1
0
mirror of https://github.com/MarlinFirmware/Marlin.git synced 2024-12-18 00:07:50 +00:00
MarlinFirmware/Marlin/ultralcd_impl_HD44780.h
2018-02-26 22:53:08 -06:00

1582 lines
50 KiB
C++

/**
* Marlin 3D Printer Firmware
* Copyright (C) 2016 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
*
* Based on Sprinter and grbl.
* Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*
*/
#ifndef ULTRALCD_IMPL_HD44780_H
#define ULTRALCD_IMPL_HD44780_H
/**
* Implementation of the LCD display routines for a Hitachi HD44780 display.
* These are the most common LCD character displays.
*/
#include "utility.h"
#include "duration_t.h"
#if ENABLED(AUTO_BED_LEVELING_UBL)
#include "ubl.h"
#if ENABLED(ULTIPANEL)
#define ULTRA_X_PIXELS_PER_CHAR 5
#define ULTRA_Y_PIXELS_PER_CHAR 8
#define ULTRA_COLUMNS_FOR_MESH_MAP 7
#define ULTRA_ROWS_FOR_MESH_MAP 4
#define N_USER_CHARS 8
#define TOP_LEFT _BV(0)
#define TOP_RIGHT _BV(1)
#define LOWER_LEFT _BV(2)
#define LOWER_RIGHT _BV(3)
#endif
#endif
extern volatile uint8_t buttons; //an extended version of the last checked buttons in a bit array.
////////////////////////////////////
// Setup button and encode mappings for each panel (into 'buttons' variable
//
// This is just to map common functions (across different panels) onto the same
// macro name. The mapping is independent of whether the button is directly connected or
// via a shift/i2c register.
#if ENABLED(ULTIPANEL)
//
// Setup other button mappings of each panel
//
#if ENABLED(LCD_I2C_VIKI)
#define B_I2C_BTN_OFFSET 3 // (the first three bit positions reserved for EN_A, EN_B, EN_C)
// button and encoder bit positions within 'buttons'
#define B_LE (BUTTON_LEFT<<B_I2C_BTN_OFFSET) // The remaining normalized buttons are all read via I2C
#define B_UP (BUTTON_UP<<B_I2C_BTN_OFFSET)
#define B_MI (BUTTON_SELECT<<B_I2C_BTN_OFFSET)
#define B_DW (BUTTON_DOWN<<B_I2C_BTN_OFFSET)
#define B_RI (BUTTON_RIGHT<<B_I2C_BTN_OFFSET)
#undef LCD_CLICKED
#if BUTTON_EXISTS(ENC)
// the pause/stop/restart button is connected to BTN_ENC when used
#define B_ST (EN_C) // Map the pause/stop/resume button into its normalized functional name
#define LCD_CLICKED (buttons&(B_MI|B_RI|B_ST)) // pause/stop button also acts as click until we implement proper pause/stop.
#else
#define LCD_CLICKED (buttons&(B_MI|B_RI))
#endif
// I2C buttons take too long to read inside an interrupt context and so we read them during lcd_update
#define LCD_HAS_SLOW_BUTTONS
#elif ENABLED(LCD_I2C_PANELOLU2)
#if !BUTTON_EXISTS(ENC) // Use I2C if not directly connected to a pin
#define B_I2C_BTN_OFFSET 3 // (the first three bit positions reserved for EN_A, EN_B, EN_C)
#define B_MI (PANELOLU2_ENCODER_C<<B_I2C_BTN_OFFSET) // requires LiquidTWI2 library v1.2.3 or later
#undef LCD_CLICKED
#define LCD_CLICKED (buttons & B_MI)
// I2C buttons take too long to read inside an interrupt context and so we read them during lcd_update
#define LCD_HAS_SLOW_BUTTONS
#endif
#elif DISABLED(NEWPANEL) // old style ULTIPANEL
// Shift register bits correspond to buttons:
#define BL_LE 7 // Left
#define BL_UP 6 // Up
#define BL_MI 5 // Middle
#define BL_DW 4 // Down
#define BL_RI 3 // Right
#define BL_ST 2 // Red Button
#define B_LE (_BV(BL_LE))
#define B_UP (_BV(BL_UP))
#define B_MI (_BV(BL_MI))
#define B_DW (_BV(BL_DW))
#define B_RI (_BV(BL_RI))
#define B_ST (_BV(BL_ST))
#define LCD_CLICKED (buttons & (B_MI|B_ST))
#endif
#endif // ULTIPANEL
////////////////////////////////////
// Create LCD class instance and chipset-specific information
#if ENABLED(LCD_I2C_TYPE_PCF8575)
// note: these are register mapped pins on the PCF8575 controller not Arduino pins
#define LCD_I2C_PIN_BL 3
#define LCD_I2C_PIN_EN 2
#define LCD_I2C_PIN_RW 1
#define LCD_I2C_PIN_RS 0
#define LCD_I2C_PIN_D4 4
#define LCD_I2C_PIN_D5 5
#define LCD_I2C_PIN_D6 6
#define LCD_I2C_PIN_D7 7
#include <Wire.h>
#include <LCD.h>
#include <LiquidCrystal_I2C.h>
#define LCD_CLASS LiquidCrystal_I2C
LCD_CLASS lcd(LCD_I2C_ADDRESS, LCD_I2C_PIN_EN, LCD_I2C_PIN_RW, LCD_I2C_PIN_RS, LCD_I2C_PIN_D4, LCD_I2C_PIN_D5, LCD_I2C_PIN_D6, LCD_I2C_PIN_D7);
#elif ENABLED(LCD_I2C_TYPE_MCP23017)
//for the LED indicators (which maybe mapped to different things in lcd_implementation_update_indicators())
#define LED_A 0x04 //100
#define LED_B 0x02 //010
#define LED_C 0x01 //001
#define LCD_HAS_STATUS_INDICATORS
#include <Wire.h>
#include <LiquidTWI2.h>
#define LCD_CLASS LiquidTWI2
#if ENABLED(DETECT_DEVICE)
LCD_CLASS lcd(LCD_I2C_ADDRESS, 1);
#else
LCD_CLASS lcd(LCD_I2C_ADDRESS);
#endif
#elif ENABLED(LCD_I2C_TYPE_MCP23008)
#include <Wire.h>
#include <LiquidTWI2.h>
#define LCD_CLASS LiquidTWI2
#if ENABLED(DETECT_DEVICE)
LCD_CLASS lcd(LCD_I2C_ADDRESS, 1);
#else
LCD_CLASS lcd(LCD_I2C_ADDRESS);
#endif
#elif ENABLED(LCD_I2C_TYPE_PCA8574)
#include <LiquidCrystal_I2C.h>
#define LCD_CLASS LiquidCrystal_I2C
LCD_CLASS lcd(LCD_I2C_ADDRESS, LCD_WIDTH, LCD_HEIGHT);
// 2 wire Non-latching LCD SR from:
// https://bitbucket.org/fmalpartida/new-liquidcrystal/wiki/schematics#!shiftregister-connection
#elif ENABLED(SR_LCD_2W_NL)
extern "C" void __cxa_pure_virtual() { while (1); }
#include <LCD.h>
#include <LiquidCrystal_SR.h>
#define LCD_CLASS LiquidCrystal_SR
#if PIN_EXISTS(SR_STROBE)
LCD_CLASS lcd(SR_DATA_PIN, SR_CLK_PIN, SR_STROBE_PIN);
#else
LCD_CLASS lcd(SR_DATA_PIN, SR_CLK_PIN);
#endif
#elif ENABLED(LCM1602)
#include <Wire.h>
#include <LCD.h>
#include <LiquidCrystal_I2C.h>
#define LCD_CLASS LiquidCrystal_I2C
LCD_CLASS lcd(0x27, 2, 1, 0, 4, 5, 6, 7, 3, POSITIVE);
#else
// Standard directly connected LCD implementations
#include <LiquidCrystal.h>
#define LCD_CLASS LiquidCrystal
LCD_CLASS lcd(LCD_PINS_RS, LCD_PINS_ENABLE, LCD_PINS_D4, LCD_PINS_D5, LCD_PINS_D6, LCD_PINS_D7); //RS,Enable,D4,D5,D6,D7
#endif
#include "utf_mapper.h"
#if ENABLED(LCD_PROGRESS_BAR)
static millis_t progress_bar_ms = 0; // Start millis of the current progress bar cycle
#if PROGRESS_MSG_EXPIRE > 0
static millis_t expire_status_ms = 0; // millis at which to expire the status message
#endif
#define LCD_STR_PROGRESS "\x03\x04\x05"
#endif
#if ENABLED(LCD_HAS_STATUS_INDICATORS)
static void lcd_implementation_update_indicators();
#endif
static void createChar_P(const char c, const byte * const ptr) {
byte temp[8];
for (uint8_t i = 0; i < 8; i++)
temp[i] = pgm_read_byte(&ptr[i]);
lcd.createChar(c, temp);
}
#define CHARSET_MENU 0
#define CHARSET_INFO 1
#define CHARSET_BOOT 2
static void lcd_set_custom_characters(
#if ENABLED(LCD_PROGRESS_BAR) || ENABLED(SHOW_BOOTSCREEN)
const uint8_t screen_charset=CHARSET_INFO
#endif
) {
// CHARSET_BOOT
#if ENABLED(SHOW_BOOTSCREEN)
const static PROGMEM byte corner[4][8] = { {
B00000,
B00000,
B00000,
B00000,
B00001,
B00010,
B00100,
B00100
}, {
B00000,
B00000,
B00000,
B11100,
B11100,
B01100,
B00100,
B00100
}, {
B00100,
B00010,
B00001,
B00000,
B00000,
B00000,
B00000,
B00000
}, {
B00100,
B01000,
B10000,
B00000,
B00000,
B00000,
B00000,
B00000
} };
#endif // SHOW_BOOTSCREEN
// CHARSET_INFO
const static PROGMEM byte bedTemp[8] = {
B00000,
B11111,
B10101,
B10001,
B10101,
B11111,
B00000,
B00000
};
const static PROGMEM byte degree[8] = {
B01100,
B10010,
B10010,
B01100,
B00000,
B00000,
B00000,
B00000
};
const static PROGMEM byte thermometer[8] = {
B00100,
B01010,
B01010,
B01010,
B01010,
B10001,
B10001,
B01110
};
const static PROGMEM byte uplevel[8] = {
B00100,
B01110,
B11111,
B00100,
B11100,
B00000,
B00000,
B00000
};
const static PROGMEM byte feedrate[8] = {
B11100,
B10000,
B11000,
B10111,
B00101,
B00110,
B00101,
B00000
};
const static PROGMEM byte clock[8] = {
B00000,
B01110,
B10011,
B10101,
B10001,
B01110,
B00000,
B00000
};
#if ENABLED(LCD_PROGRESS_BAR)
// CHARSET_INFO
const static PROGMEM byte progress[3][8] = { {
B00000,
B10000,
B10000,
B10000,
B10000,
B10000,
B10000,
B00000
}, {
B00000,
B10100,
B10100,
B10100,
B10100,
B10100,
B10100,
B00000
}, {
B00000,
B10101,
B10101,
B10101,
B10101,
B10101,
B10101,
B00000
} };
#endif // LCD_PROGRESS_BAR
#if ENABLED(SDSUPPORT)
// CHARSET_MENU
const static PROGMEM byte refresh[8] = {
B00000,
B00110,
B11001,
B11000,
B00011,
B10011,
B01100,
B00000,
};
const static PROGMEM byte folder[8] = {
B00000,
B11100,
B11111,
B10001,
B10001,
B11111,
B00000,
B00000
};
#endif // SDSUPPORT
#if ENABLED(SHOW_BOOTSCREEN) || ENABLED(LCD_PROGRESS_BAR)
static uint8_t char_mode = CHARSET_MENU;
#define CHAR_COND (screen_charset != char_mode)
#else
#define CHAR_COND true
#endif
if (CHAR_COND) {
#if ENABLED(SHOW_BOOTSCREEN) || ENABLED(LCD_PROGRESS_BAR)
char_mode = screen_charset;
#if ENABLED(SHOW_BOOTSCREEN)
// Set boot screen corner characters
if (screen_charset == CHARSET_BOOT) {
for (uint8_t i = 4; i--;)
createChar_P(i, corner[i]);
}
else
#endif
#endif
{ // Info Screen uses 5 special characters
createChar_P(LCD_BEDTEMP_CHAR, bedTemp);
createChar_P(LCD_DEGREE_CHAR, degree);
createChar_P(LCD_STR_THERMOMETER[0], thermometer);
createChar_P(LCD_FEEDRATE_CHAR, feedrate);
createChar_P(LCD_CLOCK_CHAR, clock);
#if ENABLED(LCD_PROGRESS_BAR)
if (screen_charset == CHARSET_INFO) { // 3 Progress bar characters for info screen
for (int16_t i = 3; i--;)
createChar_P(LCD_STR_PROGRESS[i], progress[i]);
}
else
#endif
{
createChar_P(LCD_UPLEVEL_CHAR, uplevel);
#if ENABLED(SDSUPPORT)
// SD Card sub-menu special characters
createChar_P(LCD_STR_REFRESH[0], refresh);
createChar_P(LCD_STR_FOLDER[0], folder);
#endif
}
}
}
}
static void lcd_implementation_init(
#if ENABLED(LCD_PROGRESS_BAR)
const uint8_t screen_charset=CHARSET_INFO
#endif
) {
#if ENABLED(LCD_I2C_TYPE_PCF8575)
lcd.begin(LCD_WIDTH, LCD_HEIGHT);
#ifdef LCD_I2C_PIN_BL
lcd.setBacklightPin(LCD_I2C_PIN_BL, POSITIVE);
lcd.setBacklight(HIGH);
#endif
#elif ENABLED(LCD_I2C_TYPE_MCP23017)
lcd.setMCPType(LTI_TYPE_MCP23017);
lcd.begin(LCD_WIDTH, LCD_HEIGHT);
lcd_implementation_update_indicators();
#elif ENABLED(LCD_I2C_TYPE_MCP23008)
lcd.setMCPType(LTI_TYPE_MCP23008);
lcd.begin(LCD_WIDTH, LCD_HEIGHT);
#elif ENABLED(LCD_I2C_TYPE_PCA8574)
lcd.init();
lcd.backlight();
#else
lcd.begin(LCD_WIDTH, LCD_HEIGHT);
#endif
lcd_set_custom_characters(
#if ENABLED(LCD_PROGRESS_BAR)
screen_charset
#endif
);
lcd.clear();
}
void lcd_implementation_clear() { lcd.clear(); }
void lcd_print(const char c) { charset_mapper(c); }
void lcd_print(const char *str) { while (*str) lcd.print(*str++); }
void lcd_printPGM(const char *str) { while (const char c = pgm_read_byte(str)) lcd.print(c), ++str; }
void lcd_print_utf(const char *str, uint8_t n=LCD_WIDTH) {
char c;
while (n && (c = *str)) n -= charset_mapper(c), ++str;
}
void lcd_printPGM_utf(const char *str, uint8_t n=LCD_WIDTH) {
char c;
while (n && (c = pgm_read_byte(str))) n -= charset_mapper(c), ++str;
}
#if ENABLED(SHOW_BOOTSCREEN)
void lcd_erase_line(const int16_t line) {
lcd.setCursor(0, line);
for (uint8_t i = LCD_WIDTH + 1; --i;)
lcd.write(' ');
}
// Scroll the PSTR 'text' in a 'len' wide field for 'time' milliseconds at position col,line
void lcd_scroll(const int16_t col, const int16_t line, const char* const text, const int16_t len, const int16_t time) {
char tmp[LCD_WIDTH + 1] = {0};
int16_t n = max(lcd_strlen_P(text) - len, 0);
for (int16_t i = 0; i <= n; i++) {
strncpy_P(tmp, text + i, min(len, LCD_WIDTH));
lcd.setCursor(col, line);
lcd_print(tmp);
delay(time / max(n, 1));
}
}
static void logo_lines(const char* const extra) {
int16_t indent = (LCD_WIDTH - 8 - lcd_strlen_P(extra)) / 2;
lcd.setCursor(indent, 0); lcd.print('\x00'); lcd_printPGM(PSTR( "------" )); lcd.write('\x01');
lcd.setCursor(indent, 1); lcd_printPGM(PSTR("|Marlin|")); lcd_printPGM(extra);
lcd.setCursor(indent, 2); lcd.write('\x02'); lcd_printPGM(PSTR( "------" )); lcd.write('\x03');
}
void lcd_bootscreen() {
lcd_set_custom_characters(CHARSET_BOOT);
lcd.clear();
#define LCD_EXTRA_SPACE (LCD_WIDTH-8)
#define CENTER_OR_SCROLL(STRING,DELAY) \
lcd_erase_line(3); \
if (strlen(STRING) <= LCD_WIDTH) { \
lcd.setCursor((LCD_WIDTH - lcd_strlen_P(PSTR(STRING))) / 2, 3); \
lcd_printPGM(PSTR(STRING)); \
safe_delay(DELAY); \
} \
else { \
lcd_scroll(0, 3, PSTR(STRING), LCD_WIDTH, DELAY); \
}
#ifdef STRING_SPLASH_LINE1
//
// Show the Marlin logo with splash line 1
//
if (LCD_EXTRA_SPACE >= strlen(STRING_SPLASH_LINE1) + 1) {
//
// Show the Marlin logo, splash line1, and splash line 2
//
logo_lines(PSTR(" " STRING_SPLASH_LINE1));
#ifdef STRING_SPLASH_LINE2
CENTER_OR_SCROLL(STRING_SPLASH_LINE2, 2000);
#else
safe_delay(2000);
#endif
}
else {
//
// Show the Marlin logo with splash line 1
// After a delay show splash line 2, if it exists
//
#ifdef STRING_SPLASH_LINE2
#define _SPLASH_WAIT_1 1500
#else
#define _SPLASH_WAIT_1 2000
#endif
logo_lines(PSTR(""));
CENTER_OR_SCROLL(STRING_SPLASH_LINE1, _SPLASH_WAIT_1);
#ifdef STRING_SPLASH_LINE2
CENTER_OR_SCROLL(STRING_SPLASH_LINE2, 1500);
#endif
}
#elif defined(STRING_SPLASH_LINE2)
//
// Show splash line 2 only, alongside the logo if possible
//
if (LCD_EXTRA_SPACE >= strlen(STRING_SPLASH_LINE2) + 1) {
logo_lines(PSTR(" " STRING_SPLASH_LINE2));
safe_delay(2000);
}
else {
logo_lines(PSTR(""));
CENTER_OR_SCROLL(STRING_SPLASH_LINE2, 2000);
}
#else
//
// Show only the Marlin logo
//
logo_lines(PSTR(""));
safe_delay(2000);
#endif
lcd.clear();
safe_delay(100);
lcd_set_custom_characters();
lcd.clear();
}
#endif // SHOW_BOOTSCREEN
void lcd_kill_screen() {
lcd.setCursor(0, 0);
lcd_print_utf(lcd_status_message);
#if LCD_HEIGHT < 4
lcd.setCursor(0, 2);
#else
lcd.setCursor(0, 2);
lcd_printPGM(PSTR(MSG_HALTED));
lcd.setCursor(0, 3);
#endif
lcd_printPGM(PSTR(MSG_PLEASE_RESET));
}
FORCE_INLINE void _draw_axis_label(const AxisEnum axis, const char* const pstr, const bool blink) {
if (blink)
lcd_printPGM(pstr);
else {
if (!axis_homed[axis])
lcd.write('?');
else {
#if DISABLED(HOME_AFTER_DEACTIVATE) && DISABLED(DISABLE_REDUCED_ACCURACY_WARNING)
if (!axis_known_position[axis])
lcd.write(' ');
else
#endif
lcd_printPGM(pstr);
}
}
}
FORCE_INLINE void _draw_heater_status(const int8_t heater, const char prefix, const bool blink) {
#if TEMP_SENSOR_BED
const bool isBed = heater < 0;
#else
constexpr bool isBed = false;
#endif
const float t1 = (isBed ? thermalManager.degBed() : thermalManager.degHotend(heater)),
t2 = (isBed ? thermalManager.degTargetBed() : thermalManager.degTargetHotend(heater));
if (prefix >= 0) lcd.print(prefix);
lcd.print(itostr3(t1 + 0.5));
lcd.write('/');
#if !HEATER_IDLE_HANDLER
UNUSED(blink);
#else
const bool is_idle = (!isBed ? thermalManager.is_heater_idle(heater) :
#if HAS_TEMP_BED
thermalManager.is_bed_idle()
#else
false
#endif
);
if (!blink && is_idle) {
lcd.write(' ');
if (t2 >= 10) lcd.write(' ');
if (t2 >= 100) lcd.write(' ');
}
else
#endif
lcd.print(itostr3left(t2 + 0.5));
if (prefix >= 0) {
lcd.print((char)LCD_DEGREE_CHAR);
lcd.write(' ');
if (t2 < 10) lcd.write(' ');
}
}
#if ENABLED(LCD_PROGRESS_BAR)
inline void lcd_draw_progress_bar(const uint8_t percent) {
const int16_t tix = (int16_t)(percent * (LCD_WIDTH) * 3) / 100,
cel = tix / 3,
rem = tix % 3;
uint8_t i = LCD_WIDTH;
char msg[LCD_WIDTH + 1], b = ' ';
msg[LCD_WIDTH] = '\0';
while (i--) {
if (i == cel - 1)
b = LCD_STR_PROGRESS[2];
else if (i == cel && rem != 0)
b = LCD_STR_PROGRESS[rem - 1];
msg[i] = b;
}
lcd.print(msg);
}
#endif // LCD_PROGRESS_BAR
/**
Possible status screens:
16x2 |000/000 B000/000|
|0123456789012345|
16x4 |000/000 B000/000|
|SD100% Z 000.00|
|F100% T--:--|
|0123456789012345|
20x2 |T000/000D B000/000D |
|01234567890123456789|
20x4 |T000/000D B000/000D |
|X 000 Y 000 Z 000.00|
|F100% SD100% T--:--|
|01234567890123456789|
20x4 |T000/000D B000/000D |
|T000/000D Z 000.00|
|F100% SD100% T--:--|
|01234567890123456789|
*/
static void lcd_implementation_status_screen() {
const bool blink = lcd_blink();
//
// Line 1
//
lcd.setCursor(0, 0);
#if LCD_WIDTH < 20
//
// Hotend 0 Temperature
//
_draw_heater_status(0, -1, blink);
//
// Hotend 1 or Bed Temperature
//
#if HOTENDS > 1 || TEMP_SENSOR_BED
lcd.setCursor(8, 0);
#if HOTENDS > 1
lcd.print((char)LCD_STR_THERMOMETER[0]);
_draw_heater_status(1, -1, blink);
#else
lcd.print((char)LCD_BEDTEMP_CHAR);
_draw_heater_status(-1, -1, blink);
#endif
#endif // HOTENDS > 1 || TEMP_SENSOR_BED
#else // LCD_WIDTH >= 20
//
// Hotend 0 Temperature
//
_draw_heater_status(0, LCD_STR_THERMOMETER[0], blink);
//
// Hotend 1 or Bed Temperature
//
#if HOTENDS > 1 || TEMP_SENSOR_BED
lcd.setCursor(10, 0);
#if HOTENDS > 1
_draw_heater_status(1, LCD_STR_THERMOMETER[0], blink);
#else
_draw_heater_status(-1, (
#if HAS_LEVELING
planner.leveling_active && blink ? '_' :
#endif
LCD_BEDTEMP_CHAR
), blink);
#endif
#endif // HOTENDS > 1 || TEMP_SENSOR_BED != 0
#endif // LCD_WIDTH >= 20
//
// Line 2
//
#if LCD_HEIGHT > 2
#if LCD_WIDTH < 20
#if ENABLED(SDSUPPORT)
lcd.setCursor(0, 2);
lcd_printPGM(PSTR("SD"));
if (IS_SD_PRINTING)
lcd.print(itostr3(card.percentDone()));
else
lcd_printPGM(PSTR("---"));
lcd.write('%');
#endif // SDSUPPORT
#else // LCD_WIDTH >= 20
lcd.setCursor(0, 1);
// If the first line has two extruder temps,
// show more temperatures on the next line
#if HOTENDS > 2 || (HOTENDS > 1 && TEMP_SENSOR_BED)
#if HOTENDS > 2
_draw_heater_status(2, LCD_STR_THERMOMETER[0], blink);
lcd.setCursor(10, 1);
#endif
_draw_heater_status(-1, (
#if HAS_LEVELING
planner.leveling_active && blink ? '_' :
#endif
LCD_BEDTEMP_CHAR
), blink);
#else // HOTENDS <= 2 && (HOTENDS <= 1 || !TEMP_SENSOR_BED)
// Before homing the axis letters are blinking 'X' <-> '?'.
// When axis is homed but axis_known_position is false the axis letters are blinking 'X' <-> ' '.
// When everything is ok you see a constant 'X'.
_draw_axis_label(X_AXIS, PSTR(MSG_X), blink);
lcd.print(ftostr4sign(LOGICAL_X_POSITION(current_position[X_AXIS])));
lcd.write(' ');
_draw_axis_label(Y_AXIS, PSTR(MSG_Y), blink);
lcd.print(ftostr4sign(LOGICAL_Y_POSITION(current_position[Y_AXIS])));
#endif // HOTENDS <= 2 && (HOTENDS <= 1 || !TEMP_SENSOR_BED)
#endif // LCD_WIDTH >= 20
lcd.setCursor(LCD_WIDTH - 8, 1);
_draw_axis_label(Z_AXIS, PSTR(MSG_Z), blink);
lcd.print(ftostr52sp(FIXFLOAT(LOGICAL_Z_POSITION(current_position[Z_AXIS]))));
#if HAS_LEVELING && !TEMP_SENSOR_BED
lcd.write(planner.leveling_active || blink ? '_' : ' ');
#endif
#endif // LCD_HEIGHT > 2
//
// Line 3
//
#if LCD_HEIGHT > 3
lcd.setCursor(0, 2);
lcd.print((char)LCD_FEEDRATE_CHAR);
lcd.print(itostr3(feedrate_percentage));
lcd.write('%');
#if LCD_WIDTH >= 20 && ENABLED(SDSUPPORT)
lcd.setCursor(7, 2);
lcd_printPGM(PSTR("SD"));
if (IS_SD_PRINTING)
lcd.print(itostr3(card.percentDone()));
else
lcd_printPGM(PSTR("---"));
lcd.write('%');
#endif // LCD_WIDTH >= 20 && SDSUPPORT
char buffer[10];
duration_t elapsed = print_job_timer.duration();
uint8_t len = elapsed.toDigital(buffer);
lcd.setCursor(LCD_WIDTH - len - 1, 2);
lcd.print((char)LCD_CLOCK_CHAR);
lcd_print(buffer);
#endif // LCD_HEIGHT > 3
//
// Last Line
// Status Message (which may be a Progress Bar or Filament display)
//
lcd.setCursor(0, LCD_HEIGHT - 1);
#if ENABLED(LCD_PROGRESS_BAR)
// Draw the progress bar if the message has shown long enough
// or if there is no message set.
#if DISABLED(LCD_SET_PROGRESS_MANUALLY)
const uint8_t progress_bar_percent = card.percentDone();
#endif
if (progress_bar_percent > 2 && (ELAPSED(millis(), progress_bar_ms + PROGRESS_BAR_MSG_TIME) || !lcd_status_message[0]))
return lcd_draw_progress_bar(progress_bar_percent);
#elif ENABLED(FILAMENT_LCD_DISPLAY) && ENABLED(SDSUPPORT)
// Show Filament Diameter and Volumetric Multiplier %
// After allowing lcd_status_message to show for 5 seconds
if (ELAPSED(millis(), previous_lcd_status_ms + 5000UL)) {
lcd_printPGM(PSTR("Dia "));
lcd.print(ftostr12ns(filament_width_meas));
lcd_printPGM(PSTR(" V"));
lcd.print(itostr3(100.0 * (
parser.volumetric_enabled
? planner.volumetric_area_nominal / planner.volumetric_multiplier[FILAMENT_SENSOR_EXTRUDER_NUM]
: planner.volumetric_multiplier[FILAMENT_SENSOR_EXTRUDER_NUM]
)
));
lcd.write('%');
return;
}
#endif // FILAMENT_LCD_DISPLAY && SDSUPPORT
#if ENABLED(STATUS_MESSAGE_SCROLLING)
static bool last_blink = false;
const uint8_t slen = lcd_strlen(lcd_status_message);
const char *stat = lcd_status_message + status_scroll_pos;
if (slen <= LCD_WIDTH)
lcd_print_utf(stat); // The string isn't scrolling
else {
if (status_scroll_pos <= slen - LCD_WIDTH)
lcd_print_utf(stat); // The string fills the screen
else {
uint8_t chars = LCD_WIDTH;
if (status_scroll_pos < slen) { // First string still visible
lcd_print_utf(stat); // The string leaves space
chars -= slen - status_scroll_pos; // Amount of space left
}
lcd.write('.'); // Always at 1+ spaces left, draw a dot
if (--chars) {
if (status_scroll_pos < slen + 1) // Draw a second dot if there's space
--chars, lcd.write('.');
if (chars) lcd_print_utf(lcd_status_message, chars); // Print a second copy of the message
}
}
if (last_blink != blink) {
last_blink = blink;
// Skip any non-printing bytes
if (status_scroll_pos < slen) while (!PRINTABLE(lcd_status_message[status_scroll_pos])) status_scroll_pos++;
if (++status_scroll_pos >= slen + 2) status_scroll_pos = 0;
}
}
#else
lcd_print_utf(lcd_status_message);
#endif
}
#if ENABLED(ULTIPANEL)
#if ENABLED(ADVANCED_PAUSE_FEATURE)
static void lcd_implementation_hotend_status(const uint8_t row, const uint8_t extruder=active_extruder) {
if (row < LCD_HEIGHT) {
lcd.setCursor(LCD_WIDTH - 9, row);
_draw_heater_status(extruder, LCD_STR_THERMOMETER[0], lcd_blink());
}
}
#endif // ADVANCED_PAUSE_FEATURE
static void lcd_implementation_drawmenu_static(const uint8_t row, const char* pstr, const bool center=true, const bool invert=false, const char *valstr=NULL) {
UNUSED(invert);
char c;
int8_t n = LCD_WIDTH;
lcd.setCursor(0, row);
if (center && !valstr) {
int8_t pad = (LCD_WIDTH - lcd_strlen_P(pstr)) / 2;
while (--pad >= 0) { lcd.write(' '); n--; }
}
while (n > 0 && (c = pgm_read_byte(pstr))) {
n -= charset_mapper(c);
pstr++;
}
if (valstr) while (n > 0 && (c = *valstr)) {
n -= charset_mapper(c);
valstr++;
}
while (n-- > 0) lcd.write(' ');
}
static void lcd_implementation_drawmenu_generic(const bool sel, const uint8_t row, const char* pstr, const char pre_char, const char post_char) {
char c;
uint8_t n = LCD_WIDTH - 2;
lcd.setCursor(0, row);
lcd.print(sel ? pre_char : ' ');
while ((c = pgm_read_byte(pstr)) && n > 0) {
n -= charset_mapper(c);
pstr++;
}
while (n--) lcd.write(' ');
lcd.print(post_char);
}
static void lcd_implementation_drawmenu_setting_edit_generic(const bool sel, const uint8_t row, const char* pstr, const char pre_char, const char* const data) {
char c;
uint8_t n = LCD_WIDTH - 2 - lcd_strlen(data);
lcd.setCursor(0, row);
lcd.print(sel ? pre_char : ' ');
while ((c = pgm_read_byte(pstr)) && n > 0) {
n -= charset_mapper(c);
pstr++;
}
lcd.write(':');
while (n--) lcd.write(' ');
lcd_print(data);
}
static void lcd_implementation_drawmenu_setting_edit_generic_P(const bool sel, const uint8_t row, const char* pstr, const char pre_char, const char* const data) {
char c;
uint8_t n = LCD_WIDTH - 2 - lcd_strlen_P(data);
lcd.setCursor(0, row);
lcd.print(sel ? pre_char : ' ');
while ((c = pgm_read_byte(pstr)) && n > 0) {
n -= charset_mapper(c);
pstr++;
}
lcd.write(':');
while (n--) lcd.write(' ');
lcd_printPGM(data);
}
#define DRAWMENU_SETTING_EDIT_GENERIC(_src) lcd_implementation_drawmenu_setting_edit_generic(sel, row, pstr, '>', _src)
#define DRAW_BOOL_SETTING(sel, row, pstr, data) lcd_implementation_drawmenu_setting_edit_generic_P(sel, row, pstr, '>', (*(data))?PSTR(MSG_ON):PSTR(MSG_OFF))
void lcd_implementation_drawedit(const char* pstr, const char* const value=NULL) {
lcd.setCursor(1, 1);
lcd_printPGM(pstr);
if (value != NULL) {
lcd.write(':');
const uint8_t valrow = (lcd_strlen_P(pstr) + 1 + lcd_strlen(value) + 1) > (LCD_WIDTH - 2) ? 2 : 1; // Value on the next row if it won't fit
lcd.setCursor((LCD_WIDTH - 1) - (lcd_strlen(value) + 1), valrow); // Right-justified, padded by spaces
lcd.write(' '); // overwrite char if value gets shorter
lcd_print(value);
}
}
#if ENABLED(SDSUPPORT)
static void lcd_implementation_drawmenu_sd(const bool sel, const uint8_t row, const char* const pstr, const char* filename, char* const longFilename, const uint8_t concat, const char post_char) {
UNUSED(pstr);
lcd.setCursor(0, row);
lcd.print(sel ? '>' : ' ');
uint8_t n = LCD_WIDTH - concat;
const char *outstr = longFilename[0] ? longFilename : filename;
if (longFilename[0]) {
#if ENABLED(SCROLL_LONG_FILENAMES)
if (sel) {
uint8_t name_hash = row;
for (uint8_t l = FILENAME_LENGTH; l--;)
name_hash = ((name_hash << 1) | (name_hash >> 7)) ^ filename[l]; // rotate, xor
if (filename_scroll_hash != name_hash) { // If the hash changed...
filename_scroll_hash = name_hash; // Save the new hash
filename_scroll_max = max(0, lcd_strlen(longFilename) - n); // Update the scroll limit
filename_scroll_pos = 0; // Reset scroll to the start
lcd_status_update_delay = 8; // Don't scroll right away
}
outstr += filename_scroll_pos;
}
#else
longFilename[n] = '\0'; // cutoff at screen edge
#endif
}
char c;
while (n && (c = *outstr)) {
n -= charset_mapper(c);
++outstr;
}
while (n) { --n; lcd.write(' '); }
lcd.print(post_char);
}
static void lcd_implementation_drawmenu_sdfile(const bool sel, const uint8_t row, const char* pstr, const char* filename, char* const longFilename) {
lcd_implementation_drawmenu_sd(sel, row, pstr, filename, longFilename, 2, ' ');
}
static void lcd_implementation_drawmenu_sddirectory(const bool sel, const uint8_t row, const char* pstr, const char* filename, char* const longFilename) {
lcd_implementation_drawmenu_sd(sel, row, pstr, filename, longFilename, 2, LCD_STR_FOLDER[0]);
}
#endif // SDSUPPORT
#define lcd_implementation_drawmenu_back(sel, row, pstr, dummy) lcd_implementation_drawmenu_generic(sel, row, pstr, LCD_UPLEVEL_CHAR, LCD_UPLEVEL_CHAR)
#define lcd_implementation_drawmenu_submenu(sel, row, pstr, data) lcd_implementation_drawmenu_generic(sel, row, pstr, '>', LCD_STR_ARROW_RIGHT[0])
#define lcd_implementation_drawmenu_gcode(sel, row, pstr, gcode) lcd_implementation_drawmenu_generic(sel, row, pstr, '>', ' ')
#define lcd_implementation_drawmenu_function(sel, row, pstr, data) lcd_implementation_drawmenu_generic(sel, row, pstr, '>', ' ')
#if ENABLED(LCD_HAS_SLOW_BUTTONS)
extern millis_t next_button_update_ms;
static uint8_t lcd_implementation_read_slow_buttons() {
#if ENABLED(LCD_I2C_TYPE_MCP23017)
// Reading these buttons this is likely to be too slow to call inside interrupt context
// so they are called during normal lcd_update
uint8_t slow_bits = lcd.readButtons() << B_I2C_BTN_OFFSET;
#if ENABLED(LCD_I2C_VIKI)
if ((slow_bits & (B_MI | B_RI)) && PENDING(millis(), next_button_update_ms)) // LCD clicked
slow_bits &= ~(B_MI | B_RI); // Disable LCD clicked buttons if screen is updated
#endif // LCD_I2C_VIKI
return slow_bits;
#endif // LCD_I2C_TYPE_MCP23017
}
#endif // LCD_HAS_SLOW_BUTTONS
#if ENABLED(LCD_HAS_STATUS_INDICATORS)
static void lcd_implementation_update_indicators() {
// Set the LEDS - referred to as backlights by the LiquidTWI2 library
static uint8_t ledsprev = 0;
uint8_t leds = 0;
if (thermalManager.degTargetBed() > 0) leds |= LED_A;
if (thermalManager.degTargetHotend(0) > 0) leds |= LED_B;
#if FAN_COUNT > 0
if (0
#if HAS_FAN0
|| fanSpeeds[0]
#endif
#if HAS_FAN1
|| fanSpeeds[1]
#endif
#if HAS_FAN2
|| fanSpeeds[2]
#endif
) leds |= LED_C;
#endif // FAN_COUNT > 0
#if HOTENDS > 1
if (thermalManager.degTargetHotend(1) > 0) leds |= LED_C;
#endif
if (leds != ledsprev) {
lcd.setBacklight(leds);
ledsprev = leds;
}
}
#endif // LCD_HAS_STATUS_INDICATORS
#if ENABLED(AUTO_BED_LEVELING_UBL)
/**
Possible map screens:
16x2 |X000.00 Y000.00|
|(00,00) Z00.000|
20x2 | X:000.00 Y:000.00 |
| (00,00) Z:00.000 |
16x4 |+-------+(00,00)|
|| |X000.00|
|| |Y000.00|
|+-------+Z00.000|
20x4 | +-------+ (00,00) |
| | | X:000.00|
| | | Y:000.00|
| +-------+ Z:00.000|
*/
typedef struct {
uint8_t custom_char_bits[ULTRA_Y_PIXELS_PER_CHAR];
} custom_char;
typedef struct {
uint8_t column, row;
uint8_t y_pixel_offset, x_pixel_offset;
uint8_t x_pixel_mask;
} coordinate;
void add_edges_to_custom_char(custom_char * const custom, coordinate * const ul, coordinate * const lr, coordinate * const brc, const uint8_t cell_location);
FORCE_INLINE static void clear_custom_char(custom_char * const cc) { ZERO(cc->custom_char_bits); }
/*
// This debug routine should be deleted by anybody that sees it. It doesn't belong here
// But I'm leaving it for now until we know the 20x4 Radar Map is working right.
// We may need it again if any funny lines show up on the mesh points.
void dump_custom_char(char *title, custom_char *c) {
SERIAL_PROTOCOLLN(title);
for (uint8_t j = 0; j < 8; j++) {
for (uint8_t i = 7; i >= 0; i--)
SERIAL_PROTOCOLCHAR(TEST(c->custom_char_bits[j], i) ? '1' : '0');
SERIAL_EOL();
}
SERIAL_EOL();
}
//*/
coordinate pixel_location(int16_t x, int16_t y) {
coordinate ret_val;
int16_t xp, yp, r, c;
x++; y++; // +1 because lines on the left and top
c = x / (ULTRA_X_PIXELS_PER_CHAR);
r = y / (ULTRA_Y_PIXELS_PER_CHAR);
ret_val.column = c;
ret_val.row = r;
xp = x - c * (ULTRA_X_PIXELS_PER_CHAR); // get the pixel offsets into the character cell
xp = ULTRA_X_PIXELS_PER_CHAR - 1 - xp; // column within relevant character cell (0 on the right)
yp = y - r * (ULTRA_Y_PIXELS_PER_CHAR);
ret_val.x_pixel_mask = _BV(xp);
ret_val.x_pixel_offset = xp;
ret_val.y_pixel_offset = yp;
return ret_val;
}
inline coordinate pixel_location(const uint8_t x, const uint8_t y) { return pixel_location((int16_t)x, (int16_t)y); }
void lcd_implementation_ubl_plot(const uint8_t x, const uint8_t inverted_y) {
#if LCD_WIDTH >= 20
#define _LCD_W_POS 12
#define _PLOT_X 1
#define _MAP_X 3
#define _LABEL(C,X,Y) lcd.setCursor(X, Y); lcd.print(C)
#define _XLABEL(X,Y) _LABEL("X:",X,Y)
#define _YLABEL(X,Y) _LABEL("Y:",X,Y)
#define _ZLABEL(X,Y) _LABEL("Z:",X,Y)
#else
#define _LCD_W_POS 8
#define _PLOT_X 0
#define _MAP_X 1
#define _LABEL(X,Y,C) lcd.setCursor(X, Y); lcd.write(C)
#define _XLABEL(X,Y) _LABEL('X',X,Y)
#define _YLABEL(X,Y) _LABEL('Y',X,Y)
#define _ZLABEL(X,Y) _LABEL('Z',X,Y)
#endif
#if LCD_HEIGHT <= 3 // 16x2 or 20x2 display
/**
* Show X and Y positions
*/
_XLABEL(_PLOT_X, 0);
lcd.print(ftostr32(LOGICAL_X_POSITION(pgm_read_float(&ubl._mesh_index_to_xpos[x]))));
_YLABEL(_LCD_W_POS, 0);
lcd.print(ftostr32(LOGICAL_Y_POSITION(pgm_read_float(&ubl._mesh_index_to_ypos[inverted_y]))));
lcd.setCursor(_PLOT_X, 0);
#else // 16x4 or 20x4 display
coordinate upper_left, lower_right, bottom_right_corner;
custom_char new_char;
uint8_t i, j, k, l, m, n, n_rows, n_cols, y,
bottom_line, right_edge,
x_map_pixels, y_map_pixels,
pixels_per_x_mesh_pnt, pixels_per_y_mesh_pnt,
suppress_x_offset = 0, suppress_y_offset = 0;
y = GRID_MAX_POINTS_Y - inverted_y - 1;
upper_left.column = 0;
upper_left.row = 0;
lower_right.column = 0;
lower_right.row = 0;
lcd_implementation_clear();
x_map_pixels = (ULTRA_X_PIXELS_PER_CHAR) * (ULTRA_COLUMNS_FOR_MESH_MAP) - 2; // minus 2 because we are drawing a box around the map
y_map_pixels = (ULTRA_Y_PIXELS_PER_CHAR) * (ULTRA_ROWS_FOR_MESH_MAP) - 2;
pixels_per_x_mesh_pnt = x_map_pixels / (GRID_MAX_POINTS_X);
pixels_per_y_mesh_pnt = y_map_pixels / (GRID_MAX_POINTS_Y);
if (pixels_per_x_mesh_pnt >= ULTRA_X_PIXELS_PER_CHAR) { // There are only 2 custom characters available, so the X
pixels_per_x_mesh_pnt = ULTRA_X_PIXELS_PER_CHAR; // size of the mesh point needs to fit within them independent
suppress_x_offset = 1; // of where the starting pixel is located.
}
if (pixels_per_y_mesh_pnt >= ULTRA_Y_PIXELS_PER_CHAR) { // There are only 2 custom characters available, so the Y
pixels_per_y_mesh_pnt = ULTRA_Y_PIXELS_PER_CHAR; // size of the mesh point needs to fit within them independent
suppress_y_offset = 1; // of where the starting pixel is located.
}
x_map_pixels = pixels_per_x_mesh_pnt * (GRID_MAX_POINTS_X); // now we have the right number of pixels to make both
y_map_pixels = pixels_per_y_mesh_pnt * (GRID_MAX_POINTS_Y); // directions fit nicely
right_edge = pixels_per_x_mesh_pnt * (GRID_MAX_POINTS_X) + 1; // find location of right edge within the character cell
bottom_line= pixels_per_y_mesh_pnt * (GRID_MAX_POINTS_Y) + 1; // find location of bottome line within the character cell
n_rows = bottom_line / (ULTRA_Y_PIXELS_PER_CHAR) + 1;
n_cols = right_edge / (ULTRA_X_PIXELS_PER_CHAR) + 1;
for (i = 0; i < n_cols; i++) {
lcd.setCursor(i, 0);
lcd.print((char)0x00); // top line of the box
lcd.setCursor(i, n_rows - 1);
lcd.write(0x01); // bottom line of the box
}
for (j = 0; j < n_rows; j++) {
lcd.setCursor(0, j);
lcd.write(0x02); // Left edge of the box
lcd.setCursor(n_cols - 1, j);
lcd.write(0x03); // right edge of the box
}
/**
* If the entire 4th row is not in use, do not put vertical bars all the way down to the bottom of the display
*/
k = pixels_per_y_mesh_pnt * (GRID_MAX_POINTS_Y) + 2;
l = (ULTRA_Y_PIXELS_PER_CHAR) * n_rows;
if (l > k && l - k >= (ULTRA_Y_PIXELS_PER_CHAR) / 2) {
lcd.setCursor(0, n_rows - 1); // left edge of the box
lcd.write(' ');
lcd.setCursor(n_cols - 1, n_rows - 1); // right edge of the box
lcd.write(' ');
}
clear_custom_char(&new_char);
new_char.custom_char_bits[0] = 0b11111U; // char #0 is used for the top line of the box
lcd.createChar(0, (uint8_t*)&new_char);
clear_custom_char(&new_char);
k = (GRID_MAX_POINTS_Y) * pixels_per_y_mesh_pnt + 1; // row of pixels for the bottom box line
l = k % (ULTRA_Y_PIXELS_PER_CHAR); // row within relevant character cell
new_char.custom_char_bits[l] = 0b11111U; // char #1 is used for the bottom line of the box
lcd.createChar(1, (uint8_t*)&new_char);
clear_custom_char(&new_char);
for (j = 0; j < ULTRA_Y_PIXELS_PER_CHAR; j++)
new_char.custom_char_bits[j] = 0b10000U; // char #2 is used for the left edge of the box
lcd.createChar(2, (uint8_t*)&new_char);
clear_custom_char(&new_char);
m = (GRID_MAX_POINTS_X) * pixels_per_x_mesh_pnt + 1; // Column of pixels for the right box line
n = m % (ULTRA_X_PIXELS_PER_CHAR); // Column within relevant character cell
i = ULTRA_X_PIXELS_PER_CHAR - 1 - n; // Column within relevant character cell (0 on the right)
for (j = 0; j < ULTRA_Y_PIXELS_PER_CHAR; j++)
new_char.custom_char_bits[j] = (uint8_t)_BV(i); // Char #3 is used for the right edge of the box
lcd.createChar(3, (uint8_t*)&new_char);
i = x * pixels_per_x_mesh_pnt - suppress_x_offset;
j = y * pixels_per_y_mesh_pnt - suppress_y_offset;
upper_left = pixel_location(i, j);
k = (x + 1) * pixels_per_x_mesh_pnt - 1 - suppress_x_offset;
l = (y + 1) * pixels_per_y_mesh_pnt - 1 - suppress_y_offset;
lower_right = pixel_location(k, l);
bottom_right_corner = pixel_location(x_map_pixels, y_map_pixels);
/**
* First, handle the simple case where everything is within a single character cell.
* If part of the Mesh Plot is outside of this character cell, we will follow up
* and deal with that next.
*/
//dump_custom_char("at entry:", &new_char);
clear_custom_char(&new_char);
const uint8_t ypix = min(upper_left.y_pixel_offset + pixels_per_y_mesh_pnt, ULTRA_Y_PIXELS_PER_CHAR);
for (j = upper_left.y_pixel_offset; j < ypix; j++) {
i = upper_left.x_pixel_mask;
for (k = 0; k < pixels_per_x_mesh_pnt; k++) {
new_char.custom_char_bits[j] |= i;
i >>= 1;
}
}
//dump_custom_char("after loops:", &new_char);
add_edges_to_custom_char(&new_char, &upper_left, &lower_right, &bottom_right_corner, TOP_LEFT);
//dump_custom_char("after add edges", &new_char);
lcd.createChar(4, (uint8_t*)&new_char);
lcd.setCursor(upper_left.column, upper_left.row);
lcd.write(0x04);
//dump_custom_char("after lcd update:", &new_char);
/**
* Next, check for two side by side character cells being used to display the Mesh Point
* If found... do the right hand character cell next.
*/
if (upper_left.column == lower_right.column - 1) {
l = upper_left.x_pixel_offset;
clear_custom_char(&new_char);
for (j = upper_left.y_pixel_offset; j < ypix; j++) {
i = _BV(ULTRA_X_PIXELS_PER_CHAR - 1); // Fill in the left side of the right character cell
for (k = 0; k < pixels_per_x_mesh_pnt - 1 - l; k++) {
new_char.custom_char_bits[j] |= i;
i >>= 1;
}
}
add_edges_to_custom_char(&new_char, &upper_left, &lower_right, &bottom_right_corner, TOP_RIGHT);
lcd.createChar(5, (uint8_t *) &new_char);
lcd.setCursor(lower_right.column, upper_left.row);
lcd.write(0x05);
}
/**
* Next, check for two character cells stacked on top of each other being used to display the Mesh Point
*/
if (upper_left.row == lower_right.row - 1) {
l = ULTRA_Y_PIXELS_PER_CHAR - upper_left.y_pixel_offset; // Number of pixel rows in top character cell
k = pixels_per_y_mesh_pnt - l; // Number of pixel rows in bottom character cell
clear_custom_char(&new_char);
for (j = 0; j < k; j++) {
i = upper_left.x_pixel_mask;
for (m = 0; m < pixels_per_x_mesh_pnt; m++) { // Fill in the top side of the bottom character cell
new_char.custom_char_bits[j] |= i;
if (!(i >>= 1)) break;
}
}
add_edges_to_custom_char(&new_char, &upper_left, &lower_right, &bottom_right_corner, LOWER_LEFT);
lcd.createChar(6, (uint8_t *) &new_char);
lcd.setCursor(upper_left.column, lower_right.row);
lcd.write(0x06);
}
/**
* Next, check for four character cells being used to display the Mesh Point. If that is
* what is here, we work to fill in the character cell that is down one and to the right one
* from the upper_left character cell.
*/
if (upper_left.column == lower_right.column - 1 && upper_left.row == lower_right.row - 1) {
l = ULTRA_Y_PIXELS_PER_CHAR - upper_left.y_pixel_offset; // Number of pixel rows in top character cell
k = pixels_per_y_mesh_pnt - l; // Number of pixel rows in bottom character cell
clear_custom_char(&new_char);
for (j = 0; j < k; j++) {
l = upper_left.x_pixel_offset;
i = _BV(ULTRA_X_PIXELS_PER_CHAR - 1); // Fill in the left side of the right character cell
for (m = 0; m < pixels_per_x_mesh_pnt - 1 - l; m++) { // Fill in the top side of the bottom character cell
new_char.custom_char_bits[j] |= i;
i >>= 1;
}
}
add_edges_to_custom_char(&new_char, &upper_left, &lower_right, &bottom_right_corner, LOWER_RIGHT);
lcd.createChar(7, (uint8_t*)&new_char);
lcd.setCursor(lower_right.column, lower_right.row);
lcd.write(0x07);
}
#endif
/**
* Print plot position
*/
lcd.setCursor(_LCD_W_POS, 0);
lcd.write('(');
lcd.print(x);
lcd.write(',');
lcd.print(inverted_y);
lcd.write(')');
#if LCD_HEIGHT <= 3 // 16x2 or 20x2 display
/**
* Print Z values
*/
_ZLABEL(_LCD_W_POS, 1);
if (!isnan(ubl.z_values[x][inverted_y]))
lcd.print(ftostr43sign(ubl.z_values[x][inverted_y]));
else
lcd_printPGM(PSTR(" -----"));
#else // 16x4 or 20x4 display
/**
* Show all values at right of screen
*/
_XLABEL(_LCD_W_POS, 1);
lcd.print(ftostr32(LOGICAL_X_POSITION(pgm_read_float(&ubl._mesh_index_to_xpos[x]))));
_YLABEL(_LCD_W_POS, 2);
lcd.print(ftostr32(LOGICAL_Y_POSITION(pgm_read_float(&ubl._mesh_index_to_ypos[inverted_y]))));
/**
* Show the location value
*/
_ZLABEL(_LCD_W_POS, 3);
if (!isnan(ubl.z_values[x][inverted_y]))
lcd.print(ftostr43sign(ubl.z_values[x][inverted_y]));
else
lcd_printPGM(PSTR(" -----"));
#endif // LCD_HEIGHT > 3
}
void add_edges_to_custom_char(custom_char * const custom, coordinate * const ul, coordinate * const lr, coordinate * const brc, uint8_t cell_location) {
uint8_t i, k;
int16_t n_rows = lr->row - ul->row + 1,
n_cols = lr->column - ul->column + 1;
/**
* Check if Top line of box needs to be filled in
*/
if (ul->row == 0 && ((cell_location & TOP_LEFT) || (cell_location & TOP_RIGHT))) { // Only fill in the top line for the top character cells
if (n_cols == 1) {
if (ul->column != brc->column)
custom->custom_char_bits[0] = 0xFF; // Single column in middle
else
for (i = brc->x_pixel_offset; i < ULTRA_X_PIXELS_PER_CHAR; i++) // Single column on right side
SBI(custom->custom_char_bits[0], i);
}
else if ((cell_location & TOP_LEFT) || lr->column != brc->column) // Multiple column in the middle or with right cell in middle
custom->custom_char_bits[0] = 0xFF;
else
for (i = brc->x_pixel_offset; i < ULTRA_X_PIXELS_PER_CHAR; i++)
SBI(custom->custom_char_bits[0], i);
}
/**
* Check if left line of box needs to be filled in
*/
if ((cell_location & TOP_LEFT) || (cell_location & LOWER_LEFT)) {
if (ul->column == 0) { // Left column of characters on LCD Display
k = ul->row == brc->row ? brc->y_pixel_offset : ULTRA_Y_PIXELS_PER_CHAR; // If it isn't the last row... do the full character cell
for (i = 0; i < k; i++)
SBI(custom->custom_char_bits[i], ULTRA_X_PIXELS_PER_CHAR - 1);
}
}
/**
* Check if bottom line of box needs to be filled in
*/
// Single row of mesh plot cells
if (n_rows == 1 /* && (cell_location == TOP_LEFT || cell_location == TOP_RIGHT) */ && ul->row == brc->row) {
if (n_cols == 1) // Single row, single column case
k = ul->column == brc->column ? brc->x_pixel_mask : 0x01;
else if (cell_location & TOP_RIGHT) // Single row, multiple column case
k = lr->column == brc->column ? brc->x_pixel_mask : 0x01;
else // Single row, left of multiple columns
k = 0x01;
while (k < _BV(ULTRA_X_PIXELS_PER_CHAR)) {
custom->custom_char_bits[brc->y_pixel_offset] |= k;
k <<= 1;
}
}
// Double row of characters on LCD Display
// And this is a bottom custom character
if (n_rows == 2 && (cell_location == LOWER_LEFT || cell_location == LOWER_RIGHT) && lr->row == brc->row) {
if (n_cols == 1) // Double row, single column case
k = ul->column == brc->column ? brc->x_pixel_mask : 0x01;
else if (cell_location & LOWER_RIGHT) // Double row, multiple column case
k = lr->column == brc->column ? brc->x_pixel_mask : 0x01;
else // Double row, left of multiple columns
k = 0x01;
while (k < _BV(ULTRA_X_PIXELS_PER_CHAR)) {
custom->custom_char_bits[brc->y_pixel_offset] |= k;
k <<= 1;
}
}
/**
* Check if right line of box needs to be filled in
*/
// Nothing to do if the lower right part of the mesh pnt isn't in the same column as the box line
if (lr->column == brc->column) {
// This mesh point is in the same character cell as the right box line
if (ul->column == brc->column || (cell_location & TOP_RIGHT) || (cell_location & LOWER_RIGHT)) {
// If not the last row... do the full character cell
k = ul->row == brc->row ? brc->y_pixel_offset : ULTRA_Y_PIXELS_PER_CHAR;
for (i = 0; i < k; i++) custom->custom_char_bits[i] |= brc->x_pixel_mask;
}
}
}
#endif // AUTO_BED_LEVELING_UBL
#endif // ULTIPANEL
#endif // ULTRALCD_IMPL_HD44780_H