Prusa-Firmware/Firmware/mmu.cpp

1103 lines
29 KiB
C++
Raw Normal View History

//mmu.cpp
#include "mmu.h"
#include "planner.h"
#include "language.h"
#include "lcd.h"
#include "uart2.h"
#include "temperature.h"
#include "Configuration_prusa.h"
2018-08-27 02:21:43 +00:00
#include "fsensor.h"
#include "cardreader.h"
#include "ultralcd.h"
#include "sound.h"
#include "printers.h"
2018-09-03 18:00:46 +00:00
#include <avr/pgmspace.h>
2018-08-27 02:21:43 +00:00
#define CHECK_FINDA ((IS_SD_PRINTING || is_usb_printing) && (mcode_in_progress != 600) && !saved_printing && e_active())
#define MMU_TODELAY 100
#define MMU_TIMEOUT 10
#define MMU_CMD_TIMEOUT 300000ul //5min timeout for mmu commands (except P0)
#define MMU_P0_TIMEOUT 3000ul //timeout for P0 command: 3seconds
2018-10-19 15:54:48 +00:00
#ifdef MMU_HWRESET
#define MMU_RST_PIN 76
2018-10-19 15:54:48 +00:00
#endif //MMU_HWRESET
bool mmu_enabled = false;
2018-08-20 18:53:53 +00:00
bool mmu_ready = false;
2018-08-23 21:16:39 +00:00
static int8_t mmu_state = 0;
2018-08-20 18:53:53 +00:00
uint8_t mmu_cmd = 0;
uint8_t mmu_extruder = 0;
//! This variable probably has no meaning and is planed to be removed
uint8_t tmp_extruder = 0;
int8_t mmu_finda = -1;
int16_t mmu_version = -1;
int16_t mmu_buildnr = -1;
2018-08-20 18:53:53 +00:00
uint32_t mmu_last_request = 0;
uint32_t mmu_last_response = 0;
//clear rx buffer
void mmu_clr_rx_buf(void)
{
while (fgetc(uart2io) >= 0);
}
//send command - puts
int mmu_puts_P(const char* str)
{
mmu_clr_rx_buf(); //clear rx buffer
2018-08-20 18:53:53 +00:00
int r = fputs_P(str, uart2io); //send command
mmu_last_request = millis();
return r;
}
//send command - printf
int mmu_printf_P(const char* format, ...)
{
va_list args;
va_start(args, format);
mmu_clr_rx_buf(); //clear rx buffer
int r = vfprintf_P(uart2io, format, args); //send command
va_end(args);
2018-08-20 18:53:53 +00:00
mmu_last_request = millis();
return r;
}
//check 'ok' response
int8_t mmu_rx_ok(void)
{
2018-08-20 18:53:53 +00:00
int8_t res = uart2_rx_str_P(PSTR("ok\n"));
if (res == 1) mmu_last_response = millis();
return res;
}
//check 'start' response
int8_t mmu_rx_start(void)
{
2018-08-20 18:53:53 +00:00
int8_t res = uart2_rx_str_P(PSTR("start\n"));
if (res == 1) mmu_last_response = millis();
return res;
}
//initialize mmu2 unit - first part - should be done at begining of startup process
void mmu_init(void)
{
2018-10-19 15:54:48 +00:00
#ifdef MMU_HWRESET
digitalWrite(MMU_RST_PIN, HIGH);
pinMode(MMU_RST_PIN, OUTPUT); //setup reset pin
2018-10-19 15:54:48 +00:00
#endif //MMU_HWRESET
uart2_init(); //init uart2
_delay_ms(10); //wait 10ms for sure
mmu_reset(); //reset mmu (HW or SW), do not wait for response
mmu_state = -1;
}
//mmu main loop - state machine processing
void mmu_loop(void)
{
2018-08-28 21:50:31 +00:00
int filament = 0;
// printf_P(PSTR("MMU loop, state=%d\n"), mmu_state);
switch (mmu_state)
{
case 0:
return;
case -1:
if (mmu_rx_start() > 0)
{
2018-09-10 18:08:13 +00:00
#ifdef MMU_DEBUG
puts_P(PSTR("MMU => 'start'"));
puts_P(PSTR("MMU <= 'S1'"));
2018-09-10 18:08:13 +00:00
#endif //MMU_DEBUG
mmu_puts_P(PSTR("S1\n")); //send 'read version' request
mmu_state = -2;
}
else if (millis() > 30000) //30sec after reset disable mmu
{
puts_P(PSTR("MMU not responding - DISABLED"));
mmu_state = 0;
}
return;
case -2:
if (mmu_rx_ok() > 0)
{
fscanf_P(uart2io, PSTR("%u"), &mmu_version); //scan version from buffer
2018-09-10 18:08:13 +00:00
#ifdef MMU_DEBUG
printf_P(PSTR("MMU => '%dok'\n"), mmu_version);
puts_P(PSTR("MMU <= 'S2'"));
2018-09-10 18:08:13 +00:00
#endif //MMU_DEBUG
mmu_puts_P(PSTR("S2\n")); //send 'read buildnr' request
mmu_state = -3;
}
return;
case -3:
if (mmu_rx_ok() > 0)
{
fscanf_P(uart2io, PSTR("%u"), &mmu_buildnr); //scan buildnr from buffer
2018-09-10 18:08:13 +00:00
#ifdef MMU_DEBUG
printf_P(PSTR("MMU => '%dok'\n"), mmu_buildnr);
2018-09-10 18:08:13 +00:00
#endif //MMU_DEBUG
bool version_valid = mmu_check_version();
if (!version_valid) mmu_show_warning();
else puts_P(PSTR("MMU version valid"));
if ((PRINTER_TYPE == PRINTER_MK3) || (PRINTER_TYPE == PRINTER_MK3_SNMM))
{
#ifdef MMU_DEBUG
puts_P(PSTR("MMU <= 'P0'"));
#endif //MMU_DEBUG
mmu_puts_P(PSTR("P0\n")); //send 'read finda' request
mmu_state = -4;
}
else
{
#ifdef MMU_DEBUG
puts_P(PSTR("MMU <= 'M1'"));
#endif //MMU_DEBUG
mmu_puts_P(PSTR("M1\n")); //set mmu mode to stealth
mmu_state = -5;
}
}
return;
case -5:
if (mmu_rx_ok() > 0)
{
2018-09-10 18:08:13 +00:00
#ifdef MMU_DEBUG
puts_P(PSTR("MMU <= 'P0'"));
2018-09-10 18:08:13 +00:00
#endif //MMU_DEBUG
mmu_puts_P(PSTR("P0\n")); //send 'read finda' request
mmu_state = -4;
}
return;
case -4:
if (mmu_rx_ok() > 0)
{
fscanf_P(uart2io, PSTR("%hhu"), &mmu_finda); //scan finda from buffer
2018-09-10 18:08:13 +00:00
#ifdef MMU_DEBUG
printf_P(PSTR("MMU => '%dok'\n"), mmu_finda);
2018-09-10 18:08:13 +00:00
#endif //MMU_DEBUG
puts_P(PSTR("MMU - ENABLED"));
mmu_enabled = true;
mmu_state = 1;
}
return;
2018-08-20 18:53:53 +00:00
case 1:
if (mmu_cmd) //command request ?
{
if ((mmu_cmd >= MMU_CMD_T0) && (mmu_cmd <= MMU_CMD_T4))
{
2018-08-28 21:50:31 +00:00
filament = mmu_cmd - MMU_CMD_T0;
2018-09-10 18:39:28 +00:00
#ifdef MMU_DEBUG
2018-08-28 21:50:31 +00:00
printf_P(PSTR("MMU <= 'T%d'\n"), filament);
2018-09-10 18:39:28 +00:00
#endif //MMU_DEBUG
2018-08-28 21:50:31 +00:00
mmu_printf_P(PSTR("T%d\n"), filament);
2018-08-20 18:53:53 +00:00
mmu_state = 3; // wait for response
}
else if ((mmu_cmd >= MMU_CMD_L0) && (mmu_cmd <= MMU_CMD_L4))
{
2018-08-28 21:50:31 +00:00
filament = mmu_cmd - MMU_CMD_L0;
2018-09-10 18:39:28 +00:00
#ifdef MMU_DEBUG
printf_P(PSTR("MMU <= 'L%d'\n"), filament);
2018-09-10 18:39:28 +00:00
#endif //MMU_DEBUG
mmu_printf_P(PSTR("L%d\n"), filament);
mmu_state = 3; // wait for response
}
2018-08-24 16:28:05 +00:00
else if (mmu_cmd == MMU_CMD_C0)
{
2018-09-10 18:39:28 +00:00
#ifdef MMU_DEBUG
2018-08-24 16:28:05 +00:00
printf_P(PSTR("MMU <= 'C0'\n"));
2018-09-10 18:39:28 +00:00
#endif //MMU_DEBUG
2018-08-26 21:55:29 +00:00
mmu_puts_P(PSTR("C0\n")); //send 'continue loading'
2018-08-24 16:28:05 +00:00
mmu_state = 3;
}
else if (mmu_cmd == MMU_CMD_U0)
{
2018-09-10 18:39:28 +00:00
#ifdef MMU_DEBUG
printf_P(PSTR("MMU <= 'U0'\n"));
2018-09-10 18:39:28 +00:00
#endif //MMU_DEBUG
2018-08-26 21:55:29 +00:00
mmu_puts_P(PSTR("U0\n")); //send 'unload current filament'
2018-08-24 16:28:05 +00:00
mmu_state = 3;
}
2018-08-28 21:50:31 +00:00
else if ((mmu_cmd >= MMU_CMD_E0) && (mmu_cmd <= MMU_CMD_E4))
{
int filament = mmu_cmd - MMU_CMD_E0;
2018-09-10 18:39:28 +00:00
#ifdef MMU_DEBUG
2018-08-28 21:50:31 +00:00
printf_P(PSTR("MMU <= 'E%d'\n"), filament);
2018-09-10 18:39:28 +00:00
#endif //MMU_DEBUG
2018-08-28 21:50:31 +00:00
mmu_printf_P(PSTR("E%d\n"), filament); //send eject filament
mmu_state = 3; // wait for response
}
else if (mmu_cmd == MMU_CMD_R0)
{
2018-09-10 18:39:28 +00:00
#ifdef MMU_DEBUG
2018-08-28 21:50:31 +00:00
printf_P(PSTR("MMU <= 'R0'\n"));
2018-09-10 18:39:28 +00:00
#endif //MMU_DEBUG
2018-08-28 21:50:31 +00:00
mmu_puts_P(PSTR("R0\n")); //send recover after eject
mmu_state = 3; // wait for response
}
2018-08-20 18:53:53 +00:00
mmu_cmd = 0;
}
else if ((mmu_last_response + 300) < millis()) //request every 300ms
2018-08-20 18:53:53 +00:00
{
2018-09-10 18:08:13 +00:00
#ifdef MMU_DEBUG
2018-08-20 18:53:53 +00:00
puts_P(PSTR("MMU <= 'P0'"));
2018-09-10 18:08:13 +00:00
#endif //MMU_DEBUG
2018-08-20 18:53:53 +00:00
mmu_puts_P(PSTR("P0\n")); //send 'read finda' request
mmu_state = 2;
}
return;
case 2: //response to command P0
if (mmu_rx_ok() > 0)
{
fscanf_P(uart2io, PSTR("%hhu"), &mmu_finda); //scan finda from buffer
2018-09-10 18:39:28 +00:00
#ifdef MMU_DEBUG
2018-08-20 18:53:53 +00:00
printf_P(PSTR("MMU => '%dok'\n"), mmu_finda);
2018-09-10 18:39:28 +00:00
#endif //MMU_DEBUG
2018-08-27 02:21:43 +00:00
//printf_P(PSTR("Eact: %d\n"), int(e_active()));
if (!mmu_finda && CHECK_FINDA && fsensor_enabled) {
2018-08-27 02:21:43 +00:00
fsensor_stop_and_save_print();
enquecommand_front_P(PSTR("FSENSOR_RECOVER")); //then recover
if (lcd_autoDeplete) enquecommand_front_P(PSTR("M600 AUTO")); //save print and run M600 command
else enquecommand_front_P(PSTR("M600")); //save print and run M600 command
2018-08-27 02:21:43 +00:00
}
2018-08-20 18:53:53 +00:00
mmu_state = 1;
2018-08-21 14:41:01 +00:00
if (mmu_cmd == 0)
mmu_ready = true;
2018-08-20 18:53:53 +00:00
}
else if ((mmu_last_request + MMU_P0_TIMEOUT) < millis())
2018-08-20 18:53:53 +00:00
{ //resend request after timeout (30s)
mmu_state = 1;
}
return;
2018-08-28 21:50:31 +00:00
case 3: //response to mmu commands
2018-08-20 18:53:53 +00:00
if (mmu_rx_ok() > 0)
{
2018-09-10 18:39:28 +00:00
#ifdef MMU_DEBUG
2018-08-24 16:28:05 +00:00
printf_P(PSTR("MMU => 'ok'\n"));
2018-09-10 18:39:28 +00:00
#endif //MMU_DEBUG
2018-08-20 18:53:53 +00:00
mmu_ready = true;
mmu_state = 1;
}
2018-08-25 15:21:17 +00:00
else if ((mmu_last_request + MMU_CMD_TIMEOUT) < millis())
{ //resend request after timeout (5 min)
2018-08-20 18:53:53 +00:00
mmu_state = 1;
}
return;
}
}
void mmu_reset(void)
{
#ifdef MMU_HWRESET //HW - pulse reset pin
digitalWrite(MMU_RST_PIN, LOW);
_delay_us(100);
digitalWrite(MMU_RST_PIN, HIGH);
#else //SW - send X0 command
mmu_puts_P(PSTR("X0\n"));
#endif
}
int8_t mmu_set_filament_type(uint8_t extruder, uint8_t filament)
{
printf_P(PSTR("MMU <= 'F%d %d'\n"), extruder, filament);
mmu_printf_P(PSTR("F%d %d\n"), extruder, filament);
unsigned char timeout = MMU_TIMEOUT; //10x100ms
while ((mmu_rx_ok() <= 0) && (--timeout))
delay_keep_alive(MMU_TODELAY);
return timeout?1:0;
}
2018-08-20 18:53:53 +00:00
void mmu_command(uint8_t cmd)
{
2018-08-20 18:53:53 +00:00
mmu_cmd = cmd;
mmu_ready = false;
}
bool mmu_get_response(void)
{
2018-08-21 14:41:01 +00:00
// printf_P(PSTR("mmu_get_response - begin\n"));
2018-08-20 18:53:53 +00:00
KEEPALIVE_STATE(IN_PROCESS);
2018-08-21 14:41:01 +00:00
while (mmu_cmd != 0)
{
// mmu_loop();
delay_keep_alive(100);
}
2018-08-20 18:53:53 +00:00
while (!mmu_ready)
{
2018-08-21 14:41:01 +00:00
// mmu_loop();
2018-08-20 18:53:53 +00:00
if (mmu_state != 3)
break;
2018-08-21 14:41:01 +00:00
delay_keep_alive(100);
2018-08-20 18:53:53 +00:00
}
bool ret = mmu_ready;
mmu_ready = false;
2018-08-21 14:41:01 +00:00
// printf_P(PSTR("mmu_get_response - end %d\n"), ret?1:0);
2018-08-20 18:53:53 +00:00
return ret;
2018-08-21 14:41:01 +00:00
/* //waits for "ok" from mmu
//function returns true if "ok" was received
//if timeout is set to true function return false if there is no "ok" received before timeout
bool response = true;
LongTimer mmu_get_reponse_timeout;
KEEPALIVE_STATE(IN_PROCESS);
mmu_get_reponse_timeout.start();
while (mmu_rx_ok() <= 0)
{
delay_keep_alive(100);
if (timeout && mmu_get_reponse_timeout.expired(5 * 60 * 1000ul))
{ //5 minutes timeout
response = false;
break;
}
}
printf_P(PSTR("mmu_get_response - end %d\n"), response?1:0);
2018-08-20 18:53:53 +00:00
return response;*/
}
void manage_response(bool move_axes, bool turn_off_nozzle)
{
bool response = false;
mmu_print_saved = false;
bool lcd_update_was_enabled = false;
float hotend_temp_bckp = degTargetHotend(active_extruder);
float z_position_bckp = current_position[Z_AXIS];
float x_position_bckp = current_position[X_AXIS];
float y_position_bckp = current_position[Y_AXIS];
uint8_t screen = 0; //used for showing multiscreen messages
while(!response)
{
2018-08-20 18:53:53 +00:00
response = mmu_get_response(); //wait for "ok" from mmu
if (!response) { //no "ok" was received in reserved time frame, user will fix the issue on mmu unit
if (!mmu_print_saved) { //first occurence, we are saving current position, park print head in certain position and disable nozzle heater
if (lcd_update_enabled) {
lcd_update_was_enabled = true;
lcd_update_enable(false);
}
st_synchronize();
mmu_print_saved = true;
printf_P(PSTR("MMU not responding\n"));
hotend_temp_bckp = degTargetHotend(active_extruder);
if (move_axes) {
z_position_bckp = current_position[Z_AXIS];
x_position_bckp = current_position[X_AXIS];
y_position_bckp = current_position[Y_AXIS];
//lift z
current_position[Z_AXIS] += Z_PAUSE_LIFT;
if (current_position[Z_AXIS] > Z_MAX_POS) current_position[Z_AXIS] = Z_MAX_POS;
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 15, active_extruder);
st_synchronize();
//Move XY to side
current_position[X_AXIS] = X_PAUSE_POS;
current_position[Y_AXIS] = Y_PAUSE_POS;
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 50, active_extruder);
st_synchronize();
}
if (turn_off_nozzle) {
//set nozzle target temperature to 0
setAllTargetHotends(0);
}
}
//first three lines are used for printing multiscreen message; last line contains measured and target nozzle temperature
if (screen == 0) { //screen 0
lcd_display_message_fullscreen_P(_i("MMU needs user attention."));
screen++;
}
else { //screen 1
if((degTargetHotend(active_extruder) == 0) && turn_off_nozzle) lcd_display_message_fullscreen_P(_i("Press the knob to resume nozzle temperature."));
else lcd_display_message_fullscreen_P(_i("Fix the issue and then press button on MMU unit."));
screen=0;
}
lcd_set_degree();
lcd_set_cursor(0, 4); //line 4
//Print the hotend temperature (9 chars total) and fill rest of the line with space
int chars = lcd_printf_P(_N("%c%3d/%d%c"), LCD_STR_THERMOMETER[0],(int)(degHotend(active_extruder) + 0.5), (int)(degTargetHotend(active_extruder) + 0.5), LCD_STR_DEGREE[0]);
lcd_space(9 - chars);
//5 seconds delay
for (uint8_t i = 0; i < 50; i++) {
if (lcd_clicked()) {
setTargetHotend(hotend_temp_bckp, active_extruder);
break;
}
delay_keep_alive(100);
}
}
else if (mmu_print_saved) {
printf_P(PSTR("MMU starts responding\n"));
if (turn_off_nozzle)
{
lcd_clear();
setTargetHotend(hotend_temp_bckp, active_extruder);
if (((degTargetHotend(active_extruder) - degHotend(active_extruder)) > 5)) {
lcd_display_message_fullscreen_P(_i("MMU OK. Resuming temperature..."));
delay_keep_alive(3000);
}
while ((degTargetHotend(active_extruder) - degHotend(active_extruder)) > 5)
{
delay_keep_alive(1000);
lcd_wait_for_heater();
}
}
if (move_axes) {
lcd_clear();
lcd_display_message_fullscreen_P(_i("MMU OK. Resuming position..."));
current_position[X_AXIS] = x_position_bckp;
current_position[Y_AXIS] = y_position_bckp;
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 50, active_extruder);
st_synchronize();
current_position[Z_AXIS] = z_position_bckp;
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 15, active_extruder);
st_synchronize();
}
else {
lcd_clear();
lcd_display_message_fullscreen_P(_i("MMU OK. Resuming..."));
delay_keep_alive(1000); //delay just for showing MMU OK message for a while in case that there are no xyz movements
}
}
}
if (lcd_update_was_enabled) lcd_update_enable(true);
}
//! @brief load filament to nozzle of multimaterial printer
//!
//! This function is used only only after T? (user select filament) and M600 (change filament).
//! It is not used after T0 .. T4 command (select filament), in such case, gcode is responsible for loading
//! filament to nozzle.
//!
void mmu_load_to_nozzle()
{
st_synchronize();
bool saved_e_relative_mode = axis_relative_modes[E_AXIS];
if (!saved_e_relative_mode) axis_relative_modes[E_AXIS] = true;
current_position[E_AXIS] += 7.2f;
float feedrate = 562;
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate / 60, active_extruder);
st_synchronize();
current_position[E_AXIS] += 14.4f;
feedrate = 871;
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate / 60, active_extruder);
st_synchronize();
current_position[E_AXIS] += 36.0f;
feedrate = 1393;
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate / 60, active_extruder);
st_synchronize();
current_position[E_AXIS] += 14.4f;
feedrate = 871;
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate / 60, active_extruder);
st_synchronize();
if (!saved_e_relative_mode) axis_relative_modes[E_AXIS] = false;
}
void mmu_M600_wait_and_beep() {
//Beep and wait for user to remove old filament and prepare new filament for load
KEEPALIVE_STATE(PAUSED_FOR_USER);
int counterBeep = 0;
lcd_display_message_fullscreen_P(_i("Remove old filament and press the knob to start loading new filament."));
bool bFirst=true;
while (!lcd_clicked()){
manage_heater();
manage_inactivity(true);
#if BEEPER > 0
if (counterBeep == 500) {
counterBeep = 0;
}
SET_OUTPUT(BEEPER);
if (counterBeep == 0) {
if((eSoundMode==e_SOUND_MODE_LOUD)||((eSoundMode==e_SOUND_MODE_ONCE)&&bFirst))
{
bFirst=false;
WRITE(BEEPER, HIGH);
}
}
if (counterBeep == 20) {
WRITE(BEEPER, LOW);
}
counterBeep++;
#endif //BEEPER > 0
delay_keep_alive(4);
}
WRITE(BEEPER, LOW);
}
void mmu_M600_load_filament(bool automatic)
{
//load filament for mmu v2
tmp_extruder = mmu_extruder;
if (!automatic) {
#ifdef MMU_M600_SWITCH_EXTRUDER
bool yes = lcd_show_fullscreen_message_yes_no_and_wait_P(_i("Do you want to switch extruder?"), false);
if(yes) tmp_extruder = choose_extruder_menu();
#endif //MMU_M600_SWITCH_EXTRUDER
2018-08-28 09:26:35 +00:00
}
else {
tmp_extruder = (tmp_extruder+1)%5;
}
lcd_update_enable(false);
lcd_clear();
lcd_set_cursor(0, 1); lcd_puts_P(_T(MSG_LOADING_FILAMENT));
lcd_print(" ");
lcd_print(tmp_extruder + 1);
snmm_filaments_used |= (1 << tmp_extruder); //for stop print
2018-08-20 18:53:53 +00:00
// printf_P(PSTR("T code: %d \n"), tmp_extruder);
// mmu_printf_P(PSTR("T%d\n"), tmp_extruder);
mmu_command(MMU_CMD_T0 + tmp_extruder);
manage_response(false, true);
2018-08-24 16:28:05 +00:00
mmu_command(MMU_CMD_C0);
mmu_extruder = tmp_extruder; //filament change is finished
mmu_load_to_nozzle();
st_synchronize();
current_position[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2, active_extruder);
}
void extr_mov(float shift, float feed_rate)
{ //move extruder no matter what the current heater temperature is
set_extrude_min_temp(.0);
current_position[E_AXIS] += shift;
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feed_rate, active_extruder);
set_extrude_min_temp(EXTRUDE_MINTEMP);
}
void change_extr(int
#ifdef SNMM
extr
#endif //SNMM
) { //switches multiplexer for extruders
#ifdef SNMM
st_synchronize();
delay(100);
disable_e0();
disable_e1();
disable_e2();
mmu_extruder = extr;
pinMode(E_MUX0_PIN, OUTPUT);
pinMode(E_MUX1_PIN, OUTPUT);
switch (extr) {
case 1:
WRITE(E_MUX0_PIN, HIGH);
WRITE(E_MUX1_PIN, LOW);
break;
case 2:
WRITE(E_MUX0_PIN, LOW);
WRITE(E_MUX1_PIN, HIGH);
break;
case 3:
WRITE(E_MUX0_PIN, HIGH);
WRITE(E_MUX1_PIN, HIGH);
break;
default:
WRITE(E_MUX0_PIN, LOW);
WRITE(E_MUX1_PIN, LOW);
break;
}
delay(100);
#endif
}
int get_ext_nr()
{ //reads multiplexer input pins and return current extruder number (counted from 0)
#ifndef SNMM
return(mmu_extruder); //update needed
#else
return(2 * READ(E_MUX1_PIN) + READ(E_MUX0_PIN));
#endif
}
void display_loading()
{
switch (mmu_extruder)
{
case 1: lcd_display_message_fullscreen_P(_T(MSG_FILAMENT_LOADING_T1)); break;
case 2: lcd_display_message_fullscreen_P(_T(MSG_FILAMENT_LOADING_T2)); break;
case 3: lcd_display_message_fullscreen_P(_T(MSG_FILAMENT_LOADING_T3)); break;
default: lcd_display_message_fullscreen_P(_T(MSG_FILAMENT_LOADING_T0)); break;
}
}
void extr_adj(int extruder) //loading filament for SNMM
{
#ifndef SNMM
uint8_t cmd = MMU_CMD_L0 + extruder;
if (cmd > MMU_CMD_L4)
{
printf_P(PSTR("Filament out of range %d \n"),extruder);
return;
}
mmu_command(cmd);
//show which filament is currently loaded
lcd_update_enable(false);
lcd_clear();
lcd_set_cursor(0, 1); lcd_puts_P(_T(MSG_LOADING_FILAMENT));
//if(strlen(_T(MSG_LOADING_FILAMENT))>18) lcd.setCursor(0, 1);
//else lcd.print(" ");
lcd_print(" ");
lcd_print(extruder + 1);
// get response
2018-08-03 17:14:17 +00:00
manage_response(false, false);
lcd_update_enable(true);
//lcd_return_to_status();
#else
bool correct;
max_feedrate[E_AXIS] =80;
//max_feedrate[E_AXIS] = 50;
START:
lcd_clear();
lcd_set_cursor(0, 0);
switch (extruder) {
case 1: lcd_display_message_fullscreen_P(_T(MSG_FILAMENT_LOADING_T1)); break;
case 2: lcd_display_message_fullscreen_P(_T(MSG_FILAMENT_LOADING_T2)); break;
case 3: lcd_display_message_fullscreen_P(_T(MSG_FILAMENT_LOADING_T3)); break;
default: lcd_display_message_fullscreen_P(_T(MSG_FILAMENT_LOADING_T0)); break;
}
KEEPALIVE_STATE(PAUSED_FOR_USER);
do{
extr_mov(0.001,1000);
delay_keep_alive(2);
} while (!lcd_clicked());
//delay_keep_alive(500);
KEEPALIVE_STATE(IN_HANDLER);
st_synchronize();
//correct = lcd_show_fullscreen_message_yes_no_and_wait_P(MSG_FIL_LOADED_CHECK, false);
//if (!correct) goto START;
//extr_mov(BOWDEN_LENGTH/2.f, 500); //dividing by 2 is there because of max. extrusion length limitation (x_max + y_max)
//extr_mov(BOWDEN_LENGTH/2.f, 500);
extr_mov(bowden_length[extruder], 500);
lcd_clear();
lcd_set_cursor(0, 0); lcd_puts_P(_T(MSG_LOADING_FILAMENT));
if(strlen(_T(MSG_LOADING_FILAMENT))>18) lcd_set_cursor(0, 1);
else lcd_print(" ");
lcd_print(mmu_extruder + 1);
lcd_set_cursor(0, 2); lcd_puts_P(_T(MSG_PLEASE_WAIT));
st_synchronize();
max_feedrate[E_AXIS] = 50;
lcd_update_enable(true);
lcd_return_to_status();
lcdDrawUpdate = 2;
#endif
}
2018-09-03 18:00:46 +00:00
struct E_step
{
float extrude; //!< extrude distance in mm
float feed_rate; //!< feed rate in mm/s
};
static const E_step ramming_sequence[] PROGMEM =
{
{1.0, 1000.0/60},
{1.0, 1500.0/60},
{2.0, 2000.0/60},
{1.5, 3000.0/60},
{2.5, 4000.0/60},
{-15.0, 5000.0/60},
{-14.0, 1200.0/60},
{-6.0, 600.0/60},
{10.0, 700.0/60},
{-10.0, 400.0/60},
{-50.0, 2000.0/60},
};
//! @brief Unload sequence to optimize shape of the tip of the unloaded filament
static void filament_ramming()
{
2018-09-03 18:00:46 +00:00
for(uint8_t i = 0; i < (sizeof(ramming_sequence)/sizeof(E_step));++i)
{
current_position[E_AXIS] += pgm_read_float(&(ramming_sequence[i].extrude));
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS],
current_position[E_AXIS], pgm_read_float(&(ramming_sequence[i].feed_rate)), active_extruder);
st_synchronize();
}
}
void extr_unload()
{ //unload just current filament for multimaterial printers
#ifdef SNMM
float tmp_motor[3] = DEFAULT_PWM_MOTOR_CURRENT;
float tmp_motor_loud[3] = DEFAULT_PWM_MOTOR_CURRENT_LOUD;
uint8_t SilentMode = eeprom_read_byte((uint8_t*)EEPROM_SILENT);
#endif
if (degHotend0() > EXTRUDE_MINTEMP)
{
#ifndef SNMM
st_synchronize();
//show which filament is currently unloaded
lcd_update_enable(false);
lcd_clear();
lcd_set_cursor(0, 1); lcd_puts_P(_T(MSG_UNLOADING_FILAMENT));
lcd_print(" ");
lcd_print(mmu_extruder + 1);
filament_ramming();
mmu_command(MMU_CMD_U0);
// get response
2018-08-03 17:14:17 +00:00
manage_response(false, true);
lcd_update_enable(true);
#else //SNMM
lcd_clear();
lcd_display_message_fullscreen_P(PSTR(""));
max_feedrate[E_AXIS] = 50;
lcd_set_cursor(0, 0); lcd_puts_P(_T(MSG_UNLOADING_FILAMENT));
lcd_print(" ");
lcd_print(mmu_extruder + 1);
lcd_set_cursor(0, 2); lcd_puts_P(_T(MSG_PLEASE_WAIT));
if (current_position[Z_AXIS] < 15) {
current_position[Z_AXIS] += 15; //lifting in Z direction to make space for extrusion
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 25, active_extruder);
}
current_position[E_AXIS] += 10; //extrusion
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 10, active_extruder);
st_current_set(2, E_MOTOR_HIGH_CURRENT);
if (current_temperature[0] < 230) { //PLA & all other filaments
current_position[E_AXIS] += 5.4;
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2800 / 60, active_extruder);
current_position[E_AXIS] += 3.2;
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
current_position[E_AXIS] += 3;
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3400 / 60, active_extruder);
}
else { //ABS
current_position[E_AXIS] += 3.1;
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2000 / 60, active_extruder);
current_position[E_AXIS] += 3.1;
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2500 / 60, active_extruder);
current_position[E_AXIS] += 4;
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
/*current_position[X_AXIS] += 23; //delay
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder); //delay
current_position[X_AXIS] -= 23; //delay
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder); //delay*/
delay_keep_alive(4700);
}
max_feedrate[E_AXIS] = 80;
current_position[E_AXIS] -= (bowden_length[mmu_extruder] + 60 + FIL_LOAD_LENGTH) / 2;
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 500, active_extruder);
current_position[E_AXIS] -= (bowden_length[mmu_extruder] + 60 + FIL_LOAD_LENGTH) / 2;
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 500, active_extruder);
st_synchronize();
//st_current_init();
if (SilentMode != SILENT_MODE_OFF) st_current_set(2, tmp_motor[2]); //set back to normal operation currents
else st_current_set(2, tmp_motor_loud[2]);
lcd_update_enable(true);
lcd_return_to_status();
max_feedrate[E_AXIS] = 50;
#endif //SNMM
}
else
{
lcd_clear();
lcd_set_cursor(0, 0);
lcd_puts_P(_T(MSG_ERROR));
lcd_set_cursor(0, 2);
lcd_puts_P(_T(MSG_PREHEAT_NOZZLE));
delay(2000);
lcd_clear();
}
//lcd_return_to_status();
}
//wrapper functions for loading filament
void extr_adj_0()
{
#ifndef SNMM
enquecommand_P(PSTR("M701 E0"));
#else
change_extr(0);
extr_adj(0);
#endif
}
void extr_adj_1()
{
#ifndef SNMM
enquecommand_P(PSTR("M701 E1"));
#else
change_extr(1);
extr_adj(1);
#endif
}
void extr_adj_2()
{
#ifndef SNMM
enquecommand_P(PSTR("M701 E2"));
#else
change_extr(2);
extr_adj(2);
#endif
}
void extr_adj_3()
{
#ifndef SNMM
enquecommand_P(PSTR("M701 E3"));
#else
change_extr(3);
extr_adj(3);
#endif
}
void extr_adj_4()
{
#ifndef SNMM
enquecommand_P(PSTR("M701 E4"));
#else
change_extr(4);
extr_adj(4);
#endif
}
void mmu_eject_fil_0()
{
mmu_eject_filament(0, true);
}
void mmu_eject_fil_1()
{
mmu_eject_filament(1, true);
}
void mmu_eject_fil_2()
{
mmu_eject_filament(2, true);
}
void mmu_eject_fil_3()
{
mmu_eject_filament(3, true);
}
void mmu_eject_fil_4()
{
mmu_eject_filament(4, true);
}
void load_all()
{
#ifndef SNMM
enquecommand_P(PSTR("M701 E0"));
enquecommand_P(PSTR("M701 E1"));
enquecommand_P(PSTR("M701 E2"));
enquecommand_P(PSTR("M701 E3"));
enquecommand_P(PSTR("M701 E4"));
#else
for (int i = 0; i < 4; i++)
{
change_extr(i);
extr_adj(i);
}
#endif
}
//wrapper functions for changing extruders
void extr_change_0()
{
change_extr(0);
lcd_return_to_status();
}
void extr_change_1()
{
change_extr(1);
lcd_return_to_status();
}
void extr_change_2()
{
change_extr(2);
lcd_return_to_status();
}
void extr_change_3()
{
change_extr(3);
lcd_return_to_status();
}
//wrapper functions for unloading filament
void extr_unload_all()
{
if (degHotend0() > EXTRUDE_MINTEMP)
{
for (int i = 0; i < 4; i++)
{
change_extr(i);
extr_unload();
}
}
else
{
lcd_clear();
lcd_set_cursor(0, 0);
lcd_puts_P(_T(MSG_ERROR));
lcd_set_cursor(0, 2);
lcd_puts_P(_T(MSG_PREHEAT_NOZZLE));
delay(2000);
lcd_clear();
lcd_return_to_status();
}
}
//unloading just used filament (for snmm)
void extr_unload_used()
{
if (degHotend0() > EXTRUDE_MINTEMP) {
for (int i = 0; i < 4; i++) {
if (snmm_filaments_used & (1 << i)) {
change_extr(i);
extr_unload();
}
}
snmm_filaments_used = 0;
}
else {
lcd_clear();
lcd_set_cursor(0, 0);
lcd_puts_P(_T(MSG_ERROR));
lcd_set_cursor(0, 2);
lcd_puts_P(_T(MSG_PREHEAT_NOZZLE));
delay(2000);
lcd_clear();
lcd_return_to_status();
}
}
void extr_unload_0()
{
change_extr(0);
extr_unload();
}
void extr_unload_1()
{
change_extr(1);
extr_unload();
}
void extr_unload_2()
{
change_extr(2);
extr_unload();
}
void extr_unload_3()
{
change_extr(3);
extr_unload();
}
void extr_unload_4()
{
change_extr(4);
extr_unload();
}
bool mmu_check_version()
{
return (mmu_buildnr >= MMU_REQUIRED_FW_BUILDNR);
}
void mmu_show_warning()
{
printf_P(PSTR("MMU2 firmware version invalid. Required version: build number %d or higher."), MMU_REQUIRED_FW_BUILDNR);
kill(_i("Please update firmware in your MMU2. Waiting for reset."));
}
2018-08-28 21:50:31 +00:00
void mmu_eject_filament(uint8_t filament, bool recover)
2018-08-28 21:50:31 +00:00
{
if (filament < 5)
{
if (degHotend0() > EXTRUDE_MINTEMP)
{
st_synchronize();
{
LcdUpdateDisabler disableLcdUpdate;
lcd_clear();
lcd_set_cursor(0, 1); lcd_puts_P(_i("Ejecting filament"));
current_position[E_AXIS] -= 80;
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2500 / 60, active_extruder);
st_synchronize();
mmu_command(MMU_CMD_E0 + filament);
manage_response(false, false);
if (recover)
{
lcd_show_fullscreen_message_and_wait_P(_i("Please remove filament and then press the knob."));
mmu_command(MMU_CMD_R0);
manage_response(false, false);
}
}
}
else
{
lcd_clear();
lcd_set_cursor(0, 0);
lcd_puts_P(_T(MSG_ERROR));
lcd_set_cursor(0, 2);
lcd_puts_P(_T(MSG_PREHEAT_NOZZLE));
delay(2000);
lcd_clear();
}
}
else
{
puts_P(PSTR("Filament nr out of range!"));
}
}