Prusa-Firmware/Firmware/mesh_bed_calibration.h

216 lines
7.1 KiB
C
Raw Normal View History

2017-06-29 16:35:43 +00:00
#ifndef MESH_BED_CALIBRATION_H
#define MESH_BED_CALIBRATION_H
2019-02-14 08:57:58 +00:00
#define BED_ZERO_REF_X (- 22.f + X_PROBE_OFFSET_FROM_EXTRUDER) // -22 + 23 = 1
#define BED_ZERO_REF_Y (- 0.6f + Y_PROBE_OFFSET_FROM_EXTRUDER + 4.f) // -0.6 + 5 + 4 = 8.4
#ifdef HEATBED_V2
#define BED_X0 (3.f - BED_ZERO_REF_X)
2019-02-14 08:57:58 +00:00
#define BED_Y0 (10.4f - BED_ZERO_REF_Y)
#define BED_Xn (206.f - BED_ZERO_REF_X)
2019-02-14 08:57:58 +00:00
#define BED_Yn (202.4f - BED_ZERO_REF_Y)
#else
#define BED_X0 (13.f - BED_ZERO_REF_X)
#define BED_Y0 (8.4f - BED_ZERO_REF_Y)
#define BED_Xn (216.f - BED_ZERO_REF_X)
#define BED_Yn (202.4f - BED_ZERO_REF_Y)
#endif //not HEATBED_V2
#define BED_X(i, n) ((float)i * (BED_Xn - BED_X0) / (n - 1) + BED_X0)
#define BED_Y(i, n) ((float)i * (BED_Yn - BED_Y0) / (n - 1) + BED_Y0)
2017-06-29 16:35:43 +00:00
// Exact positions of the print head above the bed reference points, in the world coordinates.
// The world coordinates match the machine coordinates only in case, when the machine
// is built properly, the end stops are at the correct positions and the axes are perpendicular.
extern const float bed_ref_points_4[] PROGMEM;
2017-06-29 16:35:43 +00:00
extern const float bed_skew_angle_mild;
extern const float bed_skew_angle_extreme;
// Is the world2machine correction activated?
enum World2MachineCorrectionMode
{
WORLD2MACHINE_CORRECTION_NONE = 0,
WORLD2MACHINE_CORRECTION_SHIFT = 1,
WORLD2MACHINE_CORRECTION_SKEW = 2,
};
extern uint8_t world2machine_correction_mode;
// 2x2 transformation matrix from the world coordinates to the machine coordinates.
// Corrects for the rotation and skew of the machine axes.
// Used by the planner's plan_buffer_line() and plan_set_position().
extern float world2machine_rotation_and_skew[2][2];
extern float world2machine_rotation_and_skew_inv[2][2];
// Shift of the machine zero point, in the machine coordinates.
extern float world2machine_shift[2];
extern void world2machine_reset();
extern void world2machine_revert_to_uncorrected();
extern void world2machine_initialize();
extern void world2machine_read_valid(float vec_x[2], float vec_y[2], float cntr[2]);
2017-06-29 16:35:43 +00:00
extern void world2machine_update_current();
inline void world2machine(float &x, float &y)
{
if (world2machine_correction_mode == WORLD2MACHINE_CORRECTION_NONE) {
// No correction.
} else {
if (world2machine_correction_mode & WORLD2MACHINE_CORRECTION_SKEW) {
// Firs the skew & rotation correction.
float out_x = world2machine_rotation_and_skew[0][0] * x + world2machine_rotation_and_skew[0][1] * y;
float out_y = world2machine_rotation_and_skew[1][0] * x + world2machine_rotation_and_skew[1][1] * y;
x = out_x;
y = out_y;
}
if (world2machine_correction_mode & WORLD2MACHINE_CORRECTION_SHIFT) {
// Then add the offset.
x += world2machine_shift[0];
y += world2machine_shift[1];
}
}
}
inline void world2machine(const float &x, const float &y, float &out_x, float &out_y)
{
out_x = x;
out_y = y;
world2machine(out_x, out_y);
}
2017-06-29 16:35:43 +00:00
inline void machine2world(float x, float y, float &out_x, float &out_y)
{
if (world2machine_correction_mode == WORLD2MACHINE_CORRECTION_NONE) {
// No correction.
out_x = x;
out_y = y;
} else {
if (world2machine_correction_mode & WORLD2MACHINE_CORRECTION_SHIFT) {
// Then add the offset.
x -= world2machine_shift[0];
y -= world2machine_shift[1];
}
if (world2machine_correction_mode & WORLD2MACHINE_CORRECTION_SKEW) {
// Firs the skew & rotation correction.
out_x = world2machine_rotation_and_skew_inv[0][0] * x + world2machine_rotation_and_skew_inv[0][1] * y;
out_y = world2machine_rotation_and_skew_inv[1][0] * x + world2machine_rotation_and_skew_inv[1][1] * y;
}
}
}
inline void machine2world(float &x, float &y)
{
if (world2machine_correction_mode == WORLD2MACHINE_CORRECTION_NONE) {
// No correction.
} else {
if (world2machine_correction_mode & WORLD2MACHINE_CORRECTION_SHIFT) {
// Then add the offset.
x -= world2machine_shift[0];
y -= world2machine_shift[1];
}
if (world2machine_correction_mode & WORLD2MACHINE_CORRECTION_SKEW) {
// Firs the skew & rotation correction.
float out_x = world2machine_rotation_and_skew_inv[0][0] * x + world2machine_rotation_and_skew_inv[0][1] * y;
float out_y = world2machine_rotation_and_skew_inv[1][0] * x + world2machine_rotation_and_skew_inv[1][1] * y;
x = out_x;
y = out_y;
}
}
}
inline bool world2machine_clamp(float &x, float &y)
{
bool clamped = false;
float tmpx, tmpy;
world2machine(x, y, tmpx, tmpy);
if (tmpx < X_MIN_POS) {
tmpx = X_MIN_POS;
clamped = true;
}
if (tmpy < Y_MIN_POS) {
tmpy = Y_MIN_POS;
clamped = true;
}
if (tmpx > X_MAX_POS) {
tmpx = X_MAX_POS;
clamped = true;
}
if (tmpy > Y_MAX_POS) {
tmpy = Y_MAX_POS;
clamped = true;
}
if (clamped)
machine2world(tmpx, tmpy, x, y);
return clamped;
}
extern bool find_bed_induction_sensor_point_z(float minimum_z = -10.f, uint8_t n_iter = 3, int verbosity_level = 0);
extern bool find_bed_induction_sensor_point_xy(int verbosity_level = 0);
extern void go_home_with_z_lift();
/**
* @brief Bed skew and offest detection result
*
* Positive or zero: ok
* Negative: failed
*/
2017-06-29 16:35:43 +00:00
enum BedSkewOffsetDetectionResultType {
// Detection failed, some point was not found.
BED_SKEW_OFFSET_DETECTION_POINT_NOT_FOUND = -1, //!< Point not found.
BED_SKEW_OFFSET_DETECTION_FITTING_FAILED = -2, //!< Fitting failed
2017-06-29 16:35:43 +00:00
// Detection finished with success.
BED_SKEW_OFFSET_DETECTION_PERFECT = 0, //!< Perfect.
BED_SKEW_OFFSET_DETECTION_SKEW_MILD = 1, //!< Mildly skewed.
BED_SKEW_OFFSET_DETECTION_SKEW_EXTREME = 2 //!< Extremely skewed.
2017-06-29 16:35:43 +00:00
};
extern BedSkewOffsetDetectionResultType find_bed_offset_and_skew(int8_t verbosity_level, uint8_t &too_far_mask);
#ifndef NEW_XYZCAL
2017-06-29 16:35:43 +00:00
extern BedSkewOffsetDetectionResultType improve_bed_offset_and_skew(int8_t method, int8_t verbosity_level, uint8_t &too_far_mask);
#endif //NEW_XYZCAL
2017-06-29 16:35:43 +00:00
extern bool sample_mesh_and_store_reference();
extern void reset_bed_offset_and_skew();
extern bool is_bed_z_jitter_data_valid();
// Scan the mesh bed induction points one by one by a left-right zig-zag movement,
// write the trigger coordinates to the serial line.
// Useful for visualizing the behavior of the bed induction detector.
extern bool scan_bed_induction_points(int8_t verbosity_level);
// Load Z babystep value from the EEPROM into babystepLoadZ,
// but don't apply it through the planner. This is useful on wake up
// after power panic, when it is expected, that the baby step has been already applied.
extern void babystep_load();
2017-06-29 16:35:43 +00:00
// Apply Z babystep value from the EEPROM through the planner.
extern void babystep_apply();
// Undo the current Z babystep value.
extern void babystep_undo();
// Reset the current babystep counter without moving the axes.
extern void babystep_reset();
extern void count_xyz_details(float (&distanceMin)[2]);
extern bool sample_z();
2017-06-29 16:35:43 +00:00
2019-02-28 18:42:09 +00:00
typedef enum
{
e_MBL_FAST, e_MBL_OPTIMAL, e_MBL_PREC
} e_MBL_TYPE;
extern e_MBL_TYPE e_mbl_type;
extern void mbl_mode_set();
extern void mbl_mode_init();
extern bool mbl_point_measurement_valid(uint8_t ix, uint8_t iy, uint8_t meas_points, bool zigzag);
extern void mbl_interpolation(uint8_t meas_points);
2017-06-29 16:35:43 +00:00
#endif /* MESH_BED_CALIBRATION_H */