Prusa-Firmware/Firmware/fancheck.cpp

301 lines
9.6 KiB
C++
Raw Normal View History

// fan control and check
#include "fancheck.h"
#include "cardreader.h"
#include "ultralcd.h"
#include "sound.h"
#include "messages.h"
#include "temperature.h"
#include "stepper.h"
#define FAN_CHECK_PERIOD 5000 //5s
#define FAN_CHECK_DURATION 100 //100ms
#ifdef FANCHECK
volatile uint8_t fan_check_error = EFCE_OK;
#endif
#if (defined(EXTRUDER_0_AUTO_FAN_PIN) && EXTRUDER_0_AUTO_FAN_PIN > -1)
#ifdef EXTRUDER_ALTFAN_DETECT
static struct
{
uint8_t isAltfan : 1;
uint8_t altfanOverride : 1;
} altfanStatus;
#endif //EXTRUDER_ALTFAN_DETECT
unsigned long extruder_autofan_last_check = _millis();
bool fan_measuring = false;
static uint8_t fanState = 0;
#endif
#if (defined(EXTRUDER_0_AUTO_FAN_PIN) && EXTRUDER_0_AUTO_FAN_PIN > -1)
#if defined(FAN_PIN) && FAN_PIN > -1
#if EXTRUDER_0_AUTO_FAN_PIN == FAN_PIN
#error "You cannot set EXTRUDER_0_AUTO_FAN_PIN equal to FAN_PIN"
#endif
#endif
void setExtruderAutoFanState(uint8_t state)
{
//If bit 1 is set (0x02), then the hotend fan speed won't be adjusted according to temperature. Useful for forcing
//the fan to either On or Off during certain tests/errors.
fanState = state;
newFanSpeed = 0;
if (fanState & 0x01)
{
#ifdef EXTRUDER_ALTFAN_DETECT
if (altfanStatus.isAltfan && !altfanStatus.altfanOverride) newFanSpeed = EXTRUDER_ALTFAN_SPEED_SILENT;
else newFanSpeed = EXTRUDER_AUTO_FAN_SPEED;
#else //EXTRUDER_ALTFAN_DETECT
newFanSpeed = EXTRUDER_AUTO_FAN_SPEED;
#endif //EXTRUDER_ALTFAN_DETECT
}
timer4_set_fan0(newFanSpeed);
}
#if (defined(FANCHECK) && (((defined(TACH_0) && (TACH_0 >-1)) || (defined(TACH_1) && (TACH_1 > -1)))))
void countFanSpeed()
{
//SERIAL_ECHOPGM("edge counter 1:"); MYSERIAL.println(fan_edge_counter[1]);
fan_speed[0] = (fan_edge_counter[0] * (float(250) / (_millis() - extruder_autofan_last_check)));
fan_speed[1] = (fan_edge_counter[1] * (float(250) / (_millis() - extruder_autofan_last_check)));
/*SERIAL_ECHOPGM("time interval: "); MYSERIAL.println(_millis() - extruder_autofan_last_check);
SERIAL_ECHOPGM("hotend fan speed:"); MYSERIAL.print(fan_speed[0]); SERIAL_ECHOPGM("; edge counter:"); MYSERIAL.println(fan_edge_counter[0]);
SERIAL_ECHOPGM("print fan speed:"); MYSERIAL.print(fan_speed[1]); SERIAL_ECHOPGM("; edge counter:"); MYSERIAL.println(fan_edge_counter[1]);
SERIAL_ECHOLNPGM(" ");*/
fan_edge_counter[0] = 0;
fan_edge_counter[1] = 0;
}
//! Prints serialMsg to serial port, displays lcdMsg onto the LCD and beeps.
//! Extracted from fanSpeedError to save some space.
//! @param serialMsg pointer into PROGMEM, this text will be printed to the serial port
//! @param lcdMsg pointer into PROGMEM, this text will be printed onto the LCD
static void fanSpeedErrorBeep(const char *serialMsg, const char *lcdMsg){
SERIAL_ECHOLNRPGM(serialMsg);
if (get_message_level() == 0) {
Sound_MakeCustom(200,0,true);
LCD_ALERTMESSAGERPGM(lcdMsg);
}
}
void fanSpeedError(unsigned char _fan) {
if (fan_check_error == EFCE_REPORTED) return;
fan_check_error = EFCE_REPORTED;
if (IS_SD_PRINTING || usb_timer.running()) {
// A print is ongoing, pause the print normally
if(!isPrintPaused) {
if (usb_timer.running())
lcd_pause_usb_print();
else
lcd_pause_print();
}
}
else {
// Nothing is going on, but still turn off heaters and report the error
setTargetHotend0(0);
heating_status = HeatingStatus::NO_HEATING;
}
switch (_fan) {
case 0: // extracting the same code from case 0 and case 1 into a function saves 72B
fanSpeedErrorBeep(PSTR("Hotend fan speed is lower than expected"), MSG_FANCHECK_HOTEND);
break;
case 1:
fanSpeedErrorBeep(PSTR("Print fan speed is lower than expected"), MSG_FANCHECK_PRINT);
break;
}
}
void checkFanSpeed()
{
uint8_t max_fan_errors[2];
#ifdef FAN_SOFT_PWM
max_fan_errors[1] = 3; // 15 seconds (Print fan)
max_fan_errors[0] = 2; // 10 seconds (Hotend fan)
#else //FAN_SOFT_PWM
max_fan_errors[1] = 15; // 15 seconds (Print fan)
max_fan_errors[0] = 5; // 5 seconds (Hotend fan)
#endif //FAN_SOFT_PWM
if(fans_check_enabled)
fans_check_enabled = (eeprom_read_byte((uint8_t*)EEPROM_FAN_CHECK_ENABLED) > 0);
static uint8_t fan_speed_errors[2] = { 0,0 };
#if (defined(FANCHECK) && defined(TACH_0) && (TACH_0 >-1))
if ((fan_speed[0] < 20) && (current_temperature[0] > EXTRUDER_AUTO_FAN_TEMPERATURE)){ fan_speed_errors[0]++;}
else fan_speed_errors[0] = 0;
#endif
#if (defined(FANCHECK) && defined(TACH_1) && (TACH_1 >-1))
if ((fan_speed[1] < 5) && ((blocks_queued() ? block_buffer[block_buffer_tail].fan_speed : fanSpeed) > MIN_PRINT_FAN_SPEED)) fan_speed_errors[1]++;
else fan_speed_errors[1] = 0;
#endif
// drop the fan_check_error flag when both fans are ok
if( fan_speed_errors[0] == 0 && fan_speed_errors[1] == 0 && fan_check_error == EFCE_REPORTED){
// we may even send some info to the LCD from here
fan_check_error = EFCE_FIXED;
}
if ((fan_check_error == EFCE_FIXED) && !printer_active()){
fan_check_error = EFCE_OK; //if the issue is fixed while the printer is doing nothing, reenable processing immediately.
lcd_reset_alert_level(); //for another fan speed error
}
if (fans_check_enabled && (fan_check_error == EFCE_OK))
{
for (uint8_t fan = 0; fan < 2; fan++)
{
if (fan_speed_errors[fan] > max_fan_errors[fan])
{
fan_speed_errors[fan] = 0;
fanSpeedError(fan);
}
}
}
}
#endif //(defined(TACH_0) && TACH_0 >-1) || (defined(TACH_1) && TACH_1 > -1)
#ifdef EXTRUDER_ALTFAN_DETECT
ISR(INT6_vect) {
fan_edge_counter[0]++;
}
bool extruder_altfan_detect()
{
setExtruderAutoFanState(3);
SET_INPUT(TACH_0);
uint8_t overrideVal = eeprom_read_byte((uint8_t *)EEPROM_ALTFAN_OVERRIDE);
if (overrideVal == EEPROM_EMPTY_VALUE)
{
overrideVal = (calibration_status() == CALIBRATION_STATUS_CALIBRATED) ? 1 : 0;
eeprom_update_byte((uint8_t *)EEPROM_ALTFAN_OVERRIDE, overrideVal);
}
altfanStatus.altfanOverride = overrideVal;
CRITICAL_SECTION_START;
EICRB &= ~(1 << ISC61);
EICRB |= (1 << ISC60);
EIMSK |= (1 << INT6);
fan_edge_counter[0] = 0;
CRITICAL_SECTION_END;
extruder_autofan_last_check = _millis();
_delay(1000);
EIMSK &= ~(1 << INT6);
countFanSpeed();
altfanStatus.isAltfan = fan_speed[0] > 100;
setExtruderAutoFanState(1);
return altfanStatus.isAltfan;
}
void altfanOverride_toggle()
{
altfanStatus.altfanOverride = !altfanStatus.altfanOverride;
eeprom_update_byte((uint8_t *)EEPROM_ALTFAN_OVERRIDE, altfanStatus.altfanOverride);
}
bool altfanOverride_get()
{
return altfanStatus.altfanOverride;
}
#endif //EXTRUDER_ALTFAN_DETECT
void checkExtruderAutoFans()
{
#if defined(EXTRUDER_0_AUTO_FAN_PIN) && EXTRUDER_0_AUTO_FAN_PIN > -1
if (!(fanState & 0x02))
{
fanState &= ~1;
fanState |= current_temperature[0] > EXTRUDER_AUTO_FAN_TEMPERATURE;
fanState |= get_temp_error();
}
setExtruderAutoFanState(fanState);
#endif
}
#endif // any extruder auto fan pins set
#if (defined(FANCHECK) && defined(TACH_0) && (TACH_0 > -1))
void readFanTach() {
#ifdef FAN_SOFT_PWM
if (READ(TACH_0) != fan_state[0]) {
if(fan_measuring) fan_edge_counter[0] ++;
fan_state[0] = !fan_state[0];
}
#else //FAN_SOFT_PWM
if (READ(TACH_0) != fan_state[0]) {
fan_edge_counter[0] ++;
fan_state[0] = !fan_state[0];
}
#endif
//if (READ(TACH_1) != fan_state[1]) {
// fan_edge_counter[1] ++;
// fan_state[1] = !fan_state[1];
//}
}
#endif //TACH_0
void checkFans()
{
#ifndef DEBUG_DISABLE_FANCHECK
#if (defined(EXTRUDER_0_AUTO_FAN_PIN) && EXTRUDER_0_AUTO_FAN_PIN > -1)
#ifdef FAN_SOFT_PWM
#ifdef FANCHECK
if ((_millis() - extruder_autofan_last_check > FAN_CHECK_PERIOD) && (!fan_measuring)) {
extruder_autofan_last_check = _millis();
fanSpeedBckp = fanSpeedSoftPwm;
if (fanSpeedSoftPwm >= MIN_PRINT_FAN_SPEED) { //if we are in rage where we are doing fan check, set full PWM range for a short time to measure fan RPM by reading tacho signal without modulation by PWM signal
// printf_P(PSTR("fanSpeedSoftPwm 1: %d\n"), fanSpeedSoftPwm);
fanSpeedSoftPwm = 255;
}
fan_measuring = true;
}
if ((_millis() - extruder_autofan_last_check > FAN_CHECK_DURATION) && (fan_measuring)) {
countFanSpeed();
checkFanSpeed();
//printf_P(PSTR("fanSpeedSoftPwm 1: %d\n"), fanSpeedSoftPwm);
fanSpeedSoftPwm = fanSpeedBckp;
//printf_P(PSTR("fan PWM: %d; extr fanSpeed measured: %d; print fan speed measured: %d \n"), fanSpeedBckp, fan_speed[0], fan_speed[1]);
extruder_autofan_last_check = _millis();
fan_measuring = false;
}
#endif //FANCHECK
checkExtruderAutoFans();
#else //FAN_SOFT_PWM
if(_millis() - extruder_autofan_last_check > 1000) // only need to check fan state very infrequently
{
#if (defined(FANCHECK) && ((defined(TACH_0) && (TACH_0 >-1)) || (defined(TACH_1) && (TACH_1 > -1))))
countFanSpeed();
checkFanSpeed();
#endif //(defined(TACH_0) && TACH_0 >-1) || (defined(TACH_1) && TACH_1 > -1)
checkExtruderAutoFans();
extruder_autofan_last_check = _millis();
}
#endif //FAN_SOFT_PWM
#endif
#endif //DEBUG_DISABLE_FANCHECK
}
void hotendFanSetFullSpeed()
{
#ifdef EXTRUDER_ALTFAN_DETECT
altfanStatus.altfanOverride = 1; //full speed
#endif //EXTRUDER_ALTFAN_DETECT
setExtruderAutoFanState(3);
SET_OUTPUT(FAN_PIN);
#ifdef FAN_SOFT_PWM
fanSpeedSoftPwm = 255;
#else //FAN_SOFT_PWM
analogWrite(FAN_PIN, 255);
#endif //FAN_SOFT_PWM
fanSpeed = 255;
}