Code Cleanup
This commit is contained in:
parent
623c029bfa
commit
02b0307307
@ -86,7 +86,7 @@ void mc_arc(float* position, float* target, float* offset, float feed_rate, floa
|
|||||||
// calculating here
|
// calculating here
|
||||||
const float millimeters_of_travel_arc = hypot(angular_travel_total * radius, fabs(travel_z));
|
const float millimeters_of_travel_arc = hypot(angular_travel_total * radius, fabs(travel_z));
|
||||||
if (millimeters_of_travel_arc < 0.001) { return; }
|
if (millimeters_of_travel_arc < 0.001) { return; }
|
||||||
// Calculate the total travel per segment
|
|
||||||
// Calculate the number of arc segments
|
// Calculate the number of arc segments
|
||||||
uint16_t segments = static_cast<uint16_t>(ceil(millimeters_of_travel_arc / mm_per_arc_segment));
|
uint16_t segments = static_cast<uint16_t>(ceil(millimeters_of_travel_arc / mm_per_arc_segment));
|
||||||
|
|
||||||
@ -115,17 +115,18 @@ void mc_arc(float* position, float* target, float* offset, float feed_rate, floa
|
|||||||
// If there is only one segment, no need to do a bunch of work since this is a straight line!
|
// If there is only one segment, no need to do a bunch of work since this is a straight line!
|
||||||
if (segments > 1)
|
if (segments > 1)
|
||||||
{
|
{
|
||||||
|
// Calculate theta per segments, and linear (z) travel per segment, e travel per segment
|
||||||
// Calculate theta per segments and linear (z) travel per segment
|
// as well as the small angle approximation for sin and cos.
|
||||||
const float theta_per_segment = angular_travel_total / segments,
|
const float theta_per_segment = angular_travel_total / segments,
|
||||||
linear_per_segment = travel_z / (segments),
|
linear_per_segment = travel_z / (segments),
|
||||||
segment_extruder_travel = (target[E_AXIS] - position[E_AXIS]) / (segments),
|
segment_extruder_travel = (target[E_AXIS] - position[E_AXIS]) / (segments),
|
||||||
sq_theta_per_segment = theta_per_segment * theta_per_segment,
|
sq_theta_per_segment = theta_per_segment * theta_per_segment,
|
||||||
sin_T = theta_per_segment - sq_theta_per_segment * theta_per_segment / 6,
|
sin_T = theta_per_segment - sq_theta_per_segment * theta_per_segment / 6,
|
||||||
cos_T = 1 - 0.5f * sq_theta_per_segment;
|
cos_T = 1 - 0.5f * sq_theta_per_segment;
|
||||||
|
// Loop through all but one of the segments. The last one can be done simply
|
||||||
for (uint16_t i = 1; i < segments; i++) { // Increment (segments-1)
|
// by moving to the target.
|
||||||
if (n_arc_correction--<1) {
|
for (uint16_t i = 1; i < segments; i++) {
|
||||||
|
if (n_arc_correction-- == 0) {
|
||||||
// Calculate the actual position for r_axis_x and r_axis_y
|
// Calculate the actual position for r_axis_x and r_axis_y
|
||||||
const float cos_Ti = cos(i * theta_per_segment), sin_Ti = sin(i * theta_per_segment);
|
const float cos_Ti = cos(i * theta_per_segment), sin_Ti = sin(i * theta_per_segment);
|
||||||
r_axis_x = -offset[X_AXIS] * cos_Ti + offset[Y_AXIS] * sin_Ti;
|
r_axis_x = -offset[X_AXIS] * cos_Ti + offset[Y_AXIS] * sin_Ti;
|
||||||
@ -134,24 +135,25 @@ void mc_arc(float* position, float* target, float* offset, float feed_rate, floa
|
|||||||
n_arc_correction = cs.n_arc_correction;
|
n_arc_correction = cs.n_arc_correction;
|
||||||
}
|
}
|
||||||
else {
|
else {
|
||||||
|
// Calculate X and Y using the small angle approximation
|
||||||
const float r_axisi = r_axis_x * sin_T + r_axis_y * cos_T;
|
const float r_axisi = r_axis_x * sin_T + r_axis_y * cos_T;
|
||||||
r_axis_x = r_axis_x * cos_T - r_axis_y * sin_T;
|
r_axis_x = r_axis_x * cos_T - r_axis_y * sin_T;
|
||||||
r_axis_y = r_axisi;
|
r_axis_y = r_axisi;
|
||||||
}
|
}
|
||||||
|
|
||||||
// Update arc_target location
|
// Update Position
|
||||||
position[X_AXIS] = center_axis_x + r_axis_x;
|
position[X_AXIS] = center_axis_x + r_axis_x;
|
||||||
position[Y_AXIS] = center_axis_y + r_axis_y;
|
position[Y_AXIS] = center_axis_y + r_axis_y;
|
||||||
position[Z_AXIS] += linear_per_segment;
|
position[Z_AXIS] += linear_per_segment;
|
||||||
position[E_AXIS] += segment_extruder_travel;
|
position[E_AXIS] += segment_extruder_travel;
|
||||||
// We can't clamp to the target because we are interpolating! We would need to update a position, clamp to it
|
// Clamp to the calculated position.
|
||||||
// after updating from calculated values.
|
|
||||||
clamp_to_software_endstops(position);
|
clamp_to_software_endstops(position);
|
||||||
plan_buffer_line(position[X_AXIS], position[Y_AXIS], position[Z_AXIS], position[E_AXIS], feed_rate, extruder);
|
// Insert the segment into the buffer
|
||||||
|
plan_buffer_line(position[X_AXIS], position[Y_AXIS], position[Z_AXIS], position[E_AXIS], feed_rate, extruder, position);
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
// Ensure last segment arrives at target location.
|
// Clamp to the target position.
|
||||||
// Here we could clamp, but why bother. We would need to update our current position, clamp to it
|
|
||||||
clamp_to_software_endstops(target);
|
clamp_to_software_endstops(target);
|
||||||
plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], feed_rate, extruder);
|
// Ensure last segment arrives at target location.
|
||||||
|
plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], feed_rate, extruder, target);
|
||||||
}
|
}
|
||||||
|
Loading…
Reference in New Issue
Block a user