1
0
mirror of https://github.com/MarlinFirmware/Marlin.git synced 2024-12-11 21:14:34 +00:00
MarlinFirmware/Marlin/MarlinSerial.cpp
2017-04-02 04:39:18 -05:00

517 lines
14 KiB
C++

/**
* Marlin 3D Printer Firmware
* Copyright (C) 2016 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
*
* Based on Sprinter and grbl.
* Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*
*/
/**
* MarlinSerial.cpp - Hardware serial library for Wiring
* Copyright (c) 2006 Nicholas Zambetti. All right reserved.
*
* Modified 23 November 2006 by David A. Mellis
* Modified 28 September 2010 by Mark Sproul
* Modified 14 February 2016 by Andreas Hardtung (added tx buffer)
*/
#include "MarlinSerial.h"
#include "Marlin.h"
// Disable HardwareSerial.cpp to support chips without a UART (Attiny, etc.)
#if !defined(USBCON) && (defined(UBRRH) || defined(UBRR0H) || defined(UBRR1H) || defined(UBRR2H) || defined(UBRR3H))
#if UART_PRESENT(SERIAL_PORT)
ring_buffer_r rx_buffer = { { 0 }, 0, 0 };
#if TX_BUFFER_SIZE > 0
ring_buffer_t tx_buffer = { { 0 }, 0, 0 };
static bool _written;
#endif
#endif
#if ENABLED(EMERGENCY_PARSER)
#include "stepper.h"
#include "language.h"
// Currently looking for: M108, M112, M410
// If you alter the parser please don't forget to update the capabilities in Conditionals_post.h
FORCE_INLINE void emergency_parser(const unsigned char c) {
static e_parser_state state = state_RESET;
switch (state) {
case state_RESET:
switch (c) {
case ' ': break;
case 'N': state = state_N; break;
case 'M': state = state_M; break;
default: state = state_IGNORE;
}
break;
case state_N:
switch (c) {
case '0': case '1': case '2':
case '3': case '4': case '5':
case '6': case '7': case '8':
case '9': case '-': case ' ': break;
case 'M': state = state_M; break;
default: state = state_IGNORE;
}
break;
case state_M:
switch (c) {
case ' ': break;
case '1': state = state_M1; break;
case '4': state = state_M4; break;
default: state = state_IGNORE;
}
break;
case state_M1:
switch (c) {
case '0': state = state_M10; break;
case '1': state = state_M11; break;
default: state = state_IGNORE;
}
break;
case state_M10:
state = (c == '8') ? state_M108 : state_IGNORE;
break;
case state_M11:
state = (c == '2') ? state_M112 : state_IGNORE;
break;
case state_M4:
state = (c == '1') ? state_M41 : state_IGNORE;
break;
case state_M41:
state = (c == '0') ? state_M410 : state_IGNORE;
break;
case state_IGNORE:
if (c == '\n') state = state_RESET;
break;
default:
if (c == '\n') {
switch (state) {
case state_M108:
wait_for_user = wait_for_heatup = false;
break;
case state_M112:
kill(PSTR(MSG_KILLED));
break;
case state_M410:
quickstop_stepper();
break;
default:
break;
}
state = state_RESET;
}
}
}
#endif // EMERGENCY_PARSER
FORCE_INLINE void store_char(unsigned char c) {
CRITICAL_SECTION_START;
const uint8_t h = rx_buffer.head,
i = (uint8_t)(h + 1) & (RX_BUFFER_SIZE - 1);
// if we should be storing the received character into the location
// just before the tail (meaning that the head would advance to the
// current location of the tail), we're about to overflow the buffer
// and so we don't write the character or advance the head.
if (i != rx_buffer.tail) {
rx_buffer.buffer[h] = c;
rx_buffer.head = i;
}
CRITICAL_SECTION_END;
#if ENABLED(EMERGENCY_PARSER)
emergency_parser(c);
#endif
}
#if TX_BUFFER_SIZE > 0
FORCE_INLINE void _tx_udr_empty_irq(void) {
// If interrupts are enabled, there must be more data in the output
// buffer. Send the next byte
const uint8_t t = tx_buffer.tail,
c = tx_buffer.buffer[t];
tx_buffer.tail = (t + 1) & (TX_BUFFER_SIZE - 1);
M_UDRx = c;
// clear the TXC bit -- "can be cleared by writing a one to its bit
// location". This makes sure flush() won't return until the bytes
// actually got written
SBI(M_UCSRxA, M_TXCx);
if (tx_buffer.head == tx_buffer.tail) {
// Buffer empty, so disable interrupts
CBI(M_UCSRxB, M_UDRIEx);
}
}
#ifdef M_USARTx_UDRE_vect
ISR(M_USARTx_UDRE_vect) {
_tx_udr_empty_irq();
}
#endif
#endif // TX_BUFFER_SIZE
#ifdef M_USARTx_RX_vect
ISR(M_USARTx_RX_vect) {
const unsigned char c = M_UDRx;
store_char(c);
}
#endif
// Public Methods
void MarlinSerial::begin(const long baud) {
uint16_t baud_setting;
bool useU2X = true;
#if F_CPU == 16000000UL && SERIAL_PORT == 0
// hard-coded exception for compatibility with the bootloader shipped
// with the Duemilanove and previous boards and the firmware on the 8U2
// on the Uno and Mega 2560.
if (baud == 57600) useU2X = false;
#endif
if (useU2X) {
M_UCSRxA = _BV(M_U2Xx);
baud_setting = (F_CPU / 4 / baud - 1) / 2;
}
else {
M_UCSRxA = 0;
baud_setting = (F_CPU / 8 / baud - 1) / 2;
}
// assign the baud_setting, a.k.a. ubbr (USART Baud Rate Register)
M_UBRRxH = baud_setting >> 8;
M_UBRRxL = baud_setting;
SBI(M_UCSRxB, M_RXENx);
SBI(M_UCSRxB, M_TXENx);
SBI(M_UCSRxB, M_RXCIEx);
#if TX_BUFFER_SIZE > 0
CBI(M_UCSRxB, M_UDRIEx);
_written = false;
#endif
}
void MarlinSerial::end() {
CBI(M_UCSRxB, M_RXENx);
CBI(M_UCSRxB, M_TXENx);
CBI(M_UCSRxB, M_RXCIEx);
CBI(M_UCSRxB, M_UDRIEx);
}
void MarlinSerial::checkRx(void) {
if (TEST(M_UCSRxA, M_RXCx)) {
const uint8_t c = M_UDRx;
store_char(c);
}
}
int MarlinSerial::peek(void) {
CRITICAL_SECTION_START;
const int v = rx_buffer.head == rx_buffer.tail ? -1 : rx_buffer.buffer[rx_buffer.tail];
CRITICAL_SECTION_END;
return v;
}
int MarlinSerial::read(void) {
int v;
CRITICAL_SECTION_START;
const uint8_t t = rx_buffer.tail;
if (rx_buffer.head == t)
v = -1;
else {
v = rx_buffer.buffer[t];
rx_buffer.tail = (uint8_t)(t + 1) & (RX_BUFFER_SIZE - 1);
}
CRITICAL_SECTION_END;
return v;
}
uint8_t MarlinSerial::available(void) {
CRITICAL_SECTION_START;
const uint8_t h = rx_buffer.head,
t = rx_buffer.tail;
CRITICAL_SECTION_END;
return (uint8_t)(RX_BUFFER_SIZE + h - t) & (RX_BUFFER_SIZE - 1);
}
void MarlinSerial::flush(void) {
// RX
// don't reverse this or there may be problems if the RX interrupt
// occurs after reading the value of rx_buffer_head but before writing
// the value to rx_buffer_tail; the previous value of rx_buffer_head
// may be written to rx_buffer_tail, making it appear as if the buffer
// were full, not empty.
CRITICAL_SECTION_START;
rx_buffer.head = rx_buffer.tail;
CRITICAL_SECTION_END;
}
#if TX_BUFFER_SIZE > 0
uint8_t MarlinSerial::availableForWrite(void) {
CRITICAL_SECTION_START;
const uint8_t h = tx_buffer.head,
t = tx_buffer.tail;
CRITICAL_SECTION_END;
return (uint8_t)(TX_BUFFER_SIZE + h - t) & (TX_BUFFER_SIZE - 1);
}
void MarlinSerial::write(const uint8_t c) {
_written = true;
CRITICAL_SECTION_START;
bool emty = (tx_buffer.head == tx_buffer.tail);
CRITICAL_SECTION_END;
// If the buffer and the data register is empty, just write the byte
// to the data register and be done. This shortcut helps
// significantly improve the effective datarate at high (>
// 500kbit/s) bitrates, where interrupt overhead becomes a slowdown.
if (emty && TEST(M_UCSRxA, M_UDREx)) {
CRITICAL_SECTION_START;
M_UDRx = c;
SBI(M_UCSRxA, M_TXCx);
CRITICAL_SECTION_END;
return;
}
const uint8_t i = (tx_buffer.head + 1) & (TX_BUFFER_SIZE - 1);
// If the output buffer is full, there's nothing for it other than to
// wait for the interrupt handler to empty it a bit
while (i == tx_buffer.tail) {
if (!TEST(SREG, SREG_I)) {
// Interrupts are disabled, so we'll have to poll the data
// register empty flag ourselves. If it is set, pretend an
// interrupt has happened and call the handler to free up
// space for us.
if (TEST(M_UCSRxA, M_UDREx))
_tx_udr_empty_irq();
} else {
// nop, the interrupt handler will free up space for us
}
}
tx_buffer.buffer[tx_buffer.head] = c;
{ CRITICAL_SECTION_START;
tx_buffer.head = i;
SBI(M_UCSRxB, M_UDRIEx);
CRITICAL_SECTION_END;
}
return;
}
void MarlinSerial::flushTX(void) {
// TX
// If we have never written a byte, no need to flush. This special
// case is needed since there is no way to force the TXC (transmit
// complete) bit to 1 during initialization
if (!_written)
return;
while (TEST(M_UCSRxB, M_UDRIEx) || !TEST(M_UCSRxA, M_TXCx)) {
if (!TEST(SREG, SREG_I) && TEST(M_UCSRxB, M_UDRIEx))
// Interrupts are globally disabled, but the DR empty
// interrupt should be enabled, so poll the DR empty flag to
// prevent deadlock
if (TEST(M_UCSRxA, M_UDREx))
_tx_udr_empty_irq();
}
// If we get here, nothing is queued anymore (DRIE is disabled) and
// the hardware finished tranmission (TXC is set).
}
#else
void MarlinSerial::write(uint8_t c) {
while (!TEST(M_UCSRxA, M_UDREx))
;
M_UDRx = c;
}
#endif
// end NEW
/// imports from print.h
void MarlinSerial::print(char c, int base) {
print((long)c, base);
}
void MarlinSerial::print(unsigned char b, int base) {
print((unsigned long)b, base);
}
void MarlinSerial::print(int n, int base) {
print((long)n, base);
}
void MarlinSerial::print(unsigned int n, int base) {
print((unsigned long)n, base);
}
void MarlinSerial::print(long n, int base) {
if (base == 0)
write(n);
else if (base == 10) {
if (n < 0) {
print('-');
n = -n;
}
printNumber(n, 10);
}
else
printNumber(n, base);
}
void MarlinSerial::print(unsigned long n, int base) {
if (base == 0) write(n);
else printNumber(n, base);
}
void MarlinSerial::print(double n, int digits) {
printFloat(n, digits);
}
void MarlinSerial::println(void) {
print('\r');
print('\n');
}
void MarlinSerial::println(const String& s) {
print(s);
println();
}
void MarlinSerial::println(const char c[]) {
print(c);
println();
}
void MarlinSerial::println(char c, int base) {
print(c, base);
println();
}
void MarlinSerial::println(unsigned char b, int base) {
print(b, base);
println();
}
void MarlinSerial::println(int n, int base) {
print(n, base);
println();
}
void MarlinSerial::println(unsigned int n, int base) {
print(n, base);
println();
}
void MarlinSerial::println(long n, int base) {
print(n, base);
println();
}
void MarlinSerial::println(unsigned long n, int base) {
print(n, base);
println();
}
void MarlinSerial::println(double n, int digits) {
print(n, digits);
println();
}
// Private Methods
void MarlinSerial::printNumber(unsigned long n, uint8_t base) {
if (n) {
unsigned char buf[8 * sizeof(long)]; // Enough space for base 2
int8_t i = 0;
while (n) {
buf[i++] = n % base;
n /= base;
}
while (i--)
print((char)(buf[i] + (buf[i] < 10 ? '0' : 'A' - 10)));
}
else
print('0');
}
void MarlinSerial::printFloat(double number, uint8_t digits) {
// Handle negative numbers
if (number < 0.0) {
print('-');
number = -number;
}
// Round correctly so that print(1.999, 2) prints as "2.00"
double rounding = 0.5;
for (uint8_t i = 0; i < digits; ++i)
rounding *= 0.1;
number += rounding;
// Extract the integer part of the number and print it
unsigned long int_part = (unsigned long)number;
double remainder = number - (double)int_part;
print(int_part);
// Print the decimal point, but only if there are digits beyond
if (digits) {
print('.');
// Extract digits from the remainder one at a time
while (digits--) {
remainder *= 10.0;
int toPrint = int(remainder);
print(toPrint);
remainder -= toPrint;
}
}
}
// Preinstantiate
MarlinSerial customizedSerial;
#endif // !USBCON && (UBRRH || UBRR0H || UBRR1H || UBRR2H || UBRR3H)
// For AT90USB targets use the UART for BT interfacing
#if defined(USBCON) && ENABLED(BLUETOOTH)
HardwareSerial bluetoothSerial;
#endif