Merge pull request #827 from XPila/MK3-new_lang

New ML support
This commit is contained in:
PavelSindler 2018-06-11 15:39:59 +02:00 committed by GitHub
commit 08bf448321
No known key found for this signature in database
GPG key ID: 4AEE18F83AFDEB23
5 changed files with 237 additions and 336 deletions

View file

@ -273,7 +273,7 @@ void LiquidCrystal_Prusa::setCursor(uint8_t col, uint8_t row)
if ( row >= _numlines ) {
row = _numlines-1; // we count rows starting w/0
}
_currline = row;
command(LCD_SETDDRAMADDR | (col + row_offsets[row]));
}
@ -344,9 +344,8 @@ void LiquidCrystal_Prusa::noAutoscroll(void) {
void LiquidCrystal_Prusa::createChar(uint8_t location, uint8_t charmap[]) {
location &= 0x7; // we only have 8 locations 0-7
command(LCD_SETCGRAMADDR | (location << 3));
for (int i=0; i<8; i++) {
write(charmap[i]);
}
for (int i=0; i<8; i++)
send(charmap[i], HIGH);
}
/*********** mid level commands, for sending data/cmds */
@ -356,6 +355,12 @@ inline void LiquidCrystal_Prusa::command(uint8_t value) {
}
inline size_t LiquidCrystal_Prusa::write(uint8_t value) {
if (value == '\n')
{
if (_currline > 3) _currline = -1;
setCursor(0, _currline + 1); // LF
return 1;
}
if (_escape[0] || (value == 0x1b))
return escape_write(value);
send(value, HIGH);
@ -421,7 +426,7 @@ inline size_t LiquidCrystal_Prusa::escape_write(uint8_t chr)
break;
case '2':
if (chr == 'J') // escape = "\x1b[2J"
{ clear(); break; } // EraseScreen
{ clear(); _currline = 0; break; } // EraseScreen
default:
if (e_2_is_num && // escape = "\x1b[%1d"
((chr == ';') || // escape = "\x1b[%1d;"

View file

@ -371,7 +371,15 @@ float extruder_multiplier[EXTRUDERS] = {1.0
#endif
#endif
};
float current_position[NUM_AXIS] = { 0.0, 0.0, 0.0, 0.0 };
//shortcuts for more readable code
#define _x current_position[X_AXIS]
#define _y current_position[Y_AXIS]
#define _z current_position[Z_AXIS]
#define _e current_position[E_AXIS]
float add_homing[3]={0,0,0};
float min_pos[3] = { X_MIN_POS, Y_MIN_POS, Z_MIN_POS };
@ -440,6 +448,7 @@ bool cancel_heatup = false ;
#define KEEPALIVE_STATE(n);
#endif
const char errormagic[] PROGMEM = "Error:";
const char echomagic[] PROGMEM = "echo:";
@ -635,7 +644,6 @@ extern int8_t CrashDetectMenu;
void crashdet_enable()
{
// MYSERIAL.println("crashdet_enable");
tmc2130_sg_stop_on_crash = true;
eeprom_update_byte((uint8_t*)EEPROM_CRASH_DET, 0xFF);
CrashDetectMenu = 1;
@ -644,7 +652,6 @@ void crashdet_enable()
void crashdet_disable()
{
// MYSERIAL.println("crashdet_disable");
tmc2130_sg_stop_on_crash = false;
tmc2130_sg_crash = 0;
eeprom_update_byte((uint8_t*)EEPROM_CRASH_DET, 0x00);
@ -896,14 +903,18 @@ int uart_putchar(char c, FILE *stream)
return 0;
}
void lcd_splash()
{
// lcd_print_at_PGM(0, 1, PSTR(" Original Prusa "));
// lcd_print_at_PGM(0, 2, PSTR(" 3D Printers "));
// lcd.print_P(PSTR("\x1b[1;3HOriginal Prusa\x1b[2;4H3D Printers"));
fputs_P(PSTR(ESC_2J ESC_H(1,1) "Original Prusa i3" ESC_H(3,2) "Prusa Research"), lcdout);
// fputs_P(PSTR(ESC_2J ESC_H(1,1) "Original Prusa i3" ESC_H(3,2) "Prusa Research"), lcdout);
lcd_puts_P(PSTR(ESC_2J ESC_H(1,1) "Original Prusa i3" ESC_H(3,2) "Prusa Research"));
// lcd_printf_P(_N(ESC_2J "x:%.3f\ny:%.3f\nz:%.3f\ne:%.3f"), _x, _y, _z, _e);
}
void factory_reset()
{
KEEPALIVE_STATE(PAUSED_FOR_USER);
@ -1162,6 +1173,7 @@ void setup()
SERIAL_ECHO_START;
printf_P(PSTR(" " FW_VERSION_FULL "\n"));
#ifdef DEBUG_SEC_LANG
lang_table_header_t header;
uint32_t src_addr = 0x00000;
@ -1333,12 +1345,12 @@ void setup()
if (crashdet && !farm_mode)
{
crashdet_enable();
MYSERIAL.println("CrashDetect ENABLED!");
puts_P(_N("CrashDetect ENABLED!"));
}
else
{
crashdet_disable();
MYSERIAL.println("CrashDetect DISABLED");
puts_P(_N("CrashDetect DISABLED"));
}
#ifdef TMC2130_LINEARITY_CORRECTION
@ -1406,7 +1418,6 @@ void setup()
#ifdef TMC2130
if (1) {
/// SERIAL_ECHOPGM("initial zsteps on power up: "); MYSERIAL.println(tmc2130_rd_MSCNT(Z_AXIS));
// try to run to zero phase before powering the Z motor.
// Move in negative direction
WRITE(Z_DIR_PIN,INVERT_Z_DIR);
@ -1418,7 +1429,6 @@ void setup()
WRITE(Z_STEP_PIN, INVERT_Z_STEP_PIN);
delay(2);
}
// SERIAL_ECHOPGM("initial zsteps after reset: "); MYSERIAL.println(tmc2130_rd_MSCNT(Z_AXIS));
}
#endif //TMC2130
@ -1688,21 +1698,17 @@ void setup()
*/
manage_heater(); // Update temperatures
#ifdef DEBUG_UVLO_AUTOMATIC_RECOVER
MYSERIAL.println("Power panic detected!");
MYSERIAL.print("Current bed temp:");
MYSERIAL.println(degBed());
MYSERIAL.print("Saved bed temp:");
MYSERIAL.println((float)eeprom_read_byte((uint8_t*)EEPROM_UVLO_TARGET_BED));
printf_P(_N("Power panic detected!\nCurrent bed temp:%d\nSaved bed temp:%d\n"), (int)degBed(), eeprom_read_byte((uint8_t*)EEPROM_UVLO_TARGET_BED))
#endif
if ( degBed() > ( (float)eeprom_read_byte((uint8_t*)EEPROM_UVLO_TARGET_BED) - AUTOMATIC_UVLO_BED_TEMP_OFFSET) ){
#ifdef DEBUG_UVLO_AUTOMATIC_RECOVER
MYSERIAL.println("Automatic recovery!");
puts_P(_N("Automatic recovery!"));
#endif
recover_print(1);
}
else{
#ifdef DEBUG_UVLO_AUTOMATIC_RECOVER
MYSERIAL.println("Normal recovery!");
puts_P(_N("Normal recovery!"));
#endif
if ( lcd_show_fullscreen_message_yes_no_and_wait_P(_T(MSG_RECOVER_PRINT), false) ) recover_print(0);
else {
@ -1726,7 +1732,7 @@ void setup()
#ifdef PAT9125
void fsensor_init() {
int pat9125 = pat9125_init();
printf_P(PSTR("PAT9125_init:%d\n"), pat9125);
printf_P(_N("PAT9125_init:%d\n"), pat9125);
uint8_t fsensor = eeprom_read_byte((uint8_t*)EEPROM_FSENSOR);
filament_autoload_enabled=eeprom_read_byte((uint8_t*)EEPROM_FSENS_AUTOLOAD_ENABLED);
if (!pat9125)
@ -3110,7 +3116,8 @@ static void gcode_PRUSA_SN()
{
if (farm_mode) {
selectedSerialPort = 0;
MSerial.write(";S");
putchar(';');
putchar('S');
int numbersRead = 0;
ShortTimer timeout;
timeout.start();
@ -3119,14 +3126,14 @@ static void gcode_PRUSA_SN()
while (MSerial.available() > 0) {
uint8_t serial_char = MSerial.read();
selectedSerialPort = 1;
MSerial.write(serial_char);
putchar(serial_char);
numbersRead++;
selectedSerialPort = 0;
}
if (timeout.expired(100u)) break;
}
selectedSerialPort = 1;
MSerial.write('\n');
putchar('\n');
#if 0
for (int b = 0; b < 3; b++) {
tone(BEEPER, 110);
@ -3136,7 +3143,7 @@ static void gcode_PRUSA_SN()
}
#endif
} else {
MYSERIAL.println("Not in farm mode.");
puts_P(_N("Not in farm mode."));
}
}
@ -3217,22 +3224,16 @@ void process_commands()
}
}
else if (code_seen("PRN")) {
MYSERIAL.println(status_number);
printf_P(_N("%d"), status_number);
}else if (code_seen("FAN")) {
MYSERIAL.print("E0:");
MYSERIAL.print(60*fan_speed[0]);
MYSERIAL.println(" RPM");
MYSERIAL.print("PRN0:");
MYSERIAL.print(60*fan_speed[1]);
MYSERIAL.println(" RPM");
}else if (code_seen("fn")) {
printf_P(_N("E0:%d RPM\nPRN0:%d RPM\n"), 60*fan_speed[0], 60*fan_speed[1]);
}else if (code_seen("fn")) {
if (farm_mode) {
MYSERIAL.println(farm_no);
printf_P(_N("%d"), farm_no);
}
else {
MYSERIAL.println("Not in farm mode.");
puts_P(_N("Not in farm mode."));
}
}
@ -3736,14 +3737,9 @@ void process_commands()
feedrate = homing_feedrate[Z_AXIS];
find_bed_induction_sensor_point_z(-10.f, 3);
SERIAL_PROTOCOLRPGM(_T(MSG_BED));
SERIAL_PROTOCOLPGM(" X: ");
MYSERIAL.print(current_position[X_AXIS], 5);
SERIAL_PROTOCOLPGM(" Y: ");
MYSERIAL.print(current_position[Y_AXIS], 5);
SERIAL_PROTOCOLPGM(" Z: ");
MYSERIAL.print(current_position[Z_AXIS], 5);
SERIAL_PROTOCOLPGM("\n");
printf_P(_N("%S X: %.5f Y: %.5f Z: %.5f\n"), _T(MSG_BED), _x, _y, _z);
clean_up_after_endstop_move();
}
break;
@ -3751,11 +3747,8 @@ void process_commands()
case 75:
{
for (int i = 40; i <= 110; i++) {
MYSERIAL.print(i);
MYSERIAL.print(" ");
MYSERIAL.println(temp_comp_interpolation(i));// / axis_steps_per_unit[Z_AXIS]);
}
for (int i = 40; i <= 110; i++)
printf_P(_N("%d %.2f"), i, temp_comp_interpolation(i));
}
break;
@ -3818,8 +3811,7 @@ void process_commands()
float start_temp = 5 * (int)(current_temperature_pinda / 5);
if (start_temp < 35) start_temp = 35;
if (start_temp < current_temperature_pinda) start_temp += 5;
SERIAL_ECHOPGM("start temperature: ");
MYSERIAL.println(start_temp);
printf_P(_N("start temperature: %.1f\n"), start_temp);
// setTargetHotend(200, 0);
setTargetBed(70 + (start_temp - 30));
@ -3859,23 +3851,12 @@ void process_commands()
}
zero_z = current_position[Z_AXIS];
//current_position[Z_AXIS]
SERIAL_ECHOLNPGM("");
SERIAL_ECHOPGM("ZERO: ");
MYSERIAL.print(current_position[Z_AXIS]);
SERIAL_ECHOLNPGM("");
printf_P(_N("\nZERO: %.3f\n"), current_position[Z_AXIS]);
int i = -1; for (; i < 5; i++)
{
float temp = (40 + i * 5);
SERIAL_ECHOPGM("Step: ");
MYSERIAL.print(i + 2);
SERIAL_ECHOLNPGM("/6 (skipped)");
SERIAL_ECHOPGM("PINDA temperature: ");
MYSERIAL.print((40 + i*5));
SERIAL_ECHOPGM(" Z shift (mm):");
MYSERIAL.print(0);
SERIAL_ECHOLNPGM("");
printf_P(_N("\nStep: %d/6 (skipped)\nPINDA temperature: %d Z shift (mm):0\n"), i + 2, (40 + i*5));
if (i >= 0) EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i * 2, &z_shift);
if (start_temp <= temp) break;
}
@ -3883,9 +3864,7 @@ void process_commands()
for (i++; i < 5; i++)
{
float temp = (40 + i * 5);
SERIAL_ECHOPGM("Step: ");
MYSERIAL.print(i + 2);
SERIAL_ECHOLNPGM("/6");
printf_P(_N("\nStep: %d/6\n"), i + 2);
custom_message_state = i + 2;
setTargetBed(50 + 10 * (temp - 30) / 5);
// setTargetHotend(255, 0);
@ -3915,12 +3894,7 @@ void process_commands()
}
z_shift = (int)((current_position[Z_AXIS] - zero_z)*axis_steps_per_unit[Z_AXIS]);
SERIAL_ECHOLNPGM("");
SERIAL_ECHOPGM("PINDA temperature: ");
MYSERIAL.print(current_temperature_pinda);
SERIAL_ECHOPGM(" Z shift (mm):");
MYSERIAL.print(current_position[Z_AXIS] - zero_z);
SERIAL_ECHOLNPGM("");
printf_P(_N("\nPINDA temperature: %.1f Z shift (mm): %.3f"), current_temperature_pinda, current_position[Z_AXIS] - zero_z);
EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i * 2, &z_shift);
@ -3944,7 +3918,7 @@ void process_commands()
enquecommand_front_P((PSTR("G28 W0")));
break;
}
SERIAL_ECHOLNPGM("PINDA probe calibration start");
puts_P(_N("PINDA probe calibration start"));
custom_message = true;
custom_message_type = 4;
custom_message_state = 1;
@ -3978,16 +3952,10 @@ void process_commands()
find_bed_induction_sensor_point_z(-1.f);
zero_z = current_position[Z_AXIS];
//current_position[Z_AXIS]
SERIAL_ECHOLNPGM("");
SERIAL_ECHOPGM("ZERO: ");
MYSERIAL.print(current_position[Z_AXIS]);
SERIAL_ECHOLNPGM("");
printf_P(_N("\nZERO: %.3f\n"), current_position[Z_AXIS]);
for (int i = 0; i<5; i++) {
SERIAL_ECHOPGM("Step: ");
MYSERIAL.print(i+2);
SERIAL_ECHOLNPGM("/6");
printf_P(_N("\nStep: %d/6\n"), i + 2);
custom_message_state = i + 2;
t_c = 60 + i * 10;
@ -4014,12 +3982,7 @@ void process_commands()
find_bed_induction_sensor_point_z(-1.f);
z_shift = (int)((current_position[Z_AXIS] - zero_z)*axis_steps_per_unit[Z_AXIS]);
SERIAL_ECHOLNPGM("");
SERIAL_ECHOPGM("Temperature: ");
MYSERIAL.print(t_c);
SERIAL_ECHOPGM(" Z shift (mm):");
MYSERIAL.print(current_position[Z_AXIS] - zero_z);
SERIAL_ECHOLNPGM("");
printf_P(_N("\nTemperature: %d Z shift (mm): %.3f\n"), t_c, current_position[Z_AXIS] - zero_z);
EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i*2, &z_shift);
@ -4029,7 +3992,7 @@ void process_commands()
custom_message = false;
eeprom_update_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 1);
SERIAL_ECHOLNPGM("Temperature calibration done. Continue with pressing the knob.");
puts_P(_N("Temperature calibration done."));
disable_x();
disable_y();
disable_z();
@ -4087,7 +4050,7 @@ void process_commands()
}
fan_speed[1];
MYSERIAL.print(i); SERIAL_ECHOPGM(": "); MYSERIAL.println(fan_speed[1]);
printf_P(_N("%d: %d\n"), i, fan_speed[1]);
}
}break;
@ -5143,15 +5106,11 @@ Sigma_Exit:
if(code_seen('Q')) print_percent_done_silent = code_value();
if(code_seen('S')) print_time_remaining_silent = code_value();
SERIAL_ECHOPGM("NORMAL MODE: Percent done: ");
MYSERIAL.print(int(print_percent_done_normal));
SERIAL_ECHOPGM("; print time remaining in mins: ");
MYSERIAL.println(print_time_remaining_normal);
SERIAL_ECHOPGM("SILENT MODE: Percent done: ");
MYSERIAL.print(int(print_percent_done_silent));
SERIAL_ECHOPGM("; print time remaining in mins: ");
MYSERIAL.println(print_time_remaining_silent);
{
const char* _msg_mode_done_remain = _N("%S MODE: Percent done: %d; print time remaining in mins: %d\n");
printf_P(_msg_mode_done_remain, _N("NORMAL"), int(print_percent_done_normal), print_time_remaining_normal);
printf_P(_msg_mode_done_remain, _N("SILENT"), int(print_percent_done_silent), print_time_remaining_silent);
}
break;
case 104: // M104
@ -6819,14 +6778,8 @@ Sigma_Exit:
if (code_seen('Y')) tmc2130_sg_thr[Y_AXIS] = code_value();
if (code_seen('Z')) tmc2130_sg_thr[Z_AXIS] = code_value();
if (code_seen('E')) tmc2130_sg_thr[E_AXIS] = code_value();
MYSERIAL.print("tmc2130_sg_thr[X]=");
MYSERIAL.println(tmc2130_sg_thr[X_AXIS], DEC);
MYSERIAL.print("tmc2130_sg_thr[Y]=");
MYSERIAL.println(tmc2130_sg_thr[Y_AXIS], DEC);
MYSERIAL.print("tmc2130_sg_thr[Z]=");
MYSERIAL.println(tmc2130_sg_thr[Z_AXIS], DEC);
MYSERIAL.print("tmc2130_sg_thr[E]=");
MYSERIAL.println(tmc2130_sg_thr[E_AXIS], DEC);
for (uint8_t a = X_AXIS; a <= E_AXIS; a++)
printf_P(_N("tmc2130_sg_thr[%c]=%d\n"), "XYZE"[a], tmc2130_sg_thr[a]);
}
break;
@ -7157,10 +7110,7 @@ void FlushSerialRequestResend()
{
//char cmdbuffer[bufindr][100]="Resend:";
MYSERIAL.flush();
SERIAL_PROTOCOLRPGM(_i("Resend: "));////MSG_RESEND c=0 r=0
SERIAL_PROTOCOLLN(gcode_LastN + 1);
previous_millis_cmd = millis();
SERIAL_PROTOCOLLNRPGM(_T(MSG_OK));
printf_P(_N("%S: %ld\n%S\n"), _i("Resend"), gcode_LastN + 1, _T(MSG_OK));
}
// Confirm the execution of a command, if sent from a serial line.
@ -7614,8 +7564,7 @@ void manage_inactivity(bool ignore_stepper_queue/*=false*/) //default argument s
void kill(const char *full_screen_message, unsigned char id)
{
SERIAL_ECHOPGM("KILL: ");
MYSERIAL.println(int(id));
printf_P(_N("KILL: %d\n"), id);
//return;
cli(); // Stop interrupts
disable_heater();
@ -8176,9 +8125,7 @@ void temp_compensation_apply() {
//interpolation
z_shift_mm = temp_comp_interpolation(target_temperature_bed) / axis_steps_per_unit[Z_AXIS];
}
SERIAL_PROTOCOLPGM("\n");
SERIAL_PROTOCOLPGM("Z shift applied:");
MYSERIAL.print(z_shift_mm);
printf_P(_N("\nZ shift applied:%.3f\n"), z_shift_mm);
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS] - z_shift_mm, current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
st_synchronize();
plan_set_z_position(current_position[Z_AXIS]);
@ -8444,8 +8391,7 @@ void uvlo_()
if(sd_print) eeprom_update_byte((uint8_t*)EEPROM_UVLO, 1);
st_synchronize();
SERIAL_ECHOPGM("stps");
MYSERIAL.println(tmc2130_rd_MSCNT(Z_AXIS));
printf_P(_N("stps%d\n"), tmc2130_rd_MSCNT(Z_AXIS));
disable_z();
@ -8453,8 +8399,7 @@ void uvlo_()
eeprom_update_byte((uint8_t*)EEPROM_POWER_COUNT, eeprom_read_byte((uint8_t*)EEPROM_POWER_COUNT) + 1);
eeprom_update_word((uint16_t*)EEPROM_POWER_COUNT_TOT, eeprom_read_word((uint16_t*)EEPROM_POWER_COUNT_TOT) + 1);
SERIAL_ECHOLNPGM("UVLO - end");
MYSERIAL.println(millis() - time_start);
printf_P(_N("UVLO - end %d\n"), millis() - time_start);
#if 0
// Move the print head to the side of the print until all the power stored in the power supply capacitors is depleted.
@ -8568,19 +8513,13 @@ void recover_print(uint8_t automatic) {
/*while ((abs(degHotend(0)- target_temperature[0])>5) || (abs(degBed() -target_temperature_bed)>3)) { //wait for heater and bed to reach target temp
delay_keep_alive(1000);
}*/
SERIAL_ECHOPGM("After waiting for temp:");
SERIAL_ECHOPGM("Current position X_AXIS:");
MYSERIAL.println(current_position[X_AXIS]);
SERIAL_ECHOPGM("Current position Y_AXIS:");
MYSERIAL.println(current_position[Y_AXIS]);
printf_P(_N("After waiting for temp:\nCurrent pos X_AXIS:%.3f\nCurrent pos Y_AXIS:%.3f\n"), current_position[X_AXIS], current_position[Y_AXIS]);
// Restart the print.
restore_print_from_eeprom();
SERIAL_ECHOPGM("current_position[Z_AXIS]:");
MYSERIAL.print(current_position[Z_AXIS]);
SERIAL_ECHOPGM("current_position[E_AXIS]:");
MYSERIAL.print(current_position[E_AXIS]);
printf_P(_N("Current pos Z_AXIS:%.3f\nCurrent pos E_AXIS:%.3f\n"), current_position[Z_AXIS], current_position[E_AXIS]);
}
void recover_machine_state_after_power_panic()
@ -8942,24 +8881,12 @@ void restore_print_from_ram_and_continue(float e_move)
void print_world_coordinates()
{
SERIAL_ECHOPGM("world coordinates: (");
MYSERIAL.print(current_position[X_AXIS], 3);
SERIAL_ECHOPGM(", ");
MYSERIAL.print(current_position[Y_AXIS], 3);
SERIAL_ECHOPGM(", ");
MYSERIAL.print(current_position[Z_AXIS], 3);
SERIAL_ECHOLNPGM(")");
printf_P(_N("world coordinates: (%.3f, %.3f, %.3f)\n"), current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS]);
}
void print_physical_coordinates()
{
SERIAL_ECHOPGM("physical coordinates: (");
MYSERIAL.print(st_get_position_mm(X_AXIS), 3);
SERIAL_ECHOPGM(", ");
MYSERIAL.print(st_get_position_mm(Y_AXIS), 3);
SERIAL_ECHOPGM(", ");
MYSERIAL.print(st_get_position_mm(Z_AXIS), 3);
SERIAL_ECHOLNPGM(")");
printf_P(_N("physical coordinates: (%.3f, %.3f, %.3f)\n"), st_get_position_mm[X_AXIS], st_get_position_mm[Y_AXIS], st_get_position_mm[Z_AXIS]);
}
void print_mesh_bed_leveling_table()

View file

@ -28,7 +28,7 @@
//LANG - Multi-language support
//#define LANG_MODE 0 // primary language only
#define LANG_MODE 0 // sec. language support
#define LANG_MODE 1 // sec. language support
#define LANG_SIZE_RESERVED 0x2700 // reserved space for secondary language (~10kb)
//#define LANG_SIZE_RESERVED 0x1ef8 // reserved space for secondary language (~10kb)

View file

@ -26,7 +26,22 @@
#include "tmc2130.h"
#endif //TMC2130
#define _STRINGIFY(s) #s
#include <stdarg.h>
int lcd_puts_P(const char* str)
{
return fputs_P(str, lcdout);
}
int lcd_printf_P(const char* format, ...)
{
va_list args;
va_start(args, format);
int ret = vfprintf_P(lcdout, format, args);
va_end(args);
return ret;
}
int8_t encoderDiff; /* encoderDiff is updated from interrupt context and added to encoderPosition every LCD update */
@ -1486,71 +1501,49 @@ void lcd_cooldown()
static void lcd_menu_extruder_info()
{
//|01234567890123456789|
//|Nozzle FAN: RPM|
//|Print FAN: RPM|
//|Fil. Xd: Yd: |
//|Int: Shut: |
//----------------------
int fan_speed_RPM[2];
#ifdef PAT9125
pat9125_update();
#endif //PAT9125
fan_speed_RPM[0] = 60*fan_speed[0];
// Display Nozzle fan RPM
fan_speed_RPM[0] = 60*fan_speed[0];
fan_speed_RPM[1] = 60*fan_speed[1];
// Display Nozzle fan RPM
lcd.setCursor(0, 0);
lcd_printPGM(_i("Nozzle FAN:"));////MSG_INFO_NOZZLE_FAN c=11 r=1
lcd.setCursor(11, 0);
lcd.print(" ");
lcd.setCursor(12, 0);
lcd.print(itostr4(fan_speed_RPM[0]));
lcd.print(" RPM");
// Display Nozzle fan RPM
#if (defined(TACH_1))
lcd.setCursor(0, 1);
lcd_printPGM(_i("Print FAN: "));////MSG_INFO_PRINT_FAN c=11 r=1
lcd.setCursor(11, 1);
lcd.print(" ");
lcd.setCursor(12, 1);
lcd.print(itostr4(fan_speed_RPM[1]));
lcd.print(" RPM");
#endif
#ifdef PAT9125
// Display X and Y difference from Filament sensor
lcd.setCursor(0, 2);
lcd.print("Fil. Xd:");
lcd.print(itostr3(pat9125_x));
lcd.print(" ");
lcd.setCursor(12, 2);
lcd.print("Yd:");
lcd.print(itostr3(pat9125_y));
// Display Light intensity from Filament sensor
/* Frame_Avg register represents the average brightness of all pixels within a frame (324 pixels). This
value ranges from 0(darkest) to 255(brightest). */
lcd.setCursor(0, 3);
lcd.print("Int: ");
lcd.setCursor(5, 3);
lcd.print(itostr3(pat9125_b));
// Frame_Avg register represents the average brightness of all pixels within a frame (324 pixels). This
// value ranges from 0(darkest) to 255(brightest).
// Display LASER shutter time from Filament sensor
/* Shutter register is an index of LASER shutter time. It is automatically controlled by the chip's internal
auto-exposure algorithm. When the chip is tracking on a good reflection surface, the Shutter is small.
When the chip is tracking on a poor reflection surface, the Shutter is large. Value ranges from 0 to
46. */
lcd.setCursor(10, 3);
lcd.print("Shut: ");
lcd.setCursor(15, 3);
lcd.print(itostr3(pat9125_s));
// Shutter register is an index of LASER shutter time. It is automatically controlled by the chip's internal
// auto-exposure algorithm. When the chip is tracking on a good reflection surface, the Shutter is small.
// When the chip is tracking on a poor reflection surface, the Shutter is large. Value ranges from 0 to 46.
pat9125_update();
lcd_printf_P(_N(
ESC_H(0,0)
"Nozzle FAN: %4d RPM\n"
"Print FAN: %4d RPM\n"
"Fil. Xd:%3d Yd:%3d\n"
"Int: %3d Shut: %3d\n"
),
fan_speed_RPM[0],
fan_speed_RPM[1],
pat9125_x, pat9125_y,
pat9125_b, pat9125_s
);
#else //PAT9125
printf_P(_N(
ESC_H(0,0)
"Nozzle FAN: %4d RPM\n"
"Print FAN: %4d RPM\n"
),
fan_speed_RPM[0],
fan_speed_RPM[1]
);
#endif //PAT9125
if (lcd_clicked())
{
@ -1571,7 +1564,7 @@ static void lcd_menu_fails_stats_total()
uint16_t filam = eeprom_read_word((uint16_t*)EEPROM_FERROR_COUNT_TOT);
uint16_t crashX = eeprom_read_word((uint16_t*)EEPROM_CRASH_COUNT_X_TOT);
uint16_t crashY = eeprom_read_word((uint16_t*)EEPROM_CRASH_COUNT_Y_TOT);
fprintf_P(lcdout, PSTR(ESC_H(0,0) "Total failures" ESC_H(1,1) "Power failures %-3d" ESC_H(1,2) "Filam. runouts %-3d" ESC_H(1,3) "Crash X %-3d Y %-3d"), power, filam, crashX, crashY);
lcd_printf_P(PSTR(ESC_H(0,0) "Total failures" ESC_H(1,1) "Power failures %-3d" ESC_H(1,2) "Filam. runouts %-3d" ESC_H(1,3) "Crash X %-3d Y %-3d"), power, filam, crashX, crashY);
if (lcd_clicked())
{
lcd_quick_feedback();
@ -1591,7 +1584,7 @@ static void lcd_menu_fails_stats_print()
uint8_t filam = eeprom_read_byte((uint8_t*)EEPROM_FERROR_COUNT);
uint8_t crashX = eeprom_read_byte((uint8_t*)EEPROM_CRASH_COUNT_X);
uint8_t crashY = eeprom_read_byte((uint8_t*)EEPROM_CRASH_COUNT_Y);
fprintf_P(lcdout, PSTR(ESC_H(0,0) "Last print failures" ESC_H(1,1) "Power failures %-3d" ESC_H(1,2) "Filam. runouts %-3d" ESC_H(1,3) "Crash X %-3d Y %-3d"), power, filam, crashX, crashY);
lcd_printf_P(PSTR(ESC_H(0,0) "Last print failures" ESC_H(1,1) "Power failures %-3d" ESC_H(1,2) "Filam. runouts %-3d" ESC_H(1,3) "Crash X %-3d Y %-3d"), power, filam, crashX, crashY);
if (lcd_clicked())
{
lcd_quick_feedback();
@ -1633,7 +1626,7 @@ static void lcd_menu_fails_stats()
{
uint8_t filamentLast = eeprom_read_byte((uint8_t*)EEPROM_FERROR_COUNT);
uint16_t filamentTotal = eeprom_read_word((uint16_t*)EEPROM_FERROR_COUNT_TOT);
fprintf_P(lcdout, PSTR(ESC_H(0,0) "Last print failures" ESC_H(1,1) "Filam. runouts %-3d" ESC_H(0,2) "Total failures" ESC_H(1,3) "Filam. runouts %-3d"), filamentLast, filamentTotal);
lcd_printf_P(PSTR(ESC_H(0,0) "Last print failures" ESC_H(1,1) "Filam. runouts %-3d" ESC_H(0,2) "Total failures" ESC_H(1,3) "Filam. runouts %-3d"), filamentLast, filamentTotal);
if (lcd_clicked())
{
menu_action_back();
@ -1652,7 +1645,7 @@ extern char* __malloc_heap_end;
static void lcd_menu_debug()
{
#ifdef DEBUG_STACK_MONITOR
fprintf_P(lcdout, PSTR(ESC_H(1,1) "RAM statistics" ESC_H(5,1) "SP_min: 0x%04x" ESC_H(1,2) "heap_start: 0x%04x" ESC_H(3,3) "heap_end: 0x%04x"), SP_min, __malloc_heap_start, __malloc_heap_end);
lcd_printf_P(PSTR(ESC_H(1,1) "RAM statistics" ESC_H(5,1) "SP_min: 0x%04x" ESC_H(1,2) "heap_start: 0x%04x" ESC_H(3,3) "heap_end: 0x%04x"), SP_min, __malloc_heap_start, __malloc_heap_end);
#endif //DEBUG_STACK_MONITOR
if (lcd_clicked())
@ -1665,11 +1658,11 @@ static void lcd_menu_debug()
static void lcd_menu_temperatures()
{
fprintf_P(lcdout, PSTR(ESC_H(1,0) "Nozzle: %d%c" ESC_H(1,1) "Bed: %d%c"), (int)current_temperature[0], '\x01', (int)current_temperature_bed, '\x01');
lcd_printf_P(PSTR(ESC_H(1,0) "Nozzle: %d%c" ESC_H(1,1) "Bed: %d%c"), (int)current_temperature[0], '\x01', (int)current_temperature_bed, '\x01');
#ifdef AMBIENT_THERMISTOR
fprintf_P(lcdout, PSTR(ESC_H(1,2) "Ambient: %d%c" ESC_H(1,3) "PINDA: %d%c"), (int)current_temperature_ambient, '\x01', (int)current_temperature_pinda, '\x01');
lcd_printf_P(PSTR(ESC_H(1,2) "Ambient: %d%c" ESC_H(1,3) "PINDA: %d%c"), (int)current_temperature_ambient, '\x01', (int)current_temperature_pinda, '\x01');
#else //AMBIENT_THERMISTOR
fprintf_P(lcdout, PSTR(ESC_H(1,2) "PINDA: %d%c"), (int)current_temperature_pinda, '\x01');
lcd_printf_P(PSTR(ESC_H(1,2) "PINDA: %d%c"), (int)current_temperature_pinda, '\x01');
#endif //AMBIENT_THERMISTOR
if (lcd_clicked())
@ -1687,8 +1680,8 @@ static void lcd_menu_voltages()
{
float volt_pwr = VOLT_DIV_REF * ((float)current_voltage_raw_pwr / (1023 * OVERSAMPLENR)) / VOLT_DIV_FAC;
// float volt_bed = VOLT_DIV_REF * ((float)current_voltage_raw_bed / (1023 * OVERSAMPLENR)) / VOLT_DIV_FAC;
// fprintf_P(lcdout, PSTR(ESC_H(1,1)"PWR: %d.%01dV" ESC_H(1,2)"BED: %d.%01dV"), (int)volt_pwr, (int)(10*fabs(volt_pwr - (int)volt_pwr)), (int)volt_bed, (int)(10*fabs(volt_bed - (int)volt_bed)));
fprintf_P(lcdout, PSTR( ESC_H(1,1)"PWR: %d.%01dV"), (int)volt_pwr, (int)(10*fabs(volt_pwr - (int)volt_pwr))) ;
// lcd_printf_P(PSTR(ESC_H(1,1)"PWR: %d.%01dV" ESC_H(1,2)"BED: %d.%01dV"), (int)volt_pwr, (int)(10*fabs(volt_pwr - (int)volt_pwr)), (int)volt_bed, (int)(10*fabs(volt_bed - (int)volt_bed)));
lcd_printf_P(PSTR( ESC_H(1,1)"PWR: %d.%01dV"), (int)volt_pwr, (int)(10*fabs(volt_pwr - (int)volt_pwr))) ;
if (lcd_clicked())
{
menu_action_back();
@ -1699,7 +1692,7 @@ static void lcd_menu_voltages()
#ifdef TMC2130
static void lcd_menu_belt_status()
{
fprintf_P(lcdout, PSTR(ESC_H(1,0) "Belt status" ESC_H(2,1) "X %d" ESC_H(2,2) "Y %d" ), eeprom_read_word((uint16_t*)(EEPROM_BELTSTATUS_X)), eeprom_read_word((uint16_t*)(EEPROM_BELTSTATUS_Y)));
lcd_printf_P(PSTR(ESC_H(1,0) "Belt status" ESC_H(2,1) "X %d" ESC_H(2,2) "Y %d" ), eeprom_read_word((uint16_t*)(EEPROM_BELTSTATUS_X)), eeprom_read_word((uint16_t*)(EEPROM_BELTSTATUS_Y)));
if (lcd_clicked())
{
menu_action_back();
@ -2091,103 +2084,68 @@ static void lcd_LoadFilament()
void lcd_menu_statistics()
{
if (IS_SD_PRINTING)
{
int _met = total_filament_used / 100000;
int _cm = (total_filament_used - (_met * 100000))/10;
int _cm = (total_filament_used - (_met * 100000)) / 10;
int _t = (millis() - starttime) / 1000;
int _h = _t / 3600;
int _m = (_t - (_h * 3600)) / 60;
int _s = _t - ((_h * 3600) + (_m * 60));
lcd.setCursor(0, 0);
lcd_printPGM(_i("Filament used: "));////MSG_STATS_FILAMENTUSED c=20 r=0
lcd.setCursor(6, 1);
lcd.print(itostr3(_met));
lcd.print("m ");
lcd.print(ftostr32ns(_cm));
lcd.print("cm");
lcd.setCursor(0, 2);
lcd_printPGM(_i("Print time: "));////MSG_STATS_PRINTTIME c=20 r=0
lcd.setCursor(8, 3);
lcd.print(itostr2(_h));
lcd.print("h ");
lcd.print(itostr2(_m));
lcd.print("m ");
lcd.print(itostr2(_s));
lcd.print("s");
//|01234567890123456789|
//|Filament used: |
//| 000m 00.000cm |
//|Print time: |
//| 00h 00m 00s |
//----------------------
lcd_printf_P(_N(
ESC_2J
"%S:"
ESC_H(6,1) "%8.2f m\n"
"%S :"
ESC_H(8,3) "%2dh %02dm %02d"
),
_i("Filament used"),
_met, _cm,
_i("Print time"),
_h, _m, _s
);
if (lcd_clicked())
{
lcd_quick_feedback();
menu_action_back();
menu_action_back();
}
}
else
{
unsigned long _filament = eeprom_read_dword((uint32_t *)EEPROM_FILAMENTUSED);
unsigned long _time = eeprom_read_dword((uint32_t *)EEPROM_TOTALTIME); //in minutes
uint8_t _hours, _minutes;
uint32_t _days;
float _filament_m = (float)_filament;
int _filament_km = (_filament >= 100000) ? _filament / 100000 : 0;
if (_filament_km > 0) _filament_m = _filament - (_filament_km * 100000);
float _filament_m = (float)_filament/100;
// int _filament_km = (_filament >= 100000) ? _filament / 100000 : 0;
// if (_filament_km > 0) _filament_m = _filament - (_filament_km * 100000);
_days = _time / 1440;
_hours = (_time - (_days * 1440)) / 60;
_minutes = _time - ((_days * 1440) + (_hours * 60));
lcd_implementation_clear();
lcd.setCursor(0, 0);
lcd_printPGM(_i("Total filament :"));////MSG_STATS_TOTALFILAMENT c=20 r=0
lcd.setCursor(17 - strlen(ftostr32ns(_filament_m)), 1);
lcd.print(ftostr32ns(_filament_m));
if (_filament_km > 0)
{
lcd.setCursor(17 - strlen(ftostr32ns(_filament_m)) - 3, 1);
lcd.print("km");
lcd.setCursor(17 - strlen(ftostr32ns(_filament_m)) - 8, 1);
lcd.print(itostr4(_filament_km));
}
lcd.setCursor(18, 1);
lcd.print("m");
lcd.setCursor(0, 2);
lcd_printPGM(_i("Total print time :"));;////MSG_STATS_TOTALPRINTTIME c=20 r=0
lcd.setCursor(18, 3);
lcd.print("m");
lcd.setCursor(14, 3);
lcd.print(itostr3(_minutes));
lcd.setCursor(14, 3);
lcd.print(":");
lcd.setCursor(12, 3);
lcd.print("h");
lcd.setCursor(9, 3);
lcd.print(itostr3(_hours));
lcd.setCursor(9, 3);
lcd.print(":");
lcd.setCursor(7, 3);
lcd.print("d");
lcd.setCursor(4, 3);
lcd.print(itostr3(_days));
//|01234567890123456789|
//|Total filament : |
//| 000.00 m |
//|Total print time : |
//| 00d :00h :00 m |
//----------------------
lcd_printf_P(_N(
ESC_2J
"%S :"
ESC_H(9,1) "%8.2f m\n"
"%S :\n"
"%7ldd :%2hhdh :%02hhd m"
),
_i("Total filament"),
_filament_m,
_i("Total print time"),
_days, _hours, _minutes
);
KEEPALIVE_STATE(PAUSED_FOR_USER);
while (!lcd_clicked())
{
@ -2196,9 +2154,8 @@ void lcd_menu_statistics()
delay(100);
}
KEEPALIVE_STATE(NOT_BUSY);
lcd_quick_feedback();
menu_action_back();
menu_action_back();
}
}
@ -2266,22 +2223,32 @@ static void lcd_move_e()
*/
static void lcd_menu_xyz_y_min()
{
lcd.setCursor(0,0);
lcd_printPGM(_i("Y distance from min:"));////MSG_Y_DISTANCE_FROM_MIN c=20 r=1
lcd_print_at_PGM(0, 1, separator);
lcd_print_at_PGM(0, 2, _i("Left:"));////MSG_LEFT c=12 r=1
lcd_print_at_PGM(0, 3, _i("Right:"));////MSG_RIGHT c=12 r=1
float distanceMin[2];
//|01234567890123456789|
//|Y distance from min:|
//|--------------------|
//|Left: N/A |
//|Right: N/A |
//----------------------
float distanceMin[2];
count_xyz_details(distanceMin);
for (int i = 0; i < 2; i++) {
if(distanceMin[i] < 200) {
lcd_print_at_PGM(11, i + 2, PSTR(""));
lcd.print(distanceMin[i]);
lcd_print_at_PGM((distanceMin[i] < 0) ? 17 : 16, i + 2, PSTR("mm"));
} else lcd_print_at_PGM(11, i + 2, PSTR("N/A"));
}
lcd_printf_P(_N(
ESC_H(0,0)
"%S:\n"
"%S\n"
"%S:\n"
"%S:"
),
_i("Y distance from min"),
separator,
_i("Left"),
_i("Right")
);
for (uint8_t i = 0; i < 2; i++)
{
lcd.setCursor(11,2+i);
if (distanceMin[i] >= 200) lcd_puts_P(_N("N/A"));
else lcd_printf_P(_N("%6.2fmm"), distanceMin[i]);
}
if (lcd_clicked())
{
lcd_goto_menu(lcd_menu_xyz_skew);
@ -2290,28 +2257,33 @@ static void lcd_menu_xyz_y_min()
/**
* @brief Show measured axis skewness
*/
float _deg(float rad)
{
return rad * 180 / M_PI;
}
static void lcd_menu_xyz_skew()
{
float angleDiff;
angleDiff = eeprom_read_float((float*)(EEPROM_XYZ_CAL_SKEW));
lcd.setCursor(0,0);
lcd_printPGM(_i("Measured skew:"));////MSG_MEASURED_SKEW c=15 r=1
if (angleDiff < 100) {
lcd.setCursor(15, 0);
lcd.print(angleDiff * 180 / M_PI);
lcd.print(LCD_STR_DEGREE);
}else lcd_print_at_PGM(16, 0, PSTR("N/A"));
lcd_print_at_PGM(0, 1, separator);
lcd_print_at_PGM(0, 2, _i("Slight skew:"));////MSG_SLIGHT_SKEW c=15 r=1
lcd_print_at_PGM(15, 2, PSTR(""));
lcd.print(bed_skew_angle_mild * 180 / M_PI);
lcd.print(LCD_STR_DEGREE);
lcd_print_at_PGM(0, 3, _i("Severe skew:"));////MSG_SEVERE_SKEW c=15 r=1
lcd_print_at_PGM(15, 3, PSTR(""));
lcd.print(bed_skew_angle_extreme * 180 / M_PI);
lcd.print(LCD_STR_DEGREE);
//|01234567890123456789|
//|Measured skew: N/A |
//|--------------------|
//|Slight skew: 0.12°|
//|Severe skew: 0.25°|
//----------------------
float angleDiff = eeprom_read_float((float*)(EEPROM_XYZ_CAL_SKEW));
lcd_printf_P(_N(
ESC_H(0,0)
"%S: N/A\n"
"%S\n"
"%S: %5.2f\x01\n"
"%S: %5.2f\x01"
),
_i("Measured skew"),
separator,
_i("Slight skew"), _deg(bed_skew_angle_mild),
_i("Severe skew"), _deg(bed_skew_angle_extreme)
);
if (angleDiff < 100) lcd_printf_P(_N(ESC_H(15,0)"%4.2f\x01"), _deg(angleDiff));
if (lcd_clicked())
{
lcd_goto_menu(lcd_menu_xyz_offset);
@ -4058,8 +4030,7 @@ void lcd_wizard(int state) {
}
}
SERIAL_ECHOPGM("State: ");
MYSERIAL.println(state);
printf_P(_N("State: %d\n"), state);
switch (state) { //final message
case 0: //user dont want to use wizard
msg = _T(MSG_WIZARD_QUIT);
@ -5429,12 +5400,9 @@ void lcd_confirm_print()
}
static void lcd_test_menu()
/*static void lcd_test_menu()
{
lang_boot_update_start(3);
lcd_update_enable(true);
lcd_return_to_status();
}
}*/
static void lcd_main_menu()
{
@ -5605,7 +5573,7 @@ static void lcd_main_menu()
#endif
MENU_ITEM(submenu, _i("Support"), lcd_support_menu);////MSG_SUPPORT c=0 r=0
MENU_ITEM(submenu, _i("Test"), lcd_test_menu);////MSG_SUPPORT c=0 r=0
// MENU_ITEM(submenu, _i("Test"), lcd_test_menu);////MSG_SUPPORT c=0 r=0
END_MENU();
@ -6373,8 +6341,7 @@ static bool lcd_selfcheck_axis_sg(char axis) {
//end of second measurement, now check for possible errors:
for(int i = 0; i < 2; i++){ //check if measured axis length corresponds to expected length
SERIAL_ECHOPGM("Measured axis length:");
MYSERIAL.println(measured_axis_length[i]);
printf_P(_N("Measured axis length:%.3f\n"), measured_axis_length[i]);
if (abs(measured_axis_length[i] - axis_length) > max_error_mm) {
enable_endstops(false);
@ -6393,8 +6360,7 @@ static bool lcd_selfcheck_axis_sg(char axis) {
}
}
SERIAL_ECHOPGM("Axis length difference:");
MYSERIAL.println(abs(measured_axis_length[0] - measured_axis_length[1]));
printf_P(_N("Axis length difference:%.3f\n"), abs(measured_axis_length[0] - measured_axis_length[1]));
if (abs(measured_axis_length[0] - measured_axis_length[1]) > 1) { //check if difference between first and second measurement is low
//loose pulleys

View file

@ -4,6 +4,9 @@
#include "Marlin.h"
#include "mesh_bed_calibration.h"
extern int lcd_puts_P(const char* str);
extern int lcd_printf_P(const char* format, ...);
#ifdef ULTRA_LCD
static void lcd_language_menu();