add another homing after steel sheet is removed; added timeout for pinda cooling; if PINDA doesn't trigger before reaching Z = -1mm, temp. calibration fails
This commit is contained in:
parent
043c8c66be
commit
010ceceff9
7 changed files with 299 additions and 242 deletions
|
@ -2959,254 +2959,254 @@ void process_commands()
|
|||
#endif //FWRETRACT
|
||||
case 28: //G28 Home all Axis one at a time
|
||||
{
|
||||
st_synchronize();
|
||||
st_synchronize();
|
||||
|
||||
#if 0
|
||||
SERIAL_ECHOPGM("G28, initial "); print_world_coordinates();
|
||||
SERIAL_ECHOPGM("G28, initial "); print_physical_coordinates();
|
||||
SERIAL_ECHOPGM("G28, initial "); print_world_coordinates();
|
||||
SERIAL_ECHOPGM("G28, initial "); print_physical_coordinates();
|
||||
#endif
|
||||
|
||||
// Flag for the display update routine and to disable the print cancelation during homing.
|
||||
homing_flag = true;
|
||||
|
||||
// Which axes should be homed?
|
||||
bool home_x = code_seen(axis_codes[X_AXIS]);
|
||||
bool home_y = code_seen(axis_codes[Y_AXIS]);
|
||||
bool home_z = code_seen(axis_codes[Z_AXIS]);
|
||||
// calibrate?
|
||||
bool calib = code_seen('C');
|
||||
// Either all X,Y,Z codes are present, or none of them.
|
||||
bool home_all_axes = home_x == home_y && home_x == home_z;
|
||||
if (home_all_axes)
|
||||
// No X/Y/Z code provided means to home all axes.
|
||||
home_x = home_y = home_z = true;
|
||||
// Flag for the display update routine and to disable the print cancelation during homing.
|
||||
homing_flag = true;
|
||||
|
||||
// Which axes should be homed?
|
||||
bool home_x = code_seen(axis_codes[X_AXIS]);
|
||||
bool home_y = code_seen(axis_codes[Y_AXIS]);
|
||||
bool home_z = code_seen(axis_codes[Z_AXIS]);
|
||||
// calibrate?
|
||||
bool calib = code_seen('C');
|
||||
// Either all X,Y,Z codes are present, or none of them.
|
||||
bool home_all_axes = home_x == home_y && home_x == home_z;
|
||||
if (home_all_axes)
|
||||
// No X/Y/Z code provided means to home all axes.
|
||||
home_x = home_y = home_z = true;
|
||||
|
||||
#ifdef ENABLE_AUTO_BED_LEVELING
|
||||
plan_bed_level_matrix.set_to_identity(); //Reset the plane ("erase" all leveling data)
|
||||
plan_bed_level_matrix.set_to_identity(); //Reset the plane ("erase" all leveling data)
|
||||
#endif //ENABLE_AUTO_BED_LEVELING
|
||||
|
||||
// Reset world2machine_rotation_and_skew and world2machine_shift, therefore
|
||||
// the planner will not perform any adjustments in the XY plane.
|
||||
// Wait for the motors to stop and update the current position with the absolute values.
|
||||
world2machine_revert_to_uncorrected();
|
||||
|
||||
// For mesh bed leveling deactivate the matrix temporarily.
|
||||
// It is necessary to disable the bed leveling for the X and Y homing moves, so that the move is performed
|
||||
// in a single axis only.
|
||||
// In case of re-homing the X or Y axes only, the mesh bed leveling is restored after G28.
|
||||
// Reset world2machine_rotation_and_skew and world2machine_shift, therefore
|
||||
// the planner will not perform any adjustments in the XY plane.
|
||||
// Wait for the motors to stop and update the current position with the absolute values.
|
||||
world2machine_revert_to_uncorrected();
|
||||
|
||||
// For mesh bed leveling deactivate the matrix temporarily.
|
||||
// It is necessary to disable the bed leveling for the X and Y homing moves, so that the move is performed
|
||||
// in a single axis only.
|
||||
// In case of re-homing the X or Y axes only, the mesh bed leveling is restored after G28.
|
||||
#ifdef MESH_BED_LEVELING
|
||||
uint8_t mbl_was_active = mbl.active;
|
||||
mbl.active = 0;
|
||||
current_position[Z_AXIS] = st_get_position_mm(Z_AXIS);
|
||||
uint8_t mbl_was_active = mbl.active;
|
||||
mbl.active = 0;
|
||||
current_position[Z_AXIS] = st_get_position_mm(Z_AXIS);
|
||||
#endif
|
||||
|
||||
// Reset baby stepping to zero, if the babystepping has already been loaded before. The babystepsTodo value will be
|
||||
// consumed during the first movements following this statement.
|
||||
if (home_z)
|
||||
babystep_undo();
|
||||
// Reset baby stepping to zero, if the babystepping has already been loaded before. The babystepsTodo value will be
|
||||
// consumed during the first movements following this statement.
|
||||
if (home_z)
|
||||
babystep_undo();
|
||||
|
||||
saved_feedrate = feedrate;
|
||||
saved_feedmultiply = feedmultiply;
|
||||
feedmultiply = 100;
|
||||
previous_millis_cmd = millis();
|
||||
saved_feedrate = feedrate;
|
||||
saved_feedmultiply = feedmultiply;
|
||||
feedmultiply = 100;
|
||||
previous_millis_cmd = millis();
|
||||
|
||||
enable_endstops(true);
|
||||
enable_endstops(true);
|
||||
|
||||
memcpy(destination, current_position, sizeof(destination));
|
||||
feedrate = 0.0;
|
||||
memcpy(destination, current_position, sizeof(destination));
|
||||
feedrate = 0.0;
|
||||
|
||||
#if Z_HOME_DIR > 0 // If homing away from BED do Z first
|
||||
if(home_z)
|
||||
homeaxis(Z_AXIS);
|
||||
#endif
|
||||
#if Z_HOME_DIR > 0 // If homing away from BED do Z first
|
||||
if(home_z)
|
||||
homeaxis(Z_AXIS);
|
||||
#endif
|
||||
|
||||
#ifdef QUICK_HOME
|
||||
// In the quick mode, if both x and y are to be homed, a diagonal move will be performed initially.
|
||||
if(home_x && home_y) //first diagonal move
|
||||
{
|
||||
current_position[X_AXIS] = 0;current_position[Y_AXIS] = 0;
|
||||
#ifdef QUICK_HOME
|
||||
// In the quick mode, if both x and y are to be homed, a diagonal move will be performed initially.
|
||||
if(home_x && home_y) //first diagonal move
|
||||
{
|
||||
current_position[X_AXIS] = 0;current_position[Y_AXIS] = 0;
|
||||
|
||||
int x_axis_home_dir = home_dir(X_AXIS);
|
||||
int x_axis_home_dir = home_dir(X_AXIS);
|
||||
|
||||
plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
|
||||
destination[X_AXIS] = 1.5 * max_length(X_AXIS) * x_axis_home_dir;destination[Y_AXIS] = 1.5 * max_length(Y_AXIS) * home_dir(Y_AXIS);
|
||||
feedrate = homing_feedrate[X_AXIS];
|
||||
if(homing_feedrate[Y_AXIS]<feedrate)
|
||||
feedrate = homing_feedrate[Y_AXIS];
|
||||
if (max_length(X_AXIS) > max_length(Y_AXIS)) {
|
||||
feedrate *= sqrt(pow(max_length(Y_AXIS) / max_length(X_AXIS), 2) + 1);
|
||||
} else {
|
||||
feedrate *= sqrt(pow(max_length(X_AXIS) / max_length(Y_AXIS), 2) + 1);
|
||||
}
|
||||
plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
|
||||
st_synchronize();
|
||||
plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
|
||||
destination[X_AXIS] = 1.5 * max_length(X_AXIS) * x_axis_home_dir;destination[Y_AXIS] = 1.5 * max_length(Y_AXIS) * home_dir(Y_AXIS);
|
||||
feedrate = homing_feedrate[X_AXIS];
|
||||
if(homing_feedrate[Y_AXIS]<feedrate)
|
||||
feedrate = homing_feedrate[Y_AXIS];
|
||||
if (max_length(X_AXIS) > max_length(Y_AXIS)) {
|
||||
feedrate *= sqrt(pow(max_length(Y_AXIS) / max_length(X_AXIS), 2) + 1);
|
||||
} else {
|
||||
feedrate *= sqrt(pow(max_length(X_AXIS) / max_length(Y_AXIS), 2) + 1);
|
||||
}
|
||||
plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
|
||||
st_synchronize();
|
||||
|
||||
axis_is_at_home(X_AXIS);
|
||||
axis_is_at_home(Y_AXIS);
|
||||
plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
|
||||
destination[X_AXIS] = current_position[X_AXIS];
|
||||
destination[Y_AXIS] = current_position[Y_AXIS];
|
||||
plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
|
||||
feedrate = 0.0;
|
||||
st_synchronize();
|
||||
endstops_hit_on_purpose();
|
||||
axis_is_at_home(X_AXIS);
|
||||
axis_is_at_home(Y_AXIS);
|
||||
plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
|
||||
destination[X_AXIS] = current_position[X_AXIS];
|
||||
destination[Y_AXIS] = current_position[Y_AXIS];
|
||||
plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
|
||||
feedrate = 0.0;
|
||||
st_synchronize();
|
||||
endstops_hit_on_purpose();
|
||||
|
||||
current_position[X_AXIS] = destination[X_AXIS];
|
||||
current_position[Y_AXIS] = destination[Y_AXIS];
|
||||
current_position[Z_AXIS] = destination[Z_AXIS];
|
||||
}
|
||||
#endif /* QUICK_HOME */
|
||||
current_position[X_AXIS] = destination[X_AXIS];
|
||||
current_position[Y_AXIS] = destination[Y_AXIS];
|
||||
current_position[Z_AXIS] = destination[Z_AXIS];
|
||||
}
|
||||
#endif /* QUICK_HOME */
|
||||
|
||||
#ifdef TMC2130
|
||||
if(home_x)
|
||||
{
|
||||
if (!calib)
|
||||
homeaxis(X_AXIS);
|
||||
else
|
||||
tmc2130_home_calibrate(X_AXIS);
|
||||
}
|
||||
if(home_x)
|
||||
{
|
||||
if (!calib)
|
||||
homeaxis(X_AXIS);
|
||||
else
|
||||
tmc2130_home_calibrate(X_AXIS);
|
||||
}
|
||||
|
||||
if(home_y)
|
||||
{
|
||||
if (!calib)
|
||||
homeaxis(Y_AXIS);
|
||||
else
|
||||
tmc2130_home_calibrate(Y_AXIS);
|
||||
}
|
||||
if(home_y)
|
||||
{
|
||||
if (!calib)
|
||||
homeaxis(Y_AXIS);
|
||||
else
|
||||
tmc2130_home_calibrate(Y_AXIS);
|
||||
}
|
||||
#endif //TMC2130
|
||||
|
||||
|
||||
if(code_seen(axis_codes[X_AXIS]) && code_value_long() != 0)
|
||||
current_position[X_AXIS]=code_value()+add_homing[X_AXIS];
|
||||
if(code_seen(axis_codes[X_AXIS]) && code_value_long() != 0)
|
||||
current_position[X_AXIS]=code_value()+add_homing[X_AXIS];
|
||||
|
||||
if(code_seen(axis_codes[Y_AXIS]) && code_value_long() != 0)
|
||||
current_position[Y_AXIS]=code_value()+add_homing[Y_AXIS];
|
||||
if(code_seen(axis_codes[Y_AXIS]) && code_value_long() != 0)
|
||||
current_position[Y_AXIS]=code_value()+add_homing[Y_AXIS];
|
||||
|
||||
#if Z_HOME_DIR < 0 // If homing towards BED do Z last
|
||||
#ifndef Z_SAFE_HOMING
|
||||
if(home_z) {
|
||||
#if defined (Z_RAISE_BEFORE_HOMING) && (Z_RAISE_BEFORE_HOMING > 0)
|
||||
destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
|
||||
feedrate = max_feedrate[Z_AXIS];
|
||||
plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
|
||||
st_synchronize();
|
||||
#endif // defined (Z_RAISE_BEFORE_HOMING) && (Z_RAISE_BEFORE_HOMING > 0)
|
||||
#if (defined(MESH_BED_LEVELING) && !defined(MK1BP)) // If Mesh bed leveling, moxve X&Y to safe position for home
|
||||
if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] ))
|
||||
{
|
||||
homeaxis(X_AXIS);
|
||||
homeaxis(Y_AXIS);
|
||||
}
|
||||
// 1st mesh bed leveling measurement point, corrected.
|
||||
world2machine_initialize();
|
||||
world2machine(pgm_read_float(bed_ref_points), pgm_read_float(bed_ref_points+1), destination[X_AXIS], destination[Y_AXIS]);
|
||||
world2machine_reset();
|
||||
if (destination[Y_AXIS] < Y_MIN_POS)
|
||||
destination[Y_AXIS] = Y_MIN_POS;
|
||||
destination[Z_AXIS] = MESH_HOME_Z_SEARCH; // Set destination away from bed
|
||||
feedrate = homing_feedrate[Z_AXIS]/10;
|
||||
current_position[Z_AXIS] = 0;
|
||||
enable_endstops(false);
|
||||
plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
|
||||
plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
|
||||
st_synchronize();
|
||||
current_position[X_AXIS] = destination[X_AXIS];
|
||||
current_position[Y_AXIS] = destination[Y_AXIS];
|
||||
enable_endstops(true);
|
||||
endstops_hit_on_purpose();
|
||||
homeaxis(Z_AXIS);
|
||||
#else // MESH_BED_LEVELING
|
||||
homeaxis(Z_AXIS);
|
||||
#endif // MESH_BED_LEVELING
|
||||
}
|
||||
#else // defined(Z_SAFE_HOMING): Z Safe mode activated.
|
||||
if(home_all_axes) {
|
||||
destination[X_AXIS] = round(Z_SAFE_HOMING_X_POINT - X_PROBE_OFFSET_FROM_EXTRUDER);
|
||||
destination[Y_AXIS] = round(Z_SAFE_HOMING_Y_POINT - Y_PROBE_OFFSET_FROM_EXTRUDER);
|
||||
destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
|
||||
feedrate = XY_TRAVEL_SPEED/60;
|
||||
current_position[Z_AXIS] = 0;
|
||||
#if Z_HOME_DIR < 0 // If homing towards BED do Z last
|
||||
#ifndef Z_SAFE_HOMING
|
||||
if(home_z) {
|
||||
#if defined (Z_RAISE_BEFORE_HOMING) && (Z_RAISE_BEFORE_HOMING > 0)
|
||||
destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
|
||||
feedrate = max_feedrate[Z_AXIS];
|
||||
plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
|
||||
st_synchronize();
|
||||
#endif // defined (Z_RAISE_BEFORE_HOMING) && (Z_RAISE_BEFORE_HOMING > 0)
|
||||
#if (defined(MESH_BED_LEVELING) && !defined(MK1BP)) // If Mesh bed leveling, moxve X&Y to safe position for home
|
||||
if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] ))
|
||||
{
|
||||
homeaxis(X_AXIS);
|
||||
homeaxis(Y_AXIS);
|
||||
}
|
||||
// 1st mesh bed leveling measurement point, corrected.
|
||||
world2machine_initialize();
|
||||
world2machine(pgm_read_float(bed_ref_points), pgm_read_float(bed_ref_points+1), destination[X_AXIS], destination[Y_AXIS]);
|
||||
world2machine_reset();
|
||||
if (destination[Y_AXIS] < Y_MIN_POS)
|
||||
destination[Y_AXIS] = Y_MIN_POS;
|
||||
destination[Z_AXIS] = MESH_HOME_Z_SEARCH; // Set destination away from bed
|
||||
feedrate = homing_feedrate[Z_AXIS]/10;
|
||||
current_position[Z_AXIS] = 0;
|
||||
enable_endstops(false);
|
||||
plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
|
||||
plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
|
||||
st_synchronize();
|
||||
current_position[X_AXIS] = destination[X_AXIS];
|
||||
current_position[Y_AXIS] = destination[Y_AXIS];
|
||||
enable_endstops(true);
|
||||
endstops_hit_on_purpose();
|
||||
homeaxis(Z_AXIS);
|
||||
#else // MESH_BED_LEVELING
|
||||
homeaxis(Z_AXIS);
|
||||
#endif // MESH_BED_LEVELING
|
||||
}
|
||||
#else // defined(Z_SAFE_HOMING): Z Safe mode activated.
|
||||
if(home_all_axes) {
|
||||
destination[X_AXIS] = round(Z_SAFE_HOMING_X_POINT - X_PROBE_OFFSET_FROM_EXTRUDER);
|
||||
destination[Y_AXIS] = round(Z_SAFE_HOMING_Y_POINT - Y_PROBE_OFFSET_FROM_EXTRUDER);
|
||||
destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
|
||||
feedrate = XY_TRAVEL_SPEED/60;
|
||||
current_position[Z_AXIS] = 0;
|
||||
|
||||
plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
|
||||
plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
|
||||
st_synchronize();
|
||||
current_position[X_AXIS] = destination[X_AXIS];
|
||||
current_position[Y_AXIS] = destination[Y_AXIS];
|
||||
plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
|
||||
plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
|
||||
st_synchronize();
|
||||
current_position[X_AXIS] = destination[X_AXIS];
|
||||
current_position[Y_AXIS] = destination[Y_AXIS];
|
||||
|
||||
homeaxis(Z_AXIS);
|
||||
}
|
||||
// Let's see if X and Y are homed and probe is inside bed area.
|
||||
if(home_z) {
|
||||
if ( (axis_known_position[X_AXIS]) && (axis_known_position[Y_AXIS]) \
|
||||
&& (current_position[X_AXIS]+X_PROBE_OFFSET_FROM_EXTRUDER >= X_MIN_POS) \
|
||||
&& (current_position[X_AXIS]+X_PROBE_OFFSET_FROM_EXTRUDER <= X_MAX_POS) \
|
||||
&& (current_position[Y_AXIS]+Y_PROBE_OFFSET_FROM_EXTRUDER >= Y_MIN_POS) \
|
||||
&& (current_position[Y_AXIS]+Y_PROBE_OFFSET_FROM_EXTRUDER <= Y_MAX_POS)) {
|
||||
homeaxis(Z_AXIS);
|
||||
}
|
||||
// Let's see if X and Y are homed and probe is inside bed area.
|
||||
if(home_z) {
|
||||
if ( (axis_known_position[X_AXIS]) && (axis_known_position[Y_AXIS]) \
|
||||
&& (current_position[X_AXIS]+X_PROBE_OFFSET_FROM_EXTRUDER >= X_MIN_POS) \
|
||||
&& (current_position[X_AXIS]+X_PROBE_OFFSET_FROM_EXTRUDER <= X_MAX_POS) \
|
||||
&& (current_position[Y_AXIS]+Y_PROBE_OFFSET_FROM_EXTRUDER >= Y_MIN_POS) \
|
||||
&& (current_position[Y_AXIS]+Y_PROBE_OFFSET_FROM_EXTRUDER <= Y_MAX_POS)) {
|
||||
|
||||
current_position[Z_AXIS] = 0;
|
||||
plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
|
||||
destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
|
||||
feedrate = max_feedrate[Z_AXIS];
|
||||
plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
|
||||
st_synchronize();
|
||||
current_position[Z_AXIS] = 0;
|
||||
plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
|
||||
destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
|
||||
feedrate = max_feedrate[Z_AXIS];
|
||||
plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
|
||||
st_synchronize();
|
||||
|
||||
homeaxis(Z_AXIS);
|
||||
} else if (!((axis_known_position[X_AXIS]) && (axis_known_position[Y_AXIS]))) {
|
||||
LCD_MESSAGERPGM(MSG_POSITION_UNKNOWN);
|
||||
SERIAL_ECHO_START;
|
||||
SERIAL_ECHOLNRPGM(MSG_POSITION_UNKNOWN);
|
||||
} else {
|
||||
LCD_MESSAGERPGM(MSG_ZPROBE_OUT);
|
||||
SERIAL_ECHO_START;
|
||||
SERIAL_ECHOLNRPGM(MSG_ZPROBE_OUT);
|
||||
}
|
||||
}
|
||||
#endif // Z_SAFE_HOMING
|
||||
#endif // Z_HOME_DIR < 0
|
||||
homeaxis(Z_AXIS);
|
||||
} else if (!((axis_known_position[X_AXIS]) && (axis_known_position[Y_AXIS]))) {
|
||||
LCD_MESSAGERPGM(MSG_POSITION_UNKNOWN);
|
||||
SERIAL_ECHO_START;
|
||||
SERIAL_ECHOLNRPGM(MSG_POSITION_UNKNOWN);
|
||||
} else {
|
||||
LCD_MESSAGERPGM(MSG_ZPROBE_OUT);
|
||||
SERIAL_ECHO_START;
|
||||
SERIAL_ECHOLNRPGM(MSG_ZPROBE_OUT);
|
||||
}
|
||||
}
|
||||
#endif // Z_SAFE_HOMING
|
||||
#endif // Z_HOME_DIR < 0
|
||||
|
||||
if(code_seen(axis_codes[Z_AXIS]) && code_value_long() != 0)
|
||||
current_position[Z_AXIS]=code_value()+add_homing[Z_AXIS];
|
||||
#ifdef ENABLE_AUTO_BED_LEVELING
|
||||
if(home_z)
|
||||
current_position[Z_AXIS] += zprobe_zoffset; //Add Z_Probe offset (the distance is negative)
|
||||
#endif
|
||||
|
||||
// Set the planner and stepper routine positions.
|
||||
// At this point the mesh bed leveling and world2machine corrections are disabled and current_position
|
||||
// contains the machine coordinates.
|
||||
plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
|
||||
|
||||
#ifdef ENDSTOPS_ONLY_FOR_HOMING
|
||||
enable_endstops(false);
|
||||
#endif
|
||||
|
||||
feedrate = saved_feedrate;
|
||||
feedmultiply = saved_feedmultiply;
|
||||
previous_millis_cmd = millis();
|
||||
endstops_hit_on_purpose();
|
||||
#ifndef MESH_BED_LEVELING
|
||||
// If MESH_BED_LEVELING is not active, then it is the original Prusa i3.
|
||||
// Offer the user to load the baby step value, which has been adjusted at the previous print session.
|
||||
if(card.sdprinting && eeprom_read_word((uint16_t *)EEPROM_BABYSTEP_Z))
|
||||
lcd_adjust_z();
|
||||
if(code_seen(axis_codes[Z_AXIS]) && code_value_long() != 0)
|
||||
current_position[Z_AXIS]=code_value()+add_homing[Z_AXIS];
|
||||
#ifdef ENABLE_AUTO_BED_LEVELING
|
||||
if(home_z)
|
||||
current_position[Z_AXIS] += zprobe_zoffset; //Add Z_Probe offset (the distance is negative)
|
||||
#endif
|
||||
|
||||
// Load the machine correction matrix
|
||||
world2machine_initialize();
|
||||
// and correct the current_position XY axes to match the transformed coordinate system.
|
||||
world2machine_update_current();
|
||||
// Set the planner and stepper routine positions.
|
||||
// At this point the mesh bed leveling and world2machine corrections are disabled and current_position
|
||||
// contains the machine coordinates.
|
||||
plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
|
||||
|
||||
#ifdef ENDSTOPS_ONLY_FOR_HOMING
|
||||
enable_endstops(false);
|
||||
#endif
|
||||
|
||||
feedrate = saved_feedrate;
|
||||
feedmultiply = saved_feedmultiply;
|
||||
previous_millis_cmd = millis();
|
||||
endstops_hit_on_purpose();
|
||||
#ifndef MESH_BED_LEVELING
|
||||
// If MESH_BED_LEVELING is not active, then it is the original Prusa i3.
|
||||
// Offer the user to load the baby step value, which has been adjusted at the previous print session.
|
||||
if(card.sdprinting && eeprom_read_word((uint16_t *)EEPROM_BABYSTEP_Z))
|
||||
lcd_adjust_z();
|
||||
#endif
|
||||
|
||||
// Load the machine correction matrix
|
||||
world2machine_initialize();
|
||||
// and correct the current_position XY axes to match the transformed coordinate system.
|
||||
world2machine_update_current();
|
||||
|
||||
#if (defined(MESH_BED_LEVELING) && !defined(MK1BP))
|
||||
if (code_seen(axis_codes[X_AXIS]) || code_seen(axis_codes[Y_AXIS]) || code_seen('W') || code_seen(axis_codes[Z_AXIS]))
|
||||
if (code_seen(axis_codes[X_AXIS]) || code_seen(axis_codes[Y_AXIS]) || code_seen('W') || code_seen(axis_codes[Z_AXIS]))
|
||||
{
|
||||
if (! home_z && mbl_was_active) {
|
||||
// Re-enable the mesh bed leveling if only the X and Y axes were re-homed.
|
||||
mbl.active = true;
|
||||
// and re-adjust the current logical Z axis with the bed leveling offset applicable at the current XY position.
|
||||
current_position[Z_AXIS] -= mbl.get_z(st_get_position_mm(X_AXIS), st_get_position_mm(Y_AXIS));
|
||||
}
|
||||
if (! home_z && mbl_was_active) {
|
||||
// Re-enable the mesh bed leveling if only the X and Y axes were re-homed.
|
||||
mbl.active = true;
|
||||
// and re-adjust the current logical Z axis with the bed leveling offset applicable at the current XY position.
|
||||
current_position[Z_AXIS] -= mbl.get_z(st_get_position_mm(X_AXIS), st_get_position_mm(Y_AXIS));
|
||||
}
|
||||
}
|
||||
else
|
||||
else
|
||||
{
|
||||
st_synchronize();
|
||||
homing_flag = false;
|
||||
|
@ -3214,18 +3214,18 @@ void process_commands()
|
|||
// There shall be always enough space reserved for these commands.
|
||||
// enquecommand_front_P((PSTR("G80")));
|
||||
goto case_G80;
|
||||
}
|
||||
}
|
||||
#endif
|
||||
|
||||
if (farm_mode) { prusa_statistics(20); };
|
||||
if (farm_mode) { prusa_statistics(20); };
|
||||
|
||||
homing_flag = false;
|
||||
homing_flag = false;
|
||||
#if 0
|
||||
SERIAL_ECHOPGM("G28, final "); print_world_coordinates();
|
||||
SERIAL_ECHOPGM("G28, final "); print_physical_coordinates();
|
||||
SERIAL_ECHOPGM("G28, final "); print_mesh_bed_leveling_table();
|
||||
SERIAL_ECHOPGM("G28, final "); print_world_coordinates();
|
||||
SERIAL_ECHOPGM("G28, final "); print_physical_coordinates();
|
||||
SERIAL_ECHOPGM("G28, final "); print_mesh_bed_leveling_table();
|
||||
#endif
|
||||
break;
|
||||
break;
|
||||
}
|
||||
#ifdef ENABLE_AUTO_BED_LEVELING
|
||||
case 29: // G29 Detailed Z-Probe, probes the bed at 3 or more points.
|
||||
|
@ -3451,17 +3451,32 @@ void process_commands()
|
|||
}
|
||||
lcd_show_fullscreen_message_and_wait_P(MSG_TEMP_CAL_WARNING);
|
||||
bool result = lcd_show_fullscreen_message_yes_no_and_wait_P(MSG_STEEL_SHEET_CHECK, false, false);
|
||||
|
||||
if (result)
|
||||
{
|
||||
current_position[Z_AXIS] = 50;
|
||||
current_position[Y_AXIS] = 190;
|
||||
current_position[Y_AXIS] += 180;
|
||||
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
|
||||
st_synchronize();
|
||||
lcd_show_fullscreen_message_and_wait_P(MSG_REMOVE_STEEL_SHEET);
|
||||
current_position[Y_AXIS] -= 180;
|
||||
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
|
||||
st_synchronize();
|
||||
feedrate = homing_feedrate[Z_AXIS] / 10;
|
||||
enable_endstops(true);
|
||||
endstops_hit_on_purpose();
|
||||
homeaxis(Z_AXIS);
|
||||
plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
|
||||
enable_endstops(false);
|
||||
}
|
||||
if ((current_temperature_pinda > 35) && (farm_mode == false)) {
|
||||
//waiting for PIDNA probe to cool down in case that we are not in farm mode
|
||||
lcd_wait_for_pinda(35);
|
||||
current_position[Z_AXIS] = 100;
|
||||
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
|
||||
if (lcd_wait_for_pinda(35) == false) { //waiting for PINDA probe to cool, if this takes more then time expected, temp. cal. fails
|
||||
lcd_temp_cal_show_result(false);
|
||||
break;
|
||||
}
|
||||
}
|
||||
lcd_update_enable(true);
|
||||
KEEPALIVE_STATE(NOT_BUSY); //no need to print busy messages as we print current temperatures periodicaly
|
||||
|
@ -3504,7 +3519,9 @@ void process_commands()
|
|||
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
|
||||
st_synchronize();
|
||||
|
||||
find_bed_induction_sensor_point_z(-1.f);
|
||||
bool find_z_result = find_bed_induction_sensor_point_z(-1.f);
|
||||
if(find_z_result == false) lcd_temp_cal_show_result(find_z_result);
|
||||
|
||||
zero_z = current_position[Z_AXIS];
|
||||
|
||||
//current_position[Z_AXIS]
|
||||
|
@ -3553,7 +3570,9 @@ void process_commands()
|
|||
current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 1);
|
||||
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
|
||||
st_synchronize();
|
||||
find_bed_induction_sensor_point_z(-1.f);
|
||||
find_z_result = find_bed_induction_sensor_point_z(-1.f);
|
||||
if (find_z_result == false) lcd_temp_cal_show_result(find_z_result);
|
||||
|
||||
z_shift = (int)((current_position[Z_AXIS] - zero_z)*axis_steps_per_unit[Z_AXIS]);
|
||||
|
||||
SERIAL_ECHOLNPGM("");
|
||||
|
@ -3566,25 +3585,8 @@ void process_commands()
|
|||
EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i * 2, &z_shift);
|
||||
|
||||
}
|
||||
custom_message_type = 0;
|
||||
custom_message = false;
|
||||
lcd_temp_cal_show_result(true);
|
||||
|
||||
eeprom_update_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 1);
|
||||
SERIAL_ECHOLNPGM("Temperature calibration done. Continue with pressing the knob.");
|
||||
disable_x();
|
||||
disable_y();
|
||||
disable_z();
|
||||
disable_e0();
|
||||
disable_e1();
|
||||
disable_e2();
|
||||
setTargetBed(0); //set bed target temperature back to 0
|
||||
// setTargetHotend(0,0); //set hotend target temperature back to 0
|
||||
lcd_show_fullscreen_message_and_wait_P(MSG_TEMP_CALIBRATION_DONE);
|
||||
temp_cal_active = true;
|
||||
eeprom_update_byte((unsigned char *)EEPROM_TEMP_CAL_ACTIVE, 1);
|
||||
|
||||
lcd_update_enable(true);
|
||||
lcd_update(2);
|
||||
break;
|
||||
}
|
||||
#endif //PINDA_THERMISTOR
|
||||
|
|
|
@ -2218,6 +2218,13 @@ const char * const MSG_TEMP_CALIBRATION_ON_LANG_TABLE[LANG_NUM] PROGMEM = {
|
|||
MSG_TEMP_CALIBRATION_ON_CZ
|
||||
};
|
||||
|
||||
const char MSG_TEMP_CAL_FAILED_EN[] PROGMEM = "Temperature calibration failed";
|
||||
const char MSG_TEMP_CAL_FAILED_CZ[] PROGMEM = "Teplotni kalibrace selhala";
|
||||
const char * const MSG_TEMP_CAL_FAILED_LANG_TABLE[LANG_NUM] PROGMEM = {
|
||||
MSG_TEMP_CAL_FAILED_EN,
|
||||
MSG_TEMP_CAL_FAILED_CZ
|
||||
};
|
||||
|
||||
const char MSG_TEMP_CAL_WARNING_EN[] PROGMEM = "Stable ambient temperature 21-26C is needed a rigid stand is required.";
|
||||
const char * const MSG_TEMP_CAL_WARNING_LANG_TABLE[1] PROGMEM = {
|
||||
MSG_TEMP_CAL_WARNING_EN
|
||||
|
|
|
@ -726,6 +726,8 @@ extern const char* const MSG_TEMP_CALIBRATION_OFF_LANG_TABLE[LANG_NUM];
|
|||
#define MSG_TEMP_CALIBRATION_OFF LANG_TABLE_SELECT(MSG_TEMP_CALIBRATION_OFF_LANG_TABLE)
|
||||
extern const char* const MSG_TEMP_CALIBRATION_ON_LANG_TABLE[LANG_NUM];
|
||||
#define MSG_TEMP_CALIBRATION_ON LANG_TABLE_SELECT(MSG_TEMP_CALIBRATION_ON_LANG_TABLE)
|
||||
extern const char* const MSG_TEMP_CAL_FAILED_LANG_TABLE[LANG_NUM];
|
||||
#define MSG_TEMP_CAL_FAILED LANG_TABLE_SELECT(MSG_TEMP_CAL_FAILED_LANG_TABLE)
|
||||
extern const char* const MSG_TEMP_CAL_WARNING_LANG_TABLE[1];
|
||||
#define MSG_TEMP_CAL_WARNING LANG_TABLE_SELECT_EXPLICIT(MSG_TEMP_CAL_WARNING_LANG_TABLE, 0)
|
||||
extern const char* const MSG_TOSHIBA_FLASH_AIR_COMPATIBILITY_OFF_LANG_TABLE[1];
|
||||
|
|
|
@ -415,3 +415,4 @@
|
|||
#define MSG_CHANGED_PRINTER "Varovani: doslo ke zmene typu tiskarny."
|
||||
#define MSG_CHANGED_BOTH "Varovani: doslo ke zmene typu tiskarny a motherboardu."
|
||||
#define MSG_WAITING_TEMP_PINDA "Cekani na zchladnuti PINDA"
|
||||
#define MSG_TEMP_CAL_FAILED "Teplotni kalibrace selhala"
|
|
@ -422,4 +422,5 @@
|
|||
#define(length=20, lines=4) MSG_CHANGED_MOTHERBOARD "Warning: motherboard type changed."
|
||||
#define(length=20, lines=4) MSG_CHANGED_PRINTER "Warning: printer type changed."
|
||||
#define(length=20, lines=4) MSG_CHANGED_BOTH "Warning: both printer type and motherboard type changed."
|
||||
#define(length=20, lines=3) MSG_WAITING_TEMP_PINDA "Waiting for PINDA probe cooling"
|
||||
#define(length=20, lines=3) MSG_WAITING_TEMP_PINDA "Waiting for PINDA probe cooling"
|
||||
#define(length=20, lines=8) MSG_TEMP_CAL_FAILED "Temperature calibration failed"
|
|
@ -9,6 +9,7 @@
|
|||
#include "stepper.h"
|
||||
#include "ConfigurationStore.h"
|
||||
#include <string.h>
|
||||
#include "Timer.h"
|
||||
|
||||
#include "util.h"
|
||||
#include "mesh_bed_leveling.h"
|
||||
|
@ -2600,23 +2601,33 @@ void lcd_adjust_z() {
|
|||
|
||||
}
|
||||
|
||||
void lcd_wait_for_pinda(uint8_t temp) {
|
||||
bool lcd_wait_for_pinda(float temp) {
|
||||
lcd_set_custom_characters_degree();
|
||||
setTargetHotend(0, 0);
|
||||
setTargetBed(0);
|
||||
Timer pinda_timeout;
|
||||
pinda_timeout.start();
|
||||
bool target_temp_reached = true;
|
||||
|
||||
while (current_temperature_pinda > temp){
|
||||
lcd_display_message_fullscreen_P(MSG_WAITING_TEMP_PINDA);
|
||||
|
||||
lcd.setCursor(0, 4);
|
||||
lcd.print(LCD_STR_THERMOMETER[0]);
|
||||
lcd.print(ftostr3(current_temperature_pinda));
|
||||
lcd.print("/35");
|
||||
lcd.print("/");
|
||||
lcd.print(ftostr3(temp));
|
||||
lcd.print(LCD_STR_DEGREE);
|
||||
delay_keep_alive(1000);
|
||||
serialecho_temperatures();
|
||||
if (pinda_timeout.expired(8 * 60 * 1000ul)) { //PINDA cooling from 60 C to 35 C takes about 7 minutes
|
||||
target_temp_reached = false;
|
||||
break;
|
||||
}
|
||||
}
|
||||
lcd_set_custom_characters_arrows();
|
||||
lcd_update_enable(true);
|
||||
return(target_temp_reached);
|
||||
}
|
||||
|
||||
void lcd_wait_for_heater() {
|
||||
|
@ -3063,6 +3074,36 @@ void lcd_bed_calibration_show_result(BedSkewOffsetDetectionResultType result, ui
|
|||
}
|
||||
}
|
||||
|
||||
void lcd_temp_cal_show_result(bool result) {
|
||||
|
||||
custom_message_type = 0;
|
||||
custom_message = false;
|
||||
disable_x();
|
||||
disable_y();
|
||||
disable_z();
|
||||
disable_e0();
|
||||
disable_e1();
|
||||
disable_e2();
|
||||
setTargetBed(0); //set bed target temperature back to 0
|
||||
|
||||
if (result == true) {
|
||||
eeprom_update_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 1);
|
||||
SERIAL_ECHOLNPGM("Temperature calibration done. Continue with pressing the knob.");
|
||||
lcd_show_fullscreen_message_and_wait_P(MSG_TEMP_CALIBRATION_DONE);
|
||||
temp_cal_active = true;
|
||||
eeprom_update_byte((unsigned char *)EEPROM_TEMP_CAL_ACTIVE, 1);
|
||||
}
|
||||
else {
|
||||
eeprom_update_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 0);
|
||||
SERIAL_ECHOLNPGM("Temperature calibration failed. Continue with pressing the knob.");
|
||||
lcd_show_fullscreen_message_and_wait_P(MSG_TEMP_CAL_FAILED);
|
||||
temp_cal_active = false;
|
||||
eeprom_update_byte((unsigned char *)EEPROM_TEMP_CAL_ACTIVE, 0);
|
||||
}
|
||||
lcd_update_enable(true);
|
||||
lcd_update(2);
|
||||
}
|
||||
|
||||
static void lcd_show_end_stops() {
|
||||
lcd.setCursor(0, 0);
|
||||
lcd_printPGM((PSTR("End stops diag")));
|
||||
|
|
|
@ -267,10 +267,13 @@ void lcd_farm_sdcard_menu_w();
|
|||
|
||||
void lcd_wait_for_heater();
|
||||
void lcd_wait_for_cool_down();
|
||||
void lcd_wait_for_pinda(uint8_t temp);
|
||||
void adjust_bed_reset();
|
||||
void lcd_extr_cal_reset();
|
||||
|
||||
void lcd_temp_cal_show_result(bool result);
|
||||
bool lcd_wait_for_pinda(float temp);
|
||||
|
||||
|
||||
union MenuData;
|
||||
|
||||
void bowden_menu();
|
||||
|
|
Loading…
Add table
Reference in a new issue