Prusa-Firmware/Firmware/temperature.cpp

2026 lines
58 KiB
C++
Raw Normal View History

2017-06-29 16:35:43 +00:00
/*
temperature.c - temperature control
Part of Marlin
Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
/*
This firmware is a mashup between Sprinter and grbl.
(https://github.com/kliment/Sprinter)
(https://github.com/simen/grbl/tree)
It has preliminary support for Matthew Roberts advance algorithm
http://reprap.org/pipermail/reprap-dev/2011-May/003323.html
*/
#include "Marlin.h"
#include "ultralcd.h"
2018-07-29 20:59:14 +00:00
#include "sound.h"
2017-06-29 16:35:43 +00:00
#include "temperature.h"
#include "cardreader.h"
#include "Sd2PinMap.h"
#include <avr/wdt.h>
#include "adc.h"
#include "ConfigurationStore.h"
#include "Timer.h"
#include "Configuration_prusa.h"
2017-06-29 16:35:43 +00:00
//===========================================================================
//=============================public variables============================
//===========================================================================
int target_temperature[EXTRUDERS] = { 0 };
int target_temperature_bed = 0;
int current_temperature_raw[EXTRUDERS] = { 0 };
float current_temperature[EXTRUDERS] = { 0.0 };
#ifdef PINDA_THERMISTOR
int current_temperature_raw_pinda = 0 ;
float current_temperature_pinda = 0.0;
#endif //PINDA_THERMISTOR
#ifdef AMBIENT_THERMISTOR
int current_temperature_raw_ambient = 0 ;
float current_temperature_ambient = 0.0;
#endif //AMBIENT_THERMISTOR
#ifdef VOLT_PWR_PIN
int current_voltage_raw_pwr = 0;
#endif
#ifdef VOLT_BED_PIN
int current_voltage_raw_bed = 0;
#endif
2017-06-29 16:35:43 +00:00
int current_temperature_bed_raw = 0;
float current_temperature_bed = 0.0;
#ifdef TEMP_SENSOR_1_AS_REDUNDANT
int redundant_temperature_raw = 0;
float redundant_temperature = 0.0;
#endif
#ifdef PIDTEMP
float _Kp, _Ki, _Kd;
int pid_cycle, pid_number_of_cycles;
bool pid_tuning_finished = false;
#ifdef PID_ADD_EXTRUSION_RATE
float Kc=DEFAULT_Kc;
#endif
#endif //PIDTEMP
#ifdef FAN_SOFT_PWM
unsigned char fanSpeedSoftPwm;
#endif
2017-06-29 16:35:43 +00:00
unsigned char soft_pwm_bed;
2017-06-29 16:35:43 +00:00
#ifdef BABYSTEPPING
volatile int babystepsTodo[3]={0,0,0};
#endif
//===========================================================================
//=============================private variables============================
//===========================================================================
static volatile bool temp_meas_ready = false;
#ifdef PIDTEMP
//static cannot be external:
static float iState_sum[EXTRUDERS] = { 0 };
static float dState_last[EXTRUDERS] = { 0 };
2017-06-29 16:35:43 +00:00
static float pTerm[EXTRUDERS];
static float iTerm[EXTRUDERS];
static float dTerm[EXTRUDERS];
//int output;
static float pid_error[EXTRUDERS];
static float iState_sum_min[EXTRUDERS];
static float iState_sum_max[EXTRUDERS];
2017-06-29 16:35:43 +00:00
// static float pid_input[EXTRUDERS];
// static float pid_output[EXTRUDERS];
static bool pid_reset[EXTRUDERS];
#endif //PIDTEMP
#ifdef PIDTEMPBED
//static cannot be external:
static float temp_iState_bed = { 0 };
static float temp_dState_bed = { 0 };
static float pTerm_bed;
static float iTerm_bed;
static float dTerm_bed;
//int output;
static float pid_error_bed;
static float temp_iState_min_bed;
static float temp_iState_max_bed;
#else //PIDTEMPBED
static unsigned long previous_millis_bed_heater;
#endif //PIDTEMPBED
static unsigned char soft_pwm[EXTRUDERS];
#ifdef FAN_SOFT_PWM
static unsigned char soft_pwm_fan;
#endif
#if (defined(EXTRUDER_0_AUTO_FAN_PIN) && EXTRUDER_0_AUTO_FAN_PIN > -1) || \
(defined(EXTRUDER_1_AUTO_FAN_PIN) && EXTRUDER_1_AUTO_FAN_PIN > -1) || \
(defined(EXTRUDER_2_AUTO_FAN_PIN) && EXTRUDER_2_AUTO_FAN_PIN > -1)
static unsigned long extruder_autofan_last_check;
#endif
2017-06-29 16:35:43 +00:00
#if EXTRUDERS > 3
# error Unsupported number of extruders
#elif EXTRUDERS > 2
# define ARRAY_BY_EXTRUDERS(v1, v2, v3) { v1, v2, v3 }
#elif EXTRUDERS > 1
# define ARRAY_BY_EXTRUDERS(v1, v2, v3) { v1, v2 }
#else
# define ARRAY_BY_EXTRUDERS(v1, v2, v3) { v1 }
#endif
static ShortTimer oTimer4minTempHeater,oTimer4minTempBed;
2017-06-29 16:35:43 +00:00
// Init min and max temp with extreme values to prevent false errors during startup
static int minttemp_raw[EXTRUDERS] = ARRAY_BY_EXTRUDERS( HEATER_0_RAW_LO_TEMP , HEATER_1_RAW_LO_TEMP , HEATER_2_RAW_LO_TEMP );
static int maxttemp_raw[EXTRUDERS] = ARRAY_BY_EXTRUDERS( HEATER_0_RAW_HI_TEMP , HEATER_1_RAW_HI_TEMP , HEATER_2_RAW_HI_TEMP );
static int minttemp[EXTRUDERS] = ARRAY_BY_EXTRUDERS( 0, 0, 0 );
static int maxttemp[EXTRUDERS] = ARRAY_BY_EXTRUDERS( 16383, 16383, 16383 );
#ifdef BED_MINTEMP
static int bed_minttemp_raw = HEATER_BED_RAW_LO_TEMP;
#endif
#ifdef BED_MAXTEMP
static int bed_maxttemp_raw = HEATER_BED_RAW_HI_TEMP;
#endif
#ifdef TEMP_SENSOR_1_AS_REDUNDANT
static void *heater_ttbl_map[2] = {(void *)HEATER_0_TEMPTABLE, (void *)HEATER_1_TEMPTABLE };
static uint8_t heater_ttbllen_map[2] = { HEATER_0_TEMPTABLE_LEN, HEATER_1_TEMPTABLE_LEN };
#else
static void *heater_ttbl_map[EXTRUDERS] = ARRAY_BY_EXTRUDERS( (void *)HEATER_0_TEMPTABLE, (void *)HEATER_1_TEMPTABLE, (void *)HEATER_2_TEMPTABLE );
static uint8_t heater_ttbllen_map[EXTRUDERS] = ARRAY_BY_EXTRUDERS( HEATER_0_TEMPTABLE_LEN, HEATER_1_TEMPTABLE_LEN, HEATER_2_TEMPTABLE_LEN );
#endif
static float analog2temp(int raw, uint8_t e);
static float analog2tempBed(int raw);
static float analog2tempAmbient(int raw);
2017-06-29 16:35:43 +00:00
static void updateTemperaturesFromRawValues();
enum TempRunawayStates
{
TempRunaway_INACTIVE = 0,
TempRunaway_PREHEAT = 1,
TempRunaway_ACTIVE = 2,
};
#ifdef WATCH_TEMP_PERIOD
int watch_start_temp[EXTRUDERS] = ARRAY_BY_EXTRUDERS(0,0,0);
unsigned long watchmillis[EXTRUDERS] = ARRAY_BY_EXTRUDERS(0,0,0);
#endif //WATCH_TEMP_PERIOD
#ifndef SOFT_PWM_SCALE
#define SOFT_PWM_SCALE 0
#endif
//===========================================================================
//============================= functions ============================
//===========================================================================
#if (defined (TEMP_RUNAWAY_BED_HYSTERESIS) && TEMP_RUNAWAY_BED_TIMEOUT > 0) || (defined (TEMP_RUNAWAY_EXTRUDER_HYSTERESIS) && TEMP_RUNAWAY_EXTRUDER_TIMEOUT > 0)
static float temp_runaway_status[4];
static float temp_runaway_target[4];
static float temp_runaway_timer[4];
static int temp_runaway_error_counter[4];
static void temp_runaway_check(int _heater_id, float _target_temperature, float _current_temperature, float _output, bool _isbed);
static void temp_runaway_stop(bool isPreheat, bool isBed);
#endif
2017-06-29 16:35:43 +00:00
void PID_autotune(float temp, int extruder, int ncycles)
{
pid_number_of_cycles = ncycles;
pid_tuning_finished = false;
float input = 0.0;
pid_cycle=0;
bool heating = true;
unsigned long temp_millis = millis();
unsigned long t1=temp_millis;
unsigned long t2=temp_millis;
long t_high = 0;
long t_low = 0;
long bias, d;
float Ku, Tu;
float max = 0, min = 10000;
2017-11-21 14:11:15 +00:00
uint8_t safety_check_cycles = 0;
const uint8_t safety_check_cycles_count = (extruder < 0) ? 45 : 10; //10 cycles / 20s delay for extruder and 45 cycles / 90s for heatbed
float temp_ambient;
2017-06-29 16:35:43 +00:00
#if (defined(EXTRUDER_0_AUTO_FAN_PIN) && EXTRUDER_0_AUTO_FAN_PIN > -1) || \
(defined(EXTRUDER_1_AUTO_FAN_PIN) && EXTRUDER_1_AUTO_FAN_PIN > -1) || \
(defined(EXTRUDER_2_AUTO_FAN_PIN) && EXTRUDER_2_AUTO_FAN_PIN > -1)
unsigned long extruder_autofan_last_check = millis();
#endif
if ((extruder >= EXTRUDERS)
#if (TEMP_BED_PIN <= -1)
||(extruder < 0)
#endif
){
SERIAL_ECHOLN("PID Autotune failed. Bad extruder number.");
pid_tuning_finished = true;
pid_cycle = 0;
return;
}
SERIAL_ECHOLN("PID Autotune start");
disable_heater(); // switch off all heaters.
if (extruder<0)
{
soft_pwm_bed = (MAX_BED_POWER)/2;
bias = d = (MAX_BED_POWER)/2;
}
else
{
soft_pwm[extruder] = (PID_MAX)/2;
bias = d = (PID_MAX)/2;
}
for(;;) {
#ifdef WATCHDOG
wdt_reset();
#endif //WATCHDOG
2017-06-29 16:35:43 +00:00
if(temp_meas_ready == true) { // temp sample ready
updateTemperaturesFromRawValues();
input = (extruder<0)?current_temperature_bed:current_temperature[extruder];
max=max(max,input);
min=min(min,input);
#if (defined(EXTRUDER_0_AUTO_FAN_PIN) && EXTRUDER_0_AUTO_FAN_PIN > -1) || \
(defined(EXTRUDER_1_AUTO_FAN_PIN) && EXTRUDER_1_AUTO_FAN_PIN > -1) || \
(defined(EXTRUDER_2_AUTO_FAN_PIN) && EXTRUDER_2_AUTO_FAN_PIN > -1)
if(millis() - extruder_autofan_last_check > 2500) {
checkExtruderAutoFans();
extruder_autofan_last_check = millis();
}
#endif
if(heating == true && input > temp) {
if(millis() - t2 > 5000) {
heating=false;
if (extruder<0)
soft_pwm_bed = (bias - d) >> 1;
else
soft_pwm[extruder] = (bias - d) >> 1;
t1=millis();
t_high=t1 - t2;
max=temp;
}
}
if(heating == false && input < temp) {
if(millis() - t1 > 5000) {
heating=true;
t2=millis();
t_low=t2 - t1;
if(pid_cycle > 0) {
bias += (d*(t_high - t_low))/(t_low + t_high);
bias = constrain(bias, 20 ,(extruder<0?(MAX_BED_POWER):(PID_MAX))-20);
if(bias > (extruder<0?(MAX_BED_POWER):(PID_MAX))/2) d = (extruder<0?(MAX_BED_POWER):(PID_MAX)) - 1 - bias;
else d = bias;
SERIAL_PROTOCOLPGM(" bias: "); SERIAL_PROTOCOL(bias);
SERIAL_PROTOCOLPGM(" d: "); SERIAL_PROTOCOL(d);
SERIAL_PROTOCOLPGM(" min: "); SERIAL_PROTOCOL(min);
SERIAL_PROTOCOLPGM(" max: "); SERIAL_PROTOCOLLN(max);
if(pid_cycle > 2) {
Ku = (4.0*d)/(3.14159*(max-min)/2.0);
Tu = ((float)(t_low + t_high)/1000.0);
SERIAL_PROTOCOLPGM(" Ku: "); SERIAL_PROTOCOL(Ku);
SERIAL_PROTOCOLPGM(" Tu: "); SERIAL_PROTOCOLLN(Tu);
_Kp = 0.6*Ku;
_Ki = 2*_Kp/Tu;
_Kd = _Kp*Tu/8;
SERIAL_PROTOCOLLNPGM(" Classic PID ");
SERIAL_PROTOCOLPGM(" Kp: "); SERIAL_PROTOCOLLN(_Kp);
SERIAL_PROTOCOLPGM(" Ki: "); SERIAL_PROTOCOLLN(_Ki);
SERIAL_PROTOCOLPGM(" Kd: "); SERIAL_PROTOCOLLN(_Kd);
/*
_Kp = 0.33*Ku;
_Ki = _Kp/Tu;
_Kd = _Kp*Tu/3;
SERIAL_PROTOCOLLNPGM(" Some overshoot ");
SERIAL_PROTOCOLPGM(" Kp: "); SERIAL_PROTOCOLLN(_Kp);
SERIAL_PROTOCOLPGM(" Ki: "); SERIAL_PROTOCOLLN(_Ki);
SERIAL_PROTOCOLPGM(" Kd: "); SERIAL_PROTOCOLLN(_Kd);
_Kp = 0.2*Ku;
_Ki = 2*_Kp/Tu;
_Kd = _Kp*Tu/3;
SERIAL_PROTOCOLLNPGM(" No overshoot ");
SERIAL_PROTOCOLPGM(" Kp: "); SERIAL_PROTOCOLLN(_Kp);
SERIAL_PROTOCOLPGM(" Ki: "); SERIAL_PROTOCOLLN(_Ki);
SERIAL_PROTOCOLPGM(" Kd: "); SERIAL_PROTOCOLLN(_Kd);
*/
}
}
if (extruder<0)
soft_pwm_bed = (bias + d) >> 1;
else
soft_pwm[extruder] = (bias + d) >> 1;
pid_cycle++;
min=temp;
}
}
}
if(input > (temp + 20)) {
SERIAL_PROTOCOLLNPGM("PID Autotune failed! Temperature too high");
pid_tuning_finished = true;
pid_cycle = 0;
return;
}
if(millis() - temp_millis > 2000) {
int p;
if (extruder<0){
p=soft_pwm_bed;
SERIAL_PROTOCOLPGM("B:");
2017-06-29 16:35:43 +00:00
}else{
p=soft_pwm[extruder];
SERIAL_PROTOCOLPGM("T:");
2017-06-29 16:35:43 +00:00
}
SERIAL_PROTOCOL(input);
SERIAL_PROTOCOLPGM(" @:");
SERIAL_PROTOCOLLN(p);
2017-11-21 14:11:15 +00:00
if (safety_check_cycles == 0) { //save ambient temp
temp_ambient = input;
//SERIAL_ECHOPGM("Ambient T: ");
//MYSERIAL.println(temp_ambient);
safety_check_cycles++;
}
else if (safety_check_cycles < safety_check_cycles_count) { //delay
safety_check_cycles++;
}
else if (safety_check_cycles == safety_check_cycles_count){ //check that temperature is rising
safety_check_cycles++;
//SERIAL_ECHOPGM("Time from beginning: ");
//MYSERIAL.print(safety_check_cycles_count * 2);
//SERIAL_ECHOPGM("s. Difference between current and ambient T: ");
//MYSERIAL.println(input - temp_ambient);
if (abs(input - temp_ambient) < 5.0) {
temp_runaway_stop(false, (extruder<0));
pid_tuning_finished = true;
return;
}
}
2017-06-29 16:35:43 +00:00
temp_millis = millis();
}
if(((millis() - t1) + (millis() - t2)) > (10L*60L*1000L*2L)) {
SERIAL_PROTOCOLLNPGM("PID Autotune failed! timeout");
pid_tuning_finished = true;
pid_cycle = 0;
return;
}
if(pid_cycle > ncycles) {
SERIAL_PROTOCOLLNPGM("PID Autotune finished! Put the last Kp, Ki and Kd constants from above into Configuration.h");
pid_tuning_finished = true;
pid_cycle = 0;
return;
}
lcd_update(0);
2017-06-29 16:35:43 +00:00
}
}
void updatePID()
{
#ifdef PIDTEMP
for(int e = 0; e < EXTRUDERS; e++) {
iState_sum_max[e] = PID_INTEGRAL_DRIVE_MAX / cs.Ki;
2017-06-29 16:35:43 +00:00
}
#endif
#ifdef PIDTEMPBED
temp_iState_max_bed = PID_INTEGRAL_DRIVE_MAX / cs.bedKi;
2017-06-29 16:35:43 +00:00
#endif
}
int getHeaterPower(int heater) {
if (heater<0)
return soft_pwm_bed;
return soft_pwm[heater];
}
#if (defined(EXTRUDER_0_AUTO_FAN_PIN) && EXTRUDER_0_AUTO_FAN_PIN > -1) || \
(defined(EXTRUDER_1_AUTO_FAN_PIN) && EXTRUDER_1_AUTO_FAN_PIN > -1) || \
(defined(EXTRUDER_2_AUTO_FAN_PIN) && EXTRUDER_2_AUTO_FAN_PIN > -1)
#if defined(FAN_PIN) && FAN_PIN > -1
#if EXTRUDER_0_AUTO_FAN_PIN == FAN_PIN
#error "You cannot set EXTRUDER_0_AUTO_FAN_PIN equal to FAN_PIN"
#endif
#if EXTRUDER_1_AUTO_FAN_PIN == FAN_PIN
#error "You cannot set EXTRUDER_1_AUTO_FAN_PIN equal to FAN_PIN"
#endif
#if EXTRUDER_2_AUTO_FAN_PIN == FAN_PIN
#error "You cannot set EXTRUDER_2_AUTO_FAN_PIN equal to FAN_PIN"
#endif
#endif
void setExtruderAutoFanState(int pin, bool state)
{
unsigned char newFanSpeed = (state != 0) ? EXTRUDER_AUTO_FAN_SPEED : 0;
// this idiom allows both digital and PWM fan outputs (see M42 handling).
pinMode(pin, OUTPUT);
digitalWrite(pin, newFanSpeed);
analogWrite(pin, newFanSpeed);
}
#if (defined(FANCHECK) && (((defined(TACH_0) && (TACH_0 >-1)) || (defined(TACH_1) && (TACH_1 > -1)))))
2018-02-01 19:08:11 +00:00
void countFanSpeed()
{
//SERIAL_ECHOPGM("edge counter 1:"); MYSERIAL.println(fan_edge_counter[1]);
fan_speed[0] = (fan_edge_counter[0] * (float(250) / (millis() - extruder_autofan_last_check)));
fan_speed[1] = (fan_edge_counter[1] * (float(250) / (millis() - extruder_autofan_last_check)));
/*SERIAL_ECHOPGM("time interval: "); MYSERIAL.println(millis() - extruder_autofan_last_check);
SERIAL_ECHOPGM("extruder fan speed:"); MYSERIAL.print(fan_speed[0]); SERIAL_ECHOPGM("; edge counter:"); MYSERIAL.println(fan_edge_counter[0]);
SERIAL_ECHOPGM("print fan speed:"); MYSERIAL.print(fan_speed[1]); SERIAL_ECHOPGM("; edge counter:"); MYSERIAL.println(fan_edge_counter[1]);
SERIAL_ECHOLNPGM(" ");*/
fan_edge_counter[0] = 0;
fan_edge_counter[1] = 0;
}
extern bool fans_check_enabled;
void checkFanSpeed()
{
fans_check_enabled = (eeprom_read_byte((uint8_t*)EEPROM_FAN_CHECK_ENABLED) > 0);
static unsigned char fan_speed_errors[2] = { 0,0 };
#if (defined(FANCHECK) && defined(TACH_0) && (TACH_0 >-1))
2018-05-02 14:16:48 +00:00
if ((fan_speed[0] == 0) && (current_temperature[0] > EXTRUDER_AUTO_FAN_TEMPERATURE)) fan_speed_errors[0]++;
else fan_speed_errors[0] = 0;
#endif
#if (defined(FANCHECK) && defined(TACH_1) && (TACH_1 >-1))
2018-05-02 14:16:48 +00:00
if ((fan_speed[1] == 0) && ((blocks_queued() ? block_buffer[block_buffer_tail].fan_speed : fanSpeed) > MIN_PRINT_FAN_SPEED)) fan_speed_errors[1]++;
else fan_speed_errors[1] = 0;
#endif
if ((fan_speed_errors[0] > 5) && fans_check_enabled) {
fan_speed_errors[0] = 0;
fanSpeedError(0); //extruder fan
}
if ((fan_speed_errors[1] > 15) && fans_check_enabled) {
fan_speed_errors[1] = 0;
fanSpeedError(1); //print fan
}
}
void fanSpeedError(unsigned char _fan) {
2017-09-22 19:21:16 +00:00
if (get_message_level() != 0 && isPrintPaused) return;
//to ensure that target temp. is not set to zero in case taht we are resuming print
if (card.sdprinting) {
if (heating_status != 0) {
lcd_print_stop();
}
2017-09-22 19:21:16 +00:00
else {
lcd_pause_print();
2017-09-22 19:21:16 +00:00
}
}
else {
setTargetHotend0(0);
SERIAL_ECHOLNPGM("// action:pause"); //for octoprint
}
switch (_fan) {
case 0:
SERIAL_ECHOLNPGM("Extruder fan speed is lower then expected");
2017-09-22 19:21:16 +00:00
if (get_message_level() == 0) {
2018-07-29 20:59:14 +00:00
if((eSoundMode==e_SOUND_MODE_LOUD)||(eSoundMode==e_SOUND_MODE_ONCE)||(eSoundMode==e_SOUND_MODE_SILENT))
2017-09-22 19:21:16 +00:00
WRITE(BEEPER, HIGH);
delayMicroseconds(200);
WRITE(BEEPER, LOW);
delayMicroseconds(100);
LCD_ALERTMESSAGEPGM("Err: EXTR. FAN ERROR");
}
break;
case 1:
SERIAL_ECHOLNPGM("Print fan speed is lower then expected");
2017-09-22 19:21:16 +00:00
if (get_message_level() == 0) {
2018-07-29 20:59:14 +00:00
if((eSoundMode==e_SOUND_MODE_LOUD)||(eSoundMode==e_SOUND_MODE_ONCE)||(eSoundMode==e_SOUND_MODE_SILENT))
2017-09-22 19:21:16 +00:00
WRITE(BEEPER, HIGH);
delayMicroseconds(200);
WRITE(BEEPER, LOW);
delayMicroseconds(100);
LCD_ALERTMESSAGEPGM("Err: PRINT FAN ERROR");
}
break;
}
}
#endif //(defined(TACH_0) && TACH_0 >-1) || (defined(TACH_1) && TACH_1 > -1)
2017-06-29 16:35:43 +00:00
void checkExtruderAutoFans()
{
uint8_t fanState = 0;
// which fan pins need to be turned on?
#if defined(EXTRUDER_0_AUTO_FAN_PIN) && EXTRUDER_0_AUTO_FAN_PIN > -1
if (current_temperature[0] > EXTRUDER_AUTO_FAN_TEMPERATURE)
fanState |= 1;
2017-06-29 16:35:43 +00:00
#endif
#if defined(EXTRUDER_1_AUTO_FAN_PIN) && EXTRUDER_1_AUTO_FAN_PIN > -1
if (current_temperature[1] > EXTRUDER_AUTO_FAN_TEMPERATURE)
{
if (EXTRUDER_1_AUTO_FAN_PIN == EXTRUDER_0_AUTO_FAN_PIN)
fanState |= 1;
else
fanState |= 2;
}
#endif
#if defined(EXTRUDER_2_AUTO_FAN_PIN) && EXTRUDER_2_AUTO_FAN_PIN > -1
if (current_temperature[2] > EXTRUDER_AUTO_FAN_TEMPERATURE)
{
if (EXTRUDER_2_AUTO_FAN_PIN == EXTRUDER_0_AUTO_FAN_PIN)
fanState |= 1;
else if (EXTRUDER_2_AUTO_FAN_PIN == EXTRUDER_1_AUTO_FAN_PIN)
fanState |= 2;
else
fanState |= 4;
}
#endif
// update extruder auto fan states
#if defined(EXTRUDER_0_AUTO_FAN_PIN) && EXTRUDER_0_AUTO_FAN_PIN > -1
setExtruderAutoFanState(EXTRUDER_0_AUTO_FAN_PIN, (fanState & 1) != 0);
#endif
#if defined(EXTRUDER_1_AUTO_FAN_PIN) && EXTRUDER_1_AUTO_FAN_PIN > -1
if (EXTRUDER_1_AUTO_FAN_PIN != EXTRUDER_0_AUTO_FAN_PIN)
setExtruderAutoFanState(EXTRUDER_1_AUTO_FAN_PIN, (fanState & 2) != 0);
#endif
#if defined(EXTRUDER_2_AUTO_FAN_PIN) && EXTRUDER_2_AUTO_FAN_PIN > -1
if (EXTRUDER_2_AUTO_FAN_PIN != EXTRUDER_0_AUTO_FAN_PIN
&& EXTRUDER_2_AUTO_FAN_PIN != EXTRUDER_1_AUTO_FAN_PIN)
setExtruderAutoFanState(EXTRUDER_2_AUTO_FAN_PIN, (fanState & 4) != 0);
#endif
}
#endif // any extruder auto fan pins set
void resetPID(uint8_t extruder) // ready for eventually parameters adjusting
{
extruder=extruder; // only for compiler-warning elimination (if function do nothing)
}
2017-06-29 16:35:43 +00:00
void manage_heater()
{
#ifdef WATCHDOG
wdt_reset();
#endif //WATCHDOG
2017-06-29 16:35:43 +00:00
float pid_input;
float pid_output;
if(temp_meas_ready != true) //better readability
return;
// more precisely - this condition partially stabilizes time interval for regulation values evaluation (@ ~ 230ms)
2017-06-29 16:35:43 +00:00
updateTemperaturesFromRawValues();
check_max_temp();
check_min_temp();
2017-06-29 16:35:43 +00:00
#ifdef TEMP_RUNAWAY_BED_HYSTERESIS
temp_runaway_check(0, target_temperature_bed, current_temperature_bed, (int)soft_pwm_bed, true);
#endif
for(int e = 0; e < EXTRUDERS; e++)
{
#ifdef TEMP_RUNAWAY_EXTRUDER_HYSTERESIS
temp_runaway_check(e+1, target_temperature[e], current_temperature[e], (int)soft_pwm[e], false);
#endif
#ifdef PIDTEMP
pid_input = current_temperature[e];
#ifndef PID_OPENLOOP
if(target_temperature[e] == 0) {
2017-06-29 16:35:43 +00:00
pid_output = 0;
pid_reset[e] = true;
} else {
pid_error[e] = target_temperature[e] - pid_input;
if(pid_reset[e]) {
iState_sum[e] = 0.0;
dTerm[e] = 0.0; // 'dState_last[e]' initial setting is not necessary (see end of if-statement)
2017-06-29 16:35:43 +00:00
pid_reset[e] = false;
}
#ifndef PonM
pTerm[e] = cs.Kp * pid_error[e];
iState_sum[e] += pid_error[e];
iState_sum[e] = constrain(iState_sum[e], iState_sum_min[e], iState_sum_max[e]);
iTerm[e] = cs.Ki * iState_sum[e];
// K1 defined in Configuration.h in the PID settings
2017-06-29 16:35:43 +00:00
#define K2 (1.0-K1)
dTerm[e] = (cs.Kd * (pid_input - dState_last[e]))*K2 + (K1 * dTerm[e]); // e.g. digital filtration of derivative term changes
pid_output = pTerm[e] + iTerm[e] - dTerm[e]; // subtraction due to "Derivative on Measurement" method (i.e. derivative of input instead derivative of error is used)
2017-06-29 16:35:43 +00:00
if (pid_output > PID_MAX) {
if (pid_error[e] > 0 ) iState_sum[e] -= pid_error[e]; // conditional un-integration
2017-06-29 16:35:43 +00:00
pid_output=PID_MAX;
} else if (pid_output < 0) {
if (pid_error[e] < 0 ) iState_sum[e] -= pid_error[e]; // conditional un-integration
2017-06-29 16:35:43 +00:00
pid_output=0;
}
#else // PonM ("Proportional on Measurement" method)
iState_sum[e] += cs.Ki * pid_error[e];
iState_sum[e] -= cs.Kp * (pid_input - dState_last[e]);
iState_sum[e] = constrain(iState_sum[e], 0, PID_INTEGRAL_DRIVE_MAX);
dTerm[e] = cs.Kd * (pid_input - dState_last[e]);
pid_output = iState_sum[e] - dTerm[e]; // subtraction due to "Derivative on Measurement" method (i.e. derivative of input instead derivative of error is used)
pid_output = constrain(pid_output, 0, PID_MAX);
#endif // PonM
2017-06-29 16:35:43 +00:00
}
dState_last[e] = pid_input;
2017-06-29 16:35:43 +00:00
#else
pid_output = constrain(target_temperature[e], 0, PID_MAX);
#endif //PID_OPENLOOP
#ifdef PID_DEBUG
SERIAL_ECHO_START;
SERIAL_ECHO(" PID_DEBUG ");
SERIAL_ECHO(e);
SERIAL_ECHO(": Input ");
SERIAL_ECHO(pid_input);
SERIAL_ECHO(" Output ");
SERIAL_ECHO(pid_output);
SERIAL_ECHO(" pTerm ");
SERIAL_ECHO(pTerm[e]);
SERIAL_ECHO(" iTerm ");
SERIAL_ECHO(iTerm[e]);
SERIAL_ECHO(" dTerm ");
SERIAL_ECHOLN(-dTerm[e]);
2017-06-29 16:35:43 +00:00
#endif //PID_DEBUG
#else /* PID off */
pid_output = 0;
if(current_temperature[e] < target_temperature[e]) {
pid_output = PID_MAX;
}
#endif
// Check if temperature is within the correct range
if((current_temperature[e] < maxttemp[e]) && (target_temperature[e] != 0))
2017-06-29 16:35:43 +00:00
{
soft_pwm[e] = (int)pid_output >> 1;
}
2018-02-01 19:08:11 +00:00
else
{
2017-06-29 16:35:43 +00:00
soft_pwm[e] = 0;
}
#ifdef WATCH_TEMP_PERIOD
if(watchmillis[e] && millis() - watchmillis[e] > WATCH_TEMP_PERIOD)
{
if(degHotend(e) < watch_start_temp[e] + WATCH_TEMP_INCREASE)
{
setTargetHotend(0, e);
LCD_MESSAGEPGM("Heating failed");
SERIAL_ECHO_START;
SERIAL_ECHOLN("Heating failed");
}else{
watchmillis[e] = 0;
}
}
#endif
#ifdef TEMP_SENSOR_1_AS_REDUNDANT
if(fabs(current_temperature[0] - redundant_temperature) > MAX_REDUNDANT_TEMP_SENSOR_DIFF) {
disable_heater();
if(IsStopped() == false) {
SERIAL_ERROR_START;
SERIAL_ERRORLNPGM("Extruder switched off. Temperature difference between temp sensors is too high !");
LCD_ALERTMESSAGEPGM("Err: REDUNDANT TEMP ERROR");
}
#ifndef BOGUS_TEMPERATURE_FAILSAFE_OVERRIDE
Stop();
#endif
}
#endif
} // End extruder for loop
#ifndef DEBUG_DISABLE_FANCHECK
2017-06-29 16:35:43 +00:00
#if (defined(EXTRUDER_0_AUTO_FAN_PIN) && EXTRUDER_0_AUTO_FAN_PIN > -1) || \
(defined(EXTRUDER_1_AUTO_FAN_PIN) && EXTRUDER_1_AUTO_FAN_PIN > -1) || \
(defined(EXTRUDER_2_AUTO_FAN_PIN) && EXTRUDER_2_AUTO_FAN_PIN > -1)
if(millis() - extruder_autofan_last_check > 1000) // only need to check fan state very infrequently
{
#if (defined(FANCHECK) && ((defined(TACH_0) && (TACH_0 >-1)) || (defined(TACH_1) && (TACH_1 > -1))))
countFanSpeed();
checkFanSpeed();
#endif //(defined(TACH_0) && TACH_0 >-1) || (defined(TACH_1) && TACH_1 > -1)
2017-06-29 16:35:43 +00:00
checkExtruderAutoFans();
extruder_autofan_last_check = millis();
}
#endif
#endif //DEBUG_DISABLE_FANCHECK
2017-06-29 16:35:43 +00:00
#ifndef PIDTEMPBED
if(millis() - previous_millis_bed_heater < BED_CHECK_INTERVAL)
return;
previous_millis_bed_heater = millis();
#endif
#if TEMP_SENSOR_BED != 0
#ifdef PIDTEMPBED
pid_input = current_temperature_bed;
#ifndef PID_OPENLOOP
pid_error_bed = target_temperature_bed - pid_input;
pTerm_bed = cs.bedKp * pid_error_bed;
2017-06-29 16:35:43 +00:00
temp_iState_bed += pid_error_bed;
temp_iState_bed = constrain(temp_iState_bed, temp_iState_min_bed, temp_iState_max_bed);
iTerm_bed = cs.bedKi * temp_iState_bed;
2017-06-29 16:35:43 +00:00
//K1 defined in Configuration.h in the PID settings
#define K2 (1.0-K1)
dTerm_bed= (cs.bedKd * (pid_input - temp_dState_bed))*K2 + (K1 * dTerm_bed);
2017-06-29 16:35:43 +00:00
temp_dState_bed = pid_input;
pid_output = pTerm_bed + iTerm_bed - dTerm_bed;
if (pid_output > MAX_BED_POWER) {
if (pid_error_bed > 0 ) temp_iState_bed -= pid_error_bed; // conditional un-integration
pid_output=MAX_BED_POWER;
} else if (pid_output < 0){
if (pid_error_bed < 0 ) temp_iState_bed -= pid_error_bed; // conditional un-integration
pid_output=0;
}
#else
pid_output = constrain(target_temperature_bed, 0, MAX_BED_POWER);
#endif //PID_OPENLOOP
if(current_temperature_bed < BED_MAXTEMP)
2017-06-29 16:35:43 +00:00
{
soft_pwm_bed = (int)pid_output >> 1;
}
else {
soft_pwm_bed = 0;
}
#elif !defined(BED_LIMIT_SWITCHING)
// Check if temperature is within the correct range
if(current_temperature_bed < BED_MAXTEMP)
2017-06-29 16:35:43 +00:00
{
if(current_temperature_bed >= target_temperature_bed)
{
soft_pwm_bed = 0;
}
else
{
soft_pwm_bed = MAX_BED_POWER>>1;
}
}
else
{
soft_pwm_bed = 0;
WRITE(HEATER_BED_PIN,LOW);
}
#else //#ifdef BED_LIMIT_SWITCHING
// Check if temperature is within the correct band
if(current_temperature_bed < BED_MAXTEMP)
2017-06-29 16:35:43 +00:00
{
if(current_temperature_bed > target_temperature_bed + BED_HYSTERESIS)
{
soft_pwm_bed = 0;
}
else if(current_temperature_bed <= target_temperature_bed - BED_HYSTERESIS)
{
soft_pwm_bed = MAX_BED_POWER>>1;
}
}
else
{
soft_pwm_bed = 0;
WRITE(HEATER_BED_PIN,LOW);
}
#endif
if(target_temperature_bed==0)
soft_pwm_bed = 0;
2017-06-29 16:35:43 +00:00
#endif
2017-11-15 14:09:29 +00:00
#ifdef HOST_KEEPALIVE_FEATURE
host_keepalive();
#endif
2017-06-29 16:35:43 +00:00
}
#define PGM_RD_W(x) (short)pgm_read_word(&x)
// Derived from RepRap FiveD extruder::getTemperature()
// For hot end temperature measurement.
static float analog2temp(int raw, uint8_t e) {
#ifdef TEMP_SENSOR_1_AS_REDUNDANT
if(e > EXTRUDERS)
#else
if(e >= EXTRUDERS)
#endif
{
SERIAL_ERROR_START;
SERIAL_ERROR((int)e);
SERIAL_ERRORLNPGM(" - Invalid extruder number !");
kill(PSTR(""), 6);
2017-06-29 16:35:43 +00:00
return 0.0;
}
#ifdef HEATER_0_USES_MAX6675
if (e == 0)
{
return 0.25 * raw;
}
#endif
if(heater_ttbl_map[e] != NULL)
{
float celsius = 0;
uint8_t i;
short (*tt)[][2] = (short (*)[][2])(heater_ttbl_map[e]);
for (i=1; i<heater_ttbllen_map[e]; i++)
{
if (PGM_RD_W((*tt)[i][0]) > raw)
{
celsius = PGM_RD_W((*tt)[i-1][1]) +
(raw - PGM_RD_W((*tt)[i-1][0])) *
(float)(PGM_RD_W((*tt)[i][1]) - PGM_RD_W((*tt)[i-1][1])) /
(float)(PGM_RD_W((*tt)[i][0]) - PGM_RD_W((*tt)[i-1][0]));
break;
}
}
// Overflow: Set to last value in the table
if (i == heater_ttbllen_map[e]) celsius = PGM_RD_W((*tt)[i-1][1]);
return celsius;
}
return ((raw * ((5.0 * 100.0) / 1024.0) / OVERSAMPLENR) * TEMP_SENSOR_AD595_GAIN) + TEMP_SENSOR_AD595_OFFSET;
}
// Derived from RepRap FiveD extruder::getTemperature()
// For bed temperature measurement.
static float analog2tempBed(int raw) {
#ifdef BED_USES_THERMISTOR
float celsius = 0;
byte i;
for (i=1; i<BEDTEMPTABLE_LEN; i++)
{
if (PGM_RD_W(BEDTEMPTABLE[i][0]) > raw)
{
celsius = PGM_RD_W(BEDTEMPTABLE[i-1][1]) +
(raw - PGM_RD_W(BEDTEMPTABLE[i-1][0])) *
(float)(PGM_RD_W(BEDTEMPTABLE[i][1]) - PGM_RD_W(BEDTEMPTABLE[i-1][1])) /
(float)(PGM_RD_W(BEDTEMPTABLE[i][0]) - PGM_RD_W(BEDTEMPTABLE[i-1][0]));
break;
}
}
// Overflow: Set to last value in the table
if (i == BEDTEMPTABLE_LEN) celsius = PGM_RD_W(BEDTEMPTABLE[i-1][1]);
// temperature offset adjustment
#ifdef BED_OFFSET
float _offset = BED_OFFSET;
float _offset_center = BED_OFFSET_CENTER;
float _offset_start = BED_OFFSET_START;
float _first_koef = (_offset / 2) / (_offset_center - _offset_start);
float _second_koef = (_offset / 2) / (100 - _offset_center);
if (celsius >= _offset_start && celsius <= _offset_center)
{
celsius = celsius + (_first_koef * (celsius - _offset_start));
}
else if (celsius > _offset_center && celsius <= 100)
{
celsius = celsius + (_first_koef * (_offset_center - _offset_start)) + ( _second_koef * ( celsius - ( 100 - _offset_center ) )) ;
}
else if (celsius > 100)
{
celsius = celsius + _offset;
}
#endif
return celsius;
#elif defined BED_USES_AD595
return ((raw * ((5.0 * 100.0) / 1024.0) / OVERSAMPLENR) * TEMP_SENSOR_AD595_GAIN) + TEMP_SENSOR_AD595_OFFSET;
#else
return 0;
#endif
}
2018-02-01 19:08:11 +00:00
#ifdef AMBIENT_THERMISTOR
static float analog2tempAmbient(int raw)
{
float celsius = 0;
byte i;
for (i=1; i<AMBIENTTEMPTABLE_LEN; i++)
{
if (PGM_RD_W(AMBIENTTEMPTABLE[i][0]) > raw)
{
celsius = PGM_RD_W(AMBIENTTEMPTABLE[i-1][1]) +
(raw - PGM_RD_W(AMBIENTTEMPTABLE[i-1][0])) *
(float)(PGM_RD_W(AMBIENTTEMPTABLE[i][1]) - PGM_RD_W(AMBIENTTEMPTABLE[i-1][1])) /
(float)(PGM_RD_W(AMBIENTTEMPTABLE[i][0]) - PGM_RD_W(AMBIENTTEMPTABLE[i-1][0]));
break;
}
}
// Overflow: Set to last value in the table
if (i == AMBIENTTEMPTABLE_LEN) celsius = PGM_RD_W(AMBIENTTEMPTABLE[i-1][1]);
return celsius;
}
2018-02-01 19:08:11 +00:00
#endif //AMBIENT_THERMISTOR
2017-06-29 16:35:43 +00:00
/* Called to get the raw values into the the actual temperatures. The raw values are created in interrupt context,
and this function is called from normal context as it is too slow to run in interrupts and will block the stepper routine otherwise */
static void updateTemperaturesFromRawValues()
{
for(uint8_t e=0;e<EXTRUDERS;e++)
{
current_temperature[e] = analog2temp(current_temperature_raw[e], e);
}
#ifdef PINDA_THERMISTOR
2018-04-11 15:40:04 +00:00
current_temperature_pinda = analog2tempBed(current_temperature_raw_pinda);
#endif
#ifdef AMBIENT_THERMISTOR
current_temperature_ambient = analog2tempAmbient(current_temperature_raw_ambient); //thermistor for ambient is NTCG104LH104JT1 (2000)
#endif
#ifdef DEBUG_HEATER_BED_SIM
current_temperature_bed = target_temperature_bed;
#else //DEBUG_HEATER_BED_SIM
2017-06-29 16:35:43 +00:00
current_temperature_bed = analog2tempBed(current_temperature_bed_raw);
#endif //DEBUG_HEATER_BED_SIM
2017-06-29 16:35:43 +00:00
#ifdef TEMP_SENSOR_1_AS_REDUNDANT
redundant_temperature = analog2temp(redundant_temperature_raw, 1);
#endif
2017-06-29 16:35:43 +00:00
//Reset the watchdog after we know we have a temperature measurement.
#ifdef WATCHDOG
wdt_reset();
#endif //WATCHDOG
2017-06-29 16:35:43 +00:00
CRITICAL_SECTION_START;
temp_meas_ready = false;
CRITICAL_SECTION_END;
}
void tp_init()
{
#if MB(RUMBA) && ((TEMP_SENSOR_0==-1)||(TEMP_SENSOR_1==-1)||(TEMP_SENSOR_2==-1)||(TEMP_SENSOR_BED==-1))
//disable RUMBA JTAG in case the thermocouple extension is plugged on top of JTAG connector
MCUCR=(1<<JTD);
MCUCR=(1<<JTD);
#endif
// Finish init of mult extruder arrays
for(int e = 0; e < EXTRUDERS; e++) {
// populate with the first value
maxttemp[e] = maxttemp[0];
#ifdef PIDTEMP
iState_sum_min[e] = 0.0;
iState_sum_max[e] = PID_INTEGRAL_DRIVE_MAX / cs.Ki;
2017-06-29 16:35:43 +00:00
#endif //PIDTEMP
#ifdef PIDTEMPBED
temp_iState_min_bed = 0.0;
temp_iState_max_bed = PID_INTEGRAL_DRIVE_MAX / cs.bedKi;
2017-06-29 16:35:43 +00:00
#endif //PIDTEMPBED
}
#if defined(HEATER_0_PIN) && (HEATER_0_PIN > -1)
SET_OUTPUT(HEATER_0_PIN);
#endif
#if defined(HEATER_1_PIN) && (HEATER_1_PIN > -1)
SET_OUTPUT(HEATER_1_PIN);
#endif
#if defined(HEATER_2_PIN) && (HEATER_2_PIN > -1)
SET_OUTPUT(HEATER_2_PIN);
#endif
#if defined(HEATER_BED_PIN) && (HEATER_BED_PIN > -1)
SET_OUTPUT(HEATER_BED_PIN);
#endif
#if defined(FAN_PIN) && (FAN_PIN > -1)
SET_OUTPUT(FAN_PIN);
#ifdef FAST_PWM_FAN
setPwmFrequency(FAN_PIN, 1); // No prescaling. Pwm frequency = F_CPU/256/8
#endif
#ifdef FAN_SOFT_PWM
soft_pwm_fan = fanSpeedSoftPwm / 2;
#endif
#endif
2017-06-29 16:35:43 +00:00
#ifdef HEATER_0_USES_MAX6675
#ifndef SDSUPPORT
SET_OUTPUT(SCK_PIN);
WRITE(SCK_PIN,0);
SET_OUTPUT(MOSI_PIN);
WRITE(MOSI_PIN,1);
SET_INPUT(MISO_PIN);
WRITE(MISO_PIN,1);
#endif
/* Using pinMode and digitalWrite, as that was the only way I could get it to compile */
//Have to toggle SD card CS pin to low first, to enable firmware to talk with SD card
pinMode(SS_PIN, OUTPUT);
digitalWrite(SS_PIN,0);
pinMode(MAX6675_SS, OUTPUT);
digitalWrite(MAX6675_SS,1);
#endif
adc_init();
2017-06-29 16:35:43 +00:00
// Use timer0 for temperature measurement
// Interleave temperature interrupt with millies interrupt
OCR0B = 128;
TIMSK0 |= (1<<OCIE0B);
// Wait for temperature measurement to settle
delay(250);
#ifdef HEATER_0_MINTEMP
minttemp[0] = HEATER_0_MINTEMP;
while(analog2temp(minttemp_raw[0], 0) < HEATER_0_MINTEMP) {
#if HEATER_0_RAW_LO_TEMP < HEATER_0_RAW_HI_TEMP
minttemp_raw[0] += OVERSAMPLENR;
#else
minttemp_raw[0] -= OVERSAMPLENR;
#endif
}
#endif //MINTEMP
#ifdef HEATER_0_MAXTEMP
maxttemp[0] = HEATER_0_MAXTEMP;
while(analog2temp(maxttemp_raw[0], 0) > HEATER_0_MAXTEMP) {
#if HEATER_0_RAW_LO_TEMP < HEATER_0_RAW_HI_TEMP
maxttemp_raw[0] -= OVERSAMPLENR;
#else
maxttemp_raw[0] += OVERSAMPLENR;
#endif
}
#endif //MAXTEMP
#if (EXTRUDERS > 1) && defined(HEATER_1_MINTEMP)
minttemp[1] = HEATER_1_MINTEMP;
while(analog2temp(minttemp_raw[1], 1) < HEATER_1_MINTEMP) {
#if HEATER_1_RAW_LO_TEMP < HEATER_1_RAW_HI_TEMP
minttemp_raw[1] += OVERSAMPLENR;
#else
minttemp_raw[1] -= OVERSAMPLENR;
#endif
}
#endif // MINTEMP 1
#if (EXTRUDERS > 1) && defined(HEATER_1_MAXTEMP)
maxttemp[1] = HEATER_1_MAXTEMP;
while(analog2temp(maxttemp_raw[1], 1) > HEATER_1_MAXTEMP) {
#if HEATER_1_RAW_LO_TEMP < HEATER_1_RAW_HI_TEMP
maxttemp_raw[1] -= OVERSAMPLENR;
#else
maxttemp_raw[1] += OVERSAMPLENR;
#endif
}
#endif //MAXTEMP 1
#if (EXTRUDERS > 2) && defined(HEATER_2_MINTEMP)
minttemp[2] = HEATER_2_MINTEMP;
while(analog2temp(minttemp_raw[2], 2) < HEATER_2_MINTEMP) {
#if HEATER_2_RAW_LO_TEMP < HEATER_2_RAW_HI_TEMP
minttemp_raw[2] += OVERSAMPLENR;
#else
minttemp_raw[2] -= OVERSAMPLENR;
#endif
}
#endif //MINTEMP 2
#if (EXTRUDERS > 2) && defined(HEATER_2_MAXTEMP)
maxttemp[2] = HEATER_2_MAXTEMP;
while(analog2temp(maxttemp_raw[2], 2) > HEATER_2_MAXTEMP) {
#if HEATER_2_RAW_LO_TEMP < HEATER_2_RAW_HI_TEMP
maxttemp_raw[2] -= OVERSAMPLENR;
#else
maxttemp_raw[2] += OVERSAMPLENR;
#endif
}
#endif //MAXTEMP 2
#ifdef BED_MINTEMP
/* No bed MINTEMP error implemented?!? */
while(analog2tempBed(bed_minttemp_raw) < BED_MINTEMP) {
#if HEATER_BED_RAW_LO_TEMP < HEATER_BED_RAW_HI_TEMP
bed_minttemp_raw += OVERSAMPLENR;
#else
bed_minttemp_raw -= OVERSAMPLENR;
#endif
}
#endif //BED_MINTEMP
#ifdef BED_MAXTEMP
while(analog2tempBed(bed_maxttemp_raw) > BED_MAXTEMP) {
#if HEATER_BED_RAW_LO_TEMP < HEATER_BED_RAW_HI_TEMP
bed_maxttemp_raw -= OVERSAMPLENR;
#else
bed_maxttemp_raw += OVERSAMPLENR;
#endif
}
#endif //BED_MAXTEMP
}
void setWatch()
{
#ifdef WATCH_TEMP_PERIOD
for (int e = 0; e < EXTRUDERS; e++)
{
if(degHotend(e) < degTargetHotend(e) - (WATCH_TEMP_INCREASE * 2))
{
watch_start_temp[e] = degHotend(e);
watchmillis[e] = millis();
}
}
#endif
}
#if (defined (TEMP_RUNAWAY_BED_HYSTERESIS) && TEMP_RUNAWAY_BED_TIMEOUT > 0) || (defined (TEMP_RUNAWAY_EXTRUDER_HYSTERESIS) && TEMP_RUNAWAY_EXTRUDER_TIMEOUT > 0)
void temp_runaway_check(int _heater_id, float _target_temperature, float _current_temperature, float _output, bool _isbed)
{
float __hysteresis = 0;
int __timeout = 0;
bool temp_runaway_check_active = false;
static float __preheat_start[2] = { 0,0}; //currently just bed and one extruder
static int __preheat_counter[2] = { 0,0};
static int __preheat_errors[2] = { 0,0};
if (millis() - temp_runaway_timer[_heater_id] > 2000)
2017-06-29 16:35:43 +00:00
{
#ifdef TEMP_RUNAWAY_BED_TIMEOUT
if (_isbed)
{
__hysteresis = TEMP_RUNAWAY_BED_HYSTERESIS;
__timeout = TEMP_RUNAWAY_BED_TIMEOUT;
}
2017-06-29 16:35:43 +00:00
#endif
#ifdef TEMP_RUNAWAY_EXTRUDER_TIMEOUT
if (!_isbed)
{
__hysteresis = TEMP_RUNAWAY_EXTRUDER_HYSTERESIS;
__timeout = TEMP_RUNAWAY_EXTRUDER_TIMEOUT;
}
2017-06-29 16:35:43 +00:00
#endif
temp_runaway_timer[_heater_id] = millis();
if (_output == 0)
{
temp_runaway_check_active = false;
temp_runaway_error_counter[_heater_id] = 0;
}
if (temp_runaway_target[_heater_id] != _target_temperature)
{
if (_target_temperature > 0)
{
temp_runaway_status[_heater_id] = TempRunaway_PREHEAT;
temp_runaway_target[_heater_id] = _target_temperature;
__preheat_start[_heater_id] = _current_temperature;
__preheat_counter[_heater_id] = 0;
}
else
{
temp_runaway_status[_heater_id] = TempRunaway_INACTIVE;
temp_runaway_target[_heater_id] = _target_temperature;
}
}
if ((_current_temperature < _target_temperature) && (temp_runaway_status[_heater_id] == TempRunaway_PREHEAT))
2017-06-29 16:35:43 +00:00
{
__preheat_counter[_heater_id]++;
if (__preheat_counter[_heater_id] > ((_isbed) ? 16 : 8)) // periodicaly check if current temperature changes
2017-06-29 16:35:43 +00:00
{
/*SERIAL_ECHOPGM("Heater:");
MYSERIAL.print(_heater_id);
SERIAL_ECHOPGM(" T:");
MYSERIAL.print(_current_temperature);
SERIAL_ECHOPGM(" Tstart:");
MYSERIAL.print(__preheat_start[_heater_id]);*/
if (_current_temperature - __preheat_start[_heater_id] < 2) {
__preheat_errors[_heater_id]++;
/*SERIAL_ECHOPGM(" Preheat errors:");
MYSERIAL.println(__preheat_errors[_heater_id]);*/
}
else {
//SERIAL_ECHOLNPGM("");
__preheat_errors[_heater_id] = 0;
}
2017-06-29 16:35:43 +00:00
if (__preheat_errors[_heater_id] > ((_isbed) ? 2 : 5))
{
if (farm_mode) { prusa_statistics(0); }
temp_runaway_stop(true, _isbed);
if (farm_mode) { prusa_statistics(91); }
2017-06-29 16:35:43 +00:00
}
__preheat_start[_heater_id] = _current_temperature;
__preheat_counter[_heater_id] = 0;
2017-06-29 16:35:43 +00:00
}
}
if (_current_temperature >= _target_temperature && temp_runaway_status[_heater_id] == TempRunaway_PREHEAT)
{
temp_runaway_status[_heater_id] = TempRunaway_ACTIVE;
temp_runaway_check_active = false;
}
if (_output > 0)
2017-06-29 16:35:43 +00:00
{
temp_runaway_check_active = true;
}
if (temp_runaway_check_active)
{
// we are in range
if ((_current_temperature > (_target_temperature - __hysteresis)) && (_current_temperature < (_target_temperature + __hysteresis)))
2017-06-29 16:35:43 +00:00
{
temp_runaway_check_active = false;
temp_runaway_error_counter[_heater_id] = 0;
}
else
{
if (temp_runaway_status[_heater_id] > TempRunaway_PREHEAT)
{
temp_runaway_error_counter[_heater_id]++;
if (temp_runaway_error_counter[_heater_id] * 2 > __timeout)
{
if (farm_mode) { prusa_statistics(0); }
temp_runaway_stop(false, _isbed);
if (farm_mode) { prusa_statistics(90); }
}
}
}
}
}
}
void temp_runaway_stop(bool isPreheat, bool isBed)
{
cancel_heatup = true;
quickStop();
if (card.sdprinting)
{
card.sdprinting = false;
card.closefile();
}
// Clean the input command queue
// This is necessary, because in command queue there can be commands which would later set heater or bed temperature.
cmdqueue_reset();
2017-06-29 16:35:43 +00:00
disable_heater();
disable_x();
disable_y();
disable_e0();
disable_e1();
disable_e2();
manage_heater();
lcd_update(0);
2018-07-29 20:59:14 +00:00
if((eSoundMode==e_SOUND_MODE_LOUD)||(eSoundMode==e_SOUND_MODE_ONCE)||(eSoundMode==e_SOUND_MODE_SILENT))
2017-06-29 16:35:43 +00:00
WRITE(BEEPER, HIGH);
delayMicroseconds(500);
WRITE(BEEPER, LOW);
delayMicroseconds(100);
if (isPreheat)
{
Stop();
isBed ? LCD_ALERTMESSAGEPGM("BED PREHEAT ERROR") : LCD_ALERTMESSAGEPGM("PREHEAT ERROR");
SERIAL_ERROR_START;
isBed ? SERIAL_ERRORLNPGM(" THERMAL RUNAWAY ( PREHEAT HEATBED)") : SERIAL_ERRORLNPGM(" THERMAL RUNAWAY ( PREHEAT HOTEND)");
SET_OUTPUT(EXTRUDER_0_AUTO_FAN_PIN);
SET_OUTPUT(FAN_PIN);
WRITE(EXTRUDER_0_AUTO_FAN_PIN, 1);
analogWrite(FAN_PIN, 255);
fanSpeed = 255;
delayMicroseconds(2000);
}
else
{
isBed ? LCD_ALERTMESSAGEPGM("BED THERMAL RUNAWAY") : LCD_ALERTMESSAGEPGM("THERMAL RUNAWAY");
SERIAL_ERROR_START;
isBed ? SERIAL_ERRORLNPGM(" HEATBED THERMAL RUNAWAY") : SERIAL_ERRORLNPGM(" HOTEND THERMAL RUNAWAY");
}
}
#endif
void disable_heater()
{
setAllTargetHotends(0);
2017-06-29 16:35:43 +00:00
setTargetBed(0);
#if defined(TEMP_0_PIN) && TEMP_0_PIN > -1
target_temperature[0]=0;
soft_pwm[0]=0;
#if defined(HEATER_0_PIN) && HEATER_0_PIN > -1
WRITE(HEATER_0_PIN,LOW);
#endif
#endif
#if defined(TEMP_1_PIN) && TEMP_1_PIN > -1 && EXTRUDERS > 1
target_temperature[1]=0;
soft_pwm[1]=0;
#if defined(HEATER_1_PIN) && HEATER_1_PIN > -1
WRITE(HEATER_1_PIN,LOW);
#endif
#endif
#if defined(TEMP_2_PIN) && TEMP_2_PIN > -1 && EXTRUDERS > 2
target_temperature[2]=0;
soft_pwm[2]=0;
#if defined(HEATER_2_PIN) && HEATER_2_PIN > -1
WRITE(HEATER_2_PIN,LOW);
#endif
#endif
#if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
target_temperature_bed=0;
soft_pwm_bed=0;
#if defined(HEATER_BED_PIN) && HEATER_BED_PIN > -1
WRITE(HEATER_BED_PIN,LOW);
#endif
#endif
}
void max_temp_error(uint8_t e) {
disable_heater();
if(IsStopped() == false) {
SERIAL_ERROR_START;
SERIAL_ERRORLN((int)e);
SERIAL_ERRORLNPGM(": Extruder switched off. MAXTEMP triggered !");
LCD_ALERTMESSAGEPGM("Err: MAXTEMP");
}
#ifndef BOGUS_TEMPERATURE_FAILSAFE_OVERRIDE
Stop();
#endif
SET_OUTPUT(EXTRUDER_0_AUTO_FAN_PIN);
SET_OUTPUT(FAN_PIN);
SET_OUTPUT(BEEPER);
WRITE(FAN_PIN, 1);
WRITE(EXTRUDER_0_AUTO_FAN_PIN, 1);
2018-07-29 20:59:14 +00:00
if((eSoundMode==e_SOUND_MODE_LOUD)||(eSoundMode==e_SOUND_MODE_ONCE)||(eSoundMode==e_SOUND_MODE_SILENT))
2017-06-29 16:35:43 +00:00
WRITE(BEEPER, 1);
// fanSpeed will consumed by the check_axes_activity() routine.
fanSpeed=255;
if (farm_mode) { prusa_statistics(93); }
}
void min_temp_error(uint8_t e) {
2017-07-04 14:23:28 +00:00
#ifdef DEBUG_DISABLE_MINTEMP
return;
#endif
2017-12-23 02:36:08 +00:00
//if (current_temperature_ambient < MINTEMP_MINAMBIENT) return;
2017-06-29 16:35:43 +00:00
disable_heater();
if(IsStopped() == false) {
SERIAL_ERROR_START;
SERIAL_ERRORLN((int)e);
SERIAL_ERRORLNPGM(": Extruder switched off. MINTEMP triggered !");
LCD_ALERTMESSAGEPGM("Err: MINTEMP");
}
#ifndef BOGUS_TEMPERATURE_FAILSAFE_OVERRIDE
Stop();
#endif
if (farm_mode) { prusa_statistics(92); }
}
void bed_max_temp_error(void) {
#if HEATER_BED_PIN > -1
WRITE(HEATER_BED_PIN, 0);
#endif
if(IsStopped() == false) {
SERIAL_ERROR_START;
SERIAL_ERRORLNPGM("Temperature heated bed switched off. MAXTEMP triggered !");
LCD_ALERTMESSAGEPGM("Err: MAXTEMP BED");
}
#ifndef BOGUS_TEMPERATURE_FAILSAFE_OVERRIDE
Stop();
#endif
}
void bed_min_temp_error(void) {
2017-07-04 14:23:28 +00:00
#ifdef DEBUG_DISABLE_MINTEMP
return;
#endif
2017-12-23 02:36:08 +00:00
//if (current_temperature_ambient < MINTEMP_MINAMBIENT) return;
2017-07-04 14:23:28 +00:00
#if HEATER_BED_PIN > -1
2017-06-29 16:35:43 +00:00
WRITE(HEATER_BED_PIN, 0);
#endif
if(IsStopped() == false) {
SERIAL_ERROR_START;
SERIAL_ERRORLNPGM("Temperature heated bed switched off. MINTEMP triggered !");
LCD_ALERTMESSAGEPGM("Err: MINTEMP BED");
}
#ifndef BOGUS_TEMPERATURE_FAILSAFE_OVERRIDE
Stop();
#endif
2017-06-29 16:35:43 +00:00
}
#ifdef HEATER_0_USES_MAX6675
#define MAX6675_HEAT_INTERVAL 250
long max6675_previous_millis = MAX6675_HEAT_INTERVAL;
int max6675_temp = 2000;
int read_max6675()
{
if (millis() - max6675_previous_millis < MAX6675_HEAT_INTERVAL)
return max6675_temp;
max6675_previous_millis = millis();
max6675_temp = 0;
#ifdef PRR
PRR &= ~(1<<PRSPI);
#elif defined PRR0
PRR0 &= ~(1<<PRSPI);
#endif
SPCR = (1<<MSTR) | (1<<SPE) | (1<<SPR0);
// enable TT_MAX6675
WRITE(MAX6675_SS, 0);
// ensure 100ns delay - a bit extra is fine
asm("nop");//50ns on 20Mhz, 62.5ns on 16Mhz
asm("nop");//50ns on 20Mhz, 62.5ns on 16Mhz
// read MSB
SPDR = 0;
for (;(SPSR & (1<<SPIF)) == 0;);
max6675_temp = SPDR;
max6675_temp <<= 8;
// read LSB
SPDR = 0;
for (;(SPSR & (1<<SPIF)) == 0;);
max6675_temp |= SPDR;
// disable TT_MAX6675
WRITE(MAX6675_SS, 1);
if (max6675_temp & 4)
{
// thermocouple open
max6675_temp = 2000;
}
else
{
max6675_temp = max6675_temp >> 3;
}
return max6675_temp;
}
#endif
extern "C" {
void adc_ready(void) //callback from adc when sampling finished
{
current_temperature_raw[0] = adc_values[ADC_PIN_IDX(TEMP_0_PIN)]; //heater
current_temperature_raw_pinda = adc_values[ADC_PIN_IDX(TEMP_PINDA_PIN)];
current_temperature_bed_raw = adc_values[ADC_PIN_IDX(TEMP_BED_PIN)];
#ifdef VOLT_PWR_PIN
current_voltage_raw_pwr = adc_values[ADC_PIN_IDX(VOLT_PWR_PIN)];
#endif
2018-02-01 19:08:11 +00:00
#ifdef AMBIENT_THERMISTOR
current_temperature_raw_ambient = adc_values[ADC_PIN_IDX(TEMP_AMBIENT_PIN)];
2018-02-01 19:08:11 +00:00
#endif //AMBIENT_THERMISTOR
#ifdef VOLT_BED_PIN
current_voltage_raw_bed = adc_values[ADC_PIN_IDX(VOLT_BED_PIN)]; // 6->9
#endif
temp_meas_ready = true;
}
} // extern "C"
2017-06-29 16:35:43 +00:00
// Timer 0 is shared with millies
ISR(TIMER0_COMPB_vect) // @ 1kHz ~ 1ms
2017-06-29 16:35:43 +00:00
{
static bool _lock = false;
if (_lock) return;
_lock = true;
asm("sei");
if (!temp_meas_ready) adc_cycle();
2017-12-20 20:33:07 +00:00
lcd_buttons_update();
2017-06-29 16:35:43 +00:00
static unsigned char pwm_count = (1 << SOFT_PWM_SCALE);
static unsigned char soft_pwm_0;
#ifdef SLOW_PWM_HEATERS
static unsigned char slow_pwm_count = 0;
static unsigned char state_heater_0 = 0;
static unsigned char state_timer_heater_0 = 0;
#endif
#if (EXTRUDERS > 1) || defined(HEATERS_PARALLEL)
static unsigned char soft_pwm_1;
#ifdef SLOW_PWM_HEATERS
static unsigned char state_heater_1 = 0;
static unsigned char state_timer_heater_1 = 0;
#endif
#endif
#if EXTRUDERS > 2
static unsigned char soft_pwm_2;
#ifdef SLOW_PWM_HEATERS
static unsigned char state_heater_2 = 0;
static unsigned char state_timer_heater_2 = 0;
#endif
#endif
#if HEATER_BED_PIN > -1
static unsigned char soft_pwm_b;
#ifdef SLOW_PWM_HEATERS
static unsigned char state_heater_b = 0;
static unsigned char state_timer_heater_b = 0;
#endif
#endif
#if defined(FILWIDTH_PIN) &&(FILWIDTH_PIN > -1)
static unsigned long raw_filwidth_value = 0; //added for filament width sensor
#endif
#ifndef SLOW_PWM_HEATERS
/*
* standard PWM modulation
*/
if (pwm_count == 0)
{
2017-06-29 16:35:43 +00:00
soft_pwm_0 = soft_pwm[0];
if(soft_pwm_0 > 0)
{
2017-06-29 16:35:43 +00:00
WRITE(HEATER_0_PIN,1);
#ifdef HEATERS_PARALLEL
WRITE(HEATER_1_PIN,1);
#endif
} else WRITE(HEATER_0_PIN,0);
#if EXTRUDERS > 1
soft_pwm_1 = soft_pwm[1];
if(soft_pwm_1 > 0) WRITE(HEATER_1_PIN,1); else WRITE(HEATER_1_PIN,0);
#endif
#if EXTRUDERS > 2
soft_pwm_2 = soft_pwm[2];
if(soft_pwm_2 > 0) WRITE(HEATER_2_PIN,1); else WRITE(HEATER_2_PIN,0);
#endif
#if defined(HEATER_BED_PIN) && HEATER_BED_PIN > -1
soft_pwm_b = soft_pwm_bed;
if(soft_pwm_b > 0) WRITE(HEATER_BED_PIN,1); else WRITE(HEATER_BED_PIN,0);
#endif
#ifdef FAN_SOFT_PWM
soft_pwm_fan = fanSpeedSoftPwm / 2;
if(soft_pwm_fan > 0) WRITE(FAN_PIN,1); else WRITE(FAN_PIN,0);
#endif
}
if(soft_pwm_0 < pwm_count)
{
2017-06-29 16:35:43 +00:00
WRITE(HEATER_0_PIN,0);
#ifdef HEATERS_PARALLEL
WRITE(HEATER_1_PIN,0);
#endif
}
2017-06-29 16:35:43 +00:00
#if EXTRUDERS > 1
if(soft_pwm_1 < pwm_count) WRITE(HEATER_1_PIN,0);
#endif
#if EXTRUDERS > 2
if(soft_pwm_2 < pwm_count) WRITE(HEATER_2_PIN,0);
#endif
#if defined(HEATER_BED_PIN) && HEATER_BED_PIN > -1
if(soft_pwm_b < pwm_count) WRITE(HEATER_BED_PIN,0);
#endif
#ifdef FAN_SOFT_PWM
if(soft_pwm_fan < pwm_count) WRITE(FAN_PIN,0);
#endif
pwm_count += (1 << SOFT_PWM_SCALE);
pwm_count &= 0x7f;
2017-06-29 16:35:43 +00:00
#else //ifndef SLOW_PWM_HEATERS
/*
* SLOW PWM HEATERS
*
* for heaters drived by relay
*/
#ifndef MIN_STATE_TIME
#define MIN_STATE_TIME 16 // MIN_STATE_TIME * 65.5 = time in milliseconds
#endif
if (slow_pwm_count == 0) {
// EXTRUDER 0
soft_pwm_0 = soft_pwm[0];
if (soft_pwm_0 > 0) {
// turn ON heather only if the minimum time is up
if (state_timer_heater_0 == 0) {
// if change state set timer
if (state_heater_0 == 0) {
state_timer_heater_0 = MIN_STATE_TIME;
}
state_heater_0 = 1;
WRITE(HEATER_0_PIN, 1);
#ifdef HEATERS_PARALLEL
WRITE(HEATER_1_PIN, 1);
#endif
}
} else {
// turn OFF heather only if the minimum time is up
if (state_timer_heater_0 == 0) {
// if change state set timer
if (state_heater_0 == 1) {
state_timer_heater_0 = MIN_STATE_TIME;
}
state_heater_0 = 0;
WRITE(HEATER_0_PIN, 0);
#ifdef HEATERS_PARALLEL
WRITE(HEATER_1_PIN, 0);
#endif
}
}
#if EXTRUDERS > 1
// EXTRUDER 1
soft_pwm_1 = soft_pwm[1];
if (soft_pwm_1 > 0) {
// turn ON heather only if the minimum time is up
if (state_timer_heater_1 == 0) {
// if change state set timer
if (state_heater_1 == 0) {
state_timer_heater_1 = MIN_STATE_TIME;
}
state_heater_1 = 1;
WRITE(HEATER_1_PIN, 1);
}
} else {
// turn OFF heather only if the minimum time is up
if (state_timer_heater_1 == 0) {
// if change state set timer
if (state_heater_1 == 1) {
state_timer_heater_1 = MIN_STATE_TIME;
}
state_heater_1 = 0;
WRITE(HEATER_1_PIN, 0);
}
}
#endif
#if EXTRUDERS > 2
// EXTRUDER 2
soft_pwm_2 = soft_pwm[2];
if (soft_pwm_2 > 0) {
// turn ON heather only if the minimum time is up
if (state_timer_heater_2 == 0) {
// if change state set timer
if (state_heater_2 == 0) {
state_timer_heater_2 = MIN_STATE_TIME;
}
state_heater_2 = 1;
WRITE(HEATER_2_PIN, 1);
}
} else {
// turn OFF heather only if the minimum time is up
if (state_timer_heater_2 == 0) {
// if change state set timer
if (state_heater_2 == 1) {
state_timer_heater_2 = MIN_STATE_TIME;
}
state_heater_2 = 0;
WRITE(HEATER_2_PIN, 0);
}
}
#endif
#if defined(HEATER_BED_PIN) && HEATER_BED_PIN > -1
// BED
soft_pwm_b = soft_pwm_bed;
if (soft_pwm_b > 0) {
// turn ON heather only if the minimum time is up
if (state_timer_heater_b == 0) {
// if change state set timer
if (state_heater_b == 0) {
state_timer_heater_b = MIN_STATE_TIME;
}
state_heater_b = 1;
WRITE(HEATER_BED_PIN, 1);
}
} else {
// turn OFF heather only if the minimum time is up
if (state_timer_heater_b == 0) {
// if change state set timer
if (state_heater_b == 1) {
state_timer_heater_b = MIN_STATE_TIME;
}
state_heater_b = 0;
WRITE(HEATER_BED_PIN, 0);
}
}
#endif
} // if (slow_pwm_count == 0)
// EXTRUDER 0
if (soft_pwm_0 < slow_pwm_count) {
// turn OFF heather only if the minimum time is up
if (state_timer_heater_0 == 0) {
// if change state set timer
if (state_heater_0 == 1) {
state_timer_heater_0 = MIN_STATE_TIME;
}
state_heater_0 = 0;
WRITE(HEATER_0_PIN, 0);
#ifdef HEATERS_PARALLEL
WRITE(HEATER_1_PIN, 0);
#endif
}
}
#if EXTRUDERS > 1
// EXTRUDER 1
if (soft_pwm_1 < slow_pwm_count) {
// turn OFF heather only if the minimum time is up
if (state_timer_heater_1 == 0) {
// if change state set timer
if (state_heater_1 == 1) {
state_timer_heater_1 = MIN_STATE_TIME;
}
state_heater_1 = 0;
WRITE(HEATER_1_PIN, 0);
}
}
#endif
#if EXTRUDERS > 2
// EXTRUDER 2
if (soft_pwm_2 < slow_pwm_count) {
// turn OFF heather only if the minimum time is up
if (state_timer_heater_2 == 0) {
// if change state set timer
if (state_heater_2 == 1) {
state_timer_heater_2 = MIN_STATE_TIME;
}
state_heater_2 = 0;
WRITE(HEATER_2_PIN, 0);
}
}
#endif
#if defined(HEATER_BED_PIN) && HEATER_BED_PIN > -1
// BED
if (soft_pwm_b < slow_pwm_count) {
// turn OFF heather only if the minimum time is up
if (state_timer_heater_b == 0) {
// if change state set timer
if (state_heater_b == 1) {
state_timer_heater_b = MIN_STATE_TIME;
}
state_heater_b = 0;
WRITE(HEATER_BED_PIN, 0);
}
}
#endif
#ifdef FAN_SOFT_PWM
if (pwm_count == 0){
soft_pwm_fan = fanSpeedSoftPwm / 2;
if (soft_pwm_fan > 0) WRITE(FAN_PIN,1); else WRITE(FAN_PIN,0);
}
if (soft_pwm_fan < pwm_count) WRITE(FAN_PIN,0);
#endif
2017-06-29 16:35:43 +00:00
pwm_count += (1 << SOFT_PWM_SCALE);
pwm_count &= 0x7f;
// increment slow_pwm_count only every 64 pwm_count circa 65.5ms
if ((pwm_count % 64) == 0) {
slow_pwm_count++;
slow_pwm_count &= 0x7f;
// Extruder 0
if (state_timer_heater_0 > 0) {
state_timer_heater_0--;
}
#if EXTRUDERS > 1
// Extruder 1
if (state_timer_heater_1 > 0)
state_timer_heater_1--;
#endif
#if EXTRUDERS > 2
// Extruder 2
if (state_timer_heater_2 > 0)
state_timer_heater_2--;
#endif
#if defined(HEATER_BED_PIN) && HEATER_BED_PIN > -1
// Bed
if (state_timer_heater_b > 0)
state_timer_heater_b--;
#endif
} //if ((pwm_count % 64) == 0) {
#endif //ifndef SLOW_PWM_HEATERS
#ifdef BABYSTEPPING
for(uint8_t axis=0;axis<3;axis++)
2017-06-29 16:35:43 +00:00
{
int curTodo=babystepsTodo[axis]; //get rid of volatile for performance
if(curTodo>0)
2017-06-29 16:35:43 +00:00
{
2018-01-16 00:34:44 +00:00
asm("cli");
babystep(axis,/*fwd*/true);
babystepsTodo[axis]--; //less to do next time
2018-01-16 00:34:44 +00:00
asm("sei");
}
else
if(curTodo<0)
{
2018-01-16 00:34:44 +00:00
asm("cli");
babystep(axis,/*fwd*/false);
babystepsTodo[axis]++; //less to do next time
2018-01-16 00:34:44 +00:00
asm("sei");
2017-06-29 16:35:43 +00:00
}
}
#endif //BABYSTEPPING
2017-06-29 16:35:43 +00:00
#if (defined(FANCHECK) && defined(TACH_0) && (TACH_0 > -1))
check_fans();
2018-02-01 19:08:11 +00:00
#endif //(defined(TACH_0))
_lock = false;
}
2017-06-29 16:35:43 +00:00
2017-12-23 02:36:08 +00:00
void check_max_temp()
{
2017-12-23 02:36:08 +00:00
//heater
2017-06-29 16:35:43 +00:00
#if HEATER_0_RAW_LO_TEMP > HEATER_0_RAW_HI_TEMP
2017-12-23 02:36:08 +00:00
if (current_temperature_raw[0] <= maxttemp_raw[0]) {
2017-06-29 16:35:43 +00:00
#else
2017-12-23 02:36:08 +00:00
if (current_temperature_raw[0] >= maxttemp_raw[0]) {
2017-06-29 16:35:43 +00:00
#endif
max_temp_error(0);
}
2017-12-23 02:36:08 +00:00
//bed
#if defined(BED_MAXTEMP) && (TEMP_SENSOR_BED != 0)
#if HEATER_BED_RAW_LO_TEMP > HEATER_BED_RAW_HI_TEMP
if (current_temperature_bed_raw <= bed_maxttemp_raw) {
2017-06-29 16:35:43 +00:00
#else
2017-12-23 02:36:08 +00:00
if (current_temperature_bed_raw >= bed_maxttemp_raw) {
2017-06-29 16:35:43 +00:00
#endif
2017-12-23 02:36:08 +00:00
target_temperature_bed = 0;
bed_max_temp_error();
2017-06-29 16:35:43 +00:00
}
#endif
2017-12-23 02:36:08 +00:00
}
void check_min_temp_heater0()
2017-12-23 02:36:08 +00:00
{
//heater
#if HEATER_0_RAW_LO_TEMP > HEATER_0_RAW_HI_TEMP
if (current_temperature_raw[0] >= minttemp_raw[0]) {
2017-06-29 16:35:43 +00:00
#else
2017-12-23 02:36:08 +00:00
if (current_temperature_raw[0] <= minttemp_raw[0]) {
2017-06-29 16:35:43 +00:00
#endif
2017-12-23 02:36:08 +00:00
min_temp_error(0);
}
}
void check_min_temp_bed()
{
2017-12-23 02:36:08 +00:00
#if HEATER_BED_RAW_LO_TEMP > HEATER_BED_RAW_HI_TEMP
if (current_temperature_bed_raw >= bed_minttemp_raw) {
2017-06-29 16:35:43 +00:00
#else
2017-12-23 02:36:08 +00:00
if (current_temperature_bed_raw <= bed_minttemp_raw) {
2017-06-29 16:35:43 +00:00
#endif
2017-12-23 02:36:08 +00:00
bed_min_temp_error();
}
}
void check_min_temp()
{
static bool bCheckingOnHeater=false; // state variable, which allows to short no-checking delay (is set, when temperature is (first time) over heaterMintemp)
static bool bCheckingOnBed=false; // state variable, which allows to short no-checking delay (is set, when temperature is (first time) over bedMintemp)
2018-02-01 19:08:11 +00:00
#ifdef AMBIENT_THERMISTOR
if(current_temperature_raw_ambient>(OVERSAMPLENR*MINTEMP_MINAMBIENT_RAW)) // thermistor is NTC type, so operator is ">" ;-)
{ // ambient temperature is low
#endif //AMBIENT_THERMISTOR
// *** 'common' part of code for MK2.5 & MK3
// * nozzle checking
if(target_temperature[active_extruder]>minttemp[active_extruder])
{ // ~ nozzle heating is on
bCheckingOnHeater=bCheckingOnHeater||(current_temperature[active_extruder]>=minttemp[active_extruder]); // for eventually delay cutting
if(oTimer4minTempHeater.expired(HEATER_MINTEMP_DELAY)||(!oTimer4minTempHeater.running())||bCheckingOnHeater)
{
bCheckingOnHeater=true; // not necessary
check_min_temp_heater0(); // delay is elapsed or temperature is/was over minTemp => periodical checking is active
}
}
else { // ~ nozzle heating is off
oTimer4minTempHeater.start();
bCheckingOnHeater=false;
}
// * bed checking
if(target_temperature_bed>BED_MINTEMP)
{ // ~ bed heating is on
bCheckingOnBed=bCheckingOnBed||(current_temperature_bed>=BED_MINTEMP); // for eventually delay cutting
if(oTimer4minTempBed.expired(BED_MINTEMP_DELAY)||(!oTimer4minTempBed.running())||bCheckingOnBed)
{
bCheckingOnBed=true; // not necessary
check_min_temp_bed(); // delay is elapsed or temperature is/was over minTemp => periodical checking is active
}
}
else { // ~ bed heating is off
oTimer4minTempBed.start();
bCheckingOnBed=false;
}
// *** end of 'common' part
#ifdef AMBIENT_THERMISTOR
}
else { // ambient temperature is standard
check_min_temp_heater0();
check_min_temp_bed();
}
2018-02-01 19:08:11 +00:00
#endif //AMBIENT_THERMISTOR
}
#if (defined(FANCHECK) && defined(TACH_0) && (TACH_0 > -1))
void check_fans() {
if (READ(TACH_0) != fan_state[0]) {
fan_edge_counter[0] ++;
fan_state[0] = !fan_state[0];
}
2017-10-26 15:42:27 +00:00
//if (READ(TACH_1) != fan_state[1]) {
// fan_edge_counter[1] ++;
// fan_state[1] = !fan_state[1];
//}
2017-06-29 16:35:43 +00:00
}
2018-02-01 19:08:11 +00:00
#endif //TACH_0
2017-06-29 16:35:43 +00:00
#ifdef PIDTEMP
// Apply the scale factors to the PID values
float scalePID_i(float i)
{
return i*PID_dT;
}
float unscalePID_i(float i)
{
return i/PID_dT;
}
float scalePID_d(float d)
{
return d/PID_dT;
}
float unscalePID_d(float d)
{
return d*PID_dT;
}
#endif //PIDTEMP