|
|
|
@ -2959,254 +2959,254 @@ void process_commands()
|
|
|
|
|
#endif //FWRETRACT
|
|
|
|
|
case 28: //G28 Home all Axis one at a time
|
|
|
|
|
{
|
|
|
|
|
st_synchronize();
|
|
|
|
|
st_synchronize();
|
|
|
|
|
|
|
|
|
|
#if 0
|
|
|
|
|
SERIAL_ECHOPGM("G28, initial "); print_world_coordinates();
|
|
|
|
|
SERIAL_ECHOPGM("G28, initial "); print_physical_coordinates();
|
|
|
|
|
SERIAL_ECHOPGM("G28, initial "); print_world_coordinates();
|
|
|
|
|
SERIAL_ECHOPGM("G28, initial "); print_physical_coordinates();
|
|
|
|
|
#endif
|
|
|
|
|
|
|
|
|
|
// Flag for the display update routine and to disable the print cancelation during homing.
|
|
|
|
|
homing_flag = true;
|
|
|
|
|
|
|
|
|
|
// Which axes should be homed?
|
|
|
|
|
bool home_x = code_seen(axis_codes[X_AXIS]);
|
|
|
|
|
bool home_y = code_seen(axis_codes[Y_AXIS]);
|
|
|
|
|
bool home_z = code_seen(axis_codes[Z_AXIS]);
|
|
|
|
|
// calibrate?
|
|
|
|
|
bool calib = code_seen('C');
|
|
|
|
|
// Either all X,Y,Z codes are present, or none of them.
|
|
|
|
|
bool home_all_axes = home_x == home_y && home_x == home_z;
|
|
|
|
|
if (home_all_axes)
|
|
|
|
|
// No X/Y/Z code provided means to home all axes.
|
|
|
|
|
home_x = home_y = home_z = true;
|
|
|
|
|
// Flag for the display update routine and to disable the print cancelation during homing.
|
|
|
|
|
homing_flag = true;
|
|
|
|
|
|
|
|
|
|
// Which axes should be homed?
|
|
|
|
|
bool home_x = code_seen(axis_codes[X_AXIS]);
|
|
|
|
|
bool home_y = code_seen(axis_codes[Y_AXIS]);
|
|
|
|
|
bool home_z = code_seen(axis_codes[Z_AXIS]);
|
|
|
|
|
// calibrate?
|
|
|
|
|
bool calib = code_seen('C');
|
|
|
|
|
// Either all X,Y,Z codes are present, or none of them.
|
|
|
|
|
bool home_all_axes = home_x == home_y && home_x == home_z;
|
|
|
|
|
if (home_all_axes)
|
|
|
|
|
// No X/Y/Z code provided means to home all axes.
|
|
|
|
|
home_x = home_y = home_z = true;
|
|
|
|
|
|
|
|
|
|
#ifdef ENABLE_AUTO_BED_LEVELING
|
|
|
|
|
plan_bed_level_matrix.set_to_identity(); //Reset the plane ("erase" all leveling data)
|
|
|
|
|
plan_bed_level_matrix.set_to_identity(); //Reset the plane ("erase" all leveling data)
|
|
|
|
|
#endif //ENABLE_AUTO_BED_LEVELING
|
|
|
|
|
|
|
|
|
|
// Reset world2machine_rotation_and_skew and world2machine_shift, therefore
|
|
|
|
|
// the planner will not perform any adjustments in the XY plane.
|
|
|
|
|
// Wait for the motors to stop and update the current position with the absolute values.
|
|
|
|
|
world2machine_revert_to_uncorrected();
|
|
|
|
|
|
|
|
|
|
// For mesh bed leveling deactivate the matrix temporarily.
|
|
|
|
|
// It is necessary to disable the bed leveling for the X and Y homing moves, so that the move is performed
|
|
|
|
|
// in a single axis only.
|
|
|
|
|
// In case of re-homing the X or Y axes only, the mesh bed leveling is restored after G28.
|
|
|
|
|
// Reset world2machine_rotation_and_skew and world2machine_shift, therefore
|
|
|
|
|
// the planner will not perform any adjustments in the XY plane.
|
|
|
|
|
// Wait for the motors to stop and update the current position with the absolute values.
|
|
|
|
|
world2machine_revert_to_uncorrected();
|
|
|
|
|
|
|
|
|
|
// For mesh bed leveling deactivate the matrix temporarily.
|
|
|
|
|
// It is necessary to disable the bed leveling for the X and Y homing moves, so that the move is performed
|
|
|
|
|
// in a single axis only.
|
|
|
|
|
// In case of re-homing the X or Y axes only, the mesh bed leveling is restored after G28.
|
|
|
|
|
#ifdef MESH_BED_LEVELING
|
|
|
|
|
uint8_t mbl_was_active = mbl.active;
|
|
|
|
|
mbl.active = 0;
|
|
|
|
|
current_position[Z_AXIS] = st_get_position_mm(Z_AXIS);
|
|
|
|
|
uint8_t mbl_was_active = mbl.active;
|
|
|
|
|
mbl.active = 0;
|
|
|
|
|
current_position[Z_AXIS] = st_get_position_mm(Z_AXIS);
|
|
|
|
|
#endif
|
|
|
|
|
|
|
|
|
|
// Reset baby stepping to zero, if the babystepping has already been loaded before. The babystepsTodo value will be
|
|
|
|
|
// consumed during the first movements following this statement.
|
|
|
|
|
if (home_z)
|
|
|
|
|
babystep_undo();
|
|
|
|
|
// Reset baby stepping to zero, if the babystepping has already been loaded before. The babystepsTodo value will be
|
|
|
|
|
// consumed during the first movements following this statement.
|
|
|
|
|
if (home_z)
|
|
|
|
|
babystep_undo();
|
|
|
|
|
|
|
|
|
|
saved_feedrate = feedrate;
|
|
|
|
|
saved_feedmultiply = feedmultiply;
|
|
|
|
|
feedmultiply = 100;
|
|
|
|
|
previous_millis_cmd = millis();
|
|
|
|
|
saved_feedrate = feedrate;
|
|
|
|
|
saved_feedmultiply = feedmultiply;
|
|
|
|
|
feedmultiply = 100;
|
|
|
|
|
previous_millis_cmd = millis();
|
|
|
|
|
|
|
|
|
|
enable_endstops(true);
|
|
|
|
|
enable_endstops(true);
|
|
|
|
|
|
|
|
|
|
memcpy(destination, current_position, sizeof(destination));
|
|
|
|
|
feedrate = 0.0;
|
|
|
|
|
memcpy(destination, current_position, sizeof(destination));
|
|
|
|
|
feedrate = 0.0;
|
|
|
|
|
|
|
|
|
|
#if Z_HOME_DIR > 0 // If homing away from BED do Z first
|
|
|
|
|
if(home_z)
|
|
|
|
|
homeaxis(Z_AXIS);
|
|
|
|
|
#endif
|
|
|
|
|
#if Z_HOME_DIR > 0 // If homing away from BED do Z first
|
|
|
|
|
if(home_z)
|
|
|
|
|
homeaxis(Z_AXIS);
|
|
|
|
|
#endif
|
|
|
|
|
|
|
|
|
|
#ifdef QUICK_HOME
|
|
|
|
|
// In the quick mode, if both x and y are to be homed, a diagonal move will be performed initially.
|
|
|
|
|
if(home_x && home_y) //first diagonal move
|
|
|
|
|
{
|
|
|
|
|
current_position[X_AXIS] = 0;current_position[Y_AXIS] = 0;
|
|
|
|
|
#ifdef QUICK_HOME
|
|
|
|
|
// In the quick mode, if both x and y are to be homed, a diagonal move will be performed initially.
|
|
|
|
|
if(home_x && home_y) //first diagonal move
|
|
|
|
|
{
|
|
|
|
|
current_position[X_AXIS] = 0;current_position[Y_AXIS] = 0;
|
|
|
|
|
|
|
|
|
|
int x_axis_home_dir = home_dir(X_AXIS);
|
|
|
|
|
int x_axis_home_dir = home_dir(X_AXIS);
|
|
|
|
|
|
|
|
|
|
plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
|
|
|
|
|
destination[X_AXIS] = 1.5 * max_length(X_AXIS) * x_axis_home_dir;destination[Y_AXIS] = 1.5 * max_length(Y_AXIS) * home_dir(Y_AXIS);
|
|
|
|
|
feedrate = homing_feedrate[X_AXIS];
|
|
|
|
|
if(homing_feedrate[Y_AXIS]<feedrate)
|
|
|
|
|
feedrate = homing_feedrate[Y_AXIS];
|
|
|
|
|
if (max_length(X_AXIS) > max_length(Y_AXIS)) {
|
|
|
|
|
feedrate *= sqrt(pow(max_length(Y_AXIS) / max_length(X_AXIS), 2) + 1);
|
|
|
|
|
} else {
|
|
|
|
|
feedrate *= sqrt(pow(max_length(X_AXIS) / max_length(Y_AXIS), 2) + 1);
|
|
|
|
|
}
|
|
|
|
|
plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
|
|
|
|
|
st_synchronize();
|
|
|
|
|
plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
|
|
|
|
|
destination[X_AXIS] = 1.5 * max_length(X_AXIS) * x_axis_home_dir;destination[Y_AXIS] = 1.5 * max_length(Y_AXIS) * home_dir(Y_AXIS);
|
|
|
|
|
feedrate = homing_feedrate[X_AXIS];
|
|
|
|
|
if(homing_feedrate[Y_AXIS]<feedrate)
|
|
|
|
|
feedrate = homing_feedrate[Y_AXIS];
|
|
|
|
|
if (max_length(X_AXIS) > max_length(Y_AXIS)) {
|
|
|
|
|
feedrate *= sqrt(pow(max_length(Y_AXIS) / max_length(X_AXIS), 2) + 1);
|
|
|
|
|
} else {
|
|
|
|
|
feedrate *= sqrt(pow(max_length(X_AXIS) / max_length(Y_AXIS), 2) + 1);
|
|
|
|
|
}
|
|
|
|
|
plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
|
|
|
|
|
st_synchronize();
|
|
|
|
|
|
|
|
|
|
axis_is_at_home(X_AXIS);
|
|
|
|
|
axis_is_at_home(Y_AXIS);
|
|
|
|
|
plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
|
|
|
|
|
destination[X_AXIS] = current_position[X_AXIS];
|
|
|
|
|
destination[Y_AXIS] = current_position[Y_AXIS];
|
|
|
|
|
plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
|
|
|
|
|
feedrate = 0.0;
|
|
|
|
|
st_synchronize();
|
|
|
|
|
endstops_hit_on_purpose();
|
|
|
|
|
axis_is_at_home(X_AXIS);
|
|
|
|
|
axis_is_at_home(Y_AXIS);
|
|
|
|
|
plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
|
|
|
|
|
destination[X_AXIS] = current_position[X_AXIS];
|
|
|
|
|
destination[Y_AXIS] = current_position[Y_AXIS];
|
|
|
|
|
plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
|
|
|
|
|
feedrate = 0.0;
|
|
|
|
|
st_synchronize();
|
|
|
|
|
endstops_hit_on_purpose();
|
|
|
|
|
|
|
|
|
|
current_position[X_AXIS] = destination[X_AXIS];
|
|
|
|
|
current_position[Y_AXIS] = destination[Y_AXIS];
|
|
|
|
|
current_position[Z_AXIS] = destination[Z_AXIS];
|
|
|
|
|
}
|
|
|
|
|
#endif /* QUICK_HOME */
|
|
|
|
|
current_position[X_AXIS] = destination[X_AXIS];
|
|
|
|
|
current_position[Y_AXIS] = destination[Y_AXIS];
|
|
|
|
|
current_position[Z_AXIS] = destination[Z_AXIS];
|
|
|
|
|
}
|
|
|
|
|
#endif /* QUICK_HOME */
|
|
|
|
|
|
|
|
|
|
#ifdef TMC2130
|
|
|
|
|
if(home_x)
|
|
|
|
|
{
|
|
|
|
|
if (!calib)
|
|
|
|
|
homeaxis(X_AXIS);
|
|
|
|
|
else
|
|
|
|
|
tmc2130_home_calibrate(X_AXIS);
|
|
|
|
|
}
|
|
|
|
|
if(home_x)
|
|
|
|
|
{
|
|
|
|
|
if (!calib)
|
|
|
|
|
homeaxis(X_AXIS);
|
|
|
|
|
else
|
|
|
|
|
tmc2130_home_calibrate(X_AXIS);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
if(home_y)
|
|
|
|
|
{
|
|
|
|
|
if (!calib)
|
|
|
|
|
homeaxis(Y_AXIS);
|
|
|
|
|
else
|
|
|
|
|
tmc2130_home_calibrate(Y_AXIS);
|
|
|
|
|
}
|
|
|
|
|
if(home_y)
|
|
|
|
|
{
|
|
|
|
|
if (!calib)
|
|
|
|
|
homeaxis(Y_AXIS);
|
|
|
|
|
else
|
|
|
|
|
tmc2130_home_calibrate(Y_AXIS);
|
|
|
|
|
}
|
|
|
|
|
#endif //TMC2130
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if(code_seen(axis_codes[X_AXIS]) && code_value_long() != 0)
|
|
|
|
|
current_position[X_AXIS]=code_value()+add_homing[X_AXIS];
|
|
|
|
|
if(code_seen(axis_codes[X_AXIS]) && code_value_long() != 0)
|
|
|
|
|
current_position[X_AXIS]=code_value()+add_homing[X_AXIS];
|
|
|
|
|
|
|
|
|
|
if(code_seen(axis_codes[Y_AXIS]) && code_value_long() != 0)
|
|
|
|
|
current_position[Y_AXIS]=code_value()+add_homing[Y_AXIS];
|
|
|
|
|
if(code_seen(axis_codes[Y_AXIS]) && code_value_long() != 0)
|
|
|
|
|
current_position[Y_AXIS]=code_value()+add_homing[Y_AXIS];
|
|
|
|
|
|
|
|
|
|
#if Z_HOME_DIR < 0 // If homing towards BED do Z last
|
|
|
|
|
#ifndef Z_SAFE_HOMING
|
|
|
|
|
if(home_z) {
|
|
|
|
|
#if defined (Z_RAISE_BEFORE_HOMING) && (Z_RAISE_BEFORE_HOMING > 0)
|
|
|
|
|
destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
|
|
|
|
|
feedrate = max_feedrate[Z_AXIS];
|
|
|
|
|
plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
|
|
|
|
|
st_synchronize();
|
|
|
|
|
#endif // defined (Z_RAISE_BEFORE_HOMING) && (Z_RAISE_BEFORE_HOMING > 0)
|
|
|
|
|
#if (defined(MESH_BED_LEVELING) && !defined(MK1BP)) // If Mesh bed leveling, moxve X&Y to safe position for home
|
|
|
|
|
if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] ))
|
|
|
|
|
{
|
|
|
|
|
homeaxis(X_AXIS);
|
|
|
|
|
homeaxis(Y_AXIS);
|
|
|
|
|
}
|
|
|
|
|
// 1st mesh bed leveling measurement point, corrected.
|
|
|
|
|
world2machine_initialize();
|
|
|
|
|
world2machine(pgm_read_float(bed_ref_points), pgm_read_float(bed_ref_points+1), destination[X_AXIS], destination[Y_AXIS]);
|
|
|
|
|
world2machine_reset();
|
|
|
|
|
if (destination[Y_AXIS] < Y_MIN_POS)
|
|
|
|
|
destination[Y_AXIS] = Y_MIN_POS;
|
|
|
|
|
destination[Z_AXIS] = MESH_HOME_Z_SEARCH; // Set destination away from bed
|
|
|
|
|
feedrate = homing_feedrate[Z_AXIS]/10;
|
|
|
|
|
current_position[Z_AXIS] = 0;
|
|
|
|
|
enable_endstops(false);
|
|
|
|
|
plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
|
|
|
|
|
plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
|
|
|
|
|
st_synchronize();
|
|
|
|
|
current_position[X_AXIS] = destination[X_AXIS];
|
|
|
|
|
current_position[Y_AXIS] = destination[Y_AXIS];
|
|
|
|
|
enable_endstops(true);
|
|
|
|
|
endstops_hit_on_purpose();
|
|
|
|
|
homeaxis(Z_AXIS);
|
|
|
|
|
#else // MESH_BED_LEVELING
|
|
|
|
|
homeaxis(Z_AXIS);
|
|
|
|
|
#endif // MESH_BED_LEVELING
|
|
|
|
|
}
|
|
|
|
|
#else // defined(Z_SAFE_HOMING): Z Safe mode activated.
|
|
|
|
|
if(home_all_axes) {
|
|
|
|
|
destination[X_AXIS] = round(Z_SAFE_HOMING_X_POINT - X_PROBE_OFFSET_FROM_EXTRUDER);
|
|
|
|
|
destination[Y_AXIS] = round(Z_SAFE_HOMING_Y_POINT - Y_PROBE_OFFSET_FROM_EXTRUDER);
|
|
|
|
|
destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
|
|
|
|
|
feedrate = XY_TRAVEL_SPEED/60;
|
|
|
|
|
current_position[Z_AXIS] = 0;
|
|
|
|
|
#if Z_HOME_DIR < 0 // If homing towards BED do Z last
|
|
|
|
|
#ifndef Z_SAFE_HOMING
|
|
|
|
|
if(home_z) {
|
|
|
|
|
#if defined (Z_RAISE_BEFORE_HOMING) && (Z_RAISE_BEFORE_HOMING > 0)
|
|
|
|
|
destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
|
|
|
|
|
feedrate = max_feedrate[Z_AXIS];
|
|
|
|
|
plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
|
|
|
|
|
st_synchronize();
|
|
|
|
|
#endif // defined (Z_RAISE_BEFORE_HOMING) && (Z_RAISE_BEFORE_HOMING > 0)
|
|
|
|
|
#if (defined(MESH_BED_LEVELING) && !defined(MK1BP)) // If Mesh bed leveling, moxve X&Y to safe position for home
|
|
|
|
|
if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] ))
|
|
|
|
|
{
|
|
|
|
|
homeaxis(X_AXIS);
|
|
|
|
|
homeaxis(Y_AXIS);
|
|
|
|
|
}
|
|
|
|
|
// 1st mesh bed leveling measurement point, corrected.
|
|
|
|
|
world2machine_initialize();
|
|
|
|
|
world2machine(pgm_read_float(bed_ref_points), pgm_read_float(bed_ref_points+1), destination[X_AXIS], destination[Y_AXIS]);
|
|
|
|
|
world2machine_reset();
|
|
|
|
|
if (destination[Y_AXIS] < Y_MIN_POS)
|
|
|
|
|
destination[Y_AXIS] = Y_MIN_POS;
|
|
|
|
|
destination[Z_AXIS] = MESH_HOME_Z_SEARCH; // Set destination away from bed
|
|
|
|
|
feedrate = homing_feedrate[Z_AXIS]/10;
|
|
|
|
|
current_position[Z_AXIS] = 0;
|
|
|
|
|
enable_endstops(false);
|
|
|
|
|
plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
|
|
|
|
|
plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
|
|
|
|
|
st_synchronize();
|
|
|
|
|
current_position[X_AXIS] = destination[X_AXIS];
|
|
|
|
|
current_position[Y_AXIS] = destination[Y_AXIS];
|
|
|
|
|
enable_endstops(true);
|
|
|
|
|
endstops_hit_on_purpose();
|
|
|
|
|
homeaxis(Z_AXIS);
|
|
|
|
|
#else // MESH_BED_LEVELING
|
|
|
|
|
homeaxis(Z_AXIS);
|
|
|
|
|
#endif // MESH_BED_LEVELING
|
|
|
|
|
}
|
|
|
|
|
#else // defined(Z_SAFE_HOMING): Z Safe mode activated.
|
|
|
|
|
if(home_all_axes) {
|
|
|
|
|
destination[X_AXIS] = round(Z_SAFE_HOMING_X_POINT - X_PROBE_OFFSET_FROM_EXTRUDER);
|
|
|
|
|
destination[Y_AXIS] = round(Z_SAFE_HOMING_Y_POINT - Y_PROBE_OFFSET_FROM_EXTRUDER);
|
|
|
|
|
destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
|
|
|
|
|
feedrate = XY_TRAVEL_SPEED/60;
|
|
|
|
|
current_position[Z_AXIS] = 0;
|
|
|
|
|
|
|
|
|
|
plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
|
|
|
|
|
plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
|
|
|
|
|
st_synchronize();
|
|
|
|
|
current_position[X_AXIS] = destination[X_AXIS];
|
|
|
|
|
current_position[Y_AXIS] = destination[Y_AXIS];
|
|
|
|
|
plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
|
|
|
|
|
plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
|
|
|
|
|
st_synchronize();
|
|
|
|
|
current_position[X_AXIS] = destination[X_AXIS];
|
|
|
|
|
current_position[Y_AXIS] = destination[Y_AXIS];
|
|
|
|
|
|
|
|
|
|
homeaxis(Z_AXIS);
|
|
|
|
|
}
|
|
|
|
|
// Let's see if X and Y are homed and probe is inside bed area.
|
|
|
|
|
if(home_z) {
|
|
|
|
|
if ( (axis_known_position[X_AXIS]) && (axis_known_position[Y_AXIS]) \
|
|
|
|
|
&& (current_position[X_AXIS]+X_PROBE_OFFSET_FROM_EXTRUDER >= X_MIN_POS) \
|
|
|
|
|
&& (current_position[X_AXIS]+X_PROBE_OFFSET_FROM_EXTRUDER <= X_MAX_POS) \
|
|
|
|
|
&& (current_position[Y_AXIS]+Y_PROBE_OFFSET_FROM_EXTRUDER >= Y_MIN_POS) \
|
|
|
|
|
&& (current_position[Y_AXIS]+Y_PROBE_OFFSET_FROM_EXTRUDER <= Y_MAX_POS)) {
|
|
|
|
|
homeaxis(Z_AXIS);
|
|
|
|
|
}
|
|
|
|
|
// Let's see if X and Y are homed and probe is inside bed area.
|
|
|
|
|
if(home_z) {
|
|
|
|
|
if ( (axis_known_position[X_AXIS]) && (axis_known_position[Y_AXIS]) \
|
|
|
|
|
&& (current_position[X_AXIS]+X_PROBE_OFFSET_FROM_EXTRUDER >= X_MIN_POS) \
|
|
|
|
|
&& (current_position[X_AXIS]+X_PROBE_OFFSET_FROM_EXTRUDER <= X_MAX_POS) \
|
|
|
|
|
&& (current_position[Y_AXIS]+Y_PROBE_OFFSET_FROM_EXTRUDER >= Y_MIN_POS) \
|
|
|
|
|
&& (current_position[Y_AXIS]+Y_PROBE_OFFSET_FROM_EXTRUDER <= Y_MAX_POS)) {
|
|
|
|
|
|
|
|
|
|
current_position[Z_AXIS] = 0;
|
|
|
|
|
plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
|
|
|
|
|
destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
|
|
|
|
|
feedrate = max_feedrate[Z_AXIS];
|
|
|
|
|
plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
|
|
|
|
|
st_synchronize();
|
|
|
|
|
current_position[Z_AXIS] = 0;
|
|
|
|
|
plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
|
|
|
|
|
destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
|
|
|
|
|
feedrate = max_feedrate[Z_AXIS];
|
|
|
|
|
plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
|
|
|
|
|
st_synchronize();
|
|
|
|
|
|
|
|
|
|
homeaxis(Z_AXIS);
|
|
|
|
|
} else if (!((axis_known_position[X_AXIS]) && (axis_known_position[Y_AXIS]))) {
|
|
|
|
|
LCD_MESSAGERPGM(MSG_POSITION_UNKNOWN);
|
|
|
|
|
SERIAL_ECHO_START;
|
|
|
|
|
SERIAL_ECHOLNRPGM(MSG_POSITION_UNKNOWN);
|
|
|
|
|
} else {
|
|
|
|
|
LCD_MESSAGERPGM(MSG_ZPROBE_OUT);
|
|
|
|
|
SERIAL_ECHO_START;
|
|
|
|
|
SERIAL_ECHOLNRPGM(MSG_ZPROBE_OUT);
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
#endif // Z_SAFE_HOMING
|
|
|
|
|
#endif // Z_HOME_DIR < 0
|
|
|
|
|
homeaxis(Z_AXIS);
|
|
|
|
|
} else if (!((axis_known_position[X_AXIS]) && (axis_known_position[Y_AXIS]))) {
|
|
|
|
|
LCD_MESSAGERPGM(MSG_POSITION_UNKNOWN);
|
|
|
|
|
SERIAL_ECHO_START;
|
|
|
|
|
SERIAL_ECHOLNRPGM(MSG_POSITION_UNKNOWN);
|
|
|
|
|
} else {
|
|
|
|
|
LCD_MESSAGERPGM(MSG_ZPROBE_OUT);
|
|
|
|
|
SERIAL_ECHO_START;
|
|
|
|
|
SERIAL_ECHOLNRPGM(MSG_ZPROBE_OUT);
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
#endif // Z_SAFE_HOMING
|
|
|
|
|
#endif // Z_HOME_DIR < 0
|
|
|
|
|
|
|
|
|
|
if(code_seen(axis_codes[Z_AXIS]) && code_value_long() != 0)
|
|
|
|
|
current_position[Z_AXIS]=code_value()+add_homing[Z_AXIS];
|
|
|
|
|
#ifdef ENABLE_AUTO_BED_LEVELING
|
|
|
|
|
if(home_z)
|
|
|
|
|
current_position[Z_AXIS] += zprobe_zoffset; //Add Z_Probe offset (the distance is negative)
|
|
|
|
|
#endif
|
|
|
|
|
|
|
|
|
|
// Set the planner and stepper routine positions.
|
|
|
|
|
// At this point the mesh bed leveling and world2machine corrections are disabled and current_position
|
|
|
|
|
// contains the machine coordinates.
|
|
|
|
|
plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
|
|
|
|
|
|
|
|
|
|
#ifdef ENDSTOPS_ONLY_FOR_HOMING
|
|
|
|
|
enable_endstops(false);
|
|
|
|
|
#endif
|
|
|
|
|
|
|
|
|
|
feedrate = saved_feedrate;
|
|
|
|
|
feedmultiply = saved_feedmultiply;
|
|
|
|
|
previous_millis_cmd = millis();
|
|
|
|
|
endstops_hit_on_purpose();
|
|
|
|
|
#ifndef MESH_BED_LEVELING
|
|
|
|
|
// If MESH_BED_LEVELING is not active, then it is the original Prusa i3.
|
|
|
|
|
// Offer the user to load the baby step value, which has been adjusted at the previous print session.
|
|
|
|
|
if(card.sdprinting && eeprom_read_word((uint16_t *)EEPROM_BABYSTEP_Z))
|
|
|
|
|
lcd_adjust_z();
|
|
|
|
|
if(code_seen(axis_codes[Z_AXIS]) && code_value_long() != 0)
|
|
|
|
|
current_position[Z_AXIS]=code_value()+add_homing[Z_AXIS];
|
|
|
|
|
#ifdef ENABLE_AUTO_BED_LEVELING
|
|
|
|
|
if(home_z)
|
|
|
|
|
current_position[Z_AXIS] += zprobe_zoffset; //Add Z_Probe offset (the distance is negative)
|
|
|
|
|
#endif
|
|
|
|
|
|
|
|
|
|
// Load the machine correction matrix
|
|
|
|
|
world2machine_initialize();
|
|
|
|
|
// and correct the current_position XY axes to match the transformed coordinate system.
|
|
|
|
|
world2machine_update_current();
|
|
|
|
|
// Set the planner and stepper routine positions.
|
|
|
|
|
// At this point the mesh bed leveling and world2machine corrections are disabled and current_position
|
|
|
|
|
// contains the machine coordinates.
|
|
|
|
|
plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
|
|
|
|
|
|
|
|
|
|
#ifdef ENDSTOPS_ONLY_FOR_HOMING
|
|
|
|
|
enable_endstops(false);
|
|
|
|
|
#endif
|
|
|
|
|
|
|
|
|
|
feedrate = saved_feedrate;
|
|
|
|
|
feedmultiply = saved_feedmultiply;
|
|
|
|
|
previous_millis_cmd = millis();
|
|
|
|
|
endstops_hit_on_purpose();
|
|
|
|
|
#ifndef MESH_BED_LEVELING
|
|
|
|
|
// If MESH_BED_LEVELING is not active, then it is the original Prusa i3.
|
|
|
|
|
// Offer the user to load the baby step value, which has been adjusted at the previous print session.
|
|
|
|
|
if(card.sdprinting && eeprom_read_word((uint16_t *)EEPROM_BABYSTEP_Z))
|
|
|
|
|
lcd_adjust_z();
|
|
|
|
|
#endif
|
|
|
|
|
|
|
|
|
|
// Load the machine correction matrix
|
|
|
|
|
world2machine_initialize();
|
|
|
|
|
// and correct the current_position XY axes to match the transformed coordinate system.
|
|
|
|
|
world2machine_update_current();
|
|
|
|
|
|
|
|
|
|
#if (defined(MESH_BED_LEVELING) && !defined(MK1BP))
|
|
|
|
|
if (code_seen(axis_codes[X_AXIS]) || code_seen(axis_codes[Y_AXIS]) || code_seen('W') || code_seen(axis_codes[Z_AXIS]))
|
|
|
|
|
if (code_seen(axis_codes[X_AXIS]) || code_seen(axis_codes[Y_AXIS]) || code_seen('W') || code_seen(axis_codes[Z_AXIS]))
|
|
|
|
|
{
|
|
|
|
|
if (! home_z && mbl_was_active) {
|
|
|
|
|
// Re-enable the mesh bed leveling if only the X and Y axes were re-homed.
|
|
|
|
|
mbl.active = true;
|
|
|
|
|
// and re-adjust the current logical Z axis with the bed leveling offset applicable at the current XY position.
|
|
|
|
|
current_position[Z_AXIS] -= mbl.get_z(st_get_position_mm(X_AXIS), st_get_position_mm(Y_AXIS));
|
|
|
|
|
}
|
|
|
|
|
if (! home_z && mbl_was_active) {
|
|
|
|
|
// Re-enable the mesh bed leveling if only the X and Y axes were re-homed.
|
|
|
|
|
mbl.active = true;
|
|
|
|
|
// and re-adjust the current logical Z axis with the bed leveling offset applicable at the current XY position.
|
|
|
|
|
current_position[Z_AXIS] -= mbl.get_z(st_get_position_mm(X_AXIS), st_get_position_mm(Y_AXIS));
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
else
|
|
|
|
|
else
|
|
|
|
|
{
|
|
|
|
|
st_synchronize();
|
|
|
|
|
homing_flag = false;
|
|
|
|
@ -3214,18 +3214,18 @@ void process_commands()
|
|
|
|
|
// There shall be always enough space reserved for these commands.
|
|
|
|
|
// enquecommand_front_P((PSTR("G80")));
|
|
|
|
|
goto case_G80;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
#endif
|
|
|
|
|
|
|
|
|
|
if (farm_mode) { prusa_statistics(20); };
|
|
|
|
|
if (farm_mode) { prusa_statistics(20); };
|
|
|
|
|
|
|
|
|
|
homing_flag = false;
|
|
|
|
|
homing_flag = false;
|
|
|
|
|
#if 0
|
|
|
|
|
SERIAL_ECHOPGM("G28, final "); print_world_coordinates();
|
|
|
|
|
SERIAL_ECHOPGM("G28, final "); print_physical_coordinates();
|
|
|
|
|
SERIAL_ECHOPGM("G28, final "); print_mesh_bed_leveling_table();
|
|
|
|
|
SERIAL_ECHOPGM("G28, final "); print_world_coordinates();
|
|
|
|
|
SERIAL_ECHOPGM("G28, final "); print_physical_coordinates();
|
|
|
|
|
SERIAL_ECHOPGM("G28, final "); print_mesh_bed_leveling_table();
|
|
|
|
|
#endif
|
|
|
|
|
break;
|
|
|
|
|
break;
|
|
|
|
|
}
|
|
|
|
|
#ifdef ENABLE_AUTO_BED_LEVELING
|
|
|
|
|
case 29: // G29 Detailed Z-Probe, probes the bed at 3 or more points.
|
|
|
|
@ -3451,17 +3451,32 @@ void process_commands()
|
|
|
|
|
}
|
|
|
|
|
lcd_show_fullscreen_message_and_wait_P(MSG_TEMP_CAL_WARNING);
|
|
|
|
|
bool result = lcd_show_fullscreen_message_yes_no_and_wait_P(MSG_STEEL_SHEET_CHECK, false, false);
|
|
|
|
|
|
|
|
|
|
if (result)
|
|
|
|
|
{
|
|
|
|
|
current_position[Z_AXIS] = 50;
|
|
|
|
|
current_position[Y_AXIS] = 190;
|
|
|
|
|
current_position[Y_AXIS] += 180;
|
|
|
|
|
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
|
|
|
|
|
st_synchronize();
|
|
|
|
|
lcd_show_fullscreen_message_and_wait_P(MSG_REMOVE_STEEL_SHEET);
|
|
|
|
|
current_position[Y_AXIS] -= 180;
|
|
|
|
|
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
|
|
|
|
|
st_synchronize();
|
|
|
|
|
feedrate = homing_feedrate[Z_AXIS] / 10;
|
|
|
|
|
enable_endstops(true);
|
|
|
|
|
endstops_hit_on_purpose();
|
|
|
|
|
homeaxis(Z_AXIS);
|
|
|
|
|
plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
|
|
|
|
|
enable_endstops(false);
|
|
|
|
|
}
|
|
|
|
|
if ((current_temperature_pinda > 35) && (farm_mode == false)) {
|
|
|
|
|
//waiting for PIDNA probe to cool down in case that we are not in farm mode
|
|
|
|
|
lcd_wait_for_pinda(35);
|
|
|
|
|
current_position[Z_AXIS] = 100;
|
|
|
|
|
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
|
|
|
|
|
if (lcd_wait_for_pinda(35) == false) { //waiting for PINDA probe to cool, if this takes more then time expected, temp. cal. fails
|
|
|
|
|
lcd_temp_cal_show_result(false);
|
|
|
|
|
break;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
lcd_update_enable(true);
|
|
|
|
|
KEEPALIVE_STATE(NOT_BUSY); //no need to print busy messages as we print current temperatures periodicaly
|
|
|
|
@ -3504,7 +3519,9 @@ void process_commands()
|
|
|
|
|
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
|
|
|
|
|
st_synchronize();
|
|
|
|
|
|
|
|
|
|
find_bed_induction_sensor_point_z(-1.f);
|
|
|
|
|
bool find_z_result = find_bed_induction_sensor_point_z(-1.f);
|
|
|
|
|
if(find_z_result == false) lcd_temp_cal_show_result(find_z_result);
|
|
|
|
|
|
|
|
|
|
zero_z = current_position[Z_AXIS];
|
|
|
|
|
|
|
|
|
|
//current_position[Z_AXIS]
|
|
|
|
@ -3553,7 +3570,9 @@ void process_commands()
|
|
|
|
|
current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 1);
|
|
|
|
|
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
|
|
|
|
|
st_synchronize();
|
|
|
|
|
find_bed_induction_sensor_point_z(-1.f);
|
|
|
|
|
find_z_result = find_bed_induction_sensor_point_z(-1.f);
|
|
|
|
|
if (find_z_result == false) lcd_temp_cal_show_result(find_z_result);
|
|
|
|
|
|
|
|
|
|
z_shift = (int)((current_position[Z_AXIS] - zero_z)*axis_steps_per_unit[Z_AXIS]);
|
|
|
|
|
|
|
|
|
|
SERIAL_ECHOLNPGM("");
|
|
|
|
@ -3566,25 +3585,8 @@ void process_commands()
|
|
|
|
|
EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i * 2, &z_shift);
|
|
|
|
|
|
|
|
|
|
}
|
|
|
|
|
custom_message_type = 0;
|
|
|
|
|
custom_message = false;
|
|
|
|
|
lcd_temp_cal_show_result(true);
|
|
|
|
|
|
|
|
|
|
eeprom_update_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 1);
|
|
|
|
|
SERIAL_ECHOLNPGM("Temperature calibration done. Continue with pressing the knob.");
|
|
|
|
|
disable_x();
|
|
|
|
|
disable_y();
|
|
|
|
|
disable_z();
|
|
|
|
|
disable_e0();
|
|
|
|
|
disable_e1();
|
|
|
|
|
disable_e2();
|
|
|
|
|
setTargetBed(0); //set bed target temperature back to 0
|
|
|
|
|
// setTargetHotend(0,0); //set hotend target temperature back to 0
|
|
|
|
|
lcd_show_fullscreen_message_and_wait_P(MSG_TEMP_CALIBRATION_DONE);
|
|
|
|
|
temp_cal_active = true;
|
|
|
|
|
eeprom_update_byte((unsigned char *)EEPROM_TEMP_CAL_ACTIVE, 1);
|
|
|
|
|
|
|
|
|
|
lcd_update_enable(true);
|
|
|
|
|
lcd_update(2);
|
|
|
|
|
break;
|
|
|
|
|
}
|
|
|
|
|
#endif //PINDA_THERMISTOR
|
|
|
|
|