1
0
mirror of https://github.com/MarlinFirmware/Marlin.git synced 2024-11-24 20:43:32 +00:00
MarlinFirmware/Marlin/ubl_motion.cpp
Roxy-3D 8282d732c1 Make G26 work with all mesh leveling.
Example Configuration.h files are not updated yet.   You need to cross
your settings over to the default Configuration.h file in the \Marlin
directory.   (UBL_G26_MESH_VALIDATION enablement has moved to a new
location in the file.)
2017-11-23 21:41:27 -06:00

722 lines
30 KiB
C++

/**
* Marlin 3D Printer Firmware
* Copyright (C) 2016 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
*
* Based on Sprinter and grbl.
* Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*
*/
#include "MarlinConfig.h"
#if ENABLED(AUTO_BED_LEVELING_UBL)
#include "Marlin.h"
#include "ubl.h"
#include "planner.h"
#include "stepper.h"
#include <avr/io.h>
#include <math.h>
extern float destination[XYZE];
#if AVR_AT90USB1286_FAMILY // Teensyduino & Printrboard IDE extensions have compile errors without this
inline void set_current_from_destination() { COPY(current_position, destination); }
#else
extern void set_current_from_destination();
#endif
#if ENABLED(DELTA)
extern float delta[ABC];
extern float delta_endstop_adj[ABC],
delta_radius,
delta_tower_angle_trim[ABC],
delta_tower[ABC][2],
delta_diagonal_rod,
delta_calibration_radius,
delta_diagonal_rod_2_tower[ABC],
delta_segments_per_second,
delta_clip_start_height;
extern float delta_safe_distance_from_top();
#endif
static void debug_echo_axis(const AxisEnum axis) {
if (current_position[axis] == destination[axis])
SERIAL_ECHOPGM("-------------");
else
SERIAL_ECHO_F(destination[X_AXIS], 6);
}
void debug_current_and_destination(const char *title) {
// if the title message starts with a '!' it is so important, we are going to
// ignore the status of the g26_debug_flag
if (*title != '!' && !g26_debug_flag) return;
const float de = destination[E_AXIS] - current_position[E_AXIS];
if (de == 0.0) return; // Printing moves only
const float dx = destination[X_AXIS] - current_position[X_AXIS],
dy = destination[Y_AXIS] - current_position[Y_AXIS],
xy_dist = HYPOT(dx, dy);
if (xy_dist == 0.0) return;
SERIAL_ECHOPGM(" fpmm=");
const float fpmm = de / xy_dist;
SERIAL_ECHO_F(fpmm, 6);
SERIAL_ECHOPGM(" current=( ");
SERIAL_ECHO_F(current_position[X_AXIS], 6);
SERIAL_ECHOPGM(", ");
SERIAL_ECHO_F(current_position[Y_AXIS], 6);
SERIAL_ECHOPGM(", ");
SERIAL_ECHO_F(current_position[Z_AXIS], 6);
SERIAL_ECHOPGM(", ");
SERIAL_ECHO_F(current_position[E_AXIS], 6);
SERIAL_ECHOPGM(" ) destination=( ");
debug_echo_axis(X_AXIS);
SERIAL_ECHOPGM(", ");
debug_echo_axis(Y_AXIS);
SERIAL_ECHOPGM(", ");
debug_echo_axis(Z_AXIS);
SERIAL_ECHOPGM(", ");
debug_echo_axis(E_AXIS);
SERIAL_ECHOPGM(" ) ");
SERIAL_ECHO(title);
SERIAL_EOL();
}
void unified_bed_leveling::line_to_destination_cartesian(const float &feed_rate, uint8_t extruder) {
/**
* Much of the nozzle movement will be within the same cell. So we will do as little computation
* as possible to determine if this is the case. If this move is within the same cell, we will
* just do the required Z-Height correction, call the Planner's buffer_line() routine, and leave
*/
const float start[XYZE] = {
current_position[X_AXIS],
current_position[Y_AXIS],
current_position[Z_AXIS],
current_position[E_AXIS]
},
end[XYZE] = {
destination[X_AXIS],
destination[Y_AXIS],
destination[Z_AXIS],
destination[E_AXIS]
};
const int cell_start_xi = get_cell_index_x(start[X_AXIS]),
cell_start_yi = get_cell_index_y(start[Y_AXIS]),
cell_dest_xi = get_cell_index_x(end[X_AXIS]),
cell_dest_yi = get_cell_index_y(end[Y_AXIS]);
if (g26_debug_flag) {
SERIAL_ECHOPAIR(" ubl.line_to_destination(xe=", end[X_AXIS]);
SERIAL_ECHOPAIR(", ye=", end[Y_AXIS]);
SERIAL_ECHOPAIR(", ze=", end[Z_AXIS]);
SERIAL_ECHOPAIR(", ee=", end[E_AXIS]);
SERIAL_CHAR(')');
SERIAL_EOL();
debug_current_and_destination(PSTR("Start of ubl.line_to_destination()"));
}
if (cell_start_xi == cell_dest_xi && cell_start_yi == cell_dest_yi) { // if the whole move is within the same cell,
/**
* we don't need to break up the move
*
* If we are moving off the print bed, we are going to allow the move at this level.
* But we detect it and isolate it. For now, we just pass along the request.
*/
if (!WITHIN(cell_dest_xi, 0, GRID_MAX_POINTS_X - 1) || !WITHIN(cell_dest_yi, 0, GRID_MAX_POINTS_Y - 1)) {
// Note: There is no Z Correction in this case. We are off the grid and don't know what
// a reasonable correction would be.
planner._buffer_line(end[X_AXIS], end[Y_AXIS], end[Z_AXIS], end[E_AXIS], feed_rate, extruder);
set_current_from_destination();
if (g26_debug_flag)
debug_current_and_destination(PSTR("out of bounds in ubl.line_to_destination()"));
return;
}
FINAL_MOVE:
/**
* Optimize some floating point operations here. We could call float get_z_correction(float x0, float y0) to
* generate the correction for us. But we can lighten the load on the CPU by doing a modified version of the function.
* We are going to only calculate the amount we are from the first mesh line towards the second mesh line once.
* We will use this fraction in both of the original two Z Height calculations for the bi-linear interpolation. And,
* instead of doing a generic divide of the distance, we know the distance is MESH_X_DIST so we can use the preprocessor
* to create a 1-over number for us. That will allow us to do a floating point multiply instead of a floating point divide.
*/
const float xratio = (end[X_AXIS] - mesh_index_to_xpos(cell_dest_xi)) * (1.0 / (MESH_X_DIST));
float z1 = z_values[cell_dest_xi ][cell_dest_yi ] + xratio *
(z_values[cell_dest_xi + 1][cell_dest_yi ] - z_values[cell_dest_xi][cell_dest_yi ]),
z2 = z_values[cell_dest_xi ][cell_dest_yi + 1] + xratio *
(z_values[cell_dest_xi + 1][cell_dest_yi + 1] - z_values[cell_dest_xi][cell_dest_yi + 1]);
if (cell_dest_xi >= GRID_MAX_POINTS_X - 1) z1 = z2 = 0.0;
// we are done with the fractional X distance into the cell. Now with the two Z-Heights we have calculated, we
// are going to apply the Y-Distance into the cell to interpolate the final Z correction.
const float yratio = (end[Y_AXIS] - mesh_index_to_ypos(cell_dest_yi)) * (1.0 / (MESH_Y_DIST));
float z0 = cell_dest_yi < GRID_MAX_POINTS_Y - 1 ? (z1 + (z2 - z1) * yratio) * planner.fade_scaling_factor_for_z(end[Z_AXIS]) : 0.0;
/**
* If part of the Mesh is undefined, it will show up as NAN
* in z_values[][] and propagate through the
* calculations. If our correction is NAN, we throw it out
* because part of the Mesh is undefined and we don't have the
* information we need to complete the height correction.
*/
if (isnan(z0)) z0 = 0.0;
planner._buffer_line(end[X_AXIS], end[Y_AXIS], end[Z_AXIS] + z0, end[E_AXIS], feed_rate, extruder);
if (g26_debug_flag)
debug_current_and_destination(PSTR("FINAL_MOVE in ubl.line_to_destination()"));
set_current_from_destination();
return;
}
/**
* If we get here, we are processing a move that crosses at least one Mesh Line. We will check
* for the simple case of just crossing X or just crossing Y Mesh Lines after we get all the details
* of the move figured out. We can process the easy case of just crossing an X or Y Mesh Line with less
* computation and in fact most lines are of this nature. We will check for that in the following
* blocks of code:
*/
const float dx = end[X_AXIS] - start[X_AXIS],
dy = end[Y_AXIS] - start[Y_AXIS];
const int left_flag = dx < 0.0 ? 1 : 0,
down_flag = dy < 0.0 ? 1 : 0;
const float adx = left_flag ? -dx : dx,
ady = down_flag ? -dy : dy;
const int dxi = cell_start_xi == cell_dest_xi ? 0 : left_flag ? -1 : 1,
dyi = cell_start_yi == cell_dest_yi ? 0 : down_flag ? -1 : 1;
/**
* Compute the scaling factor for the extruder for each partial move.
* We need to watch out for zero length moves because it will cause us to
* have an infinate scaling factor. We are stuck doing a floating point
* divide to get our scaling factor, but after that, we just multiply by this
* number. We also pick our scaling factor based on whether the X or Y
* component is larger. We use the biggest of the two to preserve precision.
*/
const bool use_x_dist = adx > ady;
float on_axis_distance = use_x_dist ? dx : dy,
e_position = end[E_AXIS] - start[E_AXIS],
z_position = end[Z_AXIS] - start[Z_AXIS];
const float e_normalized_dist = e_position / on_axis_distance,
z_normalized_dist = z_position / on_axis_distance;
int current_xi = cell_start_xi,
current_yi = cell_start_yi;
const float m = dy / dx,
c = start[Y_AXIS] - m * start[X_AXIS];
const bool inf_normalized_flag = (isinf(e_normalized_dist) != 0),
inf_m_flag = (isinf(m) != 0);
/**
* This block handles vertical lines. These are lines that stay within the same
* X Cell column. They do not need to be perfectly vertical. They just can
* not cross into another X Cell column.
*/
if (dxi == 0) { // Check for a vertical line
current_yi += down_flag; // Line is heading down, we just want to go to the bottom
while (current_yi != cell_dest_yi + down_flag) {
current_yi += dyi;
const float next_mesh_line_y = mesh_index_to_ypos(current_yi);
/**
* if the slope of the line is infinite, we won't do the calculations
* else, we know the next X is the same so we can recover and continue!
* Calculate X at the next Y mesh line
*/
const float x = inf_m_flag ? start[X_AXIS] : (next_mesh_line_y - c) / m;
float z0 = z_correction_for_x_on_horizontal_mesh_line(x, current_xi, current_yi)
* planner.fade_scaling_factor_for_z(end[Z_AXIS]);
/**
* If part of the Mesh is undefined, it will show up as NAN
* in z_values[][] and propagate through the
* calculations. If our correction is NAN, we throw it out
* because part of the Mesh is undefined and we don't have the
* information we need to complete the height correction.
*/
if (isnan(z0)) z0 = 0.0;
const float y = mesh_index_to_ypos(current_yi);
/**
* Without this check, it is possible for the algorithm to generate a zero length move in the case
* where the line is heading down and it is starting right on a Mesh Line boundary. For how often that
* happens, it might be best to remove the check and always 'schedule' the move because
* the planner._buffer_line() routine will filter it if that happens.
*/
if (y != start[Y_AXIS]) {
if (!inf_normalized_flag) {
on_axis_distance = use_x_dist ? x - start[X_AXIS] : y - start[Y_AXIS];
e_position = start[E_AXIS] + on_axis_distance * e_normalized_dist;
z_position = start[Z_AXIS] + on_axis_distance * z_normalized_dist;
}
else {
e_position = end[E_AXIS];
z_position = end[Z_AXIS];
}
planner._buffer_line(x, y, z_position + z0, e_position, feed_rate, extruder);
} //else printf("FIRST MOVE PRUNED ");
}
if (g26_debug_flag)
debug_current_and_destination(PSTR("vertical move done in ubl.line_to_destination()"));
//
// Check if we are at the final destination. Usually, we won't be, but if it is on a Y Mesh Line, we are done.
//
if (current_position[X_AXIS] != end[X_AXIS] || current_position[Y_AXIS] != end[Y_AXIS])
goto FINAL_MOVE;
set_current_from_destination();
return;
}
/**
*
* This block handles horizontal lines. These are lines that stay within the same
* Y Cell row. They do not need to be perfectly horizontal. They just can
* not cross into another Y Cell row.
*
*/
if (dyi == 0) { // Check for a horizontal line
current_xi += left_flag; // Line is heading left, we just want to go to the left
// edge of this cell for the first move.
while (current_xi != cell_dest_xi + left_flag) {
current_xi += dxi;
const float next_mesh_line_x = mesh_index_to_xpos(current_xi),
y = m * next_mesh_line_x + c; // Calculate Y at the next X mesh line
float z0 = z_correction_for_y_on_vertical_mesh_line(y, current_xi, current_yi)
* planner.fade_scaling_factor_for_z(end[Z_AXIS]);
/**
* If part of the Mesh is undefined, it will show up as NAN
* in z_values[][] and propagate through the
* calculations. If our correction is NAN, we throw it out
* because part of the Mesh is undefined and we don't have the
* information we need to complete the height correction.
*/
if (isnan(z0)) z0 = 0.0;
const float x = mesh_index_to_xpos(current_xi);
/**
* Without this check, it is possible for the algorithm to generate a zero length move in the case
* where the line is heading left and it is starting right on a Mesh Line boundary. For how often
* that happens, it might be best to remove the check and always 'schedule' the move because
* the planner._buffer_line() routine will filter it if that happens.
*/
if (x != start[X_AXIS]) {
if (!inf_normalized_flag) {
on_axis_distance = use_x_dist ? x - start[X_AXIS] : y - start[Y_AXIS];
e_position = start[E_AXIS] + on_axis_distance * e_normalized_dist; // is based on X or Y because this is a horizontal move
z_position = start[Z_AXIS] + on_axis_distance * z_normalized_dist;
}
else {
e_position = end[E_AXIS];
z_position = end[Z_AXIS];
}
planner._buffer_line(x, y, z_position + z0, e_position, feed_rate, extruder);
} //else printf("FIRST MOVE PRUNED ");
}
if (g26_debug_flag)
debug_current_and_destination(PSTR("horizontal move done in ubl.line_to_destination()"));
if (current_position[X_AXIS] != end[X_AXIS] || current_position[Y_AXIS] != end[Y_AXIS])
goto FINAL_MOVE;
set_current_from_destination();
return;
}
/**
*
* This block handles the generic case of a line crossing both X and Y Mesh lines.
*
*/
int xi_cnt = cell_start_xi - cell_dest_xi,
yi_cnt = cell_start_yi - cell_dest_yi;
if (xi_cnt < 0) xi_cnt = -xi_cnt;
if (yi_cnt < 0) yi_cnt = -yi_cnt;
current_xi += left_flag;
current_yi += down_flag;
while (xi_cnt > 0 || yi_cnt > 0) {
const float next_mesh_line_x = mesh_index_to_xpos(current_xi + dxi),
next_mesh_line_y = mesh_index_to_ypos(current_yi + dyi),
y = m * next_mesh_line_x + c, // Calculate Y at the next X mesh line
x = (next_mesh_line_y - c) / m; // Calculate X at the next Y mesh line
// (No need to worry about m being zero.
// If that was the case, it was already detected
// as a vertical line move above.)
if (left_flag == (x > next_mesh_line_x)) { // Check if we hit the Y line first
// Yes! Crossing a Y Mesh Line next
float z0 = z_correction_for_x_on_horizontal_mesh_line(x, current_xi - left_flag, current_yi + dyi)
* planner.fade_scaling_factor_for_z(end[Z_AXIS]);
/**
* If part of the Mesh is undefined, it will show up as NAN
* in z_values[][] and propagate through the
* calculations. If our correction is NAN, we throw it out
* because part of the Mesh is undefined and we don't have the
* information we need to complete the height correction.
*/
if (isnan(z0)) z0 = 0.0;
if (!inf_normalized_flag) {
on_axis_distance = use_x_dist ? x - start[X_AXIS] : next_mesh_line_y - start[Y_AXIS];
e_position = start[E_AXIS] + on_axis_distance * e_normalized_dist;
z_position = start[Z_AXIS] + on_axis_distance * z_normalized_dist;
}
else {
e_position = end[E_AXIS];
z_position = end[Z_AXIS];
}
planner._buffer_line(x, next_mesh_line_y, z_position + z0, e_position, feed_rate, extruder);
current_yi += dyi;
yi_cnt--;
}
else {
// Yes! Crossing a X Mesh Line next
float z0 = z_correction_for_y_on_vertical_mesh_line(y, current_xi + dxi, current_yi - down_flag)
* planner.fade_scaling_factor_for_z(end[Z_AXIS]);
/**
* If part of the Mesh is undefined, it will show up as NAN
* in z_values[][] and propagate through the
* calculations. If our correction is NAN, we throw it out
* because part of the Mesh is undefined and we don't have the
* information we need to complete the height correction.
*/
if (isnan(z0)) z0 = 0.0;
if (!inf_normalized_flag) {
on_axis_distance = use_x_dist ? next_mesh_line_x - start[X_AXIS] : y - start[Y_AXIS];
e_position = start[E_AXIS] + on_axis_distance * e_normalized_dist;
z_position = start[Z_AXIS] + on_axis_distance * z_normalized_dist;
}
else {
e_position = end[E_AXIS];
z_position = end[Z_AXIS];
}
planner._buffer_line(next_mesh_line_x, y, z_position + z0, e_position, feed_rate, extruder);
current_xi += dxi;
xi_cnt--;
}
if (xi_cnt < 0 || yi_cnt < 0) break; // we've gone too far, so exit the loop and move on to FINAL_MOVE
}
if (g26_debug_flag)
debug_current_and_destination(PSTR("generic move done in ubl.line_to_destination()"));
if (current_position[X_AXIS] != end[X_AXIS] || current_position[Y_AXIS] != end[Y_AXIS])
goto FINAL_MOVE;
set_current_from_destination();
}
#if UBL_DELTA
// macro to inline copy exactly 4 floats, don't rely on sizeof operator
#define COPY_XYZE( target, source ) { \
target[X_AXIS] = source[X_AXIS]; \
target[Y_AXIS] = source[Y_AXIS]; \
target[Z_AXIS] = source[Z_AXIS]; \
target[E_AXIS] = source[E_AXIS]; \
}
#if IS_SCARA // scale the feed rate from mm/s to degrees/s
static float scara_feed_factor, scara_oldA, scara_oldB;
#endif
// We don't want additional apply_leveling() performed by regular buffer_line or buffer_line_kinematic,
// so we call _buffer_line directly here. Per-segmented leveling and kinematics performed first.
inline void _O2 ubl_buffer_segment_raw(const float &rx, const float &ry, const float rz, const float &e, const float &fr) {
#if ENABLED(DELTA) // apply delta inverse_kinematics
const float delta_A = rz + SQRT( delta_diagonal_rod_2_tower[A_AXIS]
- HYPOT2( delta_tower[A_AXIS][X_AXIS] - rx,
delta_tower[A_AXIS][Y_AXIS] - ry ));
const float delta_B = rz + SQRT( delta_diagonal_rod_2_tower[B_AXIS]
- HYPOT2( delta_tower[B_AXIS][X_AXIS] - rx,
delta_tower[B_AXIS][Y_AXIS] - ry ));
const float delta_C = rz + SQRT( delta_diagonal_rod_2_tower[C_AXIS]
- HYPOT2( delta_tower[C_AXIS][X_AXIS] - rx,
delta_tower[C_AXIS][Y_AXIS] - ry ));
planner._buffer_line(delta_A, delta_B, delta_C, e, fr, active_extruder);
#elif IS_SCARA // apply scara inverse_kinematics
const float lseg[XYZ] = { rx, ry, rz };
inverse_kinematics(lseg); // this writes delta[ABC] from lseg[XYZ]
// should move the feedrate scaling to scara inverse_kinematics
const float adiff = FABS(delta[A_AXIS] - scara_oldA),
bdiff = FABS(delta[B_AXIS] - scara_oldB);
scara_oldA = delta[A_AXIS];
scara_oldB = delta[B_AXIS];
float s_feedrate = max(adiff, bdiff) * scara_feed_factor;
planner._buffer_line(delta[A_AXIS], delta[B_AXIS], delta[C_AXIS], e, s_feedrate, active_extruder);
#else // CARTESIAN
planner._buffer_line(rx, ry, rz, e, fr, active_extruder);
#endif
}
/**
* Prepare a segmented linear move for DELTA/SCARA/CARTESIAN with UBL and FADE semantics.
* This calls planner._buffer_line multiple times for small incremental moves.
* Returns true if did NOT move, false if moved (requires current_position update).
*/
bool _O2 unified_bed_leveling::prepare_segmented_line_to(const float rtarget[XYZE], const float &feedrate) {
if (!position_is_reachable(rtarget[X_AXIS], rtarget[Y_AXIS])) // fail if moving outside reachable boundary
return true; // did not move, so current_position still accurate
const float tot_dx = rtarget[X_AXIS] - current_position[X_AXIS],
tot_dy = rtarget[Y_AXIS] - current_position[Y_AXIS],
tot_dz = rtarget[Z_AXIS] - current_position[Z_AXIS],
tot_de = rtarget[E_AXIS] - current_position[E_AXIS];
const float cartesian_xy_mm = HYPOT(tot_dx, tot_dy); // total horizontal xy distance
#if IS_KINEMATIC
const float seconds = cartesian_xy_mm / feedrate; // seconds to move xy distance at requested rate
uint16_t segments = lroundf(delta_segments_per_second * seconds), // preferred number of segments for distance @ feedrate
seglimit = lroundf(cartesian_xy_mm * (1.0 / (DELTA_SEGMENT_MIN_LENGTH))); // number of segments at minimum segment length
NOMORE(segments, seglimit); // limit to minimum segment length (fewer segments)
#else
uint16_t segments = lroundf(cartesian_xy_mm * (1.0 / (DELTA_SEGMENT_MIN_LENGTH))); // cartesian fixed segment length
#endif
NOLESS(segments, 1); // must have at least one segment
const float inv_segments = 1.0 / segments; // divide once, multiply thereafter
#if IS_SCARA // scale the feed rate from mm/s to degrees/s
scara_feed_factor = cartesian_xy_mm * inv_segments * feedrate;
scara_oldA = stepper.get_axis_position_degrees(A_AXIS);
scara_oldB = stepper.get_axis_position_degrees(B_AXIS);
#endif
const float seg_dx = tot_dx * inv_segments,
seg_dy = tot_dy * inv_segments,
seg_dz = tot_dz * inv_segments,
seg_de = tot_de * inv_segments;
// Note that E segment distance could vary slightly as z mesh height
// changes for each segment, but small enough to ignore.
float seg_rx = current_position[X_AXIS],
seg_ry = current_position[Y_AXIS],
seg_rz = current_position[Z_AXIS],
seg_le = current_position[E_AXIS];
const bool above_fade_height = (
#if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
planner.z_fade_height != 0 && planner.z_fade_height < rtarget[Z_AXIS]
#else
false
#endif
);
// Only compute leveling per segment if ubl active and target below z_fade_height.
if (!planner.leveling_active || !planner.leveling_active_at_z(rtarget[Z_AXIS])) { // no mesh leveling
do {
if (--segments) { // not the last segment
seg_rx += seg_dx;
seg_ry += seg_dy;
seg_rz += seg_dz;
seg_le += seg_de;
} else { // last segment, use exact destination
seg_rx = rtarget[X_AXIS];
seg_ry = rtarget[Y_AXIS];
seg_rz = rtarget[Z_AXIS];
seg_le = rtarget[E_AXIS];
}
ubl_buffer_segment_raw(seg_rx, seg_ry, seg_rz, seg_le, feedrate);
} while (segments);
return false; // moved but did not set_current_from_destination();
}
// Otherwise perform per-segment leveling
#if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
const float fade_scaling_factor = planner.fade_scaling_factor_for_z(rtarget[Z_AXIS]);
#else
constexpr float fade_scaling_factor = 1.0;
#endif
// increment to first segment destination
seg_rx += seg_dx;
seg_ry += seg_dy;
seg_rz += seg_dz;
seg_le += seg_de;
for(;;) { // for each mesh cell encountered during the move
// Compute mesh cell invariants that remain constant for all segments within cell.
// Note for cell index, if point is outside the mesh grid (in MESH_INSET perimeter)
// the bilinear interpolation from the adjacent cell within the mesh will still work.
// Inner loop will exit each time (because out of cell bounds) but will come back
// in top of loop and again re-find same adjacent cell and use it, just less efficient
// for mesh inset area.
int8_t cell_xi = (seg_rx - (MESH_MIN_X)) * (1.0 / (MESH_X_DIST)),
cell_yi = (seg_ry - (MESH_MIN_Y)) * (1.0 / (MESH_X_DIST));
cell_xi = constrain(cell_xi, 0, (GRID_MAX_POINTS_X) - 1);
cell_yi = constrain(cell_yi, 0, (GRID_MAX_POINTS_Y) - 1);
const float x0 = mesh_index_to_xpos(cell_xi), // 64 byte table lookup avoids mul+add
y0 = mesh_index_to_ypos(cell_yi);
float z_x0y0 = z_values[cell_xi ][cell_yi ], // z at lower left corner
z_x1y0 = z_values[cell_xi+1][cell_yi ], // z at upper left corner
z_x0y1 = z_values[cell_xi ][cell_yi+1], // z at lower right corner
z_x1y1 = z_values[cell_xi+1][cell_yi+1]; // z at upper right corner
if (isnan(z_x0y0)) z_x0y0 = 0; // ideally activating planner.leveling_active (G29 A)
if (isnan(z_x1y0)) z_x1y0 = 0; // should refuse if any invalid mesh points
if (isnan(z_x0y1)) z_x0y1 = 0; // in order to avoid isnan tests per cell,
if (isnan(z_x1y1)) z_x1y1 = 0; // thus guessing zero for undefined points
float cx = seg_rx - x0, // cell-relative x and y
cy = seg_ry - y0;
const float z_xmy0 = (z_x1y0 - z_x0y0) * (1.0 / (MESH_X_DIST)), // z slope per x along y0 (lower left to lower right)
z_xmy1 = (z_x1y1 - z_x0y1) * (1.0 / (MESH_X_DIST)); // z slope per x along y1 (upper left to upper right)
float z_cxy0 = z_x0y0 + z_xmy0 * cx; // z height along y0 at cx (changes for each cx in cell)
const float z_cxy1 = z_x0y1 + z_xmy1 * cx, // z height along y1 at cx
z_cxyd = z_cxy1 - z_cxy0; // z height difference along cx from y0 to y1
float z_cxym = z_cxyd * (1.0 / (MESH_Y_DIST)); // z slope per y along cx from y0 to y1 (changes for each cx in cell)
// float z_cxcy = z_cxy0 + z_cxym * cy; // interpolated mesh z height along cx at cy (do inside the segment loop)
// As subsequent segments step through this cell, the z_cxy0 intercept will change
// and the z_cxym slope will change, both as a function of cx within the cell, and
// each change by a constant for fixed segment lengths.
const float z_sxy0 = z_xmy0 * seg_dx, // per-segment adjustment to z_cxy0
z_sxym = (z_xmy1 - z_xmy0) * (1.0 / (MESH_Y_DIST)) * seg_dx; // per-segment adjustment to z_cxym
for(;;) { // for all segments within this mesh cell
float z_cxcy = (z_cxy0 + z_cxym * cy) * fade_scaling_factor; // interpolated mesh z height along cx at cy, scaled for fade
if (--segments == 0) { // if this is last segment, use rtarget for exact
seg_rx = rtarget[X_AXIS];
seg_ry = rtarget[Y_AXIS];
seg_rz = rtarget[Z_AXIS];
seg_le = rtarget[E_AXIS];
}
ubl_buffer_segment_raw(seg_rx, seg_ry, seg_rz + z_cxcy, seg_le, feedrate);
if (segments == 0) // done with last segment
return false; // did not set_current_from_destination()
seg_rx += seg_dx;
seg_ry += seg_dy;
seg_rz += seg_dz;
seg_le += seg_de;
cx += seg_dx;
cy += seg_dy;
if (!WITHIN(cx, 0, MESH_X_DIST) || !WITHIN(cy, 0, MESH_Y_DIST)) { // done within this cell, break to next
break;
}
// Next segment still within same mesh cell, adjust the per-segment
// slope and intercept to compute next z height.
z_cxy0 += z_sxy0; // adjust z_cxy0 by per-segment z_sxy0
z_cxym += z_sxym; // adjust z_cxym by per-segment z_sxym
} // segment loop
} // cell loop
}
#endif // UBL_DELTA
#endif // AUTO_BED_LEVELING_UBL