Prusa-Firmware/Firmware/ConfigurationStore.cpp

463 lines
17 KiB
C++
Raw Normal View History

2016-07-22 13:28:01 +00:00
#include "Marlin.h"
#include "planner.h"
#include "temperature.h"
#include "ultralcd.h"
#include "ConfigurationStore.h"
#include "Configuration_prusa.h"
#ifdef MESH_BED_LEVELING
#include "mesh_bed_leveling.h"
#endif
#ifdef DEBUG_EEPROM_WRITE
#define EEPROM_WRITE_VAR(pos, value) _EEPROM_writeData(pos, (uint8_t*)&value, sizeof(value), #value)
#else //DEBUG_EEPROM_WRITE
#define EEPROM_WRITE_VAR(pos, value) _EEPROM_writeData(pos, (uint8_t*)&value, sizeof(value), 0)
#endif //DEBUG_EEPROM_WRITE
void _EEPROM_writeData(int &pos, uint8_t* value, uint8_t size, char* name)
2016-07-22 13:28:01 +00:00
{
#ifdef DEBUG_EEPROM_WRITE
printf_P(PSTR("EEPROM_WRITE_VAR addr=0x%04x size=0x%02hhx name=%s\n"), pos, size, name);
#endif //DEBUG_EEPROM_WRITE
while (size--) {
uint8_t * const p = (uint8_t * const)pos;
uint8_t v = *value;
// EEPROM has only ~100,000 write cycles,
// so only write bytes that have changed!
if (v != eeprom_read_byte(p)) {
eeprom_write_byte(p, v);
if (eeprom_read_byte(p) != v) {
2017-09-21 13:35:46 +00:00
SERIAL_ECHOLNPGM("EEPROM Error");
return;
}
}
pos++;
value++;
};
2016-07-22 13:28:01 +00:00
}
#ifdef DEBUG_EEPROM_READ
#define EEPROM_READ_VAR(pos, value) _EEPROM_readData(pos, (uint8_t*)&value, sizeof(value), #value)
#else //DEBUG_EEPROM_READ
#define EEPROM_READ_VAR(pos, value) _EEPROM_readData(pos, (uint8_t*)&value, sizeof(value), 0)
#endif //DEBUG_EEPROM_READ
void _EEPROM_readData(int &pos, uint8_t* value, uint8_t size, char* name)
2016-07-22 13:28:01 +00:00
{
#ifdef DEBUG_EEPROM_READ
printf_P(PSTR("EEPROM_READ_VAR addr=0x%04x size=0x%02hhx name=%s\n"), pos, size, name);
#endif //DEBUG_EEPROM_READ
2016-07-22 13:28:01 +00:00
do
{
*value = eeprom_read_byte((unsigned char*)pos);
pos++;
value++;
}while(--size);
}
2016-07-22 13:28:01 +00:00
//======================================================================================
// IMPORTANT: Whenever there are changes made to the variables stored in EEPROM
// in the functions below, also increment the version number and update EEPROM_M500_SIZE. This makes sure that
2016-07-22 13:28:01 +00:00
// the default values are used whenever there is a change to the data, to prevent
// wrong data being written to the variables.
// ALSO: always make sure the variables in the Store and retrieve sections are in the same order.
#define EEPROM_VERSION "V2"
2016-07-22 13:28:01 +00:00
#ifdef EEPROM_SETTINGS
void Config_StoreSettings(uint16_t offset)
2016-07-22 13:28:01 +00:00
{
char ver[4]= "000";
int i = offset;
2016-07-22 13:28:01 +00:00
EEPROM_WRITE_VAR(i,ver); // invalidate data first
EEPROM_WRITE_VAR(i,axis_steps_per_unit);
EEPROM_WRITE_VAR(i,max_feedrate_normal);
EEPROM_WRITE_VAR(i,max_acceleration_units_per_sq_second_normal);
2016-07-22 13:28:01 +00:00
EEPROM_WRITE_VAR(i,acceleration);
EEPROM_WRITE_VAR(i,retract_acceleration);
EEPROM_WRITE_VAR(i,minimumfeedrate);
EEPROM_WRITE_VAR(i,mintravelfeedrate);
EEPROM_WRITE_VAR(i,minsegmenttime);
2017-03-24 18:47:50 +00:00
EEPROM_WRITE_VAR(i,max_jerk[X_AXIS]);
EEPROM_WRITE_VAR(i,max_jerk[Y_AXIS]);
EEPROM_WRITE_VAR(i,max_jerk[Z_AXIS]);
EEPROM_WRITE_VAR(i,max_jerk[E_AXIS]);
2016-07-22 13:28:01 +00:00
EEPROM_WRITE_VAR(i,add_homing);
2017-03-24 18:47:50 +00:00
/* EEPROM_WRITE_VAR(i,plaPreheatHotendTemp);
2016-07-22 13:28:01 +00:00
EEPROM_WRITE_VAR(i,plaPreheatHPBTemp);
EEPROM_WRITE_VAR(i,plaPreheatFanSpeed);
EEPROM_WRITE_VAR(i,absPreheatHotendTemp);
EEPROM_WRITE_VAR(i,absPreheatHPBTemp);
EEPROM_WRITE_VAR(i,absPreheatFanSpeed);
2017-03-24 18:47:50 +00:00
*/
2016-07-22 13:28:01 +00:00
EEPROM_WRITE_VAR(i,zprobe_zoffset);
#ifdef PIDTEMP
EEPROM_WRITE_VAR(i,Kp);
EEPROM_WRITE_VAR(i,Ki);
EEPROM_WRITE_VAR(i,Kd);
#else
float dummy = 3000.0f;
EEPROM_WRITE_VAR(i,dummy);
dummy = 0.0f;
EEPROM_WRITE_VAR(i,dummy);
EEPROM_WRITE_VAR(i,dummy);
#endif
2017-03-24 18:47:50 +00:00
#ifdef PIDTEMPBED
EEPROM_WRITE_VAR(i, bedKp);
EEPROM_WRITE_VAR(i, bedKi);
EEPROM_WRITE_VAR(i, bedKd);
#endif
int lcd_contrast = 0;
EEPROM_WRITE_VAR(i,lcd_contrast);
2016-07-22 13:28:01 +00:00
#ifdef FWRETRACT
EEPROM_WRITE_VAR(i,autoretract_enabled);
EEPROM_WRITE_VAR(i,retract_length);
#if EXTRUDERS > 1
EEPROM_WRITE_VAR(i,retract_length_swap);
#endif
EEPROM_WRITE_VAR(i,retract_feedrate);
EEPROM_WRITE_VAR(i,retract_zlift);
EEPROM_WRITE_VAR(i,retract_recover_length);
#if EXTRUDERS > 1
EEPROM_WRITE_VAR(i,retract_recover_length_swap);
#endif
EEPROM_WRITE_VAR(i,retract_recover_feedrate);
#endif
// Save filament sizes
EEPROM_WRITE_VAR(i, volumetric_enabled);
EEPROM_WRITE_VAR(i, filament_size[0]);
#if EXTRUDERS > 1
EEPROM_WRITE_VAR(i, filament_size[1]);
#if EXTRUDERS > 2
EEPROM_WRITE_VAR(i, filament_size[2]);
#endif
#endif
EEPROM_WRITE_VAR(i,max_feedrate_silent);
EEPROM_WRITE_VAR(i,max_acceleration_units_per_sq_second_silent);
if (EEPROM_M500_SIZE + EEPROM_OFFSET == i) {
char ver2[4] = EEPROM_VERSION;
i = offset;
EEPROM_WRITE_VAR(i, ver2); // validate data
SERIAL_ECHO_START;
SERIAL_ECHOLNPGM("Settings Stored");
}
else { //size of eeprom M500 section probably changed by mistake and data are not valid; do not validate data by storing eeprom version
//M500 EEPROM section will be erased on next printer reboot and default vaules will be used
puts_P(PSTR("Data stored to EEPROM not valid."));
}
2016-07-22 13:28:01 +00:00
}
#endif //EEPROM_SETTINGS
#ifndef DISABLE_M503
void Config_PrintSettings(uint8_t level)
2016-07-22 13:28:01 +00:00
{ // Always have this function, even with EEPROM_SETTINGS disabled, the current values will be shown
#ifdef TMC2130
printf_P(PSTR(
"%SSteps per unit:\n%S M92 X%.2f Y%.2f Z%.2f E%.2f\n"
"%SMaximum feedrates - normal (mm/s):\n%S M203 X%.2f Y%.2f Z%.2f E%.2f\n"
"%SMaximum feedrates - stealth (mm/s):\n%S M203 X%.2f Y%.2f Z%.2f E%.2f\n"
"%SMaximum acceleration - normal (mm/s2):\n%S M201 X%lu Y%lu Z%lu E%lu\n"
"%SMaximum acceleration - stealth (mm/s2):\n%S M201 X%lu Y%lu Z%lu E%lu\n"
"%SAcceleration: S=acceleration, T=retract acceleration\n%S M204 S%.2f T%.2f\n"
"%SAdvanced variables: S=Min feedrate (mm/s), T=Min travel feedrate (mm/s), B=minimum segment time (ms), X=maximum XY jerk (mm/s), Z=maximum Z jerk (mm/s), E=maximum E jerk (mm/s)\n%S M205 S%.2f T%.2f B%.2f X%.2f Y%.2f Z%.2f E%.2f\n"
"%SHome offset (mm):\n%S M206 X%.2f Y%.2f Z%.2f\n"
),
echomagic, echomagic, axis_steps_per_unit[X_AXIS], axis_steps_per_unit[Y_AXIS], axis_steps_per_unit[Z_AXIS], axis_steps_per_unit[E_AXIS],
echomagic, echomagic, max_feedrate_normal[X_AXIS], max_feedrate_normal[Y_AXIS], max_feedrate_normal[Z_AXIS], max_feedrate_normal[E_AXIS],
echomagic, echomagic, max_feedrate_silent[X_AXIS], max_feedrate_silent[Y_AXIS], max_feedrate_silent[Z_AXIS], max_feedrate_silent[E_AXIS],
echomagic, echomagic, max_acceleration_units_per_sq_second_normal[X_AXIS], max_acceleration_units_per_sq_second_normal[Y_AXIS], max_acceleration_units_per_sq_second_normal[Z_AXIS], max_acceleration_units_per_sq_second_normal[E_AXIS],
echomagic, echomagic, max_acceleration_units_per_sq_second_silent[X_AXIS], max_acceleration_units_per_sq_second_silent[Y_AXIS], max_acceleration_units_per_sq_second_silent[Z_AXIS], max_acceleration_units_per_sq_second_silent[E_AXIS],
echomagic, echomagic, acceleration, retract_acceleration,
echomagic, echomagic, minimumfeedrate, mintravelfeedrate, minsegmenttime, max_jerk[X_AXIS], max_jerk[Y_AXIS], max_jerk[Z_AXIS], max_jerk[E_AXIS],
echomagic, echomagic, add_homing[X_AXIS], add_homing[Y_AXIS], add_homing[Z_AXIS]
#else //TMC2130
printf_P(PSTR(
"%SSteps per unit:\n%S M92 X%.2f Y%.2f Z%.2f E%.2f\n"
"%SMaximum feedrates (mm/s):\n%S M203 X%.2f Y%.2f Z%.2f E%.2f\n"
"%SMaximum acceleration (mm/s2):\n%S M201 X%lu Y%lu Z%lu E%lu\n"
"%SAcceleration: S=acceleration, T=retract acceleration\n%S M204 S%.2f T%.2f\n"
"%SAdvanced variables: S=Min feedrate (mm/s), T=Min travel feedrate (mm/s), B=minimum segment time (ms), X=maximum XY jerk (mm/s), Z=maximum Z jerk (mm/s), E=maximum E jerk (mm/s)\n%S M205 S%.2f T%.2f B%.2f X%.2f Y%.2f Z%.2f E%.2f\n"
"%SHome offset (mm):\n%S M206 X%.2f Y%.2f Z%.2f\n"
),
echomagic, echomagic, axis_steps_per_unit[X_AXIS], axis_steps_per_unit[Y_AXIS], axis_steps_per_unit[Z_AXIS], axis_steps_per_unit[E_AXIS],
echomagic, echomagic, max_feedrate[X_AXIS], max_feedrate[Y_AXIS], max_feedrate[Z_AXIS], max_feedrate[E_AXIS],
echomagic, echomagic, max_acceleration_units_per_sq_second[X_AXIS], max_acceleration_units_per_sq_second[Y_AXIS], max_acceleration_units_per_sq_second[Z_AXIS], max_acceleration_units_per_sq_second[E_AXIS],
echomagic, echomagic, acceleration, retract_acceleration,
echomagic, echomagic, minimumfeedrate, mintravelfeedrate, minsegmenttime, max_jerk[X_AXIS], max_jerk[Y_AXIS], max_jerk[Z_AXIS], max_jerk[E_AXIS],
echomagic, echomagic, add_homing[X_AXIS], add_homing[Y_AXIS], add_homing[Z_AXIS]
#endif //TMC2130
);
2016-07-22 13:28:01 +00:00
#ifdef PIDTEMP
printf_P(PSTR("%SPID settings:\n%S M301 P%.2f I%.2f D%.2f\n"),
echomagic, echomagic, Kp, unscalePID_i(Ki), unscalePID_d(Kd));
2016-07-22 13:28:01 +00:00
#endif
2017-03-24 18:47:50 +00:00
#ifdef PIDTEMPBED
printf_P(PSTR("%SPID heatbed settings:\n%S M304 P%.2f I%.2f D%.2f\n"),
echomagic, echomagic, bedKp, unscalePID_i(bedKi), unscalePID_d(bedKd));
2017-03-24 18:47:50 +00:00
#endif
2016-07-22 13:28:01 +00:00
#ifdef FWRETRACT
printf_P(PSTR(
"%SRetract: S=Length (mm) F:Speed (mm/m) Z: ZLift (mm)\n%S M207 S%.2f F%.2f Z%.2f\n"
"%SRecover: S=Extra length (mm) F:Speed (mm/m)\n%S M208 S%.2f F%.2f\n"
2018-07-26 15:26:05 +00:00
"%SAuto-Retract: S=0 to disable, 1 to interpret extrude-only moves as retracts or recoveries\n%S M209 S%d\n"
),
echomagic, echomagic, retract_length, retract_feedrate*60, retract_zlift,
echomagic, echomagic, retract_recover_length, retract_recover_feedrate*60,
2018-07-26 15:26:05 +00:00
echomagic, echomagic, (autoretract_enabled ? 1 : 0)
);
2016-07-22 13:28:01 +00:00
#if EXTRUDERS > 1
printf_P(PSTR("%SMulti-extruder settings:\n%S Swap retract length (mm): %.2f\n%S Swap rec. addl. length (mm): %.2f\n"),
echomagic, echomagic, retract_length_swap, echomagic, retract_recover_length_swap);
2016-07-22 13:28:01 +00:00
#endif
if (volumetric_enabled) {
printf_P(PSTR("%SFilament settings:\n%S M200 D%.2f\n"),
echomagic, echomagic, filament_size[0]);
2016-07-22 13:28:01 +00:00
#if EXTRUDERS > 1
printf_P(PSTR("%S M200 T1 D%.2f\n"),
echomagic, echomagic, filament_size[1]);
2016-07-22 13:28:01 +00:00
#if EXTRUDERS > 2
printf_P(PSTR("%S M200 T1 D%.2f\n"),
echomagic, echomagic, filament_size[2]);
2016-07-22 13:28:01 +00:00
#endif
#endif
} else {
2018-07-12 21:50:41 +00:00
printf_P(PSTR("%SFilament settings: Disabled\n"), echomagic);
2016-07-22 13:28:01 +00:00
}
#endif
if (level >= 10) {
#ifdef LIN_ADVANCE
printf_P(PSTR("%SLinear advance settings:\n M900 K%.2f E/D = %.2f\n"),
echomagic, extruder_advance_k, advance_ed_ratio);
#endif //LIN_ADVANCE
}
2016-07-22 13:28:01 +00:00
}
#endif
#ifdef EEPROM_SETTINGS
bool Config_RetrieveSettings(uint16_t offset)
2016-07-22 13:28:01 +00:00
{
int i=offset;
bool previous_settings_retrieved = true;
2016-07-22 13:28:01 +00:00
char stored_ver[4];
char ver[4]=EEPROM_VERSION;
EEPROM_READ_VAR(i,stored_ver); //read stored version
// SERIAL_ECHOLN("Version: [" << ver << "] Stored version: [" << stored_ver << "]");
if (strncmp(ver,stored_ver,3) == 0)
{
// version number match
EEPROM_READ_VAR(i,axis_steps_per_unit);
EEPROM_READ_VAR(i,max_feedrate_normal);
EEPROM_READ_VAR(i,max_acceleration_units_per_sq_second_normal);
2016-07-22 13:28:01 +00:00
// steps per sq second need to be updated to agree with the units per sq second (as they are what is used in the planner)
EEPROM_READ_VAR(i,acceleration);
EEPROM_READ_VAR(i,retract_acceleration);
EEPROM_READ_VAR(i,minimumfeedrate);
EEPROM_READ_VAR(i,mintravelfeedrate);
EEPROM_READ_VAR(i,minsegmenttime);
2017-03-24 18:47:50 +00:00
EEPROM_READ_VAR(i,max_jerk[X_AXIS]);
EEPROM_READ_VAR(i,max_jerk[Y_AXIS]);
EEPROM_READ_VAR(i,max_jerk[Z_AXIS]);
EEPROM_READ_VAR(i,max_jerk[E_AXIS]);
if (max_jerk[X_AXIS] > DEFAULT_XJERK) max_jerk[X_AXIS] = DEFAULT_XJERK;
if (max_jerk[Y_AXIS] > DEFAULT_YJERK) max_jerk[Y_AXIS] = DEFAULT_YJERK;
2016-07-22 13:28:01 +00:00
EEPROM_READ_VAR(i,add_homing);
2017-03-24 18:47:50 +00:00
/*
2016-07-22 13:28:01 +00:00
EEPROM_READ_VAR(i,plaPreheatHotendTemp);
EEPROM_READ_VAR(i,plaPreheatHPBTemp);
EEPROM_READ_VAR(i,plaPreheatFanSpeed);
EEPROM_READ_VAR(i,absPreheatHotendTemp);
EEPROM_READ_VAR(i,absPreheatHPBTemp);
EEPROM_READ_VAR(i,absPreheatFanSpeed);
2017-03-24 18:47:50 +00:00
*/
2016-07-22 13:28:01 +00:00
EEPROM_READ_VAR(i,zprobe_zoffset);
#ifndef PIDTEMP
float Kp,Ki,Kd;
#endif
// do not need to scale PID values as the values in EEPROM are already scaled
EEPROM_READ_VAR(i,Kp);
EEPROM_READ_VAR(i,Ki);
EEPROM_READ_VAR(i,Kd);
2017-03-24 18:47:50 +00:00
#ifdef PIDTEMPBED
EEPROM_READ_VAR(i, bedKp);
EEPROM_READ_VAR(i, bedKi);
EEPROM_READ_VAR(i, bedKd);
#endif
int lcd_contrast;
EEPROM_READ_VAR(i,lcd_contrast);
2016-07-22 13:28:01 +00:00
#ifdef FWRETRACT
EEPROM_READ_VAR(i,autoretract_enabled);
EEPROM_READ_VAR(i,retract_length);
#if EXTRUDERS > 1
EEPROM_READ_VAR(i,retract_length_swap);
#endif
EEPROM_READ_VAR(i,retract_feedrate);
EEPROM_READ_VAR(i,retract_zlift);
EEPROM_READ_VAR(i,retract_recover_length);
#if EXTRUDERS > 1
EEPROM_READ_VAR(i,retract_recover_length_swap);
#endif
EEPROM_READ_VAR(i,retract_recover_feedrate);
#endif
EEPROM_READ_VAR(i, volumetric_enabled);
EEPROM_READ_VAR(i, filament_size[0]);
#if EXTRUDERS > 1
EEPROM_READ_VAR(i, filament_size[1]);
#if EXTRUDERS > 2
EEPROM_READ_VAR(i, filament_size[2]);
#endif
#endif
calculate_extruder_multipliers();
int max_feedrate_silent_address = i;
EEPROM_READ_VAR(i,max_feedrate_silent);
EEPROM_READ_VAR(i,max_acceleration_units_per_sq_second_silent);
//if max_feedrate_silent and max_acceleration_units_per_sq_second_silent were never stored to eeprom, use default values:
float tmp_feedrate[]=DEFAULT_MAX_FEEDRATE_SILENT;
unsigned long tmp_acceleration[]=DEFAULT_MAX_ACCELERATION_SILENT;
for (uint8_t axis = X_AXIS; axis <= E_AXIS; axis++) {
if (eeprom_read_dword((uint32_t*)(max_feedrate_silent_address + axis * 4)) == 0xffffffff) max_feedrate_silent[axis] = tmp_feedrate[axis];
if (max_acceleration_units_per_sq_second_silent[axis] == 0xffffffff) max_acceleration_units_per_sq_second_silent[axis] = tmp_acceleration[axis];
}
#ifdef TMC2130
for (uint8_t j = X_AXIS; j <= Y_AXIS; j++)
{
if (max_feedrate_normal[j] > NORMAL_MAX_FEEDRATE_XY)
max_feedrate_normal[j] = NORMAL_MAX_FEEDRATE_XY;
if (max_feedrate_silent[j] > SILENT_MAX_FEEDRATE_XY)
max_feedrate_silent[j] = SILENT_MAX_FEEDRATE_XY;
if (max_acceleration_units_per_sq_second_normal[j] > NORMAL_MAX_ACCEL_XY)
max_acceleration_units_per_sq_second_normal[j] = NORMAL_MAX_ACCEL_XY;
if (max_acceleration_units_per_sq_second_silent[j] > SILENT_MAX_ACCEL_XY)
max_acceleration_units_per_sq_second_silent[j] = SILENT_MAX_ACCEL_XY;
}
#endif //TMC2130
reset_acceleration_rates();
2016-07-22 13:28:01 +00:00
// Call updatePID (similar to when we have processed M301)
updatePID();
if (EEPROM_M500_SIZE + EEPROM_OFFSET == i) {
SERIAL_ECHO_START;
SERIAL_ECHOLNPGM("Stored settings retrieved");
}
2018-09-24 14:01:31 +00:00
else { //size of eeprom M500 section probably changed by mistake and data are not valid; default values will be used
puts_P(PSTR("Data read from EEPROM not valid."));
Config_ResetDefault();
previous_settings_retrieved = false;
}
2016-07-22 13:28:01 +00:00
}
else
{
Config_ResetDefault();
//Return false to inform user that eeprom version was changed and firmware is using default hardcoded settings now.
//In case that storing to eeprom was not used yet, do not inform user that hardcoded settings are used.
if (eeprom_read_byte((uint8_t *)offset) != 0xFF ||
eeprom_read_byte((uint8_t *)offset + 1) != 0xFF ||
eeprom_read_byte((uint8_t *)offset + 2) != 0xFF) {
previous_settings_retrieved = false;
}
2016-07-22 13:28:01 +00:00
}
#ifdef EEPROM_CHITCHAT
Config_PrintSettings();
#endif
return previous_settings_retrieved;
2016-07-22 13:28:01 +00:00
}
#endif
void Config_ResetDefault()
{
float tmp1[]=DEFAULT_AXIS_STEPS_PER_UNIT;
float tmp2[]=DEFAULT_MAX_FEEDRATE;
long tmp3[]=DEFAULT_MAX_ACCELERATION;
float tmp4[]=DEFAULT_MAX_FEEDRATE_SILENT;
long tmp5[]=DEFAULT_MAX_ACCELERATION_SILENT;
2016-07-22 13:28:01 +00:00
for (short i=0;i<4;i++)
{
axis_steps_per_unit[i]=tmp1[i];
max_feedrate_normal[i]=tmp2[i];
max_acceleration_units_per_sq_second_normal[i]=tmp3[i];
max_feedrate_silent[i]=tmp4[i];
max_acceleration_units_per_sq_second_silent[i]=tmp5[i];
2016-07-22 13:28:01 +00:00
}
// steps per sq second need to be updated to agree with the units per sq second
2016-07-22 13:28:01 +00:00
reset_acceleration_rates();
acceleration=DEFAULT_ACCELERATION;
retract_acceleration=DEFAULT_RETRACT_ACCELERATION;
minimumfeedrate=DEFAULT_MINIMUMFEEDRATE;
minsegmenttime=DEFAULT_MINSEGMENTTIME;
mintravelfeedrate=DEFAULT_MINTRAVELFEEDRATE;
2016-08-11 08:42:53 +00:00
max_jerk[X_AXIS] = DEFAULT_XJERK;
max_jerk[Y_AXIS] = DEFAULT_YJERK;
max_jerk[Z_AXIS] = DEFAULT_ZJERK;
max_jerk[E_AXIS] = DEFAULT_EJERK;
2016-07-22 13:28:01 +00:00
add_homing[X_AXIS] = add_homing[Y_AXIS] = add_homing[Z_AXIS] = 0;
#ifdef ENABLE_AUTO_BED_LEVELING
zprobe_zoffset = -Z_PROBE_OFFSET_FROM_EXTRUDER;
#endif
#ifdef PIDTEMP
Kp = DEFAULT_Kp;
Ki = scalePID_i(DEFAULT_Ki);
Kd = scalePID_d(DEFAULT_Kd);
// call updatePID (similar to when we have processed M301)
updatePID();
#ifdef PID_ADD_EXTRUSION_RATE
Kc = DEFAULT_Kc;
#endif//PID_ADD_EXTRUSION_RATE
#endif//PIDTEMP
#ifdef FWRETRACT
autoretract_enabled = false;
retract_length = RETRACT_LENGTH;
#if EXTRUDERS > 1
retract_length_swap = RETRACT_LENGTH_SWAP;
#endif
retract_feedrate = RETRACT_FEEDRATE;
retract_zlift = RETRACT_ZLIFT;
retract_recover_length = RETRACT_RECOVER_LENGTH;
#if EXTRUDERS > 1
retract_recover_length_swap = RETRACT_RECOVER_LENGTH_SWAP;
#endif
retract_recover_feedrate = RETRACT_RECOVER_FEEDRATE;
#endif
volumetric_enabled = false;
filament_size[0] = DEFAULT_NOMINAL_FILAMENT_DIA;
#if EXTRUDERS > 1
filament_size[1] = DEFAULT_NOMINAL_FILAMENT_DIA;
#if EXTRUDERS > 2
filament_size[2] = DEFAULT_NOMINAL_FILAMENT_DIA;
#endif
#endif
calculate_extruder_multipliers();
2016-07-22 13:28:01 +00:00
SERIAL_ECHO_START;
SERIAL_ECHOLNPGM("Hardcoded Default Settings Loaded");
}