1
0
mirror of https://github.com/MarlinFirmware/Marlin.git synced 2024-12-15 06:51:40 +00:00
MarlinFirmware/Marlin/src/module/stepper/trinamic.cpp
2019-11-06 17:08:12 -06:00

741 lines
19 KiB
C++

/**
* Marlin 3D Printer Firmware
* Copyright (c) 2019 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
*
* Based on Sprinter and grbl.
* Copyright (c) 2011 Camiel Gubbels / Erik van der Zalm
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*
*/
/**
* stepper/trinamic.cpp
* Stepper driver indirection for Trinamic
*/
#include "../../inc/MarlinConfig.h"
#if HAS_TRINAMIC
#include "trinamic.h"
#include "../stepper.h"
#include <HardwareSerial.h>
#include <SPI.h>
enum StealthIndex : uint8_t { STEALTH_AXIS_XY, STEALTH_AXIS_Z, STEALTH_AXIS_E };
#define _TMC_INIT(ST, STEALTH_INDEX) tmc_init(stepper##ST, ST##_CURRENT, ST##_MICROSTEPS, ST##_HYBRID_THRESHOLD, stealthchop_by_axis[STEALTH_INDEX])
// IC = TMC model number
// ST = Stepper object letter
// L = Label characters
// AI = Axis Enum Index
// SWHW = SW/SH UART selection
#if ENABLED(TMC_USE_SW_SPI)
#define __TMC_SPI_DEFINE(IC, ST, L, AI) TMCMarlin<IC##Stepper, L, AI> stepper##ST(ST##_CS_PIN, ST##_RSENSE, TMC_SW_MOSI, TMC_SW_MISO, TMC_SW_SCK, ST##_CHAIN_POS)
#else
#define __TMC_SPI_DEFINE(IC, ST, L, AI) TMCMarlin<IC##Stepper, L, AI> stepper##ST(ST##_CS_PIN, ST##_RSENSE, ST##_CHAIN_POS)
#endif
#define TMC_UART_HW_DEFINE(IC, ST, L, AI) TMCMarlin<IC##Stepper, L, AI> stepper##ST(&ST##_HARDWARE_SERIAL, ST##_RSENSE, ST##_SLAVE_ADDRESS)
#define TMC_UART_SW_DEFINE(IC, ST, L, AI) TMCMarlin<IC##Stepper, L, AI> stepper##ST(ST##_SERIAL_RX_PIN, ST##_SERIAL_TX_PIN, ST##_RSENSE, ST##_SLAVE_ADDRESS, ST##_SERIAL_RX_PIN > -1)
#define _TMC_SPI_DEFINE(IC, ST, AI) __TMC_SPI_DEFINE(IC, ST, TMC_##ST##_LABEL, AI)
#define TMC_SPI_DEFINE(ST, AI) _TMC_SPI_DEFINE(ST##_DRIVER_TYPE, ST, AI##_AXIS)
#define _TMC_UART_DEFINE(SWHW, IC, ST, AI) TMC_UART_##SWHW##_DEFINE(IC, ST, TMC_##ST##_LABEL, AI)
#define TMC_UART_DEFINE(SWHW, ST, AI) _TMC_UART_DEFINE(SWHW, ST##_DRIVER_TYPE, ST, AI##_AXIS)
#if ENABLED(DISTINCT_E_FACTORS) && E_STEPPERS > 1
#define TMC_SPI_DEFINE_E(AI) TMC_SPI_DEFINE(E##AI, E##AI)
#define TMC_UART_DEFINE_E(SWHW, AI) TMC_UART_DEFINE(SWHW, E##AI, E##AI)
#else
#define TMC_SPI_DEFINE_E(AI) TMC_SPI_DEFINE(E##AI, E)
#define TMC_UART_DEFINE_E(SWHW, AI) TMC_UART_DEFINE(SWHW, E##AI, E)
#endif
// Stepper objects of TMC2130/TMC2160/TMC2660/TMC5130/TMC5160 steppers used
#if AXIS_HAS_SPI(X)
TMC_SPI_DEFINE(X, X);
#endif
#if AXIS_HAS_SPI(X2)
TMC_SPI_DEFINE(X2, X);
#endif
#if AXIS_HAS_SPI(Y)
TMC_SPI_DEFINE(Y, Y);
#endif
#if AXIS_HAS_SPI(Y2)
TMC_SPI_DEFINE(Y2, Y);
#endif
#if AXIS_HAS_SPI(Z)
TMC_SPI_DEFINE(Z, Z);
#endif
#if AXIS_HAS_SPI(Z2)
TMC_SPI_DEFINE(Z2, Z);
#endif
#if AXIS_HAS_SPI(Z3)
TMC_SPI_DEFINE(Z3, Z);
#endif
#if AXIS_HAS_SPI(E0)
TMC_SPI_DEFINE_E(0);
#endif
#if AXIS_HAS_SPI(E1)
TMC_SPI_DEFINE_E(1);
#endif
#if AXIS_HAS_SPI(E2)
TMC_SPI_DEFINE_E(2);
#endif
#if AXIS_HAS_SPI(E3)
TMC_SPI_DEFINE_E(3);
#endif
#if AXIS_HAS_SPI(E4)
TMC_SPI_DEFINE_E(4);
#endif
#if AXIS_HAS_SPI(E5)
TMC_SPI_DEFINE_E(5);
#endif
#ifndef TMC_BAUD_RATE
#define TMC_BAUD_RATE 115200
#endif
#if HAS_DRIVER(TMC2130)
template<char AXIS_LETTER, char DRIVER_ID, AxisEnum AXIS_ID>
void tmc_init(TMCMarlin<TMC2130Stepper, AXIS_LETTER, DRIVER_ID, AXIS_ID> &st, const uint16_t mA, const uint16_t microsteps, const uint32_t thrs, const bool stealth) {
st.begin();
CHOPCONF_t chopconf{0};
chopconf.tbl = 1;
chopconf.toff = chopper_timing.toff;
chopconf.intpol = INTERPOLATE;
chopconf.hend = chopper_timing.hend + 3;
chopconf.hstrt = chopper_timing.hstrt - 1;
#if ENABLED(SQUARE_WAVE_STEPPING)
chopconf.dedge = true;
#endif
st.CHOPCONF(chopconf.sr);
st.rms_current(mA, HOLD_MULTIPLIER);
st.microsteps(microsteps);
st.iholddelay(10);
st.TPOWERDOWN(128); // ~2s until driver lowers to hold current
st.en_pwm_mode(stealth);
st.stored.stealthChop_enabled = stealth;
PWMCONF_t pwmconf{0};
pwmconf.pwm_freq = 0b01; // f_pwm = 2/683 f_clk
pwmconf.pwm_autoscale = true;
pwmconf.pwm_grad = 5;
pwmconf.pwm_ampl = 180;
st.PWMCONF(pwmconf.sr);
#if ENABLED(HYBRID_THRESHOLD)
st.set_pwm_thrs(thrs);
#else
UNUSED(thrs);
#endif
st.GSTAT(); // Clear GSTAT
}
#endif // TMC2130
#if HAS_DRIVER(TMC2160)
template<char AXIS_LETTER, char DRIVER_ID, AxisEnum AXIS_ID>
void tmc_init(TMCMarlin<TMC2160Stepper, AXIS_LETTER, DRIVER_ID, AXIS_ID> &st, const uint16_t mA, const uint16_t microsteps, const uint32_t thrs, const bool stealth) {
st.begin();
CHOPCONF_t chopconf{0};
chopconf.tbl = 1;
chopconf.toff = chopper_timing.toff;
chopconf.intpol = INTERPOLATE;
chopconf.hend = chopper_timing.hend + 3;
chopconf.hstrt = chopper_timing.hstrt - 1;
#if ENABLED(SQUARE_WAVE_STEPPING)
chopconf.dedge = true;
#endif
st.CHOPCONF(chopconf.sr);
st.rms_current(mA, HOLD_MULTIPLIER);
st.microsteps(microsteps);
st.iholddelay(10);
st.TPOWERDOWN(128); // ~2s until driver lowers to hold current
st.en_pwm_mode(stealth);
st.stored.stealthChop_enabled = stealth;
TMC2160_n::PWMCONF_t pwmconf{0};
pwmconf.pwm_lim = 12;
pwmconf.pwm_reg = 8;
pwmconf.pwm_autograd = true;
pwmconf.pwm_autoscale = true;
pwmconf.pwm_freq = 0b01;
pwmconf.pwm_grad = 14;
pwmconf.pwm_ofs = 36;
st.PWMCONF(pwmconf.sr);
#if ENABLED(HYBRID_THRESHOLD)
st.set_pwm_thrs(thrs);
#else
UNUSED(thrs);
#endif
st.GSTAT(); // Clear GSTAT
}
#endif // TMC2160
//
// TMC2208/2209 Driver objects and inits
//
#if HAS_TMC220x
#if AXIS_HAS_UART(X)
#ifdef X_HARDWARE_SERIAL
TMC_UART_DEFINE(HW, X, X);
#else
TMC_UART_DEFINE(SW, X, X);
#endif
#endif
#if AXIS_HAS_UART(X2)
#ifdef X2_HARDWARE_SERIAL
TMC_UART_DEFINE(HW, X2, X);
#else
TMC_UART_DEFINE(SW, X2, X);
#endif
#endif
#if AXIS_HAS_UART(Y)
#ifdef Y_HARDWARE_SERIAL
TMC_UART_DEFINE(HW, Y, Y);
#else
TMC_UART_DEFINE(SW, Y, Y);
#endif
#endif
#if AXIS_HAS_UART(Y2)
#ifdef Y2_HARDWARE_SERIAL
TMC_UART_DEFINE(HW, Y2, Y);
#else
TMC_UART_DEFINE(SW, Y2, Y);
#endif
#endif
#if AXIS_HAS_UART(Z)
#ifdef Z_HARDWARE_SERIAL
TMC_UART_DEFINE(HW, Z, Z);
#else
TMC_UART_DEFINE(SW, Z, Z);
#endif
#endif
#if AXIS_HAS_UART(Z2)
#ifdef Z2_HARDWARE_SERIAL
TMC_UART_DEFINE(HW, Z2, Z);
#else
TMC_UART_DEFINE(SW, Z2, Z);
#endif
#endif
#if AXIS_HAS_UART(Z3)
#ifdef Z3_HARDWARE_SERIAL
TMC_UART_DEFINE(HW, Z3, Z);
#else
TMC_UART_DEFINE(SW, Z3, Z);
#endif
#endif
#if AXIS_HAS_UART(E0)
#ifdef E0_HARDWARE_SERIAL
TMC_UART_DEFINE_E(HW, 0);
#else
TMC_UART_DEFINE_E(SW, 0);
#endif
#endif
#if AXIS_HAS_UART(E1)
#ifdef E1_HARDWARE_SERIAL
TMC_UART_DEFINE_E(HW, 1);
#else
TMC_UART_DEFINE_E(SW, 1);
#endif
#endif
#if AXIS_HAS_UART(E2)
#ifdef E2_HARDWARE_SERIAL
TMC_UART_DEFINE_E(HW, 2);
#else
TMC_UART_DEFINE_E(SW, 2);
#endif
#endif
#if AXIS_HAS_UART(E3)
#ifdef E3_HARDWARE_SERIAL
TMC_UART_DEFINE_E(HW, 3);
#else
TMC_UART_DEFINE_E(SW, 3);
#endif
#endif
#if AXIS_HAS_UART(E4)
#ifdef E4_HARDWARE_SERIAL
TMC_UART_DEFINE_E(HW, 4);
#else
TMC_UART_DEFINE_E(SW, 4);
#endif
#endif
#if AXIS_HAS_UART(E5)
#ifdef E5_HARDWARE_SERIAL
TMC_UART_DEFINE_E(HW, 5);
#else
TMC_UART_DEFINE_E(SW, 5);
#endif
#endif
void tmc_serial_begin() {
#if AXIS_HAS_UART(X)
#ifdef X_HARDWARE_SERIAL
X_HARDWARE_SERIAL.begin(TMC_BAUD_RATE);
#else
stepperX.beginSerial(TMC_BAUD_RATE);
#endif
#endif
#if AXIS_HAS_UART(X2)
#ifdef X2_HARDWARE_SERIAL
X2_HARDWARE_SERIAL.begin(TMC_BAUD_RATE);
#else
stepperX2.beginSerial(TMC_BAUD_RATE);
#endif
#endif
#if AXIS_HAS_UART(Y)
#ifdef Y_HARDWARE_SERIAL
Y_HARDWARE_SERIAL.begin(TMC_BAUD_RATE);
#else
stepperY.beginSerial(TMC_BAUD_RATE);
#endif
#endif
#if AXIS_HAS_UART(Y2)
#ifdef Y2_HARDWARE_SERIAL
Y2_HARDWARE_SERIAL.begin(TMC_BAUD_RATE);
#else
stepperY2.beginSerial(TMC_BAUD_RATE);
#endif
#endif
#if AXIS_HAS_UART(Z)
#ifdef Z_HARDWARE_SERIAL
Z_HARDWARE_SERIAL.begin(TMC_BAUD_RATE);
#else
stepperZ.beginSerial(TMC_BAUD_RATE);
#endif
#endif
#if AXIS_HAS_UART(Z2)
#ifdef Z2_HARDWARE_SERIAL
Z2_HARDWARE_SERIAL.begin(TMC_BAUD_RATE);
#else
stepperZ2.beginSerial(TMC_BAUD_RATE);
#endif
#endif
#if AXIS_HAS_UART(Z3)
#ifdef Z3_HARDWARE_SERIAL
Z3_HARDWARE_SERIAL.begin(TMC_BAUD_RATE);
#else
stepperZ3.beginSerial(TMC_BAUD_RATE);
#endif
#endif
#if AXIS_HAS_UART(E0)
#ifdef E0_HARDWARE_SERIAL
E0_HARDWARE_SERIAL.begin(TMC_BAUD_RATE);
#else
stepperE0.beginSerial(TMC_BAUD_RATE);
#endif
#endif
#if AXIS_HAS_UART(E1)
#ifdef E1_HARDWARE_SERIAL
E1_HARDWARE_SERIAL.begin(TMC_BAUD_RATE);
#else
stepperE1.beginSerial(TMC_BAUD_RATE);
#endif
#endif
#if AXIS_HAS_UART(E2)
#ifdef E2_HARDWARE_SERIAL
E2_HARDWARE_SERIAL.begin(TMC_BAUD_RATE);
#else
stepperE2.beginSerial(TMC_BAUD_RATE);
#endif
#endif
#if AXIS_HAS_UART(E3)
#ifdef E3_HARDWARE_SERIAL
E3_HARDWARE_SERIAL.begin(TMC_BAUD_RATE);
#else
stepperE3.beginSerial(TMC_BAUD_RATE);
#endif
#endif
#if AXIS_HAS_UART(E4)
#ifdef E4_HARDWARE_SERIAL
E4_HARDWARE_SERIAL.begin(TMC_BAUD_RATE);
#else
stepperE4.beginSerial(TMC_BAUD_RATE);
#endif
#endif
#if AXIS_HAS_UART(E5)
#ifdef E5_HARDWARE_SERIAL
E5_HARDWARE_SERIAL.begin(TMC_BAUD_RATE);
#else
stepperE5.beginSerial(TMC_BAUD_RATE);
#endif
#endif
}
#endif
#if HAS_DRIVER(TMC2208)
template<char AXIS_LETTER, char DRIVER_ID, AxisEnum AXIS_ID>
void tmc_init(TMCMarlin<TMC2208Stepper, AXIS_LETTER, DRIVER_ID, AXIS_ID> &st, const uint16_t mA, const uint16_t microsteps, const uint32_t thrs, const bool stealth) {
TMC2208_n::GCONF_t gconf{0};
gconf.pdn_disable = true; // Use UART
gconf.mstep_reg_select = true; // Select microsteps with UART
gconf.i_scale_analog = false;
gconf.en_spreadcycle = !stealth;
st.GCONF(gconf.sr);
st.stored.stealthChop_enabled = stealth;
TMC2208_n::CHOPCONF_t chopconf{0};
chopconf.tbl = 0b01; // blank_time = 24
chopconf.toff = chopper_timing.toff;
chopconf.intpol = INTERPOLATE;
chopconf.hend = chopper_timing.hend + 3;
chopconf.hstrt = chopper_timing.hstrt - 1;
#if ENABLED(SQUARE_WAVE_STEPPING)
chopconf.dedge = true;
#endif
st.CHOPCONF(chopconf.sr);
st.rms_current(mA, HOLD_MULTIPLIER);
st.microsteps(microsteps);
st.iholddelay(10);
st.TPOWERDOWN(128); // ~2s until driver lowers to hold current
TMC2208_n::PWMCONF_t pwmconf{0};
pwmconf.pwm_lim = 12;
pwmconf.pwm_reg = 8;
pwmconf.pwm_autograd = true;
pwmconf.pwm_autoscale = true;
pwmconf.pwm_freq = 0b01;
pwmconf.pwm_grad = 14;
pwmconf.pwm_ofs = 36;
st.PWMCONF(pwmconf.sr);
#if ENABLED(HYBRID_THRESHOLD)
st.set_pwm_thrs(thrs);
#else
UNUSED(thrs);
#endif
st.GSTAT(0b111); // Clear
delay(200);
}
#endif // TMC2208
#if HAS_DRIVER(TMC2209)
template<char AXIS_LETTER, char DRIVER_ID, AxisEnum AXIS_ID>
void tmc_init(TMCMarlin<TMC2209Stepper, AXIS_LETTER, DRIVER_ID, AXIS_ID> &st, const uint16_t mA, const uint16_t microsteps, const uint32_t thrs, const bool stealth) {
TMC2208_n::GCONF_t gconf{0};
gconf.pdn_disable = true; // Use UART
gconf.mstep_reg_select = true; // Select microsteps with UART
gconf.i_scale_analog = false;
gconf.en_spreadcycle = !stealth;
st.GCONF(gconf.sr);
st.stored.stealthChop_enabled = stealth;
TMC2208_n::CHOPCONF_t chopconf{0};
chopconf.tbl = 0b01; // blank_time = 24
chopconf.toff = chopper_timing.toff;
chopconf.intpol = INTERPOLATE;
chopconf.hend = chopper_timing.hend + 3;
chopconf.hstrt = chopper_timing.hstrt - 1;
#if ENABLED(SQUARE_WAVE_STEPPING)
chopconf.dedge = true;
#endif
st.CHOPCONF(chopconf.sr);
st.rms_current(mA, HOLD_MULTIPLIER);
st.microsteps(microsteps);
st.iholddelay(10);
st.TPOWERDOWN(128); // ~2s until driver lowers to hold current
TMC2208_n::PWMCONF_t pwmconf{0};
pwmconf.pwm_lim = 12;
pwmconf.pwm_reg = 8;
pwmconf.pwm_autograd = true;
pwmconf.pwm_autoscale = true;
pwmconf.pwm_freq = 0b01;
pwmconf.pwm_grad = 14;
pwmconf.pwm_ofs = 36;
st.PWMCONF(pwmconf.sr);
#if ENABLED(HYBRID_THRESHOLD)
st.set_pwm_thrs(thrs);
#else
UNUSED(thrs);
#endif
st.GSTAT(0b111); // Clear
delay(200);
}
#endif // TMC2209
#if HAS_DRIVER(TMC2660)
template<char AXIS_LETTER, char DRIVER_ID, AxisEnum AXIS_ID>
void tmc_init(TMCMarlin<TMC2660Stepper, AXIS_LETTER, DRIVER_ID, AXIS_ID> &st, const uint16_t mA, const uint16_t microsteps, const uint32_t, const bool) {
st.begin();
TMC2660_n::CHOPCONF_t chopconf{0};
chopconf.tbl = 1;
chopconf.toff = chopper_timing.toff;
chopconf.hend = chopper_timing.hend + 3;
chopconf.hstrt = chopper_timing.hstrt - 1;
st.CHOPCONF(chopconf.sr);
st.sdoff(0);
st.rms_current(mA);
st.microsteps(microsteps);
#if ENABLED(SQUARE_WAVE_STEPPING)
st.dedge(true);
#endif
st.intpol(INTERPOLATE);
st.diss2g(true); // Disable short to ground protection. Too many false readings?
#if ENABLED(TMC_DEBUG)
st.rdsel(0b01);
#endif
}
#endif // TMC2660
#if HAS_DRIVER(TMC5130)
template<char AXIS_LETTER, char DRIVER_ID, AxisEnum AXIS_ID>
void tmc_init(TMCMarlin<TMC5130Stepper, AXIS_LETTER, DRIVER_ID, AXIS_ID> &st, const uint16_t mA, const uint16_t microsteps, const uint32_t thrs, const bool stealth) {
st.begin();
CHOPCONF_t chopconf{0};
chopconf.tbl = 1;
chopconf.toff = chopper_timing.toff;
chopconf.intpol = INTERPOLATE;
chopconf.hend = chopper_timing.hend + 3;
chopconf.hstrt = chopper_timing.hstrt - 1;
#if ENABLED(SQUARE_WAVE_STEPPING)
chopconf.dedge = true;
#endif
st.CHOPCONF(chopconf.sr);
st.rms_current(mA, HOLD_MULTIPLIER);
st.microsteps(microsteps);
st.iholddelay(10);
st.TPOWERDOWN(128); // ~2s until driver lowers to hold current
st.en_pwm_mode(stealth);
st.stored.stealthChop_enabled = stealth;
PWMCONF_t pwmconf{0};
pwmconf.pwm_freq = 0b01; // f_pwm = 2/683 f_clk
pwmconf.pwm_autoscale = true;
pwmconf.pwm_grad = 5;
pwmconf.pwm_ampl = 180;
st.PWMCONF(pwmconf.sr);
#if ENABLED(HYBRID_THRESHOLD)
st.set_pwm_thrs(thrs);
#else
UNUSED(thrs);
#endif
st.GSTAT(); // Clear GSTAT
}
#endif // TMC5130
#if HAS_DRIVER(TMC5160)
template<char AXIS_LETTER, char DRIVER_ID, AxisEnum AXIS_ID>
void tmc_init(TMCMarlin<TMC5160Stepper, AXIS_LETTER, DRIVER_ID, AXIS_ID> &st, const uint16_t mA, const uint16_t microsteps, const uint32_t thrs, const bool stealth) {
st.begin();
CHOPCONF_t chopconf{0};
chopconf.tbl = 1;
chopconf.toff = chopper_timing.toff;
chopconf.intpol = INTERPOLATE;
chopconf.hend = chopper_timing.hend + 3;
chopconf.hstrt = chopper_timing.hstrt - 1;
#if ENABLED(SQUARE_WAVE_STEPPING)
chopconf.dedge = true;
#endif
st.CHOPCONF(chopconf.sr);
st.rms_current(mA, HOLD_MULTIPLIER);
st.microsteps(microsteps);
st.iholddelay(10);
st.TPOWERDOWN(128); // ~2s until driver lowers to hold current
st.en_pwm_mode(stealth);
st.stored.stealthChop_enabled = stealth;
TMC2160_n::PWMCONF_t pwmconf{0};
pwmconf.pwm_lim = 12;
pwmconf.pwm_reg = 8;
pwmconf.pwm_autograd = true;
pwmconf.pwm_autoscale = true;
pwmconf.pwm_freq = 0b01;
pwmconf.pwm_grad = 14;
pwmconf.pwm_ofs = 36;
st.PWMCONF(pwmconf.sr);
#if ENABLED(HYBRID_THRESHOLD)
st.set_pwm_thrs(thrs);
#else
UNUSED(thrs);
#endif
st.GSTAT(); // Clear GSTAT
}
#endif // TMC5160
void restore_trinamic_drivers() {
#if AXIS_IS_TMC(X)
stepperX.push();
#endif
#if AXIS_IS_TMC(X2)
stepperX2.push();
#endif
#if AXIS_IS_TMC(Y)
stepperY.push();
#endif
#if AXIS_IS_TMC(Y2)
stepperY2.push();
#endif
#if AXIS_IS_TMC(Z)
stepperZ.push();
#endif
#if AXIS_IS_TMC(Z2)
stepperZ2.push();
#endif
#if AXIS_IS_TMC(Z3)
stepperZ3.push();
#endif
#if AXIS_IS_TMC(E0)
stepperE0.push();
#endif
#if AXIS_IS_TMC(E1)
stepperE1.push();
#endif
#if AXIS_IS_TMC(E2)
stepperE2.push();
#endif
#if AXIS_IS_TMC(E3)
stepperE3.push();
#endif
#if AXIS_IS_TMC(E4)
stepperE4.push();
#endif
#if AXIS_IS_TMC(E5)
stepperE5.push();
#endif
}
void reset_trinamic_drivers() {
static constexpr bool stealthchop_by_axis[] = {
#if ENABLED(STEALTHCHOP_XY)
true
#else
false
#endif
,
#if ENABLED(STEALTHCHOP_Z)
true
#else
false
#endif
,
#if ENABLED(STEALTHCHOP_E)
true
#else
false
#endif
};
#if AXIS_IS_TMC(X)
_TMC_INIT(X, STEALTH_AXIS_XY);
#endif
#if AXIS_IS_TMC(X2)
_TMC_INIT(X2, STEALTH_AXIS_XY);
#endif
#if AXIS_IS_TMC(Y)
_TMC_INIT(Y, STEALTH_AXIS_XY);
#endif
#if AXIS_IS_TMC(Y2)
_TMC_INIT(Y2, STEALTH_AXIS_XY);
#endif
#if AXIS_IS_TMC(Z)
_TMC_INIT(Z, STEALTH_AXIS_Z);
#endif
#if AXIS_IS_TMC(Z2)
_TMC_INIT(Z2, STEALTH_AXIS_Z);
#endif
#if AXIS_IS_TMC(Z3)
_TMC_INIT(Z3, STEALTH_AXIS_Z);
#endif
#if AXIS_IS_TMC(E0)
_TMC_INIT(E0, STEALTH_AXIS_E);
#endif
#if AXIS_IS_TMC(E1)
_TMC_INIT(E1, STEALTH_AXIS_E);
#endif
#if AXIS_IS_TMC(E2)
_TMC_INIT(E2, STEALTH_AXIS_E);
#endif
#if AXIS_IS_TMC(E3)
_TMC_INIT(E3, STEALTH_AXIS_E);
#endif
#if AXIS_IS_TMC(E4)
_TMC_INIT(E4, STEALTH_AXIS_E);
#endif
#if AXIS_IS_TMC(E5)
_TMC_INIT(E5, STEALTH_AXIS_E);
#endif
#if USE_SENSORLESS
#if X_SENSORLESS
#if AXIS_HAS_STALLGUARD(X)
stepperX.homing_threshold(X_STALL_SENSITIVITY);
#endif
#if AXIS_HAS_STALLGUARD(X2) && !X2_SENSORLESS
stepperX2.homing_threshold(X_STALL_SENSITIVITY);
#endif
#endif
#if X2_SENSORLESS
stepperX2.homing_threshold(X2_STALL_SENSITIVITY);
#endif
#if Y_SENSORLESS
#if AXIS_HAS_STALLGUARD(Y)
stepperY.homing_threshold(Y_STALL_SENSITIVITY);
#endif
#if AXIS_HAS_STALLGUARD(Y2)
stepperY2.homing_threshold(Y_STALL_SENSITIVITY);
#endif
#endif
#if Z_SENSORLESS
#if AXIS_HAS_STALLGUARD(Z)
stepperZ.homing_threshold(Z_STALL_SENSITIVITY);
#endif
#if AXIS_HAS_STALLGUARD(Z2)
stepperZ2.homing_threshold(Z_STALL_SENSITIVITY);
#endif
#if AXIS_HAS_STALLGUARD(Z3)
stepperZ3.homing_threshold(Z_STALL_SENSITIVITY);
#endif
#endif
#endif
#ifdef TMC_ADV
TMC_ADV()
#endif
stepper.set_directions();
}
#endif // HAS_TRINAMIC