
case Prepare_FILWIDTH:
#if HAS_FILAMENT_SENSOR
START_ADC(FILWIDTH_PIN);
#endif
lcd_buttons_update();
temp_state = Measure_FILWIDTH;
break;
case Measure_FILWIDTH:
#if HAS_FILAMENT_SENSOR
// raw_filwidth_value += ADC; //remove to use an IIR filter approach
if (ADC > 102) { //check that ADC is reading a voltage > 0.5 volts, otherwise don't take in the data.
raw_filwidth_value -= (raw_filwidth_value>>7); //multiply raw_filwidth_value by 127/128
raw_filwidth_value += ((unsigned long)ADC<<7); //add new ADC reading
}
#endif
temp_state = PrepareTemp_0;
temp_count++;
break;
case StartupDelay:
temp_state = PrepareTemp_0;
break;
// default:
// SERIAL_ERROR_START;
// SERIAL_ERRORLNPGM("Temp measurement error!");
// break;
} // switch(temp_state)
if (temp_count >= OVERSAMPLENR) { // 10 * 16 * 1/(16000000/64/256) = 164ms.
// Update the raw values if they've been read. Else we could be updating them during reading.
if (!temp_meas_ready) set_current_temp_raw();
// Filament Sensor - can be read any time since IIR filtering is used
#if HAS_FILAMENT_SENSOR
current_raw_filwidth = raw_filwidth_value >> 10; // Divide to get to 0-16384 range since we used 1/128 IIR filter approach
#endif
temp_count = 0;
for (int i = 0; i < 4; i++) raw_temp_value[i] = 0;
raw_temp_bed_value = 0;
#if HAS_TEMP_0 && !defined(HEATER_0_USES_MAX6675)
#if HEATER_0_RAW_LO_TEMP > HEATER_0_RAW_HI_TEMP
#define GE0 <=
#else
#define GE0 >=
#endif
if (current_temperature_raw[0] GE0 maxttemp_raw[0]) max_temp_error(0);
if (minttemp_raw[0] GE0 current_temperature_raw[0]) min_temp_error(0);
#endif
#if HAS_TEMP_1
#if HEATER_1_RAW_LO_TEMP > HEATER_1_RAW_HI_TEMP
#define GE1 <=
#else
#define GE1 >=
#endif
if (current_temperature_raw[1] GE1 maxttemp_raw[1]) max_temp_error(1);
if (minttemp_raw[1] GE1 current_temperature_raw[1]) min_temp_error(1);
#endif // TEMP_SENSOR_1
#if HAS_TEMP_2
#if HEATER_2_RAW_LO_TEMP > HEATER_2_RAW_HI_TEMP
#define GE2 <=
#else
#define GE2 >=
#endif
if (current_temperature_raw[2] GE2 maxttemp_raw[2]) max_temp_error(2);
if (minttemp_raw[2] GE2 current_temperature_raw[2]) min_temp_error(2);
#endif // TEMP_SENSOR_2
#if HAS_TEMP_3
#if HEATER_3_RAW_LO_TEMP > HEATER_3_RAW_HI_TEMP
#define GE3 <=
#else
#define GE3 >=
#endif
if (current_temperature_raw[3] GE3 maxttemp_raw[3]) max_temp_error(3);
if (minttemp_raw[3] GE3 current_temperature_raw[3]) min_temp_error(3);
#endif // TEMP_SENSOR_3
#if HAS_TEMP_BED
#if HEATER_BED_RAW_LO_TEMP > HEATER_BED_RAW_HI_TEMP
#define GEBED <=
#else
#define GEBED >=
#endif
if (current_temperature_bed_raw GEBED bed_maxttemp_raw) _temp_error(-1, PSTR(MSG_T_MAXTEMP), PSTR(MSG_ERR_MAXTEMP_BED));
if (bed_minttemp_raw GEBED current_temperature_bed_raw) _temp_error(-1, PSTR(MSG_T_MINTEMP), PSTR(MSG_ERR_MINTEMP_BED));
#endif
} // temp_count >= OVERSAMPLENR
#ifdef BABYSTEPPING
for (uint8_t axis = X_AXIS; axis <= Z_AXIS; axis++) {
int curTodo = babystepsTodo[axis]; //get rid of volatile for performance
if (curTodo > 0) {
babystep(axis,/*fwd*/true);
babystepsTodo[axis]--; //fewer to do next time
}
else if (curTodo < 0) {
babystep(axis,/*fwd*/false);
babystepsTodo[axis]++; //fewer to do next time
}
}
#endif //BABYSTEPPING
}
#ifdef PIDTEMP
// Apply the scale factors to the PID values
float scalePID_i(float i) { return i * PID_dT; }
float unscalePID_i(float i) { return i / PID_dT; }
float scalePID_d(float d) { return d / PID_dT; }
float unscalePID_d(float d) { return d * PID_dT; }
#endif //PIDTEMP