Prusa-Firmware/Firmware/mesh_bed_calibration.cpp

2349 lines
98 KiB
C++
Raw Normal View History

#include "Marlin.h"
#include "Configuration.h"
#include "ConfigurationStore.h"
#include "language_all.h"
#include "mesh_bed_calibration.h"
#include "mesh_bed_leveling.h"
#include "stepper.h"
#include "ultralcd.h"
uint8_t world2machine_correction_mode;
float world2machine_rotation_and_skew[2][2];
float world2machine_rotation_and_skew_inv[2][2];
float world2machine_shift[2];
// Weight of the Y coordinate for the least squares fitting of the bed induction sensor targets.
// Only used for the first row of the points, which may not befully in reach of the sensor.
#define WEIGHT_FIRST_ROW_X_HIGH (1.f)
#define WEIGHT_FIRST_ROW_X_LOW (0.35f)
#define WEIGHT_FIRST_ROW_Y_HIGH (0.3f)
#define WEIGHT_FIRST_ROW_Y_LOW (0.0f)
#define BED_ZERO_REF_X (- 22.f + X_PROBE_OFFSET_FROM_EXTRUDER)
#define BED_ZERO_REF_Y (- 0.6f + Y_PROBE_OFFSET_FROM_EXTRUDER)
// Scaling of the real machine axes against the programmed dimensions in the firmware.
// The correction is tiny, here around 0.5mm on 250mm length.
//#define MACHINE_AXIS_SCALE_X ((250.f - 0.5f) / 250.f)
//#define MACHINE_AXIS_SCALE_Y ((250.f - 0.5f) / 250.f)
#define MACHINE_AXIS_SCALE_X 1.f
#define MACHINE_AXIS_SCALE_Y 1.f
// 0.12 degrees equals to an offset of 0.5mm on 250mm length.
#define BED_SKEW_ANGLE_MILD (0.12f * M_PI / 180.f)
// 0.25 degrees equals to an offset of 1.1mm on 250mm length.
#define BED_SKEW_ANGLE_EXTREME (0.25f * M_PI / 180.f)
#define BED_CALIBRATION_POINT_OFFSET_MAX_EUCLIDIAN (0.8f)
#define BED_CALIBRATION_POINT_OFFSET_MAX_1ST_ROW_X (0.8f)
#define BED_CALIBRATION_POINT_OFFSET_MAX_1ST_ROW_Y (1.5f)
#define MIN_BED_SENSOR_POINT_RESPONSE_DMR (2.0f)
//#define Y_MIN_POS_FOR_BED_CALIBRATION (MANUAL_Y_HOME_POS-0.2f)
#define Y_MIN_POS_FOR_BED_CALIBRATION (Y_MIN_POS)
// Distances toward the print bed edge may not be accurate.
#define Y_MIN_POS_CALIBRATION_POINT_ACCURATE (Y_MIN_POS + 3.f)
// When the measured point center is out of reach of the sensor, Y coordinate will be ignored
// by the Least Squares fitting and the X coordinate will be weighted low.
#define Y_MIN_POS_CALIBRATION_POINT_OUT_OF_REACH (Y_MIN_POS - 0.5f)
// Positions of the bed reference points in the machine coordinates, referenced to the P.I.N.D.A sensor.
// The points are ordered in a zig-zag fashion to speed up the calibration.
const float bed_ref_points[] PROGMEM = {
13.f - BED_ZERO_REF_X, 6.4f - BED_ZERO_REF_Y,
115.f - BED_ZERO_REF_X, 6.4f - BED_ZERO_REF_Y,
216.f - BED_ZERO_REF_X, 6.4f - BED_ZERO_REF_Y,
216.f - BED_ZERO_REF_X, 104.4f - BED_ZERO_REF_Y,
115.f - BED_ZERO_REF_X, 104.4f - BED_ZERO_REF_Y,
13.f - BED_ZERO_REF_X, 104.4f - BED_ZERO_REF_Y,
13.f - BED_ZERO_REF_X, 202.4f - BED_ZERO_REF_Y,
115.f - BED_ZERO_REF_X, 202.4f - BED_ZERO_REF_Y,
216.f - BED_ZERO_REF_X, 202.4f - BED_ZERO_REF_Y
};
// Positions of the bed reference points in the machine coordinates, referenced to the P.I.N.D.A sensor.
// The points are the following: center front, center right, center rear, center left.
const float bed_ref_points_4[] PROGMEM = {
115.f - BED_ZERO_REF_X, 6.4f - BED_ZERO_REF_Y,
216.f - BED_ZERO_REF_X, 104.4f - BED_ZERO_REF_Y,
115.f - BED_ZERO_REF_X, 202.4f - BED_ZERO_REF_Y,
13.f - BED_ZERO_REF_X, 104.4f - BED_ZERO_REF_Y
};
static inline float sqr(float x) { return x * x; }
// Weight of a point coordinate in a least squares optimization.
// The first row of points may not be fully reachable
// and the y values may be shortened a bit by the bed carriage
// pulling the belt up.
static inline float point_weight_x(const uint8_t i, const float &y)
{
float w = 1.f;
if (i < 3) {
if (y >= Y_MIN_POS_CALIBRATION_POINT_ACCURATE) {
w = WEIGHT_FIRST_ROW_X_HIGH;
} else if (y < Y_MIN_POS_CALIBRATION_POINT_OUT_OF_REACH) {
// If the point is fully outside, give it some weight.
w = WEIGHT_FIRST_ROW_X_LOW;
} else {
// Linearly interpolate the weight from 1 to WEIGHT_FIRST_ROW_X.
float t = (y - Y_MIN_POS_CALIBRATION_POINT_OUT_OF_REACH) / (Y_MIN_POS_CALIBRATION_POINT_ACCURATE - Y_MIN_POS_CALIBRATION_POINT_OUT_OF_REACH);
w = (1.f - t) * WEIGHT_FIRST_ROW_X_LOW + t * WEIGHT_FIRST_ROW_X_HIGH;
}
}
return w;
}
// Weight of a point coordinate in a least squares optimization.
// The first row of points may not be fully reachable
// and the y values may be shortened a bit by the bed carriage
// pulling the belt up.
static inline float point_weight_y(const uint8_t i, const float &y)
{
float w = 1.f;
if (i < 3) {
if (y >= Y_MIN_POS_CALIBRATION_POINT_ACCURATE) {
w = WEIGHT_FIRST_ROW_Y_HIGH;
} else if (y < Y_MIN_POS_CALIBRATION_POINT_OUT_OF_REACH) {
// If the point is fully outside, give it some weight.
w = WEIGHT_FIRST_ROW_Y_LOW;
} else {
// Linearly interpolate the weight from 1 to WEIGHT_FIRST_ROW_X.
float t = (y - Y_MIN_POS_CALIBRATION_POINT_OUT_OF_REACH) / (Y_MIN_POS_CALIBRATION_POINT_ACCURATE - Y_MIN_POS_CALIBRATION_POINT_OUT_OF_REACH);
w = (1.f - t) * WEIGHT_FIRST_ROW_Y_LOW + t * WEIGHT_FIRST_ROW_Y_HIGH;
}
}
return w;
}
// Non-Linear Least Squares fitting of the bed to the measured induction points
// using the Gauss-Newton method.
// This method will maintain a unity length of the machine axes,
// which is the correct approach if the sensor points are not measured precisely.
BedSkewOffsetDetectionResultType calculate_machine_skew_and_offset_LS(
// Matrix of maximum 9 2D points (18 floats)
const float *measured_pts,
uint8_t npts,
const float *true_pts,
// Resulting correction matrix.
float *vec_x,
float *vec_y,
float *cntr,
// Temporary values, 49-18-(2*3)=25 floats
// , float *temp
int8_t verbosity_level
)
{
if (verbosity_level >= 10) {
// Show the initial state, before the fitting.
SERIAL_ECHOPGM("X vector, initial: ");
MYSERIAL.print(vec_x[0], 5);
SERIAL_ECHOPGM(", ");
MYSERIAL.print(vec_x[1], 5);
SERIAL_ECHOLNPGM("");
SERIAL_ECHOPGM("Y vector, initial: ");
MYSERIAL.print(vec_y[0], 5);
SERIAL_ECHOPGM(", ");
MYSERIAL.print(vec_y[1], 5);
SERIAL_ECHOLNPGM("");
SERIAL_ECHOPGM("center, initial: ");
MYSERIAL.print(cntr[0], 5);
SERIAL_ECHOPGM(", ");
MYSERIAL.print(cntr[1], 5);
SERIAL_ECHOLNPGM("");
for (uint8_t i = 0; i < npts; ++i) {
SERIAL_ECHOPGM("point #");
MYSERIAL.print(int(i));
SERIAL_ECHOPGM(" measured: (");
MYSERIAL.print(measured_pts[i * 2], 5);
SERIAL_ECHOPGM(", ");
MYSERIAL.print(measured_pts[i * 2 + 1], 5);
SERIAL_ECHOPGM("); target: (");
MYSERIAL.print(pgm_read_float(true_pts + i * 2), 5);
SERIAL_ECHOPGM(", ");
MYSERIAL.print(pgm_read_float(true_pts + i * 2 + 1), 5);
SERIAL_ECHOPGM("), error: ");
MYSERIAL.print(sqrt(
sqr(pgm_read_float(true_pts + i * 2) - measured_pts[i * 2]) +
sqr(pgm_read_float(true_pts + i * 2 + 1) - measured_pts[i * 2 + 1])), 5);
SERIAL_ECHOLNPGM("");
}
delay_keep_alive(100);
}
// Run some iterations of the Gauss-Newton method of non-linear least squares.
// Initial set of parameters:
// X,Y offset
cntr[0] = 0.f;
cntr[1] = 0.f;
// Rotation of the machine X axis from the bed X axis.
float a1 = 0;
// Rotation of the machine Y axis from the bed Y axis.
float a2 = 0;
for (int8_t iter = 0; iter < 100; ++iter) {
float c1 = cos(a1) * MACHINE_AXIS_SCALE_X;
float s1 = sin(a1) * MACHINE_AXIS_SCALE_X;
float c2 = cos(a2) * MACHINE_AXIS_SCALE_Y;
float s2 = sin(a2) * MACHINE_AXIS_SCALE_Y;
// Prepare the Normal equation for the Gauss-Newton method.
float A[4][4] = { 0.f };
float b[4] = { 0.f };
float acc;
for (uint8_t r = 0; r < 4; ++r) {
for (uint8_t c = 0; c < 4; ++c) {
acc = 0;
// J^T times J
for (uint8_t i = 0; i < npts; ++i) {
// First for the residuum in the x axis:
if (r != 1 && c != 1) {
float a =
(r == 0) ? 1.f :
((r == 2) ? (-s1 * measured_pts[2 * i]) :
(-c2 * measured_pts[2 * i + 1]));
float b =
(c == 0) ? 1.f :
((c == 2) ? (-s1 * measured_pts[2 * i]) :
(-c2 * measured_pts[2 * i + 1]));
float w = point_weight_x(i, measured_pts[2 * i + 1]);
acc += a * b * w;
}
// Second for the residuum in the y axis.
// The first row of the points have a low weight, because their position may not be known
// with a sufficient accuracy.
if (r != 0 && c != 0) {
float a =
(r == 1) ? 1.f :
((r == 2) ? ( c1 * measured_pts[2 * i]) :
(-s2 * measured_pts[2 * i + 1]));
float b =
(c == 1) ? 1.f :
((c == 2) ? ( c1 * measured_pts[2 * i]) :
(-s2 * measured_pts[2 * i + 1]));
float w = point_weight_y(i, measured_pts[2 * i + 1]);
acc += a * b * w;
}
}
A[r][c] = acc;
}
// J^T times f(x)
acc = 0.f;
for (uint8_t i = 0; i < npts; ++i) {
{
float j =
(r == 0) ? 1.f :
((r == 1) ? 0.f :
((r == 2) ? (-s1 * measured_pts[2 * i]) :
(-c2 * measured_pts[2 * i + 1])));
float fx = c1 * measured_pts[2 * i] - s2 * measured_pts[2 * i + 1] + cntr[0] - pgm_read_float(true_pts + i * 2);
float w = point_weight_x(i, measured_pts[2 * i + 1]);
acc += j * fx * w;
}
{
float j =
(r == 0) ? 0.f :
((r == 1) ? 1.f :
((r == 2) ? ( c1 * measured_pts[2 * i]) :
(-s2 * measured_pts[2 * i + 1])));
float fy = s1 * measured_pts[2 * i] + c2 * measured_pts[2 * i + 1] + cntr[1] - pgm_read_float(true_pts + i * 2 + 1);
float w = point_weight_y(i, measured_pts[2 * i + 1]);
acc += j * fy * w;
}
}
b[r] = -acc;
}
// Solve for h by a Gauss iteration method.
float h[4] = { 0.f };
for (uint8_t gauss_iter = 0; gauss_iter < 100; ++gauss_iter) {
h[0] = (b[0] - A[0][1] * h[1] - A[0][2] * h[2] - A[0][3] * h[3]) / A[0][0];
h[1] = (b[1] - A[1][0] * h[0] - A[1][2] * h[2] - A[1][3] * h[3]) / A[1][1];
h[2] = (b[2] - A[2][0] * h[0] - A[2][1] * h[1] - A[2][3] * h[3]) / A[2][2];
h[3] = (b[3] - A[3][0] * h[0] - A[3][1] * h[1] - A[3][2] * h[2]) / A[3][3];
}
// and update the current position with h.
// It may be better to use the Levenberg-Marquart method here,
// but because we are very close to the solution alread,
// the simple Gauss-Newton non-linear Least Squares method works well enough.
cntr[0] += h[0];
cntr[1] += h[1];
a1 += h[2];
a2 += h[3];
if (verbosity_level >= 20) {
SERIAL_ECHOPGM("iteration: ");
MYSERIAL.print(iter, 0);
SERIAL_ECHOPGM("correction vector: ");
MYSERIAL.print(h[0], 5);
SERIAL_ECHOPGM(", ");
MYSERIAL.print(h[1], 5);
SERIAL_ECHOPGM(", ");
MYSERIAL.print(h[2], 5);
SERIAL_ECHOPGM(", ");
MYSERIAL.print(h[3], 5);
SERIAL_ECHOLNPGM("");
SERIAL_ECHOPGM("corrected x/y: ");
MYSERIAL.print(cntr[0], 5);
SERIAL_ECHOPGM(", ");
MYSERIAL.print(cntr[0], 5);
SERIAL_ECHOLNPGM("");
SERIAL_ECHOPGM("corrected angles: ");
MYSERIAL.print(180.f * a1 / M_PI, 5);
SERIAL_ECHOPGM(", ");
MYSERIAL.print(180.f * a2 / M_PI, 5);
SERIAL_ECHOLNPGM("");
}
}
vec_x[0] = cos(a1) * MACHINE_AXIS_SCALE_X;
vec_x[1] = sin(a1) * MACHINE_AXIS_SCALE_X;
vec_y[0] = -sin(a2) * MACHINE_AXIS_SCALE_Y;
vec_y[1] = cos(a2) * MACHINE_AXIS_SCALE_Y;
BedSkewOffsetDetectionResultType result = BED_SKEW_OFFSET_DETECTION_PERFECT;
{
float angleDiff = fabs(a2 - a1);
if (angleDiff > BED_SKEW_ANGLE_MILD)
result = (angleDiff > BED_SKEW_ANGLE_EXTREME) ?
BED_SKEW_OFFSET_DETECTION_SKEW_EXTREME :
BED_SKEW_OFFSET_DETECTION_SKEW_MILD;
if (fabs(a1) > BED_SKEW_ANGLE_EXTREME ||
fabs(a2) > BED_SKEW_ANGLE_EXTREME)
result = BED_SKEW_OFFSET_DETECTION_SKEW_EXTREME;
}
if (verbosity_level >= 1) {
SERIAL_ECHOPGM("correction angles: ");
MYSERIAL.print(180.f * a1 / M_PI, 5);
SERIAL_ECHOPGM(", ");
MYSERIAL.print(180.f * a2 / M_PI, 5);
SERIAL_ECHOLNPGM("");
}
if (verbosity_level >= 10) {
// Show the adjusted state, before the fitting.
SERIAL_ECHOPGM("X vector new, inverted: ");
MYSERIAL.print(vec_x[0], 5);
SERIAL_ECHOPGM(", ");
MYSERIAL.print(vec_x[1], 5);
SERIAL_ECHOLNPGM("");
SERIAL_ECHOPGM("Y vector new, inverted: ");
MYSERIAL.print(vec_y[0], 5);
SERIAL_ECHOPGM(", ");
MYSERIAL.print(vec_y[1], 5);
SERIAL_ECHOLNPGM("");
SERIAL_ECHOPGM("center new, inverted: ");
MYSERIAL.print(cntr[0], 5);
SERIAL_ECHOPGM(", ");
MYSERIAL.print(cntr[1], 5);
SERIAL_ECHOLNPGM("");
delay_keep_alive(100);
SERIAL_ECHOLNPGM("Error after correction: ");
}
// Measure the error after correction.
for (uint8_t i = 0; i < npts; ++i) {
float x = vec_x[0] * measured_pts[i * 2] + vec_y[0] * measured_pts[i * 2 + 1] + cntr[0];
float y = vec_x[1] * measured_pts[i * 2] + vec_y[1] * measured_pts[i * 2 + 1] + cntr[1];
float errX = sqr(pgm_read_float(true_pts + i * 2) - x);
float errY = sqr(pgm_read_float(true_pts + i * 2 + 1) - y);
float err = sqrt(errX + errY);
if (i < 3) {
float w = point_weight_y(i, measured_pts[2 * i + 1]);
if (sqrt(errX) > BED_CALIBRATION_POINT_OFFSET_MAX_1ST_ROW_X ||
(w != 0.f && sqrt(errY) > BED_CALIBRATION_POINT_OFFSET_MAX_1ST_ROW_Y))
result = BED_SKEW_OFFSET_DETECTION_FITTING_FAILED;
} else {
if (err > BED_CALIBRATION_POINT_OFFSET_MAX_EUCLIDIAN)
result = BED_SKEW_OFFSET_DETECTION_FITTING_FAILED;
}
if (verbosity_level >= 10) {
SERIAL_ECHOPGM("point #");
MYSERIAL.print(int(i));
SERIAL_ECHOPGM(" measured: (");
MYSERIAL.print(measured_pts[i * 2], 5);
SERIAL_ECHOPGM(", ");
MYSERIAL.print(measured_pts[i * 2 + 1], 5);
SERIAL_ECHOPGM("); corrected: (");
MYSERIAL.print(x, 5);
SERIAL_ECHOPGM(", ");
MYSERIAL.print(y, 5);
SERIAL_ECHOPGM("); target: (");
MYSERIAL.print(pgm_read_float(true_pts + i * 2), 5);
SERIAL_ECHOPGM(", ");
MYSERIAL.print(pgm_read_float(true_pts + i * 2 + 1), 5);
SERIAL_ECHOPGM("), error: ");
MYSERIAL.print(err);
SERIAL_ECHOPGM(", error X: ");
MYSERIAL.print(errX);
SERIAL_ECHOPGM(", error Y: ");
MYSERIAL.print(errY);
SERIAL_ECHOLNPGM("");
}
}
#if 0
if (result == BED_SKEW_OFFSET_DETECTION_PERFECT && fabs(a1) < BED_SKEW_ANGLE_MILD && fabs(a2) < BED_SKEW_ANGLE_MILD) {
if (verbosity_level > 0)
SERIAL_ECHOLNPGM("Very little skew detected. Disabling skew correction.");
// Just disable the skew correction.
vec_x[0] = MACHINE_AXIS_SCALE_X;
vec_x[1] = 0.f;
vec_y[0] = 0.f;
vec_y[1] = MACHINE_AXIS_SCALE_Y;
}
#else
if (result == BED_SKEW_OFFSET_DETECTION_PERFECT) {
if (verbosity_level > 0)
SERIAL_ECHOLNPGM("Very little skew detected. Orthogonalizing the axes.");
// Orthogonalize the axes.
a1 = 0.5f * (a1 + a2);
vec_x[0] = cos(a1) * MACHINE_AXIS_SCALE_X;
vec_x[1] = sin(a1) * MACHINE_AXIS_SCALE_X;
vec_y[0] = -sin(a1) * MACHINE_AXIS_SCALE_Y;
vec_y[1] = cos(a1) * MACHINE_AXIS_SCALE_Y;
// Refresh the offset.
cntr[0] = 0.f;
cntr[1] = 0.f;
float wx = 0.f;
float wy = 0.f;
for (int8_t i = 0; i < npts; ++ i) {
float x = vec_x[0] * measured_pts[i * 2] + vec_y[0] * measured_pts[i * 2 + 1];
float y = vec_x[1] * measured_pts[i * 2] + vec_y[1] * measured_pts[i * 2 + 1];
float w = point_weight_x(i, y);
cntr[0] += w * (pgm_read_float(true_pts + i * 2) - x);
wx += w;
if (verbosity_level >= 20) {
MYSERIAL.print(i);
SERIAL_ECHOLNPGM("");
SERIAL_ECHOLNPGM("Weight_x:");
MYSERIAL.print(w);
SERIAL_ECHOLNPGM("");
SERIAL_ECHOLNPGM("cntr[0]:");
MYSERIAL.print(cntr[0]);
SERIAL_ECHOLNPGM("");
SERIAL_ECHOLNPGM("wx:");
MYSERIAL.print(wx);
}
w = point_weight_y(i, y);
cntr[1] += w * (pgm_read_float(true_pts + i * 2 + 1) - y);
wy += w;
if (verbosity_level >= 20) {
SERIAL_ECHOLNPGM("");
SERIAL_ECHOLNPGM("Weight_y:");
MYSERIAL.print(w);
SERIAL_ECHOLNPGM("");
SERIAL_ECHOLNPGM("cntr[1]:");
MYSERIAL.print(cntr[1]);
SERIAL_ECHOLNPGM("");
SERIAL_ECHOLNPGM("wy:");
MYSERIAL.print(wy);
SERIAL_ECHOLNPGM("");
SERIAL_ECHOLNPGM("");
}
}
cntr[0] /= wx;
cntr[1] /= wy;
if (verbosity_level >= 20) {
SERIAL_ECHOLNPGM("");
SERIAL_ECHOLNPGM("Final cntr values:");
SERIAL_ECHOLNPGM("cntr[0]:");
MYSERIAL.print(cntr[0]);
SERIAL_ECHOLNPGM("");
SERIAL_ECHOLNPGM("cntr[1]:");
MYSERIAL.print(cntr[1]);
SERIAL_ECHOLNPGM("");
}
}
#endif
// Invert the transformation matrix made of vec_x, vec_y and cntr.
{
float d = vec_x[0] * vec_y[1] - vec_x[1] * vec_y[0];
float Ainv[2][2] = {
{ vec_y[1] / d, -vec_y[0] / d },
{ -vec_x[1] / d, vec_x[0] / d }
};
float cntrInv[2] = {
-Ainv[0][0] * cntr[0] - Ainv[0][1] * cntr[1],
-Ainv[1][0] * cntr[0] - Ainv[1][1] * cntr[1]
};
vec_x[0] = Ainv[0][0];
vec_x[1] = Ainv[1][0];
vec_y[0] = Ainv[0][1];
vec_y[1] = Ainv[1][1];
cntr[0] = cntrInv[0];
cntr[1] = cntrInv[1];
}
if (verbosity_level >= 1) {
// Show the adjusted state, before the fitting.
SERIAL_ECHOPGM("X vector, adjusted: ");
MYSERIAL.print(vec_x[0], 5);
SERIAL_ECHOPGM(", ");
MYSERIAL.print(vec_x[1], 5);
SERIAL_ECHOLNPGM("");
SERIAL_ECHOPGM("Y vector, adjusted: ");
MYSERIAL.print(vec_y[0], 5);
SERIAL_ECHOPGM(", ");
MYSERIAL.print(vec_y[1], 5);
SERIAL_ECHOLNPGM("");
SERIAL_ECHOPGM("center, adjusted: ");
MYSERIAL.print(cntr[0], 5);
SERIAL_ECHOPGM(", ");
MYSERIAL.print(cntr[1], 5);
SERIAL_ECHOLNPGM("");
delay_keep_alive(100);
}
if (verbosity_level >= 2) {
SERIAL_ECHOLNPGM("Difference after correction: ");
for (uint8_t i = 0; i < npts; ++i) {
float x = vec_x[0] * pgm_read_float(true_pts + i * 2) + vec_y[0] * pgm_read_float(true_pts + i * 2 + 1) + cntr[0];
float y = vec_x[1] * pgm_read_float(true_pts + i * 2) + vec_y[1] * pgm_read_float(true_pts + i * 2 + 1) + cntr[1];
SERIAL_ECHOPGM("point #");
MYSERIAL.print(int(i));
SERIAL_ECHOPGM("measured: (");
MYSERIAL.print(measured_pts[i * 2], 5);
SERIAL_ECHOPGM(", ");
MYSERIAL.print(measured_pts[i * 2 + 1], 5);
SERIAL_ECHOPGM("); measured-corrected: (");
MYSERIAL.print(x, 5);
SERIAL_ECHOPGM(", ");
MYSERIAL.print(y, 5);
SERIAL_ECHOPGM("); target: (");
MYSERIAL.print(pgm_read_float(true_pts + i * 2), 5);
SERIAL_ECHOPGM(", ");
MYSERIAL.print(pgm_read_float(true_pts + i * 2 + 1), 5);
SERIAL_ECHOPGM("), error: ");
MYSERIAL.print(sqrt(sqr(measured_pts[i * 2] - x) + sqr(measured_pts[i * 2 + 1] - y)));
SERIAL_ECHOLNPGM("");
}
delay_keep_alive(100);
}
return result;
}
void reset_bed_offset_and_skew()
{
eeprom_update_dword((uint32_t*)(EEPROM_BED_CALIBRATION_CENTER+0), 0x0FFFFFFFF);
eeprom_update_dword((uint32_t*)(EEPROM_BED_CALIBRATION_CENTER+4), 0x0FFFFFFFF);
eeprom_update_dword((uint32_t*)(EEPROM_BED_CALIBRATION_VEC_X +0), 0x0FFFFFFFF);
eeprom_update_dword((uint32_t*)(EEPROM_BED_CALIBRATION_VEC_X +4), 0x0FFFFFFFF);
eeprom_update_dword((uint32_t*)(EEPROM_BED_CALIBRATION_VEC_Y +0), 0x0FFFFFFFF);
eeprom_update_dword((uint32_t*)(EEPROM_BED_CALIBRATION_VEC_Y +4), 0x0FFFFFFFF);
// Reset the 8 16bit offsets.
for (int8_t i = 0; i < 4; ++ i)
eeprom_update_dword((uint32_t*)(EEPROM_BED_CALIBRATION_Z_JITTER+i*4), 0x0FFFFFFFF);
}
bool is_bed_z_jitter_data_valid()
// offsets of the Z heiths of the calibration points from the first point are saved as 16bit signed int, scaled to tenths of microns
{
for (int8_t i = 0; i < 8; ++ i)
if (eeprom_read_word((uint16_t*)(EEPROM_BED_CALIBRATION_Z_JITTER+i*2)) == 0x0FFFF)
return false;
return true;
}
static void world2machine_update(const float vec_x[2], const float vec_y[2], const float cntr[2])
{
world2machine_rotation_and_skew[0][0] = vec_x[0];
world2machine_rotation_and_skew[1][0] = vec_x[1];
world2machine_rotation_and_skew[0][1] = vec_y[0];
world2machine_rotation_and_skew[1][1] = vec_y[1];
world2machine_shift[0] = cntr[0];
world2machine_shift[1] = cntr[1];
// No correction.
world2machine_correction_mode = WORLD2MACHINE_CORRECTION_NONE;
if (world2machine_shift[0] != 0.f || world2machine_shift[1] != 0.f)
// Shift correction.
world2machine_correction_mode |= WORLD2MACHINE_CORRECTION_SHIFT;
if (world2machine_rotation_and_skew[0][0] != 1.f || world2machine_rotation_and_skew[0][1] != 0.f ||
world2machine_rotation_and_skew[1][0] != 0.f || world2machine_rotation_and_skew[1][1] != 1.f) {
// Rotation & skew correction.
world2machine_correction_mode |= WORLD2MACHINE_CORRECTION_SKEW;
// Invert the world2machine matrix.
float d = world2machine_rotation_and_skew[0][0] * world2machine_rotation_and_skew[1][1] - world2machine_rotation_and_skew[1][0] * world2machine_rotation_and_skew[0][1];
world2machine_rotation_and_skew_inv[0][0] = world2machine_rotation_and_skew[1][1] / d;
world2machine_rotation_and_skew_inv[0][1] = -world2machine_rotation_and_skew[0][1] / d;
world2machine_rotation_and_skew_inv[1][0] = -world2machine_rotation_and_skew[1][0] / d;
world2machine_rotation_and_skew_inv[1][1] = world2machine_rotation_and_skew[0][0] / d;
} else {
world2machine_rotation_and_skew_inv[0][0] = 1.f;
world2machine_rotation_and_skew_inv[0][1] = 0.f;
world2machine_rotation_and_skew_inv[1][0] = 0.f;
world2machine_rotation_and_skew_inv[1][1] = 1.f;
}
}
void world2machine_reset()
{
const float vx[] = { 1.f, 0.f };
const float vy[] = { 0.f, 1.f };
const float cntr[] = { 0.f, 0.f };
world2machine_update(vx, vy, cntr);
}
void world2machine_revert_to_uncorrected()
{
if (world2machine_correction_mode != WORLD2MACHINE_CORRECTION_NONE) {
// Reset the machine correction matrix.
const float vx[] = { 1.f, 0.f };
const float vy[] = { 0.f, 1.f };
const float cntr[] = { 0.f, 0.f };
world2machine_update(vx, vy, cntr);
// Wait for the motors to stop and update the current position with the absolute values.
st_synchronize();
current_position[X_AXIS] = st_get_position_mm(X_AXIS);
current_position[Y_AXIS] = st_get_position_mm(Y_AXIS);
}
}
static inline bool vec_undef(const float v[2])
{
const uint32_t *vx = (const uint32_t*)v;
return vx[0] == 0x0FFFFFFFF || vx[1] == 0x0FFFFFFFF;
}
void world2machine_initialize()
{
// SERIAL_ECHOLNPGM("world2machine_initialize()");
float cntr[2] = {
eeprom_read_float((float*)(EEPROM_BED_CALIBRATION_CENTER+0)),
eeprom_read_float((float*)(EEPROM_BED_CALIBRATION_CENTER+4))
};
float vec_x[2] = {
eeprom_read_float((float*)(EEPROM_BED_CALIBRATION_VEC_X +0)),
eeprom_read_float((float*)(EEPROM_BED_CALIBRATION_VEC_X +4))
};
float vec_y[2] = {
eeprom_read_float((float*)(EEPROM_BED_CALIBRATION_VEC_Y +0)),
eeprom_read_float((float*)(EEPROM_BED_CALIBRATION_VEC_Y +4))
};
bool reset = false;
if (vec_undef(cntr) || vec_undef(vec_x) || vec_undef(vec_y)) {
// SERIAL_ECHOLNPGM("Undefined bed correction matrix.");
reset = true;
}
else {
// Length of the vec_x shall be close to unity.
float l = sqrt(vec_x[0] * vec_x[0] + vec_x[1] * vec_x[1]);
if (l < 0.9 || l > 1.1) {
SERIAL_ECHOLNPGM("X vector length:");
MYSERIAL.println(l);
SERIAL_ECHOLNPGM("Invalid bed correction matrix. Length of the X vector out of range.");
reset = true;
}
// Length of the vec_y shall be close to unity.
l = sqrt(vec_y[0] * vec_y[0] + vec_y[1] * vec_y[1]);
if (l < 0.9 || l > 1.1) {
SERIAL_ECHOLNPGM("Y vector length:");
MYSERIAL.println(l);
SERIAL_ECHOLNPGM("Invalid bed correction matrix. Length of the Y vector out of range.");
reset = true;
}
// Correction of the zero point shall be reasonably small.
l = sqrt(cntr[0] * cntr[0] + cntr[1] * cntr[1]);
if (l > 15.f) {
SERIAL_ECHOLNPGM("Zero point correction:");
MYSERIAL.println(l);
SERIAL_ECHOLNPGM("Invalid bed correction matrix. Shift out of range.");
reset = true;
}
// vec_x and vec_y shall be nearly perpendicular.
l = vec_x[0] * vec_y[0] + vec_x[1] * vec_y[1];
if (fabs(l) > 0.1f) {
SERIAL_ECHOLNPGM("Invalid bed correction matrix. X/Y axes are far from being perpendicular.");
reset = true;
}
}
if (reset) {
SERIAL_ECHOLNPGM("Invalid bed correction matrix. Resetting to identity.");
reset_bed_offset_and_skew();
world2machine_reset();
} else {
world2machine_update(vec_x, vec_y, cntr);
/*
SERIAL_ECHOPGM("world2machine_initialize() loaded: ");
MYSERIAL.print(world2machine_rotation_and_skew[0][0], 5);
SERIAL_ECHOPGM(", ");
MYSERIAL.print(world2machine_rotation_and_skew[0][1], 5);
SERIAL_ECHOPGM(", ");
MYSERIAL.print(world2machine_rotation_and_skew[1][0], 5);
SERIAL_ECHOPGM(", ");
MYSERIAL.print(world2machine_rotation_and_skew[1][1], 5);
SERIAL_ECHOPGM(", offset ");
MYSERIAL.print(world2machine_shift[0], 5);
SERIAL_ECHOPGM(", ");
MYSERIAL.print(world2machine_shift[1], 5);
SERIAL_ECHOLNPGM("");
*/
}
}
// When switching from absolute to corrected coordinates,
// this will get the absolute coordinates from the servos,
// applies the inverse world2machine transformation
// and stores the result into current_position[x,y].
void world2machine_update_current()
{
float x = current_position[X_AXIS] - world2machine_shift[0];
float y = current_position[Y_AXIS] - world2machine_shift[1];
current_position[X_AXIS] = world2machine_rotation_and_skew_inv[0][0] * x + world2machine_rotation_and_skew_inv[0][1] * y;
current_position[Y_AXIS] = world2machine_rotation_and_skew_inv[1][0] * x + world2machine_rotation_and_skew_inv[1][1] * y;
}
static inline void go_xyz(float x, float y, float z, float fr)
{
plan_buffer_line(x, y, z, current_position[E_AXIS], fr, active_extruder);
st_synchronize();
}
static inline void go_xy(float x, float y, float fr)
{
plan_buffer_line(x, y, current_position[Z_AXIS], current_position[E_AXIS], fr, active_extruder);
st_synchronize();
}
static inline void go_to_current(float fr)
{
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], fr, active_extruder);
st_synchronize();
}
static inline void update_current_position_xyz()
{
current_position[X_AXIS] = st_get_position_mm(X_AXIS);
current_position[Y_AXIS] = st_get_position_mm(Y_AXIS);
current_position[Z_AXIS] = st_get_position_mm(Z_AXIS);
plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
}
static inline void update_current_position_z()
{
current_position[Z_AXIS] = st_get_position_mm(Z_AXIS);
plan_set_z_position(current_position[Z_AXIS]);
}
// At the current position, find the Z stop.
inline bool find_bed_induction_sensor_point_z(float minimum_z, uint8_t n_iter)
{
// SERIAL_ECHOLNPGM("find_bed_induction_sensor_point_z 1");
bool endstops_enabled = enable_endstops(true);
bool endstop_z_enabled = enable_z_endstop(false);
float z = 0.f;
endstop_z_hit_on_purpose();
// move down until you find the bed
current_position[Z_AXIS] = minimum_z;
go_to_current(homing_feedrate[Z_AXIS]/60);
// we have to let the planner know where we are right now as it is not where we said to go.
update_current_position_z();
if (! endstop_z_hit_on_purpose())
goto error;
for (uint8_t i = 0; i < n_iter; ++ i) {
// Move up the retract distance.
current_position[Z_AXIS] += .5f;
go_to_current(homing_feedrate[Z_AXIS]/60);
// Move back down slowly to find bed.
current_position[Z_AXIS] = minimum_z;
go_to_current(homing_feedrate[Z_AXIS]/(4*60));
// we have to let the planner know where we are right now as it is not where we said to go.
update_current_position_z();
if (! endstop_z_hit_on_purpose())
goto error;
// SERIAL_ECHOPGM("Bed find_bed_induction_sensor_point_z low, height: ");
// MYSERIAL.print(current_position[Z_AXIS], 5);
// SERIAL_ECHOLNPGM("");
z += current_position[Z_AXIS];
}
current_position[Z_AXIS] = z;
if (n_iter > 1)
current_position[Z_AXIS] /= float(n_iter);
enable_endstops(endstops_enabled);
enable_z_endstop(endstop_z_enabled);
// SERIAL_ECHOLNPGM("find_bed_induction_sensor_point_z 3");
return true;
error:
// SERIAL_ECHOLNPGM("find_bed_induction_sensor_point_z 4");
enable_endstops(endstops_enabled);
enable_z_endstop(endstop_z_enabled);
return false;
}
// Search around the current_position[X,Y],
// look for the induction sensor response.
// Adjust the current_position[X,Y,Z] to the center of the target dot and its response Z coordinate.
#define FIND_BED_INDUCTION_SENSOR_POINT_X_RADIUS (8.f)
#define FIND_BED_INDUCTION_SENSOR_POINT_Y_RADIUS (6.f)
#define FIND_BED_INDUCTION_SENSOR_POINT_XY_STEP (1.f)
#define FIND_BED_INDUCTION_SENSOR_POINT_Z_STEP (0.2f)
inline bool find_bed_induction_sensor_point_xy()
{
float feedrate = homing_feedrate[X_AXIS] / 60.f;
bool found = false;
{
float x0 = current_position[X_AXIS] - FIND_BED_INDUCTION_SENSOR_POINT_X_RADIUS;
float x1 = current_position[X_AXIS] + FIND_BED_INDUCTION_SENSOR_POINT_X_RADIUS;
float y0 = current_position[Y_AXIS] - FIND_BED_INDUCTION_SENSOR_POINT_Y_RADIUS;
float y1 = current_position[Y_AXIS] + FIND_BED_INDUCTION_SENSOR_POINT_Y_RADIUS;
uint8_t nsteps_y;
uint8_t i;
if (x0 < X_MIN_POS)
x0 = X_MIN_POS;
if (x1 > X_MAX_POS)
x1 = X_MAX_POS;
if (y0 < Y_MIN_POS_FOR_BED_CALIBRATION)
y0 = Y_MIN_POS_FOR_BED_CALIBRATION;
if (y1 > Y_MAX_POS)
y1 = Y_MAX_POS;
nsteps_y = int(ceil((y1 - y0) / FIND_BED_INDUCTION_SENSOR_POINT_XY_STEP));
enable_endstops(false);
bool dir_positive = true;
// go_xyz(current_position[X_AXIS], current_position[Y_AXIS], MESH_HOME_Z_SEARCH, homing_feedrate[Z_AXIS]/60);
go_xyz(x0, y0, current_position[Z_AXIS], feedrate);
// Continously lower the Z axis.
endstops_hit_on_purpose();
enable_z_endstop(true);
while (current_position[Z_AXIS] > -10.f) {
// Do nsteps_y zig-zag movements.
current_position[Y_AXIS] = y0;
for (i = 0; i < nsteps_y; current_position[Y_AXIS] += (y1 - y0) / float(nsteps_y - 1), ++ i) {
// Run with a slightly decreasing Z axis, zig-zag movement. Stop at the Z end-stop.
current_position[Z_AXIS] -= FIND_BED_INDUCTION_SENSOR_POINT_Z_STEP / float(nsteps_y);
go_xyz(dir_positive ? x1 : x0, current_position[Y_AXIS], current_position[Z_AXIS], feedrate);
dir_positive = ! dir_positive;
if (endstop_z_hit_on_purpose())
goto endloop;
}
for (i = 0; i < nsteps_y; current_position[Y_AXIS] -= (y1 - y0) / float(nsteps_y - 1), ++ i) {
// Run with a slightly decreasing Z axis, zig-zag movement. Stop at the Z end-stop.
current_position[Z_AXIS] -= FIND_BED_INDUCTION_SENSOR_POINT_Z_STEP / float(nsteps_y);
go_xyz(dir_positive ? x1 : x0, current_position[Y_AXIS], current_position[Z_AXIS], feedrate);
dir_positive = ! dir_positive;
if (endstop_z_hit_on_purpose())
goto endloop;
}
}
endloop:
// SERIAL_ECHOLN("First hit");
// we have to let the planner know where we are right now as it is not where we said to go.
update_current_position_xyz();
// Search in this plane for the first hit. Zig-zag first in X, then in Y axis.
for (int8_t iter = 0; iter < 3; ++ iter) {
if (iter > 0) {
// Slightly lower the Z axis to get a reliable trigger.
current_position[Z_AXIS] -= 0.02f;
go_xyz(current_position[X_AXIS], current_position[Y_AXIS], MESH_HOME_Z_SEARCH, homing_feedrate[Z_AXIS]/60);
}
// Do nsteps_y zig-zag movements.
float a, b;
enable_endstops(false);
enable_z_endstop(false);
current_position[Y_AXIS] = y0;
go_xy(x0, current_position[Y_AXIS], feedrate);
enable_z_endstop(true);
found = false;
for (i = 0, dir_positive = true; i < nsteps_y; current_position[Y_AXIS] += (y1 - y0) / float(nsteps_y - 1), ++ i, dir_positive = ! dir_positive) {
go_xy(dir_positive ? x1 : x0, current_position[Y_AXIS], feedrate);
if (endstop_z_hit_on_purpose()) {
found = true;
break;
}
}
update_current_position_xyz();
if (! found) {
// SERIAL_ECHOLN("Search in Y - not found");
continue;
}
// SERIAL_ECHOLN("Search in Y - found");
a = current_position[Y_AXIS];
enable_z_endstop(false);
current_position[Y_AXIS] = y1;
go_xy(x0, current_position[Y_AXIS], feedrate);
enable_z_endstop(true);
found = false;
for (i = 0, dir_positive = true; i < nsteps_y; current_position[Y_AXIS] -= (y1 - y0) / float(nsteps_y - 1), ++ i, dir_positive = ! dir_positive) {
go_xy(dir_positive ? x1 : x0, current_position[Y_AXIS], feedrate);
if (endstop_z_hit_on_purpose()) {
found = true;
break;
}
}
update_current_position_xyz();
if (! found) {
// SERIAL_ECHOLN("Search in Y2 - not found");
continue;
}
// SERIAL_ECHOLN("Search in Y2 - found");
b = current_position[Y_AXIS];
current_position[Y_AXIS] = 0.5f * (a + b);
// Search in the X direction along a cross.
found = false;
enable_z_endstop(false);
go_xy(x0, current_position[Y_AXIS], feedrate);
enable_z_endstop(true);
go_xy(x1, current_position[Y_AXIS], feedrate);
update_current_position_xyz();
if (! endstop_z_hit_on_purpose()) {
// SERIAL_ECHOLN("Search X span 0 - not found");
continue;
}
// SERIAL_ECHOLN("Search X span 0 - found");
a = current_position[X_AXIS];
enable_z_endstop(false);
go_xy(x1, current_position[Y_AXIS], feedrate);
enable_z_endstop(true);
go_xy(x0, current_position[Y_AXIS], feedrate);
update_current_position_xyz();
if (! endstop_z_hit_on_purpose()) {
// SERIAL_ECHOLN("Search X span 1 - not found");
continue;
}
// SERIAL_ECHOLN("Search X span 1 - found");
b = current_position[X_AXIS];
// Go to the center.
enable_z_endstop(false);
current_position[X_AXIS] = 0.5f * (a + b);
go_xy(current_position[X_AXIS], current_position[Y_AXIS], feedrate);
found = true;
#if 1
// Search in the Y direction along a cross.
found = false;
enable_z_endstop(false);
go_xy(current_position[X_AXIS], y0, feedrate);
enable_z_endstop(true);
go_xy(current_position[X_AXIS], y1, feedrate);
update_current_position_xyz();
if (! endstop_z_hit_on_purpose()) {
// SERIAL_ECHOLN("Search Y2 span 0 - not found");
continue;
}
// SERIAL_ECHOLN("Search Y2 span 0 - found");
a = current_position[Y_AXIS];
enable_z_endstop(false);
go_xy(current_position[X_AXIS], y1, feedrate);
enable_z_endstop(true);
go_xy(current_position[X_AXIS], y0, feedrate);
update_current_position_xyz();
if (! endstop_z_hit_on_purpose()) {
// SERIAL_ECHOLN("Search Y2 span 1 - not found");
continue;
}
// SERIAL_ECHOLN("Search Y2 span 1 - found");
b = current_position[Y_AXIS];
// Go to the center.
enable_z_endstop(false);
current_position[Y_AXIS] = 0.5f * (a + b);
go_xy(current_position[X_AXIS], current_position[Y_AXIS], feedrate);
found = true;
#endif
break;
}
}
enable_z_endstop(false);
return found;
}
// Search around the current_position[X,Y,Z].
// It is expected, that the induction sensor is switched on at the current position.
// Look around this center point by painting a star around the point.
inline bool improve_bed_induction_sensor_point()
{
static const float search_radius = 8.f;
bool endstops_enabled = enable_endstops(false);
bool endstop_z_enabled = enable_z_endstop(false);
bool found = false;
float feedrate = homing_feedrate[X_AXIS] / 60.f;
float center_old_x = current_position[X_AXIS];
float center_old_y = current_position[Y_AXIS];
float center_x = 0.f;
float center_y = 0.f;
for (uint8_t iter = 0; iter < 4; ++ iter) {
switch (iter) {
case 0:
destination[X_AXIS] = center_old_x - search_radius * 0.707;
destination[Y_AXIS] = center_old_y - search_radius * 0.707;
break;
case 1:
destination[X_AXIS] = center_old_x + search_radius * 0.707;
destination[Y_AXIS] = center_old_y + search_radius * 0.707;
break;
case 2:
destination[X_AXIS] = center_old_x + search_radius * 0.707;
destination[Y_AXIS] = center_old_y - search_radius * 0.707;
break;
case 3:
default:
destination[X_AXIS] = center_old_x - search_radius * 0.707;
destination[Y_AXIS] = center_old_y + search_radius * 0.707;
break;
}
// Trim the vector from center_old_[x,y] to destination[x,y] by the bed dimensions.
float vx = destination[X_AXIS] - center_old_x;
float vy = destination[Y_AXIS] - center_old_y;
float l = sqrt(vx*vx+vy*vy);
float t;
if (destination[X_AXIS] < X_MIN_POS) {
// Exiting the bed at xmin.
t = (center_x - X_MIN_POS) / l;
destination[X_AXIS] = X_MIN_POS;
destination[Y_AXIS] = center_old_y + t * vy;
} else if (destination[X_AXIS] > X_MAX_POS) {
// Exiting the bed at xmax.
t = (X_MAX_POS - center_x) / l;
destination[X_AXIS] = X_MAX_POS;
destination[Y_AXIS] = center_old_y + t * vy;
}
if (destination[Y_AXIS] < Y_MIN_POS_FOR_BED_CALIBRATION) {
// Exiting the bed at ymin.
t = (center_y - Y_MIN_POS_FOR_BED_CALIBRATION) / l;
destination[X_AXIS] = center_old_x + t * vx;
destination[Y_AXIS] = Y_MIN_POS_FOR_BED_CALIBRATION;
} else if (destination[Y_AXIS] > Y_MAX_POS) {
// Exiting the bed at xmax.
t = (Y_MAX_POS - center_y) / l;
destination[X_AXIS] = center_old_x + t * vx;
destination[Y_AXIS] = Y_MAX_POS;
}
// Move away from the measurement point.
enable_endstops(false);
go_xy(destination[X_AXIS], destination[Y_AXIS], feedrate);
// Move towards the measurement point, until the induction sensor triggers.
enable_endstops(true);
go_xy(center_old_x, center_old_y, feedrate);
update_current_position_xyz();
// if (! endstop_z_hit_on_purpose()) return false;
center_x += current_position[X_AXIS];
center_y += current_position[Y_AXIS];
}
// Calculate the new center, move to the new center.
center_x /= 4.f;
center_y /= 4.f;
current_position[X_AXIS] = center_x;
current_position[Y_AXIS] = center_y;
enable_endstops(false);
go_xy(current_position[X_AXIS], current_position[Y_AXIS], feedrate);
enable_endstops(endstops_enabled);
enable_z_endstop(endstop_z_enabled);
return found;
}
static inline void debug_output_point(const char *type, const float &x, const float &y, const float &z)
{
SERIAL_ECHOPGM("Measured ");
SERIAL_ECHORPGM(type);
SERIAL_ECHOPGM(" ");
MYSERIAL.print(x, 5);
SERIAL_ECHOPGM(", ");
MYSERIAL.print(y, 5);
SERIAL_ECHOPGM(", ");
MYSERIAL.print(z, 5);
SERIAL_ECHOLNPGM("");
}
// Search around the current_position[X,Y,Z].
// It is expected, that the induction sensor is switched on at the current position.
// Look around this center point by painting a star around the point.
#define IMPROVE_BED_INDUCTION_SENSOR_SEARCH_RADIUS (8.f)
inline bool improve_bed_induction_sensor_point2(bool lift_z_on_min_y, int8_t verbosity_level)
{
float center_old_x = current_position[X_AXIS];
float center_old_y = current_position[Y_AXIS];
float a, b;
bool point_small = false;
enable_endstops(false);
{
float x0 = center_old_x - IMPROVE_BED_INDUCTION_SENSOR_SEARCH_RADIUS;
float x1 = center_old_x + IMPROVE_BED_INDUCTION_SENSOR_SEARCH_RADIUS;
if (x0 < X_MIN_POS)
x0 = X_MIN_POS;
if (x1 > X_MAX_POS)
x1 = X_MAX_POS;
// Search in the X direction along a cross.
enable_z_endstop(false);
go_xy(x0, current_position[Y_AXIS], homing_feedrate[X_AXIS] / 60.f);
enable_z_endstop(true);
go_xy(x1, current_position[Y_AXIS], homing_feedrate[X_AXIS] / 60.f);
update_current_position_xyz();
if (! endstop_z_hit_on_purpose()) {
current_position[X_AXIS] = center_old_x;
goto canceled;
}
a = current_position[X_AXIS];
enable_z_endstop(false);
go_xy(x1, current_position[Y_AXIS], homing_feedrate[X_AXIS] / 60.f);
enable_z_endstop(true);
go_xy(x0, current_position[Y_AXIS], homing_feedrate[X_AXIS] / 60.f);
update_current_position_xyz();
if (! endstop_z_hit_on_purpose()) {
current_position[X_AXIS] = center_old_x;
goto canceled;
}
b = current_position[X_AXIS];
if (b - a < MIN_BED_SENSOR_POINT_RESPONSE_DMR) {
if (verbosity_level >= 5) {
SERIAL_ECHOPGM("Point width too small: ");
SERIAL_ECHO(b - a);
SERIAL_ECHOLNPGM("");
}
// We force the calibration routine to move the Z axis slightly down to make the response more pronounced.
if (b - a < 0.5f * MIN_BED_SENSOR_POINT_RESPONSE_DMR) {
// Don't use the new X value.
current_position[X_AXIS] = center_old_x;
goto canceled;
} else {
// Use the new value, but force the Z axis to go a bit lower.
point_small = true;
}
}
if (verbosity_level >= 5) {
debug_output_point(PSTR("left" ), a, current_position[Y_AXIS], current_position[Z_AXIS]);
debug_output_point(PSTR("right"), b, current_position[Y_AXIS], current_position[Z_AXIS]);
}
// Go to the center.
enable_z_endstop(false);
current_position[X_AXIS] = 0.5f * (a + b);
go_xy(current_position[X_AXIS], current_position[Y_AXIS], homing_feedrate[X_AXIS] / 60.f);
}
{
float y0 = center_old_y - IMPROVE_BED_INDUCTION_SENSOR_SEARCH_RADIUS;
float y1 = center_old_y + IMPROVE_BED_INDUCTION_SENSOR_SEARCH_RADIUS;
if (y0 < Y_MIN_POS_FOR_BED_CALIBRATION)
y0 = Y_MIN_POS_FOR_BED_CALIBRATION;
if (y1 > Y_MAX_POS)
y1 = Y_MAX_POS;
// Search in the Y direction along a cross.
enable_z_endstop(false);
go_xy(current_position[X_AXIS], y0, homing_feedrate[X_AXIS] / 60.f);
if (lift_z_on_min_y) {
// The first row of points are very close to the end stop.
// Lift the sensor to disengage the trigger. This is necessary because of the sensor hysteresis.
go_xyz(current_position[X_AXIS], y0, current_position[Z_AXIS]+1.5f, homing_feedrate[Z_AXIS] / 60.f);
// and go back.
go_xyz(current_position[X_AXIS], y0, current_position[Z_AXIS], homing_feedrate[Z_AXIS] / 60.f);
}
if (lift_z_on_min_y && (READ(Z_MIN_PIN) ^ Z_MIN_ENDSTOP_INVERTING) == 1) {
// Already triggering before we started the move.
// Shift the trigger point slightly outwards.
// a = current_position[Y_AXIS] - 1.5f;
a = current_position[Y_AXIS];
} else {
enable_z_endstop(true);
go_xy(current_position[X_AXIS], y1, homing_feedrate[X_AXIS] / 60.f);
update_current_position_xyz();
if (! endstop_z_hit_on_purpose()) {
current_position[Y_AXIS] = center_old_y;
goto canceled;
}
a = current_position[Y_AXIS];
}
enable_z_endstop(false);
go_xy(current_position[X_AXIS], y1, homing_feedrate[X_AXIS] / 60.f);
enable_z_endstop(true);
go_xy(current_position[X_AXIS], y0, homing_feedrate[X_AXIS] / 60.f);
update_current_position_xyz();
if (! endstop_z_hit_on_purpose()) {
current_position[Y_AXIS] = center_old_y;
goto canceled;
}
b = current_position[Y_AXIS];
if (b - a < MIN_BED_SENSOR_POINT_RESPONSE_DMR) {
// We force the calibration routine to move the Z axis slightly down to make the response more pronounced.
if (verbosity_level >= 5) {
SERIAL_ECHOPGM("Point height too small: ");
SERIAL_ECHO(b - a);
SERIAL_ECHOLNPGM("");
}
if (b - a < 0.5f * MIN_BED_SENSOR_POINT_RESPONSE_DMR) {
// Don't use the new Y value.
current_position[Y_AXIS] = center_old_y;
goto canceled;
} else {
// Use the new value, but force the Z axis to go a bit lower.
point_small = true;
}
}
if (verbosity_level >= 5) {
debug_output_point(PSTR("top" ), current_position[X_AXIS], a, current_position[Z_AXIS]);
debug_output_point(PSTR("bottom"), current_position[X_AXIS], b, current_position[Z_AXIS]);
}
// Go to the center.
enable_z_endstop(false);
current_position[Y_AXIS] = 0.5f * (a + b);
go_xy(current_position[X_AXIS], current_position[Y_AXIS], homing_feedrate[X_AXIS] / 60.f);
}
// If point is small but not too small, then force the Z axis to be lowered a bit,
// but use the new value. This is important when the initial position was off in one axis,
// for example if the initial calibration was shifted in the Y axis systematically.
// Then this first step will center.
return ! point_small;
canceled:
// Go back to the center.
enable_z_endstop(false);
go_xy(current_position[X_AXIS], current_position[Y_AXIS], homing_feedrate[X_AXIS] / 60.f);
return false;
}
// Searching the front points, where one cannot move the sensor head in front of the sensor point.
// Searching in a zig-zag movement in a plane for the maximum width of the response.
// This function may set the current_position[Y_AXIS] below Y_MIN_POS, if the function succeeded.
// If this function failed, the Y coordinate will never be outside the working space.
#define IMPROVE_BED_INDUCTION_SENSOR_POINT3_SEARCH_RADIUS (4.f)
#define IMPROVE_BED_INDUCTION_SENSOR_POINT3_SEARCH_STEP_FINE_Y (0.1f)
inline bool improve_bed_induction_sensor_point3(int verbosity_level)
{
float center_old_x = current_position[X_AXIS];
float center_old_y = current_position[Y_AXIS];
float a, b;
bool result = true;
// Was the sensor point detected too far in the minus Y axis?
// If yes, the center of the induction point cannot be reached by the machine.
{
float x0 = center_old_x - IMPROVE_BED_INDUCTION_SENSOR_POINT3_SEARCH_RADIUS;
float x1 = center_old_x + IMPROVE_BED_INDUCTION_SENSOR_POINT3_SEARCH_RADIUS;
float y0 = center_old_y - IMPROVE_BED_INDUCTION_SENSOR_POINT3_SEARCH_RADIUS;
float y1 = center_old_y + IMPROVE_BED_INDUCTION_SENSOR_POINT3_SEARCH_RADIUS;
float y = y0;
if (x0 < X_MIN_POS)
x0 = X_MIN_POS;
if (x1 > X_MAX_POS)
x1 = X_MAX_POS;
if (y0 < Y_MIN_POS_FOR_BED_CALIBRATION)
y0 = Y_MIN_POS_FOR_BED_CALIBRATION;
if (y1 > Y_MAX_POS)
y1 = Y_MAX_POS;
if (verbosity_level >= 20) {
SERIAL_ECHOPGM("Initial position: ");
SERIAL_ECHO(center_old_x);
SERIAL_ECHOPGM(", ");
SERIAL_ECHO(center_old_y);
SERIAL_ECHOLNPGM("");
}
// Search in the positive Y direction, until a maximum diameter is found.
// (the next diameter is smaller than the current one.)
float dmax = 0.f;
float xmax1 = 0.f;
float xmax2 = 0.f;
for (y = y0; y < y1; y += IMPROVE_BED_INDUCTION_SENSOR_POINT3_SEARCH_STEP_FINE_Y) {
enable_z_endstop(false);
go_xy(x0, y, homing_feedrate[X_AXIS] / 60.f);
enable_z_endstop(true);
go_xy(x1, y, homing_feedrate[X_AXIS] / 60.f);
update_current_position_xyz();
if (! endstop_z_hit_on_purpose()) {
continue;
// SERIAL_PROTOCOLPGM("Failed 1\n");
// current_position[X_AXIS] = center_old_x;
// goto canceled;
}
a = current_position[X_AXIS];
enable_z_endstop(false);
go_xy(x1, y, homing_feedrate[X_AXIS] / 60.f);
enable_z_endstop(true);
go_xy(x0, y, homing_feedrate[X_AXIS] / 60.f);
update_current_position_xyz();
if (! endstop_z_hit_on_purpose()) {
continue;
// SERIAL_PROTOCOLPGM("Failed 2\n");
// current_position[X_AXIS] = center_old_x;
// goto canceled;
}
b = current_position[X_AXIS];
if (verbosity_level >= 5) {
debug_output_point(PSTR("left" ), a, current_position[Y_AXIS], current_position[Z_AXIS]);
debug_output_point(PSTR("right"), b, current_position[Y_AXIS], current_position[Z_AXIS]);
}
float d = b - a;
if (d > dmax) {
xmax1 = 0.5f * (a + b);
dmax = d;
} else if (dmax > 0.) {
y0 = y - IMPROVE_BED_INDUCTION_SENSOR_POINT3_SEARCH_STEP_FINE_Y;
break;
}
}
if (dmax == 0.) {
if (verbosity_level > 0)
SERIAL_PROTOCOLPGM("failed - not found\n");
current_position[X_AXIS] = center_old_x;
current_position[Y_AXIS] = center_old_y;
goto canceled;
}
{
// Find the positive Y hit. This gives the extreme Y value for the search of the maximum diameter in the -Y direction.
enable_z_endstop(false);
go_xy(xmax1, y0 + IMPROVE_BED_INDUCTION_SENSOR_SEARCH_RADIUS, homing_feedrate[X_AXIS] / 60.f);
enable_z_endstop(true);
go_xy(xmax1, max(y0 - IMPROVE_BED_INDUCTION_SENSOR_SEARCH_RADIUS, Y_MIN_POS_FOR_BED_CALIBRATION), homing_feedrate[X_AXIS] / 60.f);
update_current_position_xyz();
if (! endstop_z_hit_on_purpose()) {
current_position[Y_AXIS] = center_old_y;
goto canceled;
}
if (verbosity_level >= 5)
debug_output_point(PSTR("top" ), current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS]);
y1 = current_position[Y_AXIS];
}
if (y1 <= y0) {
// Either the induction sensor is too high, or the induction sensor target is out of reach.
current_position[Y_AXIS] = center_old_y;
goto canceled;
}
// Search in the negative Y direction, until a maximum diameter is found.
dmax = 0.f;
// if (y0 + 1.f < y1)
// y1 = y0 + 1.f;
for (y = y1; y >= y0; y -= IMPROVE_BED_INDUCTION_SENSOR_POINT3_SEARCH_STEP_FINE_Y) {
enable_z_endstop(false);
go_xy(x0, y, homing_feedrate[X_AXIS] / 60.f);
enable_z_endstop(true);
go_xy(x1, y, homing_feedrate[X_AXIS] / 60.f);
update_current_position_xyz();
if (! endstop_z_hit_on_purpose()) {
continue;
/*
current_position[X_AXIS] = center_old_x;
SERIAL_PROTOCOLPGM("Failed 3\n");
goto canceled;
*/
}
a = current_position[X_AXIS];
enable_z_endstop(false);
go_xy(x1, y, homing_feedrate[X_AXIS] / 60.f);
enable_z_endstop(true);
go_xy(x0, y, homing_feedrate[X_AXIS] / 60.f);
update_current_position_xyz();
if (! endstop_z_hit_on_purpose()) {
continue;
/*
current_position[X_AXIS] = center_old_x;
SERIAL_PROTOCOLPGM("Failed 4\n");
goto canceled;
*/
}
b = current_position[X_AXIS];
if (verbosity_level >= 5) {
debug_output_point(PSTR("left" ), a, current_position[Y_AXIS], current_position[Z_AXIS]);
debug_output_point(PSTR("right"), b, current_position[Y_AXIS], current_position[Z_AXIS]);
}
float d = b - a;
if (d > dmax) {
xmax2 = 0.5f * (a + b);
dmax = d;
} else if (dmax > 0.) {
y1 = y + IMPROVE_BED_INDUCTION_SENSOR_POINT3_SEARCH_STEP_FINE_Y;
break;
}
}
float xmax, ymax;
if (dmax == 0.f) {
// Only the hit in the positive direction found.
xmax = xmax1;
ymax = y0;
} else {
// Both positive and negative directions found.
xmax = xmax2;
ymax = 0.5f * (y0 + y1);
for (; y >= y0; y -= IMPROVE_BED_INDUCTION_SENSOR_POINT3_SEARCH_STEP_FINE_Y) {
enable_z_endstop(false);
go_xy(x0, y, homing_feedrate[X_AXIS] / 60.f);
enable_z_endstop(true);
go_xy(x1, y, homing_feedrate[X_AXIS] / 60.f);
update_current_position_xyz();
if (! endstop_z_hit_on_purpose()) {
continue;
/*
current_position[X_AXIS] = center_old_x;
SERIAL_PROTOCOLPGM("Failed 3\n");
goto canceled;
*/
}
a = current_position[X_AXIS];
enable_z_endstop(false);
go_xy(x1, y, homing_feedrate[X_AXIS] / 60.f);
enable_z_endstop(true);
go_xy(x0, y, homing_feedrate[X_AXIS] / 60.f);
update_current_position_xyz();
if (! endstop_z_hit_on_purpose()) {
continue;
/*
current_position[X_AXIS] = center_old_x;
SERIAL_PROTOCOLPGM("Failed 4\n");
goto canceled;
*/
}
b = current_position[X_AXIS];
if (verbosity_level >= 5) {
debug_output_point(PSTR("left" ), a, current_position[Y_AXIS], current_position[Z_AXIS]);
debug_output_point(PSTR("right"), b, current_position[Y_AXIS], current_position[Z_AXIS]);
}
float d = b - a;
if (d > dmax) {
xmax = 0.5f * (a + b);
ymax = y;
dmax = d;
}
}
}
{
// Compare the distance in the Y+ direction with the diameter in the X direction.
// Find the positive Y hit once again, this time along the Y axis going through the X point with the highest diameter.
enable_z_endstop(false);
go_xy(xmax, ymax + IMPROVE_BED_INDUCTION_SENSOR_SEARCH_RADIUS, homing_feedrate[X_AXIS] / 60.f);
enable_z_endstop(true);
go_xy(xmax, max(ymax - IMPROVE_BED_INDUCTION_SENSOR_SEARCH_RADIUS, Y_MIN_POS_FOR_BED_CALIBRATION), homing_feedrate[X_AXIS] / 60.f);
update_current_position_xyz();
if (! endstop_z_hit_on_purpose()) {
current_position[Y_AXIS] = center_old_y;
goto canceled;
}
if (verbosity_level >= 5)
debug_output_point(PSTR("top" ), current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS]);
if (current_position[Y_AXIS] - Y_MIN_POS_FOR_BED_CALIBRATION < 0.5f * dmax) {
// Probably not even a half circle was detected. The induction point is likely too far in the minus Y direction.
// First verify, if the measurement has been done at a sufficient height. If no, lower the Z axis a bit.
if (current_position[Y_AXIS] < ymax || dmax < 0.5f * MIN_BED_SENSOR_POINT_RESPONSE_DMR) {
if (verbosity_level >= 5) {
SERIAL_ECHOPGM("Partial point diameter too small: ");
SERIAL_ECHO(dmax);
SERIAL_ECHOLNPGM("");
}
result = false;
} else {
// Estimate the circle radius from the maximum diameter and height:
float h = current_position[Y_AXIS] - ymax;
float r = dmax * dmax / (8.f * h) + 0.5f * h;
if (r < 0.8f * MIN_BED_SENSOR_POINT_RESPONSE_DMR) {
if (verbosity_level >= 5) {
SERIAL_ECHOPGM("Partial point estimated radius too small: ");
SERIAL_ECHO(r);
SERIAL_ECHOPGM(", dmax:");
SERIAL_ECHO(dmax);
SERIAL_ECHOPGM(", h:");
SERIAL_ECHO(h);
SERIAL_ECHOLNPGM("");
}
result = false;
} else {
// The point may end up outside of the machine working space.
// That is all right as it helps to improve the accuracy of the measurement point
// due to averaging.
// For the y correction, use an average of dmax/2 and the estimated radius.
r = 0.5f * (0.5f * dmax + r);
ymax = current_position[Y_AXIS] - r;
}
}
} else {
// If the diameter of the detected spot was smaller than a minimum allowed,
// the induction sensor is probably too high. Returning false will force
// the sensor to be lowered a tiny bit.
result = xmax >= MIN_BED_SENSOR_POINT_RESPONSE_DMR;
if (y0 > Y_MIN_POS_FOR_BED_CALIBRATION + 0.2f)
// Only in case both left and right y tangents are known, use them.
// If y0 is close to the bed edge, it may not be symmetric to the right tangent.
ymax = 0.5f * ymax + 0.25f * (y0 + y1);
}
}
// Go to the center.
enable_z_endstop(false);
current_position[X_AXIS] = xmax;
current_position[Y_AXIS] = ymax;
if (verbosity_level >= 20) {
SERIAL_ECHOPGM("Adjusted position: ");
SERIAL_ECHO(current_position[X_AXIS]);
SERIAL_ECHOPGM(", ");
SERIAL_ECHO(current_position[Y_AXIS]);
SERIAL_ECHOLNPGM("");
}
// Don't clamp current_position[Y_AXIS], because the out-of-reach Y coordinate may actually be true.
// Only clamp the coordinate to go.
go_xy(current_position[X_AXIS], max(Y_MIN_POS, current_position[Y_AXIS]), homing_feedrate[X_AXIS] / 60.f);
// delay_keep_alive(3000);
}
if (result)
return true;
// otherwise clamp the Y coordinate
canceled:
// Go back to the center.
enable_z_endstop(false);
if (current_position[Y_AXIS] < Y_MIN_POS)
current_position[Y_AXIS] = Y_MIN_POS;
go_xy(current_position[X_AXIS], current_position[Y_AXIS], homing_feedrate[X_AXIS] / 60.f);
return false;
}
// Scan the mesh bed induction points one by one by a left-right zig-zag movement,
// write the trigger coordinates to the serial line.
// Useful for visualizing the behavior of the bed induction detector.
inline void scan_bed_induction_sensor_point()
{
float center_old_x = current_position[X_AXIS];
float center_old_y = current_position[Y_AXIS];
float x0 = center_old_x - IMPROVE_BED_INDUCTION_SENSOR_POINT3_SEARCH_RADIUS;
float x1 = center_old_x + IMPROVE_BED_INDUCTION_SENSOR_POINT3_SEARCH_RADIUS;
float y0 = center_old_y - IMPROVE_BED_INDUCTION_SENSOR_POINT3_SEARCH_RADIUS;
float y1 = center_old_y + IMPROVE_BED_INDUCTION_SENSOR_POINT3_SEARCH_RADIUS;
float y = y0;
if (x0 < X_MIN_POS)
x0 = X_MIN_POS;
if (x1 > X_MAX_POS)
x1 = X_MAX_POS;
if (y0 < Y_MIN_POS_FOR_BED_CALIBRATION)
y0 = Y_MIN_POS_FOR_BED_CALIBRATION;
if (y1 > Y_MAX_POS)
y1 = Y_MAX_POS;
for (float y = y0; y < y1; y += IMPROVE_BED_INDUCTION_SENSOR_POINT3_SEARCH_STEP_FINE_Y) {
enable_z_endstop(false);
go_xy(x0, y, homing_feedrate[X_AXIS] / 60.f);
enable_z_endstop(true);
go_xy(x1, y, homing_feedrate[X_AXIS] / 60.f);
update_current_position_xyz();
if (endstop_z_hit_on_purpose())
debug_output_point(PSTR("left" ), current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS]);
enable_z_endstop(false);
go_xy(x1, y, homing_feedrate[X_AXIS] / 60.f);
enable_z_endstop(true);
go_xy(x0, y, homing_feedrate[X_AXIS] / 60.f);
update_current_position_xyz();
if (endstop_z_hit_on_purpose())
debug_output_point(PSTR("right"), current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS]);
}
enable_z_endstop(false);
current_position[X_AXIS] = center_old_x;
current_position[Y_AXIS] = center_old_y;
go_xy(current_position[X_AXIS], current_position[Y_AXIS], homing_feedrate[X_AXIS] / 60.f);
}
#define MESH_BED_CALIBRATION_SHOW_LCD
BedSkewOffsetDetectionResultType find_bed_offset_and_skew(int8_t verbosity_level)
{
// Don't let the manage_inactivity() function remove power from the motors.
refresh_cmd_timeout();
// Reusing the z_values memory for the measurement cache.
// 7x7=49 floats, good for 16 (x,y,z) vectors.
float *pts = &mbl.z_values[0][0];
float *vec_x = pts + 2 * 4;
float *vec_y = vec_x + 2;
float *cntr = vec_y + 2;
memset(pts, 0, sizeof(float) * 7 * 7);
uint8_t iteration = 0;
BedSkewOffsetDetectionResultType result;
// SERIAL_ECHOLNPGM("find_bed_offset_and_skew verbosity level: ");
// SERIAL_ECHO(int(verbosity_level));
// SERIAL_ECHOPGM("");
while (iteration < 3) {
SERIAL_ECHOPGM("Iteration: ");
MYSERIAL.println(int(iteration + 1));
if (iteration > 0) {
// Cache the current correction matrix.
world2machine_initialize();
vec_x[0] = world2machine_rotation_and_skew[0][0];
vec_x[1] = world2machine_rotation_and_skew[1][0];
vec_y[0] = world2machine_rotation_and_skew[0][1];
vec_y[1] = world2machine_rotation_and_skew[1][1];
cntr[0] = world2machine_shift[0];
cntr[1] = world2machine_shift[1];
if (verbosity_level >= 20) {
SERIAL_ECHOPGM("vec_x[0]:");
MYSERIAL.print(vec_x[0], 5);
SERIAL_ECHOLNPGM("");
SERIAL_ECHOPGM("vec_x[1]:");
MYSERIAL.print(vec_x[1], 5);
SERIAL_ECHOLNPGM("");
SERIAL_ECHOPGM("vec_y[0]:");
MYSERIAL.print(vec_y[0], 5);
SERIAL_ECHOLNPGM("");
SERIAL_ECHOPGM("vec_y[1]:");
MYSERIAL.print(vec_y[1], 5);
SERIAL_ECHOLNPGM("");
SERIAL_ECHOPGM("cntr[0]:");
MYSERIAL.print(cntr[0], 5);
SERIAL_ECHOLNPGM("");
SERIAL_ECHOPGM("cntr[1]:");
MYSERIAL.print(cntr[1], 5);
SERIAL_ECHOLNPGM("");
}
// and reset the correction matrix, so the planner will not do anything.
world2machine_reset();
}
#ifdef MESH_BED_CALIBRATION_SHOW_LCD
uint8_t next_line;
lcd_display_message_fullscreen_P(MSG_FIND_BED_OFFSET_AND_SKEW_LINE1, next_line);
if (next_line > 3)
next_line = 3;
#endif /* MESH_BED_CALIBRATION_SHOW_LCD */
// Collect the rear 2x3 points.
current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
for (int k = 0; k < 4; ++k) {
// Don't let the manage_inactivity() function remove power from the motors.
refresh_cmd_timeout();
#ifdef MESH_BED_CALIBRATION_SHOW_LCD
lcd_implementation_print_at(0, next_line, k + 1);
lcd_printPGM(MSG_FIND_BED_OFFSET_AND_SKEW_LINE2);
if (iteration > 0) {
lcd_print_at_PGM(0, next_line + 1, MSG_FIND_BED_OFFSET_AND_SKEW_ITERATION);
lcd_implementation_print(int(iteration + 1));
}
#endif /* MESH_BED_CALIBRATION_SHOW_LCD */
float *pt = pts + k * 2;
// Go up to z_initial.
go_to_current(homing_feedrate[Z_AXIS] / 60.f);
if (verbosity_level >= 20) {
// Go to Y0, wait, then go to Y-4.
current_position[Y_AXIS] = 0.f;
go_to_current(homing_feedrate[X_AXIS] / 60.f);
SERIAL_ECHOLNPGM("At Y0");
delay_keep_alive(5000);
current_position[Y_AXIS] = Y_MIN_POS;
go_to_current(homing_feedrate[X_AXIS] / 60.f);
SERIAL_ECHOLNPGM("At Y-4");
delay_keep_alive(5000);
}
// Go to the measurement point position.
if (iteration == 0) {
current_position[X_AXIS] = pgm_read_float(bed_ref_points_4 + k * 2);
current_position[Y_AXIS] = pgm_read_float(bed_ref_points_4 + k * 2 + 1);
}
else {
// if first iteration failed, count corrected point coordinates as initial
// Use the coorrected coordinate, which is a result of find_bed_offset_and_skew().
current_position[X_AXIS] = vec_x[0] * pgm_read_float(bed_ref_points_4 + k * 2) + vec_y[0] * pgm_read_float(bed_ref_points_4 + k * 2 + 1) + cntr[0];
current_position[Y_AXIS] = vec_x[1] * pgm_read_float(bed_ref_points_4 + k * 2) + vec_y[1] * pgm_read_float(bed_ref_points_4 + k * 2 + 1) + cntr[1];
// The calibration points are very close to the min Y.
if (current_position[Y_AXIS] < Y_MIN_POS_FOR_BED_CALIBRATION)
current_position[Y_AXIS] = Y_MIN_POS_FOR_BED_CALIBRATION;
}
if (verbosity_level >= 20) {
SERIAL_ECHOPGM("corrected current_position[X_AXIS]:");
MYSERIAL.print(current_position[X_AXIS], 5);
SERIAL_ECHOLNPGM("");
SERIAL_ECHOPGM("corrected current_position[Y_AXIS]:");
MYSERIAL.print(current_position[Y_AXIS], 5);
SERIAL_ECHOLNPGM("");
}
go_to_current(homing_feedrate[X_AXIS] / 60.f);
if (verbosity_level >= 10)
delay_keep_alive(3000);
if (!find_bed_induction_sensor_point_xy())
return BED_SKEW_OFFSET_DETECTION_POINT_NOT_FOUND;
#if 1
if (k == 0) {
// Improve the position of the 1st row sensor points by a zig-zag movement.
find_bed_induction_sensor_point_z();
int8_t i = 4;
for (;;) {
if (improve_bed_induction_sensor_point3(verbosity_level))
break;
if (--i == 0)
return BED_SKEW_OFFSET_DETECTION_POINT_NOT_FOUND;
// Try to move the Z axis down a bit to increase a chance of the sensor to trigger.
current_position[Z_AXIS] -= 0.025f;
enable_endstops(false);
enable_z_endstop(false);
go_to_current(homing_feedrate[Z_AXIS]);
}
if (i == 0)
// not found
return BED_SKEW_OFFSET_DETECTION_POINT_NOT_FOUND;
}
#endif
if (verbosity_level >= 10)
delay_keep_alive(3000);
// Save the detected point position and then clamp the Y coordinate, which may have been estimated
// to lie outside the machine working space.
if (verbosity_level >= 20) {
SERIAL_ECHOLNPGM("Measured:");
MYSERIAL.println(current_position[X_AXIS]);
MYSERIAL.println(current_position[Y_AXIS]);
}
//pt[0] = (pt[0] * iteration) / (iteration + 1);
//pt[0] += (current_position[X_AXIS]/(iteration + 1)); //count average
//pt[1] = (pt[1] * iteration) / (iteration + 1);
//pt[1] += (current_position[Y_AXIS] / (iteration + 1));
pt[0] += current_position[X_AXIS];
if(iteration > 0) pt[0] = pt[0] / 2;
pt[1] += current_position[Y_AXIS];
if (iteration > 0) pt[1] = pt[1] / 2;
if (current_position[Y_AXIS] < Y_MIN_POS)
current_position[Y_AXIS] = Y_MIN_POS;
// Start searching for the other points at 3mm above the last point.
current_position[Z_AXIS] += 3.f;
//cntr[0] += pt[0];
//cntr[1] += pt[1];
if (verbosity_level >= 10 && k == 0) {
// Show the zero. Test, whether the Y motor skipped steps.
current_position[Y_AXIS] = MANUAL_Y_HOME_POS;
go_to_current(homing_feedrate[X_AXIS] / 60.f);
delay_keep_alive(3000);
}
}
if (verbosity_level >= 20) {
// Test the positions. Are the positions reproducible? Now the calibration is active in the planner.
delay_keep_alive(3000);
for (int8_t mesh_point = 0; mesh_point < 4; ++mesh_point) {
// Don't let the manage_inactivity() function remove power from the motors.
refresh_cmd_timeout();
// Go to the measurement point.
// Use the coorrected coordinate, which is a result of find_bed_offset_and_skew().
current_position[X_AXIS] = pts[mesh_point * 2];
current_position[Y_AXIS] = pts[mesh_point * 2 + 1];
go_to_current(homing_feedrate[X_AXIS] / 60);
delay_keep_alive(3000);
}
}
result = calculate_machine_skew_and_offset_LS(pts, 4, bed_ref_points_4, vec_x, vec_y, cntr, verbosity_level);
if (result >= 0) {
world2machine_update(vec_x, vec_y, cntr);
#if 1
// Fearlessly store the calibration values into the eeprom.
eeprom_update_float((float*)(EEPROM_BED_CALIBRATION_CENTER + 0), cntr[0]);
eeprom_update_float((float*)(EEPROM_BED_CALIBRATION_CENTER + 4), cntr[1]);
eeprom_update_float((float*)(EEPROM_BED_CALIBRATION_VEC_X + 0), vec_x[0]);
eeprom_update_float((float*)(EEPROM_BED_CALIBRATION_VEC_X + 4), vec_x[1]);
eeprom_update_float((float*)(EEPROM_BED_CALIBRATION_VEC_Y + 0), vec_y[0]);
eeprom_update_float((float*)(EEPROM_BED_CALIBRATION_VEC_Y + 4), vec_y[1]);
#endif
if (verbosity_level >= 10) {
// Length of the vec_x
float l = sqrt(vec_x[0] * vec_x[0] + vec_x[1] * vec_x[1]);
SERIAL_ECHOLNPGM("X vector length:");
MYSERIAL.println(l);
// Length of the vec_y
l = sqrt(vec_y[0] * vec_y[0] + vec_y[1] * vec_y[1]);
SERIAL_ECHOLNPGM("Y vector length:");
MYSERIAL.println(l);
// Zero point correction
l = sqrt(cntr[0] * cntr[0] + cntr[1] * cntr[1]);
SERIAL_ECHOLNPGM("Zero point correction:");
MYSERIAL.println(l);
// vec_x and vec_y shall be nearly perpendicular.
l = vec_x[0] * vec_y[0] + vec_x[1] * vec_y[1];
SERIAL_ECHOLNPGM("Perpendicularity");
MYSERIAL.println(fabs(l));
SERIAL_ECHOLNPGM("Saving bed calibration vectors to EEPROM");
}
// Correct the current_position to match the transformed coordinate system after world2machine_rotation_and_skew and world2machine_shift were set.
world2machine_update_current();
if (verbosity_level >= 20) {
// Test the positions. Are the positions reproducible? Now the calibration is active in the planner.
delay_keep_alive(3000);
for (int8_t mesh_point = 0; mesh_point < 9; ++mesh_point) {
// Don't let the manage_inactivity() function remove power from the motors.
refresh_cmd_timeout();
// Go to the measurement point.
// Use the coorrected coordinate, which is a result of find_bed_offset_and_skew().
current_position[X_AXIS] = pgm_read_float(bed_ref_points + mesh_point * 2);
current_position[Y_AXIS] = pgm_read_float(bed_ref_points + mesh_point * 2 + 1);
go_to_current(homing_feedrate[X_AXIS] / 60);
delay_keep_alive(3000);
}
}
return result;
}
iteration++;
}
return result;
}
BedSkewOffsetDetectionResultType improve_bed_offset_and_skew(int8_t method, int8_t verbosity_level, uint8_t &too_far_mask)
{
// Don't let the manage_inactivity() function remove power from the motors.
refresh_cmd_timeout();
// Mask of the first three points. Are they too far?
too_far_mask = 0;
// Reusing the z_values memory for the measurement cache.
// 7x7=49 floats, good for 16 (x,y,z) vectors.
float *pts = &mbl.z_values[0][0];
float *vec_x = pts + 2 * 9;
float *vec_y = vec_x + 2;
float *cntr = vec_y + 2;
memset(pts, 0, sizeof(float) * 7 * 7);
// Cache the current correction matrix.
world2machine_initialize();
vec_x[0] = world2machine_rotation_and_skew[0][0];
vec_x[1] = world2machine_rotation_and_skew[1][0];
vec_y[0] = world2machine_rotation_and_skew[0][1];
vec_y[1] = world2machine_rotation_and_skew[1][1];
cntr[0] = world2machine_shift[0];
cntr[1] = world2machine_shift[1];
// and reset the correction matrix, so the planner will not do anything.
world2machine_reset();
bool endstops_enabled = enable_endstops(false);
bool endstop_z_enabled = enable_z_endstop(false);
#ifdef MESH_BED_CALIBRATION_SHOW_LCD
uint8_t next_line;
lcd_display_message_fullscreen_P(MSG_IMPROVE_BED_OFFSET_AND_SKEW_LINE1, next_line);
if (next_line > 3)
next_line = 3;
#endif /* MESH_BED_CALIBRATION_SHOW_LCD */
// Collect a matrix of 9x9 points.
BedSkewOffsetDetectionResultType result = BED_SKEW_OFFSET_DETECTION_PERFECT;
for (int8_t mesh_point = 0; mesh_point < 9; ++ mesh_point) {
// Don't let the manage_inactivity() function remove power from the motors.
refresh_cmd_timeout();
// Print the decrasing ID of the measurement point.
#ifdef MESH_BED_CALIBRATION_SHOW_LCD
lcd_implementation_print_at(0, next_line, mesh_point+1);
lcd_printPGM(MSG_IMPROVE_BED_OFFSET_AND_SKEW_LINE2);
#endif /* MESH_BED_CALIBRATION_SHOW_LCD */
// Move up.
current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
enable_endstops(false);
enable_z_endstop(false);
go_to_current(homing_feedrate[Z_AXIS]/60);
if (verbosity_level >= 20) {
// Go to Y0, wait, then go to Y-4.
current_position[Y_AXIS] = 0.f;
go_to_current(homing_feedrate[X_AXIS] / 60.f);
SERIAL_ECHOLNPGM("At Y0");
delay_keep_alive(5000);
current_position[Y_AXIS] = Y_MIN_POS;
go_to_current(homing_feedrate[X_AXIS] / 60.f);
SERIAL_ECHOLNPGM("At Y-4");
delay_keep_alive(5000);
}
// Go to the measurement point.
// Use the coorrected coordinate, which is a result of find_bed_offset_and_skew().
current_position[X_AXIS] = vec_x[0] * pgm_read_float(bed_ref_points+mesh_point*2) + vec_y[0] * pgm_read_float(bed_ref_points+mesh_point*2+1) + cntr[0];
current_position[Y_AXIS] = vec_x[1] * pgm_read_float(bed_ref_points+mesh_point*2) + vec_y[1] * pgm_read_float(bed_ref_points+mesh_point*2+1) + cntr[1];
// The calibration points are very close to the min Y.
if (current_position[Y_AXIS] < Y_MIN_POS_FOR_BED_CALIBRATION)
current_position[Y_AXIS] = Y_MIN_POS_FOR_BED_CALIBRATION;
go_to_current(homing_feedrate[X_AXIS]/60);
// Find its Z position by running the normal vertical search.
if (verbosity_level >= 10)
delay_keep_alive(3000);
find_bed_induction_sensor_point_z();
if (verbosity_level >= 10)
delay_keep_alive(3000);
// Try to move the Z axis down a bit to increase a chance of the sensor to trigger.
current_position[Z_AXIS] -= 0.025f;
// Improve the point position by searching its center in a current plane.
int8_t n_errors = 3;
for (int8_t iter = 0; iter < 8; ) {
if (verbosity_level > 20) {
SERIAL_ECHOPGM("Improving bed point ");
SERIAL_ECHO(mesh_point);
SERIAL_ECHOPGM(", iteration ");
SERIAL_ECHO(iter);
SERIAL_ECHOPGM(", z");
MYSERIAL.print(current_position[Z_AXIS], 5);
SERIAL_ECHOLNPGM("");
}
bool found = false;
if (mesh_point < 3) {
// Because the sensor cannot move in front of the first row
// of the sensor points, the y position cannot be measured
// by a cross center method.
// Use a zig-zag search for the first row of the points.
found = improve_bed_induction_sensor_point3(verbosity_level);
} else {
switch (method) {
case 0: found = improve_bed_induction_sensor_point(); break;
case 1: found = improve_bed_induction_sensor_point2(mesh_point < 3, verbosity_level); break;
default: break;
}
}
if (found) {
if (iter > 3) {
// Average the last 4 measurements.
pts[mesh_point*2 ] += current_position[X_AXIS];
pts[mesh_point*2+1] += current_position[Y_AXIS];
}
if (current_position[Y_AXIS] < Y_MIN_POS)
current_position[Y_AXIS] = Y_MIN_POS;
++ iter;
} else if (n_errors -- == 0) {
// Give up.
result = BED_SKEW_OFFSET_DETECTION_POINT_NOT_FOUND;
goto canceled;
} else {
// Try to move the Z axis down a bit to increase a chance of the sensor to trigger.
current_position[Z_AXIS] -= 0.05f;
enable_endstops(false);
enable_z_endstop(false);
go_to_current(homing_feedrate[Z_AXIS]);
if (verbosity_level >= 5) {
SERIAL_ECHOPGM("Improving bed point ");
SERIAL_ECHO(mesh_point);
SERIAL_ECHOPGM(", iteration ");
SERIAL_ECHO(iter);
SERIAL_ECHOPGM(" failed. Lowering z to ");
MYSERIAL.print(current_position[Z_AXIS], 5);
SERIAL_ECHOLNPGM("");
}
}
}
if (verbosity_level >= 10)
delay_keep_alive(3000);
}
// Don't let the manage_inactivity() function remove power from the motors.
refresh_cmd_timeout();
// Average the last 4 measurements.
for (int8_t i = 0; i < 18; ++ i)
pts[i] *= (1.f/4.f);
enable_endstops(false);
enable_z_endstop(false);
if (verbosity_level >= 5) {
// Test the positions. Are the positions reproducible?
for (int8_t mesh_point = 0; mesh_point < 9; ++ mesh_point) {
// Don't let the manage_inactivity() function remove power from the motors.
refresh_cmd_timeout();
// Go to the measurement point.
// Use the coorrected coordinate, which is a result of find_bed_offset_and_skew().
current_position[X_AXIS] = pts[mesh_point*2];
current_position[Y_AXIS] = pts[mesh_point*2+1];
if (verbosity_level >= 10) {
go_to_current(homing_feedrate[X_AXIS]/60);
delay_keep_alive(3000);
}
SERIAL_ECHOPGM("Final measured bed point ");
SERIAL_ECHO(mesh_point);
SERIAL_ECHOPGM(": ");
MYSERIAL.print(current_position[X_AXIS], 5);
SERIAL_ECHOPGM(", ");
MYSERIAL.print(current_position[Y_AXIS], 5);
SERIAL_ECHOLNPGM("");
}
}
{
// First fill in the too_far_mask from the measured points.
for (uint8_t mesh_point = 0; mesh_point < 3; ++ mesh_point)
if (pts[mesh_point * 2 + 1] < Y_MIN_POS_CALIBRATION_POINT_OUT_OF_REACH)
too_far_mask |= 1 << mesh_point;
result = calculate_machine_skew_and_offset_LS(pts, 9, bed_ref_points, vec_x, vec_y, cntr, verbosity_level);
if (result < 0) {
SERIAL_ECHOLNPGM("Calculation of the machine skew and offset failed.");
goto canceled;
}
// In case of success, update the too_far_mask from the calculated points.
for (uint8_t mesh_point = 0; mesh_point < 3; ++ mesh_point) {
float y = vec_x[1] * pgm_read_float(bed_ref_points+mesh_point*2) + vec_y[1] * pgm_read_float(bed_ref_points+mesh_point*2+1) + cntr[1];
if (y < Y_MIN_POS_CALIBRATION_POINT_OUT_OF_REACH)
too_far_mask |= 1 << mesh_point;
}
}
world2machine_update(vec_x, vec_y, cntr);
#if 1
// Fearlessly store the calibration values into the eeprom.
eeprom_update_float((float*)(EEPROM_BED_CALIBRATION_CENTER+0), cntr [0]);
eeprom_update_float((float*)(EEPROM_BED_CALIBRATION_CENTER+4), cntr [1]);
eeprom_update_float((float*)(EEPROM_BED_CALIBRATION_VEC_X +0), vec_x[0]);
eeprom_update_float((float*)(EEPROM_BED_CALIBRATION_VEC_X +4), vec_x[1]);
eeprom_update_float((float*)(EEPROM_BED_CALIBRATION_VEC_Y +0), vec_y[0]);
eeprom_update_float((float*)(EEPROM_BED_CALIBRATION_VEC_Y +4), vec_y[1]);
#endif
// Correct the current_position to match the transformed coordinate system after world2machine_rotation_and_skew and world2machine_shift were set.
world2machine_update_current();
enable_endstops(false);
enable_z_endstop(false);
if (verbosity_level >= 5) {
// Test the positions. Are the positions reproducible? Now the calibration is active in the planner.
delay_keep_alive(3000);
for (int8_t mesh_point = 0; mesh_point < 9; ++ mesh_point) {
// Don't let the manage_inactivity() function remove power from the motors.
refresh_cmd_timeout();
// Go to the measurement point.
// Use the coorrected coordinate, which is a result of find_bed_offset_and_skew().
current_position[X_AXIS] = pgm_read_float(bed_ref_points+mesh_point*2);
current_position[Y_AXIS] = pgm_read_float(bed_ref_points+mesh_point*2+1);
if (verbosity_level >= 10) {
go_to_current(homing_feedrate[X_AXIS]/60);
delay_keep_alive(3000);
}
{
float x, y;
world2machine(current_position[X_AXIS], current_position[Y_AXIS], x, y);
SERIAL_ECHOPGM("Final calculated bed point ");
SERIAL_ECHO(mesh_point);
SERIAL_ECHOPGM(": ");
MYSERIAL.print(x, 5);
SERIAL_ECHOPGM(", ");
MYSERIAL.print(y, 5);
SERIAL_ECHOLNPGM("");
}
}
}
// Sample Z heights for the mesh bed leveling.
// In addition, store the results into an eeprom, to be used later for verification of the bed leveling process.
if (! sample_mesh_and_store_reference())
goto canceled;
enable_endstops(endstops_enabled);
enable_z_endstop(endstop_z_enabled);
// Don't let the manage_inactivity() function remove power from the motors.
refresh_cmd_timeout();
return result;
canceled:
// Don't let the manage_inactivity() function remove power from the motors.
refresh_cmd_timeout();
// Print head up.
current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
go_to_current(homing_feedrate[Z_AXIS]/60);
// Store the identity matrix to EEPROM.
reset_bed_offset_and_skew();
enable_endstops(endstops_enabled);
enable_z_endstop(endstop_z_enabled);
return result;
}
void go_home_with_z_lift()
{
// Don't let the manage_inactivity() function remove power from the motors.
refresh_cmd_timeout();
// Go home.
// First move up to a safe height.
current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
go_to_current(homing_feedrate[Z_AXIS]/60);
// Second move to XY [0, 0].
current_position[X_AXIS] = X_MIN_POS+0.2;
current_position[Y_AXIS] = Y_MIN_POS+0.2;
// Clamp to the physical coordinates.
world2machine_clamp(current_position[X_AXIS], current_position[Y_AXIS]);
go_to_current(homing_feedrate[X_AXIS]/60);
// Third move up to a safe height.
current_position[Z_AXIS] = Z_MIN_POS;
go_to_current(homing_feedrate[Z_AXIS]/60);
}
// Sample the 9 points of the bed and store them into the EEPROM as a reference.
// When calling this function, the X, Y, Z axes should be already homed,
// and the world2machine correction matrix should be active.
// Returns false if the reference values are more than 3mm far away.
bool sample_mesh_and_store_reference()
{
bool endstops_enabled = enable_endstops(false);
bool endstop_z_enabled = enable_z_endstop(false);
// Don't let the manage_inactivity() function remove power from the motors.
refresh_cmd_timeout();
#ifdef MESH_BED_CALIBRATION_SHOW_LCD
uint8_t next_line;
lcd_display_message_fullscreen_P(MSG_MEASURE_BED_REFERENCE_HEIGHT_LINE1, next_line);
if (next_line > 3)
next_line = 3;
// display "point xx of yy"
lcd_implementation_print_at(0, next_line, 1);
lcd_printPGM(MSG_MEASURE_BED_REFERENCE_HEIGHT_LINE2);
#endif /* MESH_BED_CALIBRATION_SHOW_LCD */
// Sample Z heights for the mesh bed leveling.
// In addition, store the results into an eeprom, to be used later for verification of the bed leveling process.
{
// The first point defines the reference.
current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
go_to_current(homing_feedrate[Z_AXIS]/60);
current_position[X_AXIS] = pgm_read_float(bed_ref_points);
current_position[Y_AXIS] = pgm_read_float(bed_ref_points+1);
world2machine_clamp(current_position[X_AXIS], current_position[Y_AXIS]);
go_to_current(homing_feedrate[X_AXIS]/60);
memcpy(destination, current_position, sizeof(destination));
enable_endstops(true);
homeaxis(Z_AXIS);
enable_endstops(false);
find_bed_induction_sensor_point_z();
mbl.set_z(0, 0, current_position[Z_AXIS]);
}
for (int8_t mesh_point = 1; mesh_point != MESH_MEAS_NUM_X_POINTS * MESH_MEAS_NUM_Y_POINTS; ++ mesh_point) {
// Don't let the manage_inactivity() function remove power from the motors.
refresh_cmd_timeout();
// Print the decrasing ID of the measurement point.
current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
go_to_current(homing_feedrate[Z_AXIS]/60);
current_position[X_AXIS] = pgm_read_float(bed_ref_points+2*mesh_point);
current_position[Y_AXIS] = pgm_read_float(bed_ref_points+2*mesh_point+1);
world2machine_clamp(current_position[X_AXIS], current_position[Y_AXIS]);
go_to_current(homing_feedrate[X_AXIS]/60);
#ifdef MESH_BED_CALIBRATION_SHOW_LCD
// display "point xx of yy"
lcd_implementation_print_at(0, next_line, mesh_point+1);
lcd_printPGM(MSG_MEASURE_BED_REFERENCE_HEIGHT_LINE2);
#endif /* MESH_BED_CALIBRATION_SHOW_LCD */
find_bed_induction_sensor_point_z();
// Get cords of measuring point
int8_t ix = mesh_point % MESH_MEAS_NUM_X_POINTS;
int8_t iy = mesh_point / MESH_MEAS_NUM_X_POINTS;
if (iy & 1) ix = (MESH_MEAS_NUM_X_POINTS - 1) - ix; // Zig zag
mbl.set_z(ix, iy, current_position[Z_AXIS]);
}
{
// Verify the span of the Z values.
float zmin = mbl.z_values[0][0];
float zmax = zmax;
for (int8_t j = 0; j < 3; ++ j)
for (int8_t i = 0; i < 3; ++ i) {
zmin = min(zmin, mbl.z_values[j][i]);
zmax = min(zmax, mbl.z_values[j][i]);
}
if (zmax - zmin > 3.f) {
// The span of the Z offsets is extreme. Give up.
// Homing failed on some of the points.
SERIAL_PROTOCOLLNPGM("Exreme span of the Z values!");
return false;
}
}
// Store the correction values to EEPROM.
// Offsets of the Z heiths of the calibration points from the first point.
// The offsets are saved as 16bit signed int, scaled to tenths of microns.
{
uint16_t addr = EEPROM_BED_CALIBRATION_Z_JITTER;
for (int8_t j = 0; j < 3; ++ j)
for (int8_t i = 0; i < 3; ++ i) {
if (i == 0 && j == 0)
continue;
float dif = mbl.z_values[j][i] - mbl.z_values[0][0];
int16_t dif_quantized = int16_t(floor(dif * 100.f + 0.5f));
eeprom_update_word((uint16_t*)addr, *reinterpret_cast<uint16_t*>(&dif_quantized));
#if 0
{
uint16_t z_offset_u = eeprom_read_word((uint16_t*)addr);
float dif2 = *reinterpret_cast<int16_t*>(&z_offset_u) * 0.01;
SERIAL_ECHOPGM("Bed point ");
SERIAL_ECHO(i);
SERIAL_ECHOPGM(",");
SERIAL_ECHO(j);
SERIAL_ECHOPGM(", differences: written ");
MYSERIAL.print(dif, 5);
SERIAL_ECHOPGM(", read: ");
MYSERIAL.print(dif2, 5);
SERIAL_ECHOLNPGM("");
}
#endif
addr += 2;
}
}
mbl.upsample_3x3();
mbl.active = true;
go_home_with_z_lift();
enable_endstops(endstops_enabled);
enable_z_endstop(endstop_z_enabled);
return true;
}
bool scan_bed_induction_points(int8_t verbosity_level)
{
// Don't let the manage_inactivity() function remove power from the motors.
refresh_cmd_timeout();
// Reusing the z_values memory for the measurement cache.
// 7x7=49 floats, good for 16 (x,y,z) vectors.
float *pts = &mbl.z_values[0][0];
float *vec_x = pts + 2 * 9;
float *vec_y = vec_x + 2;
float *cntr = vec_y + 2;
memset(pts, 0, sizeof(float) * 7 * 7);
// Cache the current correction matrix.
world2machine_initialize();
vec_x[0] = world2machine_rotation_and_skew[0][0];
vec_x[1] = world2machine_rotation_and_skew[1][0];
vec_y[0] = world2machine_rotation_and_skew[0][1];
vec_y[1] = world2machine_rotation_and_skew[1][1];
cntr[0] = world2machine_shift[0];
cntr[1] = world2machine_shift[1];
// and reset the correction matrix, so the planner will not do anything.
world2machine_reset();
bool endstops_enabled = enable_endstops(false);
bool endstop_z_enabled = enable_z_endstop(false);
// Collect a matrix of 9x9 points.
for (int8_t mesh_point = 0; mesh_point < 9; ++ mesh_point) {
// Don't let the manage_inactivity() function remove power from the motors.
refresh_cmd_timeout();
// Move up.
current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
enable_endstops(false);
enable_z_endstop(false);
go_to_current(homing_feedrate[Z_AXIS]/60);
// Go to the measurement point.
// Use the coorrected coordinate, which is a result of find_bed_offset_and_skew().
current_position[X_AXIS] = vec_x[0] * pgm_read_float(bed_ref_points+mesh_point*2) + vec_y[0] * pgm_read_float(bed_ref_points+mesh_point*2+1) + cntr[0];
current_position[Y_AXIS] = vec_x[1] * pgm_read_float(bed_ref_points+mesh_point*2) + vec_y[1] * pgm_read_float(bed_ref_points+mesh_point*2+1) + cntr[1];
// The calibration points are very close to the min Y.
if (current_position[Y_AXIS] < Y_MIN_POS_FOR_BED_CALIBRATION)
current_position[Y_AXIS] = Y_MIN_POS_FOR_BED_CALIBRATION;
go_to_current(homing_feedrate[X_AXIS]/60);
find_bed_induction_sensor_point_z();
scan_bed_induction_sensor_point();
}
// Don't let the manage_inactivity() function remove power from the motors.
refresh_cmd_timeout();
enable_endstops(false);
enable_z_endstop(false);
// Don't let the manage_inactivity() function remove power from the motors.
refresh_cmd_timeout();
enable_endstops(endstops_enabled);
enable_z_endstop(endstop_z_enabled);
return true;
}
// Shift a Z axis by a given delta.
// To replace loading of the babystep correction.
static void shift_z(float delta)
{
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS] - delta, current_position[E_AXIS], homing_feedrate[Z_AXIS]/40, active_extruder);
st_synchronize();
plan_set_z_position(current_position[Z_AXIS]);
}
#define BABYSTEP_LOADZ_BY_PLANNER
// Number of baby steps applied
static int babystepLoadZ = 0;
void babystep_apply()
{
// Apply Z height correction aka baby stepping before mesh bed leveling gets activated.
if(calibration_status() <= CALIBRATION_STATUS_PINDA)
{
check_babystep(); //checking if babystep is in allowed range, otherwise setting babystep to 0
// End of G80: Apply the baby stepping value.
EEPROM_read_B(EEPROM_BABYSTEP_Z,&babystepLoadZ);
#if 0
SERIAL_ECHO("Z baby step: ");
SERIAL_ECHO(babystepLoadZ);
SERIAL_ECHO(", current Z: ");
SERIAL_ECHO(current_position[Z_AXIS]);
SERIAL_ECHO("correction: ");
SERIAL_ECHO(float(babystepLoadZ) / float(axis_steps_per_unit[Z_AXIS]));
SERIAL_ECHOLN("");
#endif
#ifdef BABYSTEP_LOADZ_BY_PLANNER
shift_z(- float(babystepLoadZ) / float(axis_steps_per_unit[Z_AXIS]));
#else
babystepsTodoZadd(babystepLoadZ);
#endif /* BABYSTEP_LOADZ_BY_PLANNER */
}
}
void babystep_undo()
{
#ifdef BABYSTEP_LOADZ_BY_PLANNER
shift_z(float(babystepLoadZ) / float(axis_steps_per_unit[Z_AXIS]));
#else
babystepsTodoZsubtract(babystepLoadZ);
#endif /* BABYSTEP_LOADZ_BY_PLANNER */
babystepLoadZ = 0;
}
void babystep_reset()
{
babystepLoadZ = 0;
}