Prusa-Firmware/Firmware/stepper.cpp

1506 lines
44 KiB
C++
Raw Normal View History

2016-07-22 13:28:01 +00:00
/*
stepper.c - stepper motor driver: executes motion plans using stepper motors
Part of Grbl
Copyright (c) 2009-2011 Simen Svale Skogsrud
Grbl is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
Grbl is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with Grbl. If not, see <http://www.gnu.org/licenses/>.
*/
/* The timer calculations of this module informed by the 'RepRap cartesian firmware' by Zack Smith
and Philipp Tiefenbacher. */
#include "Marlin.h"
#include "stepper.h"
#include "planner.h"
#include "temperature.h"
#include "ultralcd.h"
#include "language.h"
#include "cardreader.h"
#include "speed_lookuptable.h"
#if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
#include <SPI.h>
#endif
#ifdef TMC2130
2017-06-29 16:35:43 +00:00
#include "tmc2130.h"
#endif //TMC2130
2017-06-29 16:35:43 +00:00
#ifdef PAT9125
#include "fsensor.h"
int fsensor_counter = 0; //counter for e-steps
#endif //PAT9125
2016-07-22 13:28:01 +00:00
2017-12-10 19:38:09 +00:00
#ifdef DEBUG_STACK_MONITOR
uint16_t SP_min = 0x21FF;
#endif //DEBUG_STACK_MONITOR
2016-07-22 13:28:01 +00:00
//===========================================================================
//=============================public variables ============================
//===========================================================================
block_t *current_block; // A pointer to the block currently being traced
2017-07-06 11:19:11 +00:00
bool x_min_endstop = false;
bool x_max_endstop = false;
bool y_min_endstop = false;
bool y_max_endstop = false;
bool z_min_endstop = false;
bool z_max_endstop = false;
2016-07-22 13:28:01 +00:00
//===========================================================================
//=============================private variables ============================
//===========================================================================
//static makes it inpossible to be called from outside of this file by extern.!
// Variables used by The Stepper Driver Interrupt
static unsigned char out_bits; // The next stepping-bits to be output
static int32_t counter_x, // Counter variables for the bresenham line tracer
counter_y,
counter_z,
counter_e;
volatile uint32_t step_events_completed; // The number of step events executed in the current block
static int32_t acceleration_time, deceleration_time;
2016-07-22 13:28:01 +00:00
//static unsigned long accelerate_until, decelerate_after, acceleration_rate, initial_rate, final_rate, nominal_rate;
static uint16_t acc_step_rate; // needed for deccelaration start point
static uint8_t step_loops;
static uint16_t OCR1A_nominal;
static uint8_t step_loops_nominal;
2016-07-22 13:28:01 +00:00
volatile long endstops_trigsteps[3]={0,0,0};
volatile long endstops_stepsTotal,endstops_stepsDone;
static volatile bool endstop_x_hit=false;
static volatile bool endstop_y_hit=false;
static volatile bool endstop_z_hit=false;
#ifdef ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
bool abort_on_endstop_hit = false;
#endif
#ifdef MOTOR_CURRENT_PWM_XY_PIN
int motor_current_setting[3] = DEFAULT_PWM_MOTOR_CURRENT;
int motor_current_setting_silent[3] = DEFAULT_PWM_MOTOR_CURRENT;
int motor_current_setting_loud[3] = DEFAULT_PWM_MOTOR_CURRENT_LOUD;
#endif
static bool old_x_min_endstop=false;
static bool old_x_max_endstop=false;
static bool old_y_min_endstop=false;
static bool old_y_max_endstop=false;
static bool old_z_min_endstop=false;
static bool old_z_max_endstop=false;
2017-06-29 16:35:43 +00:00
static bool check_endstops = true;
2016-07-22 13:28:01 +00:00
static bool check_z_endstop = false;
static bool z_endstop_invert = false;
2016-07-22 13:28:01 +00:00
2017-09-22 17:28:32 +00:00
int8_t SilentMode = 0;
2016-07-22 13:28:01 +00:00
volatile long count_position[NUM_AXIS] = { 0, 0, 0, 0};
volatile signed char count_direction[NUM_AXIS] = { 1, 1, 1, 1};
2017-09-22 17:28:32 +00:00
uint8_t LastStepMask = 0;
2017-07-06 23:58:02 +00:00
#ifdef LIN_ADVANCE
uint16_t ADV_NEVER = 65535;
static uint16_t nextMainISR = 0;
static uint16_t nextAdvanceISR = ADV_NEVER;
static uint16_t eISR_Rate = ADV_NEVER;
static volatile int e_steps; //Extrusion steps to be executed by the stepper
static int final_estep_rate; //Speed of extruder at cruising speed
static int current_estep_rate; //The current speed of the extruder
static int current_adv_steps; //The current pretension of filament expressed in steps
#define ADV_RATE(T, L) (e_steps ? (T) * (L) / abs(e_steps) : ADV_NEVER)
#define _NEXT_ISR(T) nextMainISR = T
#else
#define _NEXT_ISR(T) OCR1A = T
#endif
#ifdef DEBUG_STEPPER_TIMER_MISSED
extern bool stepper_timer_overflow_state;
#endif /* DEBUG_STEPPER_TIMER_MISSED */
2016-07-22 13:28:01 +00:00
//===========================================================================
//=============================functions ============================
//===========================================================================
#define CHECK_ENDSTOPS if(check_endstops)
#ifndef _NO_ASM
2016-07-22 13:28:01 +00:00
// intRes = intIn1 * intIn2 >> 16
// uses:
// r26 to store 0
// r27 to store the byte 1 of the 24 bit result
#define MultiU16X8toH16(intRes, charIn1, intIn2) \
asm volatile ( \
"clr r26 \n\t" \
"mul %A1, %B2 \n\t" \
"movw %A0, r0 \n\t" \
"mul %A1, %A2 \n\t" \
"add %A0, r1 \n\t" \
"adc %B0, r26 \n\t" \
"lsr r0 \n\t" \
"adc %A0, r26 \n\t" \
"adc %B0, r26 \n\t" \
"clr r1 \n\t" \
: \
"=&r" (intRes) \
: \
"d" (charIn1), \
"d" (intIn2) \
: \
"r26" \
)
// intRes = longIn1 * longIn2 >> 24
// uses:
// r26 to store 0
// r27 to store the byte 1 of the 48bit result
#define MultiU24X24toH16(intRes, longIn1, longIn2) \
asm volatile ( \
"clr r26 \n\t" \
"mul %A1, %B2 \n\t" \
"mov r27, r1 \n\t" \
"mul %B1, %C2 \n\t" \
"movw %A0, r0 \n\t" \
"mul %C1, %C2 \n\t" \
"add %B0, r0 \n\t" \
"mul %C1, %B2 \n\t" \
"add %A0, r0 \n\t" \
"adc %B0, r1 \n\t" \
"mul %A1, %C2 \n\t" \
"add r27, r0 \n\t" \
"adc %A0, r1 \n\t" \
"adc %B0, r26 \n\t" \
"mul %B1, %B2 \n\t" \
"add r27, r0 \n\t" \
"adc %A0, r1 \n\t" \
"adc %B0, r26 \n\t" \
"mul %C1, %A2 \n\t" \
"add r27, r0 \n\t" \
"adc %A0, r1 \n\t" \
"adc %B0, r26 \n\t" \
"mul %B1, %A2 \n\t" \
"add r27, r1 \n\t" \
"adc %A0, r26 \n\t" \
"adc %B0, r26 \n\t" \
"lsr r27 \n\t" \
"adc %A0, r26 \n\t" \
"adc %B0, r26 \n\t" \
"clr r1 \n\t" \
: \
"=&r" (intRes) \
: \
"d" (longIn1), \
"d" (longIn2) \
: \
"r26" , "r27" \
)
#else //_NO_ASM
void MultiU16X8toH16(unsigned short& intRes, unsigned char& charIn1, unsigned short& intIn2)
{
}
void MultiU24X24toH16(uint16_t& intRes, int32_t& longIn1, long& longIn2)
{
}
#endif //_NO_ASM
2016-07-22 13:28:01 +00:00
// Some useful constants
void checkHitEndstops()
{
if( endstop_x_hit || endstop_y_hit || endstop_z_hit) {
SERIAL_ECHO_START;
SERIAL_ECHORPGM(MSG_ENDSTOPS_HIT);
if(endstop_x_hit) {
SERIAL_ECHOPAIR(" X:",(float)endstops_trigsteps[X_AXIS]/axis_steps_per_unit[X_AXIS]);
LCD_MESSAGERPGM(CAT2(MSG_ENDSTOPS_HIT, PSTR("X")));
}
if(endstop_y_hit) {
SERIAL_ECHOPAIR(" Y:",(float)endstops_trigsteps[Y_AXIS]/axis_steps_per_unit[Y_AXIS]);
LCD_MESSAGERPGM(CAT2(MSG_ENDSTOPS_HIT, PSTR("Y")));
}
if(endstop_z_hit) {
SERIAL_ECHOPAIR(" Z:",(float)endstops_trigsteps[Z_AXIS]/axis_steps_per_unit[Z_AXIS]);
LCD_MESSAGERPGM(CAT2(MSG_ENDSTOPS_HIT,PSTR("Z")));
}
SERIAL_ECHOLN("");
endstop_x_hit=false;
endstop_y_hit=false;
endstop_z_hit=false;
#if defined(ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED) && defined(SDSUPPORT)
if (abort_on_endstop_hit)
{
card.sdprinting = false;
card.closefile();
quickStop();
setTargetHotend0(0);
setTargetHotend1(0);
setTargetHotend2(0);
}
#endif
}
}
bool endstops_hit_on_purpose()
{
bool hit = endstop_x_hit || endstop_y_hit || endstop_z_hit;
endstop_x_hit=false;
endstop_y_hit=false;
endstop_z_hit=false;
return hit;
}
bool endstop_z_hit_on_purpose()
{
bool hit = endstop_z_hit;
endstop_z_hit=false;
return hit;
}
bool enable_endstops(bool check)
{
bool old = check_endstops;
check_endstops = check;
return old;
}
bool enable_z_endstop(bool check)
{
bool old = check_z_endstop;
check_z_endstop = check;
endstop_z_hit = false;
return old;
}
2018-03-04 19:49:34 +00:00
void invert_z_endstop(bool endstop_invert)
{
z_endstop_invert = endstop_invert;
2016-07-22 13:28:01 +00:00
}
// __________________________
// /| |\ _________________ ^
// / | | \ /| |\ |
// / | | \ / | | \ s
// / | | | | | \ p
// / | | | | | \ e
// +-----+------------------------+---+--+---------------+----+ e
// | BLOCK 1 | BLOCK 2 | d
//
// time ----->
//
// The trapezoid is the shape the speed curve over time. It starts at block->initial_rate, accelerates
// first block->accelerate_until step_events_completed, then keeps going at constant speed until
// step_events_completed reaches block->decelerate_after after which it decelerates until the trapezoid generator is reset.
// The slope of acceleration is calculated with the leib ramp alghorithm.
FORCE_INLINE unsigned short calc_timer(unsigned short step_rate) {
unsigned short timer;
if(step_rate > MAX_STEP_FREQUENCY) step_rate = MAX_STEP_FREQUENCY;
if(step_rate > 20000) { // If steprate > 20kHz >> step 4 times
step_rate = (step_rate >> 2)&0x3fff;
step_loops = 4;
}
else if(step_rate > 10000) { // If steprate > 10kHz >> step 2 times
step_rate = (step_rate >> 1)&0x7fff;
step_loops = 2;
}
else {
step_loops = 1;
}
2017-07-03 05:43:50 +00:00
// step_loops = 1;
2016-07-22 13:28:01 +00:00
if(step_rate < (F_CPU/500000)) step_rate = (F_CPU/500000);
step_rate -= (F_CPU/500000); // Correct for minimal speed
if(step_rate >= (8*256)){ // higher step rate
unsigned short table_address = (unsigned short)&speed_lookuptable_fast[(unsigned char)(step_rate>>8)][0];
unsigned char tmp_step_rate = (step_rate & 0x00ff);
unsigned short gain = (unsigned short)pgm_read_word_near(table_address+2);
MultiU16X8toH16(timer, tmp_step_rate, gain);
timer = (unsigned short)pgm_read_word_near(table_address) - timer;
}
else { // lower step rates
unsigned short table_address = (unsigned short)&speed_lookuptable_slow[0][0];
table_address += ((step_rate)>>1) & 0xfffc;
timer = (unsigned short)pgm_read_word_near(table_address);
timer -= (((unsigned short)pgm_read_word_near(table_address+2) * (unsigned char)(step_rate & 0x0007))>>3);
}
if(timer < 100) { timer = 100; MYSERIAL.print(MSG_STEPPER_TOO_HIGH); MYSERIAL.println(step_rate); }//(20kHz this should never happen)
return timer;
}
// Initializes the trapezoid generator from the current block. Called whenever a new
// block begins.
FORCE_INLINE void trapezoid_generator_reset() {
deceleration_time = 0;
// step_rate to timer interval
OCR1A_nominal = calc_timer(current_block->nominal_rate);
// make a note of the number of step loops required at nominal speed
step_loops_nominal = step_loops;
acc_step_rate = current_block->initial_rate;
acceleration_time = calc_timer(acc_step_rate);
2017-07-06 23:58:02 +00:00
_NEXT_ISR(acceleration_time);
#ifdef LIN_ADVANCE
if (current_block->use_advance_lead) {
current_estep_rate = ((unsigned long)acc_step_rate * current_block->abs_adv_steps_multiplier8) >> 17;
final_estep_rate = (current_block->nominal_rate * current_block->abs_adv_steps_multiplier8) >> 17;
}
#endif
2016-07-22 13:28:01 +00:00
}
// "The Stepper Driver Interrupt" - This timer interrupt is the workhorse.
// It pops blocks from the block_buffer and executes them by pulsing the stepper pins appropriately.
2017-07-06 23:58:02 +00:00
ISR(TIMER1_COMPA_vect) {
2017-12-10 19:38:09 +00:00
#ifdef DEBUG_STACK_MONITOR
uint16_t sp = SPL + 256 * SPH;
if (sp < SP_min) SP_min = sp;
#endif //DEBUG_STACK_MONITOR
2017-07-06 23:58:02 +00:00
#ifdef LIN_ADVANCE
advance_isr_scheduler();
#else
isr();
#endif
}
void isr() {
2017-07-01 22:11:21 +00:00
//if (UVLO) uvlo();
2016-07-22 13:28:01 +00:00
// If there is no current block, attempt to pop one from the buffer
if (current_block == NULL) {
// Anything in the buffer?
current_block = plan_get_current_block();
if (current_block != NULL) {
#ifdef PAT9125
fsensor_counter = 0;
fsensor_st_block_begin(current_block);
#endif //PAT9125
// The busy flag is set by the plan_get_current_block() call.
2016-07-22 13:28:01 +00:00
// current_block->busy = true;
trapezoid_generator_reset();
counter_x = -(current_block->step_event_count >> 1);
counter_y = counter_x;
counter_z = counter_x;
counter_e = counter_x;
step_events_completed = 0;
#ifdef Z_LATE_ENABLE
if(current_block->steps_z > 0) {
enable_z();
2017-07-06 23:58:02 +00:00
_NEXT_ISR(2000); //1ms wait
2016-07-22 13:28:01 +00:00
return;
}
#endif
}
else {
2017-07-06 23:58:02 +00:00
_NEXT_ISR(2000); // 1kHz.
2016-07-22 13:28:01 +00:00
}
}
2017-09-22 17:28:32 +00:00
LastStepMask = 0;
2016-07-22 13:28:01 +00:00
if (current_block != NULL) {
// Set directions TO DO This should be done once during init of trapezoid. Endstops -> interrupt
out_bits = current_block->direction_bits;
// Set the direction bits (X_AXIS=A_AXIS and Y_AXIS=B_AXIS for COREXY)
if((out_bits & (1<<X_AXIS))!=0){
WRITE_NC(X_DIR_PIN, INVERT_X_DIR);
2016-07-22 13:28:01 +00:00
count_direction[X_AXIS]=-1;
}
else{
WRITE_NC(X_DIR_PIN, !INVERT_X_DIR);
2016-07-22 13:28:01 +00:00
count_direction[X_AXIS]=1;
}
if((out_bits & (1<<Y_AXIS))!=0){
WRITE_NC(Y_DIR_PIN, INVERT_Y_DIR);
2016-07-22 13:28:01 +00:00
#ifdef Y_DUAL_STEPPER_DRIVERS
WRITE_NC(Y2_DIR_PIN, !(INVERT_Y_DIR == INVERT_Y2_VS_Y_DIR));
2016-07-22 13:28:01 +00:00
#endif
count_direction[Y_AXIS]=-1;
}
else{
WRITE_NC(Y_DIR_PIN, !INVERT_Y_DIR);
2016-07-22 13:28:01 +00:00
#ifdef Y_DUAL_STEPPER_DRIVERS
WRITE_NC(Y2_DIR_PIN, (INVERT_Y_DIR == INVERT_Y2_VS_Y_DIR));
2016-07-22 13:28:01 +00:00
#endif
count_direction[Y_AXIS]=1;
}
// Set direction en check limit switches
#ifndef COREXY
if ((out_bits & (1<<X_AXIS)) != 0) { // stepping along -X axis
#else
if ((((out_bits & (1<<X_AXIS)) != 0)&&(out_bits & (1<<Y_AXIS)) != 0)) { //-X occurs for -A and -B
#endif
CHECK_ENDSTOPS
{
{
#if ( (defined(X_MIN_PIN) && (X_MIN_PIN > -1)) || defined(TMC2130_SG_HOMING) ) && !defined(DEBUG_DISABLE_XMINLIMIT)
#ifdef TMC2130_SG_HOMING
// Stall guard homing turned on
x_min_endstop = (READ(X_TMC2130_DIAG) != 0);
#else
// Normal homing
x_min_endstop = (READ(X_MIN_PIN) != X_MIN_ENDSTOP_INVERTING);
#endif
2016-07-22 13:28:01 +00:00
if(x_min_endstop && old_x_min_endstop && (current_block->steps_x > 0)) {
endstops_trigsteps[X_AXIS] = count_position[X_AXIS];
endstop_x_hit=true;
step_events_completed = current_block->step_event_count;
}
old_x_min_endstop = x_min_endstop;
#endif
}
}
}
else { // +direction
CHECK_ENDSTOPS
{
{
#if ( (defined(X_MAX_PIN) && (X_MAX_PIN > -1)) || defined(TMC2130_SG_HOMING) ) && !defined(DEBUG_DISABLE_XMAXLIMIT)
#ifdef TMC2130_SG_HOMING
// Stall guard homing turned on
x_max_endstop = (READ(X_TMC2130_DIAG) != 0);
#else
// Normal homing
x_max_endstop = (READ(X_MAX_PIN) != X_MAX_ENDSTOP_INVERTING);
#endif
2016-07-22 13:28:01 +00:00
if(x_max_endstop && old_x_max_endstop && (current_block->steps_x > 0)){
endstops_trigsteps[X_AXIS] = count_position[X_AXIS];
endstop_x_hit=true;
step_events_completed = current_block->step_event_count;
}
old_x_max_endstop = x_max_endstop;
#endif
}
}
}
#ifndef COREXY
if ((out_bits & (1<<Y_AXIS)) != 0) { // -direction
#else
if ((((out_bits & (1<<X_AXIS)) != 0)&&(out_bits & (1<<Y_AXIS)) == 0)) { // -Y occurs for -A and +B
#endif
CHECK_ENDSTOPS
{
#if ( (defined(Y_MIN_PIN) && (Y_MIN_PIN > -1)) || defined(TMC2130_SG_HOMING) ) && !defined(DEBUG_DISABLE_YMINLIMIT)
#ifdef TMC2130_SG_HOMING
// Stall guard homing turned on
y_min_endstop = (READ(Y_TMC2130_DIAG) != 0);
#else
// Normal homing
y_min_endstop = (READ(Y_MIN_PIN) != Y_MIN_ENDSTOP_INVERTING);
#endif
2016-07-22 13:28:01 +00:00
if(y_min_endstop && old_y_min_endstop && (current_block->steps_y > 0)) {
endstops_trigsteps[Y_AXIS] = count_position[Y_AXIS];
endstop_y_hit=true;
step_events_completed = current_block->step_event_count;
}
old_y_min_endstop = y_min_endstop;
#endif
}
}
else { // +direction
CHECK_ENDSTOPS
{
#if ( (defined(Y_MAX_PIN) && (Y_MAX_PIN > -1)) || defined(TMC2130_SG_HOMING) ) && !defined(DEBUG_DISABLE_YMAXLIMIT)
#ifdef TMC2130_SG_HOMING
// Stall guard homing turned on
y_max_endstop = (READ(Y_TMC2130_DIAG) != 0);
#else
// Normal homing
y_max_endstop = (READ(Y_MAX_PIN) != Y_MAX_ENDSTOP_INVERTING);
#endif
2016-07-22 13:28:01 +00:00
if(y_max_endstop && old_y_max_endstop && (current_block->steps_y > 0)){
endstops_trigsteps[Y_AXIS] = count_position[Y_AXIS];
endstop_y_hit=true;
step_events_completed = current_block->step_event_count;
}
old_y_max_endstop = y_max_endstop;
#endif
}
}
if ((out_bits & (1<<Z_AXIS)) != 0) { // -direction
WRITE_NC(Z_DIR_PIN,INVERT_Z_DIR);
2016-07-22 13:28:01 +00:00
#ifdef Z_DUAL_STEPPER_DRIVERS
WRITE_NC(Z2_DIR_PIN,INVERT_Z_DIR);
2016-07-22 13:28:01 +00:00
#endif
count_direction[Z_AXIS]=-1;
if(check_endstops && ! check_z_endstop)
{
#if defined(Z_MIN_PIN) && (Z_MIN_PIN > -1) && !defined(DEBUG_DISABLE_ZMINLIMIT)
#ifdef TMC2130_SG_HOMING
// Stall guard homing turned on
z_min_endstop = (READ(Z_MIN_PIN) != Z_MIN_ENDSTOP_INVERTING) || (READ(Z_TMC2130_DIAG) != 0);
#else
z_min_endstop = (READ(Z_MIN_PIN) != Z_MIN_ENDSTOP_INVERTING);
#endif //TMC2130_SG_HOMING
2016-07-22 13:28:01 +00:00
if(z_min_endstop && old_z_min_endstop && (current_block->steps_z > 0)) {
endstops_trigsteps[Z_AXIS] = count_position[Z_AXIS];
endstop_z_hit=true;
step_events_completed = current_block->step_event_count;
}
old_z_min_endstop = z_min_endstop;
#endif
}
}
else { // +direction
WRITE_NC(Z_DIR_PIN,!INVERT_Z_DIR);
2016-07-22 13:28:01 +00:00
#ifdef Z_DUAL_STEPPER_DRIVERS
WRITE_NC(Z2_DIR_PIN,!INVERT_Z_DIR);
2016-07-22 13:28:01 +00:00
#endif
count_direction[Z_AXIS]=1;
CHECK_ENDSTOPS
{
#if defined(Z_MAX_PIN) && (Z_MAX_PIN > -1) && !defined(DEBUG_DISABLE_ZMAXLIMIT)
#ifdef TMC2130_SG_HOMING
// Stall guard homing turned on
z_max_endstop = (READ(Z_TMC2130_DIAG) != 0);
#else
z_max_endstop = (READ(Z_MAX_PIN) != Z_MAX_ENDSTOP_INVERTING);
#endif //TMC2130_SG_HOMING
2016-07-22 13:28:01 +00:00
if(z_max_endstop && old_z_max_endstop && (current_block->steps_z > 0)) {
endstops_trigsteps[Z_AXIS] = count_position[Z_AXIS];
endstop_z_hit=true;
step_events_completed = current_block->step_event_count;
}
old_z_max_endstop = z_max_endstop;
#endif
}
}
// Supporting stopping on a trigger of the Z-stop induction sensor, not only for the Z-minus movements.
#if defined(Z_MIN_PIN) && (Z_MIN_PIN > -1) && !defined(DEBUG_DISABLE_ZMINLIMIT)
2016-07-22 13:28:01 +00:00
if(check_z_endstop) {
// Check the Z min end-stop no matter what.
// Good for searching for the center of an induction target.
#ifdef TMC2130_SG_HOMING
// Stall guard homing turned on
2018-03-04 19:49:34 +00:00
z_min_endstop = (READ(Z_MIN_PIN) != z_endstop_invert) || (READ(Z_TMC2130_DIAG) != 0);
#else
z_min_endstop = (READ(Z_MIN_PIN) != z_endstop_invert);
#endif //TMC2130_SG_HOMING
2016-07-22 13:28:01 +00:00
if(z_min_endstop && old_z_min_endstop) {
endstops_trigsteps[Z_AXIS] = count_position[Z_AXIS];
endstop_z_hit=true;
step_events_completed = current_block->step_event_count;
}
old_z_min_endstop = z_min_endstop;
}
#endif
2017-06-29 16:35:43 +00:00
if ((out_bits & (1 << E_AXIS)) != 0)
{ // -direction
//AKU
#ifdef SNMM
if (snmm_extruder == 0 || snmm_extruder == 2)
{
NORM_E_DIR();
}
else
{
REV_E_DIR();
}
#else
REV_E_DIR();
#endif // SNMM
count_direction[E_AXIS] = -1;
}
else
{ // +direction
#ifdef SNMM
if (snmm_extruder == 0 || snmm_extruder == 2)
{
REV_E_DIR();
}
else
{
NORM_E_DIR();
}
#else
NORM_E_DIR();
#endif // SNMM
count_direction[E_AXIS] = 1;
}
2016-07-22 13:28:01 +00:00
for(uint8_t i=0; i < step_loops; i++) { // Take multiple steps per interrupt (For high speed moves)
#ifndef AT90USB
2016-07-22 13:28:01 +00:00
MSerial.checkRx(); // Check for serial chars.
#endif //RP - returned, because missing characters
2016-07-22 13:28:01 +00:00
2017-07-06 23:58:02 +00:00
#ifdef LIN_ADVANCE
counter_e += current_block->steps_e;
if (counter_e > 0) {
counter_e -= current_block->step_event_count;
count_position[E_AXIS] += count_direction[E_AXIS];
((out_bits&(1<<E_AXIS))!=0) ? --e_steps : ++e_steps;
}
#endif
2016-07-22 13:28:01 +00:00
counter_x += current_block->steps_x;
if (counter_x > 0) {
WRITE_NC(X_STEP_PIN, !INVERT_X_STEP_PIN);
2017-09-22 17:28:32 +00:00
LastStepMask |= X_AXIS_MASK;
#ifdef DEBUG_XSTEP_DUP_PIN
WRITE_NC(DEBUG_XSTEP_DUP_PIN,!INVERT_X_STEP_PIN);
#endif //DEBUG_XSTEP_DUP_PIN
2016-07-22 13:28:01 +00:00
counter_x -= current_block->step_event_count;
count_position[X_AXIS]+=count_direction[X_AXIS];
WRITE_NC(X_STEP_PIN, INVERT_X_STEP_PIN);
#ifdef DEBUG_XSTEP_DUP_PIN
WRITE_NC(DEBUG_XSTEP_DUP_PIN,INVERT_X_STEP_PIN);
#endif //DEBUG_XSTEP_DUP_PIN
2016-07-22 13:28:01 +00:00
}
counter_y += current_block->steps_y;
if (counter_y > 0) {
WRITE_NC(Y_STEP_PIN, !INVERT_Y_STEP_PIN);
2017-09-22 17:28:32 +00:00
LastStepMask |= Y_AXIS_MASK;
#ifdef DEBUG_YSTEP_DUP_PIN
WRITE_NC(DEBUG_YSTEP_DUP_PIN,!INVERT_Y_STEP_PIN);
#endif //DEBUG_YSTEP_DUP_PIN
2016-07-22 13:28:01 +00:00
#ifdef Y_DUAL_STEPPER_DRIVERS
WRITE_NC(Y2_STEP_PIN, !INVERT_Y_STEP_PIN);
2016-07-22 13:28:01 +00:00
#endif
counter_y -= current_block->step_event_count;
count_position[Y_AXIS]+=count_direction[Y_AXIS];
WRITE_NC(Y_STEP_PIN, INVERT_Y_STEP_PIN);
#ifdef DEBUG_YSTEP_DUP_PIN
WRITE_NC(DEBUG_YSTEP_DUP_PIN,INVERT_Y_STEP_PIN);
#endif //DEBUG_YSTEP_DUP_PIN
2016-07-22 13:28:01 +00:00
#ifdef Y_DUAL_STEPPER_DRIVERS
WRITE_NC(Y2_STEP_PIN, INVERT_Y_STEP_PIN);
2016-07-22 13:28:01 +00:00
#endif
}
counter_z += current_block->steps_z;
if (counter_z > 0) {
WRITE_NC(Z_STEP_PIN, !INVERT_Z_STEP_PIN);
2017-09-22 17:28:32 +00:00
LastStepMask |= Z_AXIS_MASK;
2016-07-22 13:28:01 +00:00
#ifdef Z_DUAL_STEPPER_DRIVERS
WRITE_NC(Z2_STEP_PIN, !INVERT_Z_STEP_PIN);
2016-07-22 13:28:01 +00:00
#endif
counter_z -= current_block->step_event_count;
count_position[Z_AXIS]+=count_direction[Z_AXIS];
WRITE_NC(Z_STEP_PIN, INVERT_Z_STEP_PIN);
2016-07-22 13:28:01 +00:00
#ifdef Z_DUAL_STEPPER_DRIVERS
WRITE_NC(Z2_STEP_PIN, INVERT_Z_STEP_PIN);
2016-07-22 13:28:01 +00:00
#endif
}
2017-07-06 23:58:02 +00:00
#ifndef LIN_ADVANCE
2016-07-22 13:28:01 +00:00
counter_e += current_block->steps_e;
if (counter_e > 0) {
WRITE_E_STEP(!INVERT_E_STEP_PIN);
counter_e -= current_block->step_event_count;
count_position[E_AXIS]+=count_direction[E_AXIS];
WRITE_E_STEP(INVERT_E_STEP_PIN);
#ifdef PAT9125
fsensor_counter++;
#endif //PAT9125
2016-07-22 13:28:01 +00:00
}
2017-07-06 23:58:02 +00:00
#endif
2016-07-22 13:28:01 +00:00
step_events_completed += 1;
if(step_events_completed >= current_block->step_event_count) break;
}
2017-07-06 23:58:02 +00:00
#ifdef LIN_ADVANCE
if (current_block->use_advance_lead) {
const int delta_adv_steps = current_estep_rate - current_adv_steps;
current_adv_steps += delta_adv_steps;
e_steps += delta_adv_steps;
}
// If we have esteps to execute, fire the next advance_isr "now"
if (e_steps) nextAdvanceISR = 0;
#endif
2016-07-22 13:28:01 +00:00
// Calculare new timer value
unsigned short timer;
uint16_t step_rate;
2016-07-22 13:28:01 +00:00
if (step_events_completed <= (unsigned long int)current_block->accelerate_until) {
// v = t * a -> acc_step_rate = acceleration_time * current_block->acceleration_rate
2016-07-22 13:28:01 +00:00
MultiU24X24toH16(acc_step_rate, acceleration_time, current_block->acceleration_rate);
acc_step_rate += current_block->initial_rate;
// upper limit
if(acc_step_rate > current_block->nominal_rate)
acc_step_rate = current_block->nominal_rate;
// step_rate to timer interval
timer = calc_timer(acc_step_rate);
2017-07-06 23:58:02 +00:00
_NEXT_ISR(timer);
2016-07-22 13:28:01 +00:00
acceleration_time += timer;
2017-07-06 23:58:02 +00:00
#ifdef LIN_ADVANCE
if (current_block->use_advance_lead) {
current_estep_rate = ((uint32_t)acc_step_rate * current_block->abs_adv_steps_multiplier8) >> 17;
}
eISR_Rate = ADV_RATE(timer, step_loops);
#endif
2016-07-22 13:28:01 +00:00
}
else if (step_events_completed > (unsigned long int)current_block->decelerate_after) {
MultiU24X24toH16(step_rate, deceleration_time, current_block->acceleration_rate);
if(step_rate > acc_step_rate) { // Check step_rate stays positive
step_rate = current_block->final_rate;
}
else {
step_rate = acc_step_rate - step_rate; // Decelerate from aceleration end point.
}
// lower limit
if(step_rate < current_block->final_rate)
step_rate = current_block->final_rate;
// step_rate to timer interval
timer = calc_timer(step_rate);
2017-07-06 23:58:02 +00:00
_NEXT_ISR(timer);
2016-07-22 13:28:01 +00:00
deceleration_time += timer;
2017-07-06 23:58:02 +00:00
#ifdef LIN_ADVANCE
if (current_block->use_advance_lead) {
current_estep_rate = ((uint32_t)step_rate * current_block->abs_adv_steps_multiplier8) >> 17;
}
eISR_Rate = ADV_RATE(timer, step_loops);
#endif
2016-07-22 13:28:01 +00:00
}
else {
2017-07-06 23:58:02 +00:00
#ifdef LIN_ADVANCE
if (current_block->use_advance_lead)
current_estep_rate = final_estep_rate;
eISR_Rate = ADV_RATE(OCR1A_nominal, step_loops_nominal);
#endif
_NEXT_ISR(OCR1A_nominal);
2016-07-22 13:28:01 +00:00
// ensure we're running at the correct step rate, even if we just came off an acceleration
step_loops = step_loops_nominal;
}
// If current block is finished, reset pointer
if (step_events_completed >= current_block->step_event_count) {
#ifdef PAT9125
fsensor_st_block_chunk(current_block, fsensor_counter);
fsensor_counter = 0;
#endif //PAT9125
2016-07-22 13:28:01 +00:00
current_block = NULL;
plan_discard_current_block();
}
#ifdef PAT9125
else if (fsensor_counter >= fsensor_chunk_len)
{
fsensor_st_block_chunk(current_block, fsensor_counter);
fsensor_counter = 0;
}
#endif //PAT9125
2016-07-22 13:28:01 +00:00
}
2017-09-22 17:28:32 +00:00
#ifdef TMC2130
tmc2130_st_isr(LastStepMask);
#endif //TMC2130
#ifdef DEBUG_STEPPER_TIMER_MISSED
// Verify whether the next planned timer interrupt has not been missed already.
// This debugging test takes < 1.125us
// This skews the profiling slightly as the fastest stepper timer
// interrupt repeats at a 100us rate (10kHz).
if (OCR1A < TCNT1) {
stepper_timer_overflow_state = true;
WRITE_NC(BEEPER, HIGH);
SERIAL_PROTOCOLPGM("Stepper timer overflow ");
SERIAL_PROTOCOL(OCR1A);
SERIAL_PROTOCOLPGM("<");
SERIAL_PROTOCOL(TCNT1);
SERIAL_PROTOCOLLN("!");
}
#endif
2016-07-22 13:28:01 +00:00
}
2017-07-06 23:58:02 +00:00
#ifdef LIN_ADVANCE
// Timer interrupt for E. e_steps is set in the main routine.
void advance_isr() {
if (e_steps) {
bool dir =
#ifdef SNMM
((e_steps < 0) == (snmm_extruder & 1))
#else
(e_steps < 0)
#endif
? INVERT_E0_DIR : !INVERT_E0_DIR; //If we have SNMM, reverse every second extruder.
WRITE_NC(E0_DIR_PIN, dir);
2017-07-06 23:58:02 +00:00
for (uint8_t i = step_loops; e_steps && i--;) {
WRITE_NC(E0_STEP_PIN, !INVERT_E_STEP_PIN);
2017-07-06 23:58:02 +00:00
e_steps < 0 ? ++e_steps : --e_steps;
WRITE_NC(E0_STEP_PIN, INVERT_E_STEP_PIN);
#ifdef PAT9125
fsensor_counter++;
#endif //PAT9125
2017-07-06 23:58:02 +00:00
}
}
2017-11-14 12:57:32 +00:00
else {
eISR_Rate = ADV_NEVER;
}
nextAdvanceISR = eISR_Rate;
2017-07-06 23:58:02 +00:00
}
void advance_isr_scheduler() {
// Run main stepping ISR if flagged
if (!nextMainISR) isr();
// Run Advance stepping ISR if flagged
if (!nextAdvanceISR) advance_isr();
// Is the next advance ISR scheduled before the next main ISR?
if (nextAdvanceISR <= nextMainISR) {
// Set up the next interrupt
OCR1A = nextAdvanceISR;
// New interval for the next main ISR
if (nextMainISR) nextMainISR -= nextAdvanceISR;
// Will call Stepper::advance_isr on the next interrupt
nextAdvanceISR = 0;
}
else {
// The next main ISR comes first
OCR1A = nextMainISR;
// New interval for the next advance ISR, if any
if (nextAdvanceISR && nextAdvanceISR != ADV_NEVER)
nextAdvanceISR -= nextMainISR;
// Will call Stepper::isr on the next interrupt
nextMainISR = 0;
}
// Don't run the ISR faster than possible
if (OCR1A < TCNT1 + 16) OCR1A = TCNT1 + 16;
}
void clear_current_adv_vars() {
e_steps = 0; //Should be already 0 at an filament change event, but just to be sure..
current_adv_steps = 0;
}
#endif // LIN_ADVANCE
2016-07-22 13:28:01 +00:00
void st_init()
{
#ifdef TMC2130
2017-06-29 16:35:43 +00:00
tmc2130_init();
#endif //TMC2130
2017-06-29 16:35:43 +00:00
2016-07-22 13:28:01 +00:00
digipot_init(); //Initialize Digipot Motor Current
microstep_init(); //Initialize Microstepping Pins
//Initialize Dir Pins
#if defined(X_DIR_PIN) && X_DIR_PIN > -1
SET_OUTPUT(X_DIR_PIN);
#endif
#if defined(X2_DIR_PIN) && X2_DIR_PIN > -1
SET_OUTPUT(X2_DIR_PIN);
#endif
#if defined(Y_DIR_PIN) && Y_DIR_PIN > -1
SET_OUTPUT(Y_DIR_PIN);
#if defined(Y_DUAL_STEPPER_DRIVERS) && defined(Y2_DIR_PIN) && (Y2_DIR_PIN > -1)
SET_OUTPUT(Y2_DIR_PIN);
#endif
#endif
#if defined(Z_DIR_PIN) && Z_DIR_PIN > -1
SET_OUTPUT(Z_DIR_PIN);
#if defined(Z_DUAL_STEPPER_DRIVERS) && defined(Z2_DIR_PIN) && (Z2_DIR_PIN > -1)
SET_OUTPUT(Z2_DIR_PIN);
#endif
#endif
#if defined(E0_DIR_PIN) && E0_DIR_PIN > -1
SET_OUTPUT(E0_DIR_PIN);
#endif
#if defined(E1_DIR_PIN) && (E1_DIR_PIN > -1)
SET_OUTPUT(E1_DIR_PIN);
#endif
#if defined(E2_DIR_PIN) && (E2_DIR_PIN > -1)
SET_OUTPUT(E2_DIR_PIN);
#endif
//Initialize Enable Pins - steppers default to disabled.
#if defined(X_ENABLE_PIN) && X_ENABLE_PIN > -1
SET_OUTPUT(X_ENABLE_PIN);
if(!X_ENABLE_ON) WRITE(X_ENABLE_PIN,HIGH);
#endif
#if defined(X2_ENABLE_PIN) && X2_ENABLE_PIN > -1
SET_OUTPUT(X2_ENABLE_PIN);
if(!X_ENABLE_ON) WRITE(X2_ENABLE_PIN,HIGH);
#endif
#if defined(Y_ENABLE_PIN) && Y_ENABLE_PIN > -1
SET_OUTPUT(Y_ENABLE_PIN);
if(!Y_ENABLE_ON) WRITE(Y_ENABLE_PIN,HIGH);
#if defined(Y_DUAL_STEPPER_DRIVERS) && defined(Y2_ENABLE_PIN) && (Y2_ENABLE_PIN > -1)
SET_OUTPUT(Y2_ENABLE_PIN);
if(!Y_ENABLE_ON) WRITE(Y2_ENABLE_PIN,HIGH);
#endif
#endif
#if defined(Z_ENABLE_PIN) && Z_ENABLE_PIN > -1
SET_OUTPUT(Z_ENABLE_PIN);
if(!Z_ENABLE_ON) WRITE(Z_ENABLE_PIN,HIGH);
#if defined(Z_DUAL_STEPPER_DRIVERS) && defined(Z2_ENABLE_PIN) && (Z2_ENABLE_PIN > -1)
SET_OUTPUT(Z2_ENABLE_PIN);
if(!Z_ENABLE_ON) WRITE(Z2_ENABLE_PIN,HIGH);
#endif
#endif
#if defined(E0_ENABLE_PIN) && (E0_ENABLE_PIN > -1)
SET_OUTPUT(E0_ENABLE_PIN);
if(!E_ENABLE_ON) WRITE(E0_ENABLE_PIN,HIGH);
#endif
#if defined(E1_ENABLE_PIN) && (E1_ENABLE_PIN > -1)
SET_OUTPUT(E1_ENABLE_PIN);
if(!E_ENABLE_ON) WRITE(E1_ENABLE_PIN,HIGH);
#endif
#if defined(E2_ENABLE_PIN) && (E2_ENABLE_PIN > -1)
SET_OUTPUT(E2_ENABLE_PIN);
if(!E_ENABLE_ON) WRITE(E2_ENABLE_PIN,HIGH);
#endif
//endstops and pullups
#ifdef TMC2130_SG_HOMING
SET_INPUT(X_TMC2130_DIAG);
WRITE(X_TMC2130_DIAG,HIGH);
SET_INPUT(Y_TMC2130_DIAG);
WRITE(Y_TMC2130_DIAG,HIGH);
SET_INPUT(Z_TMC2130_DIAG);
WRITE(Z_TMC2130_DIAG,HIGH);
SET_INPUT(E0_TMC2130_DIAG);
WRITE(E0_TMC2130_DIAG,HIGH);
#endif
2016-07-22 13:28:01 +00:00
#if defined(X_MIN_PIN) && X_MIN_PIN > -1
SET_INPUT(X_MIN_PIN);
#ifdef ENDSTOPPULLUP_XMIN
WRITE(X_MIN_PIN,HIGH);
#endif
#endif
#if defined(Y_MIN_PIN) && Y_MIN_PIN > -1
SET_INPUT(Y_MIN_PIN);
#ifdef ENDSTOPPULLUP_YMIN
WRITE(Y_MIN_PIN,HIGH);
#endif
#endif
#if defined(Z_MIN_PIN) && Z_MIN_PIN > -1
SET_INPUT(Z_MIN_PIN);
#ifdef ENDSTOPPULLUP_ZMIN
WRITE(Z_MIN_PIN,HIGH);
#endif
#endif
#if defined(X_MAX_PIN) && X_MAX_PIN > -1
SET_INPUT(X_MAX_PIN);
#ifdef ENDSTOPPULLUP_XMAX
WRITE(X_MAX_PIN,HIGH);
#endif
#endif
#if defined(Y_MAX_PIN) && Y_MAX_PIN > -1
SET_INPUT(Y_MAX_PIN);
#ifdef ENDSTOPPULLUP_YMAX
WRITE(Y_MAX_PIN,HIGH);
#endif
#endif
#if defined(Z_MAX_PIN) && Z_MAX_PIN > -1
SET_INPUT(Z_MAX_PIN);
#ifdef ENDSTOPPULLUP_ZMAX
WRITE(Z_MAX_PIN,HIGH);
#endif
#endif
#if (defined(FANCHECK) && defined(TACH_0) && (TACH_0 > -1))
SET_INPUT(TACH_0);
#ifdef TACH0PULLUP
WRITE(TACH_0, HIGH);
#endif
#endif
2016-07-22 13:28:01 +00:00
//Initialize Step Pins
#if defined(X_STEP_PIN) && (X_STEP_PIN > -1)
2016-07-22 13:28:01 +00:00
SET_OUTPUT(X_STEP_PIN);
WRITE(X_STEP_PIN,INVERT_X_STEP_PIN);
#ifdef DEBUG_XSTEP_DUP_PIN
SET_OUTPUT(DEBUG_XSTEP_DUP_PIN);
WRITE(DEBUG_XSTEP_DUP_PIN,INVERT_X_STEP_PIN);
#endif //DEBUG_XSTEP_DUP_PIN
2016-07-22 13:28:01 +00:00
disable_x();
#endif
#if defined(X2_STEP_PIN) && (X2_STEP_PIN > -1)
SET_OUTPUT(X2_STEP_PIN);
WRITE(X2_STEP_PIN,INVERT_X_STEP_PIN);
disable_x();
#endif
#if defined(Y_STEP_PIN) && (Y_STEP_PIN > -1)
SET_OUTPUT(Y_STEP_PIN);
WRITE(Y_STEP_PIN,INVERT_Y_STEP_PIN);
#ifdef DEBUG_YSTEP_DUP_PIN
SET_OUTPUT(DEBUG_YSTEP_DUP_PIN);
WRITE(DEBUG_YSTEP_DUP_PIN,INVERT_Y_STEP_PIN);
#endif //DEBUG_YSTEP_DUP_PIN
2016-07-22 13:28:01 +00:00
#if defined(Y_DUAL_STEPPER_DRIVERS) && defined(Y2_STEP_PIN) && (Y2_STEP_PIN > -1)
SET_OUTPUT(Y2_STEP_PIN);
WRITE(Y2_STEP_PIN,INVERT_Y_STEP_PIN);
#endif
disable_y();
#endif
#if defined(Z_STEP_PIN) && (Z_STEP_PIN > -1)
SET_OUTPUT(Z_STEP_PIN);
WRITE(Z_STEP_PIN,INVERT_Z_STEP_PIN);
#if defined(Z_DUAL_STEPPER_DRIVERS) && defined(Z2_STEP_PIN) && (Z2_STEP_PIN > -1)
SET_OUTPUT(Z2_STEP_PIN);
WRITE(Z2_STEP_PIN,INVERT_Z_STEP_PIN);
#endif
disable_z();
#endif
#if defined(E0_STEP_PIN) && (E0_STEP_PIN > -1)
SET_OUTPUT(E0_STEP_PIN);
WRITE(E0_STEP_PIN,INVERT_E_STEP_PIN);
disable_e0();
#endif
#if defined(E1_STEP_PIN) && (E1_STEP_PIN > -1)
SET_OUTPUT(E1_STEP_PIN);
WRITE(E1_STEP_PIN,INVERT_E_STEP_PIN);
disable_e1();
#endif
#if defined(E2_STEP_PIN) && (E2_STEP_PIN > -1)
SET_OUTPUT(E2_STEP_PIN);
WRITE(E2_STEP_PIN,INVERT_E_STEP_PIN);
disable_e2();
#endif
// waveform generation = 0100 = CTC
TCCR1B &= ~(1<<WGM13);
TCCR1B |= (1<<WGM12);
TCCR1A &= ~(1<<WGM11);
TCCR1A &= ~(1<<WGM10);
// output mode = 00 (disconnected)
TCCR1A &= ~(3<<COM1A0);
TCCR1A &= ~(3<<COM1B0);
// Set the timer pre-scaler
// Generally we use a divider of 8, resulting in a 2MHz timer
// frequency on a 16MHz MCU. If you are going to change this, be
// sure to regenerate speed_lookuptable.h with
// create_speed_lookuptable.py
TCCR1B = (TCCR1B & ~(0x07<<CS10)) | (2<<CS10);
// Plan the first interrupt after 8ms from now.
2016-07-22 13:28:01 +00:00
OCR1A = 0x4000;
TCNT1 = 0;
ENABLE_STEPPER_DRIVER_INTERRUPT();
2017-07-06 23:58:02 +00:00
#ifdef LIN_ADVANCE
e_steps = 0;
current_adv_steps = 0;
#endif
2016-07-22 13:28:01 +00:00
enable_endstops(true); // Start with endstops active. After homing they can be disabled
sei();
}
// Block until all buffered steps are executed
void st_synchronize()
{
while(blocks_queued())
{
#ifdef TMC2130
manage_heater();
// Vojtech: Don't disable motors inside the planner!
if (!tmc2130_update_sg())
{
manage_inactivity(true);
lcd_update();
}
#else //TMC2130
manage_heater();
// Vojtech: Don't disable motors inside the planner!
manage_inactivity(true);
lcd_update();
#endif //TMC2130
}
2016-07-22 13:28:01 +00:00
}
void st_set_position(const long &x, const long &y, const long &z, const long &e)
{
CRITICAL_SECTION_START;
// Copy 4x4B.
// This block locks the interrupts globally for 4.56 us,
// which corresponds to a maximum repeat frequency of 219.18 kHz.
// This blocking is safe in the context of a 10kHz stepper driver interrupt
// or a 115200 Bd serial line receive interrupt, which will not trigger faster than 12kHz.
2016-07-22 13:28:01 +00:00
count_position[X_AXIS] = x;
count_position[Y_AXIS] = y;
count_position[Z_AXIS] = z;
count_position[E_AXIS] = e;
CRITICAL_SECTION_END;
}
void st_set_e_position(const long &e)
{
CRITICAL_SECTION_START;
count_position[E_AXIS] = e;
CRITICAL_SECTION_END;
}
long st_get_position(uint8_t axis)
{
long count_pos;
CRITICAL_SECTION_START;
count_pos = count_position[axis];
CRITICAL_SECTION_END;
return count_pos;
}
void st_get_position_xy(long &x, long &y)
{
CRITICAL_SECTION_START;
x = count_position[X_AXIS];
y = count_position[Y_AXIS];
CRITICAL_SECTION_END;
}
2016-07-22 13:28:01 +00:00
float st_get_position_mm(uint8_t axis)
{
float steper_position_in_steps = st_get_position(axis);
return steper_position_in_steps / axis_steps_per_unit[axis];
}
void finishAndDisableSteppers()
{
st_synchronize();
disable_x();
disable_y();
disable_z();
disable_e0();
disable_e1();
disable_e2();
}
void quickStop()
{
DISABLE_STEPPER_DRIVER_INTERRUPT();
while (blocks_queued()) plan_discard_current_block();
current_block = NULL;
st_reset_timer();
2016-07-22 13:28:01 +00:00
ENABLE_STEPPER_DRIVER_INTERRUPT();
}
#ifdef BABYSTEPPING
void babystep(const uint8_t axis,const bool direction)
{
//MUST ONLY BE CALLED BY A ISR, it depends on that no other ISR interrupts this
//store initial pin states
switch(axis)
{
case X_AXIS:
{
enable_x();
uint8_t old_x_dir_pin= READ(X_DIR_PIN); //if dualzstepper, both point to same direction.
//setup new step
WRITE(X_DIR_PIN,(INVERT_X_DIR)^direction);
//perform step
WRITE(X_STEP_PIN, !INVERT_X_STEP_PIN);
2017-09-22 17:28:32 +00:00
LastStepMask |= X_AXIS_MASK;
#ifdef DEBUG_XSTEP_DUP_PIN
WRITE(DEBUG_XSTEP_DUP_PIN,!INVERT_X_STEP_PIN);
#endif //DEBUG_XSTEP_DUP_PIN
2016-07-22 13:28:01 +00:00
{
2016-08-11 08:42:53 +00:00
volatile float x=1./float(axis+1)/float(axis+2); //wait a tiny bit
2016-07-22 13:28:01 +00:00
}
WRITE(X_STEP_PIN, INVERT_X_STEP_PIN);
#ifdef DEBUG_XSTEP_DUP_PIN
WRITE(DEBUG_XSTEP_DUP_PIN,INVERT_X_STEP_PIN);
#endif //DEBUG_XSTEP_DUP_PIN
2016-07-22 13:28:01 +00:00
//get old pin state back.
WRITE(X_DIR_PIN,old_x_dir_pin);
}
break;
case Y_AXIS:
{
enable_y();
uint8_t old_y_dir_pin= READ(Y_DIR_PIN); //if dualzstepper, both point to same direction.
//setup new step
WRITE(Y_DIR_PIN,(INVERT_Y_DIR)^direction);
//perform step
WRITE(Y_STEP_PIN, !INVERT_Y_STEP_PIN);
2017-09-22 17:28:32 +00:00
LastStepMask |= Y_AXIS_MASK;
#ifdef DEBUG_YSTEP_DUP_PIN
WRITE(DEBUG_YSTEP_DUP_PIN,!INVERT_Y_STEP_PIN);
#endif //DEBUG_YSTEP_DUP_PIN
2016-07-22 13:28:01 +00:00
{
2016-08-11 08:42:53 +00:00
volatile float x=1./float(axis+1)/float(axis+2); //wait a tiny bit
2016-07-22 13:28:01 +00:00
}
WRITE(Y_STEP_PIN, INVERT_Y_STEP_PIN);
#ifdef DEBUG_YSTEP_DUP_PIN
WRITE(DEBUG_YSTEP_DUP_PIN,INVERT_Y_STEP_PIN);
#endif //DEBUG_YSTEP_DUP_PIN
2016-07-22 13:28:01 +00:00
//get old pin state back.
WRITE(Y_DIR_PIN,old_y_dir_pin);
}
break;
case Z_AXIS:
{
enable_z();
uint8_t old_z_dir_pin= READ(Z_DIR_PIN); //if dualzstepper, both point to same direction.
//setup new step
WRITE(Z_DIR_PIN,(INVERT_Z_DIR)^direction^BABYSTEP_INVERT_Z);
#ifdef Z_DUAL_STEPPER_DRIVERS
WRITE(Z2_DIR_PIN,(INVERT_Z_DIR)^direction^BABYSTEP_INVERT_Z);
#endif
//perform step
WRITE(Z_STEP_PIN, !INVERT_Z_STEP_PIN);
2017-09-22 17:28:32 +00:00
LastStepMask |= Z_AXIS_MASK;
2016-07-22 13:28:01 +00:00
#ifdef Z_DUAL_STEPPER_DRIVERS
WRITE(Z2_STEP_PIN, !INVERT_Z_STEP_PIN);
#endif
//wait a tiny bit
{
2016-08-11 08:42:53 +00:00
volatile float x=1./float(axis+1); //absolutely useless
2016-07-22 13:28:01 +00:00
}
WRITE(Z_STEP_PIN, INVERT_Z_STEP_PIN);
#ifdef Z_DUAL_STEPPER_DRIVERS
WRITE(Z2_STEP_PIN, INVERT_Z_STEP_PIN);
#endif
//get old pin state back.
WRITE(Z_DIR_PIN,old_z_dir_pin);
#ifdef Z_DUAL_STEPPER_DRIVERS
WRITE(Z2_DIR_PIN,old_z_dir_pin);
#endif
}
break;
default: break;
}
}
#endif //BABYSTEPPING
void digitalPotWrite(int address, int value) // From Arduino DigitalPotControl example
{
#if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
digitalWrite(DIGIPOTSS_PIN,LOW); // take the SS pin low to select the chip
SPI.transfer(address); // send in the address and value via SPI:
SPI.transfer(value);
digitalWrite(DIGIPOTSS_PIN,HIGH); // take the SS pin high to de-select the chip:
//delay(10);
#endif
}
void EEPROM_read_st(int pos, uint8_t* value, uint8_t size)
{
do
{
*value = eeprom_read_byte((unsigned char*)pos);
pos++;
value++;
}while(--size);
}
void digipot_init() //Initialize Digipot Motor Current
{
EEPROM_read_st(EEPROM_SILENT,(uint8_t*)&SilentMode,sizeof(SilentMode));
#if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
if(SilentMode == 0){
const uint8_t digipot_motor_current[] = DIGIPOT_MOTOR_CURRENT_LOUD;
}else{
const uint8_t digipot_motor_current[] = DIGIPOT_MOTOR_CURRENT;
}
SPI.begin();
pinMode(DIGIPOTSS_PIN, OUTPUT);
for(int i=0;i<=4;i++)
//digitalPotWrite(digipot_ch[i], digipot_motor_current[i]);
digipot_current(i,digipot_motor_current[i]);
#endif
#ifdef MOTOR_CURRENT_PWM_XY_PIN
pinMode(MOTOR_CURRENT_PWM_XY_PIN, OUTPUT);
pinMode(MOTOR_CURRENT_PWM_Z_PIN, OUTPUT);
pinMode(MOTOR_CURRENT_PWM_E_PIN, OUTPUT);
2017-03-24 18:47:50 +00:00
if((SilentMode == 0) || (farm_mode) ){
2016-07-22 13:28:01 +00:00
motor_current_setting[0] = motor_current_setting_loud[0];
motor_current_setting[1] = motor_current_setting_loud[1];
motor_current_setting[2] = motor_current_setting_loud[2];
}else{
motor_current_setting[0] = motor_current_setting_silent[0];
motor_current_setting[1] = motor_current_setting_silent[1];
motor_current_setting[2] = motor_current_setting_silent[2];
}
digipot_current(0, motor_current_setting[0]);
digipot_current(1, motor_current_setting[1]);
digipot_current(2, motor_current_setting[2]);
//Set timer5 to 31khz so the PWM of the motor power is as constant as possible. (removes a buzzing noise)
TCCR5B = (TCCR5B & ~(_BV(CS50) | _BV(CS51) | _BV(CS52))) | _BV(CS50);
#endif
}
void digipot_current(uint8_t driver, int current)
{
#if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
const uint8_t digipot_ch[] = DIGIPOT_CHANNELS;
digitalPotWrite(digipot_ch[driver], current);
#endif
#ifdef MOTOR_CURRENT_PWM_XY_PIN
if (driver == 0) analogWrite(MOTOR_CURRENT_PWM_XY_PIN, (long)current * 255L / (long)MOTOR_CURRENT_PWM_RANGE);
if (driver == 1) analogWrite(MOTOR_CURRENT_PWM_Z_PIN, (long)current * 255L / (long)MOTOR_CURRENT_PWM_RANGE);
if (driver == 2) analogWrite(MOTOR_CURRENT_PWM_E_PIN, (long)current * 255L / (long)MOTOR_CURRENT_PWM_RANGE);
#endif
}
void microstep_init()
{
const uint8_t microstep_modes[] = MICROSTEP_MODES;
#if defined(E1_MS1_PIN) && E1_MS1_PIN > -1
pinMode(E1_MS1_PIN,OUTPUT);
pinMode(E1_MS2_PIN,OUTPUT);
#endif
#if defined(X_MS1_PIN) && X_MS1_PIN > -1
pinMode(X_MS1_PIN,OUTPUT);
pinMode(X_MS2_PIN,OUTPUT);
pinMode(Y_MS1_PIN,OUTPUT);
pinMode(Y_MS2_PIN,OUTPUT);
pinMode(Z_MS1_PIN,OUTPUT);
pinMode(Z_MS2_PIN,OUTPUT);
pinMode(E0_MS1_PIN,OUTPUT);
pinMode(E0_MS2_PIN,OUTPUT);
for(int i=0;i<=4;i++) microstep_mode(i,microstep_modes[i]);
#endif
}
void microstep_ms(uint8_t driver, int8_t ms1, int8_t ms2)
{
if(ms1 > -1) switch(driver)
{
case 0: digitalWrite( X_MS1_PIN,ms1); break;
case 1: digitalWrite( Y_MS1_PIN,ms1); break;
case 2: digitalWrite( Z_MS1_PIN,ms1); break;
case 3: digitalWrite(E0_MS1_PIN,ms1); break;
#if defined(E1_MS1_PIN) && E1_MS1_PIN > -1
case 4: digitalWrite(E1_MS1_PIN,ms1); break;
#endif
}
if(ms2 > -1) switch(driver)
{
case 0: digitalWrite( X_MS2_PIN,ms2); break;
case 1: digitalWrite( Y_MS2_PIN,ms2); break;
case 2: digitalWrite( Z_MS2_PIN,ms2); break;
case 3: digitalWrite(E0_MS2_PIN,ms2); break;
#if defined(E1_MS2_PIN) && E1_MS2_PIN > -1
case 4: digitalWrite(E1_MS2_PIN,ms2); break;
#endif
}
}
void microstep_mode(uint8_t driver, uint8_t stepping_mode)
{
switch(stepping_mode)
{
case 1: microstep_ms(driver,MICROSTEP1); break;
case 2: microstep_ms(driver,MICROSTEP2); break;
case 4: microstep_ms(driver,MICROSTEP4); break;
case 8: microstep_ms(driver,MICROSTEP8); break;
case 16: microstep_ms(driver,MICROSTEP16); break;
}
}
void microstep_readings()
{
SERIAL_PROTOCOLPGM("MS1,MS2 Pins\n");
SERIAL_PROTOCOLPGM("X: ");
SERIAL_PROTOCOL( digitalRead(X_MS1_PIN));
SERIAL_PROTOCOLLN( digitalRead(X_MS2_PIN));
SERIAL_PROTOCOLPGM("Y: ");
SERIAL_PROTOCOL( digitalRead(Y_MS1_PIN));
SERIAL_PROTOCOLLN( digitalRead(Y_MS2_PIN));
SERIAL_PROTOCOLPGM("Z: ");
SERIAL_PROTOCOL( digitalRead(Z_MS1_PIN));
SERIAL_PROTOCOLLN( digitalRead(Z_MS2_PIN));
SERIAL_PROTOCOLPGM("E0: ");
SERIAL_PROTOCOL( digitalRead(E0_MS1_PIN));
SERIAL_PROTOCOLLN( digitalRead(E0_MS2_PIN));
#if defined(E1_MS1_PIN) && E1_MS1_PIN > -1
SERIAL_PROTOCOLPGM("E1: ");
SERIAL_PROTOCOL( digitalRead(E1_MS1_PIN));
SERIAL_PROTOCOLLN( digitalRead(E1_MS2_PIN));
#endif
}