2017-10-27 15:07:02 +00:00
/* -*- c++ -*- */
/*
Reprap firmware based on Sprinter and grbl .
Copyright ( C ) 2011 Camiel Gubbels / Erik van der Zalm
This program is free software : you can redistribute it and / or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation , either version 3 of the License , or
( at your option ) any later version .
This program is distributed in the hope that it will be useful ,
but WITHOUT ANY WARRANTY ; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE . See the
GNU General Public License for more details .
You should have received a copy of the GNU General Public License
along with this program . If not , see < http : //www.gnu.org/licenses/>.
*/
/*
This firmware is a mashup between Sprinter and grbl .
( https : //github.com/kliment/Sprinter)
( https : //github.com/simen/grbl/tree)
It has preliminary support for Matthew Roberts advance algorithm
http : //reprap.org/pipermail/reprap-dev/2011-May/003323.html
*/
# include "Marlin.h"
# ifdef ENABLE_AUTO_BED_LEVELING
# include "vector_3.h"
# ifdef AUTO_BED_LEVELING_GRID
# include "qr_solve.h"
# endif
# endif // ENABLE_AUTO_BED_LEVELING
# ifdef MESH_BED_LEVELING
# include "mesh_bed_leveling.h"
# include "mesh_bed_calibration.h"
# endif
# include "ultralcd.h"
# include "Configuration_prusa.h"
# include "planner.h"
# include "stepper.h"
# include "temperature.h"
# include "motion_control.h"
# include "cardreader.h"
# include "watchdog.h"
# include "ConfigurationStore.h"
# include "language.h"
# include "pins_arduino.h"
# include "math.h"
# include "util.h"
# include <avr/wdt.h>
# include "Dcodes.h"
# ifdef SWSPI
# include "swspi.h"
# endif //SWSPI
# ifdef SWI2C
# include "swi2c.h"
# endif //SWI2C
# ifdef PAT9125
# include "pat9125.h"
# include "fsensor.h"
# endif //PAT9125
# ifdef TMC2130
# include "tmc2130.h"
# endif //TMC2130
# ifdef BLINKM
# include "BlinkM.h"
# include "Wire.h"
# endif
# ifdef ULTRALCD
# include "ultralcd.h"
# endif
# if NUM_SERVOS > 0
# include "Servo.h"
# endif
# if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
# include <SPI.h>
# endif
# define VERSION_STRING "1.0.2"
# include "ultralcd.h"
# include "cmdqueue.h"
// Macros for bit masks
# define BIT(b) (1<<(b))
# define TEST(n,b) (((n)&BIT(b))!=0)
# define SET_BIT(n,b,value) (n) ^= ((-value)^(n)) & (BIT(b))
//Macro for print fan speed
# define FAN_PULSE_WIDTH_LIMIT ((fanSpeed > 100) ? 3 : 4) //time in ms
// look here for descriptions of G-codes: http://linuxcnc.org/handbook/gcode/g-code.html
// http://objects.reprap.org/wiki/Mendel_User_Manual:_RepRapGCodes
//Implemented Codes
//-------------------
// PRUSA CODES
// P F - Returns FW versions
// P R - Returns revision of printer
// G0 -> G1
// G1 - Coordinated Movement X Y Z E
// G2 - CW ARC
// G3 - CCW ARC
// G4 - Dwell S<seconds> or P<milliseconds>
// G10 - retract filament according to settings of M207
// G11 - retract recover filament according to settings of M208
// G28 - Home all Axis
// G29 - Detailed Z-Probe, probes the bed at 3 or more points. Will fail if you haven't homed yet.
// G30 - Single Z Probe, probes bed at current XY location.
// G31 - Dock sled (Z_PROBE_SLED only)
// G32 - Undock sled (Z_PROBE_SLED only)
// G80 - Automatic mesh bed leveling
// G81 - Print bed profile
// G90 - Use Absolute Coordinates
// G91 - Use Relative Coordinates
// G92 - Set current position to coordinates given
// M Codes
// M0 - Unconditional stop - Wait for user to press a button on the LCD (Only if ULTRA_LCD is enabled)
// M1 - Same as M0
// M17 - Enable/Power all stepper motors
// M18 - Disable all stepper motors; same as M84
// M20 - List SD card
// M21 - Init SD card
// M22 - Release SD card
// M23 - Select SD file (M23 filename.g)
// M24 - Start/resume SD print
// M25 - Pause SD print
// M26 - Set SD position in bytes (M26 S12345)
// M27 - Report SD print status
// M28 - Start SD write (M28 filename.g)
// M29 - Stop SD write
// M30 - Delete file from SD (M30 filename.g)
// M31 - Output time since last M109 or SD card start to serial
// M32 - Select file and start SD print (Can be used _while_ printing from SD card files):
// syntax "M32 /path/filename#", or "M32 S<startpos bytes> !filename#"
// Call gcode file : "M32 P !filename#" and return to caller file after finishing (similar to #include).
// The '#' is necessary when calling from within sd files, as it stops buffer prereading
// M42 - Change pin status via gcode Use M42 Px Sy to set pin x to value y, when omitting Px the onboard led will be used.
// M80 - Turn on Power Supply
// M81 - Turn off Power Supply
// M82 - Set E codes absolute (default)
// M83 - Set E codes relative while in Absolute Coordinates (G90) mode
// M84 - Disable steppers until next move,
// or use S<seconds> to specify an inactivity timeout, after which the steppers will be disabled. S0 to disable the timeout.
// M85 - Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
// M92 - Set axis_steps_per_unit - same syntax as G92
// M104 - Set extruder target temp
// M105 - Read current temp
// M106 - Fan on
// M107 - Fan off
// M109 - Sxxx Wait for extruder current temp to reach target temp. Waits only when heating
// Rxxx Wait for extruder current temp to reach target temp. Waits when heating and cooling
// IF AUTOTEMP is enabled, S<mintemp> B<maxtemp> F<factor>. Exit autotemp by any M109 without F
// M112 - Emergency stop
2017-11-15 14:09:29 +00:00
// M113 - Get or set the timeout interval for Host Keepalive "busy" messages
2017-10-27 15:07:02 +00:00
// M114 - Output current position to serial port
// M115 - Capabilities string
// M117 - display message
// M119 - Output Endstop status to serial port
// M126 - Solenoid Air Valve Open (BariCUDA support by jmil)
// M127 - Solenoid Air Valve Closed (BariCUDA vent to atmospheric pressure by jmil)
// M128 - EtoP Open (BariCUDA EtoP = electricity to air pressure transducer by jmil)
// M129 - EtoP Closed (BariCUDA EtoP = electricity to air pressure transducer by jmil)
// M140 - Set bed target temp
// M150 - Set BlinkM Color Output R: Red<0-255> U(!): Green<0-255> B: Blue<0-255> over i2c, G for green does not work.
// M190 - Sxxx Wait for bed current temp to reach target temp. Waits only when heating
// Rxxx Wait for bed current temp to reach target temp. Waits when heating and cooling
// M200 D<millimeters>- set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
// M201 - Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
// M202 - Set max acceleration in units/s^2 for travel moves (M202 X1000 Y1000) Unused in Marlin!!
// M203 - Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in mm/sec
// M204 - Set default acceleration: S normal moves T filament only moves (M204 S3000 T7000) in mm/sec^2 also sets minimum segment time in ms (B20000) to prevent buffer under-runs and M20 minimum feedrate
// M205 - advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk, E=maximum E jerk
// M206 - set additional homing offset
// M207 - set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop], stays in mm regardless of M200 setting
// M208 - set recover=unretract length S[positive mm surplus to the M207 S*] F[feedrate mm/sec]
// M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
// M218 - set hotend offset (in mm): T<extruder_number> X<offset_on_X> Y<offset_on_Y>
// M220 S<factor in percent>- set speed factor override percentage
// M221 S<factor in percent>- set extrude factor override percentage
// M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
// M240 - Trigger a camera to take a photograph
// M250 - Set LCD contrast C<contrast value> (value 0..63)
// M280 - set servo position absolute. P: servo index, S: angle or microseconds
// M300 - Play beep sound S<frequency Hz> P<duration ms>
// M301 - Set PID parameters P I and D
// M302 - Allow cold extrudes, or set the minimum extrude S<temperature>.
// M303 - PID relay autotune S<temperature> sets the target temperature. (default target temperature = 150C)
// M304 - Set bed PID parameters P I and D
// M400 - Finish all moves
// M401 - Lower z-probe if present
// M402 - Raise z-probe if present
// M404 - N<dia in mm> Enter the nominal filament width (3mm, 1.75mm ) or will display nominal filament width without parameters
// M405 - Turn on Filament Sensor extrusion control. Optional D<delay in cm> to set delay in centimeters between sensor and extruder
// M406 - Turn off Filament Sensor extrusion control
// M407 - Displays measured filament diameter
// M500 - stores parameters in EEPROM
// M501 - reads parameters from EEPROM (if you need reset them after you changed them temporarily).
// M502 - reverts to the default "factory settings". You still need to store them in EEPROM afterwards if you want to.
// M503 - print the current settings (from memory not from EEPROM)
// M509 - force language selection on next restart
// M540 - Use S[0|1] to enable or disable the stop SD card print on endstop hit (requires ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
// M600 - Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
// M605 - Set dual x-carriage movement mode: S<mode> [ X<duplication x-offset> R<duplication temp offset> ]
// M900 - Set LIN_ADVANCE options, if enabled. See Configuration_adv.h for details.
// M907 - Set digital trimpot motor current using axis codes.
// M908 - Control digital trimpot directly.
// M350 - Set microstepping mode.
// M351 - Toggle MS1 MS2 pins directly.
// M928 - Start SD logging (M928 filename.g) - ended by M29
// M999 - Restart after being stopped by error
//Stepper Movement Variables
//===========================================================================
//=============================imported variables============================
//===========================================================================
//===========================================================================
//=============================public variables=============================
//===========================================================================
# ifdef SDSUPPORT
CardReader card ;
# endif
unsigned long PingTime = millis ( ) ;
union Data
{
byte b [ 2 ] ;
int value ;
} ;
float homing_feedrate [ ] = HOMING_FEEDRATE ;
// Currently only the extruder axis may be switched to a relative mode.
// Other axes are always absolute or relative based on the common relative_mode flag.
bool axis_relative_modes [ ] = AXIS_RELATIVE_MODES ;
int feedmultiply = 100 ; //100->1 200->2
int saved_feedmultiply ;
int extrudemultiply = 100 ; //100->1 200->2
int extruder_multiply [ EXTRUDERS ] = { 100
# if EXTRUDERS > 1
, 100
# if EXTRUDERS > 2
, 100
# endif
# endif
} ;
2017-11-07 15:49:04 +00:00
int bowden_length [ 4 ] = { 385 , 385 , 385 , 385 } ;
2017-10-27 15:07:02 +00:00
bool is_usb_printing = false ;
bool homing_flag = false ;
bool temp_cal_active = false ;
unsigned long kicktime = millis ( ) + 100000 ;
unsigned int usb_printing_counter ;
int lcd_change_fil_state = 0 ;
int feedmultiplyBckp = 100 ;
float HotendTempBckp = 0 ;
int fanSpeedBckp = 0 ;
float pause_lastpos [ 4 ] ;
unsigned long pause_time = 0 ;
unsigned long start_pause_print = millis ( ) ;
unsigned long t_fan_rising_edge = millis ( ) ;
2017-11-28 17:28:53 +00:00
//unsigned long load_filament_time;
2017-10-27 15:07:02 +00:00
bool mesh_bed_leveling_flag = false ;
bool mesh_bed_run_from_menu = false ;
unsigned char lang_selected = 0 ;
int8_t FarmMode = 0 ;
bool prusa_sd_card_upload = false ;
unsigned int status_number = 0 ;
unsigned long total_filament_used ;
unsigned int heating_status ;
unsigned int heating_status_counter ;
bool custom_message ;
bool loading_flag = false ;
unsigned int custom_message_type ;
unsigned int custom_message_state ;
char snmm_filaments_used = 0 ;
2017-10-27 14:12:37 +00:00
float distance_from_min [ 2 ] ;
2017-10-27 15:07:02 +00:00
bool fan_state [ 2 ] ;
int fan_edge_counter [ 2 ] ;
int fan_speed [ 2 ] ;
2017-11-27 05:20:51 +00:00
char dir_names [ 3 ] [ 9 ] ;
2017-10-27 15:07:02 +00:00
2017-12-06 16:48:16 +00:00
bool sortAlpha = false ;
2017-10-27 15:07:02 +00:00
bool volumetric_enabled = false ;
float filament_size [ EXTRUDERS ] = { DEFAULT_NOMINAL_FILAMENT_DIA
# if EXTRUDERS > 1
, DEFAULT_NOMINAL_FILAMENT_DIA
# if EXTRUDERS > 2
, DEFAULT_NOMINAL_FILAMENT_DIA
# endif
# endif
} ;
float volumetric_multiplier [ EXTRUDERS ] = { 1.0
# if EXTRUDERS > 1
, 1.0
# if EXTRUDERS > 2
, 1.0
# endif
# endif
} ;
float current_position [ NUM_AXIS ] = { 0.0 , 0.0 , 0.0 , 0.0 } ;
float add_homing [ 3 ] = { 0 , 0 , 0 } ;
float min_pos [ 3 ] = { X_MIN_POS , Y_MIN_POS , Z_MIN_POS } ;
float max_pos [ 3 ] = { X_MAX_POS , Y_MAX_POS , Z_MAX_POS } ;
bool axis_known_position [ 3 ] = { false , false , false } ;
float zprobe_zoffset ;
// Extruder offset
# if EXTRUDERS > 1
# define NUM_EXTRUDER_OFFSETS 2 // only in XY plane
float extruder_offset [ NUM_EXTRUDER_OFFSETS ] [ EXTRUDERS ] = {
# if defined(EXTRUDER_OFFSET_X) && defined(EXTRUDER_OFFSET_Y)
EXTRUDER_OFFSET_X , EXTRUDER_OFFSET_Y
# endif
} ;
# endif
uint8_t active_extruder = 0 ;
int fanSpeed = 0 ;
# ifdef FWRETRACT
bool autoretract_enabled = false ;
bool retracted [ EXTRUDERS ] = { false
# if EXTRUDERS > 1
, false
# if EXTRUDERS > 2
, false
# endif
# endif
} ;
bool retracted_swap [ EXTRUDERS ] = { false
# if EXTRUDERS > 1
, false
# if EXTRUDERS > 2
, false
# endif
# endif
} ;
float retract_length = RETRACT_LENGTH ;
float retract_length_swap = RETRACT_LENGTH_SWAP ;
float retract_feedrate = RETRACT_FEEDRATE ;
float retract_zlift = RETRACT_ZLIFT ;
float retract_recover_length = RETRACT_RECOVER_LENGTH ;
float retract_recover_length_swap = RETRACT_RECOVER_LENGTH_SWAP ;
float retract_recover_feedrate = RETRACT_RECOVER_FEEDRATE ;
# endif
# ifdef ULTIPANEL
# ifdef PS_DEFAULT_OFF
bool powersupply = false ;
# else
bool powersupply = true ;
# endif
# endif
bool cancel_heatup = false ;
2017-11-15 14:09:29 +00:00
# ifdef HOST_KEEPALIVE_FEATURE
2017-11-16 21:03:36 +00:00
int busy_state = NOT_BUSY ;
2017-11-15 14:09:29 +00:00
static long prev_busy_signal_ms = - 1 ;
uint8_t host_keepalive_interval = HOST_KEEPALIVE_INTERVAL ;
# else
# define host_keepalive();
# define KEEPALIVE_STATE(n);
# endif
2017-10-27 15:07:02 +00:00
# ifdef FILAMENT_SENSOR
//Variables for Filament Sensor input
float filament_width_nominal = DEFAULT_NOMINAL_FILAMENT_DIA ; //Set nominal filament width, can be changed with M404
bool filament_sensor = false ; //M405 turns on filament_sensor control, M406 turns it off
float filament_width_meas = DEFAULT_MEASURED_FILAMENT_DIA ; //Stores the measured filament diameter
signed char measurement_delay [ MAX_MEASUREMENT_DELAY + 1 ] ; //ring buffer to delay measurement store extruder factor after subtracting 100
int delay_index1 = 0 ; //index into ring buffer
int delay_index2 = - 1 ; //index into ring buffer - set to -1 on startup to indicate ring buffer needs to be initialized
float delay_dist = 0 ; //delay distance counter
int meas_delay_cm = MEASUREMENT_DELAY_CM ; //distance delay setting
# endif
const char errormagic [ ] PROGMEM = " Error: " ;
const char echomagic [ ] PROGMEM = " echo: " ;
//===========================================================================
//=============================Private Variables=============================
//===========================================================================
const char axis_codes [ NUM_AXIS ] = { ' X ' , ' Y ' , ' Z ' , ' E ' } ;
float destination [ NUM_AXIS ] = { 0.0 , 0.0 , 0.0 , 0.0 } ;
static float delta [ 3 ] = { 0.0 , 0.0 , 0.0 } ;
// For tracing an arc
static float offset [ 3 ] = { 0.0 , 0.0 , 0.0 } ;
static float feedrate = 1500.0 , next_feedrate , saved_feedrate ;
// Determines Absolute or Relative Coordinates.
// Also there is bool axis_relative_modes[] per axis flag.
static bool relative_mode = false ;
2017-12-09 18:31:27 +00:00
# ifndef _DISABLE_M42_M226
2017-10-27 15:07:02 +00:00
const int sensitive_pins [ ] = SENSITIVE_PINS ; // Sensitive pin list for M42
2017-12-09 18:31:27 +00:00
# endif //_DISABLE_M42_M226
2017-10-27 15:07:02 +00:00
//static float tt = 0;
//static float bt = 0;
//Inactivity shutdown variables
static unsigned long previous_millis_cmd = 0 ;
unsigned long max_inactive_time = 0 ;
static unsigned long stepper_inactive_time = DEFAULT_STEPPER_DEACTIVE_TIME * 1000l ;
unsigned long starttime = 0 ;
unsigned long stoptime = 0 ;
unsigned long _usb_timer = 0 ;
static uint8_t tmp_extruder ;
bool extruder_under_pressure = true ;
bool Stopped = false ;
# if NUM_SERVOS > 0
Servo servos [ NUM_SERVOS ] ;
# endif
bool CooldownNoWait = true ;
bool target_direction ;
//Insert variables if CHDK is defined
# ifdef CHDK
unsigned long chdkHigh = 0 ;
boolean chdkActive = false ;
# endif
//===========================================================================
//=============================Routines======================================
//===========================================================================
void get_arc_coordinates ( ) ;
bool setTargetedHotend ( int code ) ;
void serial_echopair_P ( const char * s_P , float v )
{ serialprintPGM ( s_P ) ; SERIAL_ECHO ( v ) ; }
void serial_echopair_P ( const char * s_P , double v )
{ serialprintPGM ( s_P ) ; SERIAL_ECHO ( v ) ; }
void serial_echopair_P ( const char * s_P , unsigned long v )
{ serialprintPGM ( s_P ) ; SERIAL_ECHO ( v ) ; }
# ifdef SDSUPPORT
# include "SdFatUtil.h"
int freeMemory ( ) { return SdFatUtil : : FreeRam ( ) ; }
# else
extern " C " {
extern unsigned int __bss_end ;
extern unsigned int __heap_start ;
extern void * __brkval ;
int freeMemory ( ) {
int free_memory ;
if ( ( int ) __brkval = = 0 )
free_memory = ( ( int ) & free_memory ) - ( ( int ) & __bss_end ) ;
else
free_memory = ( ( int ) & free_memory ) - ( ( int ) __brkval ) ;
return free_memory ;
}
}
# endif //!SDSUPPORT
void setup_killpin ( )
{
# if defined(KILL_PIN) && KILL_PIN > -1
SET_INPUT ( KILL_PIN ) ;
WRITE ( KILL_PIN , HIGH ) ;
# endif
}
// Set home pin
void setup_homepin ( void )
{
# if defined(HOME_PIN) && HOME_PIN > -1
SET_INPUT ( HOME_PIN ) ;
WRITE ( HOME_PIN , HIGH ) ;
# endif
}
void setup_photpin ( )
{
# if defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1
SET_OUTPUT ( PHOTOGRAPH_PIN ) ;
WRITE ( PHOTOGRAPH_PIN , LOW ) ;
# endif
}
void setup_powerhold ( )
{
# if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
SET_OUTPUT ( SUICIDE_PIN ) ;
WRITE ( SUICIDE_PIN , HIGH ) ;
# endif
# if defined(PS_ON_PIN) && PS_ON_PIN > -1
SET_OUTPUT ( PS_ON_PIN ) ;
# if defined(PS_DEFAULT_OFF)
WRITE ( PS_ON_PIN , PS_ON_ASLEEP ) ;
# else
WRITE ( PS_ON_PIN , PS_ON_AWAKE ) ;
# endif
# endif
}
void suicide ( )
{
# if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
SET_OUTPUT ( SUICIDE_PIN ) ;
WRITE ( SUICIDE_PIN , LOW ) ;
# endif
}
void servo_init ( )
{
# if (NUM_SERVOS >= 1) && defined(SERVO0_PIN) && (SERVO0_PIN > -1)
servos [ 0 ] . attach ( SERVO0_PIN ) ;
# endif
# if (NUM_SERVOS >= 2) && defined(SERVO1_PIN) && (SERVO1_PIN > -1)
servos [ 1 ] . attach ( SERVO1_PIN ) ;
# endif
# if (NUM_SERVOS >= 3) && defined(SERVO2_PIN) && (SERVO2_PIN > -1)
servos [ 2 ] . attach ( SERVO2_PIN ) ;
# endif
# if (NUM_SERVOS >= 4) && defined(SERVO3_PIN) && (SERVO3_PIN > -1)
servos [ 3 ] . attach ( SERVO3_PIN ) ;
# endif
# if (NUM_SERVOS >= 5)
# error "TODO: enter initalisation code for more servos"
# endif
}
static void lcd_language_menu ( ) ;
void stop_and_save_print_to_ram ( float z_move , float e_move ) ;
void restore_print_from_ram_and_continue ( float e_move ) ;
extern int8_t CrashDetectMenu ;
void crashdet_enable ( )
{
MYSERIAL . println ( " crashdet_enable " ) ;
tmc2130_sg_stop_on_crash = true ;
eeprom_update_byte ( ( uint8_t * ) EEPROM_CRASH_DET , 0xFF ) ;
CrashDetectMenu = 1 ;
}
void crashdet_disable ( )
{
MYSERIAL . println ( " crashdet_disable " ) ;
tmc2130_sg_stop_on_crash = false ;
2017-12-12 14:44:42 +00:00
tmc2130_sg_crash = false ;
2017-10-27 15:07:02 +00:00
eeprom_update_byte ( ( uint8_t * ) EEPROM_CRASH_DET , 0x00 ) ;
CrashDetectMenu = 0 ;
}
void crashdet_stop_and_save_print ( )
{
stop_and_save_print_to_ram ( 10 , 0 ) ; //XY - no change, Z 10mm up, E - no change
}
void crashdet_restore_print_and_continue ( )
{
restore_print_from_ram_and_continue ( 0 ) ; //XYZ = orig, E - no change
// babystep_apply();
}
void crashdet_stop_and_save_print2 ( )
{
cli ( ) ;
planner_abort_hard ( ) ; //abort printing
cmdqueue_reset ( ) ; //empty cmdqueue
card . sdprinting = false ;
card . closefile ( ) ;
sei ( ) ;
}
2017-11-22 07:41:52 +00:00
void crashdet_detected ( )
{
2017-12-12 22:37:31 +00:00
// printf("CRASH_DETECTED");
2017-11-22 07:41:52 +00:00
/* while (!is_buffer_empty())
{
process_commands ( ) ;
cmdqueue_pop_front ( ) ;
} */
st_synchronize ( ) ;
lcd_update_enable ( true ) ;
lcd_implementation_clear ( ) ;
lcd_update ( 2 ) ;
// Increment crash counter
uint8_t crash_count = eeprom_read_byte ( ( uint8_t * ) EEPROM_CRASH_COUNT ) ;
crash_count + + ;
eeprom_update_byte ( ( uint8_t * ) EEPROM_CRASH_COUNT , crash_count ) ;
# ifdef AUTOMATIC_RECOVERY_AFTER_CRASH
bool yesno = true ;
# else
bool yesno = lcd_show_fullscreen_message_yes_no_and_wait_P ( MSG_CRASH_DETECTED , false ) ;
# endif
lcd_update_enable ( true ) ;
lcd_update ( 2 ) ;
lcd_setstatuspgm ( WELCOME_MSG ) ;
if ( yesno )
{
enquecommand_P ( PSTR ( " G28 X " ) ) ;
enquecommand_P ( PSTR ( " G28 Y " ) ) ;
enquecommand_P ( PSTR ( " CRASH_RECOVER " ) ) ;
}
else
{
enquecommand_P ( PSTR ( " CRASH_CANCEL " ) ) ;
}
}
void crashdet_recover ( )
{
crashdet_restore_print_and_continue ( ) ;
tmc2130_sg_stop_on_crash = true ;
}
void crashdet_cancel ( )
{
card . sdprinting = false ;
card . closefile ( ) ;
tmc2130_sg_stop_on_crash = true ;
}
2017-10-27 15:07:02 +00:00
# ifdef MESH_BED_LEVELING
enum MeshLevelingState { MeshReport , MeshStart , MeshNext , MeshSet } ;
# endif
// Factory reset function
// This function is used to erase parts or whole EEPROM memory which is used for storing calibration and and so on.
// Level input parameter sets depth of reset
// Quiet parameter masks all waitings for user interact.
int er_progress = 0 ;
void factory_reset ( char level , bool quiet )
{
lcd_implementation_clear ( ) ;
int cursor_pos = 0 ;
switch ( level ) {
// Level 0: Language reset
case 0 :
WRITE ( BEEPER , HIGH ) ;
_delay_ms ( 100 ) ;
WRITE ( BEEPER , LOW ) ;
lcd_force_language_selection ( ) ;
break ;
//Level 1: Reset statistics
case 1 :
WRITE ( BEEPER , HIGH ) ;
_delay_ms ( 100 ) ;
WRITE ( BEEPER , LOW ) ;
eeprom_update_dword ( ( uint32_t * ) EEPROM_TOTALTIME , 0 ) ;
eeprom_update_dword ( ( uint32_t * ) EEPROM_FILAMENTUSED , 0 ) ;
2017-12-12 22:37:31 +00:00
eeprom_update_byte ( ( uint8_t * ) EEPROM_POWER_COUNT , 0 ) ;
eeprom_update_byte ( ( uint8_t * ) EEPROM_CRASH_COUNT , 0 ) ;
eeprom_update_byte ( ( uint8_t * ) EEPROM_FERROR_COUNT , 0 ) ;
2017-10-27 15:07:02 +00:00
lcd_menu_statistics ( ) ;
break ;
// Level 2: Prepare for shipping
case 2 :
//lcd_printPGM(PSTR("Factory RESET"));
//lcd_print_at_PGM(1,2,PSTR("Shipping prep"));
// Force language selection at the next boot up.
lcd_force_language_selection ( ) ;
// Force the "Follow calibration flow" message at the next boot up.
calibration_status_store ( CALIBRATION_STATUS_Z_CALIBRATION ) ;
2017-12-12 18:17:37 +00:00
eeprom_write_byte ( ( uint8_t * ) EEPROM_WIZARD_ACTIVE , 1 ) ; //run wizard
2017-10-27 15:07:02 +00:00
farm_no = 0 ;
farm_mode = = false ;
eeprom_update_byte ( ( uint8_t * ) EEPROM_FARM_MODE , farm_mode ) ;
EEPROM_save_B ( EEPROM_FARM_NUMBER , & farm_no ) ;
WRITE ( BEEPER , HIGH ) ;
_delay_ms ( 100 ) ;
WRITE ( BEEPER , LOW ) ;
//_delay_ms(2000);
break ;
// Level 3: erase everything, whole EEPROM will be set to 0xFF
case 3 :
lcd_printPGM ( PSTR ( " Factory RESET " ) ) ;
lcd_print_at_PGM ( 1 , 2 , PSTR ( " ERASING all data " ) ) ;
WRITE ( BEEPER , HIGH ) ;
_delay_ms ( 100 ) ;
WRITE ( BEEPER , LOW ) ;
er_progress = 0 ;
lcd_print_at_PGM ( 3 , 3 , PSTR ( " " ) ) ;
lcd_implementation_print_at ( 3 , 3 , er_progress ) ;
// Erase EEPROM
for ( int i = 0 ; i < 4096 ; i + + ) {
eeprom_write_byte ( ( uint8_t * ) i , 0xFF ) ;
if ( i % 41 = = 0 ) {
er_progress + + ;
lcd_print_at_PGM ( 3 , 3 , PSTR ( " " ) ) ;
lcd_implementation_print_at ( 3 , 3 , er_progress ) ;
lcd_printPGM ( PSTR ( " % " ) ) ;
}
}
break ;
case 4 :
bowden_menu ( ) ;
break ;
default :
break ;
}
}
2017-11-20 19:09:54 +00:00
# include "LiquidCrystal.h"
extern LiquidCrystal lcd ;
2017-10-27 15:07:02 +00:00
2017-11-20 19:09:54 +00:00
FILE _lcdout = { 0 } ;
int lcd_putchar ( char c , FILE * stream )
{
lcd . write ( c ) ;
return 0 ;
}
FILE _uartout = { 0 } ;
int uart_putchar ( char c , FILE * stream )
{
MYSERIAL . write ( c ) ;
return 0 ;
}
void lcd_splash ( )
{
// lcd_print_at_PGM(0, 1, PSTR(" Original Prusa "));
// lcd_print_at_PGM(0, 2, PSTR(" 3D Printers "));
// lcd.print_P(PSTR("\x1b[1;3HOriginal Prusa\x1b[2;4H3D Printers"));
2017-11-21 13:16:55 +00:00
fputs_P ( PSTR ( ESC_2J ESC_H ( 1 , 1 ) " Original Prusa i3 " ESC_H ( 3 , 2 ) " Prusa Research " ) , lcdout ) ;
2017-11-20 19:09:54 +00:00
}
2017-10-27 15:07:02 +00:00
// "Setup" function is called by the Arduino framework on startup.
// Before startup, the Timers-functions (PWM)/Analog RW and HardwareSerial provided by the Arduino-code
// are initialized by the main() routine provided by the Arduino framework.
void setup ( )
{
lcd_init ( ) ;
2017-11-20 19:09:54 +00:00
fdev_setup_stream ( lcdout , lcd_putchar , NULL , _FDEV_SETUP_WRITE ) ; //setup lcdout stream
lcd_splash ( ) ;
2017-10-27 15:07:02 +00:00
setup_killpin ( ) ;
setup_powerhold ( ) ;
farm_mode = eeprom_read_byte ( ( uint8_t * ) EEPROM_FARM_MODE ) ;
EEPROM_read_B ( EEPROM_FARM_NUMBER , & farm_no ) ;
if ( ( farm_mode = = 0xFF & & farm_no = = 0 ) | | ( farm_no = = 0xFFFF ) ) farm_mode = false ; //if farm_mode has not been stored to eeprom yet and farm number is set to zero or EEPROM is fresh, deactivate farm mode
if ( farm_no = = 0xFFFF ) farm_no = 0 ;
2017-12-08 15:56:06 +00:00
selectedSerialPort = eeprom_read_byte ( ( uint8_t * ) EEPROM_SECOND_SERIAL_ACTIVE ) ;
if ( selectedSerialPort = = 0xFF ) selectedSerialPort = 0 ;
2017-10-27 15:07:02 +00:00
if ( farm_mode )
{
prusa_statistics ( 8 ) ;
selectedSerialPort = 1 ;
}
MYSERIAL . begin ( BAUDRATE ) ;
2017-11-20 19:09:54 +00:00
fdev_setup_stream ( uartout , uart_putchar , NULL , _FDEV_SETUP_WRITE ) ; //setup uart out stream
stdout = uartout ;
2017-10-27 15:07:02 +00:00
SERIAL_PROTOCOLLNPGM ( " start " ) ;
SERIAL_ECHO_START ;
2017-11-27 13:43:56 +00:00
2017-10-27 15:07:02 +00:00
#if 0
SERIAL_ECHOLN ( " Reading eeprom from 0 to 100: start " ) ;
for ( int i = 0 ; i < 4096 ; + + i ) {
int b = eeprom_read_byte ( ( unsigned char * ) i ) ;
if ( b ! = 255 ) {
SERIAL_ECHO ( i ) ;
SERIAL_ECHO ( " : " ) ;
SERIAL_ECHO ( b ) ;
SERIAL_ECHOLN ( " " ) ;
}
}
SERIAL_ECHOLN ( " Reading eeprom from 0 to 100: done " ) ;
# endif
// Check startup - does nothing if bootloader sets MCUSR to 0
byte mcu = MCUSR ;
2017-11-27 13:43:56 +00:00
/* if (mcu & 1) SERIAL_ECHOLNRPGM(MSG_POWERUP);
2017-10-27 15:07:02 +00:00
if ( mcu & 2 ) SERIAL_ECHOLNRPGM ( MSG_EXTERNAL_RESET ) ;
if ( mcu & 4 ) SERIAL_ECHOLNRPGM ( MSG_BROWNOUT_RESET ) ;
if ( mcu & 8 ) SERIAL_ECHOLNRPGM ( MSG_WATCHDOG_RESET ) ;
2017-11-27 13:43:56 +00:00
if ( mcu & 32 ) SERIAL_ECHOLNRPGM ( MSG_SOFTWARE_RESET ) ; */
if ( mcu & 1 ) puts_P ( MSG_POWERUP ) ;
if ( mcu & 2 ) puts_P ( MSG_EXTERNAL_RESET ) ;
if ( mcu & 4 ) puts_P ( MSG_BROWNOUT_RESET ) ;
if ( mcu & 8 ) puts_P ( MSG_WATCHDOG_RESET ) ;
if ( mcu & 32 ) puts_P ( MSG_SOFTWARE_RESET ) ;
2017-10-27 15:07:02 +00:00
MCUSR = 0 ;
//SERIAL_ECHORPGM(MSG_MARLIN);
//SERIAL_ECHOLNRPGM(VERSION_STRING);
# ifdef STRING_VERSION_CONFIG_H
# ifdef STRING_CONFIG_H_AUTHOR
SERIAL_ECHO_START ;
SERIAL_ECHORPGM ( MSG_CONFIGURATION_VER ) ;
SERIAL_ECHOPGM ( STRING_VERSION_CONFIG_H ) ;
SERIAL_ECHORPGM ( MSG_AUTHOR ) ;
SERIAL_ECHOLNPGM ( STRING_CONFIG_H_AUTHOR ) ;
SERIAL_ECHOPGM ( " Compiled: " ) ;
SERIAL_ECHOLNPGM ( __DATE__ ) ;
# endif
# endif
SERIAL_ECHO_START ;
SERIAL_ECHORPGM ( MSG_FREE_MEMORY ) ;
SERIAL_ECHO ( freeMemory ( ) ) ;
SERIAL_ECHORPGM ( MSG_PLANNER_BUFFER_BYTES ) ;
SERIAL_ECHOLN ( ( int ) sizeof ( block_t ) * BLOCK_BUFFER_SIZE ) ;
//lcd_update_enable(false); // why do we need this?? - andre
// loads data from EEPROM if available else uses defaults (and resets step acceleration rate)
Config_RetrieveSettings ( EEPROM_OFFSET ) ;
SdFatUtil : : set_stack_guard ( ) ; //writes magic number at the end of static variables to protect against overwriting static memory by stack
2017-11-20 19:09:54 +00:00
2017-10-27 15:07:02 +00:00
tp_init ( ) ; // Initialize temperature loop
2017-11-20 19:09:54 +00:00
lcd_splash ( ) ; // we need to do this again, because tp_init() kills lcd
2017-10-27 15:07:02 +00:00
plan_init ( ) ; // Initialize planner;
watchdog_init ( ) ;
# ifdef TMC2130
uint8_t silentMode = eeprom_read_byte ( ( uint8_t * ) EEPROM_SILENT ) ;
tmc2130_mode = silentMode ? TMC2130_MODE_SILENT : TMC2130_MODE_NORMAL ;
uint8_t crashdet = eeprom_read_byte ( ( uint8_t * ) EEPROM_CRASH_DET ) ;
if ( crashdet )
{
crashdet_enable ( ) ;
MYSERIAL . println ( " CrashDetect ENABLED! " ) ;
}
else
{
crashdet_disable ( ) ;
MYSERIAL . println ( " CrashDetect DISABLED " ) ;
}
# endif //TMC2130
# ifdef PAT9125
2017-11-28 21:44:58 +00:00
int pat9125 = pat9125_init ( PAT9125_XRES , PAT9125_YRES ) ;
printf_P ( PSTR ( " PAT9125_init:%d \n " ) , pat9125 ) ;
2017-10-27 15:07:02 +00:00
uint8_t fsensor = eeprom_read_byte ( ( uint8_t * ) EEPROM_FSENSOR ) ;
2017-12-11 17:17:25 +00:00
if ( ! pat9125 )
{
fsensor = 0 ; //disable sensor
fsensor_not_responding = true ;
}
2017-11-28 21:44:58 +00:00
puts_P ( PSTR ( " FSensor " ) ) ;
2017-10-27 15:07:02 +00:00
if ( fsensor )
{
2017-11-28 21:44:58 +00:00
puts_P ( PSTR ( " ENABLED \n " ) ) ;
2017-10-27 15:07:02 +00:00
fsensor_enable ( ) ;
}
else
{
2017-11-28 21:44:58 +00:00
puts_P ( PSTR ( " DISABLED \n " ) ) ;
2017-10-27 15:07:02 +00:00
fsensor_disable ( ) ;
}
# endif //PAT9125
2017-11-20 19:09:54 +00:00
2017-10-27 15:07:02 +00:00
st_init ( ) ; // Initialize stepper, this enables interrupts!
setup_photpin ( ) ;
2017-11-20 19:09:54 +00:00
2017-10-27 15:07:02 +00:00
servo_init ( ) ;
// Reset the machine correction matrix.
// It does not make sense to load the correction matrix until the machine is homed.
world2machine_reset ( ) ;
2017-11-15 14:09:29 +00:00
KEEPALIVE_STATE ( PAUSED_FOR_USER ) ;
2017-10-27 15:07:02 +00:00
if ( ! READ ( BTN_ENC ) )
{
_delay_ms ( 1000 ) ;
if ( ! READ ( BTN_ENC ) )
{
lcd_implementation_clear ( ) ;
lcd_printPGM ( PSTR ( " Factory RESET " ) ) ;
SET_OUTPUT ( BEEPER ) ;
WRITE ( BEEPER , HIGH ) ;
while ( ! READ ( BTN_ENC ) ) ;
WRITE ( BEEPER , LOW ) ;
_delay_ms ( 2000 ) ;
char level = reset_menu ( ) ;
factory_reset ( level , false ) ;
switch ( level ) {
case 0 : _delay_ms ( 0 ) ; break ;
case 1 : _delay_ms ( 0 ) ; break ;
case 2 : _delay_ms ( 0 ) ; break ;
case 3 : _delay_ms ( 0 ) ; break ;
}
// _delay_ms(100);
/*
# ifdef MESH_BED_LEVELING
_delay_ms ( 2000 ) ;
if ( ! READ ( BTN_ENC ) )
{
WRITE ( BEEPER , HIGH ) ;
_delay_ms ( 100 ) ;
WRITE ( BEEPER , LOW ) ;
_delay_ms ( 200 ) ;
WRITE ( BEEPER , HIGH ) ;
_delay_ms ( 100 ) ;
WRITE ( BEEPER , LOW ) ;
int _z = 0 ;
calibration_status_store ( CALIBRATION_STATUS_CALIBRATED ) ;
EEPROM_save_B ( EEPROM_BABYSTEP_X , & _z ) ;
EEPROM_save_B ( EEPROM_BABYSTEP_Y , & _z ) ;
EEPROM_save_B ( EEPROM_BABYSTEP_Z , & _z ) ;
}
else
{
WRITE ( BEEPER , HIGH ) ;
_delay_ms ( 100 ) ;
WRITE ( BEEPER , LOW ) ;
}
# endif // mesh */
}
}
else
{
//_delay_ms(1000); // wait 1sec to display the splash screen // what's this and why do we need it?? - andre
}
# if defined(CONTROLLERFAN_PIN) && (CONTROLLERFAN_PIN > -1)
SET_OUTPUT ( CONTROLLERFAN_PIN ) ; //Set pin used for driver cooling fan
# endif
# if defined(LCD_PWM_PIN) && (LCD_PWM_PIN > -1)
SET_OUTPUT ( LCD_PWM_PIN ) ; //Set pin used for driver cooling fan
# endif
# ifdef DIGIPOT_I2C
digipot_i2c_init ( ) ;
# endif
setup_homepin ( ) ;
if ( 1 ) {
SERIAL_ECHOPGM ( " initial zsteps on power up: " ) ; MYSERIAL . println ( tmc2130_rd_MSCNT ( Z_TMC2130_CS ) ) ;
// try to run to zero phase before powering the Z motor.
// Move in negative direction
WRITE ( Z_DIR_PIN , INVERT_Z_DIR ) ;
// Round the current micro-micro steps to micro steps.
for ( uint16_t phase = ( tmc2130_rd_MSCNT ( Z_TMC2130_CS ) + 8 ) > > 4 ; phase > 0 ; - - phase ) {
// Until the phase counter is reset to zero.
WRITE ( Z_STEP_PIN , ! INVERT_Z_STEP_PIN ) ;
delay ( 2 ) ;
WRITE ( Z_STEP_PIN , INVERT_Z_STEP_PIN ) ;
delay ( 2 ) ;
}
SERIAL_ECHOPGM ( " initial zsteps after reset: " ) ; MYSERIAL . println ( tmc2130_rd_MSCNT ( Z_TMC2130_CS ) ) ;
}
# if defined(Z_AXIS_ALWAYS_ON)
enable_z ( ) ;
# endif
farm_mode = eeprom_read_byte ( ( uint8_t * ) EEPROM_FARM_MODE ) ;
EEPROM_read_B ( EEPROM_FARM_NUMBER , & farm_no ) ;
if ( ( farm_mode = = 0xFF & & farm_no = = 0 ) | | ( farm_no = = 0xFFFF ) ) farm_mode = false ; //if farm_mode has not been stored to eeprom yet and farm number is set to zero or EEPROM is fresh, deactivate farm mode
if ( farm_no = = 0xFFFF ) farm_no = 0 ;
if ( farm_mode )
{
prusa_statistics ( 8 ) ;
}
// Enable Toshiba FlashAir SD card / WiFi enahanced card.
card . ToshibaFlashAir_enable ( eeprom_read_byte ( ( unsigned char * ) EEPROM_TOSHIBA_FLASH_AIR_COMPATIBLITY ) = = 1 ) ;
2017-12-13 21:58:34 +00:00
2017-10-27 15:07:02 +00:00
if ( eeprom_read_dword ( ( uint32_t * ) ( EEPROM_TOP - 4 ) ) = = 0x0ffffffff & &
eeprom_read_dword ( ( uint32_t * ) ( EEPROM_TOP - 8 ) ) = = 0x0ffffffff & &
eeprom_read_dword ( ( uint32_t * ) ( EEPROM_TOP - 12 ) ) = = 0x0ffffffff ) {
// Maiden startup. The firmware has been loaded and first started on a virgin RAMBo board,
// where all the EEPROM entries are set to 0x0ff.
// Once a firmware boots up, it forces at least a language selection, which changes
// EEPROM_LANG to number lower than 0x0ff.
// 1) Set a high power mode.
eeprom_write_byte ( ( uint8_t * ) EEPROM_SILENT , 0 ) ;
2017-11-07 15:49:04 +00:00
eeprom_write_byte ( ( uint8_t * ) EEPROM_WIZARD_ACTIVE , 1 ) ; //run wizard
2017-12-12 22:37:31 +00:00
2017-10-27 15:07:02 +00:00
}
2017-12-13 21:58:34 +00:00
// Force SD card update. Otherwise the SD card update is done from loop() on card.checkautostart(false),
// but this times out if a blocking dialog is shown in setup().
card . initsd ( ) ;
2017-12-12 22:37:31 +00:00
if ( eeprom_read_byte ( ( uint8_t * ) EEPROM_POWER_COUNT ) = = 0xff )
eeprom_write_byte ( ( uint8_t * ) EEPROM_POWER_COUNT , 0 ) ;
if ( eeprom_read_byte ( ( uint8_t * ) EEPROM_CRASH_COUNT ) = = 0xff )
eeprom_write_byte ( ( uint8_t * ) EEPROM_CRASH_COUNT , 0 ) ;
if ( eeprom_read_byte ( ( uint8_t * ) EEPROM_FERROR_COUNT ) = = 0xff )
eeprom_write_byte ( ( uint8_t * ) EEPROM_FERROR_COUNT , 0 ) ;
2017-10-27 15:07:02 +00:00
# ifdef SNMM
if ( eeprom_read_dword ( ( uint32_t * ) EEPROM_BOWDEN_LENGTH ) = = 0x0ffffffff ) { //bowden length used for SNMM
int _z = BOWDEN_LENGTH ;
for ( int i = 0 ; i < 4 ; i + + ) EEPROM_save_B ( EEPROM_BOWDEN_LENGTH + i * 2 , & _z ) ;
}
# endif
// In the future, somewhere here would one compare the current firmware version against the firmware version stored in the EEPROM.
// If they differ, an update procedure may need to be performed. At the end of this block, the current firmware version
// is being written into the EEPROM, so the update procedure will be triggered only once.
lang_selected = eeprom_read_byte ( ( uint8_t * ) EEPROM_LANG ) ;
if ( lang_selected > = LANG_NUM ) {
lcd_mylang ( ) ;
}
if ( eeprom_read_byte ( ( uint8_t * ) EEPROM_TEMP_CAL_ACTIVE ) = = 255 ) {
eeprom_write_byte ( ( uint8_t * ) EEPROM_TEMP_CAL_ACTIVE , 0 ) ;
temp_cal_active = false ;
} else temp_cal_active = eeprom_read_byte ( ( uint8_t * ) EEPROM_TEMP_CAL_ACTIVE ) ;
if ( eeprom_read_byte ( ( uint8_t * ) EEPROM_CALIBRATION_STATUS_PINDA ) = = 255 ) {
2017-11-27 06:09:53 +00:00
//eeprom_write_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 0);
eeprom_write_byte ( ( uint8_t * ) EEPROM_CALIBRATION_STATUS_PINDA , 1 ) ;
eeprom_write_word ( ( ( uint16_t * ) EEPROM_PROBE_TEMP_SHIFT ) + 0 , 8 ) ; //40C - 20um - 8usteps
eeprom_write_word ( ( ( uint16_t * ) EEPROM_PROBE_TEMP_SHIFT ) + 1 , 24 ) ; //45C - 60um - 24usteps
eeprom_write_word ( ( ( uint16_t * ) EEPROM_PROBE_TEMP_SHIFT ) + 2 , 48 ) ; //50C - 120um - 48usteps
eeprom_write_word ( ( ( uint16_t * ) EEPROM_PROBE_TEMP_SHIFT ) + 3 , 80 ) ; //55C - 200um - 80usteps
eeprom_write_word ( ( ( uint16_t * ) EEPROM_PROBE_TEMP_SHIFT ) + 4 , 120 ) ; //60C - 300um - 120usteps
2017-11-27 13:43:56 +00:00
eeprom_write_byte ( ( uint8_t * ) EEPROM_TEMP_CAL_ACTIVE , 1 ) ;
temp_cal_active = true ;
2017-10-27 15:07:02 +00:00
}
if ( eeprom_read_byte ( ( uint8_t * ) EEPROM_UVLO ) = = 255 ) {
eeprom_write_byte ( ( uint8_t * ) EEPROM_UVLO , 0 ) ;
}
2017-12-06 16:48:16 +00:00
if ( eeprom_read_byte ( ( uint8_t * ) EEPROM_SD_SORT ) = = 255 ) {
eeprom_write_byte ( ( uint8_t * ) EEPROM_SD_SORT , 0 ) ;
}
2017-10-27 15:07:02 +00:00
check_babystep ( ) ; //checking if Z babystep is in allowed range
setup_uvlo_interrupt ( ) ;
setup_fan_interrupt ( ) ;
fsensor_setup_interrupt ( ) ;
2017-11-07 15:49:04 +00:00
for ( int i = 0 ; i < 4 ; i + + ) EEPROM_read_B ( EEPROM_BOWDEN_LENGTH + i * 2 , & bowden_length [ i ] ) ;
2017-10-27 15:07:02 +00:00
# ifndef DEBUG_DISABLE_STARTMSGS
2017-11-07 15:49:04 +00:00
if ( eeprom_read_byte ( ( uint8_t * ) EEPROM_WIZARD_ACTIVE ) = = 1 ) {
2017-11-26 23:17:45 +00:00
lcd_wizard ( 0 ) ;
2017-11-07 15:49:04 +00:00
}
2017-11-27 01:03:42 +00:00
if ( eeprom_read_byte ( ( uint8_t * ) EEPROM_WIZARD_ACTIVE ) = = 0 ) { //dont show calibration status messages if wizard is currently active
2017-11-07 15:49:04 +00:00
if ( calibration_status ( ) = = CALIBRATION_STATUS_ASSEMBLED | |
calibration_status ( ) = = CALIBRATION_STATUS_UNKNOWN ) {
// Reset the babystepping values, so the printer will not move the Z axis up when the babystepping is enabled.
eeprom_update_word ( ( uint16_t * ) EEPROM_BABYSTEP_Z , 0 ) ;
// Show the message.
lcd_show_fullscreen_message_and_wait_P ( MSG_FOLLOW_CALIBRATION_FLOW ) ;
}
else if ( calibration_status ( ) = = CALIBRATION_STATUS_LIVE_ADJUST ) {
// Show the message.
lcd_show_fullscreen_message_and_wait_P ( MSG_BABYSTEP_Z_NOT_SET ) ;
lcd_update_enable ( true ) ;
}
else if ( calibration_status ( ) = = CALIBRATION_STATUS_CALIBRATED & & temp_cal_active = = true & & calibration_status_pinda ( ) = = false ) {
2017-11-27 17:30:16 +00:00
//lcd_show_fullscreen_message_and_wait_P(MSG_PINDA_NOT_CALIBRATED);
2017-11-07 15:49:04 +00:00
lcd_update_enable ( true ) ;
}
else if ( calibration_status ( ) = = CALIBRATION_STATUS_Z_CALIBRATION ) {
// Show the message.
lcd_show_fullscreen_message_and_wait_P ( MSG_FOLLOW_CALIBRATION_FLOW ) ;
}
2017-10-27 15:07:02 +00:00
}
2017-11-15 14:09:29 +00:00
KEEPALIVE_STATE ( IN_PROCESS ) ;
2017-10-27 15:07:02 +00:00
# endif //DEBUG_DISABLE_STARTMSGS
lcd_update_enable ( true ) ;
lcd_implementation_clear ( ) ;
lcd_update ( 2 ) ;
// Store the currently running firmware into an eeprom,
// so the next time the firmware gets updated, it will know from which version it has been updated.
update_current_firmware_version_to_eeprom ( ) ;
2017-11-15 14:09:29 +00:00
2017-10-27 15:07:02 +00:00
if ( eeprom_read_byte ( ( uint8_t * ) EEPROM_UVLO ) = = 1 ) { //previous print was terminated by UVLO
/*
if ( lcd_show_fullscreen_message_yes_no_and_wait_P ( MSG_RECOVER_PRINT , false ) ) recover_print ( ) ;
else {
eeprom_update_byte ( ( uint8_t * ) EEPROM_UVLO , 0 ) ;
lcd_update_enable ( true ) ;
lcd_update ( 2 ) ;
lcd_setstatuspgm ( WELCOME_MSG ) ;
}
*/
manage_heater ( ) ; // Update temperatures
# ifdef DEBUG_UVLO_AUTOMATIC_RECOVER
MYSERIAL . println ( " Power panic detected! " ) ;
MYSERIAL . print ( " Current bed temp: " ) ;
MYSERIAL . println ( degBed ( ) ) ;
MYSERIAL . print ( " Saved bed temp: " ) ;
MYSERIAL . println ( ( float ) eeprom_read_byte ( ( uint8_t * ) EEPROM_UVLO_TARGET_BED ) ) ;
# endif
if ( degBed ( ) > ( ( float ) eeprom_read_byte ( ( uint8_t * ) EEPROM_UVLO_TARGET_BED ) - AUTOMATIC_UVLO_BED_TEMP_OFFSET ) ) {
# ifdef DEBUG_UVLO_AUTOMATIC_RECOVER
MYSERIAL . println ( " Automatic recovery! " ) ;
# endif
recover_print ( 1 ) ;
}
else {
# ifdef DEBUG_UVLO_AUTOMATIC_RECOVER
MYSERIAL . println ( " Normal recovery! " ) ;
# endif
if ( lcd_show_fullscreen_message_yes_no_and_wait_P ( MSG_RECOVER_PRINT , false ) ) recover_print ( 0 ) ;
else {
eeprom_update_byte ( ( uint8_t * ) EEPROM_UVLO , 0 ) ;
lcd_update_enable ( true ) ;
lcd_update ( 2 ) ;
lcd_setstatuspgm ( WELCOME_MSG ) ;
}
}
}
2017-11-15 14:09:29 +00:00
KEEPALIVE_STATE ( NOT_BUSY ) ;
2017-11-24 20:53:35 +00:00
wdt_enable ( WDTO_4S ) ;
2017-10-27 15:07:02 +00:00
}
void trace ( ) ;
# define CHUNK_SIZE 64 // bytes
# define SAFETY_MARGIN 1
char chunk [ CHUNK_SIZE + SAFETY_MARGIN ] ;
int chunkHead = 0 ;
int serial_read_stream ( ) {
setTargetHotend ( 0 , 0 ) ;
setTargetBed ( 0 ) ;
lcd_implementation_clear ( ) ;
lcd_printPGM ( PSTR ( " Upload in progress " ) ) ;
// first wait for how many bytes we will receive
uint32_t bytesToReceive ;
// receive the four bytes
char bytesToReceiveBuffer [ 4 ] ;
for ( int i = 0 ; i < 4 ; i + + ) {
int data ;
while ( ( data = MYSERIAL . read ( ) ) = = - 1 ) { } ;
bytesToReceiveBuffer [ i ] = data ;
}
// make it a uint32
memcpy ( & bytesToReceive , & bytesToReceiveBuffer , 4 ) ;
// we're ready, notify the sender
MYSERIAL . write ( ' + ' ) ;
// lock in the routine
uint32_t receivedBytes = 0 ;
while ( prusa_sd_card_upload ) {
int i ;
for ( i = 0 ; i < CHUNK_SIZE ; i + + ) {
int data ;
// check if we're not done
if ( receivedBytes = = bytesToReceive ) {
break ;
}
// read the next byte
while ( ( data = MYSERIAL . read ( ) ) = = - 1 ) { } ;
receivedBytes + + ;
// save it to the chunk
chunk [ i ] = data ;
}
// write the chunk to SD
card . write_command_no_newline ( & chunk [ 0 ] ) ;
// notify the sender we're ready for more data
MYSERIAL . write ( ' + ' ) ;
// for safety
manage_heater ( ) ;
// check if we're done
if ( receivedBytes = = bytesToReceive ) {
trace ( ) ; // beep
card . closefile ( ) ;
prusa_sd_card_upload = false ;
SERIAL_PROTOCOLLNRPGM ( MSG_FILE_SAVED ) ;
return 0 ;
}
}
}
2017-11-15 14:09:29 +00:00
# ifdef HOST_KEEPALIVE_FEATURE
/**
* Output a " busy " message at regular intervals
* while the machine is not accepting commands .
*/
void host_keepalive ( ) {
if ( farm_mode ) return ;
long ms = millis ( ) ;
if ( host_keepalive_interval & & busy_state ! = NOT_BUSY ) {
if ( ( ms - prev_busy_signal_ms ) < ( long ) ( 1000L * host_keepalive_interval ) ) return ;
switch ( busy_state ) {
case IN_HANDLER :
case IN_PROCESS :
SERIAL_ECHO_START ;
SERIAL_ECHOLNPGM ( " busy: processing " ) ;
break ;
case PAUSED_FOR_USER :
SERIAL_ECHO_START ;
SERIAL_ECHOLNPGM ( " busy: paused for user " ) ;
break ;
case PAUSED_FOR_INPUT :
SERIAL_ECHO_START ;
SERIAL_ECHOLNPGM ( " busy: paused for input " ) ;
break ;
default :
break ;
}
}
prev_busy_signal_ms = ms ;
}
# endif
2017-10-27 15:07:02 +00:00
// The loop() function is called in an endless loop by the Arduino framework from the default main() routine.
// Before loop(), the setup() function is called by the main() routine.
void loop ( )
{
2017-11-15 14:09:29 +00:00
KEEPALIVE_STATE ( NOT_BUSY ) ;
2017-10-27 15:07:02 +00:00
bool stack_integrity = true ;
if ( usb_printing_counter > 0 & & millis ( ) - _usb_timer > 1000 )
{
is_usb_printing = true ;
usb_printing_counter - - ;
_usb_timer = millis ( ) ;
}
if ( usb_printing_counter = = 0 )
{
is_usb_printing = false ;
}
if ( prusa_sd_card_upload )
{
//we read byte-by byte
serial_read_stream ( ) ;
} else
{
get_command ( ) ;
# ifdef SDSUPPORT
card . checkautostart ( false ) ;
# endif
if ( buflen )
{
cmdbuffer_front_already_processed = false ;
# ifdef SDSUPPORT
if ( card . saving )
{
// Saving a G-code file onto an SD-card is in progress.
// Saving starts with M28, saving until M29 is seen.
if ( strstr_P ( CMDBUFFER_CURRENT_STRING , PSTR ( " M29 " ) ) = = NULL ) {
card . write_command ( CMDBUFFER_CURRENT_STRING ) ;
if ( card . logging )
process_commands ( ) ;
else
SERIAL_PROTOCOLLNRPGM ( MSG_OK ) ;
} else {
card . closefile ( ) ;
SERIAL_PROTOCOLLNRPGM ( MSG_FILE_SAVED ) ;
}
} else {
process_commands ( ) ;
}
# else
process_commands ( ) ;
# endif //SDSUPPORT
if ( ! cmdbuffer_front_already_processed & & buflen )
{
cli ( ) ;
union {
struct {
char lo ;
char hi ;
} lohi ;
uint16_t value ;
} sdlen ;
sdlen . value = 0 ;
if ( CMDBUFFER_CURRENT_TYPE = = CMDBUFFER_CURRENT_TYPE_SDCARD ) {
sdlen . lohi . lo = cmdbuffer [ bufindr + 1 ] ;
sdlen . lohi . hi = cmdbuffer [ bufindr + 2 ] ;
}
cmdqueue_pop_front ( ) ;
planner_add_sd_length ( sdlen . value ) ;
sei ( ) ;
}
2017-11-15 14:09:29 +00:00
host_keepalive ( ) ;
2017-10-27 15:07:02 +00:00
}
}
//check heater every n milliseconds
manage_heater ( ) ;
isPrintPaused ? manage_inactivity ( true ) : manage_inactivity ( false ) ;
checkHitEndstops ( ) ;
lcd_update ( ) ;
# ifdef PAT9125
fsensor_update ( ) ;
# endif //PAT9125
# ifdef TMC2130
tmc2130_check_overtemp ( ) ;
if ( tmc2130_sg_crash )
{
tmc2130_sg_crash = false ;
// crashdet_stop_and_save_print();
2017-11-22 07:41:52 +00:00
enquecommand_P ( ( PSTR ( " CRASH_DETECTED " ) ) ) ;
2017-10-27 15:07:02 +00:00
}
# endif //TMC2130
2017-11-15 14:09:29 +00:00
2017-10-27 15:07:02 +00:00
}
# define DEFINE_PGM_READ_ANY(type, reader) \
static inline type pgm_read_any ( const type * p ) \
{ return pgm_read_ # # reader # # _near ( p ) ; }
DEFINE_PGM_READ_ANY ( float , float ) ;
DEFINE_PGM_READ_ANY ( signed char , byte ) ;
# define XYZ_CONSTS_FROM_CONFIG(type, array, CONFIG) \
static const PROGMEM type array # # _P [ 3 ] = \
{ X_ # # CONFIG , Y_ # # CONFIG , Z_ # # CONFIG } ; \
static inline type array ( int axis ) \
{ return pgm_read_any ( & array # # _P [ axis ] ) ; } \
type array # # _ext ( int axis ) \
{ return pgm_read_any ( & array # # _P [ axis ] ) ; }
XYZ_CONSTS_FROM_CONFIG ( float , base_min_pos , MIN_POS ) ;
XYZ_CONSTS_FROM_CONFIG ( float , base_max_pos , MAX_POS ) ;
XYZ_CONSTS_FROM_CONFIG ( float , base_home_pos , HOME_POS ) ;
XYZ_CONSTS_FROM_CONFIG ( float , max_length , MAX_LENGTH ) ;
XYZ_CONSTS_FROM_CONFIG ( float , home_retract_mm , HOME_RETRACT_MM ) ;
XYZ_CONSTS_FROM_CONFIG ( signed char , home_dir , HOME_DIR ) ;
static void axis_is_at_home ( int axis ) {
current_position [ axis ] = base_home_pos ( axis ) + add_homing [ axis ] ;
min_pos [ axis ] = base_min_pos ( axis ) + add_homing [ axis ] ;
max_pos [ axis ] = base_max_pos ( axis ) + add_homing [ axis ] ;
}
inline void set_current_to_destination ( ) { memcpy ( current_position , destination , sizeof ( current_position ) ) ; }
inline void set_destination_to_current ( ) { memcpy ( destination , current_position , sizeof ( destination ) ) ; }
static void setup_for_endstop_move ( bool enable_endstops_now = true ) {
saved_feedrate = feedrate ;
saved_feedmultiply = feedmultiply ;
feedmultiply = 100 ;
previous_millis_cmd = millis ( ) ;
enable_endstops ( enable_endstops_now ) ;
}
static void clean_up_after_endstop_move ( ) {
# ifdef ENDSTOPS_ONLY_FOR_HOMING
enable_endstops ( false ) ;
# endif
feedrate = saved_feedrate ;
feedmultiply = saved_feedmultiply ;
previous_millis_cmd = millis ( ) ;
}
# ifdef ENABLE_AUTO_BED_LEVELING
# ifdef AUTO_BED_LEVELING_GRID
static void set_bed_level_equation_lsq ( double * plane_equation_coefficients )
{
vector_3 planeNormal = vector_3 ( - plane_equation_coefficients [ 0 ] , - plane_equation_coefficients [ 1 ] , 1 ) ;
planeNormal . debug ( " planeNormal " ) ;
plan_bed_level_matrix = matrix_3x3 : : create_look_at ( planeNormal ) ;
//bedLevel.debug("bedLevel");
//plan_bed_level_matrix.debug("bed level before");
//vector_3 uncorrected_position = plan_get_position_mm();
//uncorrected_position.debug("position before");
vector_3 corrected_position = plan_get_position ( ) ;
// corrected_position.debug("position after");
current_position [ X_AXIS ] = corrected_position . x ;
current_position [ Y_AXIS ] = corrected_position . y ;
current_position [ Z_AXIS ] = corrected_position . z ;
// put the bed at 0 so we don't go below it.
current_position [ Z_AXIS ] = zprobe_zoffset ; // in the lsq we reach here after raising the extruder due to the loop structure
plan_set_position ( current_position [ X_AXIS ] , current_position [ Y_AXIS ] , current_position [ Z_AXIS ] , current_position [ E_AXIS ] ) ;
}
# else // not AUTO_BED_LEVELING_GRID
static void set_bed_level_equation_3pts ( float z_at_pt_1 , float z_at_pt_2 , float z_at_pt_3 ) {
plan_bed_level_matrix . set_to_identity ( ) ;
vector_3 pt1 = vector_3 ( ABL_PROBE_PT_1_X , ABL_PROBE_PT_1_Y , z_at_pt_1 ) ;
vector_3 pt2 = vector_3 ( ABL_PROBE_PT_2_X , ABL_PROBE_PT_2_Y , z_at_pt_2 ) ;
vector_3 pt3 = vector_3 ( ABL_PROBE_PT_3_X , ABL_PROBE_PT_3_Y , z_at_pt_3 ) ;
vector_3 from_2_to_1 = ( pt1 - pt2 ) . get_normal ( ) ;
vector_3 from_2_to_3 = ( pt3 - pt2 ) . get_normal ( ) ;
vector_3 planeNormal = vector_3 : : cross ( from_2_to_1 , from_2_to_3 ) . get_normal ( ) ;
planeNormal = vector_3 ( planeNormal . x , planeNormal . y , abs ( planeNormal . z ) ) ;
plan_bed_level_matrix = matrix_3x3 : : create_look_at ( planeNormal ) ;
vector_3 corrected_position = plan_get_position ( ) ;
current_position [ X_AXIS ] = corrected_position . x ;
current_position [ Y_AXIS ] = corrected_position . y ;
current_position [ Z_AXIS ] = corrected_position . z ;
// put the bed at 0 so we don't go below it.
current_position [ Z_AXIS ] = zprobe_zoffset ;
plan_set_position ( current_position [ X_AXIS ] , current_position [ Y_AXIS ] , current_position [ Z_AXIS ] , current_position [ E_AXIS ] ) ;
}
# endif // AUTO_BED_LEVELING_GRID
static void run_z_probe ( ) {
plan_bed_level_matrix . set_to_identity ( ) ;
feedrate = homing_feedrate [ Z_AXIS ] ;
// move down until you find the bed
float zPosition = - 10 ;
plan_buffer_line ( current_position [ X_AXIS ] , current_position [ Y_AXIS ] , zPosition , current_position [ E_AXIS ] , feedrate / 60 , active_extruder ) ;
st_synchronize ( ) ;
// we have to let the planner know where we are right now as it is not where we said to go.
zPosition = st_get_position_mm ( Z_AXIS ) ;
plan_set_position ( current_position [ X_AXIS ] , current_position [ Y_AXIS ] , zPosition , current_position [ E_AXIS ] ) ;
// move up the retract distance
zPosition + = home_retract_mm ( Z_AXIS ) ;
plan_buffer_line ( current_position [ X_AXIS ] , current_position [ Y_AXIS ] , zPosition , current_position [ E_AXIS ] , feedrate / 60 , active_extruder ) ;
st_synchronize ( ) ;
// move back down slowly to find bed
feedrate = homing_feedrate [ Z_AXIS ] / 4 ;
zPosition - = home_retract_mm ( Z_AXIS ) * 2 ;
plan_buffer_line ( current_position [ X_AXIS ] , current_position [ Y_AXIS ] , zPosition , current_position [ E_AXIS ] , feedrate / 60 , active_extruder ) ;
st_synchronize ( ) ;
current_position [ Z_AXIS ] = st_get_position_mm ( Z_AXIS ) ;
// make sure the planner knows where we are as it may be a bit different than we last said to move to
plan_set_position ( current_position [ X_AXIS ] , current_position [ Y_AXIS ] , current_position [ Z_AXIS ] , current_position [ E_AXIS ] ) ;
}
static void do_blocking_move_to ( float x , float y , float z ) {
float oldFeedRate = feedrate ;
feedrate = homing_feedrate [ Z_AXIS ] ;
current_position [ Z_AXIS ] = z ;
plan_buffer_line ( current_position [ X_AXIS ] , current_position [ Y_AXIS ] , current_position [ Z_AXIS ] , current_position [ E_AXIS ] , feedrate / 60 , active_extruder ) ;
st_synchronize ( ) ;
feedrate = XY_TRAVEL_SPEED ;
current_position [ X_AXIS ] = x ;
current_position [ Y_AXIS ] = y ;
plan_buffer_line ( current_position [ X_AXIS ] , current_position [ Y_AXIS ] , current_position [ Z_AXIS ] , current_position [ E_AXIS ] , feedrate / 60 , active_extruder ) ;
st_synchronize ( ) ;
feedrate = oldFeedRate ;
}
static void do_blocking_move_relative ( float offset_x , float offset_y , float offset_z ) {
do_blocking_move_to ( current_position [ X_AXIS ] + offset_x , current_position [ Y_AXIS ] + offset_y , current_position [ Z_AXIS ] + offset_z ) ;
}
/// Probe bed height at position (x,y), returns the measured z value
static float probe_pt ( float x , float y , float z_before ) {
// move to right place
do_blocking_move_to ( current_position [ X_AXIS ] , current_position [ Y_AXIS ] , z_before ) ;
do_blocking_move_to ( x - X_PROBE_OFFSET_FROM_EXTRUDER , y - Y_PROBE_OFFSET_FROM_EXTRUDER , current_position [ Z_AXIS ] ) ;
run_z_probe ( ) ;
float measured_z = current_position [ Z_AXIS ] ;
SERIAL_PROTOCOLRPGM ( MSG_BED ) ;
SERIAL_PROTOCOLPGM ( " x: " ) ;
SERIAL_PROTOCOL ( x ) ;
SERIAL_PROTOCOLPGM ( " y: " ) ;
SERIAL_PROTOCOL ( y ) ;
SERIAL_PROTOCOLPGM ( " z: " ) ;
SERIAL_PROTOCOL ( measured_z ) ;
SERIAL_PROTOCOLPGM ( " \n " ) ;
return measured_z ;
}
# endif // #ifdef ENABLE_AUTO_BED_LEVELING
# ifdef LIN_ADVANCE
/**
* M900 : Set and / or Get advance K factor and WH / D ratio
*
* K < factor > Set advance K factor
* R < ratio > Set ratio directly ( overrides WH / D )
* W < width > H < height > D < diam > Set ratio from WH / D
*/
inline void gcode_M900 ( ) {
st_synchronize ( ) ;
const float newK = code_seen ( ' K ' ) ? code_value_float ( ) : - 1 ;
if ( newK > = 0 ) extruder_advance_k = newK ;
float newR = code_seen ( ' R ' ) ? code_value_float ( ) : - 1 ;
if ( newR < 0 ) {
const float newD = code_seen ( ' D ' ) ? code_value_float ( ) : - 1 ,
newW = code_seen ( ' W ' ) ? code_value_float ( ) : - 1 ,
newH = code_seen ( ' H ' ) ? code_value_float ( ) : - 1 ;
if ( newD > = 0 & & newW > = 0 & & newH > = 0 )
newR = newD ? ( newW * newH ) / ( sq ( newD * 0.5 ) * M_PI ) : 0 ;
}
if ( newR > = 0 ) advance_ed_ratio = newR ;
SERIAL_ECHO_START ;
SERIAL_ECHOPGM ( " Advance K= " ) ;
SERIAL_ECHOLN ( extruder_advance_k ) ;
SERIAL_ECHOPGM ( " E/D= " ) ;
const float ratio = advance_ed_ratio ;
if ( ratio ) SERIAL_ECHOLN ( ratio ) ; else SERIAL_ECHOLNPGM ( " Auto " ) ;
}
# endif // LIN_ADVANCE
2017-12-06 13:55:53 +00:00
bool check_commands ( ) {
bool end_command_found = false ;
while ( buflen )
{
if ( ( code_seen ( " M84 " ) ) | | ( code_seen ( " M 84 " ) ) ) end_command_found = true ;
if ( ! cmdbuffer_front_already_processed )
cmdqueue_pop_front ( ) ;
cmdbuffer_front_already_processed = false ;
}
return end_command_found ;
}
2017-10-27 15:07:02 +00:00
# ifdef TMC2130
bool calibrate_z_auto ( )
{
2017-10-27 14:12:37 +00:00
//lcd_display_message_fullscreen_P(MSG_CALIBRATE_Z_AUTO);
2017-11-12 10:30:06 +00:00
lcd_implementation_clear ( ) ;
lcd_print_at_PGM ( 0 , 1 , MSG_CALIBRATE_Z_AUTO ) ;
2017-10-27 15:07:02 +00:00
bool endstops_enabled = enable_endstops ( true ) ;
int axis_up_dir = - home_dir ( Z_AXIS ) ;
tmc2130_home_enter ( Z_AXIS_MASK ) ;
current_position [ Z_AXIS ] = 0 ;
plan_set_position ( current_position [ X_AXIS ] , current_position [ Y_AXIS ] , current_position [ Z_AXIS ] , current_position [ E_AXIS ] ) ;
set_destination_to_current ( ) ;
destination [ Z_AXIS ] + = ( 1.1 * max_length ( Z_AXIS ) * axis_up_dir ) ;
feedrate = homing_feedrate [ Z_AXIS ] ;
plan_buffer_line ( destination [ X_AXIS ] , destination [ Y_AXIS ] , destination [ Z_AXIS ] , destination [ E_AXIS ] , feedrate / 60 , active_extruder ) ;
st_synchronize ( ) ;
// current_position[axis] = 0;
// plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
tmc2130_home_exit ( ) ;
enable_endstops ( false ) ;
current_position [ Z_AXIS ] = 0 ;
plan_set_position ( current_position [ X_AXIS ] , current_position [ Y_AXIS ] , current_position [ Z_AXIS ] , current_position [ E_AXIS ] ) ;
set_destination_to_current ( ) ;
destination [ Z_AXIS ] + = 10 * axis_up_dir ; //10mm up
feedrate = homing_feedrate [ Z_AXIS ] / 2 ;
plan_buffer_line ( destination [ X_AXIS ] , destination [ Y_AXIS ] , destination [ Z_AXIS ] , destination [ E_AXIS ] , feedrate / 60 , active_extruder ) ;
st_synchronize ( ) ;
enable_endstops ( endstops_enabled ) ;
2017-11-12 10:30:06 +00:00
current_position [ Z_AXIS ] = Z_MAX_POS + 2.0 ;
2017-10-27 15:07:02 +00:00
plan_set_position ( current_position [ X_AXIS ] , current_position [ Y_AXIS ] , current_position [ Z_AXIS ] , current_position [ E_AXIS ] ) ;
return true ;
}
# endif //TMC2130
void homeaxis ( int axis )
{
bool endstops_enabled = enable_endstops ( true ) ; //RP: endstops should be allways enabled durring homming
# define HOMEAXIS_DO(LETTER) \
( ( LETTER # # _MIN_PIN > - 1 & & LETTER # # _HOME_DIR = = - 1 ) | | ( LETTER # # _MAX_PIN > - 1 & & LETTER # # _HOME_DIR = = 1 ) )
if ( ( axis = = X_AXIS ) ? HOMEAXIS_DO ( X ) : ( axis = = Y_AXIS ) ? HOMEAXIS_DO ( Y ) : 0 )
{
int axis_home_dir = home_dir ( axis ) ;
feedrate = homing_feedrate [ axis ] ;
# ifdef TMC2130
tmc2130_home_enter ( X_AXIS_MASK < < axis ) ;
# endif
// Move right a bit, so that the print head does not touch the left end position,
// and the following left movement has a chance to achieve the required velocity
// for the stall guard to work.
current_position [ axis ] = 0 ;
plan_set_position ( current_position [ X_AXIS ] , current_position [ Y_AXIS ] , current_position [ Z_AXIS ] , current_position [ E_AXIS ] ) ;
// destination[axis] = 11.f;
destination [ axis ] = 3.f ;
plan_buffer_line ( destination [ X_AXIS ] , destination [ Y_AXIS ] , destination [ Z_AXIS ] , destination [ E_AXIS ] , feedrate / 60 , active_extruder ) ;
st_synchronize ( ) ;
// Move left away from the possible collision with the collision detection disabled.
endstops_hit_on_purpose ( ) ;
enable_endstops ( false ) ;
current_position [ axis ] = 0 ;
plan_set_position ( current_position [ X_AXIS ] , current_position [ Y_AXIS ] , current_position [ Z_AXIS ] , current_position [ E_AXIS ] ) ;
destination [ axis ] = - 1. ;
plan_buffer_line ( destination [ X_AXIS ] , destination [ Y_AXIS ] , destination [ Z_AXIS ] , destination [ E_AXIS ] , feedrate / 60 , active_extruder ) ;
st_synchronize ( ) ;
// Now continue to move up to the left end stop with the collision detection enabled.
enable_endstops ( true ) ;
destination [ axis ] = - 1.1 * max_length ( axis ) ;
plan_buffer_line ( destination [ X_AXIS ] , destination [ Y_AXIS ] , destination [ Z_AXIS ] , destination [ E_AXIS ] , feedrate / 60 , active_extruder ) ;
st_synchronize ( ) ;
// Move right from the collision to a known distance from the left end stop with the collision detection disabled.
endstops_hit_on_purpose ( ) ;
enable_endstops ( false ) ;
current_position [ axis ] = 0 ;
plan_set_position ( current_position [ X_AXIS ] , current_position [ Y_AXIS ] , current_position [ Z_AXIS ] , current_position [ E_AXIS ] ) ;
destination [ axis ] = 10.f ;
plan_buffer_line ( destination [ X_AXIS ] , destination [ Y_AXIS ] , destination [ Z_AXIS ] , destination [ E_AXIS ] , feedrate / 60 , active_extruder ) ;
st_synchronize ( ) ;
endstops_hit_on_purpose ( ) ;
// Now move left up to the collision, this time with a repeatable velocity.
enable_endstops ( true ) ;
destination [ axis ] = - 15.f ;
feedrate = homing_feedrate [ axis ] / 2 ;
plan_buffer_line ( destination [ X_AXIS ] , destination [ Y_AXIS ] , destination [ Z_AXIS ] , destination [ E_AXIS ] , feedrate / 60 , active_extruder ) ;
st_synchronize ( ) ;
axis_is_at_home ( axis ) ;
axis_known_position [ axis ] = true ;
# ifdef TMC2130
tmc2130_home_exit ( ) ;
# endif
// Move the X carriage away from the collision.
// If this is not done, the X cariage will jump from the collision at the instant the Trinamic driver reduces power on idle.
endstops_hit_on_purpose ( ) ;
enable_endstops ( false ) ;
{
// Two full periods (4 full steps).
float gap = 0.32f * 2.f ;
current_position [ axis ] - = gap ;
plan_set_position ( current_position [ X_AXIS ] , current_position [ Y_AXIS ] , current_position [ Z_AXIS ] , current_position [ E_AXIS ] ) ;
current_position [ axis ] + = gap ;
}
destination [ axis ] = current_position [ axis ] ;
plan_buffer_line ( destination [ X_AXIS ] , destination [ Y_AXIS ] , destination [ Z_AXIS ] , destination [ E_AXIS ] , 0.3f * feedrate / 60 , active_extruder ) ;
st_synchronize ( ) ;
feedrate = 0.0 ;
}
else if ( ( axis = = Z_AXIS ) ? HOMEAXIS_DO ( Z ) : 0 )
{
int axis_home_dir = home_dir ( axis ) ;
current_position [ axis ] = 0 ;
plan_set_position ( current_position [ X_AXIS ] , current_position [ Y_AXIS ] , current_position [ Z_AXIS ] , current_position [ E_AXIS ] ) ;
destination [ axis ] = 1.5 * max_length ( axis ) * axis_home_dir ;
feedrate = homing_feedrate [ axis ] ;
plan_buffer_line ( destination [ X_AXIS ] , destination [ Y_AXIS ] , destination [ Z_AXIS ] , destination [ E_AXIS ] , feedrate / 60 , active_extruder ) ;
st_synchronize ( ) ;
current_position [ axis ] = 0 ;
plan_set_position ( current_position [ X_AXIS ] , current_position [ Y_AXIS ] , current_position [ Z_AXIS ] , current_position [ E_AXIS ] ) ;
destination [ axis ] = - home_retract_mm ( axis ) * axis_home_dir ;
plan_buffer_line ( destination [ X_AXIS ] , destination [ Y_AXIS ] , destination [ Z_AXIS ] , destination [ E_AXIS ] , feedrate / 60 , active_extruder ) ;
st_synchronize ( ) ;
destination [ axis ] = 2 * home_retract_mm ( axis ) * axis_home_dir ;
feedrate = homing_feedrate [ axis ] / 2 ;
plan_buffer_line ( destination [ X_AXIS ] , destination [ Y_AXIS ] , destination [ Z_AXIS ] , destination [ E_AXIS ] , feedrate / 60 , active_extruder ) ;
st_synchronize ( ) ;
axis_is_at_home ( axis ) ;
destination [ axis ] = current_position [ axis ] ;
feedrate = 0.0 ;
endstops_hit_on_purpose ( ) ;
axis_known_position [ axis ] = true ;
}
enable_endstops ( endstops_enabled ) ;
}
/**/
void home_xy ( )
{
set_destination_to_current ( ) ;
homeaxis ( X_AXIS ) ;
homeaxis ( Y_AXIS ) ;
plan_set_position ( current_position [ X_AXIS ] , current_position [ Y_AXIS ] , current_position [ Z_AXIS ] , current_position [ E_AXIS ] ) ;
endstops_hit_on_purpose ( ) ;
}
void refresh_cmd_timeout ( void )
{
previous_millis_cmd = millis ( ) ;
}
# ifdef FWRETRACT
void retract ( bool retracting , bool swapretract = false ) {
if ( retracting & & ! retracted [ active_extruder ] ) {
destination [ X_AXIS ] = current_position [ X_AXIS ] ;
destination [ Y_AXIS ] = current_position [ Y_AXIS ] ;
destination [ Z_AXIS ] = current_position [ Z_AXIS ] ;
destination [ E_AXIS ] = current_position [ E_AXIS ] ;
if ( swapretract ) {
current_position [ E_AXIS ] + = retract_length_swap / volumetric_multiplier [ active_extruder ] ;
} else {
current_position [ E_AXIS ] + = retract_length / volumetric_multiplier [ active_extruder ] ;
}
plan_set_e_position ( current_position [ E_AXIS ] ) ;
float oldFeedrate = feedrate ;
feedrate = retract_feedrate * 60 ;
retracted [ active_extruder ] = true ;
prepare_move ( ) ;
current_position [ Z_AXIS ] - = retract_zlift ;
plan_set_position ( current_position [ X_AXIS ] , current_position [ Y_AXIS ] , current_position [ Z_AXIS ] , current_position [ E_AXIS ] ) ;
prepare_move ( ) ;
feedrate = oldFeedrate ;
} else if ( ! retracting & & retracted [ active_extruder ] ) {
destination [ X_AXIS ] = current_position [ X_AXIS ] ;
destination [ Y_AXIS ] = current_position [ Y_AXIS ] ;
destination [ Z_AXIS ] = current_position [ Z_AXIS ] ;
destination [ E_AXIS ] = current_position [ E_AXIS ] ;
current_position [ Z_AXIS ] + = retract_zlift ;
plan_set_position ( current_position [ X_AXIS ] , current_position [ Y_AXIS ] , current_position [ Z_AXIS ] , current_position [ E_AXIS ] ) ;
//prepare_move();
if ( swapretract ) {
current_position [ E_AXIS ] - = ( retract_length_swap + retract_recover_length_swap ) / volumetric_multiplier [ active_extruder ] ;
} else {
current_position [ E_AXIS ] - = ( retract_length + retract_recover_length ) / volumetric_multiplier [ active_extruder ] ;
}
plan_set_e_position ( current_position [ E_AXIS ] ) ;
float oldFeedrate = feedrate ;
feedrate = retract_recover_feedrate * 60 ;
retracted [ active_extruder ] = false ;
prepare_move ( ) ;
feedrate = oldFeedrate ;
}
} //retract
# endif //FWRETRACT
void trace ( ) {
tone ( BEEPER , 440 ) ;
delay ( 25 ) ;
noTone ( BEEPER ) ;
delay ( 20 ) ;
}
/*
void ramming ( ) {
// float tmp[4] = DEFAULT_MAX_FEEDRATE;
if ( current_temperature [ 0 ] < 230 ) {
//PLA
max_feedrate [ E_AXIS ] = 50 ;
//current_position[E_AXIS] -= 8;
//plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
//current_position[E_AXIS] += 8;
//plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
current_position [ E_AXIS ] + = 5.4 ;
plan_buffer_line ( current_position [ X_AXIS ] , current_position [ Y_AXIS ] , current_position [ Z_AXIS ] , current_position [ E_AXIS ] , 2800 / 60 , active_extruder ) ;
current_position [ E_AXIS ] + = 3.2 ;
plan_buffer_line ( current_position [ X_AXIS ] , current_position [ Y_AXIS ] , current_position [ Z_AXIS ] , current_position [ E_AXIS ] , 3000 / 60 , active_extruder ) ;
current_position [ E_AXIS ] + = 3 ;
plan_buffer_line ( current_position [ X_AXIS ] , current_position [ Y_AXIS ] , current_position [ Z_AXIS ] , current_position [ E_AXIS ] , 3400 / 60 , active_extruder ) ;
st_synchronize ( ) ;
max_feedrate [ E_AXIS ] = 80 ;
current_position [ E_AXIS ] - = 82 ;
plan_buffer_line ( current_position [ X_AXIS ] , current_position [ Y_AXIS ] , current_position [ Z_AXIS ] , current_position [ E_AXIS ] , 9500 / 60 , active_extruder ) ;
max_feedrate [ E_AXIS ] = 50 ; //tmp[E_AXIS];
current_position [ E_AXIS ] - = 20 ;
plan_buffer_line ( current_position [ X_AXIS ] , current_position [ Y_AXIS ] , current_position [ Z_AXIS ] , current_position [ E_AXIS ] , 1200 / 60 , active_extruder ) ;
current_position [ E_AXIS ] + = 5 ;
plan_buffer_line ( current_position [ X_AXIS ] , current_position [ Y_AXIS ] , current_position [ Z_AXIS ] , current_position [ E_AXIS ] , 400 / 60 , active_extruder ) ;
current_position [ E_AXIS ] + = 5 ;
plan_buffer_line ( current_position [ X_AXIS ] , current_position [ Y_AXIS ] , current_position [ Z_AXIS ] , current_position [ E_AXIS ] , 600 / 60 , active_extruder ) ;
current_position [ E_AXIS ] - = 10 ;
st_synchronize ( ) ;
plan_buffer_line ( current_position [ X_AXIS ] , current_position [ Y_AXIS ] , current_position [ Z_AXIS ] , current_position [ E_AXIS ] , 600 / 60 , active_extruder ) ;
current_position [ E_AXIS ] + = 10 ;
plan_buffer_line ( current_position [ X_AXIS ] , current_position [ Y_AXIS ] , current_position [ Z_AXIS ] , current_position [ E_AXIS ] , 600 / 60 , active_extruder ) ;
current_position [ E_AXIS ] - = 10 ;
plan_buffer_line ( current_position [ X_AXIS ] , current_position [ Y_AXIS ] , current_position [ Z_AXIS ] , current_position [ E_AXIS ] , 800 / 60 , active_extruder ) ;
current_position [ E_AXIS ] + = 10 ;
plan_buffer_line ( current_position [ X_AXIS ] , current_position [ Y_AXIS ] , current_position [ Z_AXIS ] , current_position [ E_AXIS ] , 800 / 60 , active_extruder ) ;
current_position [ E_AXIS ] - = 10 ;
plan_buffer_line ( current_position [ X_AXIS ] , current_position [ Y_AXIS ] , current_position [ Z_AXIS ] , current_position [ E_AXIS ] , 800 / 60 , active_extruder ) ;
st_synchronize ( ) ;
}
else {
//ABS
max_feedrate [ E_AXIS ] = 50 ;
//current_position[E_AXIS] -= 8;
//plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
//current_position[E_AXIS] += 8;
//plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
current_position [ E_AXIS ] + = 3.1 ;
plan_buffer_line ( current_position [ X_AXIS ] , current_position [ Y_AXIS ] , current_position [ Z_AXIS ] , current_position [ E_AXIS ] , 2000 / 60 , active_extruder ) ;
current_position [ E_AXIS ] + = 3.1 ;
plan_buffer_line ( current_position [ X_AXIS ] , current_position [ Y_AXIS ] , current_position [ Z_AXIS ] , current_position [ E_AXIS ] , 2500 / 60 , active_extruder ) ;
current_position [ E_AXIS ] + = 4 ;
plan_buffer_line ( current_position [ X_AXIS ] , current_position [ Y_AXIS ] , current_position [ Z_AXIS ] , current_position [ E_AXIS ] , 3000 / 60 , active_extruder ) ;
st_synchronize ( ) ;
//current_position[X_AXIS] += 23; //delay
//plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600/60, active_extruder); //delay
//current_position[X_AXIS] -= 23; //delay
//plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600/60, active_extruder); //delay
delay ( 4700 ) ;
max_feedrate [ E_AXIS ] = 80 ;
current_position [ E_AXIS ] - = 92 ;
plan_buffer_line ( current_position [ X_AXIS ] , current_position [ Y_AXIS ] , current_position [ Z_AXIS ] , current_position [ E_AXIS ] , 9900 / 60 , active_extruder ) ;
max_feedrate [ E_AXIS ] = 50 ; //tmp[E_AXIS];
current_position [ E_AXIS ] - = 5 ;
plan_buffer_line ( current_position [ X_AXIS ] , current_position [ Y_AXIS ] , current_position [ Z_AXIS ] , current_position [ E_AXIS ] , 800 / 60 , active_extruder ) ;
current_position [ E_AXIS ] + = 5 ;
plan_buffer_line ( current_position [ X_AXIS ] , current_position [ Y_AXIS ] , current_position [ Z_AXIS ] , current_position [ E_AXIS ] , 400 / 60 , active_extruder ) ;
current_position [ E_AXIS ] - = 5 ;
plan_buffer_line ( current_position [ X_AXIS ] , current_position [ Y_AXIS ] , current_position [ Z_AXIS ] , current_position [ E_AXIS ] , 600 / 60 , active_extruder ) ;
st_synchronize ( ) ;
current_position [ E_AXIS ] + = 5 ;
plan_buffer_line ( current_position [ X_AXIS ] , current_position [ Y_AXIS ] , current_position [ Z_AXIS ] , current_position [ E_AXIS ] , 600 / 60 , active_extruder ) ;
current_position [ E_AXIS ] - = 5 ;
plan_buffer_line ( current_position [ X_AXIS ] , current_position [ Y_AXIS ] , current_position [ Z_AXIS ] , current_position [ E_AXIS ] , 600 / 60 , active_extruder ) ;
current_position [ E_AXIS ] + = 5 ;
plan_buffer_line ( current_position [ X_AXIS ] , current_position [ Y_AXIS ] , current_position [ Z_AXIS ] , current_position [ E_AXIS ] , 600 / 60 , active_extruder ) ;
current_position [ E_AXIS ] - = 5 ;
plan_buffer_line ( current_position [ X_AXIS ] , current_position [ Y_AXIS ] , current_position [ Z_AXIS ] , current_position [ E_AXIS ] , 600 / 60 , active_extruder ) ;
st_synchronize ( ) ;
}
}
*/
2017-11-07 15:49:04 +00:00
2017-12-12 19:21:09 +00:00
# ifdef TMC2130
void force_high_power_mode ( bool start_high_power_section ) {
uint8_t silent ;
silent = eeprom_read_byte ( ( uint8_t * ) EEPROM_SILENT ) ;
if ( silent = = 1 ) {
//we are in silent mode, set to normal mode to enable crash detection
st_synchronize ( ) ;
cli ( ) ;
tmc2130_mode = ( start_high_power_section = = true ) ? TMC2130_MODE_NORMAL : TMC2130_MODE_SILENT ;
tmc2130_init ( ) ;
sei ( ) ;
digipot_init ( ) ;
}
}
# endif //TMC2130
2017-12-15 13:10:20 +00:00
bool gcode_M45 ( bool onlyZ )
{
2017-11-07 15:49:04 +00:00
bool final_result = false ;
2017-12-12 19:21:09 +00:00
# ifdef TMC2130
FORCE_HIGH_POWER_START ;
# endif // TMC2130
2017-11-07 15:49:04 +00:00
// Only Z calibration?
2017-12-15 13:10:20 +00:00
if ( ! onlyZ )
{
2017-11-07 15:49:04 +00:00
setTargetBed ( 0 ) ;
setTargetHotend ( 0 , 0 ) ;
setTargetHotend ( 0 , 1 ) ;
setTargetHotend ( 0 , 2 ) ;
adjust_bed_reset ( ) ; //reset bed level correction
}
// Disable the default update procedure of the display. We will do a modal dialog.
lcd_update_enable ( false ) ;
// Let the planner use the uncorrected coordinates.
mbl . reset ( ) ;
// Reset world2machine_rotation_and_skew and world2machine_shift, therefore
// the planner will not perform any adjustments in the XY plane.
// Wait for the motors to stop and update the current position with the absolute values.
world2machine_revert_to_uncorrected ( ) ;
// Reset the baby step value applied without moving the axes.
babystep_reset ( ) ;
// Mark all axes as in a need for homing.
memset ( axis_known_position , 0 , sizeof ( axis_known_position ) ) ;
// Home in the XY plane.
//set_destination_to_current();
setup_for_endstop_move ( ) ;
lcd_display_message_fullscreen_P ( MSG_AUTO_HOME ) ;
home_xy ( ) ;
// Let the user move the Z axes up to the end stoppers.
# ifdef TMC2130
2017-12-15 13:10:20 +00:00
if ( calibrate_z_auto ( ) )
{
2017-11-07 15:49:04 +00:00
# else //TMC2130
2017-12-15 13:10:20 +00:00
if ( lcd_calibrate_z_end_stop_manual ( onlyZ ) )
{
2017-11-07 15:49:04 +00:00
# endif //TMC2130
refresh_cmd_timeout ( ) ;
2017-12-15 13:10:20 +00:00
//if (((degHotend(0) > MAX_HOTEND_TEMP_CALIBRATION) || (degBed() > MAX_BED_TEMP_CALIBRATION)) && (!onlyZ))
//{
2017-11-13 16:09:26 +00:00
// lcd_wait_for_cool_down();
//}
2017-12-15 13:10:20 +00:00
if ( ! onlyZ )
{
2017-11-15 14:09:29 +00:00
KEEPALIVE_STATE ( PAUSED_FOR_USER ) ;
2017-11-13 16:09:26 +00:00
bool result = lcd_show_fullscreen_message_yes_no_and_wait_P ( MSG_STEEL_SHEET_CHECK , false , false ) ;
if ( result ) lcd_show_fullscreen_message_and_wait_P ( MSG_REMOVE_STEEL_SHEET ) ;
2017-11-26 20:26:36 +00:00
lcd_show_fullscreen_message_and_wait_P ( MSG_CONFIRM_NOZZLE_CLEAN ) ;
2017-11-13 16:09:26 +00:00
lcd_show_fullscreen_message_and_wait_P ( MSG_PAPER ) ;
2017-11-15 14:09:29 +00:00
KEEPALIVE_STATE ( IN_HANDLER ) ;
2017-11-07 15:49:04 +00:00
lcd_display_message_fullscreen_P ( MSG_FIND_BED_OFFSET_AND_SKEW_LINE1 ) ;
lcd_implementation_print_at ( 0 , 2 , 1 ) ;
lcd_printPGM ( MSG_FIND_BED_OFFSET_AND_SKEW_LINE2 ) ;
}
// Move the print head close to the bed.
current_position [ Z_AXIS ] = MESH_HOME_Z_SEARCH ;
2017-12-15 13:10:20 +00:00
bool endstops_enabled = enable_endstops ( true ) ;
tmc2130_home_enter ( Z_AXIS_MASK ) ;
2017-11-07 15:49:04 +00:00
plan_buffer_line ( current_position [ X_AXIS ] , current_position [ Y_AXIS ] , current_position [ Z_AXIS ] , current_position [ E_AXIS ] , homing_feedrate [ Z_AXIS ] / 40 , active_extruder ) ;
2017-12-15 13:10:20 +00:00
2017-11-07 15:49:04 +00:00
st_synchronize ( ) ;
2017-12-15 13:10:20 +00:00
tmc2130_home_exit ( ) ;
enable_endstops ( endstops_enabled ) ;
2017-11-07 15:49:04 +00:00
2017-12-15 13:10:20 +00:00
if ( st_get_position_mm ( Z_AXIS ) = = MESH_HOME_Z_SEARCH )
{
2017-11-07 15:49:04 +00:00
2017-12-15 13:10:20 +00:00
//#ifdef TMC2130
// tmc2130_home_enter(X_AXIS_MASK | Y_AXIS_MASK);
//#endif
2017-11-07 15:49:04 +00:00
2017-12-15 13:10:20 +00:00
int8_t verbosity_level = 0 ;
if ( code_seen ( ' V ' ) )
{
// Just 'V' without a number counts as V1.
char c = strchr_pointer [ 1 ] ;
verbosity_level = ( c = = ' ' | | c = = ' \t ' | | c = = 0 ) ? 1 : code_value_short ( ) ;
}
2017-11-07 15:49:04 +00:00
2017-12-15 13:10:20 +00:00
if ( onlyZ )
{
clean_up_after_endstop_move ( ) ;
// Z only calibration.
// Load the machine correction matrix
world2machine_initialize ( ) ;
// and correct the current_position to match the transformed coordinate system.
world2machine_update_current ( ) ;
//FIXME
bool result = sample_mesh_and_store_reference ( ) ;
if ( result )
{
if ( calibration_status ( ) = = CALIBRATION_STATUS_Z_CALIBRATION )
// Shipped, the nozzle height has been set already. The user can start printing now.
calibration_status_store ( CALIBRATION_STATUS_CALIBRATED ) ;
final_result = true ;
// babystep_apply();
}
2017-11-07 15:49:04 +00:00
}
2017-12-15 13:10:20 +00:00
else
{
// Reset the baby step value and the baby step applied flag.
calibration_status_store ( CALIBRATION_STATUS_ASSEMBLED ) ;
eeprom_update_word ( ( uint16_t * ) EEPROM_BABYSTEP_Z , 0 ) ;
// Complete XYZ calibration.
uint8_t point_too_far_mask = 0 ;
BedSkewOffsetDetectionResultType result = find_bed_offset_and_skew ( verbosity_level , point_too_far_mask ) ;
2017-11-07 15:49:04 +00:00
clean_up_after_endstop_move ( ) ;
// Print head up.
current_position [ Z_AXIS ] = MESH_HOME_Z_SEARCH ;
plan_buffer_line ( current_position [ X_AXIS ] , current_position [ Y_AXIS ] , current_position [ Z_AXIS ] , current_position [ E_AXIS ] , homing_feedrate [ Z_AXIS ] / 40 , active_extruder ) ;
st_synchronize ( ) ;
2017-12-15 13:10:20 +00:00
if ( result > = 0 )
{
point_too_far_mask = 0 ;
// Second half: The fine adjustment.
// Let the planner use the uncorrected coordinates.
mbl . reset ( ) ;
world2machine_reset ( ) ;
// Home in the XY plane.
setup_for_endstop_move ( ) ;
home_xy ( ) ;
result = improve_bed_offset_and_skew ( 1 , verbosity_level , point_too_far_mask ) ;
clean_up_after_endstop_move ( ) ;
// Print head up.
current_position [ Z_AXIS ] = MESH_HOME_Z_SEARCH ;
plan_buffer_line ( current_position [ X_AXIS ] , current_position [ Y_AXIS ] , current_position [ Z_AXIS ] , current_position [ E_AXIS ] , homing_feedrate [ Z_AXIS ] / 40 , active_extruder ) ;
st_synchronize ( ) ;
// if (result >= 0) babystep_apply();
}
lcd_bed_calibration_show_result ( result , point_too_far_mask ) ;
if ( result > = 0 )
{
// Calibration valid, the machine should be able to print. Advise the user to run the V2Calibration.gcode.
calibration_status_store ( CALIBRATION_STATUS_LIVE_ADJUST ) ;
if ( eeprom_read_byte ( ( uint8_t * ) EEPROM_WIZARD_ACTIVE ) ! = 1 ) lcd_show_fullscreen_message_and_wait_P ( MSG_BABYSTEP_Z_NOT_SET ) ;
final_result = true ;
}
2017-11-07 15:49:04 +00:00
}
# ifdef TMC2130
2017-12-15 13:10:20 +00:00
tmc2130_home_exit ( ) ;
2017-11-07 15:49:04 +00:00
# endif
2017-12-15 13:10:20 +00:00
}
else
{
lcd_show_fullscreen_message_and_wait_P ( PSTR ( " Calibration failed! Check the axes and run again. " ) ) ;
final_result = false ;
}
2017-11-07 15:49:04 +00:00
}
2017-12-15 13:10:20 +00:00
else
{
2017-11-07 15:49:04 +00:00
// Timeouted.
}
lcd_update_enable ( true ) ;
2017-12-12 19:21:09 +00:00
# ifdef TMC2130
FORCE_HIGH_POWER_END ;
# endif // TMC2130
2017-11-07 15:49:04 +00:00
return final_result ;
2017-12-15 13:10:20 +00:00
}
2017-11-07 15:49:04 +00:00
2017-12-15 13:10:20 +00:00
void gcode_M701 ( )
{
2017-11-07 15:49:04 +00:00
# ifdef SNMM
extr_adj ( snmm_extruder ) ; //loads current extruder
# else
enable_z ( ) ;
custom_message = true ;
custom_message_type = 2 ;
lcd_setstatuspgm ( MSG_LOADING_FILAMENT ) ;
current_position [ E_AXIS ] + = 70 ;
plan_buffer_line ( current_position [ X_AXIS ] , current_position [ Y_AXIS ] , current_position [ Z_AXIS ] , current_position [ E_AXIS ] , 400 / 60 , active_extruder ) ; //fast sequence
current_position [ E_AXIS ] + = 25 ;
plan_buffer_line ( current_position [ X_AXIS ] , current_position [ Y_AXIS ] , current_position [ Z_AXIS ] , current_position [ E_AXIS ] , 100 / 60 , active_extruder ) ; //slow sequence
st_synchronize ( ) ;
if ( ! farm_mode & & loading_flag ) {
bool clean = lcd_show_fullscreen_message_yes_no_and_wait_P ( MSG_FILAMENT_CLEAN , false , true ) ;
while ( ! clean ) {
lcd_update_enable ( true ) ;
lcd_update ( 2 ) ;
current_position [ E_AXIS ] + = 25 ;
plan_buffer_line ( current_position [ X_AXIS ] , current_position [ Y_AXIS ] , current_position [ Z_AXIS ] , current_position [ E_AXIS ] , 100 / 60 , active_extruder ) ; //slow sequence
st_synchronize ( ) ;
clean = lcd_show_fullscreen_message_yes_no_and_wait_P ( MSG_FILAMENT_CLEAN , false , true ) ;
}
}
lcd_update_enable ( true ) ;
lcd_update ( 2 ) ;
lcd_setstatuspgm ( WELCOME_MSG ) ;
disable_z ( ) ;
loading_flag = false ;
custom_message = false ;
custom_message_type = 0 ;
# endif
}
2017-10-27 15:07:02 +00:00
void process_commands ( )
{
# ifdef FILAMENT_RUNOUT_SUPPORT
SET_INPUT ( FR_SENS ) ;
# endif
# ifdef CMDBUFFER_DEBUG
SERIAL_ECHOPGM ( " Processing a GCODE command: " ) ;
SERIAL_ECHO ( cmdbuffer + bufindr + CMDHDRSIZE ) ;
SERIAL_ECHOLNPGM ( " " ) ;
SERIAL_ECHOPGM ( " In cmdqueue: " ) ;
SERIAL_ECHO ( buflen ) ;
SERIAL_ECHOLNPGM ( " " ) ;
# endif /* CMDBUFFER_DEBUG */
unsigned long codenum ; //throw away variable
char * starpos = NULL ;
# ifdef ENABLE_AUTO_BED_LEVELING
float x_tmp , y_tmp , z_tmp , real_z ;
# endif
// PRUSA GCODES
2017-11-15 14:09:29 +00:00
KEEPALIVE_STATE ( IN_HANDLER ) ;
2017-10-27 15:07:02 +00:00
# ifdef SNMM
float tmp_motor [ 3 ] = DEFAULT_PWM_MOTOR_CURRENT ;
float tmp_motor_loud [ 3 ] = DEFAULT_PWM_MOTOR_CURRENT_LOUD ;
int8_t SilentMode ;
# endif
2017-11-15 14:09:29 +00:00
2017-10-27 15:07:02 +00:00
if ( code_seen ( " M117 " ) ) { //moved to highest priority place to be able to to print strings which includes "G", "PRUSA" and "^"
starpos = ( strchr ( strchr_pointer + 5 , ' * ' ) ) ;
if ( starpos ! = NULL )
* ( starpos ) = ' \0 ' ;
lcd_setstatus ( strchr_pointer + 5 ) ;
}
2017-11-22 07:41:52 +00:00
else if ( code_seen ( " CRASH_DETECTED " ) )
crashdet_detected ( ) ;
else if ( code_seen ( " CRASH_RECOVER " ) )
crashdet_recover ( ) ;
else if ( code_seen ( " CRASH_CANCEL " ) )
crashdet_cancel ( ) ;
2017-10-27 15:07:02 +00:00
else if ( code_seen ( " PRUSA " ) ) {
if ( code_seen ( " Ping " ) ) { //PRUSA Ping
if ( farm_mode ) {
PingTime = millis ( ) ;
//MYSERIAL.print(farm_no); MYSERIAL.println(": OK");
}
}
else if ( code_seen ( " PRN " ) ) {
MYSERIAL . println ( status_number ) ;
2017-11-03 19:27:52 +00:00
} else if ( code_seen ( " FAN " ) ) {
MYSERIAL . print ( " E0: " ) ;
MYSERIAL . print ( 60 * fan_speed [ 0 ] ) ;
MYSERIAL . println ( " RPM " ) ;
MYSERIAL . print ( " PRN0: " ) ;
MYSERIAL . print ( 60 * fan_speed [ 1 ] ) ;
MYSERIAL . println ( " RPM " ) ;
} else if ( code_seen ( " fn " ) ) {
2017-10-27 15:07:02 +00:00
if ( farm_mode ) {
MYSERIAL . println ( farm_no ) ;
}
else {
MYSERIAL . println ( " Not in farm mode. " ) ;
}
} else if ( code_seen ( " fv " ) ) {
// get file version
# ifdef SDSUPPORT
card . openFile ( strchr_pointer + 3 , true ) ;
while ( true ) {
uint16_t readByte = card . get ( ) ;
MYSERIAL . write ( readByte ) ;
if ( readByte = = ' \n ' ) {
break ;
}
}
card . closefile ( ) ;
# endif // SDSUPPORT
} else if ( code_seen ( " M28 " ) ) {
trace ( ) ;
prusa_sd_card_upload = true ;
card . openFile ( strchr_pointer + 4 , false ) ;
} else if ( code_seen ( " SN " ) ) {
if ( farm_mode ) {
selectedSerialPort = 0 ;
MSerial . write ( " ;S " ) ;
// S/N is:CZPX0917X003XC13518
int numbersRead = 0 ;
while ( numbersRead < 19 ) {
while ( MSerial . available ( ) > 0 ) {
uint8_t serial_char = MSerial . read ( ) ;
selectedSerialPort = 1 ;
MSerial . write ( serial_char ) ;
numbersRead + + ;
selectedSerialPort = 0 ;
}
}
selectedSerialPort = 1 ;
MSerial . write ( ' \n ' ) ;
/*for (int b = 0; b < 3; b++) {
tone ( BEEPER , 110 ) ;
delay ( 50 ) ;
noTone ( BEEPER ) ;
delay ( 50 ) ;
} */
} else {
MYSERIAL . println ( " Not in farm mode. " ) ;
}
} else if ( code_seen ( " Fir " ) ) {
SERIAL_PROTOCOLLN ( FW_version ) ;
} else if ( code_seen ( " Rev " ) ) {
SERIAL_PROTOCOLLN ( FILAMENT_SIZE " - " ELECTRONICS " - " NOZZLE_TYPE ) ;
} else if ( code_seen ( " Lang " ) ) {
lcd_force_language_selection ( ) ;
} else if ( code_seen ( " Lz " ) ) {
EEPROM_save_B ( EEPROM_BABYSTEP_Z , 0 ) ;
} else if ( code_seen ( " SERIAL LOW " ) ) {
MYSERIAL . println ( " SERIAL LOW " ) ;
MYSERIAL . begin ( BAUDRATE ) ;
return ;
} else if ( code_seen ( " SERIAL HIGH " ) ) {
MYSERIAL . println ( " SERIAL HIGH " ) ;
MYSERIAL . begin ( 1152000 ) ;
return ;
} else if ( code_seen ( " Beat " ) ) {
// Kick farm link timer
kicktime = millis ( ) ;
} else if ( code_seen ( " FR " ) ) {
// Factory full reset
factory_reset ( 0 , true ) ;
}
//else if (code_seen('Cal')) {
// lcd_calibration();
// }
}
else if ( code_seen ( ' ^ ' ) ) {
// nothing, this is a version line
} else if ( code_seen ( ' G ' ) )
{
switch ( ( int ) code_value ( ) )
{
case 0 : // G0 -> G1
case 1 : // G1
if ( Stopped = = false ) {
# ifdef FILAMENT_RUNOUT_SUPPORT
if ( READ ( FR_SENS ) ) {
feedmultiplyBckp = feedmultiply ;
float target [ 4 ] ;
float lastpos [ 4 ] ;
target [ X_AXIS ] = current_position [ X_AXIS ] ;
target [ Y_AXIS ] = current_position [ Y_AXIS ] ;
target [ Z_AXIS ] = current_position [ Z_AXIS ] ;
target [ E_AXIS ] = current_position [ E_AXIS ] ;
lastpos [ X_AXIS ] = current_position [ X_AXIS ] ;
lastpos [ Y_AXIS ] = current_position [ Y_AXIS ] ;
lastpos [ Z_AXIS ] = current_position [ Z_AXIS ] ;
lastpos [ E_AXIS ] = current_position [ E_AXIS ] ;
//retract by E
target [ E_AXIS ] + = FILAMENTCHANGE_FIRSTRETRACT ;
plan_buffer_line ( target [ X_AXIS ] , target [ Y_AXIS ] , target [ Z_AXIS ] , target [ E_AXIS ] , 400 , active_extruder ) ;
target [ Z_AXIS ] + = FILAMENTCHANGE_ZADD ;
plan_buffer_line ( target [ X_AXIS ] , target [ Y_AXIS ] , target [ Z_AXIS ] , target [ E_AXIS ] , 300 , active_extruder ) ;
target [ X_AXIS ] = FILAMENTCHANGE_XPOS ;
target [ Y_AXIS ] = FILAMENTCHANGE_YPOS ;
plan_buffer_line ( target [ X_AXIS ] , target [ Y_AXIS ] , target [ Z_AXIS ] , target [ E_AXIS ] , 70 , active_extruder ) ;
target [ E_AXIS ] + = FILAMENTCHANGE_FINALRETRACT ;
plan_buffer_line ( target [ X_AXIS ] , target [ Y_AXIS ] , target [ Z_AXIS ] , target [ E_AXIS ] , 20 , active_extruder ) ;
//finish moves
st_synchronize ( ) ;
//disable extruder steppers so filament can be removed
disable_e0 ( ) ;
disable_e1 ( ) ;
disable_e2 ( ) ;
delay ( 100 ) ;
//LCD_ALERTMESSAGEPGM(MSG_FILAMENTCHANGE);
uint8_t cnt = 0 ;
int counterBeep = 0 ;
lcd_wait_interact ( ) ;
while ( ! lcd_clicked ( ) ) {
cnt + + ;
manage_heater ( ) ;
manage_inactivity ( true ) ;
//lcd_update();
if ( cnt = = 0 )
{
# if BEEPER > 0
if ( counterBeep = = 500 ) {
counterBeep = 0 ;
}
SET_OUTPUT ( BEEPER ) ;
if ( counterBeep = = 0 ) {
WRITE ( BEEPER , HIGH ) ;
}
if ( counterBeep = = 20 ) {
WRITE ( BEEPER , LOW ) ;
}
counterBeep + + ;
# else
# if !defined(LCD_FEEDBACK_FREQUENCY_HZ) || !defined(LCD_FEEDBACK_FREQUENCY_DURATION_MS)
lcd_buzz ( 1000 / 6 , 100 ) ;
# else
lcd_buzz ( LCD_FEEDBACK_FREQUENCY_DURATION_MS , LCD_FEEDBACK_FREQUENCY_HZ ) ;
# endif
# endif
}
}
WRITE ( BEEPER , LOW ) ;
target [ E_AXIS ] + = FILAMENTCHANGE_FIRSTFEED ;
plan_buffer_line ( target [ X_AXIS ] , target [ Y_AXIS ] , target [ Z_AXIS ] , target [ E_AXIS ] , 20 , active_extruder ) ;
target [ E_AXIS ] + = FILAMENTCHANGE_FINALFEED ;
plan_buffer_line ( target [ X_AXIS ] , target [ Y_AXIS ] , target [ Z_AXIS ] , target [ E_AXIS ] , 2 , active_extruder ) ;
lcd_change_fil_state = 0 ;
lcd_loading_filament ( ) ;
while ( ( lcd_change_fil_state = = 0 ) | | ( lcd_change_fil_state ! = 1 ) ) {
lcd_change_fil_state = 0 ;
lcd_alright ( ) ;
switch ( lcd_change_fil_state ) {
case 2 :
target [ E_AXIS ] + = FILAMENTCHANGE_FIRSTFEED ;
plan_buffer_line ( target [ X_AXIS ] , target [ Y_AXIS ] , target [ Z_AXIS ] , target [ E_AXIS ] , 20 , active_extruder ) ;
target [ E_AXIS ] + = FILAMENTCHANGE_FINALFEED ;
plan_buffer_line ( target [ X_AXIS ] , target [ Y_AXIS ] , target [ Z_AXIS ] , target [ E_AXIS ] , 2 , active_extruder ) ;
lcd_loading_filament ( ) ;
break ;
case 3 :
target [ E_AXIS ] + = FILAMENTCHANGE_FINALFEED ;
plan_buffer_line ( target [ X_AXIS ] , target [ Y_AXIS ] , target [ Z_AXIS ] , target [ E_AXIS ] , 2 , active_extruder ) ;
lcd_loading_color ( ) ;
break ;
default :
lcd_change_success ( ) ;
break ;
}
}
target [ E_AXIS ] + = 5 ;
plan_buffer_line ( target [ X_AXIS ] , target [ Y_AXIS ] , target [ Z_AXIS ] , target [ E_AXIS ] , 2 , active_extruder ) ;
target [ E_AXIS ] + = FILAMENTCHANGE_FIRSTRETRACT ;
plan_buffer_line ( target [ X_AXIS ] , target [ Y_AXIS ] , target [ Z_AXIS ] , target [ E_AXIS ] , 400 , active_extruder ) ;
//current_position[E_AXIS]=target[E_AXIS]; //the long retract of L is compensated by manual filament feeding
//plan_set_e_position(current_position[E_AXIS]);
plan_buffer_line ( target [ X_AXIS ] , target [ Y_AXIS ] , target [ Z_AXIS ] , target [ E_AXIS ] , 70 , active_extruder ) ; //should do nothing
plan_buffer_line ( lastpos [ X_AXIS ] , lastpos [ Y_AXIS ] , target [ Z_AXIS ] , target [ E_AXIS ] , 70 , active_extruder ) ; //move xy back
plan_buffer_line ( lastpos [ X_AXIS ] , lastpos [ Y_AXIS ] , lastpos [ Z_AXIS ] , target [ E_AXIS ] , 200 , active_extruder ) ; //move z back
target [ E_AXIS ] = target [ E_AXIS ] - FILAMENTCHANGE_FIRSTRETRACT ;
plan_buffer_line ( lastpos [ X_AXIS ] , lastpos [ Y_AXIS ] , lastpos [ Z_AXIS ] , target [ E_AXIS ] , 5 , active_extruder ) ; //final untretract
plan_set_e_position ( lastpos [ E_AXIS ] ) ;
feedmultiply = feedmultiplyBckp ;
char cmd [ 9 ] ;
sprintf_P ( cmd , PSTR ( " M220 S%i " ) , feedmultiplyBckp ) ;
enquecommand ( cmd ) ;
}
# endif
get_coordinates ( ) ; // For X Y Z E F
if ( total_filament_used > ( ( current_position [ E_AXIS ] - destination [ E_AXIS ] ) * 100 ) ) { //protection against total_filament_used overflow
total_filament_used = total_filament_used + ( ( destination [ E_AXIS ] - current_position [ E_AXIS ] ) * 100 ) ;
}
# ifdef FWRETRACT
if ( autoretract_enabled )
if ( ! ( code_seen ( ' X ' ) | | code_seen ( ' Y ' ) | | code_seen ( ' Z ' ) ) & & code_seen ( ' E ' ) ) {
float echange = destination [ E_AXIS ] - current_position [ E_AXIS ] ;
if ( ( echange < - MIN_RETRACT & & ! retracted ) | | ( echange > MIN_RETRACT & & retracted ) ) { //move appears to be an attempt to retract or recover
current_position [ E_AXIS ] = destination [ E_AXIS ] ; //hide the slicer-generated retract/recover from calculations
plan_set_e_position ( current_position [ E_AXIS ] ) ; //AND from the planner
retract ( ! retracted ) ;
return ;
}
}
# endif //FWRETRACT
prepare_move ( ) ;
//ClearToSend();
}
break ;
case 2 : // G2 - CW ARC
if ( Stopped = = false ) {
get_arc_coordinates ( ) ;
prepare_arc_move ( true ) ;
}
break ;
case 3 : // G3 - CCW ARC
if ( Stopped = = false ) {
get_arc_coordinates ( ) ;
prepare_arc_move ( false ) ;
}
break ;
case 4 : // G4 dwell
codenum = 0 ;
if ( code_seen ( ' P ' ) ) codenum = code_value ( ) ; // milliseconds to wait
if ( code_seen ( ' S ' ) ) codenum = code_value ( ) * 1000 ; // seconds to wait
if ( codenum ! = 0 ) LCD_MESSAGERPGM ( MSG_DWELL ) ;
st_synchronize ( ) ;
codenum + = millis ( ) ; // keep track of when we started waiting
previous_millis_cmd = millis ( ) ;
while ( millis ( ) < codenum ) {
manage_heater ( ) ;
manage_inactivity ( ) ;
lcd_update ( ) ;
}
break ;
# ifdef FWRETRACT
case 10 : // G10 retract
# if EXTRUDERS > 1
retracted_swap [ active_extruder ] = ( code_seen ( ' S ' ) & & code_value_long ( ) = = 1 ) ; // checks for swap retract argument
retract ( true , retracted_swap [ active_extruder ] ) ;
# else
retract ( true ) ;
# endif
break ;
case 11 : // G11 retract_recover
# if EXTRUDERS > 1
retract ( false , retracted_swap [ active_extruder ] ) ;
# else
retract ( false ) ;
# endif
break ;
# endif //FWRETRACT
case 28 : //G28 Home all Axis one at a time
{
st_synchronize ( ) ;
# if 1
SERIAL_ECHOPGM ( " G28, initial " ) ; print_world_coordinates ( ) ;
SERIAL_ECHOPGM ( " G28, initial " ) ; print_physical_coordinates ( ) ;
# endif
// Flag for the display update routine and to disable the print cancelation during homing.
homing_flag = true ;
// Which axes should be homed?
bool home_x = code_seen ( axis_codes [ X_AXIS ] ) ;
bool home_y = code_seen ( axis_codes [ Y_AXIS ] ) ;
bool home_z = code_seen ( axis_codes [ Z_AXIS ] ) ;
// Either all X,Y,Z codes are present, or none of them.
bool home_all_axes = home_x = = home_y & & home_x = = home_z ;
if ( home_all_axes )
// No X/Y/Z code provided means to home all axes.
home_x = home_y = home_z = true ;
# ifdef ENABLE_AUTO_BED_LEVELING
plan_bed_level_matrix . set_to_identity ( ) ; //Reset the plane ("erase" all leveling data)
# endif //ENABLE_AUTO_BED_LEVELING
// Reset world2machine_rotation_and_skew and world2machine_shift, therefore
// the planner will not perform any adjustments in the XY plane.
// Wait for the motors to stop and update the current position with the absolute values.
world2machine_revert_to_uncorrected ( ) ;
// For mesh bed leveling deactivate the matrix temporarily.
// It is necessary to disable the bed leveling for the X and Y homing moves, so that the move is performed
// in a single axis only.
// In case of re-homing the X or Y axes only, the mesh bed leveling is restored after G28.
# ifdef MESH_BED_LEVELING
uint8_t mbl_was_active = mbl . active ;
mbl . active = 0 ;
current_position [ Z_AXIS ] = st_get_position_mm ( Z_AXIS ) ;
# endif
// Reset baby stepping to zero, if the babystepping has already been loaded before. The babystepsTodo value will be
// consumed during the first movements following this statement.
if ( home_z )
babystep_undo ( ) ;
saved_feedrate = feedrate ;
saved_feedmultiply = feedmultiply ;
feedmultiply = 100 ;
previous_millis_cmd = millis ( ) ;
enable_endstops ( true ) ;
memcpy ( destination , current_position , sizeof ( destination ) ) ;
feedrate = 0.0 ;
# if Z_HOME_DIR > 0 // If homing away from BED do Z first
if ( home_z )
homeaxis ( Z_AXIS ) ;
# endif
# ifdef QUICK_HOME
// In the quick mode, if both x and y are to be homed, a diagonal move will be performed initially.
if ( home_x & & home_y ) //first diagonal move
{
current_position [ X_AXIS ] = 0 ; current_position [ Y_AXIS ] = 0 ;
int x_axis_home_dir = home_dir ( X_AXIS ) ;
plan_set_position ( current_position [ X_AXIS ] , current_position [ Y_AXIS ] , current_position [ Z_AXIS ] , current_position [ E_AXIS ] ) ;
destination [ X_AXIS ] = 1.5 * max_length ( X_AXIS ) * x_axis_home_dir ; destination [ Y_AXIS ] = 1.5 * max_length ( Y_AXIS ) * home_dir ( Y_AXIS ) ;
feedrate = homing_feedrate [ X_AXIS ] ;
if ( homing_feedrate [ Y_AXIS ] < feedrate )
feedrate = homing_feedrate [ Y_AXIS ] ;
if ( max_length ( X_AXIS ) > max_length ( Y_AXIS ) ) {
feedrate * = sqrt ( pow ( max_length ( Y_AXIS ) / max_length ( X_AXIS ) , 2 ) + 1 ) ;
} else {
feedrate * = sqrt ( pow ( max_length ( X_AXIS ) / max_length ( Y_AXIS ) , 2 ) + 1 ) ;
}
plan_buffer_line ( destination [ X_AXIS ] , destination [ Y_AXIS ] , destination [ Z_AXIS ] , destination [ E_AXIS ] , feedrate / 60 , active_extruder ) ;
st_synchronize ( ) ;
axis_is_at_home ( X_AXIS ) ;
axis_is_at_home ( Y_AXIS ) ;
plan_set_position ( current_position [ X_AXIS ] , current_position [ Y_AXIS ] , current_position [ Z_AXIS ] , current_position [ E_AXIS ] ) ;
destination [ X_AXIS ] = current_position [ X_AXIS ] ;
destination [ Y_AXIS ] = current_position [ Y_AXIS ] ;
plan_buffer_line ( destination [ X_AXIS ] , destination [ Y_AXIS ] , destination [ Z_AXIS ] , destination [ E_AXIS ] , feedrate / 60 , active_extruder ) ;
feedrate = 0.0 ;
st_synchronize ( ) ;
endstops_hit_on_purpose ( ) ;
current_position [ X_AXIS ] = destination [ X_AXIS ] ;
current_position [ Y_AXIS ] = destination [ Y_AXIS ] ;
current_position [ Z_AXIS ] = destination [ Z_AXIS ] ;
}
# endif /* QUICK_HOME */
if ( home_x )
homeaxis ( X_AXIS ) ;
if ( home_y )
homeaxis ( Y_AXIS ) ;
if ( code_seen ( axis_codes [ X_AXIS ] ) & & code_value_long ( ) ! = 0 )
current_position [ X_AXIS ] = code_value ( ) + add_homing [ X_AXIS ] ;
if ( code_seen ( axis_codes [ Y_AXIS ] ) & & code_value_long ( ) ! = 0 )
current_position [ Y_AXIS ] = code_value ( ) + add_homing [ Y_AXIS ] ;
# if Z_HOME_DIR < 0 // If homing towards BED do Z last
# ifndef Z_SAFE_HOMING
if ( home_z ) {
# if defined (Z_RAISE_BEFORE_HOMING) && (Z_RAISE_BEFORE_HOMING > 0)
destination [ Z_AXIS ] = Z_RAISE_BEFORE_HOMING * home_dir ( Z_AXIS ) * ( - 1 ) ; // Set destination away from bed
feedrate = max_feedrate [ Z_AXIS ] ;
plan_buffer_line ( destination [ X_AXIS ] , destination [ Y_AXIS ] , destination [ Z_AXIS ] , destination [ E_AXIS ] , feedrate , active_extruder ) ;
st_synchronize ( ) ;
# endif // defined (Z_RAISE_BEFORE_HOMING) && (Z_RAISE_BEFORE_HOMING > 0)
# if (defined(MESH_BED_LEVELING) && !defined(MK1BP)) // If Mesh bed leveling, moxve X&Y to safe position for home
if ( ! ( axis_known_position [ X_AXIS ] & & axis_known_position [ Y_AXIS ] ) )
{
homeaxis ( X_AXIS ) ;
homeaxis ( Y_AXIS ) ;
}
// 1st mesh bed leveling measurement point, corrected.
world2machine_initialize ( ) ;
world2machine ( pgm_read_float ( bed_ref_points ) , pgm_read_float ( bed_ref_points + 1 ) , destination [ X_AXIS ] , destination [ Y_AXIS ] ) ;
world2machine_reset ( ) ;
if ( destination [ Y_AXIS ] < Y_MIN_POS )
destination [ Y_AXIS ] = Y_MIN_POS ;
destination [ Z_AXIS ] = MESH_HOME_Z_SEARCH ; // Set destination away from bed
feedrate = homing_feedrate [ Z_AXIS ] / 10 ;
current_position [ Z_AXIS ] = 0 ;
enable_endstops ( false ) ;
plan_set_position ( current_position [ X_AXIS ] , current_position [ Y_AXIS ] , current_position [ Z_AXIS ] , current_position [ E_AXIS ] ) ;
plan_buffer_line ( destination [ X_AXIS ] , destination [ Y_AXIS ] , destination [ Z_AXIS ] , destination [ E_AXIS ] , feedrate , active_extruder ) ;
st_synchronize ( ) ;
current_position [ X_AXIS ] = destination [ X_AXIS ] ;
current_position [ Y_AXIS ] = destination [ Y_AXIS ] ;
enable_endstops ( true ) ;
endstops_hit_on_purpose ( ) ;
homeaxis ( Z_AXIS ) ;
# else // MESH_BED_LEVELING
homeaxis ( Z_AXIS ) ;
# endif // MESH_BED_LEVELING
}
# else // defined(Z_SAFE_HOMING): Z Safe mode activated.
if ( home_all_axes ) {
destination [ X_AXIS ] = round ( Z_SAFE_HOMING_X_POINT - X_PROBE_OFFSET_FROM_EXTRUDER ) ;
destination [ Y_AXIS ] = round ( Z_SAFE_HOMING_Y_POINT - Y_PROBE_OFFSET_FROM_EXTRUDER ) ;
destination [ Z_AXIS ] = Z_RAISE_BEFORE_HOMING * home_dir ( Z_AXIS ) * ( - 1 ) ; // Set destination away from bed
feedrate = XY_TRAVEL_SPEED / 60 ;
current_position [ Z_AXIS ] = 0 ;
plan_set_position ( current_position [ X_AXIS ] , current_position [ Y_AXIS ] , current_position [ Z_AXIS ] , current_position [ E_AXIS ] ) ;
plan_buffer_line ( destination [ X_AXIS ] , destination [ Y_AXIS ] , destination [ Z_AXIS ] , destination [ E_AXIS ] , feedrate , active_extruder ) ;
st_synchronize ( ) ;
current_position [ X_AXIS ] = destination [ X_AXIS ] ;
current_position [ Y_AXIS ] = destination [ Y_AXIS ] ;
homeaxis ( Z_AXIS ) ;
}
// Let's see if X and Y are homed and probe is inside bed area.
if ( home_z ) {
if ( ( axis_known_position [ X_AXIS ] ) & & ( axis_known_position [ Y_AXIS ] ) \
& & ( current_position [ X_AXIS ] + X_PROBE_OFFSET_FROM_EXTRUDER > = X_MIN_POS ) \
& & ( current_position [ X_AXIS ] + X_PROBE_OFFSET_FROM_EXTRUDER < = X_MAX_POS ) \
& & ( current_position [ Y_AXIS ] + Y_PROBE_OFFSET_FROM_EXTRUDER > = Y_MIN_POS ) \
& & ( current_position [ Y_AXIS ] + Y_PROBE_OFFSET_FROM_EXTRUDER < = Y_MAX_POS ) ) {
current_position [ Z_AXIS ] = 0 ;
plan_set_position ( current_position [ X_AXIS ] , current_position [ Y_AXIS ] , current_position [ Z_AXIS ] , current_position [ E_AXIS ] ) ;
destination [ Z_AXIS ] = Z_RAISE_BEFORE_HOMING * home_dir ( Z_AXIS ) * ( - 1 ) ; // Set destination away from bed
feedrate = max_feedrate [ Z_AXIS ] ;
plan_buffer_line ( destination [ X_AXIS ] , destination [ Y_AXIS ] , destination [ Z_AXIS ] , destination [ E_AXIS ] , feedrate , active_extruder ) ;
st_synchronize ( ) ;
homeaxis ( Z_AXIS ) ;
} else if ( ! ( ( axis_known_position [ X_AXIS ] ) & & ( axis_known_position [ Y_AXIS ] ) ) ) {
LCD_MESSAGERPGM ( MSG_POSITION_UNKNOWN ) ;
SERIAL_ECHO_START ;
SERIAL_ECHOLNRPGM ( MSG_POSITION_UNKNOWN ) ;
} else {
LCD_MESSAGERPGM ( MSG_ZPROBE_OUT ) ;
SERIAL_ECHO_START ;
SERIAL_ECHOLNRPGM ( MSG_ZPROBE_OUT ) ;
}
}
# endif // Z_SAFE_HOMING
# endif // Z_HOME_DIR < 0
if ( code_seen ( axis_codes [ Z_AXIS ] ) & & code_value_long ( ) ! = 0 )
current_position [ Z_AXIS ] = code_value ( ) + add_homing [ Z_AXIS ] ;
# ifdef ENABLE_AUTO_BED_LEVELING
if ( home_z )
current_position [ Z_AXIS ] + = zprobe_zoffset ; //Add Z_Probe offset (the distance is negative)
# endif
// Set the planner and stepper routine positions.
// At this point the mesh bed leveling and world2machine corrections are disabled and current_position
// contains the machine coordinates.
plan_set_position ( current_position [ X_AXIS ] , current_position [ Y_AXIS ] , current_position [ Z_AXIS ] , current_position [ E_AXIS ] ) ;
# ifdef ENDSTOPS_ONLY_FOR_HOMING
enable_endstops ( false ) ;
# endif
feedrate = saved_feedrate ;
feedmultiply = saved_feedmultiply ;
previous_millis_cmd = millis ( ) ;
endstops_hit_on_purpose ( ) ;
# ifndef MESH_BED_LEVELING
// If MESH_BED_LEVELING is not active, then it is the original Prusa i3.
// Offer the user to load the baby step value, which has been adjusted at the previous print session.
if ( card . sdprinting & & eeprom_read_word ( ( uint16_t * ) EEPROM_BABYSTEP_Z ) )
lcd_adjust_z ( ) ;
# endif
// Load the machine correction matrix
world2machine_initialize ( ) ;
// and correct the current_position XY axes to match the transformed coordinate system.
world2machine_update_current ( ) ;
# if (defined(MESH_BED_LEVELING) && !defined(MK1BP))
if ( code_seen ( axis_codes [ X_AXIS ] ) | | code_seen ( axis_codes [ Y_AXIS ] ) | | code_seen ( ' W ' ) | | code_seen ( axis_codes [ Z_AXIS ] ) )
{
if ( ! home_z & & mbl_was_active ) {
// Re-enable the mesh bed leveling if only the X and Y axes were re-homed.
mbl . active = true ;
// and re-adjust the current logical Z axis with the bed leveling offset applicable at the current XY position.
current_position [ Z_AXIS ] - = mbl . get_z ( st_get_position_mm ( X_AXIS ) , st_get_position_mm ( Y_AXIS ) ) ;
}
}
else
{
st_synchronize ( ) ;
homing_flag = false ;
// Push the commands to the front of the message queue in the reverse order!
// There shall be always enough space reserved for these commands.
// enquecommand_front_P((PSTR("G80")));
goto case_G80 ;
}
# endif
if ( farm_mode ) { prusa_statistics ( 20 ) ; } ;
homing_flag = false ;
SERIAL_ECHOPGM ( " G28, final " ) ; print_world_coordinates ( ) ;
SERIAL_ECHOPGM ( " G28, final " ) ; print_physical_coordinates ( ) ;
SERIAL_ECHOPGM ( " G28, final " ) ; print_mesh_bed_leveling_table ( ) ;
break ;
}
# ifdef ENABLE_AUTO_BED_LEVELING
case 29 : // G29 Detailed Z-Probe, probes the bed at 3 or more points.
{
# if Z_MIN_PIN == -1
# error "You must have a Z_MIN endstop in order to enable Auto Bed Leveling feature! Z_MIN_PIN must point to a valid hardware pin."
# endif
// Prevent user from running a G29 without first homing in X and Y
if ( ! ( axis_known_position [ X_AXIS ] & & axis_known_position [ Y_AXIS ] ) )
{
LCD_MESSAGERPGM ( MSG_POSITION_UNKNOWN ) ;
SERIAL_ECHO_START ;
SERIAL_ECHOLNRPGM ( MSG_POSITION_UNKNOWN ) ;
break ; // abort G29, since we don't know where we are
}
st_synchronize ( ) ;
// make sure the bed_level_rotation_matrix is identity or the planner will get it incorectly
//vector_3 corrected_position = plan_get_position_mm();
//corrected_position.debug("position before G29");
plan_bed_level_matrix . set_to_identity ( ) ;
vector_3 uncorrected_position = plan_get_position ( ) ;
//uncorrected_position.debug("position durring G29");
current_position [ X_AXIS ] = uncorrected_position . x ;
current_position [ Y_AXIS ] = uncorrected_position . y ;
current_position [ Z_AXIS ] = uncorrected_position . z ;
plan_set_position ( current_position [ X_AXIS ] , current_position [ Y_AXIS ] , current_position [ Z_AXIS ] , current_position [ E_AXIS ] ) ;
setup_for_endstop_move ( ) ;
feedrate = homing_feedrate [ Z_AXIS ] ;
# ifdef AUTO_BED_LEVELING_GRID
// probe at the points of a lattice grid
int xGridSpacing = ( RIGHT_PROBE_BED_POSITION - LEFT_PROBE_BED_POSITION ) / ( AUTO_BED_LEVELING_GRID_POINTS - 1 ) ;
int yGridSpacing = ( BACK_PROBE_BED_POSITION - FRONT_PROBE_BED_POSITION ) / ( AUTO_BED_LEVELING_GRID_POINTS - 1 ) ;
// solve the plane equation ax + by + d = z
// A is the matrix with rows [x y 1] for all the probed points
// B is the vector of the Z positions
// the normal vector to the plane is formed by the coefficients of the plane equation in the standard form, which is Vx*x+Vy*y+Vz*z+d = 0
// so Vx = -a Vy = -b Vz = 1 (we want the vector facing towards positive Z
// "A" matrix of the linear system of equations
double eqnAMatrix [ AUTO_BED_LEVELING_GRID_POINTS * AUTO_BED_LEVELING_GRID_POINTS * 3 ] ;
// "B" vector of Z points
double eqnBVector [ AUTO_BED_LEVELING_GRID_POINTS * AUTO_BED_LEVELING_GRID_POINTS ] ;
int probePointCounter = 0 ;
bool zig = true ;
for ( int yProbe = FRONT_PROBE_BED_POSITION ; yProbe < = BACK_PROBE_BED_POSITION ; yProbe + = yGridSpacing )
{
int xProbe , xInc ;
if ( zig )
{
xProbe = LEFT_PROBE_BED_POSITION ;
//xEnd = RIGHT_PROBE_BED_POSITION;
xInc = xGridSpacing ;
zig = false ;
} else // zag
{
xProbe = RIGHT_PROBE_BED_POSITION ;
//xEnd = LEFT_PROBE_BED_POSITION;
xInc = - xGridSpacing ;
zig = true ;
}
for ( int xCount = 0 ; xCount < AUTO_BED_LEVELING_GRID_POINTS ; xCount + + )
{
float z_before ;
if ( probePointCounter = = 0 )
{
// raise before probing
z_before = Z_RAISE_BEFORE_PROBING ;
} else
{
// raise extruder
z_before = current_position [ Z_AXIS ] + Z_RAISE_BETWEEN_PROBINGS ;
}
float measured_z = probe_pt ( xProbe , yProbe , z_before ) ;
eqnBVector [ probePointCounter ] = measured_z ;
eqnAMatrix [ probePointCounter + 0 * AUTO_BED_LEVELING_GRID_POINTS * AUTO_BED_LEVELING_GRID_POINTS ] = xProbe ;
eqnAMatrix [ probePointCounter + 1 * AUTO_BED_LEVELING_GRID_POINTS * AUTO_BED_LEVELING_GRID_POINTS ] = yProbe ;
eqnAMatrix [ probePointCounter + 2 * AUTO_BED_LEVELING_GRID_POINTS * AUTO_BED_LEVELING_GRID_POINTS ] = 1 ;
probePointCounter + + ;
xProbe + = xInc ;
}
}
clean_up_after_endstop_move ( ) ;
// solve lsq problem
double * plane_equation_coefficients = qr_solve ( AUTO_BED_LEVELING_GRID_POINTS * AUTO_BED_LEVELING_GRID_POINTS , 3 , eqnAMatrix , eqnBVector ) ;
SERIAL_PROTOCOLPGM ( " Eqn coefficients: a: " ) ;
SERIAL_PROTOCOL ( plane_equation_coefficients [ 0 ] ) ;
SERIAL_PROTOCOLPGM ( " b: " ) ;
SERIAL_PROTOCOL ( plane_equation_coefficients [ 1 ] ) ;
SERIAL_PROTOCOLPGM ( " d: " ) ;
SERIAL_PROTOCOLLN ( plane_equation_coefficients [ 2 ] ) ;
set_bed_level_equation_lsq ( plane_equation_coefficients ) ;
free ( plane_equation_coefficients ) ;
# else // AUTO_BED_LEVELING_GRID not defined
// Probe at 3 arbitrary points
// probe 1
float z_at_pt_1 = probe_pt ( ABL_PROBE_PT_1_X , ABL_PROBE_PT_1_Y , Z_RAISE_BEFORE_PROBING ) ;
// probe 2
float z_at_pt_2 = probe_pt ( ABL_PROBE_PT_2_X , ABL_PROBE_PT_2_Y , current_position [ Z_AXIS ] + Z_RAISE_BETWEEN_PROBINGS ) ;
// probe 3
float z_at_pt_3 = probe_pt ( ABL_PROBE_PT_3_X , ABL_PROBE_PT_3_Y , current_position [ Z_AXIS ] + Z_RAISE_BETWEEN_PROBINGS ) ;
clean_up_after_endstop_move ( ) ;
set_bed_level_equation_3pts ( z_at_pt_1 , z_at_pt_2 , z_at_pt_3 ) ;
# endif // AUTO_BED_LEVELING_GRID
st_synchronize ( ) ;
// The following code correct the Z height difference from z-probe position and hotend tip position.
// The Z height on homing is measured by Z-Probe, but the probe is quite far from the hotend.
// When the bed is uneven, this height must be corrected.
real_z = float ( st_get_position ( Z_AXIS ) ) / axis_steps_per_unit [ Z_AXIS ] ; //get the real Z (since the auto bed leveling is already correcting the plane)
x_tmp = current_position [ X_AXIS ] + X_PROBE_OFFSET_FROM_EXTRUDER ;
y_tmp = current_position [ Y_AXIS ] + Y_PROBE_OFFSET_FROM_EXTRUDER ;
z_tmp = current_position [ Z_AXIS ] ;
apply_rotation_xyz ( plan_bed_level_matrix , x_tmp , y_tmp , z_tmp ) ; //Apply the correction sending the probe offset
current_position [ Z_AXIS ] = z_tmp - real_z + current_position [ Z_AXIS ] ; //The difference is added to current position and sent to planner.
plan_set_position ( current_position [ X_AXIS ] , current_position [ Y_AXIS ] , current_position [ Z_AXIS ] , current_position [ E_AXIS ] ) ;
}
break ;
# ifndef Z_PROBE_SLED
case 30 : // G30 Single Z Probe
{
st_synchronize ( ) ;
// TODO: make sure the bed_level_rotation_matrix is identity or the planner will get set incorectly
setup_for_endstop_move ( ) ;
feedrate = homing_feedrate [ Z_AXIS ] ;
run_z_probe ( ) ;
SERIAL_PROTOCOLPGM ( MSG_BED ) ;
SERIAL_PROTOCOLPGM ( " X: " ) ;
SERIAL_PROTOCOL ( current_position [ X_AXIS ] ) ;
SERIAL_PROTOCOLPGM ( " Y: " ) ;
SERIAL_PROTOCOL ( current_position [ Y_AXIS ] ) ;
SERIAL_PROTOCOLPGM ( " Z: " ) ;
SERIAL_PROTOCOL ( current_position [ Z_AXIS ] ) ;
SERIAL_PROTOCOLPGM ( " \n " ) ;
clean_up_after_endstop_move ( ) ;
}
break ;
# else
case 31 : // dock the sled
dock_sled ( true ) ;
break ;
case 32 : // undock the sled
dock_sled ( false ) ;
break ;
# endif // Z_PROBE_SLED
# endif // ENABLE_AUTO_BED_LEVELING
# ifdef MESH_BED_LEVELING
case 30 : // G30 Single Z Probe
{
st_synchronize ( ) ;
// TODO: make sure the bed_level_rotation_matrix is identity or the planner will get set incorectly
setup_for_endstop_move ( ) ;
feedrate = homing_feedrate [ Z_AXIS ] ;
find_bed_induction_sensor_point_z ( - 10.f , 3 ) ;
SERIAL_PROTOCOLRPGM ( MSG_BED ) ;
SERIAL_PROTOCOLPGM ( " X: " ) ;
MYSERIAL . print ( current_position [ X_AXIS ] , 5 ) ;
SERIAL_PROTOCOLPGM ( " Y: " ) ;
MYSERIAL . print ( current_position [ Y_AXIS ] , 5 ) ;
SERIAL_PROTOCOLPGM ( " Z: " ) ;
MYSERIAL . print ( current_position [ Z_AXIS ] , 5 ) ;
SERIAL_PROTOCOLPGM ( " \n " ) ;
clean_up_after_endstop_move ( ) ;
}
break ;
case 75 :
{
for ( int i = 40 ; i < = 110 ; i + + ) {
MYSERIAL . print ( i ) ;
MYSERIAL . print ( " " ) ;
MYSERIAL . println ( temp_comp_interpolation ( i ) ) ; // / axis_steps_per_unit[Z_AXIS]);
}
}
break ;
case 76 : //PINDA probe temperature calibration
{
# ifdef PINDA_THERMISTOR
if ( true )
{
if ( ! ( axis_known_position [ X_AXIS ] & & axis_known_position [ Y_AXIS ] & & axis_known_position [ Z_AXIS ] ) ) {
// We don't know where we are! HOME!
// Push the commands to the front of the message queue in the reverse order!
// There shall be always enough space reserved for these commands.
repeatcommand_front ( ) ; // repeat G76 with all its parameters
enquecommand_front_P ( ( PSTR ( " G28 W0 " ) ) ) ;
break ;
}
2017-11-15 14:09:29 +00:00
KEEPALIVE_STATE ( NOT_BUSY ) ; //no need to print busy messages as we print current temperatures periodicaly
2017-10-27 15:07:02 +00:00
SERIAL_ECHOLNPGM ( " PINDA probe calibration start " ) ;
float zero_z ;
int z_shift = 0 ; //unit: steps
float start_temp = 5 * ( int ) ( current_temperature_pinda / 5 ) ;
if ( start_temp < 35 ) start_temp = 35 ;
if ( start_temp < current_temperature_pinda ) start_temp + = 5 ;
SERIAL_ECHOPGM ( " start temperature: " ) ;
MYSERIAL . println ( start_temp ) ;
// setTargetHotend(200, 0);
2017-11-27 06:09:53 +00:00
setTargetBed ( 70 + ( start_temp - 30 ) ) ;
2017-10-27 15:07:02 +00:00
custom_message = true ;
custom_message_type = 4 ;
custom_message_state = 1 ;
custom_message = MSG_TEMP_CALIBRATION ;
current_position [ X_AXIS ] = PINDA_PREHEAT_X ;
current_position [ Y_AXIS ] = PINDA_PREHEAT_Y ;
current_position [ Z_AXIS ] = PINDA_PREHEAT_Z ;
plan_buffer_line ( current_position [ X_AXIS ] , current_position [ Y_AXIS ] , current_position [ Z_AXIS ] , current_position [ E_AXIS ] , 3000 / 60 , active_extruder ) ;
st_synchronize ( ) ;
while ( current_temperature_pinda < start_temp )
{
delay_keep_alive ( 1000 ) ;
serialecho_temperatures ( ) ;
}
eeprom_update_byte ( ( uint8_t * ) EEPROM_CALIBRATION_STATUS_PINDA , 0 ) ; //invalidate temp. calibration in case that in will be aborted during the calibration process
current_position [ Z_AXIS ] = 5 ;
plan_buffer_line ( current_position [ X_AXIS ] , current_position [ Y_AXIS ] , current_position [ Z_AXIS ] , current_position [ E_AXIS ] , 3000 / 60 , active_extruder ) ;
current_position [ X_AXIS ] = pgm_read_float ( bed_ref_points ) ;
current_position [ Y_AXIS ] = pgm_read_float ( bed_ref_points + 1 ) ;
plan_buffer_line ( current_position [ X_AXIS ] , current_position [ Y_AXIS ] , current_position [ Z_AXIS ] , current_position [ E_AXIS ] , 3000 / 60 , active_extruder ) ;
st_synchronize ( ) ;
find_bed_induction_sensor_point_z ( - 1.f ) ;
zero_z = current_position [ Z_AXIS ] ;
//current_position[Z_AXIS]
SERIAL_ECHOLNPGM ( " " ) ;
SERIAL_ECHOPGM ( " ZERO: " ) ;
MYSERIAL . print ( current_position [ Z_AXIS ] ) ;
SERIAL_ECHOLNPGM ( " " ) ;
int i = - 1 ; for ( ; i < 5 ; i + + )
{
float temp = ( 40 + i * 5 ) ;
SERIAL_ECHOPGM ( " Step: " ) ;
MYSERIAL . print ( i + 2 ) ;
SERIAL_ECHOLNPGM ( " /6 (skipped) " ) ;
SERIAL_ECHOPGM ( " PINDA temperature: " ) ;
MYSERIAL . print ( ( 40 + i * 5 ) ) ;
SERIAL_ECHOPGM ( " Z shift (mm): " ) ;
MYSERIAL . print ( 0 ) ;
SERIAL_ECHOLNPGM ( " " ) ;
if ( i > = 0 ) EEPROM_save_B ( EEPROM_PROBE_TEMP_SHIFT + i * 2 , & z_shift ) ;
if ( start_temp < = temp ) break ;
}
for ( i + + ; i < 5 ; i + + )
{
float temp = ( 40 + i * 5 ) ;
SERIAL_ECHOPGM ( " Step: " ) ;
MYSERIAL . print ( i + 2 ) ;
SERIAL_ECHOLNPGM ( " /6 " ) ;
custom_message_state = i + 2 ;
setTargetBed ( 50 + 10 * ( temp - 30 ) / 5 ) ;
// setTargetHotend(255, 0);
current_position [ X_AXIS ] = PINDA_PREHEAT_X ;
current_position [ Y_AXIS ] = PINDA_PREHEAT_Y ;
current_position [ Z_AXIS ] = PINDA_PREHEAT_Z ;
plan_buffer_line ( current_position [ X_AXIS ] , current_position [ Y_AXIS ] , current_position [ Z_AXIS ] , current_position [ E_AXIS ] , 3000 / 60 , active_extruder ) ;
st_synchronize ( ) ;
while ( current_temperature_pinda < temp )
{
delay_keep_alive ( 1000 ) ;
serialecho_temperatures ( ) ;
}
current_position [ Z_AXIS ] = 5 ;
plan_buffer_line ( current_position [ X_AXIS ] , current_position [ Y_AXIS ] , current_position [ Z_AXIS ] , current_position [ E_AXIS ] , 3000 / 60 , active_extruder ) ;
current_position [ X_AXIS ] = pgm_read_float ( bed_ref_points ) ;
current_position [ Y_AXIS ] = pgm_read_float ( bed_ref_points + 1 ) ;
plan_buffer_line ( current_position [ X_AXIS ] , current_position [ Y_AXIS ] , current_position [ Z_AXIS ] , current_position [ E_AXIS ] , 3000 / 60 , active_extruder ) ;
st_synchronize ( ) ;
find_bed_induction_sensor_point_z ( - 1.f ) ;
z_shift = ( int ) ( ( current_position [ Z_AXIS ] - zero_z ) * axis_steps_per_unit [ Z_AXIS ] ) ;
SERIAL_ECHOLNPGM ( " " ) ;
SERIAL_ECHOPGM ( " PINDA temperature: " ) ;
MYSERIAL . print ( current_temperature_pinda ) ;
SERIAL_ECHOPGM ( " Z shift (mm): " ) ;
MYSERIAL . print ( current_position [ Z_AXIS ] - zero_z ) ;
SERIAL_ECHOLNPGM ( " " ) ;
EEPROM_save_B ( EEPROM_PROBE_TEMP_SHIFT + i * 2 , & z_shift ) ;
}
custom_message_type = 0 ;
custom_message = false ;
eeprom_update_byte ( ( uint8_t * ) EEPROM_CALIBRATION_STATUS_PINDA , 1 ) ;
SERIAL_ECHOLNPGM ( " Temperature calibration done. Continue with pressing the knob. " ) ;
disable_x ( ) ;
disable_y ( ) ;
disable_z ( ) ;
disable_e0 ( ) ;
disable_e1 ( ) ;
disable_e2 ( ) ;
lcd_show_fullscreen_message_and_wait_P ( MSG_TEMP_CALIBRATION_DONE ) ;
lcd_update_enable ( true ) ;
lcd_update ( 2 ) ;
setTargetBed ( 0 ) ; //set bed target temperature back to 0
// setTargetHotend(0,0); //set hotend target temperature back to 0
break ;
}
# endif //PINDA_THERMISTOR
setTargetBed ( PINDA_MIN_T ) ;
float zero_z ;
int z_shift = 0 ; //unit: steps
int t_c ; // temperature
if ( ! ( axis_known_position [ X_AXIS ] & & axis_known_position [ Y_AXIS ] & & axis_known_position [ Z_AXIS ] ) ) {
// We don't know where we are! HOME!
// Push the commands to the front of the message queue in the reverse order!
// There shall be always enough space reserved for these commands.
repeatcommand_front ( ) ; // repeat G76 with all its parameters
enquecommand_front_P ( ( PSTR ( " G28 W0 " ) ) ) ;
break ;
}
SERIAL_ECHOLNPGM ( " PINDA probe calibration start " ) ;
custom_message = true ;
custom_message_type = 4 ;
custom_message_state = 1 ;
custom_message = MSG_TEMP_CALIBRATION ;
current_position [ X_AXIS ] = PINDA_PREHEAT_X ;
current_position [ Y_AXIS ] = PINDA_PREHEAT_Y ;
current_position [ Z_AXIS ] = PINDA_PREHEAT_Z ;
plan_buffer_line ( current_position [ X_AXIS ] , current_position [ Y_AXIS ] , current_position [ Z_AXIS ] , current_position [ E_AXIS ] , 3000 / 60 , active_extruder ) ;
st_synchronize ( ) ;
while ( abs ( degBed ( ) - PINDA_MIN_T ) > 1 ) {
delay_keep_alive ( 1000 ) ;
serialecho_temperatures ( ) ;
}
//enquecommand_P(PSTR("M190 S50"));
for ( int i = 0 ; i < PINDA_HEAT_T ; i + + ) {
delay_keep_alive ( 1000 ) ;
serialecho_temperatures ( ) ;
}
eeprom_update_byte ( ( uint8_t * ) EEPROM_CALIBRATION_STATUS_PINDA , 0 ) ; //invalidate temp. calibration in case that in will be aborted during the calibration process
current_position [ Z_AXIS ] = 5 ;
plan_buffer_line ( current_position [ X_AXIS ] , current_position [ Y_AXIS ] , current_position [ Z_AXIS ] , current_position [ E_AXIS ] , 3000 / 60 , active_extruder ) ;
current_position [ X_AXIS ] = pgm_read_float ( bed_ref_points ) ;
current_position [ Y_AXIS ] = pgm_read_float ( bed_ref_points + 1 ) ;
plan_buffer_line ( current_position [ X_AXIS ] , current_position [ Y_AXIS ] , current_position [ Z_AXIS ] , current_position [ E_AXIS ] , 3000 / 60 , active_extruder ) ;
st_synchronize ( ) ;
find_bed_induction_sensor_point_z ( - 1.f ) ;
zero_z = current_position [ Z_AXIS ] ;
//current_position[Z_AXIS]
SERIAL_ECHOLNPGM ( " " ) ;
SERIAL_ECHOPGM ( " ZERO: " ) ;
MYSERIAL . print ( current_position [ Z_AXIS ] ) ;
SERIAL_ECHOLNPGM ( " " ) ;
for ( int i = 0 ; i < 5 ; i + + ) {
SERIAL_ECHOPGM ( " Step: " ) ;
MYSERIAL . print ( i + 2 ) ;
SERIAL_ECHOLNPGM ( " /6 " ) ;
custom_message_state = i + 2 ;
t_c = 60 + i * 10 ;
setTargetBed ( t_c ) ;
current_position [ X_AXIS ] = PINDA_PREHEAT_X ;
current_position [ Y_AXIS ] = PINDA_PREHEAT_Y ;
current_position [ Z_AXIS ] = PINDA_PREHEAT_Z ;
plan_buffer_line ( current_position [ X_AXIS ] , current_position [ Y_AXIS ] , current_position [ Z_AXIS ] , current_position [ E_AXIS ] , 3000 / 60 , active_extruder ) ;
st_synchronize ( ) ;
while ( degBed ( ) < t_c ) {
delay_keep_alive ( 1000 ) ;
serialecho_temperatures ( ) ;
}
for ( int i = 0 ; i < PINDA_HEAT_T ; i + + ) {
delay_keep_alive ( 1000 ) ;
serialecho_temperatures ( ) ;
}
current_position [ Z_AXIS ] = 5 ;
plan_buffer_line ( current_position [ X_AXIS ] , current_position [ Y_AXIS ] , current_position [ Z_AXIS ] , current_position [ E_AXIS ] , 3000 / 60 , active_extruder ) ;
current_position [ X_AXIS ] = pgm_read_float ( bed_ref_points ) ;
current_position [ Y_AXIS ] = pgm_read_float ( bed_ref_points + 1 ) ;
plan_buffer_line ( current_position [ X_AXIS ] , current_position [ Y_AXIS ] , current_position [ Z_AXIS ] , current_position [ E_AXIS ] , 3000 / 60 , active_extruder ) ;
st_synchronize ( ) ;
find_bed_induction_sensor_point_z ( - 1.f ) ;
z_shift = ( int ) ( ( current_position [ Z_AXIS ] - zero_z ) * axis_steps_per_unit [ Z_AXIS ] ) ;
SERIAL_ECHOLNPGM ( " " ) ;
SERIAL_ECHOPGM ( " Temperature: " ) ;
MYSERIAL . print ( t_c ) ;
SERIAL_ECHOPGM ( " Z shift (mm): " ) ;
MYSERIAL . print ( current_position [ Z_AXIS ] - zero_z ) ;
SERIAL_ECHOLNPGM ( " " ) ;
EEPROM_save_B ( EEPROM_PROBE_TEMP_SHIFT + i * 2 , & z_shift ) ;
}
custom_message_type = 0 ;
custom_message = false ;
eeprom_update_byte ( ( uint8_t * ) EEPROM_CALIBRATION_STATUS_PINDA , 1 ) ;
SERIAL_ECHOLNPGM ( " Temperature calibration done. Continue with pressing the knob. " ) ;
disable_x ( ) ;
disable_y ( ) ;
disable_z ( ) ;
disable_e0 ( ) ;
disable_e1 ( ) ;
disable_e2 ( ) ;
setTargetBed ( 0 ) ; //set bed target temperature back to 0
lcd_show_fullscreen_message_and_wait_P ( MSG_TEMP_CALIBRATION_DONE ) ;
lcd_update_enable ( true ) ;
lcd_update ( 2 ) ;
}
break ;
# ifdef DIS
case 77 :
{
//G77 X200 Y150 XP100 YP15 XO10 Y015
//for 9 point mesh bed leveling G77 X203 Y196 XP3 YP3 XO0 YO0
//G77 X232 Y218 XP116 YP109 XO-11 YO0
float dimension_x = 40 ;
float dimension_y = 40 ;
int points_x = 40 ;
int points_y = 40 ;
float offset_x = 74 ;
float offset_y = 33 ;
if ( code_seen ( ' X ' ) ) dimension_x = code_value ( ) ;
if ( code_seen ( ' Y ' ) ) dimension_y = code_value ( ) ;
if ( code_seen ( ' XP ' ) ) points_x = code_value ( ) ;
if ( code_seen ( ' YP ' ) ) points_y = code_value ( ) ;
if ( code_seen ( ' XO ' ) ) offset_x = code_value ( ) ;
if ( code_seen ( ' YO ' ) ) offset_y = code_value ( ) ;
bed_analysis ( dimension_x , dimension_y , points_x , points_y , offset_x , offset_y ) ;
} break ;
# endif
case 79 : {
for ( int i = 255 ; i > 0 ; i = i - 5 ) {
fanSpeed = i ;
//delay_keep_alive(2000);
for ( int j = 0 ; j < 100 ; j + + ) {
delay_keep_alive ( 100 ) ;
}
fan_speed [ 1 ] ;
MYSERIAL . print ( i ) ; SERIAL_ECHOPGM ( " : " ) ; MYSERIAL . println ( fan_speed [ 1 ] ) ;
}
} break ;
/**
* G80 : Mesh - based Z probe , probes a grid and produces a
* mesh to compensate for variable bed height
*
* The S0 report the points as below
*
* + - - - - > X - axis
* |
* |
* v Y - axis
*
*/
case 80 :
# ifdef MK1BP
break ;
# endif //MK1BP
case_G80 :
{
mesh_bed_leveling_flag = true ;
int8_t verbosity_level = 0 ;
static bool run = false ;
if ( code_seen ( ' V ' ) ) {
// Just 'V' without a number counts as V1.
char c = strchr_pointer [ 1 ] ;
verbosity_level = ( c = = ' ' | | c = = ' \t ' | | c = = 0 ) ? 1 : code_value_short ( ) ;
}
// Firstly check if we know where we are
if ( ! ( axis_known_position [ X_AXIS ] & & axis_known_position [ Y_AXIS ] & & axis_known_position [ Z_AXIS ] ) ) {
// We don't know where we are! HOME!
// Push the commands to the front of the message queue in the reverse order!
// There shall be always enough space reserved for these commands.
if ( lcd_commands_type ! = LCD_COMMAND_STOP_PRINT ) {
repeatcommand_front ( ) ; // repeat G80 with all its parameters
enquecommand_front_P ( ( PSTR ( " G28 W0 " ) ) ) ;
}
else {
mesh_bed_leveling_flag = false ;
}
break ;
}
bool temp_comp_start = true ;
# ifdef PINDA_THERMISTOR
temp_comp_start = false ;
# endif //PINDA_THERMISTOR
if ( temp_comp_start )
if ( run = = false & & temp_cal_active = = true & & calibration_status_pinda ( ) = = true & & target_temperature_bed > = 50 ) {
if ( lcd_commands_type ! = LCD_COMMAND_STOP_PRINT ) {
temp_compensation_start ( ) ;
run = true ;
repeatcommand_front ( ) ; // repeat G80 with all its parameters
enquecommand_front_P ( ( PSTR ( " G28 W0 " ) ) ) ;
}
else {
mesh_bed_leveling_flag = false ;
}
break ;
}
run = false ;
if ( lcd_commands_type = = LCD_COMMAND_STOP_PRINT ) {
mesh_bed_leveling_flag = false ;
break ;
}
// Save custom message state, set a new custom message state to display: Calibrating point 9.
bool custom_message_old = custom_message ;
unsigned int custom_message_type_old = custom_message_type ;
unsigned int custom_message_state_old = custom_message_state ;
custom_message = true ;
custom_message_type = 1 ;
custom_message_state = ( MESH_MEAS_NUM_X_POINTS * MESH_MEAS_NUM_Y_POINTS ) + 10 ;
lcd_update ( 1 ) ;
mbl . reset ( ) ; //reset mesh bed leveling
// Reset baby stepping to zero, if the babystepping has already been loaded before. The babystepsTodo value will be
// consumed during the first movements following this statement.
babystep_undo ( ) ;
// Cycle through all points and probe them
// First move up. During this first movement, the babystepping will be reverted.
current_position [ Z_AXIS ] = MESH_HOME_Z_SEARCH ;
plan_buffer_line ( current_position [ X_AXIS ] , current_position [ Y_AXIS ] , current_position [ Z_AXIS ] , current_position [ E_AXIS ] , homing_feedrate [ Z_AXIS ] / 60 , active_extruder ) ;
// The move to the first calibration point.
current_position [ X_AXIS ] = pgm_read_float ( bed_ref_points ) ;
current_position [ Y_AXIS ] = pgm_read_float ( bed_ref_points + 1 ) ;
bool clamped = world2machine_clamp ( current_position [ X_AXIS ] , current_position [ Y_AXIS ] ) ;
2017-11-07 10:36:41 +00:00
# ifdef SUPPORT_VERBOSITY
2017-10-27 15:07:02 +00:00
if ( verbosity_level > = 1 ) {
clamped ? SERIAL_PROTOCOLPGM ( " First calibration point clamped. \n " ) : SERIAL_PROTOCOLPGM ( " No clamping for first calibration point. \n " ) ;
}
2017-11-07 10:36:41 +00:00
# endif //SUPPORT_VERBOSITY
2017-10-27 15:07:02 +00:00
// mbl.get_meas_xy(0, 0, current_position[X_AXIS], current_position[Y_AXIS], false);
plan_buffer_line ( current_position [ X_AXIS ] , current_position [ Y_AXIS ] , current_position [ Z_AXIS ] , current_position [ E_AXIS ] , homing_feedrate [ X_AXIS ] / 30 , active_extruder ) ;
// Wait until the move is finished.
st_synchronize ( ) ;
int mesh_point = 0 ; //index number of calibration point
int ix = 0 ;
int iy = 0 ;
int XY_AXIS_FEEDRATE = homing_feedrate [ X_AXIS ] / 20 ;
int Z_PROBE_FEEDRATE = homing_feedrate [ Z_AXIS ] / 60 ;
int Z_LIFT_FEEDRATE = homing_feedrate [ Z_AXIS ] / 40 ;
bool has_z = is_bed_z_jitter_data_valid ( ) ; //checks if we have data from Z calibration (offsets of the Z heiths of the 8 calibration points from the first point)
2017-11-07 10:36:41 +00:00
# ifdef SUPPORT_VERBOSITY
2017-10-27 15:07:02 +00:00
if ( verbosity_level > = 1 ) {
has_z ? SERIAL_PROTOCOLPGM ( " Z jitter data from Z cal. valid. \n " ) : SERIAL_PROTOCOLPGM ( " Z jitter data from Z cal. not valid. \n " ) ;
}
2017-11-07 10:36:41 +00:00
# endif // SUPPORT_VERBOSITY
2017-10-27 15:07:02 +00:00
setup_for_endstop_move ( false ) ; //save feedrate and feedmultiply, sets feedmultiply to 100
const char * kill_message = NULL ;
while ( mesh_point ! = MESH_MEAS_NUM_X_POINTS * MESH_MEAS_NUM_Y_POINTS ) {
// Get coords of a measuring point.
ix = mesh_point % MESH_MEAS_NUM_X_POINTS ; // from 0 to MESH_NUM_X_POINTS - 1
iy = mesh_point / MESH_MEAS_NUM_X_POINTS ;
if ( iy & 1 ) ix = ( MESH_MEAS_NUM_X_POINTS - 1 ) - ix ; // Zig zag
float z0 = 0.f ;
if ( has_z & & mesh_point > 0 ) {
uint16_t z_offset_u = eeprom_read_word ( ( uint16_t * ) ( EEPROM_BED_CALIBRATION_Z_JITTER + 2 * ( ix + iy * 3 - 1 ) ) ) ;
z0 = mbl . z_values [ 0 ] [ 0 ] + * reinterpret_cast < int16_t * > ( & z_offset_u ) * 0.01 ;
//#if 0
2017-11-07 10:36:41 +00:00
# ifdef SUPPORT_VERBOSITY
2017-10-27 15:07:02 +00:00
if ( verbosity_level > = 1 ) {
2017-11-07 10:36:41 +00:00
SERIAL_ECHOLNPGM ( " " ) ;
2017-10-27 15:07:02 +00:00
SERIAL_ECHOPGM ( " Bed leveling, point: " ) ;
MYSERIAL . print ( mesh_point ) ;
SERIAL_ECHOPGM ( " , calibration z: " ) ;
MYSERIAL . print ( z0 , 5 ) ;
SERIAL_ECHOLNPGM ( " " ) ;
}
2017-11-07 10:36:41 +00:00
# endif // SUPPORT_VERBOSITY
2017-10-27 15:07:02 +00:00
//#endif
}
// Move Z up to MESH_HOME_Z_SEARCH.
current_position [ Z_AXIS ] = MESH_HOME_Z_SEARCH ;
plan_buffer_line ( current_position [ X_AXIS ] , current_position [ Y_AXIS ] , current_position [ Z_AXIS ] , current_position [ E_AXIS ] , Z_LIFT_FEEDRATE , active_extruder ) ;
st_synchronize ( ) ;
// Move to XY position of the sensor point.
current_position [ X_AXIS ] = pgm_read_float ( bed_ref_points + 2 * mesh_point ) ;
current_position [ Y_AXIS ] = pgm_read_float ( bed_ref_points + 2 * mesh_point + 1 ) ;
world2machine_clamp ( current_position [ X_AXIS ] , current_position [ Y_AXIS ] ) ;
2017-11-07 10:36:41 +00:00
# ifdef SUPPORT_VERBOSITY
2017-10-27 15:07:02 +00:00
if ( verbosity_level > = 1 ) {
SERIAL_PROTOCOL ( mesh_point ) ;
clamped ? SERIAL_PROTOCOLPGM ( " : xy clamped. \n " ) : SERIAL_PROTOCOLPGM ( " : no xy clamping \n " ) ;
}
2017-11-07 10:36:41 +00:00
# endif // SUPPORT_VERBOSITY
2017-10-27 15:07:02 +00:00
plan_buffer_line ( current_position [ X_AXIS ] , current_position [ Y_AXIS ] , current_position [ Z_AXIS ] , current_position [ E_AXIS ] , XY_AXIS_FEEDRATE , active_extruder ) ;
st_synchronize ( ) ;
// Go down until endstop is hit
const float Z_CALIBRATION_THRESHOLD = 1.f ;
if ( ! find_bed_induction_sensor_point_z ( ( has_z & & mesh_point > 0 ) ? z0 - Z_CALIBRATION_THRESHOLD : - 10.f ) ) { //if we have data from z calibration max allowed difference is 1mm for each point, if we dont have data max difference is 10mm from initial point
kill_message = MSG_BED_LEVELING_FAILED_POINT_LOW ;
break ;
}
if ( MESH_HOME_Z_SEARCH - current_position [ Z_AXIS ] < 0.1f ) {
kill_message = MSG_BED_LEVELING_FAILED_PROBE_DISCONNECTED ;
break ;
}
if ( has_z & & fabs ( z0 - current_position [ Z_AXIS ] ) > Z_CALIBRATION_THRESHOLD ) { //if we have data from z calibration, max. allowed difference is 1mm for each point
kill_message = MSG_BED_LEVELING_FAILED_POINT_HIGH ;
break ;
}
2017-11-07 10:36:41 +00:00
# ifdef SUPPORT_VERBOSITY
2017-10-27 15:07:02 +00:00
if ( verbosity_level > = 10 ) {
SERIAL_ECHOPGM ( " X: " ) ;
MYSERIAL . print ( current_position [ X_AXIS ] , 5 ) ;
SERIAL_ECHOLNPGM ( " " ) ;
SERIAL_ECHOPGM ( " Y: " ) ;
MYSERIAL . print ( current_position [ Y_AXIS ] , 5 ) ;
SERIAL_PROTOCOLPGM ( " \n " ) ;
}
2017-11-07 10:36:41 +00:00
# endif // SUPPORT_VERBOSITY
2017-10-27 15:07:02 +00:00
float offset_z = 0 ;
# ifdef PINDA_THERMISTOR
2017-11-16 19:51:50 +00:00
offset_z = temp_compensation_pinda_thermistor_offset ( current_temperature_pinda ) ;
2017-10-27 15:07:02 +00:00
# endif //PINDA_THERMISTOR
2017-11-16 19:51:50 +00:00
// #ifdef SUPPORT_VERBOSITY
// if (verbosity_level >= 1)
{
2017-10-27 15:07:02 +00:00
SERIAL_ECHOPGM ( " mesh bed leveling: " ) ;
MYSERIAL . print ( current_position [ Z_AXIS ] , 5 ) ;
SERIAL_ECHOPGM ( " offset: " ) ;
MYSERIAL . print ( offset_z , 5 ) ;
SERIAL_ECHOLNPGM ( " " ) ;
}
2017-11-16 19:51:50 +00:00
// #endif // SUPPORT_VERBOSITY
2017-10-27 15:07:02 +00:00
mbl . set_z ( ix , iy , current_position [ Z_AXIS ] - offset_z ) ; //store measured z values z_values[iy][ix] = z - offset_z;
custom_message_state - - ;
mesh_point + + ;
lcd_update ( 1 ) ;
}
current_position [ Z_AXIS ] = MESH_HOME_Z_SEARCH ;
2017-11-07 10:36:41 +00:00
# ifdef SUPPORT_VERBOSITY
2017-10-27 15:07:02 +00:00
if ( verbosity_level > = 20 ) {
2017-11-07 10:36:41 +00:00
SERIAL_ECHOLNPGM ( " Mesh bed leveling while loop finished. " ) ;
2017-10-27 15:07:02 +00:00
SERIAL_ECHOLNPGM ( " MESH_HOME_Z_SEARCH: " ) ;
MYSERIAL . print ( current_position [ Z_AXIS ] , 5 ) ;
}
2017-11-07 10:36:41 +00:00
# endif // SUPPORT_VERBOSITY
2017-10-27 15:07:02 +00:00
plan_buffer_line ( current_position [ X_AXIS ] , current_position [ Y_AXIS ] , current_position [ Z_AXIS ] , current_position [ E_AXIS ] , Z_LIFT_FEEDRATE , active_extruder ) ;
st_synchronize ( ) ;
if ( mesh_point ! = MESH_MEAS_NUM_X_POINTS * MESH_MEAS_NUM_Y_POINTS ) {
kill ( kill_message ) ;
SERIAL_ECHOLNPGM ( " killed " ) ;
}
clean_up_after_endstop_move ( ) ;
SERIAL_ECHOLNPGM ( " clean up finished " ) ;
bool apply_temp_comp = true ;
# ifdef PINDA_THERMISTOR
apply_temp_comp = false ;
# endif
if ( apply_temp_comp )
if ( temp_cal_active = = true & & calibration_status_pinda ( ) = = true ) temp_compensation_apply ( ) ; //apply PINDA temperature compensation
babystep_apply ( ) ; // Apply Z height correction aka baby stepping before mesh bed leveing gets activated.
SERIAL_ECHOLNPGM ( " babystep applied " ) ;
bool eeprom_bed_correction_valid = eeprom_read_byte ( ( unsigned char * ) EEPROM_BED_CORRECTION_VALID ) = = 1 ;
2017-11-07 10:36:41 +00:00
# ifdef SUPPORT_VERBOSITY
2017-10-27 15:07:02 +00:00
if ( verbosity_level > = 1 ) {
eeprom_bed_correction_valid ? SERIAL_PROTOCOLPGM ( " Bed correction data valid \n " ) : SERIAL_PROTOCOLPGM ( " Bed correction data not valid \n " ) ;
}
2017-11-07 10:36:41 +00:00
# endif // SUPPORT_VERBOSITY
2017-10-27 15:07:02 +00:00
for ( uint8_t i = 0 ; i < 4 ; + + i ) {
unsigned char codes [ 4 ] = { ' L ' , ' R ' , ' F ' , ' B ' } ;
long correction = 0 ;
if ( code_seen ( codes [ i ] ) )
correction = code_value_long ( ) ;
else if ( eeprom_bed_correction_valid ) {
unsigned char * addr = ( i < 2 ) ?
( ( i = = 0 ) ? ( unsigned char * ) EEPROM_BED_CORRECTION_LEFT : ( unsigned char * ) EEPROM_BED_CORRECTION_RIGHT ) :
( ( i = = 2 ) ? ( unsigned char * ) EEPROM_BED_CORRECTION_FRONT : ( unsigned char * ) EEPROM_BED_CORRECTION_REAR ) ;
correction = eeprom_read_int8 ( addr ) ;
}
if ( correction = = 0 )
continue ;
float offset = float ( correction ) * 0.001f ;
if ( fabs ( offset ) > 0.101f ) {
SERIAL_ERROR_START ;
SERIAL_ECHOPGM ( " Excessive bed leveling correction: " ) ;
SERIAL_ECHO ( offset ) ;
SERIAL_ECHOLNPGM ( " microns " ) ;
}
else {
switch ( i ) {
case 0 :
for ( uint8_t row = 0 ; row < 3 ; + + row ) {
mbl . z_values [ row ] [ 1 ] + = 0.5f * offset ;
mbl . z_values [ row ] [ 0 ] + = offset ;
}
break ;
case 1 :
for ( uint8_t row = 0 ; row < 3 ; + + row ) {
mbl . z_values [ row ] [ 1 ] + = 0.5f * offset ;
mbl . z_values [ row ] [ 2 ] + = offset ;
}
break ;
case 2 :
for ( uint8_t col = 0 ; col < 3 ; + + col ) {
mbl . z_values [ 1 ] [ col ] + = 0.5f * offset ;
mbl . z_values [ 0 ] [ col ] + = offset ;
}
break ;
case 3 :
for ( uint8_t col = 0 ; col < 3 ; + + col ) {
mbl . z_values [ 1 ] [ col ] + = 0.5f * offset ;
mbl . z_values [ 2 ] [ col ] + = offset ;
}
break ;
}
}
}
SERIAL_ECHOLNPGM ( " Bed leveling correction finished " ) ;
mbl . upsample_3x3 ( ) ; //bilinear interpolation from 3x3 to 7x7 points while using the same array z_values[iy][ix] for storing (just coppying measured data to new destination and interpolating between them)
SERIAL_ECHOLNPGM ( " Upsample finished " ) ;
mbl . active = 1 ; //activate mesh bed leveling
SERIAL_ECHOLNPGM ( " Mesh bed leveling activated " ) ;
go_home_with_z_lift ( ) ;
SERIAL_ECHOLNPGM ( " Go home finished " ) ;
//unretract (after PINDA preheat retraction)
if ( degHotend ( active_extruder ) > EXTRUDE_MINTEMP & & temp_cal_active = = true & & calibration_status_pinda ( ) = = true & & target_temperature_bed > = 50 ) {
current_position [ E_AXIS ] + = DEFAULT_RETRACTION ;
plan_buffer_line ( current_position [ X_AXIS ] , current_position [ Y_AXIS ] , current_position [ Z_AXIS ] , current_position [ E_AXIS ] , 400 , active_extruder ) ;
}
2017-11-15 14:09:29 +00:00
KEEPALIVE_STATE ( NOT_BUSY ) ;
2017-10-27 15:07:02 +00:00
// Restore custom message state
custom_message = custom_message_old ;
custom_message_type = custom_message_type_old ;
custom_message_state = custom_message_state_old ;
mesh_bed_leveling_flag = false ;
mesh_bed_run_from_menu = false ;
lcd_update ( 2 ) ;
}
break ;
/**
* G81 : Print mesh bed leveling status and bed profile if activated
*/
case 81 :
if ( mbl . active ) {
SERIAL_PROTOCOLPGM ( " Num X,Y: " ) ;
SERIAL_PROTOCOL ( MESH_NUM_X_POINTS ) ;
SERIAL_PROTOCOLPGM ( " , " ) ;
SERIAL_PROTOCOL ( MESH_NUM_Y_POINTS ) ;
SERIAL_PROTOCOLPGM ( " \n Z search height: " ) ;
SERIAL_PROTOCOL ( MESH_HOME_Z_SEARCH ) ;
SERIAL_PROTOCOLLNPGM ( " \n Measured points: " ) ;
for ( int y = MESH_NUM_Y_POINTS - 1 ; y > = 0 ; y - - ) {
for ( int x = 0 ; x < MESH_NUM_X_POINTS ; x + + ) {
SERIAL_PROTOCOLPGM ( " " ) ;
SERIAL_PROTOCOL_F ( mbl . z_values [ y ] [ x ] , 5 ) ;
}
SERIAL_PROTOCOLPGM ( " \n " ) ;
}
}
else
SERIAL_PROTOCOLLNPGM ( " Mesh bed leveling not active. " ) ;
break ;
#if 0
/**
* G82 : Single Z probe at current location
*
* WARNING ! USE WITH CAUTION ! If you ' ll try to probe where is no leveling pad , nasty things can happen !
*
*/
case 82 :
SERIAL_PROTOCOLLNPGM ( " Finding bed " ) ;
setup_for_endstop_move ( ) ;
find_bed_induction_sensor_point_z ( ) ;
clean_up_after_endstop_move ( ) ;
SERIAL_PROTOCOLPGM ( " Bed found at: " ) ;
SERIAL_PROTOCOL_F ( current_position [ Z_AXIS ] , 5 ) ;
SERIAL_PROTOCOLPGM ( " \n " ) ;
break ;
/**
* G83 : Prusa3D specific : Babystep in Z and store to EEPROM
*/
case 83 :
{
int babystepz = code_seen ( ' S ' ) ? code_value ( ) : 0 ;
int BabyPosition = code_seen ( ' P ' ) ? code_value ( ) : 0 ;
if ( babystepz ! = 0 ) {
//FIXME Vojtech: What shall be the index of the axis Z: 3 or 4?
// Is the axis indexed starting with zero or one?
if ( BabyPosition > 4 ) {
SERIAL_PROTOCOLLNPGM ( " Index out of bounds " ) ;
} else {
// Save it to the eeprom
babystepLoadZ = babystepz ;
EEPROM_save_B ( EEPROM_BABYSTEP_Z0 + ( BabyPosition * 2 ) , & babystepLoadZ ) ;
// adjust the Z
babystepsTodoZadd ( babystepLoadZ ) ;
}
}
}
break ;
/**
* G84 : Prusa3D specific : UNDO Babystep Z ( move Z axis back )
*/
case 84 :
babystepsTodoZsubtract ( babystepLoadZ ) ;
// babystepLoadZ = 0;
break ;
/**
* G85 : Prusa3D specific : Pick best babystep
*/
case 85 :
lcd_pick_babystep ( ) ;
break ;
# endif
/**
* G86 : Prusa3D specific : Disable babystep correction after home .
* This G - code will be performed at the start of a calibration script .
*/
case 86 :
calibration_status_store ( CALIBRATION_STATUS_LIVE_ADJUST ) ;
break ;
/**
* G87 : Prusa3D specific : Enable babystep correction after home
* This G - code will be performed at the end of a calibration script .
*/
case 87 :
calibration_status_store ( CALIBRATION_STATUS_CALIBRATED ) ;
break ;
/**
* G88 : Prusa3D specific : Don ' t know what it is for , it is in V2Calibration . gcode
*/
case 88 :
break ;
# endif // ENABLE_MESH_BED_LEVELING
case 90 : // G90
relative_mode = false ;
break ;
case 91 : // G91
relative_mode = true ;
break ;
case 92 : // G92
if ( ! code_seen ( axis_codes [ E_AXIS ] ) )
st_synchronize ( ) ;
for ( int8_t i = 0 ; i < NUM_AXIS ; i + + ) {
if ( code_seen ( axis_codes [ i ] ) ) {
if ( i = = E_AXIS ) {
current_position [ i ] = code_value ( ) ;
plan_set_e_position ( current_position [ E_AXIS ] ) ;
}
else {
current_position [ i ] = code_value ( ) + add_homing [ i ] ;
plan_set_position ( current_position [ X_AXIS ] , current_position [ Y_AXIS ] , current_position [ Z_AXIS ] , current_position [ E_AXIS ] ) ;
}
}
}
break ;
case 98 : //activate farm mode
farm_mode = 1 ;
PingTime = millis ( ) ;
eeprom_update_byte ( ( unsigned char * ) EEPROM_FARM_MODE , farm_mode ) ;
break ;
case 99 : //deactivate farm mode
farm_mode = 0 ;
lcd_printer_connected ( ) ;
eeprom_update_byte ( ( unsigned char * ) EEPROM_FARM_MODE , farm_mode ) ;
lcd_update ( 2 ) ;
break ;
}
} // end if(code_seen('G'))
else if ( code_seen ( ' M ' ) )
{
int index ;
for ( index = 1 ; * ( strchr_pointer + index ) = = ' ' | | * ( strchr_pointer + index ) = = ' \t ' ; index + + ) ;
/*for (++strchr_pointer; *strchr_pointer == ' ' || *strchr_pointer == '\t'; ++strchr_pointer);*/
if ( * ( strchr_pointer + index ) < ' 0 ' | | * ( strchr_pointer + index ) > ' 9 ' ) {
SERIAL_ECHOLNPGM ( " Invalid M code " ) ;
} else
switch ( ( int ) code_value ( ) )
{
# ifdef ULTIPANEL
case 0 : // M0 - Unconditional stop - Wait for user button press on LCD
case 1 : // M1 - Conditional stop - Wait for user button press on LCD
{
char * src = strchr_pointer + 2 ;
codenum = 0 ;
bool hasP = false , hasS = false ;
if ( code_seen ( ' P ' ) ) {
codenum = code_value ( ) ; // milliseconds to wait
hasP = codenum > 0 ;
}
if ( code_seen ( ' S ' ) ) {
codenum = code_value ( ) * 1000 ; // seconds to wait
hasS = codenum > 0 ;
}
starpos = strchr ( src , ' * ' ) ;
if ( starpos ! = NULL ) * ( starpos ) = ' \0 ' ;
while ( * src = = ' ' ) + + src ;
if ( ! hasP & & ! hasS & & * src ! = ' \0 ' ) {
lcd_setstatus ( src ) ;
} else {
LCD_MESSAGERPGM ( MSG_USERWAIT ) ;
}
lcd_ignore_click ( ) ; //call lcd_ignore_click aslo for else ???
st_synchronize ( ) ;
previous_millis_cmd = millis ( ) ;
if ( codenum > 0 ) {
codenum + = millis ( ) ; // keep track of when we started waiting
2017-11-15 14:09:29 +00:00
KEEPALIVE_STATE ( PAUSED_FOR_USER ) ;
2017-10-27 15:07:02 +00:00
while ( millis ( ) < codenum & & ! lcd_clicked ( ) ) {
manage_heater ( ) ;
manage_inactivity ( true ) ;
lcd_update ( ) ;
}
2017-11-15 14:09:29 +00:00
KEEPALIVE_STATE ( IN_HANDLER ) ;
2017-10-27 15:07:02 +00:00
lcd_ignore_click ( false ) ;
} else {
if ( ! lcd_detected ( ) )
break ;
2017-11-15 14:09:29 +00:00
KEEPALIVE_STATE ( PAUSED_FOR_USER ) ;
2017-10-27 15:07:02 +00:00
while ( ! lcd_clicked ( ) ) {
manage_heater ( ) ;
manage_inactivity ( true ) ;
lcd_update ( ) ;
}
2017-11-15 14:09:29 +00:00
KEEPALIVE_STATE ( IN_HANDLER ) ;
2017-10-27 15:07:02 +00:00
}
if ( IS_SD_PRINTING )
LCD_MESSAGERPGM ( MSG_RESUMING ) ;
else
LCD_MESSAGERPGM ( WELCOME_MSG ) ;
}
break ;
# endif
case 17 :
LCD_MESSAGERPGM ( MSG_NO_MOVE ) ;
enable_x ( ) ;
enable_y ( ) ;
enable_z ( ) ;
enable_e0 ( ) ;
enable_e1 ( ) ;
enable_e2 ( ) ;
break ;
# ifdef SDSUPPORT
case 20 : // M20 - list SD card
SERIAL_PROTOCOLLNRPGM ( MSG_BEGIN_FILE_LIST ) ;
card . ls ( ) ;
SERIAL_PROTOCOLLNRPGM ( MSG_END_FILE_LIST ) ;
break ;
case 21 : // M21 - init SD card
card . initsd ( ) ;
break ;
case 22 : //M22 - release SD card
card . release ( ) ;
break ;
case 23 : //M23 - Select file
starpos = ( strchr ( strchr_pointer + 4 , ' * ' ) ) ;
if ( starpos ! = NULL )
* ( starpos ) = ' \0 ' ;
card . openFile ( strchr_pointer + 4 , true ) ;
break ;
case 24 : //M24 - Start SD print
card . startFileprint ( ) ;
starttime = millis ( ) ;
break ;
case 25 : //M25 - Pause SD print
card . pauseSDPrint ( ) ;
break ;
case 26 : //M26 - Set SD index
if ( card . cardOK & & code_seen ( ' S ' ) ) {
card . setIndex ( code_value_long ( ) ) ;
}
break ;
case 27 : //M27 - Get SD status
card . getStatus ( ) ;
break ;
case 28 : //M28 - Start SD write
starpos = ( strchr ( strchr_pointer + 4 , ' * ' ) ) ;
if ( starpos ! = NULL ) {
char * npos = strchr ( CMDBUFFER_CURRENT_STRING , ' N ' ) ;
strchr_pointer = strchr ( npos , ' ' ) + 1 ;
* ( starpos ) = ' \0 ' ;
}
card . openFile ( strchr_pointer + 4 , false ) ;
break ;
case 29 : //M29 - Stop SD write
//processed in write to file routine above
//card,saving = false;
break ;
case 30 : //M30 <filename> Delete File
if ( card . cardOK ) {
card . closefile ( ) ;
starpos = ( strchr ( strchr_pointer + 4 , ' * ' ) ) ;
if ( starpos ! = NULL ) {
char * npos = strchr ( CMDBUFFER_CURRENT_STRING , ' N ' ) ;
strchr_pointer = strchr ( npos , ' ' ) + 1 ;
* ( starpos ) = ' \0 ' ;
}
card . removeFile ( strchr_pointer + 4 ) ;
}
break ;
case 32 : //M32 - Select file and start SD print
{
if ( card . sdprinting ) {
st_synchronize ( ) ;
}
starpos = ( strchr ( strchr_pointer + 4 , ' * ' ) ) ;
char * namestartpos = ( strchr ( strchr_pointer + 4 , ' ! ' ) ) ; //find ! to indicate filename string start.
if ( namestartpos = = NULL )
{
namestartpos = strchr_pointer + 4 ; //default name position, 4 letters after the M
}
else
namestartpos + + ; //to skip the '!'
if ( starpos ! = NULL )
* ( starpos ) = ' \0 ' ;
bool call_procedure = ( code_seen ( ' P ' ) ) ;
if ( strchr_pointer > namestartpos )
call_procedure = false ; //false alert, 'P' found within filename
if ( card . cardOK )
{
card . openFile ( namestartpos , true , ! call_procedure ) ;
if ( code_seen ( ' S ' ) )
if ( strchr_pointer < namestartpos ) //only if "S" is occuring _before_ the filename
card . setIndex ( code_value_long ( ) ) ;
card . startFileprint ( ) ;
if ( ! call_procedure )
starttime = millis ( ) ; //procedure calls count as normal print time.
}
} break ;
case 928 : //M928 - Start SD write
starpos = ( strchr ( strchr_pointer + 5 , ' * ' ) ) ;
if ( starpos ! = NULL ) {
char * npos = strchr ( CMDBUFFER_CURRENT_STRING , ' N ' ) ;
strchr_pointer = strchr ( npos , ' ' ) + 1 ;
* ( starpos ) = ' \0 ' ;
}
card . openLogFile ( strchr_pointer + 5 ) ;
break ;
# endif //SDSUPPORT
case 31 : //M31 take time since the start of the SD print or an M109 command
{
stoptime = millis ( ) ;
char time [ 30 ] ;
unsigned long t = ( stoptime - starttime ) / 1000 ;
int sec , min ;
min = t / 60 ;
sec = t % 60 ;
sprintf_P ( time , PSTR ( " %i min, %i sec " ) , min , sec ) ;
SERIAL_ECHO_START ;
SERIAL_ECHOLN ( time ) ;
lcd_setstatus ( time ) ;
autotempShutdown ( ) ;
}
break ;
2017-12-09 18:31:27 +00:00
# ifndef _DISABLE_M42_M226
2017-10-27 15:07:02 +00:00
case 42 : //M42 -Change pin status via gcode
if ( code_seen ( ' S ' ) )
{
int pin_status = code_value ( ) ;
int pin_number = LED_PIN ;
if ( code_seen ( ' P ' ) & & pin_status > = 0 & & pin_status < = 255 )
pin_number = code_value ( ) ;
for ( int8_t i = 0 ; i < ( int8_t ) ( sizeof ( sensitive_pins ) / sizeof ( int ) ) ; i + + )
{
if ( sensitive_pins [ i ] = = pin_number )
{
pin_number = - 1 ;
break ;
}
}
# if defined(FAN_PIN) && FAN_PIN > -1
if ( pin_number = = FAN_PIN )
fanSpeed = pin_status ;
# endif
if ( pin_number > - 1 )
{
pinMode ( pin_number , OUTPUT ) ;
digitalWrite ( pin_number , pin_status ) ;
analogWrite ( pin_number , pin_status ) ;
}
}
break ;
2017-12-09 18:31:27 +00:00
# endif //_DISABLE_M42_M226
2017-10-27 15:07:02 +00:00
case 44 : // M44: Prusa3D: Reset the bed skew and offset calibration.
// Reset the baby step value and the baby step applied flag.
calibration_status_store ( CALIBRATION_STATUS_ASSEMBLED ) ;
eeprom_update_word ( ( uint16_t * ) EEPROM_BABYSTEP_Z , 0 ) ;
// Reset the skew and offset in both RAM and EEPROM.
reset_bed_offset_and_skew ( ) ;
// Reset world2machine_rotation_and_skew and world2machine_shift, therefore
// the planner will not perform any adjustments in the XY plane.
// Wait for the motors to stop and update the current position with the absolute values.
world2machine_revert_to_uncorrected ( ) ;
break ;
case 45 : // M45: Prusa3D: bed skew and offset with manual Z up
{
2017-11-07 15:49:04 +00:00
bool only_Z = code_seen ( ' Z ' ) ;
gcode_M45 ( only_Z ) ;
2017-10-27 15:07:02 +00:00
}
2017-11-07 15:49:04 +00:00
break ;
2017-10-27 15:07:02 +00:00
/*
case 46 :
{
// M46: Prusa3D: Show the assigned IP address.
uint8_t ip [ 4 ] ;
bool hasIP = card . ToshibaFlashAir_GetIP ( ip ) ;
if ( hasIP ) {
SERIAL_ECHOPGM ( " Toshiba FlashAir current IP: " ) ;
SERIAL_ECHO ( int ( ip [ 0 ] ) ) ;
SERIAL_ECHOPGM ( " . " ) ;
SERIAL_ECHO ( int ( ip [ 1 ] ) ) ;
SERIAL_ECHOPGM ( " . " ) ;
SERIAL_ECHO ( int ( ip [ 2 ] ) ) ;
SERIAL_ECHOPGM ( " . " ) ;
SERIAL_ECHO ( int ( ip [ 3 ] ) ) ;
SERIAL_ECHOLNPGM ( " " ) ;
} else {
SERIAL_ECHOLNPGM ( " Toshiba FlashAir GetIP failed " ) ;
}
break ;
}
*/
case 47 :
// M47: Prusa3D: Show end stops dialog on the display.
2017-11-15 14:09:29 +00:00
KEEPALIVE_STATE ( PAUSED_FOR_USER ) ;
2017-10-27 15:07:02 +00:00
lcd_diag_show_end_stops ( ) ;
2017-11-15 14:09:29 +00:00
KEEPALIVE_STATE ( IN_HANDLER ) ;
2017-10-27 15:07:02 +00:00
break ;
#if 0
case 48 : // M48: scan the bed induction sensor points, print the sensor trigger coordinates to the serial line for visualization on the PC.
{
// Disable the default update procedure of the display. We will do a modal dialog.
lcd_update_enable ( false ) ;
// Let the planner use the uncorrected coordinates.
mbl . reset ( ) ;
// Reset world2machine_rotation_and_skew and world2machine_shift, therefore
// the planner will not perform any adjustments in the XY plane.
// Wait for the motors to stop and update the current position with the absolute values.
world2machine_revert_to_uncorrected ( ) ;
// Move the print head close to the bed.
current_position [ Z_AXIS ] = MESH_HOME_Z_SEARCH ;
plan_buffer_line ( current_position [ X_AXIS ] , current_position [ Y_AXIS ] , current_position [ Z_AXIS ] , current_position [ E_AXIS ] , homing_feedrate [ Z_AXIS ] / 40 , active_extruder ) ;
st_synchronize ( ) ;
// Home in the XY plane.
set_destination_to_current ( ) ;
setup_for_endstop_move ( ) ;
home_xy ( ) ;
int8_t verbosity_level = 0 ;
if ( code_seen ( ' V ' ) ) {
// Just 'V' without a number counts as V1.
char c = strchr_pointer [ 1 ] ;
verbosity_level = ( c = = ' ' | | c = = ' \t ' | | c = = 0 ) ? 1 : code_value_short ( ) ;
}
bool success = scan_bed_induction_points ( verbosity_level ) ;
clean_up_after_endstop_move ( ) ;
// Print head up.
current_position [ Z_AXIS ] = MESH_HOME_Z_SEARCH ;
plan_buffer_line ( current_position [ X_AXIS ] , current_position [ Y_AXIS ] , current_position [ Z_AXIS ] , current_position [ E_AXIS ] , homing_feedrate [ Z_AXIS ] / 40 , active_extruder ) ;
st_synchronize ( ) ;
lcd_update_enable ( true ) ;
break ;
}
# endif
// M48 Z-Probe repeatability measurement function.
//
// Usage: M48 <n #_samples> <X X_position_for_samples> <Y Y_position_for_samples> <V Verbose_Level> <L legs_of_movement_prior_to_doing_probe>
//
// This function assumes the bed has been homed. Specificaly, that a G28 command
// as been issued prior to invoking the M48 Z-Probe repeatability measurement function.
// Any information generated by a prior G29 Bed leveling command will be lost and need to be
// regenerated.
//
// The number of samples will default to 10 if not specified. You can use upper or lower case
// letters for any of the options EXCEPT n. n must be in lower case because Marlin uses a capital
// N for its communication protocol and will get horribly confused if you send it a capital N.
//
# ifdef ENABLE_AUTO_BED_LEVELING
# ifdef Z_PROBE_REPEATABILITY_TEST
case 48 : // M48 Z-Probe repeatability
{
# if Z_MIN_PIN == -1
# error "You must have a Z_MIN endstop in order to enable calculation of Z-Probe repeatability."
# endif
double sum = 0.0 ;
double mean = 0.0 ;
double sigma = 0.0 ;
double sample_set [ 50 ] ;
int verbose_level = 1 , n = 0 , j , n_samples = 10 , n_legs = 0 ;
double X_current , Y_current , Z_current ;
double X_probe_location , Y_probe_location , Z_start_location , ext_position ;
if ( code_seen ( ' V ' ) | | code_seen ( ' v ' ) ) {
verbose_level = code_value ( ) ;
if ( verbose_level < 0 | | verbose_level > 4 ) {
SERIAL_PROTOCOLPGM ( " ?Verbose Level not plausable. \n " ) ;
goto Sigma_Exit ;
}
}
if ( verbose_level > 0 ) {
SERIAL_PROTOCOLPGM ( " M48 Z-Probe Repeatability test. Version 2.00 \n " ) ;
SERIAL_PROTOCOLPGM ( " Full support at: http://3dprintboard.com/forum.php \n " ) ;
}
if ( code_seen ( ' n ' ) ) {
n_samples = code_value ( ) ;
if ( n_samples < 4 | | n_samples > 50 ) {
SERIAL_PROTOCOLPGM ( " ?Specified sample size not plausable. \n " ) ;
goto Sigma_Exit ;
}
}
X_current = X_probe_location = st_get_position_mm ( X_AXIS ) ;
Y_current = Y_probe_location = st_get_position_mm ( Y_AXIS ) ;
Z_current = st_get_position_mm ( Z_AXIS ) ;
Z_start_location = st_get_position_mm ( Z_AXIS ) + Z_RAISE_BEFORE_PROBING ;
ext_position = st_get_position_mm ( E_AXIS ) ;
if ( code_seen ( ' X ' ) | | code_seen ( ' x ' ) ) {
X_probe_location = code_value ( ) - X_PROBE_OFFSET_FROM_EXTRUDER ;
if ( X_probe_location < X_MIN_POS | | X_probe_location > X_MAX_POS ) {
SERIAL_PROTOCOLPGM ( " ?Specified X position out of range. \n " ) ;
goto Sigma_Exit ;
}
}
if ( code_seen ( ' Y ' ) | | code_seen ( ' y ' ) ) {
Y_probe_location = code_value ( ) - Y_PROBE_OFFSET_FROM_EXTRUDER ;
if ( Y_probe_location < Y_MIN_POS | | Y_probe_location > Y_MAX_POS ) {
SERIAL_PROTOCOLPGM ( " ?Specified Y position out of range. \n " ) ;
goto Sigma_Exit ;
}
}
if ( code_seen ( ' L ' ) | | code_seen ( ' l ' ) ) {
n_legs = code_value ( ) ;
if ( n_legs = = 1 )
n_legs = 2 ;
if ( n_legs < 0 | | n_legs > 15 ) {
SERIAL_PROTOCOLPGM ( " ?Specified number of legs in movement not plausable. \n " ) ;
goto Sigma_Exit ;
}
}
//
// Do all the preliminary setup work. First raise the probe.
//
st_synchronize ( ) ;
plan_bed_level_matrix . set_to_identity ( ) ;
plan_buffer_line ( X_current , Y_current , Z_start_location ,
ext_position ,
homing_feedrate [ Z_AXIS ] / 60 ,
active_extruder ) ;
st_synchronize ( ) ;
//
// Now get everything to the specified probe point So we can safely do a probe to
// get us close to the bed. If the Z-Axis is far from the bed, we don't want to
// use that as a starting point for each probe.
//
if ( verbose_level > 2 )
SERIAL_PROTOCOL ( " Positioning probe for the test. \n " ) ;
plan_buffer_line ( X_probe_location , Y_probe_location , Z_start_location ,
ext_position ,
homing_feedrate [ X_AXIS ] / 60 ,
active_extruder ) ;
st_synchronize ( ) ;
current_position [ X_AXIS ] = X_current = st_get_position_mm ( X_AXIS ) ;
current_position [ Y_AXIS ] = Y_current = st_get_position_mm ( Y_AXIS ) ;
current_position [ Z_AXIS ] = Z_current = st_get_position_mm ( Z_AXIS ) ;
current_position [ E_AXIS ] = ext_position = st_get_position_mm ( E_AXIS ) ;
//
// OK, do the inital probe to get us close to the bed.
// Then retrace the right amount and use that in subsequent probes
//
setup_for_endstop_move ( ) ;
run_z_probe ( ) ;
current_position [ Z_AXIS ] = Z_current = st_get_position_mm ( Z_AXIS ) ;
Z_start_location = st_get_position_mm ( Z_AXIS ) + Z_RAISE_BEFORE_PROBING ;
plan_buffer_line ( X_probe_location , Y_probe_location , Z_start_location ,
ext_position ,
homing_feedrate [ X_AXIS ] / 60 ,
active_extruder ) ;
st_synchronize ( ) ;
current_position [ Z_AXIS ] = Z_current = st_get_position_mm ( Z_AXIS ) ;
for ( n = 0 ; n < n_samples ; n + + ) {
do_blocking_move_to ( X_probe_location , Y_probe_location , Z_start_location ) ; // Make sure we are at the probe location
if ( n_legs ) {
double radius = 0.0 , theta = 0.0 , x_sweep , y_sweep ;
int rotational_direction , l ;
rotational_direction = ( unsigned long ) millis ( ) & 0x0001 ; // clockwise or counter clockwise
radius = ( unsigned long ) millis ( ) % ( long ) ( X_MAX_LENGTH / 4 ) ; // limit how far out to go
theta = ( float ) ( ( unsigned long ) millis ( ) % ( long ) 360 ) / ( 360. / ( 2 * 3.1415926 ) ) ; // turn into radians
//SERIAL_ECHOPAIR("starting radius: ",radius);
//SERIAL_ECHOPAIR(" theta: ",theta);
//SERIAL_ECHOPAIR(" direction: ",rotational_direction);
//SERIAL_PROTOCOLLNPGM("");
for ( l = 0 ; l < n_legs - 1 ; l + + ) {
if ( rotational_direction = = 1 )
theta + = ( float ) ( ( unsigned long ) millis ( ) % ( long ) 20 ) / ( 360.0 / ( 2 * 3.1415926 ) ) ; // turn into radians
else
theta - = ( float ) ( ( unsigned long ) millis ( ) % ( long ) 20 ) / ( 360.0 / ( 2 * 3.1415926 ) ) ; // turn into radians
radius + = ( float ) ( ( ( long ) ( ( unsigned long ) millis ( ) % ( long ) 10 ) ) - 5 ) ;
if ( radius < 0.0 )
radius = - radius ;
X_current = X_probe_location + cos ( theta ) * radius ;
Y_current = Y_probe_location + sin ( theta ) * radius ;
if ( X_current < X_MIN_POS ) // Make sure our X & Y are sane
X_current = X_MIN_POS ;
if ( X_current > X_MAX_POS )
X_current = X_MAX_POS ;
if ( Y_current < Y_MIN_POS ) // Make sure our X & Y are sane
Y_current = Y_MIN_POS ;
if ( Y_current > Y_MAX_POS )
Y_current = Y_MAX_POS ;
if ( verbose_level > 3 ) {
SERIAL_ECHOPAIR ( " x: " , X_current ) ;
SERIAL_ECHOPAIR ( " y: " , Y_current ) ;
SERIAL_PROTOCOLLNPGM ( " " ) ;
}
do_blocking_move_to ( X_current , Y_current , Z_current ) ;
}
do_blocking_move_to ( X_probe_location , Y_probe_location , Z_start_location ) ; // Go back to the probe location
}
setup_for_endstop_move ( ) ;
run_z_probe ( ) ;
sample_set [ n ] = current_position [ Z_AXIS ] ;
//
// Get the current mean for the data points we have so far
//
sum = 0.0 ;
for ( j = 0 ; j < = n ; j + + ) {
sum = sum + sample_set [ j ] ;
}
mean = sum / ( double ( n + 1 ) ) ;
//
// Now, use that mean to calculate the standard deviation for the
// data points we have so far
//
sum = 0.0 ;
for ( j = 0 ; j < = n ; j + + ) {
sum = sum + ( sample_set [ j ] - mean ) * ( sample_set [ j ] - mean ) ;
}
sigma = sqrt ( sum / ( double ( n + 1 ) ) ) ;
if ( verbose_level > 1 ) {
SERIAL_PROTOCOL ( n + 1 ) ;
SERIAL_PROTOCOL ( " of " ) ;
SERIAL_PROTOCOL ( n_samples ) ;
SERIAL_PROTOCOLPGM ( " z: " ) ;
SERIAL_PROTOCOL_F ( current_position [ Z_AXIS ] , 6 ) ;
}
if ( verbose_level > 2 ) {
SERIAL_PROTOCOL ( " mean: " ) ;
SERIAL_PROTOCOL_F ( mean , 6 ) ;
SERIAL_PROTOCOL ( " sigma: " ) ;
SERIAL_PROTOCOL_F ( sigma , 6 ) ;
}
if ( verbose_level > 0 )
SERIAL_PROTOCOLPGM ( " \n " ) ;
plan_buffer_line ( X_probe_location , Y_probe_location , Z_start_location ,
current_position [ E_AXIS ] , homing_feedrate [ Z_AXIS ] / 60 , active_extruder ) ;
st_synchronize ( ) ;
}
delay ( 1000 ) ;
clean_up_after_endstop_move ( ) ;
// enable_endstops(true);
if ( verbose_level > 0 ) {
SERIAL_PROTOCOLPGM ( " Mean: " ) ;
SERIAL_PROTOCOL_F ( mean , 6 ) ;
SERIAL_PROTOCOLPGM ( " \n " ) ;
}
SERIAL_PROTOCOLPGM ( " Standard Deviation: " ) ;
SERIAL_PROTOCOL_F ( sigma , 6 ) ;
SERIAL_PROTOCOLPGM ( " \n \n " ) ;
Sigma_Exit :
break ;
}
# endif // Z_PROBE_REPEATABILITY_TEST
# endif // ENABLE_AUTO_BED_LEVELING
case 104 : // M104
if ( setTargetedHotend ( 104 ) ) {
break ;
}
if ( code_seen ( ' S ' ) ) setTargetHotend ( code_value ( ) , tmp_extruder ) ;
setWatch ( ) ;
break ;
case 112 : // M112 -Emergency Stop
kill ( " " , 3 ) ;
break ;
case 140 : // M140 set bed temp
if ( code_seen ( ' S ' ) ) setTargetBed ( code_value ( ) ) ;
break ;
case 105 : // M105
if ( setTargetedHotend ( 105 ) ) {
break ;
}
# if defined(TEMP_0_PIN) && TEMP_0_PIN > -1
SERIAL_PROTOCOLPGM ( " ok T: " ) ;
SERIAL_PROTOCOL_F ( degHotend ( tmp_extruder ) , 1 ) ;
SERIAL_PROTOCOLPGM ( " / " ) ;
SERIAL_PROTOCOL_F ( degTargetHotend ( tmp_extruder ) , 1 ) ;
# if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
SERIAL_PROTOCOLPGM ( " B: " ) ;
SERIAL_PROTOCOL_F ( degBed ( ) , 1 ) ;
SERIAL_PROTOCOLPGM ( " / " ) ;
SERIAL_PROTOCOL_F ( degTargetBed ( ) , 1 ) ;
# endif //TEMP_BED_PIN
for ( int8_t cur_extruder = 0 ; cur_extruder < EXTRUDERS ; + + cur_extruder ) {
SERIAL_PROTOCOLPGM ( " T " ) ;
SERIAL_PROTOCOL ( cur_extruder ) ;
SERIAL_PROTOCOLPGM ( " : " ) ;
SERIAL_PROTOCOL_F ( degHotend ( cur_extruder ) , 1 ) ;
SERIAL_PROTOCOLPGM ( " / " ) ;
SERIAL_PROTOCOL_F ( degTargetHotend ( cur_extruder ) , 1 ) ;
}
# else
SERIAL_ERROR_START ;
SERIAL_ERRORLNRPGM ( MSG_ERR_NO_THERMISTORS ) ;
# endif
SERIAL_PROTOCOLPGM ( " @: " ) ;
# ifdef EXTRUDER_WATTS
SERIAL_PROTOCOL ( ( EXTRUDER_WATTS * getHeaterPower ( tmp_extruder ) ) / 127 ) ;
SERIAL_PROTOCOLPGM ( " W " ) ;
# else
SERIAL_PROTOCOL ( getHeaterPower ( tmp_extruder ) ) ;
# endif
SERIAL_PROTOCOLPGM ( " B@: " ) ;
# ifdef BED_WATTS
SERIAL_PROTOCOL ( ( BED_WATTS * getHeaterPower ( - 1 ) ) / 127 ) ;
SERIAL_PROTOCOLPGM ( " W " ) ;
# else
SERIAL_PROTOCOL ( getHeaterPower ( - 1 ) ) ;
# endif
# ifdef PINDA_THERMISTOR
SERIAL_PROTOCOLPGM ( " P: " ) ;
SERIAL_PROTOCOL_F ( current_temperature_pinda , 1 ) ;
# endif //PINDA_THERMISTOR
# ifdef AMBIENT_THERMISTOR
SERIAL_PROTOCOLPGM ( " A: " ) ;
SERIAL_PROTOCOL_F ( current_temperature_ambient , 1 ) ;
# endif //AMBIENT_THERMISTOR
# ifdef SHOW_TEMP_ADC_VALUES
{ float raw = 0.0 ;
# if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
SERIAL_PROTOCOLPGM ( " ADC B: " ) ;
SERIAL_PROTOCOL_F ( degBed ( ) , 1 ) ;
SERIAL_PROTOCOLPGM ( " C-> " ) ;
raw = rawBedTemp ( ) ;
SERIAL_PROTOCOL_F ( raw / OVERSAMPLENR , 5 ) ;
SERIAL_PROTOCOLPGM ( " Rb-> " ) ;
SERIAL_PROTOCOL_F ( 100 * ( 1 + ( PtA * ( raw / OVERSAMPLENR ) ) + ( PtB * sq ( ( raw / OVERSAMPLENR ) ) ) ) , 5 ) ;
SERIAL_PROTOCOLPGM ( " Rxb-> " ) ;
SERIAL_PROTOCOL_F ( raw , 5 ) ;
# endif
for ( int8_t cur_extruder = 0 ; cur_extruder < EXTRUDERS ; + + cur_extruder ) {
SERIAL_PROTOCOLPGM ( " T " ) ;
SERIAL_PROTOCOL ( cur_extruder ) ;
SERIAL_PROTOCOLPGM ( " : " ) ;
SERIAL_PROTOCOL_F ( degHotend ( cur_extruder ) , 1 ) ;
SERIAL_PROTOCOLPGM ( " C-> " ) ;
raw = rawHotendTemp ( cur_extruder ) ;
SERIAL_PROTOCOL_F ( raw / OVERSAMPLENR , 5 ) ;
SERIAL_PROTOCOLPGM ( " Rt " ) ;
SERIAL_PROTOCOL ( cur_extruder ) ;
SERIAL_PROTOCOLPGM ( " -> " ) ;
SERIAL_PROTOCOL_F ( 100 * ( 1 + ( PtA * ( raw / OVERSAMPLENR ) ) + ( PtB * sq ( ( raw / OVERSAMPLENR ) ) ) ) , 5 ) ;
SERIAL_PROTOCOLPGM ( " Rx " ) ;
SERIAL_PROTOCOL ( cur_extruder ) ;
SERIAL_PROTOCOLPGM ( " -> " ) ;
SERIAL_PROTOCOL_F ( raw , 5 ) ;
} }
# endif
SERIAL_PROTOCOLLN ( " " ) ;
2017-11-15 14:09:29 +00:00
KEEPALIVE_STATE ( NOT_BUSY ) ;
2017-10-27 15:07:02 +00:00
return ;
break ;
case 109 :
{ // M109 - Wait for extruder heater to reach target.
if ( setTargetedHotend ( 109 ) ) {
break ;
}
LCD_MESSAGERPGM ( MSG_HEATING ) ;
heating_status = 1 ;
if ( farm_mode ) { prusa_statistics ( 1 ) ; } ;
# ifdef AUTOTEMP
autotemp_enabled = false ;
# endif
if ( code_seen ( ' S ' ) ) {
setTargetHotend ( code_value ( ) , tmp_extruder ) ;
CooldownNoWait = true ;
} else if ( code_seen ( ' R ' ) ) {
setTargetHotend ( code_value ( ) , tmp_extruder ) ;
CooldownNoWait = false ;
}
# ifdef AUTOTEMP
if ( code_seen ( ' S ' ) ) autotemp_min = code_value ( ) ;
if ( code_seen ( ' B ' ) ) autotemp_max = code_value ( ) ;
if ( code_seen ( ' F ' ) )
{
autotemp_factor = code_value ( ) ;
autotemp_enabled = true ;
}
# endif
setWatch ( ) ;
codenum = millis ( ) ;
/* See if we are heating up or cooling down */
target_direction = isHeatingHotend ( tmp_extruder ) ; // true if heating, false if cooling
2017-11-15 14:09:29 +00:00
KEEPALIVE_STATE ( NOT_BUSY ) ;
2017-10-27 15:07:02 +00:00
cancel_heatup = false ;
wait_for_heater ( codenum ) ; //loops until target temperature is reached
LCD_MESSAGERPGM ( MSG_HEATING_COMPLETE ) ;
2017-11-15 14:09:29 +00:00
KEEPALIVE_STATE ( IN_HANDLER ) ;
2017-10-27 15:07:02 +00:00
heating_status = 2 ;
if ( farm_mode ) { prusa_statistics ( 2 ) ; } ;
//starttime=millis();
previous_millis_cmd = millis ( ) ;
}
break ;
case 190 : // M190 - Wait for bed heater to reach target.
# if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
LCD_MESSAGERPGM ( MSG_BED_HEATING ) ;
heating_status = 3 ;
if ( farm_mode ) { prusa_statistics ( 1 ) ; } ;
if ( code_seen ( ' S ' ) )
{
setTargetBed ( code_value ( ) ) ;
CooldownNoWait = true ;
}
else if ( code_seen ( ' R ' ) )
{
setTargetBed ( code_value ( ) ) ;
CooldownNoWait = false ;
}
codenum = millis ( ) ;
cancel_heatup = false ;
target_direction = isHeatingBed ( ) ; // true if heating, false if cooling
2017-11-15 14:09:29 +00:00
KEEPALIVE_STATE ( NOT_BUSY ) ;
2017-10-27 15:07:02 +00:00
while ( ( target_direction ) & & ( ! cancel_heatup ) ? ( isHeatingBed ( ) ) : ( isCoolingBed ( ) & & ( CooldownNoWait = = false ) ) )
{
if ( ( millis ( ) - codenum ) > 1000 ) //Print Temp Reading every 1 second while heating up.
{
if ( ! farm_mode ) {
float tt = degHotend ( active_extruder ) ;
SERIAL_PROTOCOLPGM ( " T: " ) ;
SERIAL_PROTOCOL ( tt ) ;
SERIAL_PROTOCOLPGM ( " E: " ) ;
SERIAL_PROTOCOL ( ( int ) active_extruder ) ;
SERIAL_PROTOCOLPGM ( " B: " ) ;
SERIAL_PROTOCOL_F ( degBed ( ) , 1 ) ;
SERIAL_PROTOCOLLN ( " " ) ;
}
codenum = millis ( ) ;
}
manage_heater ( ) ;
manage_inactivity ( ) ;
lcd_update ( ) ;
}
LCD_MESSAGERPGM ( MSG_BED_DONE ) ;
2017-11-15 14:09:29 +00:00
KEEPALIVE_STATE ( IN_HANDLER ) ;
2017-10-27 15:07:02 +00:00
heating_status = 4 ;
previous_millis_cmd = millis ( ) ;
# endif
break ;
# if defined(FAN_PIN) && FAN_PIN > -1
case 106 : //M106 Fan On
if ( code_seen ( ' S ' ) ) {
fanSpeed = constrain ( code_value ( ) , 0 , 255 ) ;
}
else {
fanSpeed = 255 ;
}
break ;
case 107 : //M107 Fan Off
fanSpeed = 0 ;
break ;
# endif //FAN_PIN
# if defined(PS_ON_PIN) && PS_ON_PIN > -1
case 80 : // M80 - Turn on Power Supply
SET_OUTPUT ( PS_ON_PIN ) ; //GND
WRITE ( PS_ON_PIN , PS_ON_AWAKE ) ;
// If you have a switch on suicide pin, this is useful
// if you want to start another print with suicide feature after
// a print without suicide...
# if defined SUICIDE_PIN && SUICIDE_PIN > -1
SET_OUTPUT ( SUICIDE_PIN ) ;
WRITE ( SUICIDE_PIN , HIGH ) ;
# endif
# ifdef ULTIPANEL
powersupply = true ;
LCD_MESSAGERPGM ( WELCOME_MSG ) ;
lcd_update ( ) ;
# endif
break ;
# endif
case 81 : // M81 - Turn off Power Supply
disable_heater ( ) ;
st_synchronize ( ) ;
disable_e0 ( ) ;
disable_e1 ( ) ;
disable_e2 ( ) ;
finishAndDisableSteppers ( ) ;
fanSpeed = 0 ;
delay ( 1000 ) ; // Wait a little before to switch off
# if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
st_synchronize ( ) ;
suicide ( ) ;
# elif defined(PS_ON_PIN) && PS_ON_PIN > -1
SET_OUTPUT ( PS_ON_PIN ) ;
WRITE ( PS_ON_PIN , PS_ON_ASLEEP ) ;
# endif
# ifdef ULTIPANEL
powersupply = false ;
LCD_MESSAGERPGM ( CAT4 ( CUSTOM_MENDEL_NAME , PSTR ( " " ) , MSG_OFF , PSTR ( " . " ) ) ) ; //!!
/*
MACHNAME = " Prusa i3 "
MSGOFF = " Vypnuto "
" Prusai3 " " " " vypnuto " " . "
" Prusa i3 " " " MSG_ALL [ lang_selected ] [ 50 ] " . "
*/
lcd_update ( ) ;
# endif
break ;
case 82 :
axis_relative_modes [ 3 ] = false ;
break ;
case 83 :
axis_relative_modes [ 3 ] = true ;
break ;
case 18 : //compatibility
case 84 : // M84
if ( code_seen ( ' S ' ) ) {
stepper_inactive_time = code_value ( ) * 1000 ;
}
else
{
bool all_axis = ! ( ( code_seen ( axis_codes [ X_AXIS ] ) ) | | ( code_seen ( axis_codes [ Y_AXIS ] ) ) | | ( code_seen ( axis_codes [ Z_AXIS ] ) ) | | ( code_seen ( axis_codes [ E_AXIS ] ) ) ) ;
if ( all_axis )
{
st_synchronize ( ) ;
disable_e0 ( ) ;
disable_e1 ( ) ;
disable_e2 ( ) ;
finishAndDisableSteppers ( ) ;
}
else
{
st_synchronize ( ) ;
if ( code_seen ( ' X ' ) ) disable_x ( ) ;
if ( code_seen ( ' Y ' ) ) disable_y ( ) ;
if ( code_seen ( ' Z ' ) ) disable_z ( ) ;
# if ((E0_ENABLE_PIN != X_ENABLE_PIN) && (E1_ENABLE_PIN != Y_ENABLE_PIN)) // Only enable on boards that have seperate ENABLE_PINS
if ( code_seen ( ' E ' ) ) {
disable_e0 ( ) ;
disable_e1 ( ) ;
disable_e2 ( ) ;
}
# endif
}
}
snmm_filaments_used = 0 ;
break ;
case 85 : // M85
if ( code_seen ( ' S ' ) ) {
max_inactive_time = code_value ( ) * 1000 ;
}
break ;
case 92 : // M92
for ( int8_t i = 0 ; i < NUM_AXIS ; i + + )
{
if ( code_seen ( axis_codes [ i ] ) )
{
if ( i = = 3 ) { // E
float value = code_value ( ) ;
if ( value < 20.0 ) {
float factor = axis_steps_per_unit [ i ] / value ; // increase e constants if M92 E14 is given for netfab.
max_jerk [ E_AXIS ] * = factor ;
max_feedrate [ i ] * = factor ;
axis_steps_per_sqr_second [ i ] * = factor ;
}
axis_steps_per_unit [ i ] = value ;
}
else {
axis_steps_per_unit [ i ] = code_value ( ) ;
}
}
}
break ;
2017-11-15 14:09:29 +00:00
# ifdef HOST_KEEPALIVE_FEATURE
case 113 : // M113 - Get or set Host Keepalive interval
if ( code_seen ( ' S ' ) ) {
host_keepalive_interval = ( uint8_t ) code_value_short ( ) ;
2017-11-16 21:03:36 +00:00
// NOMORE(host_keepalive_interval, 60);
2017-11-15 14:09:29 +00:00
}
else {
SERIAL_ECHO_START ;
SERIAL_ECHOPAIR ( " M113 S " , ( unsigned long ) host_keepalive_interval ) ;
SERIAL_PROTOCOLLN ( " " ) ;
}
break ;
# endif
2017-10-27 15:07:02 +00:00
case 115 : // M115
if ( code_seen ( ' V ' ) ) {
// Report the Prusa version number.
SERIAL_PROTOCOLLNRPGM ( FW_VERSION_STR_P ( ) ) ;
} else if ( code_seen ( ' U ' ) ) {
// Check the firmware version provided. If the firmware version provided by the U code is higher than the currently running firmware,
// pause the print and ask the user to upgrade the firmware.
show_upgrade_dialog_if_version_newer ( + + strchr_pointer ) ;
} else {
SERIAL_PROTOCOLRPGM ( MSG_M115_REPORT ) ;
}
break ;
/* case 117: // M117 display message
starpos = ( strchr ( strchr_pointer + 5 , ' * ' ) ) ;
if ( starpos ! = NULL )
* ( starpos ) = ' \0 ' ;
lcd_setstatus ( strchr_pointer + 5 ) ;
break ; */
case 114 : // M114
SERIAL_PROTOCOLPGM ( " X: " ) ;
SERIAL_PROTOCOL ( current_position [ X_AXIS ] ) ;
SERIAL_PROTOCOLPGM ( " Y: " ) ;
SERIAL_PROTOCOL ( current_position [ Y_AXIS ] ) ;
SERIAL_PROTOCOLPGM ( " Z: " ) ;
SERIAL_PROTOCOL ( current_position [ Z_AXIS ] ) ;
SERIAL_PROTOCOLPGM ( " E: " ) ;
SERIAL_PROTOCOL ( current_position [ E_AXIS ] ) ;
SERIAL_PROTOCOLRPGM ( MSG_COUNT_X ) ;
SERIAL_PROTOCOL ( float ( st_get_position ( X_AXIS ) ) / axis_steps_per_unit [ X_AXIS ] ) ;
SERIAL_PROTOCOLPGM ( " Y: " ) ;
SERIAL_PROTOCOL ( float ( st_get_position ( Y_AXIS ) ) / axis_steps_per_unit [ Y_AXIS ] ) ;
SERIAL_PROTOCOLPGM ( " Z: " ) ;
SERIAL_PROTOCOL ( float ( st_get_position ( Z_AXIS ) ) / axis_steps_per_unit [ Z_AXIS ] ) ;
SERIAL_PROTOCOLPGM ( " E: " ) ;
SERIAL_PROTOCOL ( float ( st_get_position ( E_AXIS ) ) / axis_steps_per_unit [ E_AXIS ] ) ;
SERIAL_PROTOCOLLN ( " " ) ;
break ;
case 120 : // M120
enable_endstops ( false ) ;
break ;
case 121 : // M121
enable_endstops ( true ) ;
break ;
case 119 : // M119
SERIAL_PROTOCOLRPGM ( MSG_M119_REPORT ) ;
SERIAL_PROTOCOLLN ( " " ) ;
# if defined(X_MIN_PIN) && X_MIN_PIN > -1
SERIAL_PROTOCOLRPGM ( MSG_X_MIN ) ;
if ( READ ( X_MIN_PIN ) ^ X_MIN_ENDSTOP_INVERTING ) {
SERIAL_PROTOCOLRPGM ( MSG_ENDSTOP_HIT ) ;
} else {
SERIAL_PROTOCOLRPGM ( MSG_ENDSTOP_OPEN ) ;
}
SERIAL_PROTOCOLLN ( " " ) ;
# endif
# if defined(X_MAX_PIN) && X_MAX_PIN > -1
SERIAL_PROTOCOLRPGM ( MSG_X_MAX ) ;
if ( READ ( X_MAX_PIN ) ^ X_MAX_ENDSTOP_INVERTING ) {
SERIAL_PROTOCOLRPGM ( MSG_ENDSTOP_HIT ) ;
} else {
SERIAL_PROTOCOLRPGM ( MSG_ENDSTOP_OPEN ) ;
}
SERIAL_PROTOCOLLN ( " " ) ;
# endif
# if defined(Y_MIN_PIN) && Y_MIN_PIN > -1
SERIAL_PROTOCOLRPGM ( MSG_Y_MIN ) ;
if ( READ ( Y_MIN_PIN ) ^ Y_MIN_ENDSTOP_INVERTING ) {
SERIAL_PROTOCOLRPGM ( MSG_ENDSTOP_HIT ) ;
} else {
SERIAL_PROTOCOLRPGM ( MSG_ENDSTOP_OPEN ) ;
}
SERIAL_PROTOCOLLN ( " " ) ;
# endif
# if defined(Y_MAX_PIN) && Y_MAX_PIN > -1
SERIAL_PROTOCOLRPGM ( MSG_Y_MAX ) ;
if ( READ ( Y_MAX_PIN ) ^ Y_MAX_ENDSTOP_INVERTING ) {
SERIAL_PROTOCOLRPGM ( MSG_ENDSTOP_HIT ) ;
} else {
SERIAL_PROTOCOLRPGM ( MSG_ENDSTOP_OPEN ) ;
}
SERIAL_PROTOCOLLN ( " " ) ;
# endif
# if defined(Z_MIN_PIN) && Z_MIN_PIN > -1
SERIAL_PROTOCOLRPGM ( MSG_Z_MIN ) ;
if ( READ ( Z_MIN_PIN ) ^ Z_MIN_ENDSTOP_INVERTING ) {
SERIAL_PROTOCOLRPGM ( MSG_ENDSTOP_HIT ) ;
} else {
SERIAL_PROTOCOLRPGM ( MSG_ENDSTOP_OPEN ) ;
}
SERIAL_PROTOCOLLN ( " " ) ;
# endif
# if defined(Z_MAX_PIN) && Z_MAX_PIN > -1
SERIAL_PROTOCOLRPGM ( MSG_Z_MAX ) ;
if ( READ ( Z_MAX_PIN ) ^ Z_MAX_ENDSTOP_INVERTING ) {
SERIAL_PROTOCOLRPGM ( MSG_ENDSTOP_HIT ) ;
} else {
SERIAL_PROTOCOLRPGM ( MSG_ENDSTOP_OPEN ) ;
}
SERIAL_PROTOCOLLN ( " " ) ;
# endif
break ;
//TODO: update for all axis, use for loop
# ifdef BLINKM
case 150 : // M150
{
byte red ;
byte grn ;
byte blu ;
if ( code_seen ( ' R ' ) ) red = code_value ( ) ;
if ( code_seen ( ' U ' ) ) grn = code_value ( ) ;
if ( code_seen ( ' B ' ) ) blu = code_value ( ) ;
SendColors ( red , grn , blu ) ;
}
break ;
# endif //BLINKM
case 200 : // M200 D<millimeters> set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
{
tmp_extruder = active_extruder ;
if ( code_seen ( ' T ' ) ) {
tmp_extruder = code_value ( ) ;
if ( tmp_extruder > = EXTRUDERS ) {
SERIAL_ECHO_START ;
SERIAL_ECHO ( MSG_M200_INVALID_EXTRUDER ) ;
break ;
}
}
float area = .0 ;
if ( code_seen ( ' D ' ) ) {
float diameter = ( float ) code_value ( ) ;
if ( diameter = = 0.0 ) {
// setting any extruder filament size disables volumetric on the assumption that
// slicers either generate in extruder values as cubic mm or as as filament feeds
// for all extruders
volumetric_enabled = false ;
} else {
filament_size [ tmp_extruder ] = ( float ) code_value ( ) ;
// make sure all extruders have some sane value for the filament size
filament_size [ 0 ] = ( filament_size [ 0 ] = = 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : filament_size [ 0 ] ) ;
# if EXTRUDERS > 1
filament_size [ 1 ] = ( filament_size [ 1 ] = = 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : filament_size [ 1 ] ) ;
# if EXTRUDERS > 2
filament_size [ 2 ] = ( filament_size [ 2 ] = = 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : filament_size [ 2 ] ) ;
# endif
# endif
volumetric_enabled = true ;
}
} else {
//reserved for setting filament diameter via UFID or filament measuring device
break ;
}
calculate_volumetric_multipliers ( ) ;
}
break ;
case 201 : // M201
for ( int8_t i = 0 ; i < NUM_AXIS ; i + + )
{
if ( code_seen ( axis_codes [ i ] ) )
{
max_acceleration_units_per_sq_second [ i ] = code_value ( ) ;
}
}
// steps per sq second need to be updated to agree with the units per sq second (as they are what is used in the planner)
reset_acceleration_rates ( ) ;
break ;
#if 0 // Not used for Sprinter/grbl gen6
case 202 : // M202
for ( int8_t i = 0 ; i < NUM_AXIS ; i + + ) {
if ( code_seen ( axis_codes [ i ] ) ) axis_travel_steps_per_sqr_second [ i ] = code_value ( ) * axis_steps_per_unit [ i ] ;
}
break ;
# endif
case 203 : // M203 max feedrate mm/sec
for ( int8_t i = 0 ; i < NUM_AXIS ; i + + ) {
if ( code_seen ( axis_codes [ i ] ) ) max_feedrate [ i ] = code_value ( ) ;
}
break ;
case 204 : // M204 acclereration S normal moves T filmanent only moves
{
if ( code_seen ( ' S ' ) ) acceleration = code_value ( ) ;
if ( code_seen ( ' T ' ) ) retract_acceleration = code_value ( ) ;
}
break ;
case 205 : //M205 advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk
{
if ( code_seen ( ' S ' ) ) minimumfeedrate = code_value ( ) ;
if ( code_seen ( ' T ' ) ) mintravelfeedrate = code_value ( ) ;
if ( code_seen ( ' B ' ) ) minsegmenttime = code_value ( ) ;
if ( code_seen ( ' X ' ) ) max_jerk [ X_AXIS ] = max_jerk [ Y_AXIS ] = code_value ( ) ;
if ( code_seen ( ' Y ' ) ) max_jerk [ Y_AXIS ] = code_value ( ) ;
if ( code_seen ( ' Z ' ) ) max_jerk [ Z_AXIS ] = code_value ( ) ;
if ( code_seen ( ' E ' ) ) max_jerk [ E_AXIS ] = code_value ( ) ;
}
break ;
case 206 : // M206 additional homing offset
for ( int8_t i = 0 ; i < 3 ; i + + )
{
if ( code_seen ( axis_codes [ i ] ) ) add_homing [ i ] = code_value ( ) ;
}
break ;
# ifdef FWRETRACT
case 207 : //M207 - set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop]
{
if ( code_seen ( ' S ' ) )
{
retract_length = code_value ( ) ;
}
if ( code_seen ( ' F ' ) )
{
retract_feedrate = code_value ( ) / 60 ;
}
if ( code_seen ( ' Z ' ) )
{
retract_zlift = code_value ( ) ;
}
} break ;
case 208 : // M208 - set retract recover length S[positive mm surplus to the M207 S*] F[feedrate mm/min]
{
if ( code_seen ( ' S ' ) )
{
retract_recover_length = code_value ( ) ;
}
if ( code_seen ( ' F ' ) )
{
retract_recover_feedrate = code_value ( ) / 60 ;
}
} break ;
case 209 : // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
{
if ( code_seen ( ' S ' ) )
{
int t = code_value ( ) ;
switch ( t )
{
case 0 :
{
autoretract_enabled = false ;
retracted [ 0 ] = false ;
# if EXTRUDERS > 1
retracted [ 1 ] = false ;
# endif
# if EXTRUDERS > 2
retracted [ 2 ] = false ;
# endif
} break ;
case 1 :
{
autoretract_enabled = true ;
retracted [ 0 ] = false ;
# if EXTRUDERS > 1
retracted [ 1 ] = false ;
# endif
# if EXTRUDERS > 2
retracted [ 2 ] = false ;
# endif
} break ;
default :
SERIAL_ECHO_START ;
SERIAL_ECHORPGM ( MSG_UNKNOWN_COMMAND ) ;
SERIAL_ECHO ( CMDBUFFER_CURRENT_STRING ) ;
SERIAL_ECHOLNPGM ( " \" (1) " ) ;
}
}
} break ;
# endif // FWRETRACT
# if EXTRUDERS > 1
case 218 : // M218 - set hotend offset (in mm), T<extruder_number> X<offset_on_X> Y<offset_on_Y>
{
if ( setTargetedHotend ( 218 ) ) {
break ;
}
if ( code_seen ( ' X ' ) )
{
extruder_offset [ X_AXIS ] [ tmp_extruder ] = code_value ( ) ;
}
if ( code_seen ( ' Y ' ) )
{
extruder_offset [ Y_AXIS ] [ tmp_extruder ] = code_value ( ) ;
}
SERIAL_ECHO_START ;
SERIAL_ECHORPGM ( MSG_HOTEND_OFFSET ) ;
for ( tmp_extruder = 0 ; tmp_extruder < EXTRUDERS ; tmp_extruder + + )
{
SERIAL_ECHO ( " " ) ;
SERIAL_ECHO ( extruder_offset [ X_AXIS ] [ tmp_extruder ] ) ;
SERIAL_ECHO ( " , " ) ;
SERIAL_ECHO ( extruder_offset [ Y_AXIS ] [ tmp_extruder ] ) ;
}
SERIAL_ECHOLN ( " " ) ;
} break ;
# endif
case 220 : // M220 S<factor in percent>- set speed factor override percentage
{
if ( code_seen ( ' S ' ) )
{
feedmultiply = code_value ( ) ;
}
}
break ;
case 221 : // M221 S<factor in percent>- set extrude factor override percentage
{
if ( code_seen ( ' S ' ) )
{
int tmp_code = code_value ( ) ;
if ( code_seen ( ' T ' ) )
{
if ( setTargetedHotend ( 221 ) ) {
break ;
}
extruder_multiply [ tmp_extruder ] = tmp_code ;
}
else
{
extrudemultiply = tmp_code ;
}
}
}
break ;
2017-12-09 18:31:27 +00:00
# ifndef _DISABLE_M42_M226
2017-10-27 15:07:02 +00:00
case 226 : // M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
{
if ( code_seen ( ' P ' ) ) {
int pin_number = code_value ( ) ; // pin number
int pin_state = - 1 ; // required pin state - default is inverted
if ( code_seen ( ' S ' ) ) pin_state = code_value ( ) ; // required pin state
if ( pin_state > = - 1 & & pin_state < = 1 ) {
for ( int8_t i = 0 ; i < ( int8_t ) ( sizeof ( sensitive_pins ) / sizeof ( int ) ) ; i + + )
{
if ( sensitive_pins [ i ] = = pin_number )
{
pin_number = - 1 ;
break ;
}
}
if ( pin_number > - 1 )
{
int target = LOW ;
st_synchronize ( ) ;
pinMode ( pin_number , INPUT ) ;
switch ( pin_state ) {
case 1 :
target = HIGH ;
break ;
case 0 :
target = LOW ;
break ;
case - 1 :
target = ! digitalRead ( pin_number ) ;
break ;
}
while ( digitalRead ( pin_number ) ! = target ) {
manage_heater ( ) ;
manage_inactivity ( ) ;
lcd_update ( ) ;
}
}
}
}
}
break ;
2017-12-09 18:31:27 +00:00
# endif //_DISABLE_M42_M226
2017-10-27 15:07:02 +00:00
# if NUM_SERVOS > 0
case 280 : // M280 - set servo position absolute. P: servo index, S: angle or microseconds
{
int servo_index = - 1 ;
int servo_position = 0 ;
if ( code_seen ( ' P ' ) )
servo_index = code_value ( ) ;
if ( code_seen ( ' S ' ) ) {
servo_position = code_value ( ) ;
if ( ( servo_index > = 0 ) & & ( servo_index < NUM_SERVOS ) ) {
# if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
servos [ servo_index ] . attach ( 0 ) ;
# endif
servos [ servo_index ] . write ( servo_position ) ;
# if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
delay ( PROBE_SERVO_DEACTIVATION_DELAY ) ;
servos [ servo_index ] . detach ( ) ;
# endif
}
else {
SERIAL_ECHO_START ;
SERIAL_ECHO ( " Servo " ) ;
SERIAL_ECHO ( servo_index ) ;
SERIAL_ECHOLN ( " out of range " ) ;
}
}
else if ( servo_index > = 0 ) {
SERIAL_PROTOCOL ( MSG_OK ) ;
SERIAL_PROTOCOL ( " Servo " ) ;
SERIAL_PROTOCOL ( servo_index ) ;
SERIAL_PROTOCOL ( " : " ) ;
SERIAL_PROTOCOL ( servos [ servo_index ] . read ( ) ) ;
SERIAL_PROTOCOLLN ( " " ) ;
}
}
break ;
# endif // NUM_SERVOS > 0
# if (LARGE_FLASH == true && ( BEEPER > 0 || defined(ULTRALCD) || defined(LCD_USE_I2C_BUZZER)))
case 300 : // M300
{
int beepS = code_seen ( ' S ' ) ? code_value ( ) : 110 ;
int beepP = code_seen ( ' P ' ) ? code_value ( ) : 1000 ;
if ( beepS > 0 )
{
# if BEEPER > 0
tone ( BEEPER , beepS ) ;
delay ( beepP ) ;
noTone ( BEEPER ) ;
# elif defined(ULTRALCD)
lcd_buzz ( beepS , beepP ) ;
# elif defined(LCD_USE_I2C_BUZZER)
lcd_buzz ( beepP , beepS ) ;
# endif
}
else
{
delay ( beepP ) ;
}
}
break ;
# endif // M300
# ifdef PIDTEMP
case 301 : // M301
{
if ( code_seen ( ' P ' ) ) Kp = code_value ( ) ;
if ( code_seen ( ' I ' ) ) Ki = scalePID_i ( code_value ( ) ) ;
if ( code_seen ( ' D ' ) ) Kd = scalePID_d ( code_value ( ) ) ;
# ifdef PID_ADD_EXTRUSION_RATE
if ( code_seen ( ' C ' ) ) Kc = code_value ( ) ;
# endif
updatePID ( ) ;
SERIAL_PROTOCOLRPGM ( MSG_OK ) ;
SERIAL_PROTOCOL ( " p: " ) ;
SERIAL_PROTOCOL ( Kp ) ;
SERIAL_PROTOCOL ( " i: " ) ;
SERIAL_PROTOCOL ( unscalePID_i ( Ki ) ) ;
SERIAL_PROTOCOL ( " d: " ) ;
SERIAL_PROTOCOL ( unscalePID_d ( Kd ) ) ;
# ifdef PID_ADD_EXTRUSION_RATE
SERIAL_PROTOCOL ( " c: " ) ;
//Kc does not have scaling applied above, or in resetting defaults
SERIAL_PROTOCOL ( Kc ) ;
# endif
SERIAL_PROTOCOLLN ( " " ) ;
}
break ;
# endif //PIDTEMP
# ifdef PIDTEMPBED
case 304 : // M304
{
if ( code_seen ( ' P ' ) ) bedKp = code_value ( ) ;
if ( code_seen ( ' I ' ) ) bedKi = scalePID_i ( code_value ( ) ) ;
if ( code_seen ( ' D ' ) ) bedKd = scalePID_d ( code_value ( ) ) ;
updatePID ( ) ;
SERIAL_PROTOCOLRPGM ( MSG_OK ) ;
SERIAL_PROTOCOL ( " p: " ) ;
SERIAL_PROTOCOL ( bedKp ) ;
SERIAL_PROTOCOL ( " i: " ) ;
SERIAL_PROTOCOL ( unscalePID_i ( bedKi ) ) ;
SERIAL_PROTOCOL ( " d: " ) ;
SERIAL_PROTOCOL ( unscalePID_d ( bedKd ) ) ;
SERIAL_PROTOCOLLN ( " " ) ;
}
break ;
# endif //PIDTEMP
case 240 : // M240 Triggers a camera by emulating a Canon RC-1 : http://www.doc-diy.net/photo/rc-1_hacked/
{
# ifdef CHDK
SET_OUTPUT ( CHDK ) ;
WRITE ( CHDK , HIGH ) ;
chdkHigh = millis ( ) ;
chdkActive = true ;
# else
# if defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1
const uint8_t NUM_PULSES = 16 ;
const float PULSE_LENGTH = 0.01524 ;
for ( int i = 0 ; i < NUM_PULSES ; i + + ) {
WRITE ( PHOTOGRAPH_PIN , HIGH ) ;
_delay_ms ( PULSE_LENGTH ) ;
WRITE ( PHOTOGRAPH_PIN , LOW ) ;
_delay_ms ( PULSE_LENGTH ) ;
}
delay ( 7.33 ) ;
for ( int i = 0 ; i < NUM_PULSES ; i + + ) {
WRITE ( PHOTOGRAPH_PIN , HIGH ) ;
_delay_ms ( PULSE_LENGTH ) ;
WRITE ( PHOTOGRAPH_PIN , LOW ) ;
_delay_ms ( PULSE_LENGTH ) ;
}
# endif
# endif //chdk end if
}
break ;
# ifdef DOGLCD
case 250 : // M250 Set LCD contrast value: C<value> (value 0..63)
{
if ( code_seen ( ' C ' ) ) {
lcd_setcontrast ( ( ( int ) code_value ( ) ) & 63 ) ;
}
SERIAL_PROTOCOLPGM ( " lcd contrast value: " ) ;
SERIAL_PROTOCOL ( lcd_contrast ) ;
SERIAL_PROTOCOLLN ( " " ) ;
}
break ;
# endif
# ifdef PREVENT_DANGEROUS_EXTRUDE
case 302 : // allow cold extrudes, or set the minimum extrude temperature
{
float temp = .0 ;
if ( code_seen ( ' S ' ) ) temp = code_value ( ) ;
set_extrude_min_temp ( temp ) ;
}
break ;
# endif
case 303 : // M303 PID autotune
{
float temp = 150.0 ;
int e = 0 ;
int c = 5 ;
if ( code_seen ( ' E ' ) ) e = code_value ( ) ;
if ( e < 0 )
temp = 70 ;
if ( code_seen ( ' S ' ) ) temp = code_value ( ) ;
if ( code_seen ( ' C ' ) ) c = code_value ( ) ;
PID_autotune ( temp , e , c ) ;
}
break ;
case 400 : // M400 finish all moves
{
st_synchronize ( ) ;
}
break ;
# ifdef FILAMENT_SENSOR
case 404 : //M404 Enter the nominal filament width (3mm, 1.75mm ) N<3.0> or display nominal filament width
{
# if (FILWIDTH_PIN > -1)
if ( code_seen ( ' N ' ) ) filament_width_nominal = code_value ( ) ;
else {
SERIAL_PROTOCOLPGM ( " Filament dia (nominal mm): " ) ;
SERIAL_PROTOCOLLN ( filament_width_nominal ) ;
}
# endif
}
break ;
case 405 : //M405 Turn on filament sensor for control
{
if ( code_seen ( ' D ' ) ) meas_delay_cm = code_value ( ) ;
if ( meas_delay_cm > MAX_MEASUREMENT_DELAY )
meas_delay_cm = MAX_MEASUREMENT_DELAY ;
if ( delay_index2 = = - 1 ) //initialize the ring buffer if it has not been done since startup
{
int temp_ratio = widthFil_to_size_ratio ( ) ;
for ( delay_index1 = 0 ; delay_index1 < ( MAX_MEASUREMENT_DELAY + 1 ) ; + + delay_index1 ) {
measurement_delay [ delay_index1 ] = temp_ratio - 100 ; //subtract 100 to scale within a signed byte
}
delay_index1 = 0 ;
delay_index2 = 0 ;
}
filament_sensor = true ;
//SERIAL_PROTOCOLPGM("Filament dia (measured mm):");
//SERIAL_PROTOCOL(filament_width_meas);
//SERIAL_PROTOCOLPGM("Extrusion ratio(%):");
//SERIAL_PROTOCOL(extrudemultiply);
}
break ;
case 406 : //M406 Turn off filament sensor for control
{
filament_sensor = false ;
}
break ;
case 407 : //M407 Display measured filament diameter
{
SERIAL_PROTOCOLPGM ( " Filament dia (measured mm): " ) ;
SERIAL_PROTOCOLLN ( filament_width_meas ) ;
}
break ;
# endif
case 500 : // M500 Store settings in EEPROM
{
Config_StoreSettings ( EEPROM_OFFSET ) ;
}
break ;
case 501 : // M501 Read settings from EEPROM
{
Config_RetrieveSettings ( EEPROM_OFFSET ) ;
}
break ;
case 502 : // M502 Revert to default settings
{
Config_ResetDefault ( ) ;
}
break ;
case 503 : // M503 print settings currently in memory
{
Config_PrintSettings ( ) ;
}
break ;
case 509 : //M509 Force language selection
{
lcd_force_language_selection ( ) ;
SERIAL_ECHO_START ;
SERIAL_PROTOCOLPGM ( ( " LANG SEL FORCED " ) ) ;
}
break ;
# ifdef ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
case 540 :
{
if ( code_seen ( ' S ' ) ) abort_on_endstop_hit = code_value ( ) > 0 ;
}
break ;
# endif
# ifdef CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
case CUSTOM_M_CODE_SET_Z_PROBE_OFFSET :
{
float value ;
if ( code_seen ( ' Z ' ) )
{
value = code_value ( ) ;
if ( ( Z_PROBE_OFFSET_RANGE_MIN < = value ) & & ( value < = Z_PROBE_OFFSET_RANGE_MAX ) )
{
zprobe_zoffset = - value ; // compare w/ line 278 of ConfigurationStore.cpp
SERIAL_ECHO_START ;
SERIAL_ECHOLNRPGM ( CAT4 ( MSG_ZPROBE_ZOFFSET , " " , MSG_OK , PSTR ( " " ) ) ) ;
SERIAL_PROTOCOLLN ( " " ) ;
}
else
{
SERIAL_ECHO_START ;
SERIAL_ECHORPGM ( MSG_ZPROBE_ZOFFSET ) ;
SERIAL_ECHORPGM ( MSG_Z_MIN ) ;
SERIAL_ECHO ( Z_PROBE_OFFSET_RANGE_MIN ) ;
SERIAL_ECHORPGM ( MSG_Z_MAX ) ;
SERIAL_ECHO ( Z_PROBE_OFFSET_RANGE_MAX ) ;
SERIAL_PROTOCOLLN ( " " ) ;
}
}
else
{
SERIAL_ECHO_START ;
SERIAL_ECHOLNRPGM ( CAT2 ( MSG_ZPROBE_ZOFFSET , PSTR ( " : " ) ) ) ;
SERIAL_ECHO ( - zprobe_zoffset ) ;
SERIAL_PROTOCOLLN ( " " ) ;
}
break ;
}
# endif // CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
# ifdef FILAMENTCHANGEENABLE
case 600 : //Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
{
MYSERIAL . println ( " !!!!M600!!!! " ) ;
2017-11-27 13:43:56 +00:00
bool old_fsensor_enabled = fsensor_enabled ;
fsensor_enabled = false ; //temporary solution for unexpected restarting
2017-10-27 15:07:02 +00:00
st_synchronize ( ) ;
float target [ 4 ] ;
float lastpos [ 4 ] ;
if ( farm_mode )
{
prusa_statistics ( 22 ) ;
}
feedmultiplyBckp = feedmultiply ;
int8_t TooLowZ = 0 ;
target [ X_AXIS ] = current_position [ X_AXIS ] ;
target [ Y_AXIS ] = current_position [ Y_AXIS ] ;
target [ Z_AXIS ] = current_position [ Z_AXIS ] ;
target [ E_AXIS ] = current_position [ E_AXIS ] ;
lastpos [ X_AXIS ] = current_position [ X_AXIS ] ;
lastpos [ Y_AXIS ] = current_position [ Y_AXIS ] ;
lastpos [ Z_AXIS ] = current_position [ Z_AXIS ] ;
lastpos [ E_AXIS ] = current_position [ E_AXIS ] ;
//Restract extruder
if ( code_seen ( ' E ' ) )
{
target [ E_AXIS ] + = code_value ( ) ;
}
else
{
# ifdef FILAMENTCHANGE_FIRSTRETRACT
target [ E_AXIS ] + = FILAMENTCHANGE_FIRSTRETRACT ;
# endif
}
plan_buffer_line ( target [ X_AXIS ] , target [ Y_AXIS ] , target [ Z_AXIS ] , target [ E_AXIS ] , FILAMENTCHANGE_RFEED , active_extruder ) ;
//Lift Z
if ( code_seen ( ' Z ' ) )
{
target [ Z_AXIS ] + = code_value ( ) ;
}
else
{
# ifdef FILAMENTCHANGE_ZADD
target [ Z_AXIS ] + = FILAMENTCHANGE_ZADD ;
if ( target [ Z_AXIS ] < 10 ) {
target [ Z_AXIS ] + = 10 ;
TooLowZ = 1 ;
} else {
TooLowZ = 0 ;
}
# endif
}
plan_buffer_line ( target [ X_AXIS ] , target [ Y_AXIS ] , target [ Z_AXIS ] , target [ E_AXIS ] , FILAMENTCHANGE_ZFEED , active_extruder ) ;
//Move XY to side
if ( code_seen ( ' X ' ) )
{
target [ X_AXIS ] + = code_value ( ) ;
}
else
{
# ifdef FILAMENTCHANGE_XPOS
target [ X_AXIS ] = FILAMENTCHANGE_XPOS ;
# endif
}
if ( code_seen ( ' Y ' ) )
{
target [ Y_AXIS ] = code_value ( ) ;
}
else
{
# ifdef FILAMENTCHANGE_YPOS
target [ Y_AXIS ] = FILAMENTCHANGE_YPOS ;
# endif
}
plan_buffer_line ( target [ X_AXIS ] , target [ Y_AXIS ] , target [ Z_AXIS ] , target [ E_AXIS ] , FILAMENTCHANGE_XYFEED , active_extruder ) ;
st_synchronize ( ) ;
2017-11-28 17:28:53 +00:00
KEEPALIVE_STATE ( PAUSED_FOR_USER ) ;
2017-10-27 15:07:02 +00:00
2017-11-28 17:28:53 +00:00
uint8_t cnt = 0 ;
int counterBeep = 0 ;
lcd_display_message_fullscreen_P ( MSG_PRESS_TO_UNLOAD ) ;
while ( ! lcd_clicked ( ) ) {
2017-10-27 15:07:02 +00:00
2017-11-28 17:28:53 +00:00
cnt + + ;
manage_heater ( ) ;
manage_inactivity ( true ) ;
/*#ifdef SNMM
target [ E_AXIS ] + = 0.002 ;
plan_buffer_line ( target [ X_AXIS ] , target [ Y_AXIS ] , target [ Z_AXIS ] , target [ E_AXIS ] , 500 , active_extruder ) ;
# endif // SNMM*/
if ( cnt = = 0 )
{
# if BEEPER > 0
if ( counterBeep = = 500 ) {
counterBeep = 0 ;
}
SET_OUTPUT ( BEEPER ) ;
if ( counterBeep = = 0 ) {
WRITE ( BEEPER , HIGH ) ;
}
if ( counterBeep = = 20 ) {
WRITE ( BEEPER , LOW ) ;
}
counterBeep + + ;
# else
# if !defined(LCD_FEEDBACK_FREQUENCY_HZ) || !defined(LCD_FEEDBACK_FREQUENCY_DURATION_MS)
lcd_buzz ( 1000 / 6 , 100 ) ;
# else
lcd_buzz ( LCD_FEEDBACK_FREQUENCY_DURATION_MS , LCD_FEEDBACK_FREQUENCY_HZ ) ;
# endif
# endif
}
}
WRITE ( BEEPER , LOW ) ;
2017-11-28 18:04:43 +00:00
lcd_change_fil_state = 0 ;
while ( lcd_change_fil_state = = 0 ) {
lcd_display_message_fullscreen_P ( MSG_UNLOADING_FILAMENT ) ;
KEEPALIVE_STATE ( IN_HANDLER ) ;
custom_message = true ;
lcd_setstatuspgm ( MSG_UNLOADING_FILAMENT ) ;
2017-10-27 15:07:02 +00:00
2017-11-28 18:04:43 +00:00
// Unload filament
if ( code_seen ( ' L ' ) )
{
target [ E_AXIS ] + = code_value ( ) ;
}
else
{
# ifdef SNMM
2017-10-27 15:07:02 +00:00
2017-11-28 18:04:43 +00:00
# else
# ifdef FILAMENTCHANGE_FINALRETRACT
target [ E_AXIS ] + = FILAMENTCHANGE_FINALRETRACT ;
# endif
# endif // SNMM
}
2017-10-27 15:07:02 +00:00
# ifdef SNMM
2017-11-28 18:04:43 +00:00
target [ E_AXIS ] + = 12 ;
plan_buffer_line ( target [ X_AXIS ] , target [ Y_AXIS ] , target [ Z_AXIS ] , target [ E_AXIS ] , 3500 , active_extruder ) ;
target [ E_AXIS ] + = 6 ;
plan_buffer_line ( target [ X_AXIS ] , target [ Y_AXIS ] , target [ Z_AXIS ] , target [ E_AXIS ] , 5000 , active_extruder ) ;
target [ E_AXIS ] + = ( FIL_LOAD_LENGTH * - 1 ) ;
plan_buffer_line ( target [ X_AXIS ] , target [ Y_AXIS ] , target [ Z_AXIS ] , target [ E_AXIS ] , 5000 , active_extruder ) ;
st_synchronize ( ) ;
target [ E_AXIS ] + = ( FIL_COOLING ) ;
plan_buffer_line ( target [ X_AXIS ] , target [ Y_AXIS ] , target [ Z_AXIS ] , target [ E_AXIS ] , 50 , active_extruder ) ;
target [ E_AXIS ] + = ( FIL_COOLING * - 1 ) ;
plan_buffer_line ( target [ X_AXIS ] , target [ Y_AXIS ] , target [ Z_AXIS ] , target [ E_AXIS ] , 50 , active_extruder ) ;
target [ E_AXIS ] + = ( bowden_length [ snmm_extruder ] * - 1 ) ;
plan_buffer_line ( target [ X_AXIS ] , target [ Y_AXIS ] , target [ Z_AXIS ] , target [ E_AXIS ] , 3000 , active_extruder ) ;
st_synchronize ( ) ;
2017-10-27 15:07:02 +00:00
# else
2017-11-28 18:04:43 +00:00
// plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);
plan_buffer_line ( target [ X_AXIS ] , target [ Y_AXIS ] , target [ Z_AXIS ] , target [ E_AXIS ] , 3500 / 60 , active_extruder ) ;
2017-10-27 15:07:02 +00:00
# endif // SNMM
2017-11-28 18:04:43 +00:00
//finish moves
st_synchronize ( ) ;
//disable extruder steppers so filament can be removed
disable_e0 ( ) ;
disable_e1 ( ) ;
disable_e2 ( ) ;
delay ( 100 ) ;
KEEPALIVE_STATE ( PAUSED_FOR_USER ) ;
lcd_change_fil_state = ! lcd_show_fullscreen_message_yes_no_and_wait_P ( MSG_UNLOAD_SUCCESSFULL , false , false ) ;
//lcd_return_to_status();
lcd_update_enable ( true ) ;
}
2017-10-27 15:07:02 +00:00
//Wait for user to insert filament
lcd_wait_interact ( ) ;
2017-11-28 17:28:53 +00:00
//load_filament_time = millis();
2017-11-15 14:09:29 +00:00
KEEPALIVE_STATE ( PAUSED_FOR_USER ) ;
2017-12-13 16:39:32 +00:00
# ifdef PAT9125
if ( fsensor_M600 ) fsensor_autoload_check_start ( ) ;
# endif //PAT9125
2017-12-05 17:37:03 +00:00
while ( ! lcd_clicked ( ) )
{
2017-10-27 15:07:02 +00:00
manage_heater ( ) ;
manage_inactivity ( true ) ;
2017-12-13 16:39:32 +00:00
# ifdef PAT9125
if ( fsensor_M600 & & fsensor_check_autoload ( ) )
break ;
# endif //PAT9125
2017-10-27 15:07:02 +00:00
/*#ifdef SNMM
target [ E_AXIS ] + = 0.002 ;
plan_buffer_line ( target [ X_AXIS ] , target [ Y_AXIS ] , target [ Z_AXIS ] , target [ E_AXIS ] , 500 , active_extruder ) ;
# endif // SNMM*/
}
2017-12-13 16:39:32 +00:00
# ifdef PAT9125
if ( fsensor_M600 ) fsensor_autoload_check_stop ( ) ;
# endif //PAT9125
2017-11-28 17:28:53 +00:00
//WRITE(BEEPER, LOW);
2017-11-15 14:09:29 +00:00
KEEPALIVE_STATE ( IN_HANDLER ) ;
2017-10-27 15:07:02 +00:00
# ifdef SNMM
display_loading ( ) ;
2017-11-15 14:09:29 +00:00
KEEPALIVE_STATE ( PAUSED_FOR_USER ) ;
2017-10-27 15:07:02 +00:00
do {
target [ E_AXIS ] + = 0.002 ;
plan_buffer_line ( target [ X_AXIS ] , target [ Y_AXIS ] , target [ Z_AXIS ] , target [ E_AXIS ] , 500 , active_extruder ) ;
delay_keep_alive ( 2 ) ;
2017-11-15 14:09:29 +00:00
} while ( ! lcd_clicked ( ) ) ;
KEEPALIVE_STATE ( IN_HANDLER ) ;
2017-10-27 15:07:02 +00:00
/*if (millis() - load_filament_time > 2) {
load_filament_time = millis ( ) ;
target [ E_AXIS ] + = 0.001 ;
plan_buffer_line ( target [ X_AXIS ] , target [ Y_AXIS ] , target [ Z_AXIS ] , target [ E_AXIS ] , 1000 , active_extruder ) ;
} */
2017-11-14 15:10:10 +00:00
//Filament inserted
//Feed the filament to the end of nozzle quickly
2017-10-27 15:07:02 +00:00
st_synchronize ( ) ;
target [ E_AXIS ] + = bowden_length [ snmm_extruder ] ;
plan_buffer_line ( target [ X_AXIS ] , target [ Y_AXIS ] , target [ Z_AXIS ] , target [ E_AXIS ] , 3000 , active_extruder ) ;
target [ E_AXIS ] + = FIL_LOAD_LENGTH - 60 ;
plan_buffer_line ( target [ X_AXIS ] , target [ Y_AXIS ] , target [ Z_AXIS ] , target [ E_AXIS ] , 1400 , active_extruder ) ;
target [ E_AXIS ] + = 40 ;
plan_buffer_line ( target [ X_AXIS ] , target [ Y_AXIS ] , target [ Z_AXIS ] , target [ E_AXIS ] , 400 , active_extruder ) ;
target [ E_AXIS ] + = 10 ;
plan_buffer_line ( target [ X_AXIS ] , target [ Y_AXIS ] , target [ Z_AXIS ] , target [ E_AXIS ] , 50 , active_extruder ) ;
# else
target [ E_AXIS ] + = FILAMENTCHANGE_FIRSTFEED ;
plan_buffer_line ( target [ X_AXIS ] , target [ Y_AXIS ] , target [ Z_AXIS ] , target [ E_AXIS ] , FILAMENTCHANGE_EFEED , active_extruder ) ;
# endif // SNMM
//Extrude some filament
target [ E_AXIS ] + = FILAMENTCHANGE_FINALFEED ;
plan_buffer_line ( target [ X_AXIS ] , target [ Y_AXIS ] , target [ Z_AXIS ] , target [ E_AXIS ] , FILAMENTCHANGE_EXFEED , active_extruder ) ;
//Wait for user to check the state
lcd_change_fil_state = 0 ;
lcd_loading_filament ( ) ;
while ( ( lcd_change_fil_state = = 0 ) | | ( lcd_change_fil_state ! = 1 ) ) {
lcd_change_fil_state = 0 ;
2017-11-15 14:09:29 +00:00
KEEPALIVE_STATE ( PAUSED_FOR_USER ) ;
2017-10-27 15:07:02 +00:00
lcd_alright ( ) ;
2017-11-15 14:09:29 +00:00
KEEPALIVE_STATE ( IN_HANDLER ) ;
2017-10-27 15:07:02 +00:00
switch ( lcd_change_fil_state ) {
// Filament failed to load so load it again
case 2 :
# ifdef SNMM
display_loading ( ) ;
do {
target [ E_AXIS ] + = 0.002 ;
plan_buffer_line ( target [ X_AXIS ] , target [ Y_AXIS ] , target [ Z_AXIS ] , target [ E_AXIS ] , 500 , active_extruder ) ;
delay_keep_alive ( 2 ) ;
} while ( ! lcd_clicked ( ) ) ;
st_synchronize ( ) ;
target [ E_AXIS ] + = bowden_length [ snmm_extruder ] ;
plan_buffer_line ( target [ X_AXIS ] , target [ Y_AXIS ] , target [ Z_AXIS ] , target [ E_AXIS ] , 3000 , active_extruder ) ;
target [ E_AXIS ] + = FIL_LOAD_LENGTH - 60 ;
plan_buffer_line ( target [ X_AXIS ] , target [ Y_AXIS ] , target [ Z_AXIS ] , target [ E_AXIS ] , 1400 , active_extruder ) ;
target [ E_AXIS ] + = 40 ;
plan_buffer_line ( target [ X_AXIS ] , target [ Y_AXIS ] , target [ Z_AXIS ] , target [ E_AXIS ] , 400 , active_extruder ) ;
target [ E_AXIS ] + = 10 ;
plan_buffer_line ( target [ X_AXIS ] , target [ Y_AXIS ] , target [ Z_AXIS ] , target [ E_AXIS ] , 50 , active_extruder ) ;
# else
target [ E_AXIS ] + = FILAMENTCHANGE_FIRSTFEED ;
plan_buffer_line ( target [ X_AXIS ] , target [ Y_AXIS ] , target [ Z_AXIS ] , target [ E_AXIS ] , FILAMENTCHANGE_EFEED , active_extruder ) ;
# endif
target [ E_AXIS ] + = FILAMENTCHANGE_FINALFEED ;
plan_buffer_line ( target [ X_AXIS ] , target [ Y_AXIS ] , target [ Z_AXIS ] , target [ E_AXIS ] , FILAMENTCHANGE_EXFEED , active_extruder ) ;
lcd_loading_filament ( ) ;
break ;
// Filament loaded properly but color is not clear
case 3 :
target [ E_AXIS ] + = FILAMENTCHANGE_FINALFEED ;
plan_buffer_line ( target [ X_AXIS ] , target [ Y_AXIS ] , target [ Z_AXIS ] , target [ E_AXIS ] , 2 , active_extruder ) ;
lcd_loading_color ( ) ;
break ;
// Everything good
default :
lcd_change_success ( ) ;
lcd_update_enable ( true ) ;
break ;
}
}
//Not let's go back to print
//Feed a little of filament to stabilize pressure
target [ E_AXIS ] + = FILAMENTCHANGE_RECFEED ;
plan_buffer_line ( target [ X_AXIS ] , target [ Y_AXIS ] , target [ Z_AXIS ] , target [ E_AXIS ] , FILAMENTCHANGE_EXFEED , active_extruder ) ;
//Retract
target [ E_AXIS ] + = FILAMENTCHANGE_FIRSTRETRACT ;
plan_buffer_line ( target [ X_AXIS ] , target [ Y_AXIS ] , target [ Z_AXIS ] , target [ E_AXIS ] , FILAMENTCHANGE_RFEED , active_extruder ) ;
//plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder); //should do nothing
//Move XY back
plan_buffer_line ( lastpos [ X_AXIS ] , lastpos [ Y_AXIS ] , target [ Z_AXIS ] , target [ E_AXIS ] , FILAMENTCHANGE_XYFEED , active_extruder ) ;
//Move Z back
plan_buffer_line ( lastpos [ X_AXIS ] , lastpos [ Y_AXIS ] , lastpos [ Z_AXIS ] , target [ E_AXIS ] , FILAMENTCHANGE_ZFEED , active_extruder ) ;
target [ E_AXIS ] = target [ E_AXIS ] - FILAMENTCHANGE_FIRSTRETRACT ;
//Unretract
plan_buffer_line ( lastpos [ X_AXIS ] , lastpos [ Y_AXIS ] , lastpos [ Z_AXIS ] , target [ E_AXIS ] , FILAMENTCHANGE_RFEED , active_extruder ) ;
//Set E position to original
plan_set_e_position ( lastpos [ E_AXIS ] ) ;
//Recover feed rate
feedmultiply = feedmultiplyBckp ;
char cmd [ 9 ] ;
sprintf_P ( cmd , PSTR ( " M220 S%i " ) , feedmultiplyBckp ) ;
enquecommand ( cmd ) ;
lcd_setstatuspgm ( WELCOME_MSG ) ;
custom_message = false ;
custom_message_type = 0 ;
2017-11-27 13:43:56 +00:00
fsensor_enabled = old_fsensor_enabled ; //temporary solution for unexpected restarting
2017-10-27 15:07:02 +00:00
# ifdef PAT9125
2017-11-27 13:43:56 +00:00
2017-10-27 15:07:02 +00:00
if ( fsensor_M600 )
{
cmdqueue_pop_front ( ) ; //hack because M600 repeated 2x when enqueued to front
st_synchronize ( ) ;
while ( ! is_buffer_empty ( ) )
{
process_commands ( ) ;
cmdqueue_pop_front ( ) ;
}
fsensor_enable ( ) ;
fsensor_restore_print_and_continue ( ) ;
}
2017-11-27 13:43:56 +00:00
2017-10-27 15:07:02 +00:00
# endif //PAT9125
}
break ;
# endif //FILAMENTCHANGEENABLE
case 601 : {
if ( lcd_commands_type = = 0 ) lcd_commands_type = LCD_COMMAND_LONG_PAUSE ;
}
break ;
case 602 : {
if ( lcd_commands_type = = 0 ) lcd_commands_type = LCD_COMMAND_LONG_PAUSE_RESUME ;
}
break ;
# ifdef LIN_ADVANCE
case 900 : // M900: Set LIN_ADVANCE options.
gcode_M900 ( ) ;
break ;
# endif
case 907 : // M907 Set digital trimpot motor current using axis codes.
{
# if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
for ( int i = 0 ; i < NUM_AXIS ; i + + ) if ( code_seen ( axis_codes [ i ] ) ) digipot_current ( i , code_value ( ) ) ;
if ( code_seen ( ' B ' ) ) digipot_current ( 4 , code_value ( ) ) ;
if ( code_seen ( ' S ' ) ) for ( int i = 0 ; i < = 4 ; i + + ) digipot_current ( i , code_value ( ) ) ;
# endif
# ifdef MOTOR_CURRENT_PWM_XY_PIN
if ( code_seen ( ' X ' ) ) digipot_current ( 0 , code_value ( ) ) ;
# endif
# ifdef MOTOR_CURRENT_PWM_Z_PIN
if ( code_seen ( ' Z ' ) ) digipot_current ( 1 , code_value ( ) ) ;
# endif
# ifdef MOTOR_CURRENT_PWM_E_PIN
if ( code_seen ( ' E ' ) ) digipot_current ( 2 , code_value ( ) ) ;
# endif
# ifdef DIGIPOT_I2C
// this one uses actual amps in floating point
for ( int i = 0 ; i < NUM_AXIS ; i + + ) if ( code_seen ( axis_codes [ i ] ) ) digipot_i2c_set_current ( i , code_value ( ) ) ;
// for each additional extruder (named B,C,D,E..., channels 4,5,6,7...)
for ( int i = NUM_AXIS ; i < DIGIPOT_I2C_NUM_CHANNELS ; i + + ) if ( code_seen ( ' B ' + i - NUM_AXIS ) ) digipot_i2c_set_current ( i , code_value ( ) ) ;
# endif
}
break ;
case 908 : // M908 Control digital trimpot directly.
{
# if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
uint8_t channel , current ;
if ( code_seen ( ' P ' ) ) channel = code_value ( ) ;
if ( code_seen ( ' S ' ) ) current = code_value ( ) ;
digitalPotWrite ( channel , current ) ;
# endif
}
break ;
case 910 : // M910 TMC2130 init
{
tmc2130_init ( ) ;
}
break ;
case 911 : // M911 Set TMC2130 holding currents
{
if ( code_seen ( ' X ' ) ) tmc2130_set_current_h ( 0 , code_value ( ) ) ;
if ( code_seen ( ' Y ' ) ) tmc2130_set_current_h ( 1 , code_value ( ) ) ;
if ( code_seen ( ' Z ' ) ) tmc2130_set_current_h ( 2 , code_value ( ) ) ;
if ( code_seen ( ' E ' ) ) tmc2130_set_current_h ( 3 , code_value ( ) ) ;
}
break ;
case 912 : // M912 Set TMC2130 running currents
{
if ( code_seen ( ' X ' ) ) tmc2130_set_current_r ( 0 , code_value ( ) ) ;
if ( code_seen ( ' Y ' ) ) tmc2130_set_current_r ( 1 , code_value ( ) ) ;
if ( code_seen ( ' Z ' ) ) tmc2130_set_current_r ( 2 , code_value ( ) ) ;
if ( code_seen ( ' E ' ) ) tmc2130_set_current_r ( 3 , code_value ( ) ) ;
}
break ;
case 913 : // M913 Print TMC2130 currents
{
tmc2130_print_currents ( ) ;
}
break ;
case 914 : // M914 Set normal mode
{
tmc2130_mode = TMC2130_MODE_NORMAL ;
tmc2130_init ( ) ;
}
break ;
case 915 : // M915 Set silent mode
{
tmc2130_mode = TMC2130_MODE_SILENT ;
tmc2130_init ( ) ;
}
break ;
case 916 : // M916 Set sg_thrs
{
if ( code_seen ( ' X ' ) ) tmc2130_sg_thr [ X_AXIS ] = code_value ( ) ;
if ( code_seen ( ' Y ' ) ) tmc2130_sg_thr [ Y_AXIS ] = code_value ( ) ;
if ( code_seen ( ' Z ' ) ) tmc2130_sg_thr [ Z_AXIS ] = code_value ( ) ;
if ( code_seen ( ' E ' ) ) tmc2130_sg_thr [ E_AXIS ] = code_value ( ) ;
MYSERIAL . print ( " tmc2130_sg_thr[X]= " ) ;
MYSERIAL . println ( tmc2130_sg_thr [ X_AXIS ] , DEC ) ;
MYSERIAL . print ( " tmc2130_sg_thr[Y]= " ) ;
MYSERIAL . println ( tmc2130_sg_thr [ Y_AXIS ] , DEC ) ;
MYSERIAL . print ( " tmc2130_sg_thr[Z]= " ) ;
MYSERIAL . println ( tmc2130_sg_thr [ Z_AXIS ] , DEC ) ;
MYSERIAL . print ( " tmc2130_sg_thr[E]= " ) ;
MYSERIAL . println ( tmc2130_sg_thr [ E_AXIS ] , DEC ) ;
}
break ;
case 917 : // M917 Set TMC2130 pwm_ampl
{
if ( code_seen ( ' X ' ) ) tmc2130_set_pwm_ampl ( 0 , code_value ( ) ) ;
if ( code_seen ( ' Y ' ) ) tmc2130_set_pwm_ampl ( 1 , code_value ( ) ) ;
if ( code_seen ( ' Z ' ) ) tmc2130_set_pwm_ampl ( 2 , code_value ( ) ) ;
if ( code_seen ( ' E ' ) ) tmc2130_set_pwm_ampl ( 3 , code_value ( ) ) ;
}
break ;
case 918 : // M918 Set TMC2130 pwm_grad
{
if ( code_seen ( ' X ' ) ) tmc2130_set_pwm_grad ( 0 , code_value ( ) ) ;
if ( code_seen ( ' Y ' ) ) tmc2130_set_pwm_grad ( 1 , code_value ( ) ) ;
if ( code_seen ( ' Z ' ) ) tmc2130_set_pwm_grad ( 2 , code_value ( ) ) ;
if ( code_seen ( ' E ' ) ) tmc2130_set_pwm_grad ( 3 , code_value ( ) ) ;
}
break ;
case 350 : // M350 Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
{
# if defined(X_MS1_PIN) && X_MS1_PIN > -1
if ( code_seen ( ' S ' ) ) for ( int i = 0 ; i < = 4 ; i + + ) microstep_mode ( i , code_value ( ) ) ;
for ( int i = 0 ; i < NUM_AXIS ; i + + ) if ( code_seen ( axis_codes [ i ] ) ) microstep_mode ( i , ( uint8_t ) code_value ( ) ) ;
if ( code_seen ( ' B ' ) ) microstep_mode ( 4 , code_value ( ) ) ;
microstep_readings ( ) ;
# endif
}
break ;
case 351 : // M351 Toggle MS1 MS2 pins directly, S# determines MS1 or MS2, X# sets the pin high/low.
{
# if defined(X_MS1_PIN) && X_MS1_PIN > -1
if ( code_seen ( ' S ' ) ) switch ( ( int ) code_value ( ) )
{
case 1 :
for ( int i = 0 ; i < NUM_AXIS ; i + + ) if ( code_seen ( axis_codes [ i ] ) ) microstep_ms ( i , code_value ( ) , - 1 ) ;
if ( code_seen ( ' B ' ) ) microstep_ms ( 4 , code_value ( ) , - 1 ) ;
break ;
case 2 :
for ( int i = 0 ; i < NUM_AXIS ; i + + ) if ( code_seen ( axis_codes [ i ] ) ) microstep_ms ( i , - 1 , code_value ( ) ) ;
if ( code_seen ( ' B ' ) ) microstep_ms ( 4 , - 1 , code_value ( ) ) ;
break ;
}
microstep_readings ( ) ;
# endif
}
break ;
case 701 : //M701: load filament
{
2017-11-07 15:49:04 +00:00
gcode_M701 ( ) ;
2017-10-27 15:07:02 +00:00
}
break ;
case 702 :
{
# ifdef SNMM
if ( code_seen ( ' U ' ) ) {
extr_unload_used ( ) ; //unload all filaments which were used in current print
}
else if ( code_seen ( ' C ' ) ) {
extr_unload ( ) ; //unload just current filament
}
else {
extr_unload_all ( ) ; //unload all filaments
}
# else
2017-11-26 16:14:39 +00:00
bool old_fsensor_enabled = fsensor_enabled ;
fsensor_enabled = false ;
2017-10-27 15:07:02 +00:00
custom_message = true ;
custom_message_type = 2 ;
lcd_setstatuspgm ( MSG_UNLOADING_FILAMENT ) ;
2017-11-27 14:54:36 +00:00
// extr_unload2();
2017-10-27 15:07:02 +00:00
current_position [ E_AXIS ] - = 80 ;
plan_buffer_line ( current_position [ X_AXIS ] , current_position [ Y_AXIS ] , current_position [ Z_AXIS ] , current_position [ E_AXIS ] , 7000 / 60 , active_extruder ) ;
st_synchronize ( ) ;
lcd_setstatuspgm ( WELCOME_MSG ) ;
custom_message = false ;
custom_message_type = 0 ;
2017-11-26 16:14:39 +00:00
fsensor_enabled = old_fsensor_enabled ;
2017-10-27 15:07:02 +00:00
# endif
}
break ;
case 999 : // M999: Restart after being stopped
Stopped = false ;
lcd_reset_alert_level ( ) ;
gcode_LastN = Stopped_gcode_LastN ;
FlushSerialRequestResend ( ) ;
break ;
default : SERIAL_ECHOLNPGM ( " Invalid M code. " ) ;
}
} // end if(code_seen('M')) (end of M codes)
else if ( code_seen ( ' T ' ) )
{
int index ;
2017-11-14 12:57:32 +00:00
st_synchronize ( ) ;
2017-10-27 15:07:02 +00:00
for ( index = 1 ; * ( strchr_pointer + index ) = = ' ' | | * ( strchr_pointer + index ) = = ' \t ' ; index + + ) ;
if ( ( * ( strchr_pointer + index ) < ' 0 ' | | * ( strchr_pointer + index ) > ' 9 ' ) & & * ( strchr_pointer + index ) ! = ' ? ' ) {
SERIAL_ECHOLNPGM ( " Invalid T code. " ) ;
}
else {
if ( * ( strchr_pointer + index ) = = ' ? ' ) {
tmp_extruder = choose_extruder_menu ( ) ;
}
else {
tmp_extruder = code_value ( ) ;
}
snmm_filaments_used | = ( 1 < < tmp_extruder ) ; //for stop print
# ifdef SNMM
# ifdef LIN_ADVANCE
if ( snmm_extruder ! = tmp_extruder )
clear_current_adv_vars ( ) ; //Check if the selected extruder is not the active one and reset LIN_ADVANCE variables if so.
# endif
snmm_extruder = tmp_extruder ;
2017-11-14 12:57:32 +00:00
2017-10-27 15:07:02 +00:00
delay ( 100 ) ;
disable_e0 ( ) ;
disable_e1 ( ) ;
disable_e2 ( ) ;
pinMode ( E_MUX0_PIN , OUTPUT ) ;
pinMode ( E_MUX1_PIN , OUTPUT ) ;
pinMode ( E_MUX2_PIN , OUTPUT ) ;
delay ( 100 ) ;
SERIAL_ECHO_START ;
SERIAL_ECHO ( " T: " ) ;
SERIAL_ECHOLN ( ( int ) tmp_extruder ) ;
switch ( tmp_extruder ) {
case 1 :
WRITE ( E_MUX0_PIN , HIGH ) ;
WRITE ( E_MUX1_PIN , LOW ) ;
WRITE ( E_MUX2_PIN , LOW ) ;
break ;
case 2 :
WRITE ( E_MUX0_PIN , LOW ) ;
WRITE ( E_MUX1_PIN , HIGH ) ;
WRITE ( E_MUX2_PIN , LOW ) ;
break ;
case 3 :
WRITE ( E_MUX0_PIN , HIGH ) ;
WRITE ( E_MUX1_PIN , HIGH ) ;
WRITE ( E_MUX2_PIN , LOW ) ;
break ;
default :
WRITE ( E_MUX0_PIN , LOW ) ;
WRITE ( E_MUX1_PIN , LOW ) ;
WRITE ( E_MUX2_PIN , LOW ) ;
break ;
}
delay ( 100 ) ;
# else
if ( tmp_extruder > = EXTRUDERS ) {
SERIAL_ECHO_START ;
SERIAL_ECHOPGM ( " T " ) ;
SERIAL_PROTOCOLLN ( ( int ) tmp_extruder ) ;
SERIAL_ECHOLNRPGM ( MSG_INVALID_EXTRUDER ) ;
}
else {
boolean make_move = false ;
if ( code_seen ( ' F ' ) ) {
make_move = true ;
next_feedrate = code_value ( ) ;
if ( next_feedrate > 0.0 ) {
feedrate = next_feedrate ;
}
}
# if EXTRUDERS > 1
if ( tmp_extruder ! = active_extruder ) {
// Save current position to return to after applying extruder offset
memcpy ( destination , current_position , sizeof ( destination ) ) ;
// Offset extruder (only by XY)
int i ;
for ( i = 0 ; i < 2 ; i + + ) {
current_position [ i ] = current_position [ i ] -
extruder_offset [ i ] [ active_extruder ] +
extruder_offset [ i ] [ tmp_extruder ] ;
}
// Set the new active extruder and position
active_extruder = tmp_extruder ;
plan_set_position ( current_position [ X_AXIS ] , current_position [ Y_AXIS ] , current_position [ Z_AXIS ] , current_position [ E_AXIS ] ) ;
// Move to the old position if 'F' was in the parameters
if ( make_move & & Stopped = = false ) {
prepare_move ( ) ;
}
}
# endif
SERIAL_ECHO_START ;
SERIAL_ECHORPGM ( MSG_ACTIVE_EXTRUDER ) ;
SERIAL_PROTOCOLLN ( ( int ) active_extruder ) ;
}
# endif
}
} // end if(code_seen('T')) (end of T codes)
# ifdef DEBUG_DCODES
else if ( code_seen ( ' D ' ) ) // D codes (debug)
{
switch ( ( int ) code_value ( ) )
{
2017-11-24 20:53:35 +00:00
case - 1 : // D-1 - Endless loop
dcode__1 ( ) ; break ;
2017-10-27 15:07:02 +00:00
case 0 : // D0 - Reset
dcode_0 ( ) ; break ;
case 1 : // D1 - Clear EEPROM
dcode_1 ( ) ; break ;
case 2 : // D2 - Read/Write RAM
dcode_2 ( ) ; break ;
case 3 : // D3 - Read/Write EEPROM
dcode_3 ( ) ; break ;
case 4 : // D4 - Read/Write PIN
dcode_4 ( ) ; break ;
2017-11-13 17:45:11 +00:00
case 5 : // D5 - Read/Write FLASH
2017-11-20 19:09:54 +00:00
// dcode_5(); break;
break ;
2017-11-16 19:51:50 +00:00
case 6 : // D6 - Read/Write external FLASH
2017-11-13 17:45:11 +00:00
dcode_6 ( ) ; break ;
2017-11-16 19:51:50 +00:00
case 7 : // D7 - Read/Write Bootloader
2017-11-13 17:45:11 +00:00
dcode_7 ( ) ; break ;
2017-11-16 19:51:50 +00:00
case 8 : // D8 - Read/Write PINDA
dcode_8 ( ) ; break ;
2017-12-20 12:42:20 +00:00
case 9 : // D9 - Read/Write ADC
dcode_9 ( ) ; break ;
2017-11-16 19:51:50 +00:00
case 10 : // D10 - XYZ calibration = OK
dcode_10 ( ) ; break ;
case 12 : //D12 - Reset failstat counters
dcode_12 ( ) ; break ;
2017-11-13 17:45:11 +00:00
case 2130 : // D9125 - TMC2130
dcode_2130 ( ) ; break ;
2017-10-27 15:07:02 +00:00
case 9125 : // D9125 - PAT9125
dcode_9125 ( ) ; break ;
}
}
# endif //DEBUG_DCODES
else
{
SERIAL_ECHO_START ;
SERIAL_ECHORPGM ( MSG_UNKNOWN_COMMAND ) ;
SERIAL_ECHO ( CMDBUFFER_CURRENT_STRING ) ;
SERIAL_ECHOLNPGM ( " \" (2) " ) ;
}
2017-11-15 14:09:29 +00:00
KEEPALIVE_STATE ( NOT_BUSY ) ;
2017-10-27 15:07:02 +00:00
ClearToSend ( ) ;
}
void FlushSerialRequestResend ( )
{
//char cmdbuffer[bufindr][100]="Resend:";
MYSERIAL . flush ( ) ;
SERIAL_PROTOCOLRPGM ( MSG_RESEND ) ;
SERIAL_PROTOCOLLN ( gcode_LastN + 1 ) ;
ClearToSend ( ) ;
}
// Confirm the execution of a command, if sent from a serial line.
// Execution of a command from a SD card will not be confirmed.
void ClearToSend ( )
{
previous_millis_cmd = millis ( ) ;
if ( CMDBUFFER_CURRENT_TYPE = = CMDBUFFER_CURRENT_TYPE_USB )
SERIAL_PROTOCOLLNRPGM ( MSG_OK ) ;
}
void get_coordinates ( )
{
bool seen [ 4 ] = { false , false , false , false } ;
for ( int8_t i = 0 ; i < NUM_AXIS ; i + + ) {
if ( code_seen ( axis_codes [ i ] ) )
{
destination [ i ] = ( float ) code_value ( ) + ( axis_relative_modes [ i ] | | relative_mode ) * current_position [ i ] ;
seen [ i ] = true ;
}
else destination [ i ] = current_position [ i ] ; //Are these else lines really needed?
}
if ( code_seen ( ' F ' ) ) {
next_feedrate = code_value ( ) ;
# ifdef MAX_SILENT_FEEDRATE
if ( tmc2130_mode = = TMC2130_MODE_SILENT )
if ( next_feedrate > MAX_SILENT_FEEDRATE ) next_feedrate = MAX_SILENT_FEEDRATE ;
# endif //MAX_SILENT_FEEDRATE
if ( next_feedrate > 0.0 ) feedrate = next_feedrate ;
}
}
void get_arc_coordinates ( )
{
# ifdef SF_ARC_FIX
bool relative_mode_backup = relative_mode ;
relative_mode = true ;
# endif
get_coordinates ( ) ;
# ifdef SF_ARC_FIX
relative_mode = relative_mode_backup ;
# endif
if ( code_seen ( ' I ' ) ) {
offset [ 0 ] = code_value ( ) ;
}
else {
offset [ 0 ] = 0.0 ;
}
if ( code_seen ( ' J ' ) ) {
offset [ 1 ] = code_value ( ) ;
}
else {
offset [ 1 ] = 0.0 ;
}
}
void clamp_to_software_endstops ( float target [ 3 ] )
{
# ifdef DEBUG_DISABLE_SWLIMITS
return ;
# endif //DEBUG_DISABLE_SWLIMITS
world2machine_clamp ( target [ 0 ] , target [ 1 ] ) ;
// Clamp the Z coordinate.
if ( min_software_endstops ) {
float negative_z_offset = 0 ;
# ifdef ENABLE_AUTO_BED_LEVELING
if ( Z_PROBE_OFFSET_FROM_EXTRUDER < 0 ) negative_z_offset = negative_z_offset + Z_PROBE_OFFSET_FROM_EXTRUDER ;
if ( add_homing [ Z_AXIS ] < 0 ) negative_z_offset = negative_z_offset + add_homing [ Z_AXIS ] ;
# endif
if ( target [ Z_AXIS ] < min_pos [ Z_AXIS ] + negative_z_offset ) target [ Z_AXIS ] = min_pos [ Z_AXIS ] + negative_z_offset ;
}
if ( max_software_endstops ) {
if ( target [ Z_AXIS ] > max_pos [ Z_AXIS ] ) target [ Z_AXIS ] = max_pos [ Z_AXIS ] ;
}
}
# ifdef MESH_BED_LEVELING
void mesh_plan_buffer_line ( const float & x , const float & y , const float & z , const float & e , const float & feed_rate , const uint8_t extruder ) {
float dx = x - current_position [ X_AXIS ] ;
float dy = y - current_position [ Y_AXIS ] ;
float dz = z - current_position [ Z_AXIS ] ;
int n_segments = 0 ;
if ( mbl . active ) {
float len = abs ( dx ) + abs ( dy ) ;
if ( len > 0 )
// Split to 3cm segments or shorter.
n_segments = int ( ceil ( len / 30.f ) ) ;
}
if ( n_segments > 1 ) {
float de = e - current_position [ E_AXIS ] ;
for ( int i = 1 ; i < n_segments ; + + i ) {
float t = float ( i ) / float ( n_segments ) ;
plan_buffer_line (
current_position [ X_AXIS ] + t * dx ,
current_position [ Y_AXIS ] + t * dy ,
current_position [ Z_AXIS ] + t * dz ,
current_position [ E_AXIS ] + t * de ,
feed_rate , extruder ) ;
}
}
// The rest of the path.
plan_buffer_line ( x , y , z , e , feed_rate , extruder ) ;
current_position [ X_AXIS ] = x ;
current_position [ Y_AXIS ] = y ;
current_position [ Z_AXIS ] = z ;
current_position [ E_AXIS ] = e ;
}
# endif // MESH_BED_LEVELING
void prepare_move ( )
{
clamp_to_software_endstops ( destination ) ;
previous_millis_cmd = millis ( ) ;
// Do not use feedmultiply for E or Z only moves
if ( ( current_position [ X_AXIS ] = = destination [ X_AXIS ] ) & & ( current_position [ Y_AXIS ] = = destination [ Y_AXIS ] ) ) {
plan_buffer_line ( destination [ X_AXIS ] , destination [ Y_AXIS ] , destination [ Z_AXIS ] , destination [ E_AXIS ] , feedrate / 60 , active_extruder ) ;
}
else {
# ifdef MESH_BED_LEVELING
mesh_plan_buffer_line ( destination [ X_AXIS ] , destination [ Y_AXIS ] , destination [ Z_AXIS ] , destination [ E_AXIS ] , feedrate * feedmultiply * ( 1. / ( 60.f * 100.f ) ) , active_extruder ) ;
# else
plan_buffer_line ( destination [ X_AXIS ] , destination [ Y_AXIS ] , destination [ Z_AXIS ] , destination [ E_AXIS ] , feedrate * feedmultiply * ( 1. / ( 60.f * 100.f ) ) , active_extruder ) ;
# endif
}
for ( int8_t i = 0 ; i < NUM_AXIS ; i + + ) {
current_position [ i ] = destination [ i ] ;
}
}
void prepare_arc_move ( char isclockwise ) {
float r = hypot ( offset [ X_AXIS ] , offset [ Y_AXIS ] ) ; // Compute arc radius for mc_arc
// Trace the arc
mc_arc ( current_position , destination , offset , X_AXIS , Y_AXIS , Z_AXIS , feedrate * feedmultiply / 60 / 100.0 , r , isclockwise , active_extruder ) ;
// As far as the parser is concerned, the position is now == target. In reality the
// motion control system might still be processing the action and the real tool position
// in any intermediate location.
for ( int8_t i = 0 ; i < NUM_AXIS ; i + + ) {
current_position [ i ] = destination [ i ] ;
}
previous_millis_cmd = millis ( ) ;
}
# if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
# if defined(FAN_PIN)
# if CONTROLLERFAN_PIN == FAN_PIN
# error "You cannot set CONTROLLERFAN_PIN equal to FAN_PIN"
# endif
# endif
unsigned long lastMotor = 0 ; //Save the time for when a motor was turned on last
unsigned long lastMotorCheck = 0 ;
void controllerFan ( )
{
if ( ( millis ( ) - lastMotorCheck ) > = 2500 ) //Not a time critical function, so we only check every 2500ms
{
lastMotorCheck = millis ( ) ;
if ( ! READ ( X_ENABLE_PIN ) | | ! READ ( Y_ENABLE_PIN ) | | ! READ ( Z_ENABLE_PIN ) | | ( soft_pwm_bed > 0 )
# if EXTRUDERS > 2
| | ! READ ( E2_ENABLE_PIN )
# endif
# if EXTRUDER > 1
# if defined(X2_ENABLE_PIN) && X2_ENABLE_PIN > -1
| | ! READ ( X2_ENABLE_PIN )
# endif
| | ! READ ( E1_ENABLE_PIN )
# endif
| | ! READ ( E0_ENABLE_PIN ) ) //If any of the drivers are enabled...
{
lastMotor = millis ( ) ; //... set time to NOW so the fan will turn on
}
if ( ( millis ( ) - lastMotor ) > = ( CONTROLLERFAN_SECS * 1000UL ) | | lastMotor = = 0 ) //If the last time any driver was enabled, is longer since than CONTROLLERSEC...
{
digitalWrite ( CONTROLLERFAN_PIN , 0 ) ;
analogWrite ( CONTROLLERFAN_PIN , 0 ) ;
}
else
{
// allows digital or PWM fan output to be used (see M42 handling)
digitalWrite ( CONTROLLERFAN_PIN , CONTROLLERFAN_SPEED ) ;
analogWrite ( CONTROLLERFAN_PIN , CONTROLLERFAN_SPEED ) ;
}
}
}
# endif
# ifdef TEMP_STAT_LEDS
static bool blue_led = false ;
static bool red_led = false ;
static uint32_t stat_update = 0 ;
void handle_status_leds ( void ) {
float max_temp = 0.0 ;
if ( millis ( ) > stat_update ) {
stat_update + = 500 ; // Update every 0.5s
for ( int8_t cur_extruder = 0 ; cur_extruder < EXTRUDERS ; + + cur_extruder ) {
max_temp = max ( max_temp , degHotend ( cur_extruder ) ) ;
max_temp = max ( max_temp , degTargetHotend ( cur_extruder ) ) ;
}
# if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
max_temp = max ( max_temp , degTargetBed ( ) ) ;
max_temp = max ( max_temp , degBed ( ) ) ;
# endif
if ( ( max_temp > 55.0 ) & & ( red_led = = false ) ) {
digitalWrite ( STAT_LED_RED , 1 ) ;
digitalWrite ( STAT_LED_BLUE , 0 ) ;
red_led = true ;
blue_led = false ;
}
if ( ( max_temp < 54.0 ) & & ( blue_led = = false ) ) {
digitalWrite ( STAT_LED_RED , 0 ) ;
digitalWrite ( STAT_LED_BLUE , 1 ) ;
red_led = false ;
blue_led = true ;
}
}
}
# endif
void manage_inactivity ( bool ignore_stepper_queue /*=false*/ ) //default argument set in Marlin.h
{
2017-12-13 16:39:32 +00:00
if ( fsensor_enabled & & ! fsensor_M600 & & ! moves_planned ( ) & & ! IS_SD_PRINTING & & ! is_usb_printing & & ( lcd_commands_type ! = LCD_COMMAND_V2_CAL ) & & ( current_temperature [ 0 ] > EXTRUDE_MINTEMP ) )
{
if ( fsensor_autoload_enabled )
{
if ( fsensor_check_autoload ( ) )
{
fsensor_autoload_check_stop ( ) ;
enquecommand_front_P ( ( PSTR ( " M701 " ) ) ) ;
}
}
else
fsensor_autoload_check_start ( ) ;
}
else
if ( fsensor_autoload_enabled )
fsensor_autoload_check_stop ( ) ;
2017-10-27 15:07:02 +00:00
# if defined(KILL_PIN) && KILL_PIN > -1
static int killCount = 0 ; // make the inactivity button a bit less responsive
const int KILL_DELAY = 10000 ;
# endif
if ( buflen < ( BUFSIZE - 1 ) ) {
get_command ( ) ;
}
if ( ( millis ( ) - previous_millis_cmd ) > max_inactive_time )
if ( max_inactive_time )
kill ( " " , 4 ) ;
if ( stepper_inactive_time ) {
if ( ( millis ( ) - previous_millis_cmd ) > stepper_inactive_time )
{
if ( blocks_queued ( ) = = false & & ignore_stepper_queue = = false ) {
disable_x ( ) ;
// SERIAL_ECHOLNPGM("manage_inactivity - disable Y");
disable_y ( ) ;
disable_z ( ) ;
disable_e0 ( ) ;
disable_e1 ( ) ;
disable_e2 ( ) ;
}
}
}
# ifdef CHDK //Check if pin should be set to LOW after M240 set it to HIGH
if ( chdkActive & & ( millis ( ) - chdkHigh > CHDK_DELAY ) )
{
chdkActive = false ;
WRITE ( CHDK , LOW ) ;
}
# endif
# if defined(KILL_PIN) && KILL_PIN > -1
// Check if the kill button was pressed and wait just in case it was an accidental
// key kill key press
// -------------------------------------------------------------------------------
if ( 0 = = READ ( KILL_PIN ) )
{
killCount + + ;
}
else if ( killCount > 0 )
{
killCount - - ;
}
// Exceeded threshold and we can confirm that it was not accidental
// KILL the machine
// ----------------------------------------------------------------
if ( killCount > = KILL_DELAY )
{
kill ( " " , 5 ) ;
}
# endif
# if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
controllerFan ( ) ; //Check if fan should be turned on to cool stepper drivers down
# endif
# ifdef EXTRUDER_RUNOUT_PREVENT
if ( ( millis ( ) - previous_millis_cmd ) > EXTRUDER_RUNOUT_SECONDS * 1000 )
if ( degHotend ( active_extruder ) > EXTRUDER_RUNOUT_MINTEMP )
{
bool oldstatus = READ ( E0_ENABLE_PIN ) ;
enable_e0 ( ) ;
float oldepos = current_position [ E_AXIS ] ;
float oldedes = destination [ E_AXIS ] ;
plan_buffer_line ( destination [ X_AXIS ] , destination [ Y_AXIS ] , destination [ Z_AXIS ] ,
destination [ E_AXIS ] + EXTRUDER_RUNOUT_EXTRUDE * EXTRUDER_RUNOUT_ESTEPS / axis_steps_per_unit [ E_AXIS ] ,
EXTRUDER_RUNOUT_SPEED / 60. * EXTRUDER_RUNOUT_ESTEPS / axis_steps_per_unit [ E_AXIS ] , active_extruder ) ;
current_position [ E_AXIS ] = oldepos ;
destination [ E_AXIS ] = oldedes ;
plan_set_e_position ( oldepos ) ;
previous_millis_cmd = millis ( ) ;
st_synchronize ( ) ;
WRITE ( E0_ENABLE_PIN , oldstatus ) ;
}
# endif
# ifdef TEMP_STAT_LEDS
handle_status_leds ( ) ;
# endif
check_axes_activity ( ) ;
}
void kill ( const char * full_screen_message , unsigned char id )
{
SERIAL_ECHOPGM ( " KILL: " ) ;
MYSERIAL . println ( int ( id ) ) ;
//return;
cli ( ) ; // Stop interrupts
disable_heater ( ) ;
disable_x ( ) ;
// SERIAL_ECHOLNPGM("kill - disable Y");
disable_y ( ) ;
disable_z ( ) ;
disable_e0 ( ) ;
disable_e1 ( ) ;
disable_e2 ( ) ;
# if defined(PS_ON_PIN) && PS_ON_PIN > -1
pinMode ( PS_ON_PIN , INPUT ) ;
# endif
SERIAL_ERROR_START ;
SERIAL_ERRORLNRPGM ( MSG_ERR_KILLED ) ;
if ( full_screen_message ! = NULL ) {
SERIAL_ERRORLNRPGM ( full_screen_message ) ;
lcd_display_message_fullscreen_P ( full_screen_message ) ;
} else {
LCD_ALERTMESSAGERPGM ( MSG_KILLED ) ;
}
// FMC small patch to update the LCD before ending
sei ( ) ; // enable interrupts
for ( int i = 5 ; i - - ; lcd_update ( ) )
{
delay ( 200 ) ;
}
cli ( ) ; // disable interrupts
suicide ( ) ;
2017-11-27 13:43:56 +00:00
while ( 1 )
{
wdt_reset ( ) ;
/* Intentionally left empty */
} // Wait for reset
2017-10-27 15:07:02 +00:00
}
void Stop ( )
{
disable_heater ( ) ;
if ( Stopped = = false ) {
Stopped = true ;
Stopped_gcode_LastN = gcode_LastN ; // Save last g_code for restart
SERIAL_ERROR_START ;
SERIAL_ERRORLNRPGM ( MSG_ERR_STOPPED ) ;
LCD_MESSAGERPGM ( MSG_STOPPED ) ;
}
}
bool IsStopped ( ) { return Stopped ; } ;
# ifdef FAST_PWM_FAN
void setPwmFrequency ( uint8_t pin , int val )
{
val & = 0x07 ;
switch ( digitalPinToTimer ( pin ) )
{
# if defined(TCCR0A)
case TIMER0A :
case TIMER0B :
// TCCR0B &= ~(_BV(CS00) | _BV(CS01) | _BV(CS02));
// TCCR0B |= val;
break ;
# endif
# if defined(TCCR1A)
case TIMER1A :
case TIMER1B :
// TCCR1B &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
// TCCR1B |= val;
break ;
# endif
# if defined(TCCR2)
case TIMER2 :
case TIMER2 :
TCCR2 & = ~ ( _BV ( CS10 ) | _BV ( CS11 ) | _BV ( CS12 ) ) ;
TCCR2 | = val ;
break ;
# endif
# if defined(TCCR2A)
case TIMER2A :
case TIMER2B :
TCCR2B & = ~ ( _BV ( CS20 ) | _BV ( CS21 ) | _BV ( CS22 ) ) ;
TCCR2B | = val ;
break ;
# endif
# if defined(TCCR3A)
case TIMER3A :
case TIMER3B :
case TIMER3C :
TCCR3B & = ~ ( _BV ( CS30 ) | _BV ( CS31 ) | _BV ( CS32 ) ) ;
TCCR3B | = val ;
break ;
# endif
# if defined(TCCR4A)
case TIMER4A :
case TIMER4B :
case TIMER4C :
TCCR4B & = ~ ( _BV ( CS40 ) | _BV ( CS41 ) | _BV ( CS42 ) ) ;
TCCR4B | = val ;
break ;
# endif
# if defined(TCCR5A)
case TIMER5A :
case TIMER5B :
case TIMER5C :
TCCR5B & = ~ ( _BV ( CS50 ) | _BV ( CS51 ) | _BV ( CS52 ) ) ;
TCCR5B | = val ;
break ;
# endif
}
}
# endif //FAST_PWM_FAN
bool setTargetedHotend ( int code ) {
tmp_extruder = active_extruder ;
if ( code_seen ( ' T ' ) ) {
tmp_extruder = code_value ( ) ;
if ( tmp_extruder > = EXTRUDERS ) {
SERIAL_ECHO_START ;
switch ( code ) {
case 104 :
SERIAL_ECHORPGM ( MSG_M104_INVALID_EXTRUDER ) ;
break ;
case 105 :
SERIAL_ECHO ( MSG_M105_INVALID_EXTRUDER ) ;
break ;
case 109 :
SERIAL_ECHO ( MSG_M109_INVALID_EXTRUDER ) ;
break ;
case 218 :
SERIAL_ECHO ( MSG_M218_INVALID_EXTRUDER ) ;
break ;
case 221 :
SERIAL_ECHO ( MSG_M221_INVALID_EXTRUDER ) ;
break ;
}
SERIAL_PROTOCOLLN ( ( int ) tmp_extruder ) ;
return true ;
}
}
return false ;
}
void save_statistics ( unsigned long _total_filament_used , unsigned long _total_print_time ) / / _total_filament_used unit : mm / 100 ; print time in s
{
if ( eeprom_read_byte ( ( uint8_t * ) EEPROM_TOTALTIME ) = = 255 & & eeprom_read_byte ( ( uint8_t * ) EEPROM_TOTALTIME + 1 ) = = 255 & & eeprom_read_byte ( ( uint8_t * ) EEPROM_TOTALTIME + 2 ) = = 255 & & eeprom_read_byte ( ( uint8_t * ) EEPROM_TOTALTIME + 3 ) = = 255 )
{
eeprom_update_dword ( ( uint32_t * ) EEPROM_TOTALTIME , 0 ) ;
eeprom_update_dword ( ( uint32_t * ) EEPROM_FILAMENTUSED , 0 ) ;
}
unsigned long _previous_filament = eeprom_read_dword ( ( uint32_t * ) EEPROM_FILAMENTUSED ) ; //_previous_filament unit: cm
unsigned long _previous_time = eeprom_read_dword ( ( uint32_t * ) EEPROM_TOTALTIME ) ; //_previous_time unit: min
eeprom_update_dword ( ( uint32_t * ) EEPROM_TOTALTIME , _previous_time + ( _total_print_time / 60 ) ) ; //EEPROM_TOTALTIME unit: min
eeprom_update_dword ( ( uint32_t * ) EEPROM_FILAMENTUSED , _previous_filament + ( _total_filament_used / 1000 ) ) ;
total_filament_used = 0 ;
}
float calculate_volumetric_multiplier ( float diameter ) {
float area = .0 ;
float radius = .0 ;
radius = diameter * .5 ;
if ( ! volumetric_enabled | | radius = = 0 ) {
area = 1 ;
}
else {
area = M_PI * pow ( radius , 2 ) ;
}
return 1.0 / area ;
}
void calculate_volumetric_multipliers ( ) {
volumetric_multiplier [ 0 ] = calculate_volumetric_multiplier ( filament_size [ 0 ] ) ;
# if EXTRUDERS > 1
volumetric_multiplier [ 1 ] = calculate_volumetric_multiplier ( filament_size [ 1 ] ) ;
# if EXTRUDERS > 2
volumetric_multiplier [ 2 ] = calculate_volumetric_multiplier ( filament_size [ 2 ] ) ;
# endif
# endif
}
void delay_keep_alive ( unsigned int ms )
{
for ( ; ; ) {
manage_heater ( ) ;
// Manage inactivity, but don't disable steppers on timeout.
manage_inactivity ( true ) ;
lcd_update ( ) ;
if ( ms = = 0 )
break ;
else if ( ms > = 50 ) {
delay ( 50 ) ;
ms - = 50 ;
} else {
delay ( ms ) ;
ms = 0 ;
}
}
}
void wait_for_heater ( long codenum ) {
# ifdef TEMP_RESIDENCY_TIME
long residencyStart ;
residencyStart = - 1 ;
/* continue to loop until we have reached the target temp
_and_ until TEMP_RESIDENCY_TIME hasn ' t passed since we reached it */
while ( ( ! cancel_heatup ) & & ( ( residencyStart = = - 1 ) | |
( residencyStart > = 0 & & ( ( ( unsigned int ) ( millis ( ) - residencyStart ) ) < ( TEMP_RESIDENCY_TIME * 1000UL ) ) ) ) ) {
# else
while ( target_direction ? ( isHeatingHotend ( tmp_extruder ) ) : ( isCoolingHotend ( tmp_extruder ) & & ( CooldownNoWait = = false ) ) ) {
# endif //TEMP_RESIDENCY_TIME
if ( ( millis ( ) - codenum ) > 1000UL )
{ //Print Temp Reading and remaining time every 1 second while heating up/cooling down
if ( ! farm_mode ) {
SERIAL_PROTOCOLPGM ( " T: " ) ;
SERIAL_PROTOCOL_F ( degHotend ( tmp_extruder ) , 1 ) ;
SERIAL_PROTOCOLPGM ( " E: " ) ;
SERIAL_PROTOCOL ( ( int ) tmp_extruder ) ;
# ifdef TEMP_RESIDENCY_TIME
SERIAL_PROTOCOLPGM ( " W: " ) ;
if ( residencyStart > - 1 )
{
codenum = ( ( TEMP_RESIDENCY_TIME * 1000UL ) - ( millis ( ) - residencyStart ) ) / 1000UL ;
SERIAL_PROTOCOLLN ( codenum ) ;
}
else
{
SERIAL_PROTOCOLLN ( " ? " ) ;
}
}
# else
SERIAL_PROTOCOLLN ( " " ) ;
# endif
codenum = millis ( ) ;
}
manage_heater ( ) ;
manage_inactivity ( ) ;
lcd_update ( ) ;
# ifdef TEMP_RESIDENCY_TIME
/* start/restart the TEMP_RESIDENCY_TIME timer whenever we reach target temp for the first time
or when current temp falls outside the hysteresis after target temp was reached */
if ( ( residencyStart = = - 1 & & target_direction & & ( degHotend ( tmp_extruder ) > = ( degTargetHotend ( tmp_extruder ) - TEMP_WINDOW ) ) ) | |
( residencyStart = = - 1 & & ! target_direction & & ( degHotend ( tmp_extruder ) < = ( degTargetHotend ( tmp_extruder ) + TEMP_WINDOW ) ) ) | |
( residencyStart > - 1 & & labs ( degHotend ( tmp_extruder ) - degTargetHotend ( tmp_extruder ) ) > TEMP_HYSTERESIS ) )
{
residencyStart = millis ( ) ;
}
# endif //TEMP_RESIDENCY_TIME
}
}
void check_babystep ( ) {
int babystep_z ;
EEPROM_read_B ( EEPROM_BABYSTEP_Z , & babystep_z ) ;
if ( ( babystep_z < Z_BABYSTEP_MIN ) | | ( babystep_z > Z_BABYSTEP_MAX ) ) {
babystep_z = 0 ; //if babystep value is out of min max range, set it to 0
SERIAL_ECHOLNPGM ( " Z live adjust out of range. Setting to 0 " ) ;
EEPROM_save_B ( EEPROM_BABYSTEP_Z , & babystep_z ) ;
lcd_show_fullscreen_message_and_wait_P ( PSTR ( " Z live adjust out of range. Setting to 0. Click to continue. " ) ) ;
lcd_update_enable ( true ) ;
}
}
# ifdef DIS
void d_setup ( )
{
pinMode ( D_DATACLOCK , INPUT_PULLUP ) ;
pinMode ( D_DATA , INPUT_PULLUP ) ;
pinMode ( D_REQUIRE , OUTPUT ) ;
digitalWrite ( D_REQUIRE , HIGH ) ;
}
float d_ReadData ( )
{
int digit [ 13 ] ;
String mergeOutput ;
float output ;
digitalWrite ( D_REQUIRE , HIGH ) ;
for ( int i = 0 ; i < 13 ; i + + )
{
for ( int j = 0 ; j < 4 ; j + + )
{
while ( digitalRead ( D_DATACLOCK ) = = LOW ) { }
while ( digitalRead ( D_DATACLOCK ) = = HIGH ) { }
bitWrite ( digit [ i ] , j , digitalRead ( D_DATA ) ) ;
}
}
digitalWrite ( D_REQUIRE , LOW ) ;
mergeOutput = " " ;
output = 0 ;
for ( int r = 5 ; r < = 10 ; r + + ) //Merge digits
{
mergeOutput + = digit [ r ] ;
}
output = mergeOutput . toFloat ( ) ;
if ( digit [ 4 ] = = 8 ) //Handle sign
{
output * = - 1 ;
}
for ( int i = digit [ 11 ] ; i > 0 ; i - - ) //Handle floating point
{
output / = 10 ;
}
return output ;
}
void bed_analysis ( float x_dimension , float y_dimension , int x_points_num , int y_points_num , float shift_x , float shift_y ) {
int t1 = 0 ;
int t_delay = 0 ;
int digit [ 13 ] ;
int m ;
char str [ 3 ] ;
//String mergeOutput;
char mergeOutput [ 15 ] ;
float output ;
int mesh_point = 0 ; //index number of calibration point
float bed_zero_ref_x = ( - 22.f + X_PROBE_OFFSET_FROM_EXTRUDER ) ; //shift between zero point on bed and target and between probe and nozzle
float bed_zero_ref_y = ( - 0.6f + Y_PROBE_OFFSET_FROM_EXTRUDER ) ;
float mesh_home_z_search = 4 ;
float row [ x_points_num ] ;
int ix = 0 ;
int iy = 0 ;
char * filename_wldsd = " wldsd.txt " ;
char data_wldsd [ 70 ] ;
char numb_wldsd [ 10 ] ;
d_setup ( ) ;
if ( ! ( axis_known_position [ X_AXIS ] & & axis_known_position [ Y_AXIS ] & & axis_known_position [ Z_AXIS ] ) ) {
// We don't know where we are! HOME!
// Push the commands to the front of the message queue in the reverse order!
// There shall be always enough space reserved for these commands.
repeatcommand_front ( ) ; // repeat G80 with all its parameters
enquecommand_front_P ( ( PSTR ( " G28 W0 " ) ) ) ;
enquecommand_front_P ( ( PSTR ( " G1 Z5 " ) ) ) ;
return ;
}
bool custom_message_old = custom_message ;
unsigned int custom_message_type_old = custom_message_type ;
unsigned int custom_message_state_old = custom_message_state ;
custom_message = true ;
custom_message_type = 1 ;
custom_message_state = ( x_points_num * y_points_num ) + 10 ;
lcd_update ( 1 ) ;
mbl . reset ( ) ;
babystep_undo ( ) ;
card . openFile ( filename_wldsd , false ) ;
current_position [ Z_AXIS ] = mesh_home_z_search ;
plan_buffer_line ( current_position [ X_AXIS ] , current_position [ Y_AXIS ] , current_position [ Z_AXIS ] , current_position [ E_AXIS ] , homing_feedrate [ Z_AXIS ] / 60 , active_extruder ) ;
int XY_AXIS_FEEDRATE = homing_feedrate [ X_AXIS ] / 20 ;
int Z_PROBE_FEEDRATE = homing_feedrate [ Z_AXIS ] / 60 ;
int Z_LIFT_FEEDRATE = homing_feedrate [ Z_AXIS ] / 40 ;
setup_for_endstop_move ( false ) ;
SERIAL_PROTOCOLPGM ( " Num X,Y: " ) ;
SERIAL_PROTOCOL ( x_points_num ) ;
SERIAL_PROTOCOLPGM ( " , " ) ;
SERIAL_PROTOCOL ( y_points_num ) ;
SERIAL_PROTOCOLPGM ( " \n Z search height: " ) ;
SERIAL_PROTOCOL ( mesh_home_z_search ) ;
SERIAL_PROTOCOLPGM ( " \n Dimension X,Y: " ) ;
SERIAL_PROTOCOL ( x_dimension ) ;
SERIAL_PROTOCOLPGM ( " , " ) ;
SERIAL_PROTOCOL ( y_dimension ) ;
SERIAL_PROTOCOLLNPGM ( " \n Measured points: " ) ;
while ( mesh_point ! = x_points_num * y_points_num ) {
ix = mesh_point % x_points_num ; // from 0 to MESH_NUM_X_POINTS - 1
iy = mesh_point / x_points_num ;
if ( iy & 1 ) ix = ( x_points_num - 1 ) - ix ; // Zig zag
float z0 = 0.f ;
current_position [ Z_AXIS ] = mesh_home_z_search ;
plan_buffer_line ( current_position [ X_AXIS ] , current_position [ Y_AXIS ] , current_position [ Z_AXIS ] , current_position [ E_AXIS ] , Z_LIFT_FEEDRATE , active_extruder ) ;
st_synchronize ( ) ;
current_position [ X_AXIS ] = 13.f + ix * ( x_dimension / ( x_points_num - 1 ) ) - bed_zero_ref_x + shift_x ;
current_position [ Y_AXIS ] = 6.4f + iy * ( y_dimension / ( y_points_num - 1 ) ) - bed_zero_ref_y + shift_y ;
plan_buffer_line ( current_position [ X_AXIS ] , current_position [ Y_AXIS ] , current_position [ Z_AXIS ] , current_position [ E_AXIS ] , XY_AXIS_FEEDRATE , active_extruder ) ;
st_synchronize ( ) ;
if ( ! find_bed_induction_sensor_point_z ( - 10.f ) ) { //if we have data from z calibration max allowed difference is 1mm for each point, if we dont have data max difference is 10mm from initial point
break ;
card . closefile ( ) ;
}
//memset(numb_wldsd, 0, sizeof(numb_wldsd));
//dtostrf(d_ReadData(), 8, 5, numb_wldsd);
//strcat(data_wldsd, numb_wldsd);
//MYSERIAL.println(data_wldsd);
//delay(1000);
//delay(3000);
//t1 = millis();
//while (digitalRead(D_DATACLOCK) == LOW) {}
//while (digitalRead(D_DATACLOCK) == HIGH) {}
memset ( digit , 0 , sizeof ( digit ) ) ;
//cli();
digitalWrite ( D_REQUIRE , LOW ) ;
for ( int i = 0 ; i < 13 ; i + + )
{
//t1 = millis();
for ( int j = 0 ; j < 4 ; j + + )
{
while ( digitalRead ( D_DATACLOCK ) = = LOW ) { }
while ( digitalRead ( D_DATACLOCK ) = = HIGH ) { }
bitWrite ( digit [ i ] , j , digitalRead ( D_DATA ) ) ;
}
//t_delay = (millis() - t1);
//SERIAL_PROTOCOLPGM(" ");
//SERIAL_PROTOCOL_F(t_delay, 5);
//SERIAL_PROTOCOLPGM(" ");
}
//sei();
digitalWrite ( D_REQUIRE , HIGH ) ;
mergeOutput [ 0 ] = ' \0 ' ;
output = 0 ;
for ( int r = 5 ; r < = 10 ; r + + ) //Merge digits
{
sprintf ( str , " %d " , digit [ r ] ) ;
strcat ( mergeOutput , str ) ;
}
output = atof ( mergeOutput ) ;
if ( digit [ 4 ] = = 8 ) //Handle sign
{
output * = - 1 ;
}
for ( int i = digit [ 11 ] ; i > 0 ; i - - ) //Handle floating point
{
output * = 0.1 ;
}
//output = d_ReadData();
//row[ix] = current_position[Z_AXIS];
memset ( data_wldsd , 0 , sizeof ( data_wldsd ) ) ;
for ( int i = 0 ; i < 3 ; i + + ) {
memset ( numb_wldsd , 0 , sizeof ( numb_wldsd ) ) ;
dtostrf ( current_position [ i ] , 8 , 5 , numb_wldsd ) ;
strcat ( data_wldsd , numb_wldsd ) ;
strcat ( data_wldsd , " ; " ) ;
}
memset ( numb_wldsd , 0 , sizeof ( numb_wldsd ) ) ;
dtostrf ( output , 8 , 5 , numb_wldsd ) ;
strcat ( data_wldsd , numb_wldsd ) ;
//strcat(data_wldsd, ";");
card . write_command ( data_wldsd ) ;
//row[ix] = d_ReadData();
row [ ix ] = output ; // current_position[Z_AXIS];
if ( iy % 2 = = 1 ? ix = = 0 : ix = = x_points_num - 1 ) {
for ( int i = 0 ; i < x_points_num ; i + + ) {
SERIAL_PROTOCOLPGM ( " " ) ;
SERIAL_PROTOCOL_F ( row [ i ] , 5 ) ;
}
SERIAL_PROTOCOLPGM ( " \n " ) ;
}
custom_message_state - - ;
mesh_point + + ;
lcd_update ( 1 ) ;
}
card . closefile ( ) ;
}
# endif
void temp_compensation_start ( ) {
custom_message = true ;
custom_message_type = 5 ;
custom_message_state = PINDA_HEAT_T + 1 ;
lcd_update ( 2 ) ;
if ( degHotend ( active_extruder ) > EXTRUDE_MINTEMP ) {
current_position [ E_AXIS ] - = DEFAULT_RETRACTION ;
}
plan_buffer_line ( current_position [ X_AXIS ] , current_position [ Y_AXIS ] , current_position [ Z_AXIS ] , current_position [ E_AXIS ] , 400 , active_extruder ) ;
current_position [ X_AXIS ] = PINDA_PREHEAT_X ;
current_position [ Y_AXIS ] = PINDA_PREHEAT_Y ;
current_position [ Z_AXIS ] = PINDA_PREHEAT_Z ;
plan_buffer_line ( current_position [ X_AXIS ] , current_position [ Y_AXIS ] , current_position [ Z_AXIS ] , current_position [ E_AXIS ] , 3000 / 60 , active_extruder ) ;
st_synchronize ( ) ;
while ( fabs ( degBed ( ) - target_temperature_bed ) > 1 ) delay_keep_alive ( 1000 ) ;
for ( int i = 0 ; i < PINDA_HEAT_T ; i + + ) {
delay_keep_alive ( 1000 ) ;
custom_message_state = PINDA_HEAT_T - i ;
if ( custom_message_state = = 99 | | custom_message_state = = 9 ) lcd_update ( 2 ) ; //force whole display redraw if number of digits changed
else lcd_update ( 1 ) ;
}
custom_message_type = 0 ;
custom_message_state = 0 ;
custom_message = false ;
}
void temp_compensation_apply ( ) {
int i_add ;
int compensation_value ;
int z_shift = 0 ;
float z_shift_mm ;
if ( calibration_status ( ) = = CALIBRATION_STATUS_CALIBRATED ) {
if ( target_temperature_bed % 10 = = 0 & & target_temperature_bed > = 60 & & target_temperature_bed < = 100 ) {
i_add = ( target_temperature_bed - 60 ) / 10 ;
EEPROM_read_B ( EEPROM_PROBE_TEMP_SHIFT + i_add * 2 , & z_shift ) ;
z_shift_mm = z_shift / axis_steps_per_unit [ Z_AXIS ] ;
} else {
//interpolation
z_shift_mm = temp_comp_interpolation ( target_temperature_bed ) / axis_steps_per_unit [ Z_AXIS ] ;
}
SERIAL_PROTOCOLPGM ( " \n " ) ;
SERIAL_PROTOCOLPGM ( " Z shift applied: " ) ;
MYSERIAL . print ( z_shift_mm ) ;
plan_buffer_line ( current_position [ X_AXIS ] , current_position [ Y_AXIS ] , current_position [ Z_AXIS ] - z_shift_mm , current_position [ E_AXIS ] , homing_feedrate [ Z_AXIS ] / 40 , active_extruder ) ;
st_synchronize ( ) ;
plan_set_z_position ( current_position [ Z_AXIS ] ) ;
}
else {
//we have no temp compensation data
}
}
float temp_comp_interpolation ( float inp_temperature ) {
//cubic spline interpolation
int n , i , j , k ;
float h [ 10 ] , a , b , c , d , sum , s [ 10 ] = { 0 } , x [ 10 ] , F [ 10 ] , f [ 10 ] , m [ 10 ] [ 10 ] = { 0 } , temp ;
int shift [ 10 ] ;
int temp_C [ 10 ] ;
n = 6 ; //number of measured points
shift [ 0 ] = 0 ;
for ( i = 0 ; i < n ; i + + ) {
if ( i > 0 ) EEPROM_read_B ( EEPROM_PROBE_TEMP_SHIFT + ( i - 1 ) * 2 , & shift [ i ] ) ; //read shift in steps from EEPROM
temp_C [ i ] = 50 + i * 10 ; //temperature in C
# ifdef PINDA_THERMISTOR
temp_C [ i ] = 35 + i * 5 ; //temperature in C
# else
temp_C [ i ] = 50 + i * 10 ; //temperature in C
# endif
x [ i ] = ( float ) temp_C [ i ] ;
f [ i ] = ( float ) shift [ i ] ;
}
if ( inp_temperature < x [ 0 ] ) return 0 ;
for ( i = n - 1 ; i > 0 ; i - - ) {
F [ i ] = ( f [ i ] - f [ i - 1 ] ) / ( x [ i ] - x [ i - 1 ] ) ;
h [ i - 1 ] = x [ i ] - x [ i - 1 ] ;
}
//*********** formation of h, s , f matrix **************
for ( i = 1 ; i < n - 1 ; i + + ) {
m [ i ] [ i ] = 2 * ( h [ i - 1 ] + h [ i ] ) ;
if ( i ! = 1 ) {
m [ i ] [ i - 1 ] = h [ i - 1 ] ;
m [ i - 1 ] [ i ] = h [ i - 1 ] ;
}
m [ i ] [ n - 1 ] = 6 * ( F [ i + 1 ] - F [ i ] ) ;
}
//*********** forward elimination **************
for ( i = 1 ; i < n - 2 ; i + + ) {
temp = ( m [ i + 1 ] [ i ] / m [ i ] [ i ] ) ;
for ( j = 1 ; j < = n - 1 ; j + + )
m [ i + 1 ] [ j ] - = temp * m [ i ] [ j ] ;
}
//*********** backward substitution *********
for ( i = n - 2 ; i > 0 ; i - - ) {
sum = 0 ;
for ( j = i ; j < = n - 2 ; j + + )
sum + = m [ i ] [ j ] * s [ j ] ;
s [ i ] = ( m [ i ] [ n - 1 ] - sum ) / m [ i ] [ i ] ;
}
for ( i = 0 ; i < n - 1 ; i + + )
if ( ( x [ i ] < = inp_temperature & & inp_temperature < = x [ i + 1 ] ) | | ( i = = n - 2 & & inp_temperature > x [ i + 1 ] ) ) {
a = ( s [ i + 1 ] - s [ i ] ) / ( 6 * h [ i ] ) ;
b = s [ i ] / 2 ;
c = ( f [ i + 1 ] - f [ i ] ) / h [ i ] - ( 2 * h [ i ] * s [ i ] + s [ i + 1 ] * h [ i ] ) / 6 ;
d = f [ i ] ;
sum = a * pow ( ( inp_temperature - x [ i ] ) , 3 ) + b * pow ( ( inp_temperature - x [ i ] ) , 2 ) + c * ( inp_temperature - x [ i ] ) + d ;
}
return sum ;
}
# ifdef PINDA_THERMISTOR
2017-11-16 19:51:50 +00:00
float temp_compensation_pinda_thermistor_offset ( float temperature_pinda )
2017-10-27 15:07:02 +00:00
{
if ( ! temp_cal_active ) return 0 ;
if ( ! calibration_status_pinda ( ) ) return 0 ;
2017-11-16 19:51:50 +00:00
return temp_comp_interpolation ( temperature_pinda ) / axis_steps_per_unit [ Z_AXIS ] ;
2017-10-27 15:07:02 +00:00
}
# endif //PINDA_THERMISTOR
void long_pause ( ) //long pause print
{
st_synchronize ( ) ;
//save currently set parameters to global variables
saved_feedmultiply = feedmultiply ;
HotendTempBckp = degTargetHotend ( active_extruder ) ;
fanSpeedBckp = fanSpeed ;
start_pause_print = millis ( ) ;
//save position
pause_lastpos [ X_AXIS ] = current_position [ X_AXIS ] ;
pause_lastpos [ Y_AXIS ] = current_position [ Y_AXIS ] ;
pause_lastpos [ Z_AXIS ] = current_position [ Z_AXIS ] ;
pause_lastpos [ E_AXIS ] = current_position [ E_AXIS ] ;
//retract
current_position [ E_AXIS ] - = DEFAULT_RETRACTION ;
plan_buffer_line ( current_position [ X_AXIS ] , current_position [ Y_AXIS ] , current_position [ Z_AXIS ] , current_position [ E_AXIS ] , 400 , active_extruder ) ;
//lift z
current_position [ Z_AXIS ] + = Z_PAUSE_LIFT ;
if ( current_position [ Z_AXIS ] > Z_MAX_POS ) current_position [ Z_AXIS ] = Z_MAX_POS ;
plan_buffer_line ( current_position [ X_AXIS ] , current_position [ Y_AXIS ] , current_position [ Z_AXIS ] , current_position [ E_AXIS ] , 15 , active_extruder ) ;
//set nozzle target temperature to 0
setTargetHotend ( 0 , 0 ) ;
setTargetHotend ( 0 , 1 ) ;
setTargetHotend ( 0 , 2 ) ;
//Move XY to side
current_position [ X_AXIS ] = X_PAUSE_POS ;
current_position [ Y_AXIS ] = Y_PAUSE_POS ;
plan_buffer_line ( current_position [ X_AXIS ] , current_position [ Y_AXIS ] , current_position [ Z_AXIS ] , current_position [ E_AXIS ] , 50 , active_extruder ) ;
// Turn off the print fan
fanSpeed = 0 ;
st_synchronize ( ) ;
}
void serialecho_temperatures ( ) {
float tt = degHotend ( active_extruder ) ;
SERIAL_PROTOCOLPGM ( " T: " ) ;
SERIAL_PROTOCOL ( tt ) ;
SERIAL_PROTOCOLPGM ( " E: " ) ;
SERIAL_PROTOCOL ( ( int ) active_extruder ) ;
SERIAL_PROTOCOLPGM ( " B: " ) ;
SERIAL_PROTOCOL_F ( degBed ( ) , 1 ) ;
SERIAL_PROTOCOLLN ( " " ) ;
}
extern uint32_t sdpos_atomic ;
void uvlo_ ( )
{
2017-10-27 14:12:37 +00:00
unsigned long time_start = millis ( ) ;
2017-11-27 17:30:16 +00:00
bool sd_print = card . sdprinting ;
2017-10-27 15:07:02 +00:00
// Conserve power as soon as possible.
disable_x ( ) ;
disable_y ( ) ;
2017-11-27 14:54:36 +00:00
tmc2130_set_current_h ( Z_AXIS , 12 ) ;
tmc2130_set_current_r ( Z_AXIS , 12 ) ;
tmc2130_set_current_h ( E_AXIS , 20 ) ;
tmc2130_set_current_r ( E_AXIS , 20 ) ;
2017-10-27 15:07:02 +00:00
// Indicate that the interrupt has been triggered.
SERIAL_ECHOLNPGM ( " UVLO " ) ;
// Read out the current Z motor microstep counter. This will be later used
// for reaching the zero full step before powering off.
uint16_t z_microsteps = tmc2130_rd_MSCNT ( Z_TMC2130_CS ) ;
// Calculate the file position, from which to resume this print.
long sd_position = sdpos_atomic ; //atomic sd position of last command added in queue
{
uint16_t sdlen_planner = planner_calc_sd_length ( ) ; //length of sd commands in planner
sd_position - = sdlen_planner ;
uint16_t sdlen_cmdqueue = cmdqueue_calc_sd_length ( ) ; //length of sd commands in cmdqueue
sd_position - = sdlen_cmdqueue ;
if ( sd_position < 0 ) sd_position = 0 ;
}
// Backup the feedrate in mm/min.
int feedrate_bckp = blocks_queued ( ) ? ( block_buffer [ block_buffer_tail ] . nominal_speed * 60.f ) : feedrate ;
// After this call, the planner queue is emptied and the current_position is set to a current logical coordinate.
// The logical coordinate will likely differ from the machine coordinate if the skew calibration and mesh bed leveling
// are in action.
planner_abort_hard ( ) ;
2017-11-29 01:08:15 +00:00
// Store the current extruder position.
eeprom_update_float ( ( float * ) ( EEPROM_UVLO_CURRENT_POSITION_E ) , st_get_position_mm ( E_AXIS ) ) ;
eeprom_update_byte ( ( uint8_t * ) EEPROM_UVLO_E_ABS , axis_relative_modes [ 3 ] ? 0 : 1 ) ;
2017-10-27 15:07:02 +00:00
// Clean the input command queue.
cmdqueue_reset ( ) ;
card . sdprinting = false ;
// card.closefile();
// Enable stepper driver interrupt to move Z axis.
// This should be fine as the planner and command queues are empty and the SD card printing is disabled.
//FIXME one may want to disable serial lines at this point of time to avoid interfering with the command queue,
// though it should not happen that the command queue is touched as the plan_buffer_line always succeed without blocking.
sei ( ) ;
plan_buffer_line (
current_position [ X_AXIS ] ,
current_position [ Y_AXIS ] ,
current_position [ Z_AXIS ] ,
current_position [ E_AXIS ] - DEFAULT_RETRACTION ,
400 , active_extruder ) ;
plan_buffer_line (
current_position [ X_AXIS ] ,
current_position [ Y_AXIS ] ,
current_position [ Z_AXIS ] + UVLO_Z_AXIS_SHIFT + float ( ( 1024 - z_microsteps + 7 ) > > 4 ) / axis_steps_per_unit [ Z_AXIS ] ,
current_position [ E_AXIS ] - DEFAULT_RETRACTION ,
40 , active_extruder ) ;
// Move Z up to the next 0th full step.
// Write the file position.
eeprom_update_dword ( ( uint32_t * ) ( EEPROM_FILE_POSITION ) , sd_position ) ;
// Store the mesh bed leveling offsets. This is 2*9=18 bytes, which takes 18*3.4us=52us in worst case.
for ( int8_t mesh_point = 0 ; mesh_point < 9 ; + + mesh_point ) {
uint8_t ix = mesh_point % MESH_MEAS_NUM_X_POINTS ; // from 0 to MESH_NUM_X_POINTS - 1
uint8_t iy = mesh_point / MESH_MEAS_NUM_X_POINTS ;
// Scale the z value to 1u resolution.
int16_t v = mbl . active ? int16_t ( floor ( mbl . z_values [ iy * 3 ] [ ix * 3 ] * 1000.f + 0.5f ) ) : 0 ;
eeprom_update_word ( ( uint16_t * ) ( EEPROM_UVLO_MESH_BED_LEVELING + 2 * mesh_point ) , * reinterpret_cast < uint16_t * > ( & v ) ) ;
}
// Read out the current Z motor microstep counter. This will be later used
// for reaching the zero full step before powering off.
eeprom_update_word ( ( uint16_t * ) ( EEPROM_UVLO_Z_MICROSTEPS ) , z_microsteps ) ;
// Store the current position.
eeprom_update_float ( ( float * ) ( EEPROM_UVLO_CURRENT_POSITION + 0 ) , current_position [ X_AXIS ] ) ;
eeprom_update_float ( ( float * ) ( EEPROM_UVLO_CURRENT_POSITION + 4 ) , current_position [ Y_AXIS ] ) ;
eeprom_update_float ( ( float * ) ( EEPROM_UVLO_CURRENT_POSITION_Z ) , current_position [ Z_AXIS ] ) ;
// Store the current feed rate, temperatures and fan speed.
EEPROM_save_B ( EEPROM_UVLO_FEEDRATE , & feedrate_bckp ) ;
eeprom_update_byte ( ( uint8_t * ) EEPROM_UVLO_TARGET_HOTEND , target_temperature [ active_extruder ] ) ;
eeprom_update_byte ( ( uint8_t * ) EEPROM_UVLO_TARGET_BED , target_temperature_bed ) ;
eeprom_update_byte ( ( uint8_t * ) EEPROM_UVLO_FAN_SPEED , fanSpeed ) ;
// Finaly store the "power outage" flag.
2017-11-27 17:30:16 +00:00
if ( sd_print ) eeprom_update_byte ( ( uint8_t * ) EEPROM_UVLO , 1 ) ;
2017-10-27 15:07:02 +00:00
st_synchronize ( ) ;
SERIAL_ECHOPGM ( " stps " ) ;
MYSERIAL . println ( tmc2130_rd_MSCNT ( Z_TMC2130_CS ) ) ;
#if 0
// Move the print head to the side of the print until all the power stored in the power supply capacitors is depleted.
current_position [ X_AXIS ] = ( current_position [ X_AXIS ] < 0.5f * ( X_MIN_POS + X_MAX_POS ) ) ? X_MIN_POS : X_MAX_POS ;
plan_buffer_line ( current_position [ X_AXIS ] , current_position [ Y_AXIS ] , current_position [ Z_AXIS ] , current_position [ E_AXIS ] , 500 , active_extruder ) ;
st_synchronize ( ) ;
# endif
disable_z ( ) ;
// Increment power failure counter
uint8_t power_count = eeprom_read_byte ( ( uint8_t * ) EEPROM_POWER_COUNT ) ;
power_count + + ;
eeprom_update_byte ( ( uint8_t * ) EEPROM_POWER_COUNT , power_count ) ;
SERIAL_ECHOLNPGM ( " UVLO - end " ) ;
2017-10-27 14:12:37 +00:00
MYSERIAL . println ( millis ( ) - time_start ) ;
2017-10-27 15:07:02 +00:00
cli ( ) ;
while ( 1 ) ;
}
void setup_fan_interrupt ( ) {
//INT7
DDRE & = ~ ( 1 < < 7 ) ; //input pin
PORTE & = ~ ( 1 < < 7 ) ; //no internal pull-up
//start with sensing rising edge
EICRB & = ~ ( 1 < < 6 ) ;
EICRB | = ( 1 < < 7 ) ;
//enable INT7 interrupt
EIMSK | = ( 1 < < 7 ) ;
}
ISR ( INT7_vect ) {
//measuring speed now works for fanSpeed > 18 (approximately), which is sufficient because MIN_PRINT_FAN_SPEED is higher
if ( fanSpeed < MIN_PRINT_FAN_SPEED ) return ;
if ( ( 1 < < 6 ) & EICRB ) { //interrupt was triggered by rising edge
t_fan_rising_edge = millis ( ) ;
}
else { //interrupt was triggered by falling edge
if ( ( millis ( ) - t_fan_rising_edge ) > = FAN_PULSE_WIDTH_LIMIT ) { //this pulse was from sensor and not from pwm
fan_edge_counter [ 1 ] + = 2 ; //we are currently counting all edges so lets count two edges for one pulse
}
}
EICRB ^ = ( 1 < < 6 ) ; //change edge
}
void setup_uvlo_interrupt ( ) {
DDRE & = ~ ( 1 < < 4 ) ; //input pin
PORTE & = ~ ( 1 < < 4 ) ; //no internal pull-up
//sensing falling edge
EICRB | = ( 1 < < 0 ) ;
EICRB & = ~ ( 1 < < 1 ) ;
//enable INT4 interrupt
EIMSK | = ( 1 < < 4 ) ;
}
ISR ( INT4_vect ) {
EIMSK & = ~ ( 1 < < 4 ) ; //disable INT4 interrupt to make sure that this code will be executed just once
SERIAL_ECHOLNPGM ( " INT4 " ) ;
if ( IS_SD_PRINTING ) uvlo_ ( ) ;
}
void recover_print ( uint8_t automatic ) {
char cmd [ 30 ] ;
lcd_update_enable ( true ) ;
lcd_update ( 2 ) ;
lcd_setstatuspgm ( MSG_RECOVERING_PRINT ) ;
recover_machine_state_after_power_panic ( ) ;
// Set the target bed and nozzle temperatures.
sprintf_P ( cmd , PSTR ( " M104 S%d " ) , target_temperature [ active_extruder ] ) ;
enquecommand ( cmd ) ;
sprintf_P ( cmd , PSTR ( " M140 S%d " ) , target_temperature_bed ) ;
enquecommand ( cmd ) ;
// Lift the print head, so one may remove the excess priming material.
if ( current_position [ Z_AXIS ] < 25 )
enquecommand_P ( PSTR ( " G1 Z25 F800 " ) ) ;
// Home X and Y axes. Homing just X and Y shall not touch the babystep and the world2machine transformation status.
enquecommand_P ( PSTR ( " G28 X Y " ) ) ;
// Set the target bed and nozzle temperatures and wait.
sprintf_P ( cmd , PSTR ( " M109 S%d " ) , target_temperature [ active_extruder ] ) ;
enquecommand ( cmd ) ;
sprintf_P ( cmd , PSTR ( " M190 S%d " ) , target_temperature_bed ) ;
enquecommand ( cmd ) ;
enquecommand_P ( PSTR ( " M83 " ) ) ; //E axis relative mode
//enquecommand_P(PSTR("G1 E5 F120")); //Extrude some filament to stabilize pessure
// If not automatically recoreverd (long power loss), extrude extra filament to stabilize
if ( automatic = = 0 ) {
enquecommand_P ( PSTR ( " G1 E5 F120 " ) ) ; //Extrude some filament to stabilize pessure
}
enquecommand_P ( PSTR ( " G1 E " STRINGIFY ( - DEFAULT_RETRACTION ) " F480 " ) ) ;
2017-11-28 22:41:58 +00:00
2017-10-27 15:07:02 +00:00
// Mark the power panic status as inactive.
eeprom_update_byte ( ( uint8_t * ) EEPROM_UVLO , 0 ) ;
/*while ((abs(degHotend(0)- target_temperature[0])>5) || (abs(degBed() -target_temperature_bed)>3)) { //wait for heater and bed to reach target temp
delay_keep_alive ( 1000 ) ;
} */
SERIAL_ECHOPGM ( " After waiting for temp: " ) ;
SERIAL_ECHOPGM ( " Current position X_AXIS: " ) ;
MYSERIAL . println ( current_position [ X_AXIS ] ) ;
SERIAL_ECHOPGM ( " Current position Y_AXIS: " ) ;
MYSERIAL . println ( current_position [ Y_AXIS ] ) ;
// Restart the print.
restore_print_from_eeprom ( ) ;
SERIAL_ECHOPGM ( " current_position[Z_AXIS]: " ) ;
MYSERIAL . print ( current_position [ Z_AXIS ] ) ;
2017-11-29 01:08:15 +00:00
SERIAL_ECHOPGM ( " current_position[E_AXIS]: " ) ;
MYSERIAL . print ( current_position [ E_AXIS ] ) ;
2017-10-27 15:07:02 +00:00
}
void recover_machine_state_after_power_panic ( )
{
2017-12-12 20:20:59 +00:00
char cmd [ 30 ] ;
2017-10-27 15:07:02 +00:00
// 1) Recover the logical cordinates at the time of the power panic.
// The logical XY coordinates are needed to recover the machine Z coordinate corrected by the mesh bed leveling.
current_position [ X_AXIS ] = eeprom_read_float ( ( float * ) ( EEPROM_UVLO_CURRENT_POSITION + 0 ) ) ;
current_position [ Y_AXIS ] = eeprom_read_float ( ( float * ) ( EEPROM_UVLO_CURRENT_POSITION + 4 ) ) ;
// Recover the logical coordinate of the Z axis at the time of the power panic.
// The current position after power panic is moved to the next closest 0th full step.
current_position [ Z_AXIS ] = eeprom_read_float ( ( float * ) ( EEPROM_UVLO_CURRENT_POSITION_Z ) ) +
UVLO_Z_AXIS_SHIFT + float ( ( 1024 - eeprom_read_word ( ( uint16_t * ) ( EEPROM_UVLO_Z_MICROSTEPS ) ) + 7 ) > > 4 ) / axis_steps_per_unit [ Z_AXIS ] ;
2017-12-12 20:20:59 +00:00
if ( eeprom_read_byte ( ( uint8_t * ) EEPROM_UVLO_E_ABS ) ) {
current_position [ E_AXIS ] = eeprom_read_float ( ( float * ) ( EEPROM_UVLO_CURRENT_POSITION_E ) ) ;
sprintf_P ( cmd , PSTR ( " G92 E " ) ) ;
dtostrf ( current_position [ E_AXIS ] , 6 , 3 , cmd + strlen ( cmd ) ) ;
enquecommand ( cmd ) ;
}
2017-10-27 15:07:02 +00:00
memcpy ( destination , current_position , sizeof ( destination ) ) ;
SERIAL_ECHOPGM ( " recover_machine_state_after_power_panic, initial " ) ;
print_world_coordinates ( ) ;
// 2) Initialize the logical to physical coordinate system transformation.
world2machine_initialize ( ) ;
// 3) Restore the mesh bed leveling offsets. This is 2*9=18 bytes, which takes 18*3.4us=52us in worst case.
mbl . active = false ;
for ( int8_t mesh_point = 0 ; mesh_point < 9 ; + + mesh_point ) {
uint8_t ix = mesh_point % MESH_MEAS_NUM_X_POINTS ; // from 0 to MESH_NUM_X_POINTS - 1
uint8_t iy = mesh_point / MESH_MEAS_NUM_X_POINTS ;
// Scale the z value to 10u resolution.
int16_t v ;
eeprom_read_block ( & v , ( void * ) ( EEPROM_UVLO_MESH_BED_LEVELING + 2 * mesh_point ) , 2 ) ;
if ( v ! = 0 )
mbl . active = true ;
mbl . z_values [ iy ] [ ix ] = float ( v ) * 0.001f ;
}
if ( mbl . active )
mbl . upsample_3x3 ( ) ;
SERIAL_ECHOPGM ( " recover_machine_state_after_power_panic, initial " ) ;
print_mesh_bed_leveling_table ( ) ;
// 4) Load the baby stepping value, which is expected to be active at the time of power panic.
// The baby stepping value is used to reset the physical Z axis when rehoming the Z axis.
babystep_load ( ) ;
// 5) Set the physical positions from the logical positions using the world2machine transformation and the active bed leveling.
plan_set_position ( current_position [ X_AXIS ] , current_position [ Y_AXIS ] , current_position [ Z_AXIS ] , current_position [ E_AXIS ] ) ;
// 6) Power up the motors, mark their positions as known.
//FIXME Verfiy, whether the X and Y axes should be powered up here, as they will later be re-homed anyway.
axis_known_position [ X_AXIS ] = true ; enable_x ( ) ;
axis_known_position [ Y_AXIS ] = true ; enable_y ( ) ;
axis_known_position [ Z_AXIS ] = true ; enable_z ( ) ;
SERIAL_ECHOPGM ( " recover_machine_state_after_power_panic, initial " ) ;
print_physical_coordinates ( ) ;
// 7) Recover the target temperatures.
target_temperature [ active_extruder ] = eeprom_read_byte ( ( uint8_t * ) EEPROM_UVLO_TARGET_HOTEND ) ;
target_temperature_bed = eeprom_read_byte ( ( uint8_t * ) EEPROM_UVLO_TARGET_BED ) ;
}
void restore_print_from_eeprom ( ) {
float x_rec , y_rec , z_pos ;
int feedrate_rec ;
uint8_t fan_speed_rec ;
char cmd [ 30 ] ;
char * c ;
char filename [ 13 ] ;
2017-11-27 05:20:51 +00:00
uint8_t depth = 0 ;
char dir_name [ 9 ] ;
2017-10-27 15:07:02 +00:00
fan_speed_rec = eeprom_read_byte ( ( uint8_t * ) EEPROM_UVLO_FAN_SPEED ) ;
EEPROM_read_B ( EEPROM_UVLO_FEEDRATE , & feedrate_rec ) ;
SERIAL_ECHOPGM ( " Feedrate: " ) ;
MYSERIAL . println ( feedrate_rec ) ;
2017-11-27 05:20:51 +00:00
depth = eeprom_read_byte ( ( uint8_t * ) EEPROM_DIR_DEPTH ) ;
MYSERIAL . println ( int ( depth ) ) ;
for ( int i = 0 ; i < depth ; i + + ) {
for ( int j = 0 ; j < 8 ; j + + ) {
dir_name [ j ] = eeprom_read_byte ( ( uint8_t * ) EEPROM_DIRS + j + 8 * i ) ;
}
dir_name [ 8 ] = ' \0 ' ;
MYSERIAL . println ( dir_name ) ;
card . chdir ( dir_name ) ;
}
2017-10-27 15:07:02 +00:00
for ( int i = 0 ; i < 8 ; i + + ) {
filename [ i ] = eeprom_read_byte ( ( uint8_t * ) EEPROM_FILENAME + i ) ;
}
filename [ 8 ] = ' \0 ' ;
MYSERIAL . print ( filename ) ;
strcat_P ( filename , PSTR ( " .gco " ) ) ;
sprintf_P ( cmd , PSTR ( " M23 %s " ) , filename ) ;
for ( c = & cmd [ 4 ] ; * c ; c + + )
* c = tolower ( * c ) ;
enquecommand ( cmd ) ;
uint32_t position = eeprom_read_dword ( ( uint32_t * ) ( EEPROM_FILE_POSITION ) ) ;
SERIAL_ECHOPGM ( " Position read from eeprom: " ) ;
MYSERIAL . println ( position ) ;
// E axis relative mode.
enquecommand_P ( PSTR ( " M83 " ) ) ;
// Move to the XY print position in logical coordinates, where the print has been killed.
strcpy_P ( cmd , PSTR ( " G1 X " ) ) ; strcat ( cmd , ftostr32 ( eeprom_read_float ( ( float * ) ( EEPROM_UVLO_CURRENT_POSITION + 0 ) ) ) ) ;
strcat_P ( cmd , PSTR ( " Y " ) ) ; strcat ( cmd , ftostr32 ( eeprom_read_float ( ( float * ) ( EEPROM_UVLO_CURRENT_POSITION + 4 ) ) ) ) ;
strcat_P ( cmd , PSTR ( " F2000 " ) ) ;
enquecommand ( cmd ) ;
// Move the Z axis down to the print, in logical coordinates.
strcpy_P ( cmd , PSTR ( " G1 Z " ) ) ; strcat ( cmd , ftostr32 ( eeprom_read_float ( ( float * ) ( EEPROM_UVLO_CURRENT_POSITION_Z ) ) ) ) ;
enquecommand ( cmd ) ;
// Unretract.
enquecommand_P ( PSTR ( " G1 E " STRINGIFY ( DEFAULT_RETRACTION ) " F480 " ) ) ;
// Set the feedrate saved at the power panic.
sprintf_P ( cmd , PSTR ( " G1 F%d " ) , feedrate_rec ) ;
enquecommand ( cmd ) ;
2017-12-12 20:20:59 +00:00
if ( eeprom_read_byte ( ( uint8_t * ) EEPROM_UVLO_E_ABS ) )
{
float extruder_abs_pos = eeprom_read_float ( ( float * ) ( EEPROM_UVLO_CURRENT_POSITION_E ) ) ;
enquecommand_P ( PSTR ( " M82 " ) ) ; //E axis abslute mode
}
2017-10-27 15:07:02 +00:00
// Set the fan speed saved at the power panic.
strcpy_P ( cmd , PSTR ( " M106 S " ) ) ;
strcat ( cmd , itostr3 ( int ( fan_speed_rec ) ) ) ;
enquecommand ( cmd ) ;
// Set a position in the file.
sprintf_P ( cmd , PSTR ( " M26 S%lu " ) , position ) ;
enquecommand ( cmd ) ;
// Start SD print.
enquecommand_P ( PSTR ( " M24 " ) ) ;
}
////////////////////////////////////////////////////////////////////////////////
// new save/restore printing
//extern uint32_t sdpos_atomic;
bool saved_printing = false ;
uint32_t saved_sdpos = 0 ;
float saved_pos [ 4 ] = { 0 , 0 , 0 , 0 } ;
// Feedrate hopefully derived from an active block of the planner at the time the print has been canceled, in mm/min.
float saved_feedrate2 = 0 ;
uint8_t saved_active_extruder = 0 ;
bool saved_extruder_under_pressure = false ;
void stop_and_save_print_to_ram ( float z_move , float e_move )
{
if ( saved_printing ) return ;
cli ( ) ;
unsigned char nplanner_blocks = number_of_blocks ( ) ;
saved_sdpos = sdpos_atomic ; //atomic sd position of last command added in queue
uint16_t sdlen_planner = planner_calc_sd_length ( ) ; //length of sd commands in planner
saved_sdpos - = sdlen_planner ;
uint16_t sdlen_cmdqueue = cmdqueue_calc_sd_length ( ) ; //length of sd commands in cmdqueue
saved_sdpos - = sdlen_cmdqueue ;
#if 0
SERIAL_ECHOPGM ( " SDPOS_ATOMIC= " ) ; MYSERIAL . println ( sdpos_atomic , DEC ) ;
SERIAL_ECHOPGM ( " SDPOS= " ) ; MYSERIAL . println ( card . get_sdpos ( ) , DEC ) ;
SERIAL_ECHOPGM ( " SDLEN_PLAN= " ) ; MYSERIAL . println ( sdlen_planner , DEC ) ;
SERIAL_ECHOPGM ( " SDLEN_CMDQ= " ) ; MYSERIAL . println ( sdlen_cmdqueue , DEC ) ;
SERIAL_ECHOPGM ( " PLANNERBLOCKS= " ) ; MYSERIAL . println ( int ( nplanner_blocks ) , DEC ) ;
SERIAL_ECHOPGM ( " SDSAVED= " ) ; MYSERIAL . println ( saved_sdpos , DEC ) ;
SERIAL_ECHOPGM ( " SDFILELEN= " ) ; MYSERIAL . println ( card . fileSize ( ) , DEC ) ;
{
card . setIndex ( saved_sdpos ) ;
SERIAL_ECHOLNPGM ( " Content of planner buffer: " ) ;
for ( unsigned int idx = 0 ; idx < sdlen_planner ; + + idx )
MYSERIAL . print ( char ( card . get ( ) ) ) ;
SERIAL_ECHOLNPGM ( " Content of command buffer: " ) ;
for ( unsigned int idx = 0 ; idx < sdlen_cmdqueue ; + + idx )
MYSERIAL . print ( char ( card . get ( ) ) ) ;
SERIAL_ECHOLNPGM ( " End of command buffer " ) ;
}
{
// Print the content of the planner buffer, line by line:
card . setIndex ( saved_sdpos ) ;
int8_t iline = 0 ;
for ( unsigned char idx = block_buffer_tail ; idx ! = block_buffer_head ; idx = ( idx + 1 ) & ( BLOCK_BUFFER_SIZE - 1 ) , + + iline ) {
SERIAL_ECHOPGM ( " Planner line (from file): " ) ;
MYSERIAL . print ( int ( iline ) , DEC ) ;
SERIAL_ECHOPGM ( " , length: " ) ;
MYSERIAL . print ( block_buffer [ idx ] . sdlen , DEC ) ;
SERIAL_ECHOPGM ( " , steps: ( " ) ;
MYSERIAL . print ( block_buffer [ idx ] . steps_x , DEC ) ;
SERIAL_ECHOPGM ( " , " ) ;
MYSERIAL . print ( block_buffer [ idx ] . steps_y , DEC ) ;
SERIAL_ECHOPGM ( " , " ) ;
MYSERIAL . print ( block_buffer [ idx ] . steps_z , DEC ) ;
SERIAL_ECHOPGM ( " , " ) ;
MYSERIAL . print ( block_buffer [ idx ] . steps_e , DEC ) ;
SERIAL_ECHOPGM ( " ), events: " ) ;
MYSERIAL . println ( block_buffer [ idx ] . step_event_count , DEC ) ;
for ( int len = block_buffer [ idx ] . sdlen ; len > 0 ; - - len )
MYSERIAL . print ( char ( card . get ( ) ) ) ;
}
}
{
// Print the content of the command buffer, line by line:
int8_t iline = 0 ;
union {
struct {
char lo ;
char hi ;
} lohi ;
uint16_t value ;
} sdlen_single ;
int _bufindr = bufindr ;
for ( int _buflen = buflen ; _buflen > 0 ; + + iline ) {
if ( cmdbuffer [ _bufindr ] = = CMDBUFFER_CURRENT_TYPE_SDCARD ) {
sdlen_single . lohi . lo = cmdbuffer [ _bufindr + 1 ] ;
sdlen_single . lohi . hi = cmdbuffer [ _bufindr + 2 ] ;
}
SERIAL_ECHOPGM ( " Buffer line (from buffer): " ) ;
MYSERIAL . print ( int ( iline ) , DEC ) ;
SERIAL_ECHOPGM ( " , type: " ) ;
MYSERIAL . print ( int ( cmdbuffer [ _bufindr ] ) , DEC ) ;
SERIAL_ECHOPGM ( " , len: " ) ;
MYSERIAL . println ( sdlen_single . value , DEC ) ;
// Print the content of the buffer line.
MYSERIAL . println ( cmdbuffer + _bufindr + CMDHDRSIZE ) ;
SERIAL_ECHOPGM ( " Buffer line (from file): " ) ;
MYSERIAL . print ( int ( iline ) , DEC ) ;
MYSERIAL . println ( int ( iline ) , DEC ) ;
for ( ; sdlen_single . value > 0 ; - - sdlen_single . value )
MYSERIAL . print ( char ( card . get ( ) ) ) ;
if ( - - _buflen = = 0 )
break ;
// First skip the current command ID and iterate up to the end of the string.
for ( _bufindr + = CMDHDRSIZE ; cmdbuffer [ _bufindr ] ! = 0 ; + + _bufindr ) ;
// Second, skip the end of string null character and iterate until a nonzero command ID is found.
for ( + + _bufindr ; _bufindr < sizeof ( cmdbuffer ) & & cmdbuffer [ _bufindr ] = = 0 ; + + _bufindr ) ;
// If the end of the buffer was empty,
if ( _bufindr = = sizeof ( cmdbuffer ) ) {
// skip to the start and find the nonzero command.
for ( _bufindr = 0 ; cmdbuffer [ _bufindr ] = = 0 ; + + _bufindr ) ;
}
}
}
# endif
#if 0
saved_feedrate2 = feedrate ; //save feedrate
# else
// Try to deduce the feedrate from the first block of the planner.
// Speed is in mm/min.
saved_feedrate2 = blocks_queued ( ) ? ( block_buffer [ block_buffer_tail ] . nominal_speed * 60.f ) : feedrate ;
# endif
planner_abort_hard ( ) ; //abort printing
memcpy ( saved_pos , current_position , sizeof ( saved_pos ) ) ;
saved_active_extruder = active_extruder ; //save active_extruder
saved_extruder_under_pressure = extruder_under_pressure ; //extruder under pressure flag - currently unused
cmdqueue_reset ( ) ; //empty cmdqueue
card . sdprinting = false ;
// card.closefile();
saved_printing = true ;
sei ( ) ;
if ( ( z_move ! = 0 ) | | ( e_move ! = 0 ) ) { // extruder or z move
# if 1
// Rather than calling plan_buffer_line directly, push the move into the command queue,
char buf [ 48 ] ;
strcpy_P ( buf , PSTR ( " G1 Z " ) ) ;
dtostrf ( saved_pos [ Z_AXIS ] + z_move , 8 , 3 , buf + strlen ( buf ) ) ;
strcat_P ( buf , PSTR ( " E " ) ) ;
// Relative extrusion
dtostrf ( e_move , 6 , 3 , buf + strlen ( buf ) ) ;
strcat_P ( buf , PSTR ( " F " ) ) ;
dtostrf ( homing_feedrate [ Z_AXIS ] , 8 , 3 , buf + strlen ( buf ) ) ;
// At this point the command queue is empty.
enquecommand ( buf , false ) ;
// If this call is invoked from the main Arduino loop() function, let the caller know that the command
// in the command queue is not the original command, but a new one, so it should not be removed from the queue.
repeatcommand_front ( ) ;
# else
plan_buffer_line ( saved_pos [ X_AXIS ] , saved_pos [ Y_AXIS ] , saved_pos [ Z_AXIS ] + z_move , saved_pos [ E_AXIS ] + e_move , homing_feedrate [ Z_AXIS ] , active_extruder ) ;
st_synchronize ( ) ; //wait moving
memcpy ( current_position , saved_pos , sizeof ( saved_pos ) ) ;
memcpy ( destination , current_position , sizeof ( destination ) ) ;
# endif
}
}
void restore_print_from_ram_and_continue ( float e_move )
{
if ( ! saved_printing ) return ;
// for (int axis = X_AXIS; axis <= E_AXIS; axis++)
// current_position[axis] = st_get_position_mm(axis);
active_extruder = saved_active_extruder ; //restore active_extruder
feedrate = saved_feedrate2 ; //restore feedrate
float e = saved_pos [ E_AXIS ] - e_move ;
plan_set_e_position ( e ) ;
plan_buffer_line ( saved_pos [ X_AXIS ] , saved_pos [ Y_AXIS ] , saved_pos [ Z_AXIS ] , saved_pos [ E_AXIS ] , homing_feedrate [ Z_AXIS ] / 13 , active_extruder ) ;
st_synchronize ( ) ;
memcpy ( current_position , saved_pos , sizeof ( saved_pos ) ) ;
memcpy ( destination , current_position , sizeof ( destination ) ) ;
card . setIndex ( saved_sdpos ) ;
sdpos_atomic = saved_sdpos ;
card . sdprinting = true ;
saved_printing = false ;
}
void print_world_coordinates ( )
{
SERIAL_ECHOPGM ( " world coordinates: ( " ) ;
MYSERIAL . print ( current_position [ X_AXIS ] , 3 ) ;
SERIAL_ECHOPGM ( " , " ) ;
MYSERIAL . print ( current_position [ Y_AXIS ] , 3 ) ;
SERIAL_ECHOPGM ( " , " ) ;
MYSERIAL . print ( current_position [ Z_AXIS ] , 3 ) ;
SERIAL_ECHOLNPGM ( " ) " ) ;
}
void print_physical_coordinates ( )
{
SERIAL_ECHOPGM ( " physical coordinates: ( " ) ;
MYSERIAL . print ( st_get_position_mm ( X_AXIS ) , 3 ) ;
SERIAL_ECHOPGM ( " , " ) ;
MYSERIAL . print ( st_get_position_mm ( Y_AXIS ) , 3 ) ;
SERIAL_ECHOPGM ( " , " ) ;
MYSERIAL . print ( st_get_position_mm ( Z_AXIS ) , 3 ) ;
SERIAL_ECHOLNPGM ( " ) " ) ;
}
void print_mesh_bed_leveling_table ( )
{
SERIAL_ECHOPGM ( " mesh bed leveling: " ) ;
for ( int8_t y = 0 ; y < MESH_NUM_Y_POINTS ; + + y )
for ( int8_t x = 0 ; x < MESH_NUM_Y_POINTS ; + + x ) {
MYSERIAL . print ( mbl . z_values [ y ] [ x ] , 3 ) ;
SERIAL_ECHOPGM ( " " ) ;
}
SERIAL_ECHOLNPGM ( " " ) ;
}
2017-11-27 14:54:36 +00:00
# define FIL_LOAD_LENGTH 60
void extr_unload2 ( ) { //unloads filament
// float tmp_motor[3] = DEFAULT_PWM_MOTOR_CURRENT;
// float tmp_motor_loud[3] = DEFAULT_PWM_MOTOR_CURRENT_LOUD;
// int8_t SilentMode;
uint8_t snmm_extruder = 0 ;
if ( degHotend0 ( ) > EXTRUDE_MINTEMP ) {
lcd_implementation_clear ( ) ;
lcd_display_message_fullscreen_P ( PSTR ( " " ) ) ;
max_feedrate [ E_AXIS ] = 50 ;
lcd . setCursor ( 0 , 0 ) ; lcd_printPGM ( MSG_UNLOADING_FILAMENT ) ;
// lcd.print(" ");
// lcd.print(snmm_extruder + 1);
lcd . setCursor ( 0 , 2 ) ; lcd_printPGM ( MSG_PLEASE_WAIT ) ;
if ( current_position [ Z_AXIS ] < 15 ) {
current_position [ Z_AXIS ] + = 15 ; //lifting in Z direction to make space for extrusion
plan_buffer_line ( current_position [ X_AXIS ] , current_position [ Y_AXIS ] , current_position [ Z_AXIS ] , current_position [ E_AXIS ] , 25 , active_extruder ) ;
}
current_position [ E_AXIS ] + = 10 ; //extrusion
plan_buffer_line ( current_position [ X_AXIS ] , current_position [ Y_AXIS ] , current_position [ Z_AXIS ] , current_position [ E_AXIS ] , 10 , active_extruder ) ;
// digipot_current(2, E_MOTOR_HIGH_CURRENT);
if ( current_temperature [ 0 ] < 230 ) { //PLA & all other filaments
current_position [ E_AXIS ] + = 5.4 ;
plan_buffer_line ( current_position [ X_AXIS ] , current_position [ Y_AXIS ] , current_position [ Z_AXIS ] , current_position [ E_AXIS ] , 2800 / 60 , active_extruder ) ;
current_position [ E_AXIS ] + = 3.2 ;
plan_buffer_line ( current_position [ X_AXIS ] , current_position [ Y_AXIS ] , current_position [ Z_AXIS ] , current_position [ E_AXIS ] , 3000 / 60 , active_extruder ) ;
current_position [ E_AXIS ] + = 3 ;
plan_buffer_line ( current_position [ X_AXIS ] , current_position [ Y_AXIS ] , current_position [ Z_AXIS ] , current_position [ E_AXIS ] , 3400 / 60 , active_extruder ) ;
}
else { //ABS
current_position [ E_AXIS ] + = 3.1 ;
plan_buffer_line ( current_position [ X_AXIS ] , current_position [ Y_AXIS ] , current_position [ Z_AXIS ] , current_position [ E_AXIS ] , 2000 / 60 , active_extruder ) ;
current_position [ E_AXIS ] + = 3.1 ;
plan_buffer_line ( current_position [ X_AXIS ] , current_position [ Y_AXIS ] , current_position [ Z_AXIS ] , current_position [ E_AXIS ] , 2500 / 60 , active_extruder ) ;
current_position [ E_AXIS ] + = 4 ;
plan_buffer_line ( current_position [ X_AXIS ] , current_position [ Y_AXIS ] , current_position [ Z_AXIS ] , current_position [ E_AXIS ] , 3000 / 60 , active_extruder ) ;
/*current_position[X_AXIS] += 23; //delay
plan_buffer_line ( current_position [ X_AXIS ] , current_position [ Y_AXIS ] , current_position [ Z_AXIS ] , current_position [ E_AXIS ] , 600 / 60 , active_extruder ) ; //delay
current_position [ X_AXIS ] - = 23 ; //delay
plan_buffer_line ( current_position [ X_AXIS ] , current_position [ Y_AXIS ] , current_position [ Z_AXIS ] , current_position [ E_AXIS ] , 600 / 60 , active_extruder ) ; //delay*/
delay_keep_alive ( 4700 ) ;
}
max_feedrate [ E_AXIS ] = 80 ;
current_position [ E_AXIS ] - = ( bowden_length [ snmm_extruder ] + 60 + FIL_LOAD_LENGTH ) / 2 ;
plan_buffer_line ( current_position [ X_AXIS ] , current_position [ Y_AXIS ] , current_position [ Z_AXIS ] , current_position [ E_AXIS ] , 500 , active_extruder ) ;
current_position [ E_AXIS ] - = ( bowden_length [ snmm_extruder ] + 60 + FIL_LOAD_LENGTH ) / 2 ;
plan_buffer_line ( current_position [ X_AXIS ] , current_position [ Y_AXIS ] , current_position [ Z_AXIS ] , current_position [ E_AXIS ] , 500 , active_extruder ) ;
st_synchronize ( ) ;
//digipot_init();
// if (SilentMode == 1) digipot_current(2, tmp_motor[2]); //set back to normal operation currents
// else digipot_current(2, tmp_motor_loud[2]);
lcd_update_enable ( true ) ;
// lcd_return_to_status();
max_feedrate [ E_AXIS ] = 50 ;
}
else {
lcd_implementation_clear ( ) ;
lcd . setCursor ( 0 , 0 ) ;
lcd_printPGM ( MSG_ERROR ) ;
lcd . setCursor ( 0 , 2 ) ;
lcd_printPGM ( MSG_PREHEAT_NOZZLE ) ;
delay ( 2000 ) ;
lcd_implementation_clear ( ) ;
}
// lcd_return_to_status();
}