diff --git a/Firmware/Marlin.h b/Firmware/Marlin.h
index 58d269d6..c720531c 100644
--- a/Firmware/Marlin.h
+++ b/Firmware/Marlin.h
@@ -464,4 +464,6 @@ void gcode_M701();
#define UVLO !(PINE & (1<<4))
-void proc_commands();
\ No newline at end of file
+void proc_commands();
+
+bool mmu_get_reponse();
\ No newline at end of file
diff --git a/Firmware/Marlin_main.cpp b/Firmware/Marlin_main.cpp
index b51b486d..8675c77d 100644
--- a/Firmware/Marlin_main.cpp
+++ b/Firmware/Marlin_main.cpp
@@ -3364,7 +3364,12 @@ void process_commands()
}
else if (code_seen("thx")) {
no_response = false;
- }
+ }
+ else if (code_seen("MMURES")) {
+ fprintf_P(uart2io, PSTR("x0"));
+ bool response = mmu_get_reponse();
+ if (!response) printf_P(PSTR("MMU not responding"));
+ }
else if (code_seen("RESET")) {
// careful!
if (farm_mode) {
@@ -7119,18 +7124,7 @@ Sigma_Exit:
fprintf_P(uart2io, PSTR("T0\n"));
break;
}
-
-
-
-
- // get response
- uart2_rx_clr();
- while (!uart2_rx_ok())
- {
- //printf_P(PSTR("waiting..\n"));
- delay_keep_alive(100);
- }
- snmm_extruder = tmp_extruder; //filament change is finished
+ snmm_extruder = tmp_extruder; //filament change is finished
if (*(strchr_pointer + index) == '?') { // for single material usage with mmu
bool saved_e_relative_mode = axis_relative_modes[E_AXIS];
@@ -9137,4 +9131,21 @@ static void print_time_remaining_init() {
print_percent_done_silent = PRINT_PERCENT_DONE_INIT;
}
+bool mmu_get_reponse() {
+ bool response = true;
+ LongTimer mmu_get_reponse_timeout;
+ uart2_rx_clr();
+
+ mmu_get_reponse_timeout.start();
+ while (!uart2_rx_ok())
+ {
+ delay_keep_alive(100);
+ if (mmu_get_reponse_timeout.expired(30 * 1000ul)) { //PINDA cooling from 60 C to 35 C takes about 7 minutes
+ response = false;
+ break;
+ }
+ }
+ return response;
+}
+
#define FIL_LOAD_LENGTH 60
diff --git a/Firmware/Marlin_main.cpp~RF6ca149ac.TMP b/Firmware/Marlin_main.cpp~RF6ca149ac.TMP
new file mode 100644
index 00000000..239b5b34
--- /dev/null
+++ b/Firmware/Marlin_main.cpp~RF6ca149ac.TMP
@@ -0,0 +1,9143 @@
+/* -*- c++ -*- */
+/**
+ * @file
+ */
+
+/**
+ * @mainpage Reprap 3D printer firmware based on Sprinter and grbl.
+ *
+ * @section intro_sec Introduction
+ *
+ * This firmware is a mashup between Sprinter and grbl.
+ * https://github.com/kliment/Sprinter
+ * https://github.com/simen/grbl/tree
+ *
+ * It has preliminary support for Matthew Roberts advance algorithm
+ * http://reprap.org/pipermail/reprap-dev/2011-May/003323.html
+ *
+ * Prusa Research s.r.o. https://www.prusa3d.cz
+ *
+ * @section copyright_sec Copyright
+ *
+ * Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
+ *
+ * This program is free software: you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License as published by
+ * the Free Software Foundation, either version 3 of the License, or
+ * (at your option) any later version.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ * GNU General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public License
+ * along with this program. If not, see .
+ *
+ * @section notes_sec Notes
+ *
+ * * Do not create static objects in global functions.
+ * Otherwise constructor guard against concurrent calls is generated costing
+ * about 8B RAM and 14B flash.
+ *
+ *
+ */
+
+#include "Marlin.h"
+
+#ifdef ENABLE_AUTO_BED_LEVELING
+#include "vector_3.h"
+ #ifdef AUTO_BED_LEVELING_GRID
+ #include "qr_solve.h"
+ #endif
+#endif // ENABLE_AUTO_BED_LEVELING
+
+#ifdef MESH_BED_LEVELING
+ #include "mesh_bed_leveling.h"
+ #include "mesh_bed_calibration.h"
+#endif
+
+#include "printers.h"
+
+#include "menu.h"
+#include "ultralcd.h"
+
+#include "planner.h"
+#include "stepper.h"
+#include "temperature.h"
+#include "motion_control.h"
+#include "cardreader.h"
+#include "ConfigurationStore.h"
+#include "language.h"
+#include "pins_arduino.h"
+#include "math.h"
+#include "util.h"
+#include "Timer.h"
+#include "uart2.h"
+
+#include
+#include
+
+#include "Dcodes.h"
+
+
+#ifdef SWSPI
+#include "swspi.h"
+#endif //SWSPI
+
+#include "spi.h"
+
+#ifdef SWI2C
+#include "swi2c.h"
+#endif //SWI2C
+
+#ifdef PAT9125
+#include "pat9125.h"
+#include "fsensor.h"
+#endif //PAT9125
+
+#ifdef TMC2130
+#include "tmc2130.h"
+#endif //TMC2130
+
+#ifdef W25X20CL
+#include "w25x20cl.h"
+#include "optiboot_w25x20cl.h"
+#endif //W25X20CL
+
+#ifdef BLINKM
+#include "BlinkM.h"
+#include "Wire.h"
+#endif
+
+#ifdef ULTRALCD
+#include "ultralcd.h"
+#endif
+
+#if NUM_SERVOS > 0
+#include "Servo.h"
+#endif
+
+#if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
+#include
+#endif
+
+#define VERSION_STRING "1.0.2"
+
+
+#include "ultralcd.h"
+
+#include "cmdqueue.h"
+
+// Macros for bit masks
+#define BIT(b) (1<<(b))
+#define TEST(n,b) (((n)&BIT(b))!=0)
+#define SET_BIT(n,b,value) (n) ^= ((-value)^(n)) & (BIT(b))
+
+//Macro for print fan speed
+#define FAN_PULSE_WIDTH_LIMIT ((fanSpeed > 100) ? 3 : 4) //time in ms
+
+#define PRINTING_TYPE_SD 0
+#define PRINTING_TYPE_USB 1
+
+// look here for descriptions of G-codes: http://linuxcnc.org/handbook/gcode/g-code.html
+// http://objects.reprap.org/wiki/Mendel_User_Manual:_RepRapGCodes
+
+//Implemented Codes
+//-------------------
+
+// PRUSA CODES
+// P F - Returns FW versions
+// P R - Returns revision of printer
+
+// G0 -> G1
+// G1 - Coordinated Movement X Y Z E
+// G2 - CW ARC
+// G3 - CCW ARC
+// G4 - Dwell S or P
+// G10 - retract filament according to settings of M207
+// G11 - retract recover filament according to settings of M208
+// G28 - Home all Axis
+// G29 - Detailed Z-Probe, probes the bed at 3 or more points. Will fail if you haven't homed yet.
+// G30 - Single Z Probe, probes bed at current XY location.
+// G31 - Dock sled (Z_PROBE_SLED only)
+// G32 - Undock sled (Z_PROBE_SLED only)
+// G80 - Automatic mesh bed leveling
+// G81 - Print bed profile
+// G90 - Use Absolute Coordinates
+// G91 - Use Relative Coordinates
+// G92 - Set current position to coordinates given
+
+// M Codes
+// M0 - Unconditional stop - Wait for user to press a button on the LCD
+// M1 - Same as M0
+// M17 - Enable/Power all stepper motors
+// M18 - Disable all stepper motors; same as M84
+// M20 - List SD card
+// M21 - Init SD card
+// M22 - Release SD card
+// M23 - Select SD file (M23 filename.g)
+// M24 - Start/resume SD print
+// M25 - Pause SD print
+// M26 - Set SD position in bytes (M26 S12345)
+// M27 - Report SD print status
+// M28 - Start SD write (M28 filename.g)
+// M29 - Stop SD write
+// M30 - Delete file from SD (M30 filename.g)
+// M31 - Output time since last M109 or SD card start to serial
+// M32 - Select file and start SD print (Can be used _while_ printing from SD card files):
+// syntax "M32 /path/filename#", or "M32 S !filename#"
+// Call gcode file : "M32 P !filename#" and return to caller file after finishing (similar to #include).
+// The '#' is necessary when calling from within sd files, as it stops buffer prereading
+// M42 - Change pin status via gcode Use M42 Px Sy to set pin x to value y, when omitting Px the onboard led will be used.
+// M73 - Show percent done and print time remaining
+// M80 - Turn on Power Supply
+// M81 - Turn off Power Supply
+// M82 - Set E codes absolute (default)
+// M83 - Set E codes relative while in Absolute Coordinates (G90) mode
+// M84 - Disable steppers until next move,
+// or use S to specify an inactivity timeout, after which the steppers will be disabled. S0 to disable the timeout.
+// M85 - Set inactivity shutdown timer with parameter S. To disable set zero (default)
+// M86 - Set safety timer expiration time with parameter S; M86 S0 will disable safety timer
+// M92 - Set axis_steps_per_unit - same syntax as G92
+// M104 - Set extruder target temp
+// M105 - Read current temp
+// M106 - Fan on
+// M107 - Fan off
+// M109 - Sxxx Wait for extruder current temp to reach target temp. Waits only when heating
+// Rxxx Wait for extruder current temp to reach target temp. Waits when heating and cooling
+// IF AUTOTEMP is enabled, S B F. Exit autotemp by any M109 without F
+// M112 - Emergency stop
+// M113 - Get or set the timeout interval for Host Keepalive "busy" messages
+// M114 - Output current position to serial port
+// M115 - Capabilities string
+// M117 - display message
+// M119 - Output Endstop status to serial port
+// M126 - Solenoid Air Valve Open (BariCUDA support by jmil)
+// M127 - Solenoid Air Valve Closed (BariCUDA vent to atmospheric pressure by jmil)
+// M128 - EtoP Open (BariCUDA EtoP = electricity to air pressure transducer by jmil)
+// M129 - EtoP Closed (BariCUDA EtoP = electricity to air pressure transducer by jmil)
+// M140 - Set bed target temp
+// M150 - Set BlinkM Color Output R: Red<0-255> U(!): Green<0-255> B: Blue<0-255> over i2c, G for green does not work.
+// M190 - Sxxx Wait for bed current temp to reach target temp. Waits only when heating
+// Rxxx Wait for bed current temp to reach target temp. Waits when heating and cooling
+// M200 D- set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
+// M201 - Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
+// M202 - Set max acceleration in units/s^2 for travel moves (M202 X1000 Y1000) Unused in Marlin!!
+// M203 - Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in mm/sec
+// M204 - Set default acceleration: S normal moves T filament only moves (M204 S3000 T7000) in mm/sec^2 also sets minimum segment time in ms (B20000) to prevent buffer under-runs and M20 minimum feedrate
+// M205 - advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk, E=maximum E jerk
+// M206 - set additional homing offset
+// M207 - set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop], stays in mm regardless of M200 setting
+// M208 - set recover=unretract length S[positive mm surplus to the M207 S*] F[feedrate mm/sec]
+// M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
+// M218 - set hotend offset (in mm): T X Y
+// M220 S- set speed factor override percentage
+// M221 S- set extrude factor override percentage
+// M226 P S- Wait until the specified pin reaches the state required
+// M240 - Trigger a camera to take a photograph
+// M250 - Set LCD contrast C (value 0..63)
+// M280 - set servo position absolute. P: servo index, S: angle or microseconds
+// M300 - Play beep sound S P
+// M301 - Set PID parameters P I and D
+// M302 - Allow cold extrudes, or set the minimum extrude S.
+// M303 - PID relay autotune S sets the target temperature. (default target temperature = 150C)
+// M304 - Set bed PID parameters P I and D
+// M400 - Finish all moves
+// M401 - Lower z-probe if present
+// M402 - Raise z-probe if present
+// M404 - N Enter the nominal filament width (3mm, 1.75mm ) or will display nominal filament width without parameters
+// M405 - Turn on Filament Sensor extrusion control. Optional D to set delay in centimeters between sensor and extruder
+// M406 - Turn off Filament Sensor extrusion control
+// M407 - Displays measured filament diameter
+// M500 - stores parameters in EEPROM
+// M501 - reads parameters from EEPROM (if you need reset them after you changed them temporarily).
+// M502 - reverts to the default "factory settings". You still need to store them in EEPROM afterwards if you want to.
+// M503 - print the current settings (from memory not from EEPROM)
+// M509 - force language selection on next restart
+// M540 - Use S[0|1] to enable or disable the stop SD card print on endstop hit (requires ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
+// M600 - Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
+// M605 - Set dual x-carriage movement mode: S [ X R ]
+// M860 - Wait for PINDA thermistor to reach target temperature.
+// M861 - Set / Read PINDA temperature compensation offsets
+// M900 - Set LIN_ADVANCE options, if enabled. See Configuration_adv.h for details.
+// M907 - Set digital trimpot motor current using axis codes.
+// M908 - Control digital trimpot directly.
+// M350 - Set microstepping mode.
+// M351 - Toggle MS1 MS2 pins directly.
+
+// M928 - Start SD logging (M928 filename.g) - ended by M29
+// M999 - Restart after being stopped by error
+
+//Stepper Movement Variables
+
+//===========================================================================
+//=============================imported variables============================
+//===========================================================================
+
+
+//===========================================================================
+//=============================public variables=============================
+//===========================================================================
+#ifdef SDSUPPORT
+CardReader card;
+#endif
+
+unsigned long PingTime = millis();
+unsigned long NcTime;
+
+union Data
+{
+byte b[2];
+int value;
+};
+
+float homing_feedrate[] = HOMING_FEEDRATE;
+// Currently only the extruder axis may be switched to a relative mode.
+// Other axes are always absolute or relative based on the common relative_mode flag.
+bool axis_relative_modes[] = AXIS_RELATIVE_MODES;
+int feedmultiply=100; //100->1 200->2
+int saved_feedmultiply;
+int extrudemultiply=100; //100->1 200->2
+int extruder_multiply[EXTRUDERS] = {100
+ #if EXTRUDERS > 1
+ , 100
+ #if EXTRUDERS > 2
+ , 100
+ #endif
+ #endif
+};
+
+int bowden_length[4] = {385, 385, 385, 385};
+
+bool is_usb_printing = false;
+bool homing_flag = false;
+
+bool temp_cal_active = false;
+
+unsigned long kicktime = millis()+100000;
+
+unsigned int usb_printing_counter;
+
+int lcd_change_fil_state = 0;
+
+int feedmultiplyBckp = 100;
+float HotendTempBckp = 0;
+int fanSpeedBckp = 0;
+float pause_lastpos[4];
+unsigned long pause_time = 0;
+unsigned long start_pause_print = millis();
+unsigned long t_fan_rising_edge = millis();
+static LongTimer safetyTimer;
+static LongTimer crashDetTimer;
+
+//unsigned long load_filament_time;
+
+bool mesh_bed_leveling_flag = false;
+bool mesh_bed_run_from_menu = false;
+
+int8_t FarmMode = 0;
+
+bool prusa_sd_card_upload = false;
+
+unsigned int status_number = 0;
+
+unsigned long total_filament_used;
+unsigned int heating_status;
+unsigned int heating_status_counter;
+bool custom_message;
+bool loading_flag = false;
+unsigned int custom_message_type;
+unsigned int custom_message_state;
+char snmm_filaments_used = 0;
+
+bool fan_state[2];
+int fan_edge_counter[2];
+int fan_speed[2];
+
+char dir_names[3][9];
+
+bool sortAlpha = false;
+
+bool volumetric_enabled = false;
+float filament_size[EXTRUDERS] = { DEFAULT_NOMINAL_FILAMENT_DIA
+ #if EXTRUDERS > 1
+ , DEFAULT_NOMINAL_FILAMENT_DIA
+ #if EXTRUDERS > 2
+ , DEFAULT_NOMINAL_FILAMENT_DIA
+ #endif
+ #endif
+};
+float extruder_multiplier[EXTRUDERS] = {1.0
+ #if EXTRUDERS > 1
+ , 1.0
+ #if EXTRUDERS > 2
+ , 1.0
+ #endif
+ #endif
+};
+
+float current_position[NUM_AXIS] = { 0.0, 0.0, 0.0, 0.0 };
+//shortcuts for more readable code
+#define _x current_position[X_AXIS]
+#define _y current_position[Y_AXIS]
+#define _z current_position[Z_AXIS]
+#define _e current_position[E_AXIS]
+
+
+float add_homing[3]={0,0,0};
+
+float min_pos[3] = { X_MIN_POS, Y_MIN_POS, Z_MIN_POS };
+float max_pos[3] = { X_MAX_POS, Y_MAX_POS, Z_MAX_POS };
+bool axis_known_position[3] = {false, false, false};
+float zprobe_zoffset;
+
+// Extruder offset
+#if EXTRUDERS > 1
+ #define NUM_EXTRUDER_OFFSETS 2 // only in XY plane
+float extruder_offset[NUM_EXTRUDER_OFFSETS][EXTRUDERS] = {
+#if defined(EXTRUDER_OFFSET_X) && defined(EXTRUDER_OFFSET_Y)
+ EXTRUDER_OFFSET_X, EXTRUDER_OFFSET_Y
+#endif
+};
+#endif
+
+uint8_t active_extruder = 0;
+int fanSpeed=0;
+
+#ifdef FWRETRACT
+ bool autoretract_enabled=false;
+ bool retracted[EXTRUDERS]={false
+ #if EXTRUDERS > 1
+ , false
+ #if EXTRUDERS > 2
+ , false
+ #endif
+ #endif
+ };
+ bool retracted_swap[EXTRUDERS]={false
+ #if EXTRUDERS > 1
+ , false
+ #if EXTRUDERS > 2
+ , false
+ #endif
+ #endif
+ };
+
+ float retract_length = RETRACT_LENGTH;
+ float retract_length_swap = RETRACT_LENGTH_SWAP;
+ float retract_feedrate = RETRACT_FEEDRATE;
+ float retract_zlift = RETRACT_ZLIFT;
+ float retract_recover_length = RETRACT_RECOVER_LENGTH;
+ float retract_recover_length_swap = RETRACT_RECOVER_LENGTH_SWAP;
+ float retract_recover_feedrate = RETRACT_RECOVER_FEEDRATE;
+#endif
+
+ #ifdef PS_DEFAULT_OFF
+ bool powersupply = false;
+ #else
+ bool powersupply = true;
+ #endif
+
+bool cancel_heatup = false ;
+
+#ifdef HOST_KEEPALIVE_FEATURE
+
+ int busy_state = NOT_BUSY;
+ static long prev_busy_signal_ms = -1;
+ uint8_t host_keepalive_interval = HOST_KEEPALIVE_INTERVAL;
+#else
+ #define host_keepalive();
+ #define KEEPALIVE_STATE(n);
+#endif
+
+
+const char errormagic[] PROGMEM = "Error:";
+const char echomagic[] PROGMEM = "echo:";
+
+bool no_response = false;
+uint8_t important_status;
+uint8_t saved_filament_type;
+
+// save/restore printing
+bool saved_printing = false;
+
+// storing estimated time to end of print counted by slicer
+uint8_t print_percent_done_normal = PRINT_PERCENT_DONE_INIT;
+uint16_t print_time_remaining_normal = PRINT_TIME_REMAINING_INIT; //estimated remaining print time in minutes
+uint8_t print_percent_done_silent = PRINT_PERCENT_DONE_INIT;
+uint16_t print_time_remaining_silent = PRINT_TIME_REMAINING_INIT; //estimated remaining print time in minutes
+
+//===========================================================================
+//=============================Private Variables=============================
+//===========================================================================
+const char axis_codes[NUM_AXIS] = {'X', 'Y', 'Z', 'E'};
+float destination[NUM_AXIS] = { 0.0, 0.0, 0.0, 0.0};
+
+static float delta[3] = {0.0, 0.0, 0.0};
+
+// For tracing an arc
+static float offset[3] = {0.0, 0.0, 0.0};
+static float feedrate = 1500.0, next_feedrate, saved_feedrate;
+
+// Determines Absolute or Relative Coordinates.
+// Also there is bool axis_relative_modes[] per axis flag.
+static bool relative_mode = false;
+
+#ifndef _DISABLE_M42_M226
+const int sensitive_pins[] = SENSITIVE_PINS; // Sensitive pin list for M42
+#endif //_DISABLE_M42_M226
+
+//static float tt = 0;
+//static float bt = 0;
+
+//Inactivity shutdown variables
+static unsigned long previous_millis_cmd = 0;
+unsigned long max_inactive_time = 0;
+static unsigned long stepper_inactive_time = DEFAULT_STEPPER_DEACTIVE_TIME*1000l;
+static unsigned long safetytimer_inactive_time = DEFAULT_SAFETYTIMER_TIME_MINS*60*1000ul;
+
+unsigned long starttime=0;
+unsigned long stoptime=0;
+unsigned long _usb_timer = 0;
+
+static uint8_t tmp_extruder;
+
+bool extruder_under_pressure = true;
+
+
+bool Stopped=false;
+
+#if NUM_SERVOS > 0
+ Servo servos[NUM_SERVOS];
+#endif
+
+bool CooldownNoWait = true;
+bool target_direction;
+
+//Insert variables if CHDK is defined
+#ifdef CHDK
+unsigned long chdkHigh = 0;
+boolean chdkActive = false;
+#endif
+
+// save/restore printing
+static uint32_t saved_sdpos = 0;
+static uint8_t saved_printing_type = PRINTING_TYPE_SD;
+static float saved_pos[4] = { 0, 0, 0, 0 };
+// Feedrate hopefully derived from an active block of the planner at the time the print has been canceled, in mm/min.
+static float saved_feedrate2 = 0;
+static uint8_t saved_active_extruder = 0;
+static bool saved_extruder_under_pressure = false;
+static bool saved_extruder_relative_mode = false;
+
+//===========================================================================
+//=============================Routines======================================
+//===========================================================================
+
+void get_arc_coordinates();
+bool setTargetedHotend(int code);
+
+void serial_echopair_P(const char *s_P, float v)
+ { serialprintPGM(s_P); SERIAL_ECHO(v); }
+void serial_echopair_P(const char *s_P, double v)
+ { serialprintPGM(s_P); SERIAL_ECHO(v); }
+void serial_echopair_P(const char *s_P, unsigned long v)
+ { serialprintPGM(s_P); SERIAL_ECHO(v); }
+
+#ifdef SDSUPPORT
+ #include "SdFatUtil.h"
+ int freeMemory() { return SdFatUtil::FreeRam(); }
+#else
+ extern "C" {
+ extern unsigned int __bss_end;
+ extern unsigned int __heap_start;
+ extern void *__brkval;
+
+ int freeMemory() {
+ int free_memory;
+
+ if ((int)__brkval == 0)
+ free_memory = ((int)&free_memory) - ((int)&__bss_end);
+ else
+ free_memory = ((int)&free_memory) - ((int)__brkval);
+
+ return free_memory;
+ }
+ }
+#endif //!SDSUPPORT
+
+void setup_killpin()
+{
+ #if defined(KILL_PIN) && KILL_PIN > -1
+ SET_INPUT(KILL_PIN);
+ WRITE(KILL_PIN,HIGH);
+ #endif
+}
+
+// Set home pin
+void setup_homepin(void)
+{
+#if defined(HOME_PIN) && HOME_PIN > -1
+ SET_INPUT(HOME_PIN);
+ WRITE(HOME_PIN,HIGH);
+#endif
+}
+
+void setup_photpin()
+{
+ #if defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1
+ SET_OUTPUT(PHOTOGRAPH_PIN);
+ WRITE(PHOTOGRAPH_PIN, LOW);
+ #endif
+}
+
+void setup_powerhold()
+{
+ #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
+ SET_OUTPUT(SUICIDE_PIN);
+ WRITE(SUICIDE_PIN, HIGH);
+ #endif
+ #if defined(PS_ON_PIN) && PS_ON_PIN > -1
+ SET_OUTPUT(PS_ON_PIN);
+ #if defined(PS_DEFAULT_OFF)
+ WRITE(PS_ON_PIN, PS_ON_ASLEEP);
+ #else
+ WRITE(PS_ON_PIN, PS_ON_AWAKE);
+ #endif
+ #endif
+}
+
+void suicide()
+{
+ #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
+ SET_OUTPUT(SUICIDE_PIN);
+ WRITE(SUICIDE_PIN, LOW);
+ #endif
+}
+
+void servo_init()
+{
+ #if (NUM_SERVOS >= 1) && defined(SERVO0_PIN) && (SERVO0_PIN > -1)
+ servos[0].attach(SERVO0_PIN);
+ #endif
+ #if (NUM_SERVOS >= 2) && defined(SERVO1_PIN) && (SERVO1_PIN > -1)
+ servos[1].attach(SERVO1_PIN);
+ #endif
+ #if (NUM_SERVOS >= 3) && defined(SERVO2_PIN) && (SERVO2_PIN > -1)
+ servos[2].attach(SERVO2_PIN);
+ #endif
+ #if (NUM_SERVOS >= 4) && defined(SERVO3_PIN) && (SERVO3_PIN > -1)
+ servos[3].attach(SERVO3_PIN);
+ #endif
+ #if (NUM_SERVOS >= 5)
+ #error "TODO: enter initalisation code for more servos"
+ #endif
+}
+
+
+void stop_and_save_print_to_ram(float z_move, float e_move);
+void restore_print_from_ram_and_continue(float e_move);
+
+bool fans_check_enabled = true;
+bool filament_autoload_enabled = true;
+
+
+#ifdef TMC2130
+
+extern int8_t CrashDetectMenu;
+
+void crashdet_enable()
+{
+ tmc2130_sg_stop_on_crash = true;
+ eeprom_update_byte((uint8_t*)EEPROM_CRASH_DET, 0xFF);
+ CrashDetectMenu = 1;
+
+}
+
+void crashdet_disable()
+{
+ tmc2130_sg_stop_on_crash = false;
+ tmc2130_sg_crash = 0;
+ eeprom_update_byte((uint8_t*)EEPROM_CRASH_DET, 0x00);
+ CrashDetectMenu = 0;
+}
+
+void crashdet_stop_and_save_print()
+{
+ stop_and_save_print_to_ram(10, -DEFAULT_RETRACTION); //XY - no change, Z 10mm up, E -1mm retract
+}
+
+void crashdet_restore_print_and_continue()
+{
+ restore_print_from_ram_and_continue(DEFAULT_RETRACTION); //XYZ = orig, E +1mm unretract
+// babystep_apply();
+}
+
+
+void crashdet_stop_and_save_print2()
+{
+ cli();
+ planner_abort_hard(); //abort printing
+ cmdqueue_reset(); //empty cmdqueue
+ card.sdprinting = false;
+ card.closefile();
+ // Reset and re-enable the stepper timer just before the global interrupts are enabled.
+ st_reset_timer();
+ sei();
+}
+
+void crashdet_detected(uint8_t mask)
+{
+// printf("CRASH_DETECTED");
+/* while (!is_buffer_empty())
+ {
+ process_commands();
+ cmdqueue_pop_front();
+ }*/
+ st_synchronize();
+ static uint8_t crashDet_counter = 0;
+ bool automatic_recovery_after_crash = true;
+
+ if (crashDet_counter++ == 0) {
+ crashDetTimer.start();
+ }
+ else if (crashDetTimer.expired(CRASHDET_TIMER * 1000ul)){
+ crashDetTimer.stop();
+ crashDet_counter = 0;
+ }
+ else if(crashDet_counter == CRASHDET_COUNTER_MAX){
+ automatic_recovery_after_crash = false;
+ crashDetTimer.stop();
+ crashDet_counter = 0;
+ }
+ else {
+ crashDetTimer.start();
+ }
+
+ lcd_update_enable(true);
+ lcd_clear();
+ lcd_update(2);
+
+ if (mask & X_AXIS_MASK)
+ {
+ eeprom_update_byte((uint8_t*)EEPROM_CRASH_COUNT_X, eeprom_read_byte((uint8_t*)EEPROM_CRASH_COUNT_X) + 1);
+ eeprom_update_word((uint16_t*)EEPROM_CRASH_COUNT_X_TOT, eeprom_read_word((uint16_t*)EEPROM_CRASH_COUNT_X_TOT) + 1);
+ }
+ if (mask & Y_AXIS_MASK)
+ {
+ eeprom_update_byte((uint8_t*)EEPROM_CRASH_COUNT_Y, eeprom_read_byte((uint8_t*)EEPROM_CRASH_COUNT_Y) + 1);
+ eeprom_update_word((uint16_t*)EEPROM_CRASH_COUNT_Y_TOT, eeprom_read_word((uint16_t*)EEPROM_CRASH_COUNT_Y_TOT) + 1);
+ }
+
+
+
+ lcd_update_enable(true);
+ lcd_update(2);
+ lcd_setstatuspgm(_T(MSG_CRASH_DETECTED));
+ gcode_G28(true, true, false); //home X and Y
+ st_synchronize();
+
+ if (automatic_recovery_after_crash) {
+ enquecommand_P(PSTR("CRASH_RECOVER"));
+ }else{
+ HotendTempBckp = degTargetHotend(active_extruder);
+ setTargetHotend(0, active_extruder);
+ bool yesno = lcd_show_fullscreen_message_yes_no_and_wait_P(_i("Crash detected. Resume print?"), false);
+ lcd_update_enable(true);
+ if (yesno)
+ {
+ char cmd1[10];
+ strcpy(cmd1, "M109 S");
+ strcat(cmd1, ftostr3(HotendTempBckp));
+ enquecommand(cmd1);
+ enquecommand_P(PSTR("CRASH_RECOVER"));
+ }
+ else
+ {
+ enquecommand_P(PSTR("CRASH_CANCEL"));
+ }
+ }
+}
+
+void crashdet_recover()
+{
+ crashdet_restore_print_and_continue();
+ tmc2130_sg_stop_on_crash = true;
+}
+
+void crashdet_cancel()
+{
+ tmc2130_sg_stop_on_crash = true;
+ if (saved_printing_type == PRINTING_TYPE_SD) {
+ lcd_print_stop();
+ }else if(saved_printing_type == PRINTING_TYPE_USB){
+ SERIAL_ECHOLNPGM("// action:cancel"); //for Octoprint: works the same as clicking "Abort" button in Octoprint GUI
+ SERIAL_PROTOCOLLNRPGM(_T(MSG_OK));
+ }
+}
+
+#endif //TMC2130
+
+void failstats_reset_print()
+{
+ eeprom_update_byte((uint8_t *)EEPROM_CRASH_COUNT_X, 0);
+ eeprom_update_byte((uint8_t *)EEPROM_CRASH_COUNT_Y, 0);
+ eeprom_update_byte((uint8_t *)EEPROM_FERROR_COUNT, 0);
+ eeprom_update_byte((uint8_t *)EEPROM_POWER_COUNT, 0);
+}
+
+
+
+#ifdef MESH_BED_LEVELING
+ enum MeshLevelingState { MeshReport, MeshStart, MeshNext, MeshSet };
+#endif
+
+
+// Factory reset function
+// This function is used to erase parts or whole EEPROM memory which is used for storing calibration and and so on.
+// Level input parameter sets depth of reset
+// Quiet parameter masks all waitings for user interact.
+int er_progress = 0;
+void factory_reset(char level, bool quiet)
+{
+ lcd_clear();
+ int cursor_pos = 0;
+ switch (level) {
+
+ // Level 0: Language reset
+ case 0:
+ WRITE(BEEPER, HIGH);
+ _delay_ms(100);
+ WRITE(BEEPER, LOW);
+ lang_reset();
+ break;
+
+ //Level 1: Reset statistics
+ case 1:
+ WRITE(BEEPER, HIGH);
+ _delay_ms(100);
+ WRITE(BEEPER, LOW);
+ eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, 0);
+ eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, 0);
+
+ eeprom_update_byte((uint8_t *)EEPROM_CRASH_COUNT_X, 0);
+ eeprom_update_byte((uint8_t *)EEPROM_CRASH_COUNT_Y, 0);
+ eeprom_update_byte((uint8_t *)EEPROM_FERROR_COUNT, 0);
+ eeprom_update_byte((uint8_t *)EEPROM_POWER_COUNT, 0);
+
+ eeprom_update_word((uint16_t *)EEPROM_CRASH_COUNT_X_TOT, 0);
+ eeprom_update_word((uint16_t *)EEPROM_CRASH_COUNT_Y_TOT, 0);
+ eeprom_update_word((uint16_t *)EEPROM_FERROR_COUNT_TOT, 0);
+ eeprom_update_word((uint16_t *)EEPROM_POWER_COUNT_TOT, 0);
+
+ lcd_menu_statistics();
+
+ break;
+
+ // Level 2: Prepare for shipping
+ case 2:
+ //lcd_puts_P(PSTR("Factory RESET"));
+ //lcd_puts_at_P(1,2,PSTR("Shipping prep"));
+
+ // Force language selection at the next boot up.
+ lang_reset();
+ // Force the "Follow calibration flow" message at the next boot up.
+ calibration_status_store(CALIBRATION_STATUS_Z_CALIBRATION);
+ eeprom_write_byte((uint8_t*)EEPROM_WIZARD_ACTIVE, 1); //run wizard
+ farm_no = 0;
+ farm_mode = false;
+ eeprom_update_byte((uint8_t*)EEPROM_FARM_MODE, farm_mode);
+ EEPROM_save_B(EEPROM_FARM_NUMBER, &farm_no);
+
+ eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, 0);
+ eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, 0);
+ eeprom_update_word((uint16_t *)EEPROM_CRASH_COUNT_X_TOT, 0);
+ eeprom_update_word((uint16_t *)EEPROM_CRASH_COUNT_Y_TOT, 0);
+ eeprom_update_word((uint16_t *)EEPROM_FERROR_COUNT_TOT, 0);
+ eeprom_update_word((uint16_t *)EEPROM_POWER_COUNT_TOT, 0);
+
+ fsensor_enable();
+ fautoload_set(true);
+
+ WRITE(BEEPER, HIGH);
+ _delay_ms(100);
+ WRITE(BEEPER, LOW);
+ //_delay_ms(2000);
+ break;
+
+ // Level 3: erase everything, whole EEPROM will be set to 0xFF
+
+ case 3:
+ lcd_puts_P(PSTR("Factory RESET"));
+ lcd_puts_at_P(1, 2, PSTR("ERASING all data"));
+
+ WRITE(BEEPER, HIGH);
+ _delay_ms(100);
+ WRITE(BEEPER, LOW);
+
+ er_progress = 0;
+ lcd_puts_at_P(3, 3, PSTR(" "));
+ lcd_set_cursor(3, 3);
+ lcd_print(er_progress);
+
+ // Erase EEPROM
+ for (int i = 0; i < 4096; i++) {
+ eeprom_write_byte((uint8_t*)i, 0xFF);
+
+ if (i % 41 == 0) {
+ er_progress++;
+ lcd_puts_at_P(3, 3, PSTR(" "));
+ lcd_set_cursor(3, 3);
+ lcd_print(er_progress);
+ lcd_puts_P(PSTR("%"));
+ }
+
+ }
+
+
+ break;
+ case 4:
+ bowden_menu();
+ break;
+
+ default:
+ break;
+ }
+
+
+}
+
+
+FILE _uartout = {0};
+
+int uart_putchar(char c, FILE *stream)
+{
+ MYSERIAL.write(c);
+ return 0;
+}
+
+
+void lcd_splash()
+{
+// lcd_puts_at_P(0, 1, PSTR(" Original Prusa "));
+// lcd_puts_at_P(0, 2, PSTR(" 3D Printers "));
+// lcd_puts_P(PSTR("\x1b[1;3HOriginal Prusa\x1b[2;4H3D Printers"));
+// fputs_P(PSTR(ESC_2J ESC_H(1,1) "Original Prusa i3" ESC_H(3,2) "Prusa Research"), lcdout);
+ lcd_puts_P(PSTR(ESC_2J ESC_H(1,1) "Original Prusa i3" ESC_H(3,2) "Prusa Research"));
+// lcd_printf_P(_N(ESC_2J "x:%.3f\ny:%.3f\nz:%.3f\ne:%.3f"), _x, _y, _z, _e);
+}
+
+
+void factory_reset()
+{
+ KEEPALIVE_STATE(PAUSED_FOR_USER);
+ if (!READ(BTN_ENC))
+ {
+ _delay_ms(1000);
+ if (!READ(BTN_ENC))
+ {
+ lcd_clear();
+
+
+ lcd_puts_P(PSTR("Factory RESET"));
+
+
+ SET_OUTPUT(BEEPER);
+ WRITE(BEEPER, HIGH);
+
+ while (!READ(BTN_ENC));
+
+ WRITE(BEEPER, LOW);
+
+
+
+ _delay_ms(2000);
+
+ char level = reset_menu();
+ factory_reset(level, false);
+
+ switch (level) {
+ case 0: _delay_ms(0); break;
+ case 1: _delay_ms(0); break;
+ case 2: _delay_ms(0); break;
+ case 3: _delay_ms(0); break;
+ }
+ // _delay_ms(100);
+ /*
+ #ifdef MESH_BED_LEVELING
+ _delay_ms(2000);
+
+ if (!READ(BTN_ENC))
+ {
+ WRITE(BEEPER, HIGH);
+ _delay_ms(100);
+ WRITE(BEEPER, LOW);
+ _delay_ms(200);
+ WRITE(BEEPER, HIGH);
+ _delay_ms(100);
+ WRITE(BEEPER, LOW);
+
+ int _z = 0;
+ calibration_status_store(CALIBRATION_STATUS_CALIBRATED);
+ EEPROM_save_B(EEPROM_BABYSTEP_X, &_z);
+ EEPROM_save_B(EEPROM_BABYSTEP_Y, &_z);
+ EEPROM_save_B(EEPROM_BABYSTEP_Z, &_z);
+ }
+ else
+ {
+
+ WRITE(BEEPER, HIGH);
+ _delay_ms(100);
+ WRITE(BEEPER, LOW);
+ }
+ #endif // mesh */
+
+ }
+ }
+ else
+ {
+ //_delay_ms(1000); // wait 1sec to display the splash screen // what's this and why do we need it?? - andre
+ }
+ KEEPALIVE_STATE(IN_HANDLER);
+}
+
+void show_fw_version_warnings() {
+ if (FW_DEV_VERSION == FW_VERSION_GOLD || FW_DEV_VERSION == FW_VERSION_RC) return;
+ switch (FW_DEV_VERSION) {
+ case(FW_VERSION_ALPHA): lcd_show_fullscreen_message_and_wait_P(_i("You are using firmware alpha version. This is development version. Using this version is not recommended and may cause printer damage.")); break;////MSG_FW_VERSION_ALPHA c=20 r=8
+ case(FW_VERSION_BETA): lcd_show_fullscreen_message_and_wait_P(_i("You are using firmware beta version. This is development version. Using this version is not recommended and may cause printer damage.")); break;////MSG_FW_VERSION_BETA c=20 r=8
+ case(FW_VERSION_DEVEL):
+ case(FW_VERSION_DEBUG):
+ lcd_update_enable(false);
+ lcd_clear();
+ #if FW_DEV_VERSION == FW_VERSION_DEVEL
+ lcd_puts_at_P(0, 0, PSTR("Development build !!"));
+ #else
+ lcd_puts_at_P(0, 0, PSTR("Debbugging build !!!"));
+ #endif
+ lcd_puts_at_P(0, 1, PSTR("May destroy printer!"));
+ lcd_puts_at_P(0, 2, PSTR("ver ")); lcd_puts_P(PSTR(FW_VERSION_FULL));
+ lcd_puts_at_P(0, 3, PSTR(FW_REPOSITORY));
+ lcd_wait_for_click();
+ break;
+// default: lcd_show_fullscreen_message_and_wait_P(_i("WARNING: This is an unofficial, unsupported build. Use at your own risk!")); break;////MSG_FW_VERSION_UNKNOWN c=20 r=8
+ }
+ lcd_update_enable(true);
+}
+
+uint8_t check_printer_version()
+{
+ uint8_t version_changed = 0;
+ uint16_t printer_type = eeprom_read_word((uint16_t*)EEPROM_PRINTER_TYPE);
+ uint16_t motherboard = eeprom_read_word((uint16_t*)EEPROM_BOARD_TYPE);
+
+ if (printer_type != PRINTER_TYPE) {
+ if (printer_type == 0xffff) eeprom_write_word((uint16_t*)EEPROM_PRINTER_TYPE, PRINTER_TYPE);
+ else version_changed |= 0b10;
+ }
+ if (motherboard != MOTHERBOARD) {
+ if(motherboard == 0xffff) eeprom_write_word((uint16_t*)EEPROM_BOARD_TYPE, MOTHERBOARD);
+ else version_changed |= 0b01;
+ }
+ return version_changed;
+}
+
+void erase_eeprom_section(uint16_t offset, uint16_t bytes)
+{
+ for (int i = offset; i < (offset+bytes); i++) eeprom_write_byte((uint8_t*)i, 0xFF);
+}
+
+
+#if (LANG_MODE != 0) //secondary language support
+
+#ifdef W25X20CL
+
+#include "bootapp.h" //bootloader support
+
+// language update from external flash
+#define LANGBOOT_BLOCKSIZE 0x1000
+#define LANGBOOT_RAMBUFFER 0x0800
+
+void update_sec_lang_from_external_flash()
+{
+ if ((boot_app_magic == BOOT_APP_MAGIC) && (boot_app_flags & BOOT_APP_FLG_USER0))
+ {
+ uint8_t lang = boot_reserved >> 4;
+ uint8_t state = boot_reserved & 0xf;
+ lang_table_header_t header;
+ uint32_t src_addr;
+ if (lang_get_header(lang, &header, &src_addr))
+ {
+ fputs_P(PSTR(ESC_H(1,3) "Language update."), lcdout);
+ for (uint8_t i = 0; i < state; i++) fputc('.', lcdout);
+ delay(100);
+ boot_reserved = (state + 1) | (lang << 4);
+ if ((state * LANGBOOT_BLOCKSIZE) < header.size)
+ {
+ cli();
+ uint16_t size = header.size - state * LANGBOOT_BLOCKSIZE;
+ if (size > LANGBOOT_BLOCKSIZE) size = LANGBOOT_BLOCKSIZE;
+ w25x20cl_rd_data(src_addr + state * LANGBOOT_BLOCKSIZE, (uint8_t*)LANGBOOT_RAMBUFFER, size);
+ if (state == 0)
+ {
+ //TODO - check header integrity
+ }
+ bootapp_ram2flash(LANGBOOT_RAMBUFFER, _SEC_LANG_TABLE + state * LANGBOOT_BLOCKSIZE, size);
+ }
+ else
+ {
+ //TODO - check sec lang data integrity
+ eeprom_update_byte((unsigned char *)EEPROM_LANG, LANG_ID_SEC);
+ }
+ }
+ }
+ boot_app_flags &= ~BOOT_APP_FLG_USER0;
+}
+
+
+#ifdef DEBUG_W25X20CL
+
+uint8_t lang_xflash_enum_codes(uint16_t* codes)
+{
+ lang_table_header_t header;
+ uint8_t count = 0;
+ uint32_t addr = 0x00000;
+ while (1)
+ {
+ printf_P(_n("LANGTABLE%d:"), count);
+ w25x20cl_rd_data(addr, (uint8_t*)&header, sizeof(lang_table_header_t));
+ if (header.magic != LANG_MAGIC)
+ {
+ printf_P(_n("NG!\n"));
+ break;
+ }
+ printf_P(_n("OK\n"));
+ printf_P(_n(" _lt_magic = 0x%08lx %S\n"), header.magic, (header.magic==LANG_MAGIC)?_n("OK"):_n("NA"));
+ printf_P(_n(" _lt_size = 0x%04x (%d)\n"), header.size, header.size);
+ printf_P(_n(" _lt_count = 0x%04x (%d)\n"), header.count, header.count);
+ printf_P(_n(" _lt_chsum = 0x%04x\n"), header.checksum);
+ printf_P(_n(" _lt_code = 0x%04x (%c%c)\n"), header.code, header.code >> 8, header.code & 0xff);
+ printf_P(_n(" _lt_sign = 0x%08lx\n"), header.signature);
+
+ addr += header.size;
+ codes[count] = header.code;
+ count ++;
+ }
+ return count;
+}
+
+void list_sec_lang_from_external_flash()
+{
+ uint16_t codes[8];
+ uint8_t count = lang_xflash_enum_codes(codes);
+ printf_P(_n("XFlash lang count = %hhd\n"), count);
+}
+
+#endif //DEBUG_W25X20CL
+
+#endif //W25X20CL
+
+#endif //(LANG_MODE != 0)
+
+
+// "Setup" function is called by the Arduino framework on startup.
+// Before startup, the Timers-functions (PWM)/Analog RW and HardwareSerial provided by the Arduino-code
+// are initialized by the main() routine provided by the Arduino framework.
+void setup()
+{
+ ultralcd_init();
+
+ spi_init();
+
+ lcd_splash();
+
+#ifdef W25X20CL
+ // Enter an STK500 compatible Optiboot boot loader waiting for flashing the languages to an external flash memory.
+ // optiboot_w25x20cl_enter();
+#endif
+
+#if (LANG_MODE != 0) //secondary language support
+#ifdef W25X20CL
+ if (w25x20cl_init())
+ update_sec_lang_from_external_flash();
+ else
+ kill(_i("External SPI flash W25X20CL not responding."));
+#endif //W25X20CL
+#endif //(LANG_MODE != 0)
+
+ setup_killpin();
+ setup_powerhold();
+
+ farm_mode = eeprom_read_byte((uint8_t*)EEPROM_FARM_MODE);
+ EEPROM_read_B(EEPROM_FARM_NUMBER, &farm_no);
+ if ((farm_mode == 0xFF && farm_no == 0) || ((uint16_t)farm_no == 0xFFFF))
+ farm_mode = false; //if farm_mode has not been stored to eeprom yet and farm number is set to zero or EEPROM is fresh, deactivate farm mode
+ if ((uint16_t)farm_no == 0xFFFF) farm_no = 0;
+
+ selectedSerialPort = eeprom_read_byte((uint8_t*)EEPROM_SECOND_SERIAL_ACTIVE);
+ if (selectedSerialPort == 0xFF) selectedSerialPort = 0;
+ if (farm_mode)
+ {
+ no_response = true; //we need confirmation by recieving PRUSA thx
+ important_status = 8;
+ prusa_statistics(8);
+ selectedSerialPort = 1;
+#ifdef TMC2130
+ //increased extruder current (PFW363)
+ tmc2130_current_h[E_AXIS] = 36;
+ tmc2130_current_r[E_AXIS] = 36;
+#endif //TMC2130
+ //disabled filament autoload (PFW360)
+ filament_autoload_enabled = false;
+ eeprom_update_byte((uint8_t*)EEPROM_FSENS_AUTOLOAD_ENABLED, 0);
+ }
+ MYSERIAL.begin(BAUDRATE);
+ fdev_setup_stream(uartout, uart_putchar, NULL, _FDEV_SETUP_WRITE); //setup uart out stream
+ stdout = uartout;
+ SERIAL_PROTOCOLLNPGM("start");
+ SERIAL_ECHO_START;
+ printf_P(PSTR(" " FW_VERSION_FULL "\n"));
+
+ uart2_init();
+
+
+#ifdef DEBUG_SEC_LANG
+ lang_table_header_t header;
+ uint32_t src_addr = 0x00000;
+ if (lang_get_header(1, &header, &src_addr))
+ {
+//this is comparsion of some printing-methods regarding to flash space usage and code size/readability
+#define LT_PRINT_TEST 2
+// flash usage
+// total p.test
+//0 252718 t+c text code
+//1 253142 424 170 254
+//2 253040 322 164 158
+//3 253248 530 135 395
+#if (LT_PRINT_TEST==1) //not optimized printf
+ printf_P(_n(" _src_addr = 0x%08lx\n"), src_addr);
+ printf_P(_n(" _lt_magic = 0x%08lx %S\n"), header.magic, (header.magic==LANG_MAGIC)?_n("OK"):_n("NA"));
+ printf_P(_n(" _lt_size = 0x%04x (%d)\n"), header.size, header.size);
+ printf_P(_n(" _lt_count = 0x%04x (%d)\n"), header.count, header.count);
+ printf_P(_n(" _lt_chsum = 0x%04x\n"), header.checksum);
+ printf_P(_n(" _lt_code = 0x%04x (%c%c)\n"), header.code, header.code >> 8, header.code & 0xff);
+ printf_P(_n(" _lt_sign = 0x%08lx\n"), header.signature);
+#elif (LT_PRINT_TEST==2) //optimized printf
+ printf_P(
+ _n(
+ " _src_addr = 0x%08lx\n"
+ " _lt_magic = 0x%08lx %S\n"
+ " _lt_size = 0x%04x (%d)\n"
+ " _lt_count = 0x%04x (%d)\n"
+ " _lt_chsum = 0x%04x\n"
+ " _lt_code = 0x%04x (%c%c)\n"
+ " _lt_resv1 = 0x%08lx\n"
+ ),
+ src_addr,
+ header.magic, (header.magic==LANG_MAGIC)?_n("OK"):_n("NA"),
+ header.size, header.size,
+ header.count, header.count,
+ header.checksum,
+ header.code, header.code >> 8, header.code & 0xff,
+ header.signature
+ );
+#elif (LT_PRINT_TEST==3) //arduino print/println (leading zeros not solved)
+ MYSERIAL.print(" _src_addr = 0x");
+ MYSERIAL.println(src_addr, 16);
+ MYSERIAL.print(" _lt_magic = 0x");
+ MYSERIAL.print(header.magic, 16);
+ MYSERIAL.println((header.magic==LANG_MAGIC)?" OK":" NA");
+ MYSERIAL.print(" _lt_size = 0x");
+ MYSERIAL.print(header.size, 16);
+ MYSERIAL.print(" (");
+ MYSERIAL.print(header.size, 10);
+ MYSERIAL.println(")");
+ MYSERIAL.print(" _lt_count = 0x");
+ MYSERIAL.print(header.count, 16);
+ MYSERIAL.print(" (");
+ MYSERIAL.print(header.count, 10);
+ MYSERIAL.println(")");
+ MYSERIAL.print(" _lt_chsum = 0x");
+ MYSERIAL.println(header.checksum, 16);
+ MYSERIAL.print(" _lt_code = 0x");
+ MYSERIAL.print(header.code, 16);
+ MYSERIAL.print(" (");
+ MYSERIAL.print((char)(header.code >> 8), 0);
+ MYSERIAL.print((char)(header.code & 0xff), 0);
+ MYSERIAL.println(")");
+ MYSERIAL.print(" _lt_resv1 = 0x");
+ MYSERIAL.println(header.signature, 16);
+#endif //(LT_PRINT_TEST==)
+#undef LT_PRINT_TEST
+
+#if 0
+ w25x20cl_rd_data(0x25ba, (uint8_t*)&block_buffer, 1024);
+ for (uint16_t i = 0; i < 1024; i++)
+ {
+ if ((i % 16) == 0) printf_P(_n("%04x:"), 0x25ba+i);
+ printf_P(_n(" %02x"), ((uint8_t*)&block_buffer)[i]);
+ if ((i % 16) == 15) putchar('\n');
+ }
+#endif
+ uint16_t sum = 0;
+ for (uint16_t i = 0; i < header.size; i++)
+ sum += (uint16_t)pgm_read_byte((uint8_t*)(_SEC_LANG_TABLE + i)) << ((i & 1)?0:8);
+ printf_P(_n("_SEC_LANG_TABLE checksum = %04x\n"), sum);
+ sum -= header.checksum; //subtract checksum
+ printf_P(_n("_SEC_LANG_TABLE checksum = %04x\n"), sum);
+ sum = (sum >> 8) | ((sum & 0xff) << 8); //swap bytes
+ if (sum == header.checksum)
+ printf_P(_n("Checksum OK\n"), sum);
+ else
+ printf_P(_n("Checksum NG\n"), sum);
+ }
+ else
+ printf_P(_n("lang_get_header failed!\n"));
+
+#if 0
+ for (uint16_t i = 0; i < 1024*10; i++)
+ {
+ if ((i % 16) == 0) printf_P(_n("%04x:"), _SEC_LANG_TABLE+i);
+ printf_P(_n(" %02x"), pgm_read_byte((uint8_t*)(_SEC_LANG_TABLE+i)));
+ if ((i % 16) == 15) putchar('\n');
+ }
+#endif
+
+#if 0
+ SERIAL_ECHOLN("Reading eeprom from 0 to 100: start");
+ for (int i = 0; i < 4096; ++i) {
+ int b = eeprom_read_byte((unsigned char*)i);
+ if (b != 255) {
+ SERIAL_ECHO(i);
+ SERIAL_ECHO(":");
+ SERIAL_ECHO(b);
+ SERIAL_ECHOLN("");
+ }
+ }
+ SERIAL_ECHOLN("Reading eeprom from 0 to 100: done");
+#endif
+
+#endif //DEBUG_SEC_LANG
+
+ // Check startup - does nothing if bootloader sets MCUSR to 0
+ byte mcu = MCUSR;
+/* if (mcu & 1) SERIAL_ECHOLNRPGM(_T(MSG_POWERUP));
+ if (mcu & 2) SERIAL_ECHOLNRPGM(MSG_EXTERNAL_RESET);
+ if (mcu & 4) SERIAL_ECHOLNRPGM(MSG_BROWNOUT_RESET);
+ if (mcu & 8) SERIAL_ECHOLNRPGM(MSG_WATCHDOG_RESET);
+ if (mcu & 32) SERIAL_ECHOLNRPGM(MSG_SOFTWARE_RESET);*/
+ if (mcu & 1) puts_P(_T(MSG_POWERUP));
+ if (mcu & 2) puts_P(MSG_EXTERNAL_RESET);
+ if (mcu & 4) puts_P(MSG_BROWNOUT_RESET);
+ if (mcu & 8) puts_P(MSG_WATCHDOG_RESET);
+ if (mcu & 32) puts_P(MSG_SOFTWARE_RESET);
+ MCUSR = 0;
+
+ //SERIAL_ECHORPGM(MSG_MARLIN);
+ //SERIAL_ECHOLNRPGM(VERSION_STRING);
+
+#ifdef STRING_VERSION_CONFIG_H
+#ifdef STRING_CONFIG_H_AUTHOR
+ SERIAL_ECHO_START;
+ SERIAL_ECHORPGM(_i(" Last Updated: "));////MSG_CONFIGURATION_VER c=0 r=0
+ SERIAL_ECHOPGM(STRING_VERSION_CONFIG_H);
+ SERIAL_ECHORPGM(_n(" | Author: "));////MSG_AUTHOR c=0 r=0
+ SERIAL_ECHOLNPGM(STRING_CONFIG_H_AUTHOR);
+ SERIAL_ECHOPGM("Compiled: ");
+ SERIAL_ECHOLNPGM(__DATE__);
+#endif
+#endif
+
+ SERIAL_ECHO_START;
+ SERIAL_ECHORPGM(_i(" Free Memory: "));////MSG_FREE_MEMORY c=0 r=0
+ SERIAL_ECHO(freeMemory());
+ SERIAL_ECHORPGM(_i(" PlannerBufferBytes: "));////MSG_PLANNER_BUFFER_BYTES c=0 r=0
+ SERIAL_ECHOLN((int)sizeof(block_t)*BLOCK_BUFFER_SIZE);
+ //lcd_update_enable(false); // why do we need this?? - andre
+ // loads data from EEPROM if available else uses defaults (and resets step acceleration rate)
+
+ bool previous_settings_retrieved = false;
+ uint8_t hw_changed = check_printer_version();
+ if (!(hw_changed & 0b10)) { //if printer version wasn't changed, check for eeprom version and retrieve settings from eeprom in case that version wasn't changed
+ previous_settings_retrieved = Config_RetrieveSettings(EEPROM_OFFSET);
+ }
+ else { //printer version was changed so use default settings
+ Config_ResetDefault();
+ }
+ SdFatUtil::set_stack_guard(); //writes magic number at the end of static variables to protect against overwriting static memory by stack
+
+ tp_init(); // Initialize temperature loop
+
+ lcd_splash(); // we need to do this again, because tp_init() kills lcd
+
+ plan_init(); // Initialize planner;
+
+ factory_reset();
+
+#ifdef TMC2130
+ uint8_t silentMode = eeprom_read_byte((uint8_t*)EEPROM_SILENT);
+ if (silentMode == 0xff) silentMode = 0;
+// tmc2130_mode = silentMode?TMC2130_MODE_SILENT:TMC2130_MODE_NORMAL;
+ tmc2130_mode = TMC2130_MODE_NORMAL;
+ uint8_t crashdet = eeprom_read_byte((uint8_t*)EEPROM_CRASH_DET);
+ if (crashdet && !farm_mode)
+ {
+ crashdet_enable();
+ puts_P(_N("CrashDetect ENABLED!"));
+ }
+ else
+ {
+ crashdet_disable();
+ puts_P(_N("CrashDetect DISABLED"));
+ }
+
+#ifdef TMC2130_LINEARITY_CORRECTION
+#ifdef TMC2130_LINEARITY_CORRECTION_XYZ
+ tmc2130_wave_fac[X_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_WAVE_X_FAC);
+ tmc2130_wave_fac[Y_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_WAVE_Y_FAC);
+ tmc2130_wave_fac[Z_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_WAVE_Z_FAC);
+#endif //TMC2130_LINEARITY_CORRECTION_XYZ
+ tmc2130_wave_fac[E_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_WAVE_E_FAC);
+ if (tmc2130_wave_fac[X_AXIS] == 0xff) tmc2130_wave_fac[X_AXIS] = 0;
+ if (tmc2130_wave_fac[Y_AXIS] == 0xff) tmc2130_wave_fac[Y_AXIS] = 0;
+ if (tmc2130_wave_fac[Z_AXIS] == 0xff) tmc2130_wave_fac[Z_AXIS] = 0;
+ if (tmc2130_wave_fac[E_AXIS] == 0xff) tmc2130_wave_fac[E_AXIS] = 0;
+#endif //TMC2130_LINEARITY_CORRECTION
+
+#ifdef TMC2130_VARIABLE_RESOLUTION
+ tmc2130_mres[X_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_X_MRES);
+ tmc2130_mres[Y_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_Y_MRES);
+ tmc2130_mres[Z_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_Z_MRES);
+ tmc2130_mres[E_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_E_MRES);
+ if (tmc2130_mres[X_AXIS] == 0xff) tmc2130_mres[X_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_XY);
+ if (tmc2130_mres[Y_AXIS] == 0xff) tmc2130_mres[Y_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_XY);
+ if (tmc2130_mres[Z_AXIS] == 0xff) tmc2130_mres[Z_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_Z);
+ if (tmc2130_mres[E_AXIS] == 0xff) tmc2130_mres[E_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_E);
+ eeprom_update_byte((uint8_t*)EEPROM_TMC2130_X_MRES, tmc2130_mres[X_AXIS]);
+ eeprom_update_byte((uint8_t*)EEPROM_TMC2130_Y_MRES, tmc2130_mres[Y_AXIS]);
+ eeprom_update_byte((uint8_t*)EEPROM_TMC2130_Z_MRES, tmc2130_mres[Z_AXIS]);
+ eeprom_update_byte((uint8_t*)EEPROM_TMC2130_E_MRES, tmc2130_mres[E_AXIS]);
+#else //TMC2130_VARIABLE_RESOLUTION
+ tmc2130_mres[X_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_XY);
+ tmc2130_mres[Y_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_XY);
+ tmc2130_mres[Z_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_Z);
+ tmc2130_mres[E_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_E);
+#endif //TMC2130_VARIABLE_RESOLUTION
+
+#endif //TMC2130
+
+
+ st_init(); // Initialize stepper, this enables interrupts!
+
+#ifdef TMC2130
+ tmc2130_mode = silentMode?TMC2130_MODE_SILENT:TMC2130_MODE_NORMAL;
+ tmc2130_init();
+#endif //TMC2130
+
+ setup_photpin();
+
+ servo_init();
+ // Reset the machine correction matrix.
+ // It does not make sense to load the correction matrix until the machine is homed.
+ world2machine_reset();
+
+#ifdef PAT9125
+ fsensor_init();
+#endif //PAT9125
+
+
+#if defined(CONTROLLERFAN_PIN) && (CONTROLLERFAN_PIN > -1)
+ SET_OUTPUT(CONTROLLERFAN_PIN); //Set pin used for driver cooling fan
+#endif
+
+
+ setup_homepin();
+
+#ifdef TMC2130
+
+ if (1) {
+ // try to run to zero phase before powering the Z motor.
+ // Move in negative direction
+ WRITE(Z_DIR_PIN,INVERT_Z_DIR);
+ // Round the current micro-micro steps to micro steps.
+ for (uint16_t phase = (tmc2130_rd_MSCNT(Z_AXIS) + 8) >> 4; phase > 0; -- phase) {
+ // Until the phase counter is reset to zero.
+ WRITE(Z_STEP_PIN, !INVERT_Z_STEP_PIN);
+ delay(2);
+ WRITE(Z_STEP_PIN, INVERT_Z_STEP_PIN);
+ delay(2);
+ }
+ }
+#endif //TMC2130
+
+#if defined(Z_AXIS_ALWAYS_ON)
+ enable_z();
+#endif
+ farm_mode = eeprom_read_byte((uint8_t*)EEPROM_FARM_MODE);
+ EEPROM_read_B(EEPROM_FARM_NUMBER, &farm_no);
+ if ((farm_mode == 0xFF && farm_no == 0) || (farm_no == 0xFFFF)) farm_mode = false; //if farm_mode has not been stored to eeprom yet and farm number is set to zero or EEPROM is fresh, deactivate farm mode
+ if (farm_no == 0xFFFF) farm_no = 0;
+ if (farm_mode)
+ {
+ prusa_statistics(8);
+ }
+
+ // Enable Toshiba FlashAir SD card / WiFi enahanced card.
+ card.ToshibaFlashAir_enable(eeprom_read_byte((unsigned char*)EEPROM_TOSHIBA_FLASH_AIR_COMPATIBLITY) == 1);
+
+ if (eeprom_read_dword((uint32_t*)(EEPROM_TOP - 4)) == 0x0ffffffff &&
+ eeprom_read_dword((uint32_t*)(EEPROM_TOP - 8)) == 0x0ffffffff) {
+ // Maiden startup. The firmware has been loaded and first started on a virgin RAMBo board,
+ // where all the EEPROM entries are set to 0x0ff.
+ // Once a firmware boots up, it forces at least a language selection, which changes
+ // EEPROM_LANG to number lower than 0x0ff.
+ // 1) Set a high power mode.
+#ifdef TMC2130
+ eeprom_write_byte((uint8_t*)EEPROM_SILENT, 0);
+ tmc2130_mode = TMC2130_MODE_NORMAL;
+#endif //TMC2130
+ eeprom_write_byte((uint8_t*)EEPROM_WIZARD_ACTIVE, 1); //run wizard
+ }
+
+ // Force SD card update. Otherwise the SD card update is done from loop() on card.checkautostart(false),
+ // but this times out if a blocking dialog is shown in setup().
+ card.initsd();
+#ifdef DEBUG_SD_SPEED_TEST
+ if (card.cardOK)
+ {
+ uint8_t* buff = (uint8_t*)block_buffer;
+ uint32_t block = 0;
+ uint32_t sumr = 0;
+ uint32_t sumw = 0;
+ for (int i = 0; i < 1024; i++)
+ {
+ uint32_t u = micros();
+ bool res = card.card.readBlock(i, buff);
+ u = micros() - u;
+ if (res)
+ {
+ printf_P(PSTR("readBlock %4d 512 bytes %lu us\n"), i, u);
+ sumr += u;
+ u = micros();
+ res = card.card.writeBlock(i, buff);
+ u = micros() - u;
+ if (res)
+ {
+ printf_P(PSTR("writeBlock %4d 512 bytes %lu us\n"), i, u);
+ sumw += u;
+ }
+ else
+ {
+ printf_P(PSTR("writeBlock %4d error\n"), i);
+ break;
+ }
+ }
+ else
+ {
+ printf_P(PSTR("readBlock %4d error\n"), i);
+ break;
+ }
+ }
+ uint32_t avg_rspeed = (1024 * 1000000) / (sumr / 512);
+ uint32_t avg_wspeed = (1024 * 1000000) / (sumw / 512);
+ printf_P(PSTR("avg read speed %lu bytes/s\n"), avg_rspeed);
+ printf_P(PSTR("avg write speed %lu bytes/s\n"), avg_wspeed);
+ }
+ else
+ printf_P(PSTR("Card NG!\n"));
+#endif //DEBUG_SD_SPEED_TEST
+
+ if (eeprom_read_byte((uint8_t*)EEPROM_POWER_COUNT) == 0xff) eeprom_write_byte((uint8_t*)EEPROM_POWER_COUNT, 0);
+ if (eeprom_read_byte((uint8_t*)EEPROM_CRASH_COUNT_X) == 0xff) eeprom_write_byte((uint8_t*)EEPROM_CRASH_COUNT_X, 0);
+ if (eeprom_read_byte((uint8_t*)EEPROM_CRASH_COUNT_Y) == 0xff) eeprom_write_byte((uint8_t*)EEPROM_CRASH_COUNT_Y, 0);
+ if (eeprom_read_byte((uint8_t*)EEPROM_FERROR_COUNT) == 0xff) eeprom_write_byte((uint8_t*)EEPROM_FERROR_COUNT, 0);
+ if (eeprom_read_word((uint16_t*)EEPROM_POWER_COUNT_TOT) == 0xffff) eeprom_write_word((uint16_t*)EEPROM_POWER_COUNT_TOT, 0);
+ if (eeprom_read_word((uint16_t*)EEPROM_CRASH_COUNT_X_TOT) == 0xffff) eeprom_write_word((uint16_t*)EEPROM_CRASH_COUNT_X_TOT, 0);
+ if (eeprom_read_word((uint16_t*)EEPROM_CRASH_COUNT_Y_TOT) == 0xffff) eeprom_write_word((uint16_t*)EEPROM_CRASH_COUNT_Y_TOT, 0);
+ if (eeprom_read_word((uint16_t*)EEPROM_FERROR_COUNT_TOT) == 0xffff) eeprom_write_word((uint16_t*)EEPROM_FERROR_COUNT_TOT, 0);
+#ifdef SNMM
+ if (eeprom_read_dword((uint32_t*)EEPROM_BOWDEN_LENGTH) == 0x0ffffffff) { //bowden length used for SNMM
+ int _z = BOWDEN_LENGTH;
+ for(int i = 0; i<4; i++) EEPROM_save_B(EEPROM_BOWDEN_LENGTH + i * 2, &_z);
+ }
+#endif
+
+ // In the future, somewhere here would one compare the current firmware version against the firmware version stored in the EEPROM.
+ // If they differ, an update procedure may need to be performed. At the end of this block, the current firmware version
+ // is being written into the EEPROM, so the update procedure will be triggered only once.
+
+
+#if (LANG_MODE != 0) //secondary language support
+
+#ifdef DEBUG_W25X20CL
+ W25X20CL_SPI_ENTER();
+ uint8_t uid[8]; // 64bit unique id
+ w25x20cl_rd_uid(uid);
+ puts_P(_n("W25X20CL UID="));
+ for (uint8_t i = 0; i < 8; i ++)
+ printf_P(PSTR("%02hhx"), uid[i]);
+ putchar('\n');
+ list_sec_lang_from_external_flash();
+#endif //DEBUG_W25X20CL
+
+// lang_reset();
+ if (!lang_select(eeprom_read_byte((uint8_t*)EEPROM_LANG)))
+ lcd_language();
+
+#ifdef DEBUG_SEC_LANG
+
+ uint16_t sec_lang_code = lang_get_code(1);
+ uint16_t ui = _SEC_LANG_TABLE; //table pointer
+ printf_P(_n("lang_selected=%d\nlang_table=0x%04x\nSEC_LANG_CODE=0x%04x (%c%c)\n"), lang_selected, ui, sec_lang_code, sec_lang_code >> 8, sec_lang_code & 0xff);
+
+// lang_print_sec_lang(uartout);
+#endif //DEBUG_SEC_LANG
+
+#endif //(LANG_MODE != 0)
+
+ if (eeprom_read_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE) == 255) {
+ eeprom_write_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE, 0);
+ temp_cal_active = false;
+ } else temp_cal_active = eeprom_read_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE);
+
+ if (eeprom_read_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA) == 255) {
+ //eeprom_write_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 0);
+ eeprom_write_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 1);
+ int16_t z_shift = 0;
+ for (uint8_t i = 0; i < 5; i++) EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i * 2, &z_shift);
+ eeprom_write_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE, 0);
+ temp_cal_active = false;
+ }
+ if (eeprom_read_byte((uint8_t*)EEPROM_UVLO) == 255) {
+ eeprom_write_byte((uint8_t*)EEPROM_UVLO, 0);
+ }
+ if (eeprom_read_byte((uint8_t*)EEPROM_SD_SORT) == 255) {
+ eeprom_write_byte((uint8_t*)EEPROM_SD_SORT, 0);
+ }
+
+ check_babystep(); //checking if Z babystep is in allowed range
+
+#ifdef UVLO_SUPPORT
+ setup_uvlo_interrupt();
+#endif //UVLO_SUPPORT
+
+#if !defined(DEBUG_DISABLE_FANCHECK) && defined(FANCHECK) && defined(TACH_1) && TACH_1 >-1
+ setup_fan_interrupt();
+#endif //DEBUG_DISABLE_FANCHECK
+
+#ifdef PAT9125
+#ifndef DEBUG_DISABLE_FSENSORCHECK
+ fsensor_setup_interrupt();
+#endif //DEBUG_DISABLE_FSENSORCHECK
+#endif //PAT9125
+ for (int i = 0; i<4; i++) EEPROM_read_B(EEPROM_BOWDEN_LENGTH + i * 2, &bowden_length[i]);
+
+#ifndef DEBUG_DISABLE_STARTMSGS
+ KEEPALIVE_STATE(PAUSED_FOR_USER);
+
+ show_fw_version_warnings();
+
+ switch (hw_changed) {
+ //if motherboard or printer type was changed inform user as it can indicate flashing wrong firmware version
+ //if user confirms with knob, new hw version (printer and/or motherboard) is written to eeprom and message will be not shown next time
+ case(0b01):
+ lcd_show_fullscreen_message_and_wait_P(_i("Warning: motherboard type changed.")); ////MSG_CHANGED_MOTHERBOARD c=20 r=4
+ eeprom_write_word((uint16_t*)EEPROM_BOARD_TYPE, MOTHERBOARD);
+ break;
+ case(0b10):
+ lcd_show_fullscreen_message_and_wait_P(_i("Warning: printer type changed.")); ////MSG_CHANGED_PRINTER c=20 r=4
+ eeprom_write_word((uint16_t*)EEPROM_PRINTER_TYPE, PRINTER_TYPE);
+ break;
+ case(0b11):
+ lcd_show_fullscreen_message_and_wait_P(_i("Warning: both printer type and motherboard type changed.")); ////MSG_CHANGED_BOTH c=20 r=4
+ eeprom_write_word((uint16_t*)EEPROM_PRINTER_TYPE, PRINTER_TYPE);
+ eeprom_write_word((uint16_t*)EEPROM_BOARD_TYPE, MOTHERBOARD);
+ break;
+ default: break; //no change, show no message
+ }
+
+ if (!previous_settings_retrieved) {
+ lcd_show_fullscreen_message_and_wait_P(_i("Old settings found. Default PID, Esteps etc. will be set.")); //if EEPROM version or printer type was changed, inform user that default setting were loaded////MSG_DEFAULT_SETTINGS_LOADED c=20 r=4
+ erase_eeprom_section(EEPROM_OFFSET, 156); //erase M500 part of eeprom
+ }
+ if (eeprom_read_byte((uint8_t*)EEPROM_WIZARD_ACTIVE) == 1) {
+ lcd_wizard(0);
+ }
+ if (eeprom_read_byte((uint8_t*)EEPROM_WIZARD_ACTIVE) == 0) { //dont show calibration status messages if wizard is currently active
+ if (calibration_status() == CALIBRATION_STATUS_ASSEMBLED ||
+ calibration_status() == CALIBRATION_STATUS_UNKNOWN ||
+ calibration_status() == CALIBRATION_STATUS_XYZ_CALIBRATION) {
+ // Reset the babystepping values, so the printer will not move the Z axis up when the babystepping is enabled.
+ eeprom_update_word((uint16_t*)EEPROM_BABYSTEP_Z, 0);
+ // Show the message.
+ lcd_show_fullscreen_message_and_wait_P(_T(MSG_FOLLOW_CALIBRATION_FLOW));
+ }
+ else if (calibration_status() == CALIBRATION_STATUS_LIVE_ADJUST) {
+ // Show the message.
+ lcd_show_fullscreen_message_and_wait_P(_T(MSG_BABYSTEP_Z_NOT_SET));
+ lcd_update_enable(true);
+ }
+ else if (calibration_status() == CALIBRATION_STATUS_CALIBRATED && temp_cal_active == true && calibration_status_pinda() == false) {
+ //lcd_show_fullscreen_message_and_wait_P(_i("Temperature calibration has not been run yet"));////MSG_PINDA_NOT_CALIBRATED c=20 r=4
+ lcd_update_enable(true);
+ }
+ else if (calibration_status() == CALIBRATION_STATUS_Z_CALIBRATION) {
+ // Show the message.
+ lcd_show_fullscreen_message_and_wait_P(_T(MSG_FOLLOW_CALIBRATION_FLOW));
+ }
+ }
+
+#if !defined (DEBUG_DISABLE_FORCE_SELFTEST) && defined (TMC2130)
+ if (force_selftest_if_fw_version() && calibration_status() < CALIBRATION_STATUS_ASSEMBLED) {
+ lcd_show_fullscreen_message_and_wait_P(_i("Selftest will be run to calibrate accurate sensorless rehoming."));////MSG_FORCE_SELFTEST c=20 r=8
+ update_current_firmware_version_to_eeprom();
+ lcd_selftest();
+ }
+#endif //TMC2130 && !DEBUG_DISABLE_FORCE_SELFTEST
+
+ KEEPALIVE_STATE(IN_PROCESS);
+#endif //DEBUG_DISABLE_STARTMSGS
+ lcd_update_enable(true);
+ lcd_clear();
+ lcd_update(2);
+ // Store the currently running firmware into an eeprom,
+ // so the next time the firmware gets updated, it will know from which version it has been updated.
+ update_current_firmware_version_to_eeprom();
+
+#ifdef TMC2130
+ tmc2130_home_origin[X_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_X_ORIGIN);
+ tmc2130_home_bsteps[X_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_X_BSTEPS);
+ tmc2130_home_fsteps[X_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_X_FSTEPS);
+ if (tmc2130_home_origin[X_AXIS] == 0xff) tmc2130_home_origin[X_AXIS] = 0;
+ if (tmc2130_home_bsteps[X_AXIS] == 0xff) tmc2130_home_bsteps[X_AXIS] = 48;
+ if (tmc2130_home_fsteps[X_AXIS] == 0xff) tmc2130_home_fsteps[X_AXIS] = 48;
+
+ tmc2130_home_origin[Y_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_Y_ORIGIN);
+ tmc2130_home_bsteps[Y_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_Y_BSTEPS);
+ tmc2130_home_fsteps[Y_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_Y_FSTEPS);
+ if (tmc2130_home_origin[Y_AXIS] == 0xff) tmc2130_home_origin[Y_AXIS] = 0;
+ if (tmc2130_home_bsteps[Y_AXIS] == 0xff) tmc2130_home_bsteps[Y_AXIS] = 48;
+ if (tmc2130_home_fsteps[Y_AXIS] == 0xff) tmc2130_home_fsteps[Y_AXIS] = 48;
+
+ tmc2130_home_enabled = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_ENABLED);
+ if (tmc2130_home_enabled == 0xff) tmc2130_home_enabled = 0;
+#endif //TMC2130
+
+#ifdef UVLO_SUPPORT
+ if (eeprom_read_byte((uint8_t*)EEPROM_UVLO) == 1) { //previous print was terminated by UVLO
+/*
+ if (lcd_show_fullscreen_message_yes_no_and_wait_P(_T(MSG_RECOVER_PRINT), false)) recover_print();
+ else {
+ eeprom_update_byte((uint8_t*)EEPROM_UVLO, 0);
+ lcd_update_enable(true);
+ lcd_update(2);
+ lcd_setstatuspgm(_T(WELCOME_MSG));
+ }
+*/
+ manage_heater(); // Update temperatures
+#ifdef DEBUG_UVLO_AUTOMATIC_RECOVER
+ printf_P(_N("Power panic detected!\nCurrent bed temp:%d\nSaved bed temp:%d\n"), (int)degBed(), eeprom_read_byte((uint8_t*)EEPROM_UVLO_TARGET_BED))
+#endif
+ if ( degBed() > ( (float)eeprom_read_byte((uint8_t*)EEPROM_UVLO_TARGET_BED) - AUTOMATIC_UVLO_BED_TEMP_OFFSET) ){
+ #ifdef DEBUG_UVLO_AUTOMATIC_RECOVER
+ puts_P(_N("Automatic recovery!"));
+ #endif
+ recover_print(1);
+ }
+ else{
+ #ifdef DEBUG_UVLO_AUTOMATIC_RECOVER
+ puts_P(_N("Normal recovery!"));
+ #endif
+ if ( lcd_show_fullscreen_message_yes_no_and_wait_P(_T(MSG_RECOVER_PRINT), false) ) recover_print(0);
+ else {
+ eeprom_update_byte((uint8_t*)EEPROM_UVLO, 0);
+ lcd_update_enable(true);
+ lcd_update(2);
+ lcd_setstatuspgm(_T(WELCOME_MSG));
+ }
+
+ }
+
+ }
+#endif //UVLO_SUPPORT
+
+ KEEPALIVE_STATE(NOT_BUSY);
+#ifdef WATCHDOG
+ wdt_enable(WDTO_4S);
+#endif //WATCHDOG
+}
+
+#ifdef PAT9125
+void fsensor_init() {
+ int pat9125 = pat9125_init();
+ printf_P(_N("PAT9125_init:%d\n"), pat9125);
+ uint8_t fsensor = eeprom_read_byte((uint8_t*)EEPROM_FSENSOR);
+ filament_autoload_enabled=eeprom_read_byte((uint8_t*)EEPROM_FSENS_AUTOLOAD_ENABLED);
+ if (!pat9125)
+ {
+ fsensor = 0; //disable sensor
+ fsensor_not_responding = true;
+ }
+ else {
+ fsensor_not_responding = false;
+ }
+ puts_P(PSTR("FSensor "));
+ if (fsensor)
+ {
+ puts_P(PSTR("ENABLED\n"));
+ fsensor_enable();
+ }
+ else
+ {
+ puts_P(PSTR("DISABLED\n"));
+ fsensor_disable();
+ }
+#ifdef DEBUG_DISABLE_FSENSORCHECK
+ filament_autoload_enabled = false;
+ fsensor_disable();
+#endif //DEBUG_DISABLE_FSENSORCHECK
+}
+
+#endif //PAT9125
+
+void trace();
+
+#define CHUNK_SIZE 64 // bytes
+#define SAFETY_MARGIN 1
+char chunk[CHUNK_SIZE+SAFETY_MARGIN];
+int chunkHead = 0;
+
+int serial_read_stream() {
+
+ setTargetHotend(0, 0);
+ setTargetBed(0);
+
+ lcd_clear();
+ lcd_puts_P(PSTR(" Upload in progress"));
+
+ // first wait for how many bytes we will receive
+ uint32_t bytesToReceive;
+
+ // receive the four bytes
+ char bytesToReceiveBuffer[4];
+ for (int i=0; i<4; i++) {
+ int data;
+ while ((data = MYSERIAL.read()) == -1) {};
+ bytesToReceiveBuffer[i] = data;
+
+ }
+
+ // make it a uint32
+ memcpy(&bytesToReceive, &bytesToReceiveBuffer, 4);
+
+ // we're ready, notify the sender
+ MYSERIAL.write('+');
+
+ // lock in the routine
+ uint32_t receivedBytes = 0;
+ while (prusa_sd_card_upload) {
+ int i;
+ for (i=0; i 0) && ((millis()-_usb_timer) > 1000))
+ {
+ is_usb_printing = true;
+ usb_printing_counter--;
+ _usb_timer = millis();
+ }
+ if (usb_printing_counter == 0)
+ {
+ is_usb_printing = false;
+ }
+
+ if (prusa_sd_card_upload)
+ {
+ //we read byte-by byte
+ serial_read_stream();
+ } else
+ {
+
+ get_command();
+
+ #ifdef SDSUPPORT
+ card.checkautostart(false);
+ #endif
+ if(buflen)
+ {
+ cmdbuffer_front_already_processed = false;
+ #ifdef SDSUPPORT
+ if(card.saving)
+ {
+ // Saving a G-code file onto an SD-card is in progress.
+ // Saving starts with M28, saving until M29 is seen.
+ if(strstr_P(CMDBUFFER_CURRENT_STRING, PSTR("M29")) == NULL) {
+ card.write_command(CMDBUFFER_CURRENT_STRING);
+ if(card.logging)
+ process_commands();
+ else
+ SERIAL_PROTOCOLLNRPGM(_T(MSG_OK));
+ } else {
+ card.closefile();
+ SERIAL_PROTOCOLLNRPGM(MSG_FILE_SAVED);
+ }
+ } else {
+ process_commands();
+ }
+ #else
+ process_commands();
+ #endif //SDSUPPORT
+
+ if (! cmdbuffer_front_already_processed && buflen)
+ {
+ // ptr points to the start of the block currently being processed.
+ // The first character in the block is the block type.
+ char *ptr = cmdbuffer + bufindr;
+ if (*ptr == CMDBUFFER_CURRENT_TYPE_SDCARD) {
+ // To support power panic, move the lenght of the command on the SD card to a planner buffer.
+ union {
+ struct {
+ char lo;
+ char hi;
+ } lohi;
+ uint16_t value;
+ } sdlen;
+ sdlen.value = 0;
+ {
+ // This block locks the interrupts globally for 3.25 us,
+ // which corresponds to a maximum repeat frequency of 307.69 kHz.
+ // This blocking is safe in the context of a 10kHz stepper driver interrupt
+ // or a 115200 Bd serial line receive interrupt, which will not trigger faster than 12kHz.
+ cli();
+ // Reset the command to something, which will be ignored by the power panic routine,
+ // so this buffer length will not be counted twice.
+ *ptr ++ = CMDBUFFER_CURRENT_TYPE_TO_BE_REMOVED;
+ // Extract the current buffer length.
+ sdlen.lohi.lo = *ptr ++;
+ sdlen.lohi.hi = *ptr;
+ // and pass it to the planner queue.
+ planner_add_sd_length(sdlen.value);
+ sei();
+ }
+ }
+ else if((*ptr == CMDBUFFER_CURRENT_TYPE_USB_WITH_LINENR) && !IS_SD_PRINTING){
+
+ cli();
+ *ptr ++ = CMDBUFFER_CURRENT_TYPE_TO_BE_REMOVED;
+ // and one for each command to previous block in the planner queue.
+ planner_add_sd_length(1);
+ sei();
+ }
+ // Now it is safe to release the already processed command block. If interrupted by the power panic now,
+ // this block's SD card length will not be counted twice as its command type has been replaced
+ // by CMDBUFFER_CURRENT_TYPE_TO_BE_REMOVED.
+ cmdqueue_pop_front();
+ }
+ host_keepalive();
+ }
+}
+ //check heater every n milliseconds
+ manage_heater();
+ isPrintPaused ? manage_inactivity(true) : manage_inactivity(false);
+ checkHitEndstops();
+ lcd_update(0);
+#ifdef PAT9125
+ fsensor_update();
+#endif //PAT9125
+#ifdef TMC2130
+ tmc2130_check_overtemp();
+ if (tmc2130_sg_crash)
+ {
+ uint8_t crash = tmc2130_sg_crash;
+ tmc2130_sg_crash = 0;
+// crashdet_stop_and_save_print();
+ switch (crash)
+ {
+ case 1: enquecommand_P((PSTR("CRASH_DETECTEDX"))); break;
+ case 2: enquecommand_P((PSTR("CRASH_DETECTEDY"))); break;
+ case 3: enquecommand_P((PSTR("CRASH_DETECTEDXY"))); break;
+ }
+ }
+#endif //TMC2130
+
+}
+
+#define DEFINE_PGM_READ_ANY(type, reader) \
+ static inline type pgm_read_any(const type *p) \
+ { return pgm_read_##reader##_near(p); }
+
+DEFINE_PGM_READ_ANY(float, float);
+DEFINE_PGM_READ_ANY(signed char, byte);
+
+#define XYZ_CONSTS_FROM_CONFIG(type, array, CONFIG) \
+static const PROGMEM type array##_P[3] = \
+ { X_##CONFIG, Y_##CONFIG, Z_##CONFIG }; \
+static inline type array(int axis) \
+ { return pgm_read_any(&array##_P[axis]); } \
+type array##_ext(int axis) \
+ { return pgm_read_any(&array##_P[axis]); }
+
+XYZ_CONSTS_FROM_CONFIG(float, base_min_pos, MIN_POS);
+XYZ_CONSTS_FROM_CONFIG(float, base_max_pos, MAX_POS);
+XYZ_CONSTS_FROM_CONFIG(float, base_home_pos, HOME_POS);
+XYZ_CONSTS_FROM_CONFIG(float, max_length, MAX_LENGTH);
+XYZ_CONSTS_FROM_CONFIG(float, home_retract_mm, HOME_RETRACT_MM);
+XYZ_CONSTS_FROM_CONFIG(signed char, home_dir, HOME_DIR);
+
+static void axis_is_at_home(int axis) {
+ current_position[axis] = base_home_pos(axis) + add_homing[axis];
+ min_pos[axis] = base_min_pos(axis) + add_homing[axis];
+ max_pos[axis] = base_max_pos(axis) + add_homing[axis];
+}
+
+
+inline void set_current_to_destination() { memcpy(current_position, destination, sizeof(current_position)); }
+inline void set_destination_to_current() { memcpy(destination, current_position, sizeof(destination)); }
+
+
+static void setup_for_endstop_move(bool enable_endstops_now = true) {
+ saved_feedrate = feedrate;
+ saved_feedmultiply = feedmultiply;
+ feedmultiply = 100;
+ previous_millis_cmd = millis();
+
+ enable_endstops(enable_endstops_now);
+}
+
+static void clean_up_after_endstop_move() {
+#ifdef ENDSTOPS_ONLY_FOR_HOMING
+ enable_endstops(false);
+#endif
+
+ feedrate = saved_feedrate;
+ feedmultiply = saved_feedmultiply;
+ previous_millis_cmd = millis();
+}
+
+
+
+#ifdef ENABLE_AUTO_BED_LEVELING
+#ifdef AUTO_BED_LEVELING_GRID
+static void set_bed_level_equation_lsq(double *plane_equation_coefficients)
+{
+ vector_3 planeNormal = vector_3(-plane_equation_coefficients[0], -plane_equation_coefficients[1], 1);
+ planeNormal.debug("planeNormal");
+ plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
+ //bedLevel.debug("bedLevel");
+
+ //plan_bed_level_matrix.debug("bed level before");
+ //vector_3 uncorrected_position = plan_get_position_mm();
+ //uncorrected_position.debug("position before");
+
+ vector_3 corrected_position = plan_get_position();
+// corrected_position.debug("position after");
+ current_position[X_AXIS] = corrected_position.x;
+ current_position[Y_AXIS] = corrected_position.y;
+ current_position[Z_AXIS] = corrected_position.z;
+
+ // put the bed at 0 so we don't go below it.
+ current_position[Z_AXIS] = zprobe_zoffset; // in the lsq we reach here after raising the extruder due to the loop structure
+
+ plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
+}
+
+#else // not AUTO_BED_LEVELING_GRID
+
+static void set_bed_level_equation_3pts(float z_at_pt_1, float z_at_pt_2, float z_at_pt_3) {
+
+ plan_bed_level_matrix.set_to_identity();
+
+ vector_3 pt1 = vector_3(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, z_at_pt_1);
+ vector_3 pt2 = vector_3(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, z_at_pt_2);
+ vector_3 pt3 = vector_3(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, z_at_pt_3);
+
+ vector_3 from_2_to_1 = (pt1 - pt2).get_normal();
+ vector_3 from_2_to_3 = (pt3 - pt2).get_normal();
+ vector_3 planeNormal = vector_3::cross(from_2_to_1, from_2_to_3).get_normal();
+ planeNormal = vector_3(planeNormal.x, planeNormal.y, abs(planeNormal.z));
+
+ plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
+
+ vector_3 corrected_position = plan_get_position();
+ current_position[X_AXIS] = corrected_position.x;
+ current_position[Y_AXIS] = corrected_position.y;
+ current_position[Z_AXIS] = corrected_position.z;
+
+ // put the bed at 0 so we don't go below it.
+ current_position[Z_AXIS] = zprobe_zoffset;
+
+ plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
+
+}
+
+#endif // AUTO_BED_LEVELING_GRID
+
+static void run_z_probe() {
+ plan_bed_level_matrix.set_to_identity();
+ feedrate = homing_feedrate[Z_AXIS];
+
+ // move down until you find the bed
+ float zPosition = -10;
+ plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
+ st_synchronize();
+
+ // we have to let the planner know where we are right now as it is not where we said to go.
+ zPosition = st_get_position_mm(Z_AXIS);
+ plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS]);
+
+ // move up the retract distance
+ zPosition += home_retract_mm(Z_AXIS);
+ plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
+ st_synchronize();
+
+ // move back down slowly to find bed
+ feedrate = homing_feedrate[Z_AXIS]/4;
+ zPosition -= home_retract_mm(Z_AXIS) * 2;
+ plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
+ st_synchronize();
+
+ current_position[Z_AXIS] = st_get_position_mm(Z_AXIS);
+ // make sure the planner knows where we are as it may be a bit different than we last said to move to
+ plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
+}
+
+static void do_blocking_move_to(float x, float y, float z) {
+ float oldFeedRate = feedrate;
+
+ feedrate = homing_feedrate[Z_AXIS];
+
+ current_position[Z_AXIS] = z;
+ plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate/60, active_extruder);
+ st_synchronize();
+
+ feedrate = XY_TRAVEL_SPEED;
+
+ current_position[X_AXIS] = x;
+ current_position[Y_AXIS] = y;
+ plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate/60, active_extruder);
+ st_synchronize();
+
+ feedrate = oldFeedRate;
+}
+
+static void do_blocking_move_relative(float offset_x, float offset_y, float offset_z) {
+ do_blocking_move_to(current_position[X_AXIS] + offset_x, current_position[Y_AXIS] + offset_y, current_position[Z_AXIS] + offset_z);
+}
+
+
+/// Probe bed height at position (x,y), returns the measured z value
+static float probe_pt(float x, float y, float z_before) {
+ // move to right place
+ do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], z_before);
+ do_blocking_move_to(x - X_PROBE_OFFSET_FROM_EXTRUDER, y - Y_PROBE_OFFSET_FROM_EXTRUDER, current_position[Z_AXIS]);
+
+ run_z_probe();
+ float measured_z = current_position[Z_AXIS];
+
+ SERIAL_PROTOCOLRPGM(_T(MSG_BED));
+ SERIAL_PROTOCOLPGM(" x: ");
+ SERIAL_PROTOCOL(x);
+ SERIAL_PROTOCOLPGM(" y: ");
+ SERIAL_PROTOCOL(y);
+ SERIAL_PROTOCOLPGM(" z: ");
+ SERIAL_PROTOCOL(measured_z);
+ SERIAL_PROTOCOLPGM("\n");
+ return measured_z;
+}
+
+#endif // #ifdef ENABLE_AUTO_BED_LEVELING
+
+#ifdef LIN_ADVANCE
+ /**
+ * M900: Set and/or Get advance K factor and WH/D ratio
+ *
+ * K Set advance K factor
+ * R Set ratio directly (overrides WH/D)
+ * W H D Set ratio from WH/D
+ */
+inline void gcode_M900() {
+ st_synchronize();
+
+ const float newK = code_seen('K') ? code_value_float() : -1;
+ if (newK >= 0) extruder_advance_k = newK;
+
+ float newR = code_seen('R') ? code_value_float() : -1;
+ if (newR < 0) {
+ const float newD = code_seen('D') ? code_value_float() : -1,
+ newW = code_seen('W') ? code_value_float() : -1,
+ newH = code_seen('H') ? code_value_float() : -1;
+ if (newD >= 0 && newW >= 0 && newH >= 0)
+ newR = newD ? (newW * newH) / (sq(newD * 0.5) * M_PI) : 0;
+ }
+ if (newR >= 0) advance_ed_ratio = newR;
+
+ SERIAL_ECHO_START;
+ SERIAL_ECHOPGM("Advance K=");
+ SERIAL_ECHOLN(extruder_advance_k);
+ SERIAL_ECHOPGM(" E/D=");
+ const float ratio = advance_ed_ratio;
+ if (ratio) SERIAL_ECHOLN(ratio); else SERIAL_ECHOLNPGM("Auto");
+ }
+#endif // LIN_ADVANCE
+
+bool check_commands() {
+ bool end_command_found = false;
+
+ while (buflen)
+ {
+ if ((code_seen("M84")) || (code_seen("M 84"))) end_command_found = true;
+ if (!cmdbuffer_front_already_processed)
+ cmdqueue_pop_front();
+ cmdbuffer_front_already_processed = false;
+ }
+ return end_command_found;
+
+}
+
+#ifdef TMC2130
+bool calibrate_z_auto()
+{
+ //lcd_display_message_fullscreen_P(_T(MSG_CALIBRATE_Z_AUTO));
+ lcd_clear();
+ lcd_puts_at_P(0,1, _T(MSG_CALIBRATE_Z_AUTO));
+ bool endstops_enabled = enable_endstops(true);
+ int axis_up_dir = -home_dir(Z_AXIS);
+ tmc2130_home_enter(Z_AXIS_MASK);
+ current_position[Z_AXIS] = 0;
+ plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
+ set_destination_to_current();
+ destination[Z_AXIS] += (1.1 * max_length(Z_AXIS) * axis_up_dir);
+ feedrate = homing_feedrate[Z_AXIS];
+ plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
+ st_synchronize();
+// current_position[axis] = 0;
+// plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
+ tmc2130_home_exit();
+ enable_endstops(false);
+ current_position[Z_AXIS] = 0;
+ plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
+ set_destination_to_current();
+ destination[Z_AXIS] += 10 * axis_up_dir; //10mm up
+ feedrate = homing_feedrate[Z_AXIS] / 2;
+ plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
+ st_synchronize();
+ enable_endstops(endstops_enabled);
+ current_position[Z_AXIS] = Z_MAX_POS+2.0;
+ plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
+ return true;
+}
+#endif //TMC2130
+
+void homeaxis(int axis, uint8_t cnt, uint8_t* pstep)
+{
+ bool endstops_enabled = enable_endstops(true); //RP: endstops should be allways enabled durring homing
+#define HOMEAXIS_DO(LETTER) \
+((LETTER##_MIN_PIN > -1 && LETTER##_HOME_DIR==-1) || (LETTER##_MAX_PIN > -1 && LETTER##_HOME_DIR==1))
+ if ((axis==X_AXIS)?HOMEAXIS_DO(X):(axis==Y_AXIS)?HOMEAXIS_DO(Y):0)
+ {
+ int axis_home_dir = home_dir(axis);
+ feedrate = homing_feedrate[axis];
+
+#ifdef TMC2130
+ tmc2130_home_enter(X_AXIS_MASK << axis);
+#endif //TMC2130
+
+
+ // Move right a bit, so that the print head does not touch the left end position,
+ // and the following left movement has a chance to achieve the required velocity
+ // for the stall guard to work.
+ current_position[axis] = 0;
+ plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
+ set_destination_to_current();
+// destination[axis] = 11.f;
+ destination[axis] = 3.f;
+ plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
+ st_synchronize();
+ // Move left away from the possible collision with the collision detection disabled.
+ endstops_hit_on_purpose();
+ enable_endstops(false);
+ current_position[axis] = 0;
+ plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
+ destination[axis] = - 1.;
+ plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
+ st_synchronize();
+ // Now continue to move up to the left end stop with the collision detection enabled.
+ enable_endstops(true);
+ destination[axis] = - 1.1 * max_length(axis);
+ plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
+ st_synchronize();
+ for (uint8_t i = 0; i < cnt; i++)
+ {
+ // Move right from the collision to a known distance from the left end stop with the collision detection disabled.
+ endstops_hit_on_purpose();
+ enable_endstops(false);
+ current_position[axis] = 0;
+ plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
+ destination[axis] = 10.f;
+ plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
+ st_synchronize();
+ endstops_hit_on_purpose();
+ // Now move left up to the collision, this time with a repeatable velocity.
+ enable_endstops(true);
+ destination[axis] = - 11.f;
+#ifdef TMC2130
+ feedrate = homing_feedrate[axis];
+#else //TMC2130
+ feedrate = homing_feedrate[axis] / 2;
+#endif //TMC2130
+ plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
+ st_synchronize();
+#ifdef TMC2130
+ uint16_t mscnt = tmc2130_rd_MSCNT(axis);
+ if (pstep) pstep[i] = mscnt >> 4;
+ printf_P(PSTR("%3d step=%2d mscnt=%4d\n"), i, mscnt >> 4, mscnt);
+#endif //TMC2130
+ }
+ endstops_hit_on_purpose();
+ enable_endstops(false);
+
+#ifdef TMC2130
+ uint8_t orig = tmc2130_home_origin[axis];
+ uint8_t back = tmc2130_home_bsteps[axis];
+ if (tmc2130_home_enabled && (orig <= 63))
+ {
+ tmc2130_goto_step(axis, orig, 2, 1000, tmc2130_get_res(axis));
+ if (back > 0)
+ tmc2130_do_steps(axis, back, 1, 1000);
+ }
+ else
+ tmc2130_do_steps(axis, 8, 2, 1000);
+ tmc2130_home_exit();
+#endif //TMC2130
+
+ axis_is_at_home(axis);
+ axis_known_position[axis] = true;
+ // Move from minimum
+#ifdef TMC2130
+ float dist = 0.01f * tmc2130_home_fsteps[axis];
+#else //TMC2130
+ float dist = 0.01f * 64;
+#endif //TMC2130
+ current_position[axis] -= dist;
+ plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
+ current_position[axis] += dist;
+ destination[axis] = current_position[axis];
+ plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], 0.5f*feedrate/60, active_extruder);
+ st_synchronize();
+
+ feedrate = 0.0;
+ }
+ else if ((axis==Z_AXIS)?HOMEAXIS_DO(Z):0)
+ {
+#ifdef TMC2130
+ FORCE_HIGH_POWER_START;
+#endif
+ int axis_home_dir = home_dir(axis);
+ current_position[axis] = 0;
+ plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
+ destination[axis] = 1.5 * max_length(axis) * axis_home_dir;
+ feedrate = homing_feedrate[axis];
+ plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
+ st_synchronize();
+#ifdef TMC2130
+ if (READ(Z_TMC2130_DIAG) != 0) { //Z crash
+ FORCE_HIGH_POWER_END;
+ kill(_T(MSG_BED_LEVELING_FAILED_POINT_LOW));
+ return;
+ }
+#endif //TMC2130
+ current_position[axis] = 0;
+ plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
+ destination[axis] = -home_retract_mm(axis) * axis_home_dir;
+ plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
+ st_synchronize();
+ destination[axis] = 2*home_retract_mm(axis) * axis_home_dir;
+ feedrate = homing_feedrate[axis]/2 ;
+ plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
+ st_synchronize();
+#ifdef TMC2130
+ if (READ(Z_TMC2130_DIAG) != 0) { //Z crash
+ FORCE_HIGH_POWER_END;
+ kill(_T(MSG_BED_LEVELING_FAILED_POINT_LOW));
+ return;
+ }
+#endif //TMC2130
+ axis_is_at_home(axis);
+ destination[axis] = current_position[axis];
+ feedrate = 0.0;
+ endstops_hit_on_purpose();
+ axis_known_position[axis] = true;
+#ifdef TMC2130
+ FORCE_HIGH_POWER_END;
+#endif
+ }
+ enable_endstops(endstops_enabled);
+}
+
+/**/
+void home_xy()
+{
+ set_destination_to_current();
+ homeaxis(X_AXIS);
+ homeaxis(Y_AXIS);
+ plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
+ endstops_hit_on_purpose();
+}
+
+void refresh_cmd_timeout(void)
+{
+ previous_millis_cmd = millis();
+}
+
+#ifdef FWRETRACT
+ void retract(bool retracting, bool swapretract = false) {
+ if(retracting && !retracted[active_extruder]) {
+ destination[X_AXIS]=current_position[X_AXIS];
+ destination[Y_AXIS]=current_position[Y_AXIS];
+ destination[Z_AXIS]=current_position[Z_AXIS];
+ destination[E_AXIS]=current_position[E_AXIS];
+ current_position[E_AXIS]+=(swapretract?retract_length_swap:retract_length)*float(extrudemultiply)*0.01f;
+ plan_set_e_position(current_position[E_AXIS]);
+ float oldFeedrate = feedrate;
+ feedrate=retract_feedrate*60;
+ retracted[active_extruder]=true;
+ prepare_move();
+ current_position[Z_AXIS]-=retract_zlift;
+ plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
+ prepare_move();
+ feedrate = oldFeedrate;
+ } else if(!retracting && retracted[active_extruder]) {
+ destination[X_AXIS]=current_position[X_AXIS];
+ destination[Y_AXIS]=current_position[Y_AXIS];
+ destination[Z_AXIS]=current_position[Z_AXIS];
+ destination[E_AXIS]=current_position[E_AXIS];
+ current_position[Z_AXIS]+=retract_zlift;
+ plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
+ current_position[E_AXIS]-=(swapretract?(retract_length_swap+retract_recover_length_swap):(retract_length+retract_recover_length))*float(extrudemultiply)*0.01f;
+ plan_set_e_position(current_position[E_AXIS]);
+ float oldFeedrate = feedrate;
+ feedrate=retract_recover_feedrate*60;
+ retracted[active_extruder]=false;
+ prepare_move();
+ feedrate = oldFeedrate;
+ }
+ } //retract
+#endif //FWRETRACT
+
+void trace() {
+ tone(BEEPER, 440);
+ delay(25);
+ noTone(BEEPER);
+ delay(20);
+}
+/*
+void ramming() {
+// float tmp[4] = DEFAULT_MAX_FEEDRATE;
+ if (current_temperature[0] < 230) {
+ //PLA
+
+ max_feedrate[E_AXIS] = 50;
+ //current_position[E_AXIS] -= 8;
+ //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
+ //current_position[E_AXIS] += 8;
+ //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
+ current_position[E_AXIS] += 5.4;
+ plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2800 / 60, active_extruder);
+ current_position[E_AXIS] += 3.2;
+ plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
+ current_position[E_AXIS] += 3;
+ plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3400 / 60, active_extruder);
+ st_synchronize();
+ max_feedrate[E_AXIS] = 80;
+ current_position[E_AXIS] -= 82;
+ plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 9500 / 60, active_extruder);
+ max_feedrate[E_AXIS] = 50;//tmp[E_AXIS];
+ current_position[E_AXIS] -= 20;
+ plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 1200 / 60, active_extruder);
+ current_position[E_AXIS] += 5;
+ plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400 / 60, active_extruder);
+ current_position[E_AXIS] += 5;
+ plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
+ current_position[E_AXIS] -= 10;
+ st_synchronize();
+ plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
+ current_position[E_AXIS] += 10;
+ plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
+ current_position[E_AXIS] -= 10;
+ plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
+ current_position[E_AXIS] += 10;
+ plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
+ current_position[E_AXIS] -= 10;
+ plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
+ st_synchronize();
+ }
+ else {
+ //ABS
+ max_feedrate[E_AXIS] = 50;
+ //current_position[E_AXIS] -= 8;
+ //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
+ //current_position[E_AXIS] += 8;
+ //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
+ current_position[E_AXIS] += 3.1;
+ plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2000 / 60, active_extruder);
+ current_position[E_AXIS] += 3.1;
+ plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2500 / 60, active_extruder);
+ current_position[E_AXIS] += 4;
+ plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
+ st_synchronize();
+ //current_position[X_AXIS] += 23; //delay
+ //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600/60, active_extruder); //delay
+ //current_position[X_AXIS] -= 23; //delay
+ //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600/60, active_extruder); //delay
+ delay(4700);
+ max_feedrate[E_AXIS] = 80;
+ current_position[E_AXIS] -= 92;
+ plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 9900 / 60, active_extruder);
+ max_feedrate[E_AXIS] = 50;//tmp[E_AXIS];
+ current_position[E_AXIS] -= 5;
+ plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
+ current_position[E_AXIS] += 5;
+ plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400 / 60, active_extruder);
+ current_position[E_AXIS] -= 5;
+ plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
+ st_synchronize();
+ current_position[E_AXIS] += 5;
+ plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
+ current_position[E_AXIS] -= 5;
+ plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
+ current_position[E_AXIS] += 5;
+ plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
+ current_position[E_AXIS] -= 5;
+ plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
+ st_synchronize();
+
+ }
+ }
+*/
+
+#ifdef TMC2130
+void force_high_power_mode(bool start_high_power_section) {
+ uint8_t silent;
+ silent = eeprom_read_byte((uint8_t*)EEPROM_SILENT);
+ if (silent == 1) {
+ //we are in silent mode, set to normal mode to enable crash detection
+
+ // Wait for the planner queue to drain and for the stepper timer routine to reach an idle state.
+ st_synchronize();
+ cli();
+ tmc2130_mode = (start_high_power_section == true) ? TMC2130_MODE_NORMAL : TMC2130_MODE_SILENT;
+ tmc2130_init();
+ // We may have missed a stepper timer interrupt due to the time spent in the tmc2130_init() routine.
+ // Be safe than sorry, reset the stepper timer before re-enabling interrupts.
+ st_reset_timer();
+ sei();
+ }
+}
+#endif //TMC2130
+
+void gcode_G28(bool home_x_axis, bool home_y_axis, bool home_z_axis) {
+ gcode_G28(home_x_axis, 0, home_y_axis, 0, home_z_axis, 0, false, true);
+}
+
+void gcode_G28(bool home_x_axis, long home_x_value, bool home_y_axis, long home_y_value, bool home_z_axis, long home_z_value, bool calib, bool without_mbl) {
+ st_synchronize();
+
+#if 0
+ SERIAL_ECHOPGM("G28, initial "); print_world_coordinates();
+ SERIAL_ECHOPGM("G28, initial "); print_physical_coordinates();
+#endif
+
+ // Flag for the display update routine and to disable the print cancelation during homing.
+ homing_flag = true;
+
+ // Which axes should be homed?
+ bool home_x = home_x_axis;
+ bool home_y = home_y_axis;
+ bool home_z = home_z_axis;
+
+ // Either all X,Y,Z codes are present, or none of them.
+ bool home_all_axes = home_x == home_y && home_x == home_z;
+ if (home_all_axes)
+ // No X/Y/Z code provided means to home all axes.
+ home_x = home_y = home_z = true;
+
+ //if we are homing all axes, first move z higher to protect heatbed/steel sheet
+ if (home_all_axes) {
+ current_position[Z_AXIS] += MESH_HOME_Z_SEARCH;
+ feedrate = homing_feedrate[Z_AXIS];
+ plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate / 60, active_extruder);
+ st_synchronize();
+ }
+#ifdef ENABLE_AUTO_BED_LEVELING
+ plan_bed_level_matrix.set_to_identity(); //Reset the plane ("erase" all leveling data)
+#endif //ENABLE_AUTO_BED_LEVELING
+
+ // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
+ // the planner will not perform any adjustments in the XY plane.
+ // Wait for the motors to stop and update the current position with the absolute values.
+ world2machine_revert_to_uncorrected();
+
+ // For mesh bed leveling deactivate the matrix temporarily.
+ // It is necessary to disable the bed leveling for the X and Y homing moves, so that the move is performed
+ // in a single axis only.
+ // In case of re-homing the X or Y axes only, the mesh bed leveling is restored after G28.
+#ifdef MESH_BED_LEVELING
+ uint8_t mbl_was_active = mbl.active;
+ mbl.active = 0;
+ current_position[Z_AXIS] = st_get_position_mm(Z_AXIS);
+#endif
+
+ // Reset baby stepping to zero, if the babystepping has already been loaded before. The babystepsTodo value will be
+ // consumed during the first movements following this statement.
+ if (home_z)
+ babystep_undo();
+
+ saved_feedrate = feedrate;
+ saved_feedmultiply = feedmultiply;
+ feedmultiply = 100;
+ previous_millis_cmd = millis();
+
+ enable_endstops(true);
+
+ memcpy(destination, current_position, sizeof(destination));
+ feedrate = 0.0;
+
+ #if Z_HOME_DIR > 0 // If homing away from BED do Z first
+ if(home_z)
+ homeaxis(Z_AXIS);
+ #endif
+
+ #ifdef QUICK_HOME
+ // In the quick mode, if both x and y are to be homed, a diagonal move will be performed initially.
+ if(home_x && home_y) //first diagonal move
+ {
+ current_position[X_AXIS] = 0;current_position[Y_AXIS] = 0;
+
+ int x_axis_home_dir = home_dir(X_AXIS);
+
+ plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
+ destination[X_AXIS] = 1.5 * max_length(X_AXIS) * x_axis_home_dir;destination[Y_AXIS] = 1.5 * max_length(Y_AXIS) * home_dir(Y_AXIS);
+ feedrate = homing_feedrate[X_AXIS];
+ if(homing_feedrate[Y_AXIS] max_length(Y_AXIS)) {
+ feedrate *= sqrt(pow(max_length(Y_AXIS) / max_length(X_AXIS), 2) + 1);
+ } else {
+ feedrate *= sqrt(pow(max_length(X_AXIS) / max_length(Y_AXIS), 2) + 1);
+ }
+ plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
+ st_synchronize();
+
+ axis_is_at_home(X_AXIS);
+ axis_is_at_home(Y_AXIS);
+ plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
+ destination[X_AXIS] = current_position[X_AXIS];
+ destination[Y_AXIS] = current_position[Y_AXIS];
+ plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
+ feedrate = 0.0;
+ st_synchronize();
+ endstops_hit_on_purpose();
+
+ current_position[X_AXIS] = destination[X_AXIS];
+ current_position[Y_AXIS] = destination[Y_AXIS];
+ current_position[Z_AXIS] = destination[Z_AXIS];
+ }
+ #endif /* QUICK_HOME */
+
+#ifdef TMC2130
+ if(home_x)
+ {
+ if (!calib)
+ homeaxis(X_AXIS);
+ else
+ tmc2130_home_calibrate(X_AXIS);
+ }
+
+ if(home_y)
+ {
+ if (!calib)
+ homeaxis(Y_AXIS);
+ else
+ tmc2130_home_calibrate(Y_AXIS);
+ }
+#endif //TMC2130
+
+
+ if(home_x_axis && home_x_value != 0)
+ current_position[X_AXIS]=home_x_value+add_homing[X_AXIS];
+
+ if(home_y_axis && home_y_value != 0)
+ current_position[Y_AXIS]=home_y_value+add_homing[Y_AXIS];
+
+ #if Z_HOME_DIR < 0 // If homing towards BED do Z last
+ #ifndef Z_SAFE_HOMING
+ if(home_z) {
+ #if defined (Z_RAISE_BEFORE_HOMING) && (Z_RAISE_BEFORE_HOMING > 0)
+ destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
+ feedrate = max_feedrate[Z_AXIS];
+ plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
+ st_synchronize();
+ #endif // defined (Z_RAISE_BEFORE_HOMING) && (Z_RAISE_BEFORE_HOMING > 0)
+ #if (defined(MESH_BED_LEVELING) && !defined(MK1BP)) // If Mesh bed leveling, move X&Y to safe position for home
+ if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] ))
+ {
+ homeaxis(X_AXIS);
+ homeaxis(Y_AXIS);
+ }
+ // 1st mesh bed leveling measurement point, corrected.
+ world2machine_initialize();
+ world2machine(pgm_read_float(bed_ref_points_4), pgm_read_float(bed_ref_points_4+1), destination[X_AXIS], destination[Y_AXIS]);
+ world2machine_reset();
+ if (destination[Y_AXIS] < Y_MIN_POS)
+ destination[Y_AXIS] = Y_MIN_POS;
+ destination[Z_AXIS] = MESH_HOME_Z_SEARCH; // Set destination away from bed
+ feedrate = homing_feedrate[Z_AXIS]/10;
+ current_position[Z_AXIS] = 0;
+ enable_endstops(false);
+#ifdef DEBUG_BUILD
+ SERIAL_ECHOLNPGM("plan_set_position()");
+ MYSERIAL.println(current_position[X_AXIS]);MYSERIAL.println(current_position[Y_AXIS]);
+ MYSERIAL.println(current_position[Z_AXIS]);MYSERIAL.println(current_position[E_AXIS]);
+#endif
+ plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
+#ifdef DEBUG_BUILD
+ SERIAL_ECHOLNPGM("plan_buffer_line()");
+ MYSERIAL.println(destination[X_AXIS]);MYSERIAL.println(destination[Y_AXIS]);
+ MYSERIAL.println(destination[Z_AXIS]);MYSERIAL.println(destination[E_AXIS]);
+ MYSERIAL.println(feedrate);MYSERIAL.println(active_extruder);
+#endif
+ plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
+ st_synchronize();
+ current_position[X_AXIS] = destination[X_AXIS];
+ current_position[Y_AXIS] = destination[Y_AXIS];
+ enable_endstops(true);
+ endstops_hit_on_purpose();
+ homeaxis(Z_AXIS);
+ #else // MESH_BED_LEVELING
+ homeaxis(Z_AXIS);
+ #endif // MESH_BED_LEVELING
+ }
+ #else // defined(Z_SAFE_HOMING): Z Safe mode activated.
+ if(home_all_axes) {
+ destination[X_AXIS] = round(Z_SAFE_HOMING_X_POINT - X_PROBE_OFFSET_FROM_EXTRUDER);
+ destination[Y_AXIS] = round(Z_SAFE_HOMING_Y_POINT - Y_PROBE_OFFSET_FROM_EXTRUDER);
+ destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
+ feedrate = XY_TRAVEL_SPEED/60;
+ current_position[Z_AXIS] = 0;
+
+ plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
+ plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
+ st_synchronize();
+ current_position[X_AXIS] = destination[X_AXIS];
+ current_position[Y_AXIS] = destination[Y_AXIS];
+
+ homeaxis(Z_AXIS);
+ }
+ // Let's see if X and Y are homed and probe is inside bed area.
+ if(home_z) {
+ if ( (axis_known_position[X_AXIS]) && (axis_known_position[Y_AXIS]) \
+ && (current_position[X_AXIS]+X_PROBE_OFFSET_FROM_EXTRUDER >= X_MIN_POS) \
+ && (current_position[X_AXIS]+X_PROBE_OFFSET_FROM_EXTRUDER <= X_MAX_POS) \
+ && (current_position[Y_AXIS]+Y_PROBE_OFFSET_FROM_EXTRUDER >= Y_MIN_POS) \
+ && (current_position[Y_AXIS]+Y_PROBE_OFFSET_FROM_EXTRUDER <= Y_MAX_POS)) {
+
+ current_position[Z_AXIS] = 0;
+ plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
+ destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
+ feedrate = max_feedrate[Z_AXIS];
+ plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
+ st_synchronize();
+
+ homeaxis(Z_AXIS);
+ } else if (!((axis_known_position[X_AXIS]) && (axis_known_position[Y_AXIS]))) {
+ LCD_MESSAGERPGM(MSG_POSITION_UNKNOWN);
+ SERIAL_ECHO_START;
+ SERIAL_ECHOLNRPGM(MSG_POSITION_UNKNOWN);
+ } else {
+ LCD_MESSAGERPGM(MSG_ZPROBE_OUT);
+ SERIAL_ECHO_START;
+ SERIAL_ECHOLNRPGM(MSG_ZPROBE_OUT);
+ }
+ }
+ #endif // Z_SAFE_HOMING
+ #endif // Z_HOME_DIR < 0
+
+ if(home_z_axis && home_z_value != 0)
+ current_position[Z_AXIS]=home_z_value+add_homing[Z_AXIS];
+ #ifdef ENABLE_AUTO_BED_LEVELING
+ if(home_z)
+ current_position[Z_AXIS] += zprobe_zoffset; //Add Z_Probe offset (the distance is negative)
+ #endif
+
+ // Set the planner and stepper routine positions.
+ // At this point the mesh bed leveling and world2machine corrections are disabled and current_position
+ // contains the machine coordinates.
+ plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
+
+ #ifdef ENDSTOPS_ONLY_FOR_HOMING
+ enable_endstops(false);
+ #endif
+
+ feedrate = saved_feedrate;
+ feedmultiply = saved_feedmultiply;
+ previous_millis_cmd = millis();
+ endstops_hit_on_purpose();
+#ifndef MESH_BED_LEVELING
+ // If MESH_BED_LEVELING is not active, then it is the original Prusa i3.
+ // Offer the user to load the baby step value, which has been adjusted at the previous print session.
+ if(card.sdprinting && eeprom_read_word((uint16_t *)EEPROM_BABYSTEP_Z))
+ lcd_adjust_z();
+#endif
+
+ // Load the machine correction matrix
+ world2machine_initialize();
+ // and correct the current_position XY axes to match the transformed coordinate system.
+ world2machine_update_current();
+
+#if (defined(MESH_BED_LEVELING) && !defined(MK1BP))
+ if (home_x_axis || home_y_axis || without_mbl || home_z_axis)
+ {
+ if (! home_z && mbl_was_active) {
+ // Re-enable the mesh bed leveling if only the X and Y axes were re-homed.
+ mbl.active = true;
+ // and re-adjust the current logical Z axis with the bed leveling offset applicable at the current XY position.
+ current_position[Z_AXIS] -= mbl.get_z(st_get_position_mm(X_AXIS), st_get_position_mm(Y_AXIS));
+ }
+ }
+ else
+ {
+ st_synchronize();
+ homing_flag = false;
+ }
+#endif
+
+ if (farm_mode) { prusa_statistics(20); };
+
+ homing_flag = false;
+#if 0
+ SERIAL_ECHOPGM("G28, final "); print_world_coordinates();
+ SERIAL_ECHOPGM("G28, final "); print_physical_coordinates();
+ SERIAL_ECHOPGM("G28, final "); print_mesh_bed_leveling_table();
+#endif
+}
+
+
+bool gcode_M45(bool onlyZ, int8_t verbosity_level)
+{
+ bool final_result = false;
+ #ifdef TMC2130
+ FORCE_HIGH_POWER_START;
+ #endif // TMC2130
+ // Only Z calibration?
+ if (!onlyZ)
+ {
+ setTargetBed(0);
+ setTargetHotend(0, 0);
+ setTargetHotend(0, 1);
+ setTargetHotend(0, 2);
+ adjust_bed_reset(); //reset bed level correction
+ }
+
+ // Disable the default update procedure of the display. We will do a modal dialog.
+ lcd_update_enable(false);
+ // Let the planner use the uncorrected coordinates.
+ mbl.reset();
+ // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
+ // the planner will not perform any adjustments in the XY plane.
+ // Wait for the motors to stop and update the current position with the absolute values.
+ world2machine_revert_to_uncorrected();
+ // Reset the baby step value applied without moving the axes.
+ babystep_reset();
+ // Mark all axes as in a need for homing.
+ memset(axis_known_position, 0, sizeof(axis_known_position));
+
+ // Home in the XY plane.
+ //set_destination_to_current();
+ setup_for_endstop_move();
+ lcd_display_message_fullscreen_P(_T(MSG_AUTO_HOME));
+ home_xy();
+
+ enable_endstops(false);
+ current_position[X_AXIS] += 5;
+ current_position[Y_AXIS] += 5;
+ plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
+ st_synchronize();
+
+ // Let the user move the Z axes up to the end stoppers.
+#ifdef TMC2130
+ if (calibrate_z_auto())
+ {
+#else //TMC2130
+ if (lcd_calibrate_z_end_stop_manual(onlyZ))
+ {
+#endif //TMC2130
+ refresh_cmd_timeout();
+ #ifndef STEEL_SHEET
+ if (((degHotend(0) > MAX_HOTEND_TEMP_CALIBRATION) || (degBed() > MAX_BED_TEMP_CALIBRATION)) && (!onlyZ))
+ {
+ lcd_wait_for_cool_down();
+ }
+ #endif //STEEL_SHEET
+ if(!onlyZ)
+ {
+ KEEPALIVE_STATE(PAUSED_FOR_USER);
+ #ifdef STEEL_SHEET
+ bool result = lcd_show_fullscreen_message_yes_no_and_wait_P(_T(MSG_STEEL_SHEET_CHECK), false, false);
+ if(result) lcd_show_fullscreen_message_and_wait_P(_T(MSG_REMOVE_STEEL_SHEET));
+ #endif //STEEL_SHEET
+ lcd_show_fullscreen_message_and_wait_P(_T(MSG_CONFIRM_NOZZLE_CLEAN));
+ lcd_show_fullscreen_message_and_wait_P(_T(MSG_PAPER));
+ KEEPALIVE_STATE(IN_HANDLER);
+ lcd_display_message_fullscreen_P(_T(MSG_FIND_BED_OFFSET_AND_SKEW_LINE1));
+ lcd_set_cursor(0, 2);
+ lcd_print(1);
+ lcd_puts_P(_T(MSG_FIND_BED_OFFSET_AND_SKEW_LINE2));
+ }
+ // Move the print head close to the bed.
+ current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
+
+ bool endstops_enabled = enable_endstops(true);
+#ifdef TMC2130
+ tmc2130_home_enter(Z_AXIS_MASK);
+#endif //TMC2130
+
+ plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
+
+ st_synchronize();
+#ifdef TMC2130
+ tmc2130_home_exit();
+#endif //TMC2130
+ enable_endstops(endstops_enabled);
+
+ if (st_get_position_mm(Z_AXIS) == MESH_HOME_Z_SEARCH)
+ {
+
+ int8_t verbosity_level = 0;
+ if (code_seen('V'))
+ {
+ // Just 'V' without a number counts as V1.
+ char c = strchr_pointer[1];
+ verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
+ }
+
+ if (onlyZ)
+ {
+ clean_up_after_endstop_move();
+ // Z only calibration.
+ // Load the machine correction matrix
+ world2machine_initialize();
+ // and correct the current_position to match the transformed coordinate system.
+ world2machine_update_current();
+ //FIXME
+ bool result = sample_mesh_and_store_reference();
+ if (result)
+ {
+ if (calibration_status() == CALIBRATION_STATUS_Z_CALIBRATION)
+ // Shipped, the nozzle height has been set already. The user can start printing now.
+ calibration_status_store(CALIBRATION_STATUS_CALIBRATED);
+ final_result = true;
+ // babystep_apply();
+ }
+ }
+ else
+ {
+ // Reset the baby step value and the baby step applied flag.
+ calibration_status_store(CALIBRATION_STATUS_XYZ_CALIBRATION);
+ eeprom_update_word((uint16_t*)EEPROM_BABYSTEP_Z, 0);
+ // Complete XYZ calibration.
+ uint8_t point_too_far_mask = 0;
+ BedSkewOffsetDetectionResultType result = find_bed_offset_and_skew(verbosity_level, point_too_far_mask);
+ clean_up_after_endstop_move();
+ // Print head up.
+ current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
+ plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
+ st_synchronize();
+//#ifndef NEW_XYZCAL
+ if (result >= 0)
+ {
+ #ifdef HEATBED_V2
+ sample_z();
+ #else //HEATBED_V2
+ point_too_far_mask = 0;
+ // Second half: The fine adjustment.
+ // Let the planner use the uncorrected coordinates.
+ mbl.reset();
+ world2machine_reset();
+ // Home in the XY plane.
+ setup_for_endstop_move();
+ home_xy();
+ result = improve_bed_offset_and_skew(1, verbosity_level, point_too_far_mask);
+ clean_up_after_endstop_move();
+ // Print head up.
+ current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
+ plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
+ st_synchronize();
+ // if (result >= 0) babystep_apply();
+ #endif //HEATBED_V2
+ }
+//#endif //NEW_XYZCAL
+ lcd_update_enable(true);
+ lcd_update(2);
+
+ lcd_bed_calibration_show_result(result, point_too_far_mask);
+ if (result >= 0)
+ {
+ // Calibration valid, the machine should be able to print. Advise the user to run the V2Calibration.gcode.
+ calibration_status_store(CALIBRATION_STATUS_LIVE_ADJUST);
+ if (eeprom_read_byte((uint8_t*)EEPROM_WIZARD_ACTIVE) != 1) lcd_show_fullscreen_message_and_wait_P(_T(MSG_BABYSTEP_Z_NOT_SET));
+ final_result = true;
+ }
+ }
+#ifdef TMC2130
+ tmc2130_home_exit();
+#endif
+ }
+ else
+ {
+ lcd_show_fullscreen_message_and_wait_P(PSTR("Calibration failed! Check the axes and run again."));
+ final_result = false;
+ }
+ }
+ else
+ {
+ // Timeouted.
+ }
+ lcd_update_enable(true);
+#ifdef TMC2130
+ FORCE_HIGH_POWER_END;
+#endif // TMC2130
+ return final_result;
+}
+
+void gcode_M114()
+{
+ SERIAL_PROTOCOLPGM("X:");
+ SERIAL_PROTOCOL(current_position[X_AXIS]);
+ SERIAL_PROTOCOLPGM(" Y:");
+ SERIAL_PROTOCOL(current_position[Y_AXIS]);
+ SERIAL_PROTOCOLPGM(" Z:");
+ SERIAL_PROTOCOL(current_position[Z_AXIS]);
+ SERIAL_PROTOCOLPGM(" E:");
+ SERIAL_PROTOCOL(current_position[E_AXIS]);
+
+ SERIAL_PROTOCOLRPGM(_n(" Count X: "));////MSG_COUNT_X c=0 r=0
+ SERIAL_PROTOCOL(float(st_get_position(X_AXIS)) / axis_steps_per_unit[X_AXIS]);
+ SERIAL_PROTOCOLPGM(" Y:");
+ SERIAL_PROTOCOL(float(st_get_position(Y_AXIS)) / axis_steps_per_unit[Y_AXIS]);
+ SERIAL_PROTOCOLPGM(" Z:");
+ SERIAL_PROTOCOL(float(st_get_position(Z_AXIS)) / axis_steps_per_unit[Z_AXIS]);
+ SERIAL_PROTOCOLPGM(" E:");
+ SERIAL_PROTOCOL(float(st_get_position(E_AXIS)) / axis_steps_per_unit[E_AXIS]);
+
+ SERIAL_PROTOCOLLN("");
+}
+
+void gcode_M701()
+{
+#if defined (SNMM) || defined (SNMM_V2)
+ extr_adj(snmm_extruder);//loads current extruder
+#else
+ enable_z();
+ custom_message = true;
+ custom_message_type = 2;
+
+
+
+ lcd_setstatuspgm(_T(MSG_LOADING_FILAMENT));
+ current_position[E_AXIS] += 40;
+ plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400 / 60, active_extruder); //fast sequence
+ st_synchronize();
+
+ if (current_position[Z_AXIS] < 20) current_position[Z_AXIS] += 30;
+ current_position[E_AXIS] += 30;
+ plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400 / 60, active_extruder); //fast sequence
+ st_synchronize();
+ current_position[E_AXIS] += 25;
+ plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 100 / 60, active_extruder); //slow sequence
+ st_synchronize();
+
+ tone(BEEPER, 500);
+ delay_keep_alive(50);
+ noTone(BEEPER);
+
+ if (!farm_mode && loading_flag) {
+ bool clean = lcd_show_fullscreen_message_yes_no_and_wait_P(_T(MSG_FILAMENT_CLEAN), false, true);
+
+ while (!clean) {
+ lcd_update_enable(true);
+ lcd_update(2);
+ current_position[E_AXIS] += 25;
+ plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 100 / 60, active_extruder); //slow sequence
+ st_synchronize();
+ clean = lcd_show_fullscreen_message_yes_no_and_wait_P(_T(MSG_FILAMENT_CLEAN), false, true);
+
+ }
+
+ }
+ lcd_update_enable(true);
+ lcd_update(2);
+ lcd_setstatuspgm(_T(WELCOME_MSG));
+ disable_z();
+ loading_flag = false;
+ custom_message = false;
+ custom_message_type = 0;
+#endif
+
+}
+/**
+ * @brief Get serial number from 32U2 processor
+ *
+ * Typical format of S/N is:CZPX0917X003XC13518
+ *
+ * Command operates only in farm mode, if not in farm mode, "Not in farm mode." is written to MYSERIAL.
+ *
+ * Send command ;S to serial port 0 to retrieve serial number stored in 32U2 processor,
+ * reply is transmitted to serial port 1 character by character.
+ * Operation takes typically 23 ms. If the retransmit is not finished until 100 ms,
+ * it is interrupted, so less, or no characters are retransmitted, only newline character is send
+ * in any case.
+ */
+static void gcode_PRUSA_SN()
+{
+ if (farm_mode) {
+ selectedSerialPort = 0;
+ putchar(';');
+ putchar('S');
+ int numbersRead = 0;
+ ShortTimer timeout;
+ timeout.start();
+
+ while (numbersRead < 19) {
+ while (MSerial.available() > 0) {
+ uint8_t serial_char = MSerial.read();
+ selectedSerialPort = 1;
+ putchar(serial_char);
+ numbersRead++;
+ selectedSerialPort = 0;
+ }
+ if (timeout.expired(100u)) break;
+ }
+ selectedSerialPort = 1;
+ putchar('\n');
+#if 0
+ for (int b = 0; b < 3; b++) {
+ tone(BEEPER, 110);
+ delay(50);
+ noTone(BEEPER);
+ delay(50);
+ }
+#endif
+ } else {
+ puts_P(_N("Not in farm mode."));
+ }
+}
+
+#ifdef BACKLASH_X
+extern uint8_t st_backlash_x;
+#endif //BACKLASH_X
+#ifdef BACKLASH_Y
+extern uint8_t st_backlash_y;
+#endif //BACKLASH_Y
+
+void process_commands()
+{
+ if (!buflen) return; //empty command
+ #ifdef FILAMENT_RUNOUT_SUPPORT
+ SET_INPUT(FR_SENS);
+ #endif
+
+#ifdef CMDBUFFER_DEBUG
+ SERIAL_ECHOPGM("Processing a GCODE command: ");
+ SERIAL_ECHO(cmdbuffer+bufindr+CMDHDRSIZE);
+ SERIAL_ECHOLNPGM("");
+ SERIAL_ECHOPGM("In cmdqueue: ");
+ SERIAL_ECHO(buflen);
+ SERIAL_ECHOLNPGM("");
+#endif /* CMDBUFFER_DEBUG */
+
+ unsigned long codenum; //throw away variable
+ char *starpos = NULL;
+#ifdef ENABLE_AUTO_BED_LEVELING
+ float x_tmp, y_tmp, z_tmp, real_z;
+#endif
+
+ // PRUSA GCODES
+ KEEPALIVE_STATE(IN_HANDLER);
+
+#ifdef SNMM
+ float tmp_motor[3] = DEFAULT_PWM_MOTOR_CURRENT;
+ float tmp_motor_loud[3] = DEFAULT_PWM_MOTOR_CURRENT_LOUD;
+ int8_t SilentMode;
+#endif
+
+ if (code_seen("M117")) { //moved to highest priority place to be able to to print strings which includes "G", "PRUSA" and "^"
+ starpos = (strchr(strchr_pointer + 5, '*'));
+ if (starpos != NULL)
+ *(starpos) = '\0';
+ lcd_setstatus(strchr_pointer + 5);
+ }
+
+#ifdef TMC2130
+ else if (strncmp_P(CMDBUFFER_CURRENT_STRING, PSTR("CRASH_"), 6) == 0)
+ {
+ if(code_seen("CRASH_DETECTED"))
+ {
+ uint8_t mask = 0;
+ if (code_seen("X")) mask |= X_AXIS_MASK;
+ if (code_seen("Y")) mask |= Y_AXIS_MASK;
+ crashdet_detected(mask);
+ }
+ else if(code_seen("CRASH_RECOVER"))
+ crashdet_recover();
+ else if(code_seen("CRASH_CANCEL"))
+ crashdet_cancel();
+ }
+ else if (strncmp_P(CMDBUFFER_CURRENT_STRING, PSTR("TMC_"), 4) == 0)
+ {
+ if (strncmp_P(CMDBUFFER_CURRENT_STRING + 4, PSTR("SET_WAVE_"), 9) == 0)
+ {
+ uint8_t axis = *(CMDBUFFER_CURRENT_STRING + 13);
+ axis = (axis == 'E')?3:(axis - 'X');
+ if (axis < 4)
+ {
+ uint8_t fac = (uint8_t)strtol(CMDBUFFER_CURRENT_STRING + 14, NULL, 10);
+ tmc2130_set_wave(axis, 247, fac);
+ }
+ }
+ else if (strncmp_P(CMDBUFFER_CURRENT_STRING + 4, PSTR("SET_STEP_"), 9) == 0)
+ {
+ uint8_t axis = *(CMDBUFFER_CURRENT_STRING + 13);
+ axis = (axis == 'E')?3:(axis - 'X');
+ if (axis < 4)
+ {
+ uint8_t step = (uint8_t)strtol(CMDBUFFER_CURRENT_STRING + 14, NULL, 10);
+ uint16_t res = tmc2130_get_res(axis);
+ tmc2130_goto_step(axis, step & (4*res - 1), 2, 1000, res);
+ }
+ }
+ else if (strncmp_P(CMDBUFFER_CURRENT_STRING + 4, PSTR("SET_CHOP_"), 9) == 0)
+ {
+ uint8_t axis = *(CMDBUFFER_CURRENT_STRING + 13);
+ axis = (axis == 'E')?3:(axis - 'X');
+ if (axis < 4)
+ {
+ uint8_t chop0 = tmc2130_chopper_config[axis].toff;
+ uint8_t chop1 = tmc2130_chopper_config[axis].hstr;
+ uint8_t chop2 = tmc2130_chopper_config[axis].hend;
+ uint8_t chop3 = tmc2130_chopper_config[axis].tbl;
+ char* str_end = 0;
+ if (CMDBUFFER_CURRENT_STRING[14])
+ {
+ chop0 = (uint8_t)strtol(CMDBUFFER_CURRENT_STRING + 14, &str_end, 10) & 15;
+ if (str_end && *str_end)
+ {
+ chop1 = (uint8_t)strtol(str_end, &str_end, 10) & 7;
+ if (str_end && *str_end)
+ {
+ chop2 = (uint8_t)strtol(str_end, &str_end, 10) & 15;
+ if (str_end && *str_end)
+ chop3 = (uint8_t)strtol(str_end, &str_end, 10) & 3;
+ }
+ }
+ }
+ tmc2130_chopper_config[axis].toff = chop0;
+ tmc2130_chopper_config[axis].hstr = chop1 & 7;
+ tmc2130_chopper_config[axis].hend = chop2 & 15;
+ tmc2130_chopper_config[axis].tbl = chop3 & 3;
+ tmc2130_setup_chopper(axis, tmc2130_mres[axis], tmc2130_current_h[axis], tmc2130_current_r[axis]);
+ //printf_P(_N("TMC_SET_CHOP_%c %hhd %hhd %hhd %hhd\n"), "xyze"[axis], chop0, chop1, chop2, chop3);
+ }
+ }
+ }
+#ifdef BACKLASH_X
+ else if (strncmp_P(CMDBUFFER_CURRENT_STRING, PSTR("BACKLASH_X"), 10) == 0)
+ {
+ uint8_t bl = (uint8_t)strtol(CMDBUFFER_CURRENT_STRING + 10, NULL, 10);
+ st_backlash_x = bl;
+ printf_P(_N("st_backlash_x = %hhd\n"), st_backlash_x);
+ }
+#endif //BACKLASH_X
+#ifdef BACKLASH_Y
+ else if (strncmp_P(CMDBUFFER_CURRENT_STRING, PSTR("BACKLASH_Y"), 10) == 0)
+ {
+ uint8_t bl = (uint8_t)strtol(CMDBUFFER_CURRENT_STRING + 10, NULL, 10);
+ st_backlash_y = bl;
+ printf_P(_N("st_backlash_y = %hhd\n"), st_backlash_y);
+ }
+#endif //BACKLASH_Y
+#endif //TMC2130
+
+ else if(code_seen("PRUSA")){
+ if (code_seen("Ping")) { //PRUSA Ping
+ if (farm_mode) {
+ PingTime = millis();
+ //MYSERIAL.print(farm_no); MYSERIAL.println(": OK");
+ }
+ }
+ else if (code_seen("PRN")) {
+ printf_P(_N("%d"), status_number);
+
+ }else if (code_seen("FAN")) {
+ printf_P(_N("E0:%d RPM\nPRN0:%d RPM\n"), 60*fan_speed[0], 60*fan_speed[1]);
+ }else if (code_seen("fn")) {
+ if (farm_mode) {
+ printf_P(_N("%d"), farm_no);
+ }
+ else {
+ puts_P(_N("Not in farm mode."));
+ }
+
+ }
+ else if (code_seen("thx")) {
+ no_response = false;
+ }
+ else if (code_seen("MMURES")) {
+ fprintf_P(uart2io, PSTR("x0"));
+ }
+ else if (code_seen("RESET")) {
+ // careful!
+ if (farm_mode) {
+#ifdef WATCHDOG
+ boot_app_magic = BOOT_APP_MAGIC;
+ boot_app_flags = BOOT_APP_FLG_RUN;
+ wdt_enable(WDTO_15MS);
+ cli();
+ while(1);
+#else //WATCHDOG
+ asm volatile("jmp 0x3E000");
+#endif //WATCHDOG
+ }
+ else {
+ MYSERIAL.println("Not in farm mode.");
+ }
+ }else if (code_seen("fv")) {
+ // get file version
+ #ifdef SDSUPPORT
+ card.openFile(strchr_pointer + 3,true);
+ while (true) {
+ uint16_t readByte = card.get();
+ MYSERIAL.write(readByte);
+ if (readByte=='\n') {
+ break;
+ }
+ }
+ card.closefile();
+
+ #endif // SDSUPPORT
+
+ } else if (code_seen("M28")) {
+ trace();
+ prusa_sd_card_upload = true;
+ card.openFile(strchr_pointer+4,false);
+
+ } else if (code_seen("SN")) {
+ gcode_PRUSA_SN();
+
+ } else if(code_seen("Fir")){
+
+ SERIAL_PROTOCOLLN(FW_VERSION);
+
+ } else if(code_seen("Rev")){
+
+ SERIAL_PROTOCOLLN(FILAMENT_SIZE "-" ELECTRONICS "-" NOZZLE_TYPE );
+
+ } else if(code_seen("Lang")) {
+ lang_reset();
+
+ } else if(code_seen("Lz")) {
+ EEPROM_save_B(EEPROM_BABYSTEP_Z,0);
+
+ } else if(code_seen("Beat")) {
+ // Kick farm link timer
+ kicktime = millis();
+
+ } else if(code_seen("FR")) {
+ // Factory full reset
+ factory_reset(0,true);
+ }
+ //else if (code_seen('Cal')) {
+ // lcd_calibration();
+ // }
+
+ }
+ else if (code_seen('^')) {
+ // nothing, this is a version line
+ } else if(code_seen('G'))
+ {
+ switch((int)code_value())
+ {
+ case 0: // G0 -> G1
+ case 1: // G1
+ if(Stopped == false) {
+
+ #ifdef FILAMENT_RUNOUT_SUPPORT
+
+ if(READ(FR_SENS)){
+
+ feedmultiplyBckp=feedmultiply;
+ float target[4];
+ float lastpos[4];
+ target[X_AXIS]=current_position[X_AXIS];
+ target[Y_AXIS]=current_position[Y_AXIS];
+ target[Z_AXIS]=current_position[Z_AXIS];
+ target[E_AXIS]=current_position[E_AXIS];
+ lastpos[X_AXIS]=current_position[X_AXIS];
+ lastpos[Y_AXIS]=current_position[Y_AXIS];
+ lastpos[Z_AXIS]=current_position[Z_AXIS];
+ lastpos[E_AXIS]=current_position[E_AXIS];
+ //retract by E
+
+ target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT ;
+
+ plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder);
+
+
+ target[Z_AXIS]+= FILAMENTCHANGE_ZADD ;
+
+ plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 300, active_extruder);
+
+ target[X_AXIS]= FILAMENTCHANGE_XPOS ;
+
+ target[Y_AXIS]= FILAMENTCHANGE_YPOS ;
+
+
+ plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder);
+
+ target[E_AXIS]+= FILAMENTCHANGE_FINALRETRACT ;
+
+
+ plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder);
+
+ //finish moves
+ st_synchronize();
+ //disable extruder steppers so filament can be removed
+ disable_e0();
+ disable_e1();
+ disable_e2();
+ delay(100);
+
+ //LCD_ALERTMESSAGEPGM(_T(MSG_FILAMENTCHANGE));
+ uint8_t cnt=0;
+ int counterBeep = 0;
+ lcd_wait_interact();
+ while(!lcd_clicked()){
+ cnt++;
+ manage_heater();
+ manage_inactivity(true);
+ //lcd_update(0);
+ if(cnt==0)
+ {
+ #if BEEPER > 0
+
+ if (counterBeep== 500){
+ counterBeep = 0;
+
+ }
+
+
+ SET_OUTPUT(BEEPER);
+ if (counterBeep== 0){
+ WRITE(BEEPER,HIGH);
+ }
+
+ if (counterBeep== 20){
+ WRITE(BEEPER,LOW);
+ }
+
+
+
+
+ counterBeep++;
+ #else
+ #endif
+ }
+ }
+
+ WRITE(BEEPER,LOW);
+
+ target[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
+ plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder);
+
+
+ target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
+ plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
+
+
+
+
+
+ lcd_change_fil_state = 0;
+ lcd_loading_filament();
+ while ((lcd_change_fil_state == 0)||(lcd_change_fil_state != 1)){
+
+ lcd_change_fil_state = 0;
+ lcd_alright();
+ switch(lcd_change_fil_state){
+
+ case 2:
+ target[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
+ plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder);
+
+
+ target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
+ plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
+
+
+ lcd_loading_filament();
+ break;
+ case 3:
+ target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
+ plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
+ lcd_loading_color();
+ break;
+
+ default:
+ lcd_change_success();
+ break;
+ }
+
+ }
+
+
+
+ target[E_AXIS]+= 5;
+ plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
+
+ target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT;
+ plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder);
+
+
+ //current_position[E_AXIS]=target[E_AXIS]; //the long retract of L is compensated by manual filament feeding
+ //plan_set_e_position(current_position[E_AXIS]);
+ plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder); //should do nothing
+ plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder); //move xy back
+ plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], 200, active_extruder); //move z back
+
+
+ target[E_AXIS]= target[E_AXIS] - FILAMENTCHANGE_FIRSTRETRACT;
+
+
+
+ plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], 5, active_extruder); //final untretract
+
+
+ plan_set_e_position(lastpos[E_AXIS]);
+
+ feedmultiply=feedmultiplyBckp;
+
+
+
+ char cmd[9];
+
+ sprintf_P(cmd, PSTR("M220 S%i"), feedmultiplyBckp);
+ enquecommand(cmd);
+
+ }
+
+
+
+ #endif
+
+
+ get_coordinates(); // For X Y Z E F
+ if (total_filament_used > ((current_position[E_AXIS] - destination[E_AXIS]) * 100)) { //protection against total_filament_used overflow
+ total_filament_used = total_filament_used + ((destination[E_AXIS] - current_position[E_AXIS]) * 100);
+ }
+ #ifdef FWRETRACT
+ if(autoretract_enabled)
+ if( !(code_seen('X') || code_seen('Y') || code_seen('Z')) && code_seen('E')) {
+ float echange=destination[E_AXIS]-current_position[E_AXIS];
+
+ if((echange<-MIN_RETRACT && !retracted[active_extruder]) || (echange>MIN_RETRACT && retracted[active_extruder])) { //move appears to be an attempt to retract or recover
+ current_position[E_AXIS] = destination[E_AXIS]; //hide the slicer-generated retract/recover from calculations
+ plan_set_e_position(current_position[E_AXIS]); //AND from the planner
+ retract(!retracted[active_extruder]);
+ return;
+ }
+
+
+ }
+ #endif //FWRETRACT
+ prepare_move();
+ //ClearToSend();
+ }
+ break;
+ case 2: // G2 - CW ARC
+ if(Stopped == false) {
+ get_arc_coordinates();
+ prepare_arc_move(true);
+ }
+ break;
+ case 3: // G3 - CCW ARC
+ if(Stopped == false) {
+ get_arc_coordinates();
+ prepare_arc_move(false);
+ }
+ break;
+ case 4: // G4 dwell
+ codenum = 0;
+ if(code_seen('P')) codenum = code_value(); // milliseconds to wait
+ if(code_seen('S')) codenum = code_value() * 1000; // seconds to wait
+ if(codenum != 0) LCD_MESSAGERPGM(_i("Sleep..."));////MSG_DWELL c=0 r=0
+ st_synchronize();
+ codenum += millis(); // keep track of when we started waiting
+ previous_millis_cmd = millis();
+ while(millis() < codenum) {
+ manage_heater();
+ manage_inactivity();
+ lcd_update(0);
+ }
+ break;
+ #ifdef FWRETRACT
+ case 10: // G10 retract
+ #if EXTRUDERS > 1
+ retracted_swap[active_extruder]=(code_seen('S') && code_value_long() == 1); // checks for swap retract argument
+ retract(true,retracted_swap[active_extruder]);
+ #else
+ retract(true);
+ #endif
+ break;
+ case 11: // G11 retract_recover
+ #if EXTRUDERS > 1
+ retract(false,retracted_swap[active_extruder]);
+ #else
+ retract(false);
+ #endif
+ break;
+ #endif //FWRETRACT
+ case 28: //G28 Home all Axis one at a time
+ {
+ long home_x_value = 0;
+ long home_y_value = 0;
+ long home_z_value = 0;
+ // Which axes should be homed?
+ bool home_x = code_seen(axis_codes[X_AXIS]);
+ home_x_value = code_value_long();
+ bool home_y = code_seen(axis_codes[Y_AXIS]);
+ home_y_value = code_value_long();
+ bool home_z = code_seen(axis_codes[Z_AXIS]);
+ home_z_value = code_value_long();
+ bool without_mbl = code_seen('W');
+ // calibrate?
+ bool calib = code_seen('C');
+ gcode_G28(home_x, home_x_value, home_y, home_y_value, home_z, home_z_value, calib, without_mbl);
+ if ((home_x || home_y || without_mbl || home_z) == false) {
+ // Push the commands to the front of the message queue in the reverse order!
+ // There shall be always enough space reserved for these commands.
+ goto case_G80;
+ }
+ break;
+ }
+#ifdef ENABLE_AUTO_BED_LEVELING
+ case 29: // G29 Detailed Z-Probe, probes the bed at 3 or more points.
+ {
+ #if Z_MIN_PIN == -1
+ #error "You must have a Z_MIN endstop in order to enable Auto Bed Leveling feature! Z_MIN_PIN must point to a valid hardware pin."
+ #endif
+
+ // Prevent user from running a G29 without first homing in X and Y
+ if (! (axis_known_position[X_AXIS] && axis_known_position[Y_AXIS]) )
+ {
+ LCD_MESSAGERPGM(MSG_POSITION_UNKNOWN);
+ SERIAL_ECHO_START;
+ SERIAL_ECHOLNRPGM(MSG_POSITION_UNKNOWN);
+ break; // abort G29, since we don't know where we are
+ }
+
+ st_synchronize();
+ // make sure the bed_level_rotation_matrix is identity or the planner will get it incorectly
+ //vector_3 corrected_position = plan_get_position_mm();
+ //corrected_position.debug("position before G29");
+ plan_bed_level_matrix.set_to_identity();
+ vector_3 uncorrected_position = plan_get_position();
+ //uncorrected_position.debug("position durring G29");
+ current_position[X_AXIS] = uncorrected_position.x;
+ current_position[Y_AXIS] = uncorrected_position.y;
+ current_position[Z_AXIS] = uncorrected_position.z;
+ plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
+ setup_for_endstop_move();
+
+ feedrate = homing_feedrate[Z_AXIS];
+#ifdef AUTO_BED_LEVELING_GRID
+ // probe at the points of a lattice grid
+
+ int xGridSpacing = (RIGHT_PROBE_BED_POSITION - LEFT_PROBE_BED_POSITION) / (AUTO_BED_LEVELING_GRID_POINTS-1);
+ int yGridSpacing = (BACK_PROBE_BED_POSITION - FRONT_PROBE_BED_POSITION) / (AUTO_BED_LEVELING_GRID_POINTS-1);
+
+
+ // solve the plane equation ax + by + d = z
+ // A is the matrix with rows [x y 1] for all the probed points
+ // B is the vector of the Z positions
+ // the normal vector to the plane is formed by the coefficients of the plane equation in the standard form, which is Vx*x+Vy*y+Vz*z+d = 0
+ // so Vx = -a Vy = -b Vz = 1 (we want the vector facing towards positive Z
+
+ // "A" matrix of the linear system of equations
+ double eqnAMatrix[AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS*3];
+ // "B" vector of Z points
+ double eqnBVector[AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS];
+
+
+ int probePointCounter = 0;
+ bool zig = true;
+
+ for (int yProbe=FRONT_PROBE_BED_POSITION; yProbe <= BACK_PROBE_BED_POSITION; yProbe += yGridSpacing)
+ {
+ int xProbe, xInc;
+ if (zig)
+ {
+ xProbe = LEFT_PROBE_BED_POSITION;
+ //xEnd = RIGHT_PROBE_BED_POSITION;
+ xInc = xGridSpacing;
+ zig = false;
+ } else // zag
+ {
+ xProbe = RIGHT_PROBE_BED_POSITION;
+ //xEnd = LEFT_PROBE_BED_POSITION;
+ xInc = -xGridSpacing;
+ zig = true;
+ }
+
+ for (int xCount=0; xCount < AUTO_BED_LEVELING_GRID_POINTS; xCount++)
+ {
+ float z_before;
+ if (probePointCounter == 0)
+ {
+ // raise before probing
+ z_before = Z_RAISE_BEFORE_PROBING;
+ } else
+ {
+ // raise extruder
+ z_before = current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS;
+ }
+
+ float measured_z = probe_pt(xProbe, yProbe, z_before);
+
+ eqnBVector[probePointCounter] = measured_z;
+
+ eqnAMatrix[probePointCounter + 0*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = xProbe;
+ eqnAMatrix[probePointCounter + 1*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = yProbe;
+ eqnAMatrix[probePointCounter + 2*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = 1;
+ probePointCounter++;
+ xProbe += xInc;
+ }
+ }
+ clean_up_after_endstop_move();
+
+ // solve lsq problem
+ double *plane_equation_coefficients = qr_solve(AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS, 3, eqnAMatrix, eqnBVector);
+
+ SERIAL_PROTOCOLPGM("Eqn coefficients: a: ");
+ SERIAL_PROTOCOL(plane_equation_coefficients[0]);
+ SERIAL_PROTOCOLPGM(" b: ");
+ SERIAL_PROTOCOL(plane_equation_coefficients[1]);
+ SERIAL_PROTOCOLPGM(" d: ");
+ SERIAL_PROTOCOLLN(plane_equation_coefficients[2]);
+
+
+ set_bed_level_equation_lsq(plane_equation_coefficients);
+
+ free(plane_equation_coefficients);
+
+#else // AUTO_BED_LEVELING_GRID not defined
+
+ // Probe at 3 arbitrary points
+ // probe 1
+ float z_at_pt_1 = probe_pt(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, Z_RAISE_BEFORE_PROBING);
+
+ // probe 2
+ float z_at_pt_2 = probe_pt(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS);
+
+ // probe 3
+ float z_at_pt_3 = probe_pt(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS);
+
+ clean_up_after_endstop_move();
+
+ set_bed_level_equation_3pts(z_at_pt_1, z_at_pt_2, z_at_pt_3);
+
+
+#endif // AUTO_BED_LEVELING_GRID
+ st_synchronize();
+
+ // The following code correct the Z height difference from z-probe position and hotend tip position.
+ // The Z height on homing is measured by Z-Probe, but the probe is quite far from the hotend.
+ // When the bed is uneven, this height must be corrected.
+ real_z = float(st_get_position(Z_AXIS))/axis_steps_per_unit[Z_AXIS]; //get the real Z (since the auto bed leveling is already correcting the plane)
+ x_tmp = current_position[X_AXIS] + X_PROBE_OFFSET_FROM_EXTRUDER;
+ y_tmp = current_position[Y_AXIS] + Y_PROBE_OFFSET_FROM_EXTRUDER;
+ z_tmp = current_position[Z_AXIS];
+
+ apply_rotation_xyz(plan_bed_level_matrix, x_tmp, y_tmp, z_tmp); //Apply the correction sending the probe offset
+ current_position[Z_AXIS] = z_tmp - real_z + current_position[Z_AXIS]; //The difference is added to current position and sent to planner.
+ plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
+ }
+ break;
+#ifndef Z_PROBE_SLED
+ case 30: // G30 Single Z Probe
+ {
+ st_synchronize();
+ // TODO: make sure the bed_level_rotation_matrix is identity or the planner will get set incorectly
+ setup_for_endstop_move();
+
+ feedrate = homing_feedrate[Z_AXIS];
+
+ run_z_probe();
+ SERIAL_PROTOCOLPGM(_T(MSG_BED));
+ SERIAL_PROTOCOLPGM(" X: ");
+ SERIAL_PROTOCOL(current_position[X_AXIS]);
+ SERIAL_PROTOCOLPGM(" Y: ");
+ SERIAL_PROTOCOL(current_position[Y_AXIS]);
+ SERIAL_PROTOCOLPGM(" Z: ");
+ SERIAL_PROTOCOL(current_position[Z_AXIS]);
+ SERIAL_PROTOCOLPGM("\n");
+
+ clean_up_after_endstop_move();
+ }
+ break;
+#else
+ case 31: // dock the sled
+ dock_sled(true);
+ break;
+ case 32: // undock the sled
+ dock_sled(false);
+ break;
+#endif // Z_PROBE_SLED
+#endif // ENABLE_AUTO_BED_LEVELING
+
+#ifdef MESH_BED_LEVELING
+ case 30: // G30 Single Z Probe
+ {
+ st_synchronize();
+ // TODO: make sure the bed_level_rotation_matrix is identity or the planner will get set incorectly
+ setup_for_endstop_move();
+
+ feedrate = homing_feedrate[Z_AXIS];
+
+ find_bed_induction_sensor_point_z(-10.f, 3);
+
+ printf_P(_N("%S X: %.5f Y: %.5f Z: %.5f\n"), _T(MSG_BED), _x, _y, _z);
+
+ clean_up_after_endstop_move();
+ }
+ break;
+
+
+ case 75:
+ {
+ for (int i = 40; i <= 110; i++)
+ printf_P(_N("%d %.2f"), i, temp_comp_interpolation(i));
+ }
+ break;
+
+ case 76: //PINDA probe temperature calibration
+ {
+#ifdef PINDA_THERMISTOR
+ if (true)
+ {
+
+ if (calibration_status() >= CALIBRATION_STATUS_XYZ_CALIBRATION) {
+ //we need to know accurate position of first calibration point
+ //if xyz calibration was not performed yet, interrupt temperature calibration and inform user that xyz cal. is needed
+ lcd_show_fullscreen_message_and_wait_P(_i("Please run XYZ calibration first."));
+ break;
+ }
+
+ if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS]))
+ {
+ // We don't know where we are! HOME!
+ // Push the commands to the front of the message queue in the reverse order!
+ // There shall be always enough space reserved for these commands.
+ repeatcommand_front(); // repeat G76 with all its parameters
+ enquecommand_front_P((PSTR("G28 W0")));
+ break;
+ }
+ lcd_show_fullscreen_message_and_wait_P(_i("Stable ambient temperature 21-26C is needed a rigid stand is required."));////MSG_TEMP_CAL_WARNING c=20 r=4
+ bool result = lcd_show_fullscreen_message_yes_no_and_wait_P(_T(MSG_STEEL_SHEET_CHECK), false, false);
+
+ if (result)
+ {
+ current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
+ plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
+ current_position[Z_AXIS] = 50;
+ current_position[Y_AXIS] = 180;
+ plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
+ st_synchronize();
+ lcd_show_fullscreen_message_and_wait_P(_T(MSG_REMOVE_STEEL_SHEET));
+ current_position[Y_AXIS] = pgm_read_float(bed_ref_points_4 + 1);
+ current_position[X_AXIS] = pgm_read_float(bed_ref_points_4);
+ plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
+ st_synchronize();
+ gcode_G28(false, false, true);
+
+ }
+ if ((current_temperature_pinda > 35) && (farm_mode == false)) {
+ //waiting for PIDNA probe to cool down in case that we are not in farm mode
+ current_position[Z_AXIS] = 100;
+ plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
+ if (lcd_wait_for_pinda(35) == false) { //waiting for PINDA probe to cool, if this takes more then time expected, temp. cal. fails
+ lcd_temp_cal_show_result(false);
+ break;
+ }
+ }
+ lcd_update_enable(true);
+ KEEPALIVE_STATE(NOT_BUSY); //no need to print busy messages as we print current temperatures periodicaly
+ SERIAL_ECHOLNPGM("PINDA probe calibration start");
+
+ float zero_z;
+ int z_shift = 0; //unit: steps
+ float start_temp = 5 * (int)(current_temperature_pinda / 5);
+ if (start_temp < 35) start_temp = 35;
+ if (start_temp < current_temperature_pinda) start_temp += 5;
+ printf_P(_N("start temperature: %.1f\n"), start_temp);
+
+// setTargetHotend(200, 0);
+ setTargetBed(70 + (start_temp - 30));
+
+ custom_message = true;
+ custom_message_type = 4;
+ custom_message_state = 1;
+ custom_message = _T(MSG_TEMP_CALIBRATION);
+ current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
+ plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
+ current_position[X_AXIS] = PINDA_PREHEAT_X;
+ current_position[Y_AXIS] = PINDA_PREHEAT_Y;
+ plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
+ current_position[Z_AXIS] = PINDA_PREHEAT_Z;
+ plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
+ st_synchronize();
+
+ while (current_temperature_pinda < start_temp)
+ {
+ delay_keep_alive(1000);
+ serialecho_temperatures();
+ }
+
+ eeprom_update_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 0); //invalidate temp. calibration in case that in will be aborted during the calibration process
+
+ current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
+ plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
+ current_position[X_AXIS] = pgm_read_float(bed_ref_points_4);
+ current_position[Y_AXIS] = pgm_read_float(bed_ref_points_4 + 1);
+ plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
+ st_synchronize();
+
+ bool find_z_result = find_bed_induction_sensor_point_z(-1.f);
+ if (find_z_result == false) {
+ lcd_temp_cal_show_result(find_z_result);
+ break;
+ }
+ zero_z = current_position[Z_AXIS];
+
+ printf_P(_N("\nZERO: %.3f\n"), current_position[Z_AXIS]);
+
+ int i = -1; for (; i < 5; i++)
+ {
+ float temp = (40 + i * 5);
+ printf_P(_N("\nStep: %d/6 (skipped)\nPINDA temperature: %d Z shift (mm):0\n"), i + 2, (40 + i*5));
+ if (i >= 0) EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i * 2, &z_shift);
+ if (start_temp <= temp) break;
+ }
+
+ for (i++; i < 5; i++)
+ {
+ float temp = (40 + i * 5);
+ printf_P(_N("\nStep: %d/6\n"), i + 2);
+ custom_message_state = i + 2;
+ setTargetBed(50 + 10 * (temp - 30) / 5);
+// setTargetHotend(255, 0);
+ current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
+ plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
+ current_position[X_AXIS] = PINDA_PREHEAT_X;
+ current_position[Y_AXIS] = PINDA_PREHEAT_Y;
+ plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
+ current_position[Z_AXIS] = PINDA_PREHEAT_Z;
+ plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
+ st_synchronize();
+ while (current_temperature_pinda < temp)
+ {
+ delay_keep_alive(1000);
+ serialecho_temperatures();
+ }
+ current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
+ plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
+ current_position[X_AXIS] = pgm_read_float(bed_ref_points_4);
+ current_position[Y_AXIS] = pgm_read_float(bed_ref_points_4 + 1);
+ plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
+ st_synchronize();
+ find_z_result = find_bed_induction_sensor_point_z(-1.f);
+ if (find_z_result == false) {
+ lcd_temp_cal_show_result(find_z_result);
+ break;
+ }
+ z_shift = (int)((current_position[Z_AXIS] - zero_z)*axis_steps_per_unit[Z_AXIS]);
+
+ printf_P(_N("\nPINDA temperature: %.1f Z shift (mm): %.3f"), current_temperature_pinda, current_position[Z_AXIS] - zero_z);
+
+ EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i * 2, &z_shift);
+
+ }
+ lcd_temp_cal_show_result(true);
+
+ break;
+ }
+#endif //PINDA_THERMISTOR
+
+ setTargetBed(PINDA_MIN_T);
+ float zero_z;
+ int z_shift = 0; //unit: steps
+ int t_c; // temperature
+
+ if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS])) {
+ // We don't know where we are! HOME!
+ // Push the commands to the front of the message queue in the reverse order!
+ // There shall be always enough space reserved for these commands.
+ repeatcommand_front(); // repeat G76 with all its parameters
+ enquecommand_front_P((PSTR("G28 W0")));
+ break;
+ }
+ puts_P(_N("PINDA probe calibration start"));
+ custom_message = true;
+ custom_message_type = 4;
+ custom_message_state = 1;
+ custom_message = _T(MSG_TEMP_CALIBRATION);
+ current_position[X_AXIS] = PINDA_PREHEAT_X;
+ current_position[Y_AXIS] = PINDA_PREHEAT_Y;
+ current_position[Z_AXIS] = PINDA_PREHEAT_Z;
+ plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
+ st_synchronize();
+
+ while (abs(degBed() - PINDA_MIN_T) > 1) {
+ delay_keep_alive(1000);
+ serialecho_temperatures();
+ }
+
+ //enquecommand_P(PSTR("M190 S50"));
+ for (int i = 0; i < PINDA_HEAT_T; i++) {
+ delay_keep_alive(1000);
+ serialecho_temperatures();
+ }
+ eeprom_update_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 0); //invalidate temp. calibration in case that in will be aborted during the calibration process
+
+ current_position[Z_AXIS] = 5;
+ plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
+
+ current_position[X_AXIS] = pgm_read_float(bed_ref_points);
+ current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 1);
+ plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
+ st_synchronize();
+
+ find_bed_induction_sensor_point_z(-1.f);
+ zero_z = current_position[Z_AXIS];
+
+ printf_P(_N("\nZERO: %.3f\n"), current_position[Z_AXIS]);
+
+ for (int i = 0; i<5; i++) {
+ printf_P(_N("\nStep: %d/6\n"), i + 2);
+ custom_message_state = i + 2;
+ t_c = 60 + i * 10;
+
+ setTargetBed(t_c);
+ current_position[X_AXIS] = PINDA_PREHEAT_X;
+ current_position[Y_AXIS] = PINDA_PREHEAT_Y;
+ current_position[Z_AXIS] = PINDA_PREHEAT_Z;
+ plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
+ st_synchronize();
+ while (degBed() < t_c) {
+ delay_keep_alive(1000);
+ serialecho_temperatures();
+ }
+ for (int i = 0; i < PINDA_HEAT_T; i++) {
+ delay_keep_alive(1000);
+ serialecho_temperatures();
+ }
+ current_position[Z_AXIS] = 5;
+ plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
+ current_position[X_AXIS] = pgm_read_float(bed_ref_points);
+ current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 1);
+ plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
+ st_synchronize();
+ find_bed_induction_sensor_point_z(-1.f);
+ z_shift = (int)((current_position[Z_AXIS] - zero_z)*axis_steps_per_unit[Z_AXIS]);
+
+ printf_P(_N("\nTemperature: %d Z shift (mm): %.3f\n"), t_c, current_position[Z_AXIS] - zero_z);
+
+ EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i*2, &z_shift);
+
+
+ }
+ custom_message_type = 0;
+ custom_message = false;
+
+ eeprom_update_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 1);
+ puts_P(_N("Temperature calibration done."));
+ disable_x();
+ disable_y();
+ disable_z();
+ disable_e0();
+ disable_e1();
+ disable_e2();
+ setTargetBed(0); //set bed target temperature back to 0
+ lcd_show_fullscreen_message_and_wait_P(_T(MSG_TEMP_CALIBRATION_DONE));
+ temp_cal_active = true;
+ eeprom_update_byte((unsigned char *)EEPROM_TEMP_CAL_ACTIVE, 1);
+ lcd_update_enable(true);
+ lcd_update(2);
+
+
+
+ }
+ break;
+
+#ifdef DIS
+ case 77:
+ {
+ //G77 X200 Y150 XP100 YP15 XO10 Y015
+
+ //for 9 point mesh bed leveling G77 X203 Y196 XP3 YP3 XO0 YO0
+
+
+ //G77 X232 Y218 XP116 YP109 XO-11 YO0
+
+ float dimension_x = 40;
+ float dimension_y = 40;
+ int points_x = 40;
+ int points_y = 40;
+ float offset_x = 74;
+ float offset_y = 33;
+
+ if (code_seen('X')) dimension_x = code_value();
+ if (code_seen('Y')) dimension_y = code_value();
+ if (code_seen('XP')) points_x = code_value();
+ if (code_seen('YP')) points_y = code_value();
+ if (code_seen('XO')) offset_x = code_value();
+ if (code_seen('YO')) offset_y = code_value();
+
+ bed_analysis(dimension_x,dimension_y,points_x,points_y,offset_x,offset_y);
+
+ } break;
+
+#endif
+
+ case 79: {
+ for (int i = 255; i > 0; i = i - 5) {
+ fanSpeed = i;
+ //delay_keep_alive(2000);
+ for (int j = 0; j < 100; j++) {
+ delay_keep_alive(100);
+
+ }
+ fan_speed[1];
+ printf_P(_N("%d: %d\n"), i, fan_speed[1]);
+ }
+ }break;
+
+ /**
+ * G80: Mesh-based Z probe, probes a grid and produces a
+ * mesh to compensate for variable bed height
+ *
+ * The S0 report the points as below
+ *
+ * +----> X-axis
+ * |
+ * |
+ * v Y-axis
+ *
+ */
+
+ case 80:
+#ifdef MK1BP
+ break;
+#endif //MK1BP
+ case_G80:
+ {
+ mesh_bed_leveling_flag = true;
+ int8_t verbosity_level = 0;
+ static bool run = false;
+
+ if (code_seen('V')) {
+ // Just 'V' without a number counts as V1.
+ char c = strchr_pointer[1];
+ verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
+ }
+ // Firstly check if we know where we are
+ if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS])) {
+ // We don't know where we are! HOME!
+ // Push the commands to the front of the message queue in the reverse order!
+ // There shall be always enough space reserved for these commands.
+ if (lcd_commands_type != LCD_COMMAND_STOP_PRINT) {
+ repeatcommand_front(); // repeat G80 with all its parameters
+ enquecommand_front_P((PSTR("G28 W0")));
+ }
+ else {
+ mesh_bed_leveling_flag = false;
+ }
+ break;
+ }
+
+
+ bool temp_comp_start = true;
+#ifdef PINDA_THERMISTOR
+ temp_comp_start = false;
+#endif //PINDA_THERMISTOR
+
+ if (temp_comp_start)
+ if (run == false && temp_cal_active == true && calibration_status_pinda() == true && target_temperature_bed >= 50) {
+ if (lcd_commands_type != LCD_COMMAND_STOP_PRINT) {
+ temp_compensation_start();
+ run = true;
+ repeatcommand_front(); // repeat G80 with all its parameters
+ enquecommand_front_P((PSTR("G28 W0")));
+ }
+ else {
+ mesh_bed_leveling_flag = false;
+ }
+ break;
+ }
+ run = false;
+ if (lcd_commands_type == LCD_COMMAND_STOP_PRINT) {
+ mesh_bed_leveling_flag = false;
+ break;
+ }
+ // Save custom message state, set a new custom message state to display: Calibrating point 9.
+ bool custom_message_old = custom_message;
+ unsigned int custom_message_type_old = custom_message_type;
+ unsigned int custom_message_state_old = custom_message_state;
+ custom_message = true;
+ custom_message_type = 1;
+ custom_message_state = (MESH_MEAS_NUM_X_POINTS * MESH_MEAS_NUM_Y_POINTS) + 10;
+ lcd_update(1);
+
+ mbl.reset(); //reset mesh bed leveling
+
+ // Reset baby stepping to zero, if the babystepping has already been loaded before. The babystepsTodo value will be
+ // consumed during the first movements following this statement.
+ babystep_undo();
+
+ // Cycle through all points and probe them
+ // First move up. During this first movement, the babystepping will be reverted.
+ current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
+ plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 60, active_extruder);
+ // The move to the first calibration point.
+ current_position[X_AXIS] = pgm_read_float(bed_ref_points);
+ current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 1);
+ bool clamped = world2machine_clamp(current_position[X_AXIS], current_position[Y_AXIS]);
+
+ #ifdef SUPPORT_VERBOSITY
+ if (verbosity_level >= 1) {
+ clamped ? SERIAL_PROTOCOLPGM("First calibration point clamped.\n") : SERIAL_PROTOCOLPGM("No clamping for first calibration point.\n");
+ }
+ #endif //SUPPORT_VERBOSITY
+ // mbl.get_meas_xy(0, 0, current_position[X_AXIS], current_position[Y_AXIS], false);
+ plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[X_AXIS] / 30, active_extruder);
+ // Wait until the move is finished.
+ st_synchronize();
+
+ int mesh_point = 0; //index number of calibration point
+
+ int ix = 0;
+ int iy = 0;
+
+ int XY_AXIS_FEEDRATE = homing_feedrate[X_AXIS] / 20;
+ int Z_PROBE_FEEDRATE = homing_feedrate[Z_AXIS] / 60;
+ int Z_LIFT_FEEDRATE = homing_feedrate[Z_AXIS] / 40;
+ bool has_z = is_bed_z_jitter_data_valid(); //checks if we have data from Z calibration (offsets of the Z heiths of the 8 calibration points from the first point)
+ #ifdef SUPPORT_VERBOSITY
+ if (verbosity_level >= 1) {
+ has_z ? SERIAL_PROTOCOLPGM("Z jitter data from Z cal. valid.\n") : SERIAL_PROTOCOLPGM("Z jitter data from Z cal. not valid.\n");
+ }
+ #endif // SUPPORT_VERBOSITY
+ setup_for_endstop_move(false); //save feedrate and feedmultiply, sets feedmultiply to 100
+ const char *kill_message = NULL;
+ while (mesh_point != MESH_MEAS_NUM_X_POINTS * MESH_MEAS_NUM_Y_POINTS) {
+ // Get coords of a measuring point.
+ ix = mesh_point % MESH_MEAS_NUM_X_POINTS; // from 0 to MESH_NUM_X_POINTS - 1
+ iy = mesh_point / MESH_MEAS_NUM_X_POINTS;
+ if (iy & 1) ix = (MESH_MEAS_NUM_X_POINTS - 1) - ix; // Zig zag
+ float z0 = 0.f;
+ if (has_z && mesh_point > 0) {
+ uint16_t z_offset_u = eeprom_read_word((uint16_t*)(EEPROM_BED_CALIBRATION_Z_JITTER + 2 * (ix + iy * 3 - 1)));
+ z0 = mbl.z_values[0][0] + *reinterpret_cast(&z_offset_u) * 0.01;
+ //#if 0
+ #ifdef SUPPORT_VERBOSITY
+ if (verbosity_level >= 1) {
+ SERIAL_ECHOLNPGM("");
+ SERIAL_ECHOPGM("Bed leveling, point: ");
+ MYSERIAL.print(mesh_point);
+ SERIAL_ECHOPGM(", calibration z: ");
+ MYSERIAL.print(z0, 5);
+ SERIAL_ECHOLNPGM("");
+ }
+ #endif // SUPPORT_VERBOSITY
+ //#endif
+ }
+
+ // Move Z up to MESH_HOME_Z_SEARCH.
+ current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
+ plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
+ st_synchronize();
+
+ // Move to XY position of the sensor point.
+ current_position[X_AXIS] = pgm_read_float(bed_ref_points + 2 * mesh_point);
+ current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 2 * mesh_point + 1);
+
+
+
+ world2machine_clamp(current_position[X_AXIS], current_position[Y_AXIS]);
+ #ifdef SUPPORT_VERBOSITY
+ if (verbosity_level >= 1) {
+
+ SERIAL_PROTOCOL(mesh_point);
+ clamped ? SERIAL_PROTOCOLPGM(": xy clamped.\n") : SERIAL_PROTOCOLPGM(": no xy clamping\n");
+ }
+ #endif // SUPPORT_VERBOSITY
+
+ plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], XY_AXIS_FEEDRATE, active_extruder);
+ st_synchronize();
+
+ // Go down until endstop is hit
+ const float Z_CALIBRATION_THRESHOLD = 1.f;
+ if (!find_bed_induction_sensor_point_z((has_z && mesh_point > 0) ? z0 - Z_CALIBRATION_THRESHOLD : -10.f)) { //if we have data from z calibration max allowed difference is 1mm for each point, if we dont have data max difference is 10mm from initial point
+ kill_message = _T(MSG_BED_LEVELING_FAILED_POINT_LOW);
+ break;
+ }
+ if (MESH_HOME_Z_SEARCH - current_position[Z_AXIS] < 0.1f) {
+ kill_message = _i("Bed leveling failed. Sensor disconnected or cable broken. Waiting for reset.");////MSG_BED_LEVELING_FAILED_PROBE_DISCONNECTED c=20 r=4
+ break;
+ }
+ if (has_z && fabs(z0 - current_position[Z_AXIS]) > Z_CALIBRATION_THRESHOLD) { //if we have data from z calibration, max. allowed difference is 1mm for each point
+ kill_message = _i("Bed leveling failed. Sensor triggered too high. Waiting for reset.");////MSG_BED_LEVELING_FAILED_POINT_HIGH c=20 r=4
+ break;
+ }
+ #ifdef SUPPORT_VERBOSITY
+ if (verbosity_level >= 10) {
+ SERIAL_ECHOPGM("X: ");
+ MYSERIAL.print(current_position[X_AXIS], 5);
+ SERIAL_ECHOLNPGM("");
+ SERIAL_ECHOPGM("Y: ");
+ MYSERIAL.print(current_position[Y_AXIS], 5);
+ SERIAL_PROTOCOLPGM("\n");
+ }
+ #endif // SUPPORT_VERBOSITY
+ float offset_z = 0;
+
+#ifdef PINDA_THERMISTOR
+ offset_z = temp_compensation_pinda_thermistor_offset(current_temperature_pinda);
+#endif //PINDA_THERMISTOR
+// #ifdef SUPPORT_VERBOSITY
+/* if (verbosity_level >= 1)
+ {
+ SERIAL_ECHOPGM("mesh bed leveling: ");
+ MYSERIAL.print(current_position[Z_AXIS], 5);
+ SERIAL_ECHOPGM(" offset: ");
+ MYSERIAL.print(offset_z, 5);
+ SERIAL_ECHOLNPGM("");
+ }*/
+// #endif // SUPPORT_VERBOSITY
+ mbl.set_z(ix, iy, current_position[Z_AXIS] - offset_z); //store measured z values z_values[iy][ix] = z - offset_z;
+
+ custom_message_state--;
+ mesh_point++;
+ lcd_update(1);
+ }
+ current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
+ #ifdef SUPPORT_VERBOSITY
+ if (verbosity_level >= 20) {
+ SERIAL_ECHOLNPGM("Mesh bed leveling while loop finished.");
+ SERIAL_ECHOLNPGM("MESH_HOME_Z_SEARCH: ");
+ MYSERIAL.print(current_position[Z_AXIS], 5);
+ }
+ #endif // SUPPORT_VERBOSITY
+ plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
+ st_synchronize();
+ if (mesh_point != MESH_MEAS_NUM_X_POINTS * MESH_MEAS_NUM_Y_POINTS) {
+ kill(kill_message);
+ SERIAL_ECHOLNPGM("killed");
+ }
+ clean_up_after_endstop_move();
+// SERIAL_ECHOLNPGM("clean up finished ");
+
+ bool apply_temp_comp = true;
+#ifdef PINDA_THERMISTOR
+ apply_temp_comp = false;
+#endif
+ if (apply_temp_comp)
+ if(temp_cal_active == true && calibration_status_pinda() == true) temp_compensation_apply(); //apply PINDA temperature compensation
+ babystep_apply(); // Apply Z height correction aka baby stepping before mesh bed leveing gets activated.
+// SERIAL_ECHOLNPGM("babystep applied");
+ bool eeprom_bed_correction_valid = eeprom_read_byte((unsigned char*)EEPROM_BED_CORRECTION_VALID) == 1;
+ #ifdef SUPPORT_VERBOSITY
+ if (verbosity_level >= 1) {
+ eeprom_bed_correction_valid ? SERIAL_PROTOCOLPGM("Bed correction data valid\n") : SERIAL_PROTOCOLPGM("Bed correction data not valid\n");
+ }
+ #endif // SUPPORT_VERBOSITY
+
+ for (uint8_t i = 0; i < 4; ++i) {
+ unsigned char codes[4] = { 'L', 'R', 'F', 'B' };
+ long correction = 0;
+ if (code_seen(codes[i]))
+ correction = code_value_long();
+ else if (eeprom_bed_correction_valid) {
+ unsigned char *addr = (i < 2) ?
+ ((i == 0) ? (unsigned char*)EEPROM_BED_CORRECTION_LEFT : (unsigned char*)EEPROM_BED_CORRECTION_RIGHT) :
+ ((i == 2) ? (unsigned char*)EEPROM_BED_CORRECTION_FRONT : (unsigned char*)EEPROM_BED_CORRECTION_REAR);
+ correction = eeprom_read_int8(addr);
+ }
+ if (correction == 0)
+ continue;
+ float offset = float(correction) * 0.001f;
+ if (fabs(offset) > 0.101f) {
+ SERIAL_ERROR_START;
+ SERIAL_ECHOPGM("Excessive bed leveling correction: ");
+ SERIAL_ECHO(offset);
+ SERIAL_ECHOLNPGM(" microns");
+ }
+ else {
+ switch (i) {
+ case 0:
+ for (uint8_t row = 0; row < 3; ++row) {
+ mbl.z_values[row][1] += 0.5f * offset;
+ mbl.z_values[row][0] += offset;
+ }
+ break;
+ case 1:
+ for (uint8_t row = 0; row < 3; ++row) {
+ mbl.z_values[row][1] += 0.5f * offset;
+ mbl.z_values[row][2] += offset;
+ }
+ break;
+ case 2:
+ for (uint8_t col = 0; col < 3; ++col) {
+ mbl.z_values[1][col] += 0.5f * offset;
+ mbl.z_values[0][col] += offset;
+ }
+ break;
+ case 3:
+ for (uint8_t col = 0; col < 3; ++col) {
+ mbl.z_values[1][col] += 0.5f * offset;
+ mbl.z_values[2][col] += offset;
+ }
+ break;
+ }
+ }
+ }
+// SERIAL_ECHOLNPGM("Bed leveling correction finished");
+ mbl.upsample_3x3(); //bilinear interpolation from 3x3 to 7x7 points while using the same array z_values[iy][ix] for storing (just coppying measured data to new destination and interpolating between them)
+// SERIAL_ECHOLNPGM("Upsample finished");
+ mbl.active = 1; //activate mesh bed leveling
+// SERIAL_ECHOLNPGM("Mesh bed leveling activated");
+ go_home_with_z_lift();
+// SERIAL_ECHOLNPGM("Go home finished");
+ //unretract (after PINDA preheat retraction)
+ if (degHotend(active_extruder) > EXTRUDE_MINTEMP && temp_cal_active == true && calibration_status_pinda() == true && target_temperature_bed >= 50) {
+ current_position[E_AXIS] += DEFAULT_RETRACTION;
+ plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400, active_extruder);
+ }
+ KEEPALIVE_STATE(NOT_BUSY);
+ // Restore custom message state
+ lcd_setstatuspgm(_T(WELCOME_MSG));
+ custom_message = custom_message_old;
+ custom_message_type = custom_message_type_old;
+ custom_message_state = custom_message_state_old;
+ mesh_bed_leveling_flag = false;
+ mesh_bed_run_from_menu = false;
+ lcd_update(2);
+
+ }
+ break;
+
+ /**
+ * G81: Print mesh bed leveling status and bed profile if activated
+ */
+ case 81:
+ if (mbl.active) {
+ SERIAL_PROTOCOLPGM("Num X,Y: ");
+ SERIAL_PROTOCOL(MESH_NUM_X_POINTS);
+ SERIAL_PROTOCOLPGM(",");
+ SERIAL_PROTOCOL(MESH_NUM_Y_POINTS);
+ SERIAL_PROTOCOLPGM("\nZ search height: ");
+ SERIAL_PROTOCOL(MESH_HOME_Z_SEARCH);
+ SERIAL_PROTOCOLLNPGM("\nMeasured points:");
+ for (int y = MESH_NUM_Y_POINTS-1; y >= 0; y--) {
+ for (int x = 0; x < MESH_NUM_X_POINTS; x++) {
+ SERIAL_PROTOCOLPGM(" ");
+ SERIAL_PROTOCOL_F(mbl.z_values[y][x], 5);
+ }
+ SERIAL_PROTOCOLPGM("\n");
+ }
+ }
+ else
+ SERIAL_PROTOCOLLNPGM("Mesh bed leveling not active.");
+ break;
+
+#if 0
+ /**
+ * G82: Single Z probe at current location
+ *
+ * WARNING! USE WITH CAUTION! If you'll try to probe where is no leveling pad, nasty things can happen!
+ *
+ */
+ case 82:
+ SERIAL_PROTOCOLLNPGM("Finding bed ");
+ setup_for_endstop_move();
+ find_bed_induction_sensor_point_z();
+ clean_up_after_endstop_move();
+ SERIAL_PROTOCOLPGM("Bed found at: ");
+ SERIAL_PROTOCOL_F(current_position[Z_AXIS], 5);
+ SERIAL_PROTOCOLPGM("\n");
+ break;
+
+ /**
+ * G83: Prusa3D specific: Babystep in Z and store to EEPROM
+ */
+ case 83:
+ {
+ int babystepz = code_seen('S') ? code_value() : 0;
+ int BabyPosition = code_seen('P') ? code_value() : 0;
+
+ if (babystepz != 0) {
+ //FIXME Vojtech: What shall be the index of the axis Z: 3 or 4?
+ // Is the axis indexed starting with zero or one?
+ if (BabyPosition > 4) {
+ SERIAL_PROTOCOLLNPGM("Index out of bounds");
+ }else{
+ // Save it to the eeprom
+ babystepLoadZ = babystepz;
+ EEPROM_save_B(EEPROM_BABYSTEP_Z0+(BabyPosition*2),&babystepLoadZ);
+ // adjust the Z
+ babystepsTodoZadd(babystepLoadZ);
+ }
+
+ }
+
+ }
+ break;
+ /**
+ * G84: Prusa3D specific: UNDO Babystep Z (move Z axis back)
+ */
+ case 84:
+ babystepsTodoZsubtract(babystepLoadZ);
+ // babystepLoadZ = 0;
+ break;
+
+ /**
+ * G85: Prusa3D specific: Pick best babystep
+ */
+ case 85:
+ lcd_pick_babystep();
+ break;
+#endif
+
+ /**
+ * G86: Prusa3D specific: Disable babystep correction after home.
+ * This G-code will be performed at the start of a calibration script.
+ */
+ case 86:
+ calibration_status_store(CALIBRATION_STATUS_LIVE_ADJUST);
+ break;
+ /**
+ * G87: Prusa3D specific: Enable babystep correction after home
+ * This G-code will be performed at the end of a calibration script.
+ */
+ case 87:
+ calibration_status_store(CALIBRATION_STATUS_CALIBRATED);
+ break;
+
+ /**
+ * G88: Prusa3D specific: Don't know what it is for, it is in V2Calibration.gcode
+ */
+ case 88:
+ break;
+
+
+#endif // ENABLE_MESH_BED_LEVELING
+
+
+ case 90: // G90
+ relative_mode = false;
+ break;
+ case 91: // G91
+ relative_mode = true;
+ break;
+ case 92: // G92
+ if(!code_seen(axis_codes[E_AXIS]))
+ st_synchronize();
+ for(int8_t i=0; i < NUM_AXIS; i++) {
+ if(code_seen(axis_codes[i])) {
+ if(i == E_AXIS) {
+ current_position[i] = code_value();
+ plan_set_e_position(current_position[E_AXIS]);
+ }
+ else {
+ current_position[i] = code_value()+add_homing[i];
+ plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
+ }
+ }
+ }
+ break;
+
+ case 98: // G98 (activate farm mode)
+ farm_mode = 1;
+ PingTime = millis();
+ eeprom_update_byte((unsigned char *)EEPROM_FARM_MODE, farm_mode);
+ SilentModeMenu = SILENT_MODE_OFF;
+ eeprom_update_byte((unsigned char *)EEPROM_SILENT, SilentModeMenu);
+ break;
+
+ case 99: // G99 (deactivate farm mode)
+ farm_mode = 0;
+ lcd_printer_connected();
+ eeprom_update_byte((unsigned char *)EEPROM_FARM_MODE, farm_mode);
+ lcd_update(2);
+ break;
+ default:
+ printf_P(PSTR("Unknown G code: %s \n"), cmdbuffer + bufindr + CMDHDRSIZE);
+ }
+ } // end if(code_seen('G'))
+
+ else if(code_seen('M'))
+ {
+ int index;
+ for (index = 1; *(strchr_pointer + index) == ' ' || *(strchr_pointer + index) == '\t'; index++);
+
+ /*for (++strchr_pointer; *strchr_pointer == ' ' || *strchr_pointer == '\t'; ++strchr_pointer);*/
+ if (*(strchr_pointer+index) < '0' || *(strchr_pointer+index) > '9') {
+ printf_P(PSTR("Invalid M code: %s \n"), cmdbuffer + bufindr + CMDHDRSIZE);
+
+ } else
+ switch((int)code_value())
+ {
+
+ case 0: // M0 - Unconditional stop - Wait for user button press on LCD
+ case 1: // M1 - Conditional stop - Wait for user button press on LCD
+ {
+ char *src = strchr_pointer + 2;
+
+ codenum = 0;
+
+ bool hasP = false, hasS = false;
+ if (code_seen('P')) {
+ codenum = code_value(); // milliseconds to wait
+ hasP = codenum > 0;
+ }
+ if (code_seen('S')) {
+ codenum = code_value() * 1000; // seconds to wait
+ hasS = codenum > 0;
+ }
+ starpos = strchr(src, '*');
+ if (starpos != NULL) *(starpos) = '\0';
+ while (*src == ' ') ++src;
+ if (!hasP && !hasS && *src != '\0') {
+ lcd_setstatus(src);
+ } else {
+ LCD_MESSAGERPGM(_i("Wait for user..."));////MSG_USERWAIT c=0 r=0
+ }
+
+ lcd_ignore_click(); //call lcd_ignore_click aslo for else ???
+ st_synchronize();
+ previous_millis_cmd = millis();
+ if (codenum > 0){
+ codenum += millis(); // keep track of when we started waiting
+ KEEPALIVE_STATE(PAUSED_FOR_USER);
+ while(millis() < codenum && !lcd_clicked()){
+ manage_heater();
+ manage_inactivity(true);
+ lcd_update(0);
+ }
+ KEEPALIVE_STATE(IN_HANDLER);
+ lcd_ignore_click(false);
+ }else{
+ KEEPALIVE_STATE(PAUSED_FOR_USER);
+ while(!lcd_clicked()){
+ manage_heater();
+ manage_inactivity(true);
+ lcd_update(0);
+ }
+ KEEPALIVE_STATE(IN_HANDLER);
+ }
+ if (IS_SD_PRINTING)
+ LCD_MESSAGERPGM(_T(MSG_RESUMING_PRINT));
+ else
+ LCD_MESSAGERPGM(_T(WELCOME_MSG));
+ }
+ break;
+ case 17:
+ LCD_MESSAGERPGM(_i("No move."));////MSG_NO_MOVE c=0 r=0
+ enable_x();
+ enable_y();
+ enable_z();
+ enable_e0();
+ enable_e1();
+ enable_e2();
+ break;
+
+#ifdef SDSUPPORT
+ case 20: // M20 - list SD card
+ SERIAL_PROTOCOLLNRPGM(_N("Begin file list"));////MSG_BEGIN_FILE_LIST c=0 r=0
+ card.ls();
+ SERIAL_PROTOCOLLNRPGM(_N("End file list"));////MSG_END_FILE_LIST c=0 r=0
+ break;
+ case 21: // M21 - init SD card
+
+ card.initsd();
+
+ break;
+ case 22: //M22 - release SD card
+ card.release();
+
+ break;
+ case 23: //M23 - Select file
+ starpos = (strchr(strchr_pointer + 4,'*'));
+ if(starpos!=NULL)
+ *(starpos)='\0';
+ card.openFile(strchr_pointer + 4,true);
+ break;
+ case 24: //M24 - Start SD print
+ if (!card.paused)
+ failstats_reset_print();
+ card.startFileprint();
+ starttime=millis();
+ break;
+ case 25: //M25 - Pause SD print
+ card.pauseSDPrint();
+ break;
+ case 26: //M26 - Set SD index
+ if(card.cardOK && code_seen('S')) {
+ card.setIndex(code_value_long());
+ }
+ break;
+ case 27: //M27 - Get SD status
+ card.getStatus();
+ break;
+ case 28: //M28 - Start SD write
+ starpos = (strchr(strchr_pointer + 4,'*'));
+ if(starpos != NULL){
+ char* npos = strchr(CMDBUFFER_CURRENT_STRING, 'N');
+ strchr_pointer = strchr(npos,' ') + 1;
+ *(starpos) = '\0';
+ }
+ card.openFile(strchr_pointer+4,false);
+ break;
+ case 29: //M29 - Stop SD write
+ //processed in write to file routine above
+ //card,saving = false;
+ break;
+ case 30: //M30 Delete File
+ if (card.cardOK){
+ card.closefile();
+ starpos = (strchr(strchr_pointer + 4,'*'));
+ if(starpos != NULL){
+ char* npos = strchr(CMDBUFFER_CURRENT_STRING, 'N');
+ strchr_pointer = strchr(npos,' ') + 1;
+ *(starpos) = '\0';
+ }
+ card.removeFile(strchr_pointer + 4);
+ }
+ break;
+ case 32: //M32 - Select file and start SD print
+ {
+ if(card.sdprinting) {
+ st_synchronize();
+
+ }
+ starpos = (strchr(strchr_pointer + 4,'*'));
+
+ char* namestartpos = (strchr(strchr_pointer + 4,'!')); //find ! to indicate filename string start.
+ if(namestartpos==NULL)
+ {
+ namestartpos=strchr_pointer + 4; //default name position, 4 letters after the M
+ }
+ else
+ namestartpos++; //to skip the '!'
+
+ if(starpos!=NULL)
+ *(starpos)='\0';
+
+ bool call_procedure=(code_seen('P'));
+
+ if(strchr_pointer>namestartpos)
+ call_procedure=false; //false alert, 'P' found within filename
+
+ if( card.cardOK )
+ {
+ card.openFile(namestartpos,true,!call_procedure);
+ if(code_seen('S'))
+ if(strchr_pointer= 0 && pin_status <= 255)
+ pin_number = code_value();
+ for(int8_t i = 0; i < (int8_t)(sizeof(sensitive_pins)/sizeof(int)); i++)
+ {
+ if (sensitive_pins[i] == pin_number)
+ {
+ pin_number = -1;
+ break;
+ }
+ }
+ #if defined(FAN_PIN) && FAN_PIN > -1
+ if (pin_number == FAN_PIN)
+ fanSpeed = pin_status;
+ #endif
+ if (pin_number > -1)
+ {
+ pinMode(pin_number, OUTPUT);
+ digitalWrite(pin_number, pin_status);
+ analogWrite(pin_number, pin_status);
+ }
+ }
+ break;
+#endif //_DISABLE_M42_M226
+ case 44: // M44: Prusa3D: Reset the bed skew and offset calibration.
+
+ // Reset the baby step value and the baby step applied flag.
+ calibration_status_store(CALIBRATION_STATUS_ASSEMBLED);
+ eeprom_update_word((uint16_t*)EEPROM_BABYSTEP_Z, 0);
+
+ // Reset the skew and offset in both RAM and EEPROM.
+ reset_bed_offset_and_skew();
+ // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
+ // the planner will not perform any adjustments in the XY plane.
+ // Wait for the motors to stop and update the current position with the absolute values.
+ world2machine_revert_to_uncorrected();
+ break;
+
+ case 45: // M45: Prusa3D: bed skew and offset with manual Z up
+ {
+ int8_t verbosity_level = 0;
+ bool only_Z = code_seen('Z');
+ #ifdef SUPPORT_VERBOSITY
+ if (code_seen('V'))
+ {
+ // Just 'V' without a number counts as V1.
+ char c = strchr_pointer[1];
+ verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
+ }
+ #endif //SUPPORT_VERBOSITY
+ gcode_M45(only_Z, verbosity_level);
+ }
+ break;
+
+ /*
+ case 46:
+ {
+ // M46: Prusa3D: Show the assigned IP address.
+ uint8_t ip[4];
+ bool hasIP = card.ToshibaFlashAir_GetIP(ip);
+ if (hasIP) {
+ SERIAL_ECHOPGM("Toshiba FlashAir current IP: ");
+ SERIAL_ECHO(int(ip[0]));
+ SERIAL_ECHOPGM(".");
+ SERIAL_ECHO(int(ip[1]));
+ SERIAL_ECHOPGM(".");
+ SERIAL_ECHO(int(ip[2]));
+ SERIAL_ECHOPGM(".");
+ SERIAL_ECHO(int(ip[3]));
+ SERIAL_ECHOLNPGM("");
+ } else {
+ SERIAL_ECHOLNPGM("Toshiba FlashAir GetIP failed");
+ }
+ break;
+ }
+ */
+
+ case 47:
+ // M47: Prusa3D: Show end stops dialog on the display.
+ KEEPALIVE_STATE(PAUSED_FOR_USER);
+ lcd_diag_show_end_stops();
+ KEEPALIVE_STATE(IN_HANDLER);
+ break;
+
+#if 0
+ case 48: // M48: scan the bed induction sensor points, print the sensor trigger coordinates to the serial line for visualization on the PC.
+ {
+ // Disable the default update procedure of the display. We will do a modal dialog.
+ lcd_update_enable(false);
+ // Let the planner use the uncorrected coordinates.
+ mbl.reset();
+ // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
+ // the planner will not perform any adjustments in the XY plane.
+ // Wait for the motors to stop and update the current position with the absolute values.
+ world2machine_revert_to_uncorrected();
+ // Move the print head close to the bed.
+ current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
+ plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], homing_feedrate[Z_AXIS]/40, active_extruder);
+ st_synchronize();
+ // Home in the XY plane.
+ set_destination_to_current();
+ setup_for_endstop_move();
+ home_xy();
+ int8_t verbosity_level = 0;
+ if (code_seen('V')) {
+ // Just 'V' without a number counts as V1.
+ char c = strchr_pointer[1];
+ verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
+ }
+ bool success = scan_bed_induction_points(verbosity_level);
+ clean_up_after_endstop_move();
+ // Print head up.
+ current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
+ plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], homing_feedrate[Z_AXIS]/40, active_extruder);
+ st_synchronize();
+ lcd_update_enable(true);
+ break;
+ }
+#endif
+
+// M48 Z-Probe repeatability measurement function.
+//
+// Usage: M48
+//
+// This function assumes the bed has been homed. Specificaly, that a G28 command
+// as been issued prior to invoking the M48 Z-Probe repeatability measurement function.
+// Any information generated by a prior G29 Bed leveling command will be lost and need to be
+// regenerated.
+//
+// The number of samples will default to 10 if not specified. You can use upper or lower case
+// letters for any of the options EXCEPT n. n must be in lower case because Marlin uses a capital
+// N for its communication protocol and will get horribly confused if you send it a capital N.
+//
+
+#ifdef ENABLE_AUTO_BED_LEVELING
+#ifdef Z_PROBE_REPEATABILITY_TEST
+
+ case 48: // M48 Z-Probe repeatability
+ {
+ #if Z_MIN_PIN == -1
+ #error "You must have a Z_MIN endstop in order to enable calculation of Z-Probe repeatability."
+ #endif
+
+ double sum=0.0;
+ double mean=0.0;
+ double sigma=0.0;
+ double sample_set[50];
+ int verbose_level=1, n=0, j, n_samples = 10, n_legs=0;
+ double X_current, Y_current, Z_current;
+ double X_probe_location, Y_probe_location, Z_start_location, ext_position;
+
+ if (code_seen('V') || code_seen('v')) {
+ verbose_level = code_value();
+ if (verbose_level<0 || verbose_level>4 ) {
+ SERIAL_PROTOCOLPGM("?Verbose Level not plausable.\n");
+ goto Sigma_Exit;
+ }
+ }
+
+ if (verbose_level > 0) {
+ SERIAL_PROTOCOLPGM("M48 Z-Probe Repeatability test. Version 2.00\n");
+ SERIAL_PROTOCOLPGM("Full support at: http://3dprintboard.com/forum.php\n");
+ }
+
+ if (code_seen('n')) {
+ n_samples = code_value();
+ if (n_samples<4 || n_samples>50 ) {
+ SERIAL_PROTOCOLPGM("?Specified sample size not plausable.\n");
+ goto Sigma_Exit;
+ }
+ }
+
+ X_current = X_probe_location = st_get_position_mm(X_AXIS);
+ Y_current = Y_probe_location = st_get_position_mm(Y_AXIS);
+ Z_current = st_get_position_mm(Z_AXIS);
+ Z_start_location = st_get_position_mm(Z_AXIS) + Z_RAISE_BEFORE_PROBING;
+ ext_position = st_get_position_mm(E_AXIS);
+
+ if (code_seen('X') || code_seen('x') ) {
+ X_probe_location = code_value() - X_PROBE_OFFSET_FROM_EXTRUDER;
+ if (X_probe_locationX_MAX_POS ) {
+ SERIAL_PROTOCOLPGM("?Specified X position out of range.\n");
+ goto Sigma_Exit;
+ }
+ }
+
+ if (code_seen('Y') || code_seen('y') ) {
+ Y_probe_location = code_value() - Y_PROBE_OFFSET_FROM_EXTRUDER;
+ if (Y_probe_locationY_MAX_POS ) {
+ SERIAL_PROTOCOLPGM("?Specified Y position out of range.\n");
+ goto Sigma_Exit;
+ }
+ }
+
+ if (code_seen('L') || code_seen('l') ) {
+ n_legs = code_value();
+ if ( n_legs==1 )
+ n_legs = 2;
+ if ( n_legs<0 || n_legs>15 ) {
+ SERIAL_PROTOCOLPGM("?Specified number of legs in movement not plausable.\n");
+ goto Sigma_Exit;
+ }
+ }
+
+//
+// Do all the preliminary setup work. First raise the probe.
+//
+
+ st_synchronize();
+ plan_bed_level_matrix.set_to_identity();
+ plan_buffer_line( X_current, Y_current, Z_start_location,
+ ext_position,
+ homing_feedrate[Z_AXIS]/60,
+ active_extruder);
+ st_synchronize();
+
+//
+// Now get everything to the specified probe point So we can safely do a probe to
+// get us close to the bed. If the Z-Axis is far from the bed, we don't want to
+// use that as a starting point for each probe.
+//
+ if (verbose_level > 2)
+ SERIAL_PROTOCOL("Positioning probe for the test.\n");
+
+ plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
+ ext_position,
+ homing_feedrate[X_AXIS]/60,
+ active_extruder);
+ st_synchronize();
+
+ current_position[X_AXIS] = X_current = st_get_position_mm(X_AXIS);
+ current_position[Y_AXIS] = Y_current = st_get_position_mm(Y_AXIS);
+ current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
+ current_position[E_AXIS] = ext_position = st_get_position_mm(E_AXIS);
+
+//
+// OK, do the inital probe to get us close to the bed.
+// Then retrace the right amount and use that in subsequent probes
+//
+
+ setup_for_endstop_move();
+ run_z_probe();
+
+ current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
+ Z_start_location = st_get_position_mm(Z_AXIS) + Z_RAISE_BEFORE_PROBING;
+
+ plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
+ ext_position,
+ homing_feedrate[X_AXIS]/60,
+ active_extruder);
+ st_synchronize();
+ current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
+
+ for( n=0; nX_MAX_POS)
+ X_current = X_MAX_POS;
+
+ if ( Y_currentY_MAX_POS)
+ Y_current = Y_MAX_POS;
+
+ if (verbose_level>3 ) {
+ SERIAL_ECHOPAIR("x: ", X_current);
+ SERIAL_ECHOPAIR("y: ", Y_current);
+ SERIAL_PROTOCOLLNPGM("");
+ }
+
+ do_blocking_move_to( X_current, Y_current, Z_current );
+ }
+ do_blocking_move_to( X_probe_location, Y_probe_location, Z_start_location); // Go back to the probe location
+ }
+
+ setup_for_endstop_move();
+ run_z_probe();
+
+ sample_set[n] = current_position[Z_AXIS];
+
+//
+// Get the current mean for the data points we have so far
+//
+ sum=0.0;
+ for( j=0; j<=n; j++) {
+ sum = sum + sample_set[j];
+ }
+ mean = sum / (double (n+1));
+//
+// Now, use that mean to calculate the standard deviation for the
+// data points we have so far
+//
+
+ sum=0.0;
+ for( j=0; j<=n; j++) {
+ sum = sum + (sample_set[j]-mean) * (sample_set[j]-mean);
+ }
+ sigma = sqrt( sum / (double (n+1)) );
+
+ if (verbose_level > 1) {
+ SERIAL_PROTOCOL(n+1);
+ SERIAL_PROTOCOL(" of ");
+ SERIAL_PROTOCOL(n_samples);
+ SERIAL_PROTOCOLPGM(" z: ");
+ SERIAL_PROTOCOL_F(current_position[Z_AXIS], 6);
+ }
+
+ if (verbose_level > 2) {
+ SERIAL_PROTOCOL(" mean: ");
+ SERIAL_PROTOCOL_F(mean,6);
+
+ SERIAL_PROTOCOL(" sigma: ");
+ SERIAL_PROTOCOL_F(sigma,6);
+ }
+
+ if (verbose_level > 0)
+ SERIAL_PROTOCOLPGM("\n");
+
+ plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
+ current_position[E_AXIS], homing_feedrate[Z_AXIS]/60, active_extruder);
+ st_synchronize();
+
+ }
+
+ delay(1000);
+
+ clean_up_after_endstop_move();
+
+// enable_endstops(true);
+
+ if (verbose_level > 0) {
+ SERIAL_PROTOCOLPGM("Mean: ");
+ SERIAL_PROTOCOL_F(mean, 6);
+ SERIAL_PROTOCOLPGM("\n");
+ }
+
+SERIAL_PROTOCOLPGM("Standard Deviation: ");
+SERIAL_PROTOCOL_F(sigma, 6);
+SERIAL_PROTOCOLPGM("\n\n");
+
+Sigma_Exit:
+ break;
+ }
+#endif // Z_PROBE_REPEATABILITY_TEST
+#endif // ENABLE_AUTO_BED_LEVELING
+ case 73: //M73 show percent done and time remaining
+ if(code_seen('P')) print_percent_done_normal = code_value();
+ if(code_seen('R')) print_time_remaining_normal = code_value();
+ if(code_seen('Q')) print_percent_done_silent = code_value();
+ if(code_seen('S')) print_time_remaining_silent = code_value();
+
+ {
+ const char* _msg_mode_done_remain = _N("%S MODE: Percent done: %d; print time remaining in mins: %d\n");
+ printf_P(_msg_mode_done_remain, _N("NORMAL"), int(print_percent_done_normal), print_time_remaining_normal);
+ printf_P(_msg_mode_done_remain, _N("SILENT"), int(print_percent_done_silent), print_time_remaining_silent);
+ }
+ break;
+
+ case 104: // M104
+ if(setTargetedHotend(104)){
+ break;
+ }
+ if (code_seen('S')) setTargetHotend(code_value(), tmp_extruder);
+ setWatch();
+ break;
+ case 112: // M112 -Emergency Stop
+ kill(_n(""), 3);
+ break;
+ case 140: // M140 set bed temp
+ if (code_seen('S')) setTargetBed(code_value());
+ break;
+ case 105 : // M105
+ if(setTargetedHotend(105)){
+ break;
+ }
+ #if defined(TEMP_0_PIN) && TEMP_0_PIN > -1
+ SERIAL_PROTOCOLPGM("ok T:");
+ SERIAL_PROTOCOL_F(degHotend(tmp_extruder),1);
+ SERIAL_PROTOCOLPGM(" /");
+ SERIAL_PROTOCOL_F(degTargetHotend(tmp_extruder),1);
+ #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
+ SERIAL_PROTOCOLPGM(" B:");
+ SERIAL_PROTOCOL_F(degBed(),1);
+ SERIAL_PROTOCOLPGM(" /");
+ SERIAL_PROTOCOL_F(degTargetBed(),1);
+ #endif //TEMP_BED_PIN
+ for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
+ SERIAL_PROTOCOLPGM(" T");
+ SERIAL_PROTOCOL(cur_extruder);
+ SERIAL_PROTOCOLPGM(":");
+ SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
+ SERIAL_PROTOCOLPGM(" /");
+ SERIAL_PROTOCOL_F(degTargetHotend(cur_extruder),1);
+ }
+ #else
+ SERIAL_ERROR_START;
+ SERIAL_ERRORLNRPGM(_i("No thermistors - no temperature"));////MSG_ERR_NO_THERMISTORS c=0 r=0
+ #endif
+
+ SERIAL_PROTOCOLPGM(" @:");
+ #ifdef EXTRUDER_WATTS
+ SERIAL_PROTOCOL((EXTRUDER_WATTS * getHeaterPower(tmp_extruder))/127);
+ SERIAL_PROTOCOLPGM("W");
+ #else
+ SERIAL_PROTOCOL(getHeaterPower(tmp_extruder));
+ #endif
+
+ SERIAL_PROTOCOLPGM(" B@:");
+ #ifdef BED_WATTS
+ SERIAL_PROTOCOL((BED_WATTS * getHeaterPower(-1))/127);
+ SERIAL_PROTOCOLPGM("W");
+ #else
+ SERIAL_PROTOCOL(getHeaterPower(-1));
+ #endif
+
+#ifdef PINDA_THERMISTOR
+ SERIAL_PROTOCOLPGM(" P:");
+ SERIAL_PROTOCOL_F(current_temperature_pinda,1);
+#endif //PINDA_THERMISTOR
+
+#ifdef AMBIENT_THERMISTOR
+ SERIAL_PROTOCOLPGM(" A:");
+ SERIAL_PROTOCOL_F(current_temperature_ambient,1);
+#endif //AMBIENT_THERMISTOR
+
+
+ #ifdef SHOW_TEMP_ADC_VALUES
+ {float raw = 0.0;
+
+ #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
+ SERIAL_PROTOCOLPGM(" ADC B:");
+ SERIAL_PROTOCOL_F(degBed(),1);
+ SERIAL_PROTOCOLPGM("C->");
+ raw = rawBedTemp();
+ SERIAL_PROTOCOL_F(raw/OVERSAMPLENR,5);
+ SERIAL_PROTOCOLPGM(" Rb->");
+ SERIAL_PROTOCOL_F(100 * (1 + (PtA * (raw/OVERSAMPLENR)) + (PtB * sq((raw/OVERSAMPLENR)))), 5);
+ SERIAL_PROTOCOLPGM(" Rxb->");
+ SERIAL_PROTOCOL_F(raw, 5);
+ #endif
+ for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
+ SERIAL_PROTOCOLPGM(" T");
+ SERIAL_PROTOCOL(cur_extruder);
+ SERIAL_PROTOCOLPGM(":");
+ SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
+ SERIAL_PROTOCOLPGM("C->");
+ raw = rawHotendTemp(cur_extruder);
+ SERIAL_PROTOCOL_F(raw/OVERSAMPLENR,5);
+ SERIAL_PROTOCOLPGM(" Rt");
+ SERIAL_PROTOCOL(cur_extruder);
+ SERIAL_PROTOCOLPGM("->");
+ SERIAL_PROTOCOL_F(100 * (1 + (PtA * (raw/OVERSAMPLENR)) + (PtB * sq((raw/OVERSAMPLENR)))), 5);
+ SERIAL_PROTOCOLPGM(" Rx");
+ SERIAL_PROTOCOL(cur_extruder);
+ SERIAL_PROTOCOLPGM("->");
+ SERIAL_PROTOCOL_F(raw, 5);
+ }}
+ #endif
+ SERIAL_PROTOCOLLN("");
+ KEEPALIVE_STATE(NOT_BUSY);
+ return;
+ break;
+ case 109:
+ {// M109 - Wait for extruder heater to reach target.
+ if(setTargetedHotend(109)){
+ break;
+ }
+ LCD_MESSAGERPGM(_T(MSG_HEATING));
+ heating_status = 1;
+ if (farm_mode) { prusa_statistics(1); };
+
+#ifdef AUTOTEMP
+ autotemp_enabled=false;
+ #endif
+ if (code_seen('S')) {
+ setTargetHotend(code_value(), tmp_extruder);
+ CooldownNoWait = true;
+ } else if (code_seen('R')) {
+ setTargetHotend(code_value(), tmp_extruder);
+ CooldownNoWait = false;
+ }
+ #ifdef AUTOTEMP
+ if (code_seen('S')) autotemp_min=code_value();
+ if (code_seen('B')) autotemp_max=code_value();
+ if (code_seen('F'))
+ {
+ autotemp_factor=code_value();
+ autotemp_enabled=true;
+ }
+ #endif
+
+ setWatch();
+ codenum = millis();
+
+ /* See if we are heating up or cooling down */
+ target_direction = isHeatingHotend(tmp_extruder); // true if heating, false if cooling
+
+ KEEPALIVE_STATE(NOT_BUSY);
+
+ cancel_heatup = false;
+
+ wait_for_heater(codenum); //loops until target temperature is reached
+
+ LCD_MESSAGERPGM(_T(MSG_HEATING_COMPLETE));
+ KEEPALIVE_STATE(IN_HANDLER);
+ heating_status = 2;
+ if (farm_mode) { prusa_statistics(2); };
+
+ //starttime=millis();
+ previous_millis_cmd = millis();
+ }
+ break;
+ case 190: // M190 - Wait for bed heater to reach target.
+ #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
+ LCD_MESSAGERPGM(_T(MSG_BED_HEATING));
+ heating_status = 3;
+ if (farm_mode) { prusa_statistics(1); };
+ if (code_seen('S'))
+ {
+ setTargetBed(code_value());
+ CooldownNoWait = true;
+ }
+ else if (code_seen('R'))
+ {
+ setTargetBed(code_value());
+ CooldownNoWait = false;
+ }
+ codenum = millis();
+
+ cancel_heatup = false;
+ target_direction = isHeatingBed(); // true if heating, false if cooling
+
+ KEEPALIVE_STATE(NOT_BUSY);
+ while ( (target_direction)&&(!cancel_heatup) ? (isHeatingBed()) : (isCoolingBed()&&(CooldownNoWait==false)) )
+ {
+ if(( millis() - codenum) > 1000 ) //Print Temp Reading every 1 second while heating up.
+ {
+ if (!farm_mode) {
+ float tt = degHotend(active_extruder);
+ SERIAL_PROTOCOLPGM("T:");
+ SERIAL_PROTOCOL(tt);
+ SERIAL_PROTOCOLPGM(" E:");
+ SERIAL_PROTOCOL((int)active_extruder);
+ SERIAL_PROTOCOLPGM(" B:");
+ SERIAL_PROTOCOL_F(degBed(), 1);
+ SERIAL_PROTOCOLLN("");
+ }
+ codenum = millis();
+
+ }
+ manage_heater();
+ manage_inactivity();
+ lcd_update(0);
+ }
+ LCD_MESSAGERPGM(_T(MSG_BED_DONE));
+ KEEPALIVE_STATE(IN_HANDLER);
+ heating_status = 4;
+
+ previous_millis_cmd = millis();
+ #endif
+ break;
+
+ #if defined(FAN_PIN) && FAN_PIN > -1
+ case 106: //M106 Fan On
+ if (code_seen('S')){
+ fanSpeed=constrain(code_value(),0,255);
+ }
+ else {
+ fanSpeed=255;
+ }
+ break;
+ case 107: //M107 Fan Off
+ fanSpeed = 0;
+ break;
+ #endif //FAN_PIN
+
+ #if defined(PS_ON_PIN) && PS_ON_PIN > -1
+ case 80: // M80 - Turn on Power Supply
+ SET_OUTPUT(PS_ON_PIN); //GND
+ WRITE(PS_ON_PIN, PS_ON_AWAKE);
+
+ // If you have a switch on suicide pin, this is useful
+ // if you want to start another print with suicide feature after
+ // a print without suicide...
+ #if defined SUICIDE_PIN && SUICIDE_PIN > -1
+ SET_OUTPUT(SUICIDE_PIN);
+ WRITE(SUICIDE_PIN, HIGH);
+ #endif
+
+ powersupply = true;
+ LCD_MESSAGERPGM(_T(WELCOME_MSG));
+ lcd_update(0);
+ break;
+ #endif
+
+ case 81: // M81 - Turn off Power Supply
+ disable_heater();
+ st_synchronize();
+ disable_e0();
+ disable_e1();
+ disable_e2();
+ finishAndDisableSteppers();
+ fanSpeed = 0;
+ delay(1000); // Wait a little before to switch off
+ #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
+ st_synchronize();
+ suicide();
+ #elif defined(PS_ON_PIN) && PS_ON_PIN > -1
+ SET_OUTPUT(PS_ON_PIN);
+ WRITE(PS_ON_PIN, PS_ON_ASLEEP);
+ #endif
+ powersupply = false;
+ LCD_MESSAGERPGM(CAT4(CUSTOM_MENDEL_NAME,PSTR(" "),MSG_OFF,PSTR(".")));
+ lcd_update(0);
+ break;
+
+ case 82:
+ axis_relative_modes[3] = false;
+ break;
+ case 83:
+ axis_relative_modes[3] = true;
+ break;
+ case 18: //compatibility
+ case 84: // M84
+ if(code_seen('S')){
+ stepper_inactive_time = code_value() * 1000;
+ }
+ else
+ {
+ bool all_axis = !((code_seen(axis_codes[X_AXIS])) || (code_seen(axis_codes[Y_AXIS])) || (code_seen(axis_codes[Z_AXIS]))|| (code_seen(axis_codes[E_AXIS])));
+ if(all_axis)
+ {
+ st_synchronize();
+ disable_e0();
+ disable_e1();
+ disable_e2();
+ finishAndDisableSteppers();
+ }
+ else
+ {
+ st_synchronize();
+ if (code_seen('X')) disable_x();
+ if (code_seen('Y')) disable_y();
+ if (code_seen('Z')) disable_z();
+#if ((E0_ENABLE_PIN != X_ENABLE_PIN) && (E1_ENABLE_PIN != Y_ENABLE_PIN)) // Only enable on boards that have seperate ENABLE_PINS
+ if (code_seen('E')) {
+ disable_e0();
+ disable_e1();
+ disable_e2();
+ }
+ #endif
+ }
+ }
+ //in the end of print set estimated time to end of print and extruders used during print to default values for next print
+ print_time_remaining_init();
+ snmm_filaments_used = 0;
+ break;
+ case 85: // M85
+ if(code_seen('S')) {
+ max_inactive_time = code_value() * 1000;
+ }
+ break;
+#ifdef SAFETYTIMER
+ case 86: // M86 - set safety timer expiration time in seconds; M86 S0 will disable safety timer
+ //when safety timer expires heatbed and nozzle target temperatures are set to zero
+ if (code_seen('S')) {
+ safetytimer_inactive_time = code_value() * 1000;
+ safetyTimer.start();
+ }
+ break;
+#endif
+ case 92: // M92
+ for(int8_t i=0; i < NUM_AXIS; i++)
+ {
+ if(code_seen(axis_codes[i]))
+ {
+ if(i == 3) { // E
+ float value = code_value();
+ if(value < 20.0) {
+ float factor = axis_steps_per_unit[i] / value; // increase e constants if M92 E14 is given for netfab.
+ max_jerk[E_AXIS] *= factor;
+ max_feedrate[i] *= factor;
+ axis_steps_per_sqr_second[i] *= factor;
+ }
+ axis_steps_per_unit[i] = value;
+ }
+ else {
+ axis_steps_per_unit[i] = code_value();
+ }
+ }
+ }
+ break;
+ case 110: // M110 - reset line pos
+ if (code_seen('N'))
+ gcode_LastN = code_value_long();
+ break;
+#ifdef HOST_KEEPALIVE_FEATURE
+ case 113: // M113 - Get or set Host Keepalive interval
+ if (code_seen('S')) {
+ host_keepalive_interval = (uint8_t)code_value_short();
+// NOMORE(host_keepalive_interval, 60);
+ }
+ else {
+ SERIAL_ECHO_START;
+ SERIAL_ECHOPAIR("M113 S", (unsigned long)host_keepalive_interval);
+ SERIAL_PROTOCOLLN("");
+ }
+ break;
+#endif
+ case 115: // M115
+ if (code_seen('V')) {
+ // Report the Prusa version number.
+ SERIAL_PROTOCOLLNRPGM(FW_VERSION_STR_P());
+ } else if (code_seen('U')) {
+ // Check the firmware version provided. If the firmware version provided by the U code is higher than the currently running firmware,
+ // pause the print and ask the user to upgrade the firmware.
+ show_upgrade_dialog_if_version_newer(++ strchr_pointer);
+ } else {
+ SERIAL_ECHOPGM("FIRMWARE_NAME:Prusa-Firmware ");
+ SERIAL_ECHORPGM(FW_VERSION_STR_P());
+ SERIAL_ECHOPGM(" based on Marlin FIRMWARE_URL:https://github.com/prusa3d/Prusa-Firmware PROTOCOL_VERSION:");
+ SERIAL_ECHOPGM(PROTOCOL_VERSION);
+ SERIAL_ECHOPGM(" MACHINE_TYPE:");
+ SERIAL_ECHOPGM(CUSTOM_MENDEL_NAME);
+ SERIAL_ECHOPGM(" EXTRUDER_COUNT:");
+ SERIAL_ECHOPGM(STRINGIFY(EXTRUDERS));
+ SERIAL_ECHOPGM(" UUID:");
+ SERIAL_ECHOLNPGM(MACHINE_UUID);
+ }
+ break;
+/* case 117: // M117 display message
+ starpos = (strchr(strchr_pointer + 5,'*'));
+ if(starpos!=NULL)
+ *(starpos)='\0';
+ lcd_setstatus(strchr_pointer + 5);
+ break;*/
+ case 114: // M114
+ gcode_M114();
+ break;
+ case 120: // M120
+ enable_endstops(false) ;
+ break;
+ case 121: // M121
+ enable_endstops(true) ;
+ break;
+ case 119: // M119
+ SERIAL_PROTOCOLRPGM(_N("Reporting endstop status"));////MSG_M119_REPORT c=0 r=0
+ SERIAL_PROTOCOLLN("");
+ #if defined(X_MIN_PIN) && X_MIN_PIN > -1
+ SERIAL_PROTOCOLRPGM(_n("x_min: "));////MSG_X_MIN c=0 r=0
+ if(READ(X_MIN_PIN)^X_MIN_ENDSTOP_INVERTING){
+ SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_HIT));
+ }else{
+ SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_OPEN));
+ }
+ SERIAL_PROTOCOLLN("");
+ #endif
+ #if defined(X_MAX_PIN) && X_MAX_PIN > -1
+ SERIAL_PROTOCOLRPGM(_n("x_max: "));////MSG_X_MAX c=0 r=0
+ if(READ(X_MAX_PIN)^X_MAX_ENDSTOP_INVERTING){
+ SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_HIT));
+ }else{
+ SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_OPEN));
+ }
+ SERIAL_PROTOCOLLN("");
+ #endif
+ #if defined(Y_MIN_PIN) && Y_MIN_PIN > -1
+ SERIAL_PROTOCOLRPGM(_n("y_min: "));////MSG_Y_MIN c=0 r=0
+ if(READ(Y_MIN_PIN)^Y_MIN_ENDSTOP_INVERTING){
+ SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_HIT));
+ }else{
+ SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_OPEN));
+ }
+ SERIAL_PROTOCOLLN("");
+ #endif
+ #if defined(Y_MAX_PIN) && Y_MAX_PIN > -1
+ SERIAL_PROTOCOLRPGM(_n("y_max: "));////MSG_Y_MAX c=0 r=0
+ if(READ(Y_MAX_PIN)^Y_MAX_ENDSTOP_INVERTING){
+ SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_HIT));
+ }else{
+ SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_OPEN));
+ }
+ SERIAL_PROTOCOLLN("");
+ #endif
+ #if defined(Z_MIN_PIN) && Z_MIN_PIN > -1
+ SERIAL_PROTOCOLRPGM(MSG_Z_MIN);
+ if(READ(Z_MIN_PIN)^Z_MIN_ENDSTOP_INVERTING){
+ SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_HIT));
+ }else{
+ SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_OPEN));
+ }
+ SERIAL_PROTOCOLLN("");
+ #endif
+ #if defined(Z_MAX_PIN) && Z_MAX_PIN > -1
+ SERIAL_PROTOCOLRPGM(MSG_Z_MAX);
+ if(READ(Z_MAX_PIN)^Z_MAX_ENDSTOP_INVERTING){
+ SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_HIT));
+ }else{
+ SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_OPEN));
+ }
+ SERIAL_PROTOCOLLN("");
+ #endif
+ break;
+ //TODO: update for all axis, use for loop
+ #ifdef BLINKM
+ case 150: // M150
+ {
+ byte red;
+ byte grn;
+ byte blu;
+
+ if(code_seen('R')) red = code_value();
+ if(code_seen('U')) grn = code_value();
+ if(code_seen('B')) blu = code_value();
+
+ SendColors(red,grn,blu);
+ }
+ break;
+ #endif //BLINKM
+ case 200: // M200 D set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
+ {
+
+ tmp_extruder = active_extruder;
+ if(code_seen('T')) {
+ tmp_extruder = code_value();
+ if(tmp_extruder >= EXTRUDERS) {
+ SERIAL_ECHO_START;
+ SERIAL_ECHO(_i("M200 Invalid extruder "));////MSG_M200_INVALID_EXTRUDER c=0 r=0
+ break;
+ }
+ }
+
+ float area = .0;
+ if(code_seen('D')) {
+ float diameter = (float)code_value();
+ if (diameter == 0.0) {
+ // setting any extruder filament size disables volumetric on the assumption that
+ // slicers either generate in extruder values as cubic mm or as as filament feeds
+ // for all extruders
+ volumetric_enabled = false;
+ } else {
+ filament_size[tmp_extruder] = (float)code_value();
+ // make sure all extruders have some sane value for the filament size
+ filament_size[0] = (filament_size[0] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : filament_size[0]);
+ #if EXTRUDERS > 1
+ filament_size[1] = (filament_size[1] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : filament_size[1]);
+ #if EXTRUDERS > 2
+ filament_size[2] = (filament_size[2] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : filament_size[2]);
+ #endif
+ #endif
+ volumetric_enabled = true;
+ }
+ } else {
+ //reserved for setting filament diameter via UFID or filament measuring device
+ break;
+ }
+ calculate_extruder_multipliers();
+ }
+ break;
+ case 201: // M201
+ for(int8_t i=0; i < NUM_AXIS; i++)
+ {
+ if(code_seen(axis_codes[i]))
+ {
+ max_acceleration_units_per_sq_second[i] = code_value();
+ }
+ }
+ // steps per sq second need to be updated to agree with the units per sq second (as they are what is used in the planner)
+ reset_acceleration_rates();
+ break;
+ #if 0 // Not used for Sprinter/grbl gen6
+ case 202: // M202
+ for(int8_t i=0; i < NUM_AXIS; i++) {
+ if(code_seen(axis_codes[i])) axis_travel_steps_per_sqr_second[i] = code_value() * axis_steps_per_unit[i];
+ }
+ break;
+ #endif
+ case 203: // M203 max feedrate mm/sec
+ for(int8_t i=0; i < NUM_AXIS; i++) {
+ if(code_seen(axis_codes[i])) max_feedrate[i] = code_value();
+ }
+ break;
+ case 204: // M204 acclereration S normal moves T filmanent only moves
+ {
+ if(code_seen('S')) acceleration = code_value() ;
+ if(code_seen('T')) retract_acceleration = code_value() ;
+ }
+ break;
+ case 205: //M205 advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk
+ {
+ if(code_seen('S')) minimumfeedrate = code_value();
+ if(code_seen('T')) mintravelfeedrate = code_value();
+ if(code_seen('B')) minsegmenttime = code_value() ;
+ if(code_seen('X')) max_jerk[X_AXIS] = max_jerk[Y_AXIS] = code_value();
+ if(code_seen('Y')) max_jerk[Y_AXIS] = code_value();
+ if(code_seen('Z')) max_jerk[Z_AXIS] = code_value();
+ if(code_seen('E')) max_jerk[E_AXIS] = code_value();
+ if (max_jerk[X_AXIS] > DEFAULT_XJERK) max_jerk[X_AXIS] = DEFAULT_XJERK;
+ if (max_jerk[Y_AXIS] > DEFAULT_YJERK) max_jerk[Y_AXIS] = DEFAULT_YJERK;
+ }
+ break;
+ case 206: // M206 additional homing offset
+ for(int8_t i=0; i < 3; i++)
+ {
+ if(code_seen(axis_codes[i])) add_homing[i] = code_value();
+ }
+ break;
+ #ifdef FWRETRACT
+ case 207: //M207 - set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop]
+ {
+ if(code_seen('S'))
+ {
+ retract_length = code_value() ;
+ }
+ if(code_seen('F'))
+ {
+ retract_feedrate = code_value()/60 ;
+ }
+ if(code_seen('Z'))
+ {
+ retract_zlift = code_value() ;
+ }
+ }break;
+ case 208: // M208 - set retract recover length S[positive mm surplus to the M207 S*] F[feedrate mm/min]
+ {
+ if(code_seen('S'))
+ {
+ retract_recover_length = code_value() ;
+ }
+ if(code_seen('F'))
+ {
+ retract_recover_feedrate = code_value()/60 ;
+ }
+ }break;
+ case 209: // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
+ {
+ if(code_seen('S'))
+ {
+ int t= code_value() ;
+ switch(t)
+ {
+ case 0:
+ {
+ autoretract_enabled=false;
+ retracted[0]=false;
+ #if EXTRUDERS > 1
+ retracted[1]=false;
+ #endif
+ #if EXTRUDERS > 2
+ retracted[2]=false;
+ #endif
+ }break;
+ case 1:
+ {
+ autoretract_enabled=true;
+ retracted[0]=false;
+ #if EXTRUDERS > 1
+ retracted[1]=false;
+ #endif
+ #if EXTRUDERS > 2
+ retracted[2]=false;
+ #endif
+ }break;
+ default:
+ SERIAL_ECHO_START;
+ SERIAL_ECHORPGM(MSG_UNKNOWN_COMMAND);
+ SERIAL_ECHO(CMDBUFFER_CURRENT_STRING);
+ SERIAL_ECHOLNPGM("\"(1)");
+ }
+ }
+
+ }break;
+ #endif // FWRETRACT
+ #if EXTRUDERS > 1
+ case 218: // M218 - set hotend offset (in mm), T X Y
+ {
+ if(setTargetedHotend(218)){
+ break;
+ }
+ if(code_seen('X'))
+ {
+ extruder_offset[X_AXIS][tmp_extruder] = code_value();
+ }
+ if(code_seen('Y'))
+ {
+ extruder_offset[Y_AXIS][tmp_extruder] = code_value();
+ }
+ SERIAL_ECHO_START;
+ SERIAL_ECHORPGM(MSG_HOTEND_OFFSET);
+ for(tmp_extruder = 0; tmp_extruder < EXTRUDERS; tmp_extruder++)
+ {
+ SERIAL_ECHO(" ");
+ SERIAL_ECHO(extruder_offset[X_AXIS][tmp_extruder]);
+ SERIAL_ECHO(",");
+ SERIAL_ECHO(extruder_offset[Y_AXIS][tmp_extruder]);
+ }
+ SERIAL_ECHOLN("");
+ }break;
+ #endif
+ case 220: // M220 S- set speed factor override percentage
+ {
+ if(code_seen('S'))
+ {
+ feedmultiply = code_value() ;
+ }
+ }
+ break;
+ case 221: // M221 S- set extrude factor override percentage
+ {
+ if(code_seen('S'))
+ {
+ int tmp_code = code_value();
+ if (code_seen('T'))
+ {
+ if(setTargetedHotend(221)){
+ break;
+ }
+ extruder_multiply[tmp_extruder] = tmp_code;
+ }
+ else
+ {
+ extrudemultiply = tmp_code ;
+ }
+ }
+ calculate_extruder_multipliers();
+ }
+ break;
+
+#ifndef _DISABLE_M42_M226
+ case 226: // M226 P S- Wait until the specified pin reaches the state required
+ {
+ if(code_seen('P')){
+ int pin_number = code_value(); // pin number
+ int pin_state = -1; // required pin state - default is inverted
+
+ if(code_seen('S')) pin_state = code_value(); // required pin state
+
+ if(pin_state >= -1 && pin_state <= 1){
+
+ for(int8_t i = 0; i < (int8_t)(sizeof(sensitive_pins)/sizeof(int)); i++)
+ {
+ if (sensitive_pins[i] == pin_number)
+ {
+ pin_number = -1;
+ break;
+ }
+ }
+
+ if (pin_number > -1)
+ {
+ int target = LOW;
+
+ st_synchronize();
+
+ pinMode(pin_number, INPUT);
+
+ switch(pin_state){
+ case 1:
+ target = HIGH;
+ break;
+
+ case 0:
+ target = LOW;
+ break;
+
+ case -1:
+ target = !digitalRead(pin_number);
+ break;
+ }
+
+ while(digitalRead(pin_number) != target){
+ manage_heater();
+ manage_inactivity();
+ lcd_update(0);
+ }
+ }
+ }
+ }
+ }
+ break;
+#endif //_DISABLE_M42_M226
+
+ #if NUM_SERVOS > 0
+ case 280: // M280 - set servo position absolute. P: servo index, S: angle or microseconds
+ {
+ int servo_index = -1;
+ int servo_position = 0;
+ if (code_seen('P'))
+ servo_index = code_value();
+ if (code_seen('S')) {
+ servo_position = code_value();
+ if ((servo_index >= 0) && (servo_index < NUM_SERVOS)) {
+#if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
+ servos[servo_index].attach(0);
+#endif
+ servos[servo_index].write(servo_position);
+#if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
+ delay(PROBE_SERVO_DEACTIVATION_DELAY);
+ servos[servo_index].detach();
+#endif
+ }
+ else {
+ SERIAL_ECHO_START;
+ SERIAL_ECHO("Servo ");
+ SERIAL_ECHO(servo_index);
+ SERIAL_ECHOLN(" out of range");
+ }
+ }
+ else if (servo_index >= 0) {
+ SERIAL_PROTOCOL(_T(MSG_OK));
+ SERIAL_PROTOCOL(" Servo ");
+ SERIAL_PROTOCOL(servo_index);
+ SERIAL_PROTOCOL(": ");
+ SERIAL_PROTOCOL(servos[servo_index].read());
+ SERIAL_PROTOCOLLN("");
+ }
+ }
+ break;
+ #endif // NUM_SERVOS > 0
+
+ #if (LARGE_FLASH == true && ( BEEPER > 0 || defined(ULTRALCD) || defined(LCD_USE_I2C_BUZZER)))
+ case 300: // M300
+ {
+ int beepS = code_seen('S') ? code_value() : 110;
+ int beepP = code_seen('P') ? code_value() : 1000;
+ if (beepS > 0)
+ {
+ #if BEEPER > 0
+ tone(BEEPER, beepS);
+ delay(beepP);
+ noTone(BEEPER);
+ #endif
+ }
+ else
+ {
+ delay(beepP);
+ }
+ }
+ break;
+ #endif // M300
+
+ #ifdef PIDTEMP
+ case 301: // M301
+ {
+ if(code_seen('P')) Kp = code_value();
+ if(code_seen('I')) Ki = scalePID_i(code_value());
+ if(code_seen('D')) Kd = scalePID_d(code_value());
+
+ #ifdef PID_ADD_EXTRUSION_RATE
+ if(code_seen('C')) Kc = code_value();
+ #endif
+
+ updatePID();
+ SERIAL_PROTOCOLRPGM(_T(MSG_OK));
+ SERIAL_PROTOCOL(" p:");
+ SERIAL_PROTOCOL(Kp);
+ SERIAL_PROTOCOL(" i:");
+ SERIAL_PROTOCOL(unscalePID_i(Ki));
+ SERIAL_PROTOCOL(" d:");
+ SERIAL_PROTOCOL(unscalePID_d(Kd));
+ #ifdef PID_ADD_EXTRUSION_RATE
+ SERIAL_PROTOCOL(" c:");
+ //Kc does not have scaling applied above, or in resetting defaults
+ SERIAL_PROTOCOL(Kc);
+ #endif
+ SERIAL_PROTOCOLLN("");
+ }
+ break;
+ #endif //PIDTEMP
+ #ifdef PIDTEMPBED
+ case 304: // M304
+ {
+ if(code_seen('P')) bedKp = code_value();
+ if(code_seen('I')) bedKi = scalePID_i(code_value());
+ if(code_seen('D')) bedKd = scalePID_d(code_value());
+
+ updatePID();
+ SERIAL_PROTOCOLRPGM(_T(MSG_OK));
+ SERIAL_PROTOCOL(" p:");
+ SERIAL_PROTOCOL(bedKp);
+ SERIAL_PROTOCOL(" i:");
+ SERIAL_PROTOCOL(unscalePID_i(bedKi));
+ SERIAL_PROTOCOL(" d:");
+ SERIAL_PROTOCOL(unscalePID_d(bedKd));
+ SERIAL_PROTOCOLLN("");
+ }
+ break;
+ #endif //PIDTEMP
+ case 240: // M240 Triggers a camera by emulating a Canon RC-1 : http://www.doc-diy.net/photo/rc-1_hacked/
+ {
+ #ifdef CHDK
+
+ SET_OUTPUT(CHDK);
+ WRITE(CHDK, HIGH);
+ chdkHigh = millis();
+ chdkActive = true;
+
+ #else
+
+ #if defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1
+ const uint8_t NUM_PULSES=16;
+ const float PULSE_LENGTH=0.01524;
+ for(int i=0; i < NUM_PULSES; i++) {
+ WRITE(PHOTOGRAPH_PIN, HIGH);
+ _delay_ms(PULSE_LENGTH);
+ WRITE(PHOTOGRAPH_PIN, LOW);
+ _delay_ms(PULSE_LENGTH);
+ }
+ delay(7.33);
+ for(int i=0; i < NUM_PULSES; i++) {
+ WRITE(PHOTOGRAPH_PIN, HIGH);
+ _delay_ms(PULSE_LENGTH);
+ WRITE(PHOTOGRAPH_PIN, LOW);
+ _delay_ms(PULSE_LENGTH);
+ }
+ #endif
+ #endif //chdk end if
+ }
+ break;
+ #ifdef PREVENT_DANGEROUS_EXTRUDE
+ case 302: // allow cold extrudes, or set the minimum extrude temperature
+ {
+ float temp = .0;
+ if (code_seen('S')) temp=code_value();
+ set_extrude_min_temp(temp);
+ }
+ break;
+ #endif
+ case 303: // M303 PID autotune
+ {
+ float temp = 150.0;
+ int e=0;
+ int c=5;
+ if (code_seen('E')) e=code_value();
+ if (e<0)
+ temp=70;
+ if (code_seen('S')) temp=code_value();
+ if (code_seen('C')) c=code_value();
+ PID_autotune(temp, e, c);
+ }
+ break;
+ case 400: // M400 finish all moves
+ {
+ st_synchronize();
+ }
+ break;
+
+ case 500: // M500 Store settings in EEPROM
+ {
+ Config_StoreSettings(EEPROM_OFFSET);
+ }
+ break;
+ case 501: // M501 Read settings from EEPROM
+ {
+ Config_RetrieveSettings(EEPROM_OFFSET);
+ }
+ break;
+ case 502: // M502 Revert to default settings
+ {
+ Config_ResetDefault();
+ }
+ break;
+ case 503: // M503 print settings currently in memory
+ {
+ Config_PrintSettings();
+ }
+ break;
+ case 509: //M509 Force language selection
+ {
+ lang_reset();
+ SERIAL_ECHO_START;
+ SERIAL_PROTOCOLPGM(("LANG SEL FORCED"));
+ }
+ break;
+ #ifdef ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
+ case 540:
+ {
+ if(code_seen('S')) abort_on_endstop_hit = code_value() > 0;
+ }
+ break;
+ #endif
+
+ #ifdef CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
+ case CUSTOM_M_CODE_SET_Z_PROBE_OFFSET:
+ {
+ float value;
+ if (code_seen('Z'))
+ {
+ value = code_value();
+ if ((Z_PROBE_OFFSET_RANGE_MIN <= value) && (value <= Z_PROBE_OFFSET_RANGE_MAX))
+ {
+ zprobe_zoffset = -value; // compare w/ line 278 of ConfigurationStore.cpp
+ SERIAL_ECHO_START;
+ SERIAL_ECHOLNRPGM(CAT4(MSG_ZPROBE_ZOFFSET, " ", _T(MSG_OK),PSTR("")));
+ SERIAL_PROTOCOLLN("");
+ }
+ else
+ {
+ SERIAL_ECHO_START;
+ SERIAL_ECHORPGM(MSG_ZPROBE_ZOFFSET);
+ SERIAL_ECHORPGM(MSG_Z_MIN);
+ SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MIN);
+ SERIAL_ECHORPGM(MSG_Z_MAX);
+ SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MAX);
+ SERIAL_PROTOCOLLN("");
+ }
+ }
+ else
+ {
+ SERIAL_ECHO_START;
+ SERIAL_ECHOLNRPGM(CAT2(MSG_ZPROBE_ZOFFSET, PSTR(" : ")));
+ SERIAL_ECHO(-zprobe_zoffset);
+ SERIAL_PROTOCOLLN("");
+ }
+ break;
+ }
+ #endif // CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
+
+ #ifdef FILAMENTCHANGEENABLE
+ case 600: //Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
+ {
+#ifdef PAT9125
+ bool old_fsensor_enabled = fsensor_enabled;
+ fsensor_enabled = false; //temporary solution for unexpected restarting
+#endif //PAT9125
+
+ st_synchronize();
+ float target[4];
+ float lastpos[4];
+
+ if (farm_mode)
+
+ {
+
+ prusa_statistics(22);
+
+ }
+
+ feedmultiplyBckp=feedmultiply;
+ int8_t TooLowZ = 0;
+
+ float HotendTempBckp = degTargetHotend(active_extruder);
+ int fanSpeedBckp = fanSpeed;
+ target[X_AXIS]=current_position[X_AXIS];
+ target[Y_AXIS]=current_position[Y_AXIS];
+ target[Z_AXIS]=current_position[Z_AXIS];
+ target[E_AXIS]=current_position[E_AXIS];
+ lastpos[X_AXIS]=current_position[X_AXIS];
+ lastpos[Y_AXIS]=current_position[Y_AXIS];
+ lastpos[Z_AXIS]=current_position[Z_AXIS];
+ lastpos[E_AXIS]=current_position[E_AXIS];
+
+ //Restract extruder
+ if(code_seen('E'))
+ {
+ target[E_AXIS]+= code_value();
+ }
+ else
+ {
+ #ifdef FILAMENTCHANGE_FIRSTRETRACT
+ target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT ;
+ #endif
+ }
+ plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);
+
+ //Lift Z
+ if(code_seen('Z'))
+ {
+ target[Z_AXIS]+= code_value();
+ }
+ else
+ {
+ #ifdef FILAMENTCHANGE_ZADD
+ target[Z_AXIS]+= FILAMENTCHANGE_ZADD ;
+ if(target[Z_AXIS] < 10){
+ target[Z_AXIS]+= 10 ;
+ TooLowZ = 1;
+ }else{
+ TooLowZ = 0;
+ }
+ #endif
+
+
+ }
+ plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_ZFEED, active_extruder);
+
+ //Move XY to side
+ if(code_seen('X'))
+ {
+ target[X_AXIS]+= code_value();
+ }
+ else
+ {
+ #ifdef FILAMENTCHANGE_XPOS
+ target[X_AXIS]= FILAMENTCHANGE_XPOS ;
+ #endif
+ }
+ if(code_seen('Y'))
+ {
+ target[Y_AXIS]= code_value();
+ }
+ else
+ {
+ #ifdef FILAMENTCHANGE_YPOS
+ target[Y_AXIS]= FILAMENTCHANGE_YPOS ;
+ #endif
+ }
+ plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_XYFEED, active_extruder);
+ st_synchronize();
+ KEEPALIVE_STATE(PAUSED_FOR_USER);
+
+ uint8_t cnt = 0;
+ int counterBeep = 0;
+ fanSpeed = 0;
+ unsigned long waiting_start_time = millis();
+ uint8_t wait_for_user_state = 0;
+ lcd_display_message_fullscreen_P(_T(MSG_PRESS_TO_UNLOAD));
+ while (!(wait_for_user_state == 0 && lcd_clicked())){
+
+ //cnt++;
+ manage_heater();
+ manage_inactivity(true);
+
+ /*#ifdef SNMM
+ target[E_AXIS] += 0.002;
+ plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 500, active_extruder);
+
+ #endif // SNMM*/
+
+ //if (cnt == 0)
+ {
+#if BEEPER > 0
+ if (counterBeep == 500) {
+ counterBeep = 0;
+ }
+ SET_OUTPUT(BEEPER);
+ if (counterBeep == 0) {
+ WRITE(BEEPER, HIGH);
+ }
+ if (counterBeep == 20) {
+ WRITE(BEEPER, LOW);
+ }
+
+ counterBeep++;
+#else
+#endif
+ }
+
+ switch (wait_for_user_state) {
+ case 0:
+ delay_keep_alive(4);
+
+ if (millis() > waiting_start_time + (unsigned long)M600_TIMEOUT * 1000) {
+ lcd_display_message_fullscreen_P(_i("Press knob to preheat nozzle and continue."));////MSG_PRESS_TO_PREHEAT c=20 r=4
+ wait_for_user_state = 1;
+ setTargetHotend(0, 0);
+ setTargetHotend(0, 1);
+ setTargetHotend(0, 2);
+ st_synchronize();
+ disable_e0();
+ disable_e1();
+ disable_e2();
+ }
+ break;
+ case 1:
+ delay_keep_alive(4);
+
+ if (lcd_clicked()) {
+ setTargetHotend(HotendTempBckp, active_extruder);
+ lcd_wait_for_heater();
+
+ wait_for_user_state = 2;
+ }
+ break;
+ case 2:
+
+ if (abs(degTargetHotend(active_extruder) - degHotend(active_extruder)) < 1) {
+ lcd_display_message_fullscreen_P(_T(MSG_PRESS_TO_UNLOAD));
+ waiting_start_time = millis();
+ wait_for_user_state = 0;
+ }
+ else {
+ counterBeep = 20; //beeper will be inactive during waiting for nozzle preheat
+ lcd_set_cursor(1, 4);
+ lcd_print(ftostr3(degHotend(active_extruder)));
+ }
+ break;
+
+ }
+
+ }
+ WRITE(BEEPER, LOW);
+
+ lcd_change_fil_state = 0;
+
+
+ // Unload filament
+ lcd_display_message_fullscreen_P(_T(MSG_UNLOADING_FILAMENT));
+ KEEPALIVE_STATE(IN_HANDLER);
+ custom_message = true;
+ lcd_setstatuspgm(_T(MSG_UNLOADING_FILAMENT));
+
+ if (code_seen('L'))
+ {
+ target[E_AXIS] += code_value();
+ }
+ else
+ {
+#ifdef SNMM
+
+#else
+#ifdef FILAMENTCHANGE_FINALRETRACT
+ target[E_AXIS] += FILAMENTCHANGE_FINALRETRACT;
+#endif
+#endif // SNMM
+ }
+
+#ifdef SNMM
+ target[E_AXIS] += 12;
+ plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 3500, active_extruder);
+ target[E_AXIS] += 6;
+ plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 5000, active_extruder);
+ target[E_AXIS] += (FIL_LOAD_LENGTH * -1);
+ plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 5000, active_extruder);
+ st_synchronize();
+ target[E_AXIS] += (FIL_COOLING);
+ plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 50, active_extruder);
+ target[E_AXIS] += (FIL_COOLING*-1);
+ plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 50, active_extruder);
+ target[E_AXIS] += (bowden_length[snmm_extruder] * -1);
+ plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 3000, active_extruder);
+ st_synchronize();
+
+#else
+ // plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);
+ //plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 3500 / 60, active_extruder);
+
+ target[E_AXIS] -= FILAMENTCHANGE_FINALRETRACT;
+ st_synchronize();
+#ifdef TMC2130
+ uint8_t tmc2130_current_r_bckp = tmc2130_current_r[E_AXIS];
+ tmc2130_set_current_r(E_AXIS, TMC2130_UNLOAD_CURRENT_R);
+#else
+
+ st_current_set(2, 200); //set lower E motor current for unload to protect filament sensor and ptfe tube
+ float tmp_motor[3] = DEFAULT_PWM_MOTOR_CURRENT;
+ float tmp_motor_loud[3] = DEFAULT_PWM_MOTOR_CURRENT_LOUD;
+
+#endif //TMC2130
+
+ target[E_AXIS] -= 45;
+ plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 5200 / 60, active_extruder);
+ st_synchronize();
+ target[E_AXIS] -= 15;
+ plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 1000 / 60, active_extruder);
+ st_synchronize();
+ target[E_AXIS] -= 20;
+ plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 1000 / 60, active_extruder);
+ st_synchronize();
+
+#ifdef TMC2130
+ tmc2130_set_current_r(E_AXIS, tmc2130_current_r_bckp);
+#else
+ uint8_t silentMode = eeprom_read_byte((uint8_t*)EEPROM_SILENT);
+ if(silentMode != SILENT_MODE_POWER) st_current_set(2, tmp_motor[2]); //set E back to normal operation currents
+ else st_current_set(2, tmp_motor_loud[2]);
+#endif //TMC2130
+
+#endif // SNMM
+
+
+ //finish moves
+ st_synchronize();
+
+ lcd_display_message_fullscreen_P(_T(MSG_PULL_OUT_FILAMENT));
+
+ //disable extruder steppers so filament can be removed
+ disable_e0();
+ disable_e1();
+ disable_e2();
+ delay(100);
+
+
+ WRITE(BEEPER, HIGH);
+ counterBeep = 0;
+ while(!lcd_clicked() && (counterBeep < 50)) {
+ if(counterBeep > 5) WRITE(BEEPER, LOW);
+ delay_keep_alive(100);
+ counterBeep++;
+ }
+ WRITE(BEEPER, LOW);
+
+ KEEPALIVE_STATE(PAUSED_FOR_USER);
+ lcd_change_fil_state = lcd_show_fullscreen_message_yes_no_and_wait_P(_i("Was filament unload successful?"), false, true);////MSG_UNLOAD_SUCCESSFUL c=20 r=2
+ if (lcd_change_fil_state == 0) lcd_show_fullscreen_message_and_wait_P(_i("Please open idler and remove filament manually."));////MSG_CHECK_IDLER c=20 r=4
+ //lcd_return_to_status();
+ lcd_update_enable(true);
+
+ //Wait for user to insert filament
+ lcd_wait_interact();
+ //load_filament_time = millis();
+ KEEPALIVE_STATE(PAUSED_FOR_USER);
+
+#ifdef PAT9125
+ if (filament_autoload_enabled && (old_fsensor_enabled || fsensor_M600)) fsensor_autoload_check_start();
+#endif //PAT9125
+// printf_P(PSTR("M600 PAT9125 filament_autoload_enabled=%d, old_fsensor_enabled=%d, fsensor_M600=%d"), filament_autoload_enabled, old_fsensor_enabled, fsensor_M600);
+ while(!lcd_clicked())
+ {
+ manage_heater();
+ manage_inactivity(true);
+#ifdef PAT9125
+ if (filament_autoload_enabled && (old_fsensor_enabled || fsensor_M600) && fsensor_check_autoload())
+ {
+ tone(BEEPER, 1000);
+ delay_keep_alive(50);
+ noTone(BEEPER);
+ break;
+ }
+#endif //PAT9125
+/*#ifdef SNMM
+ target[E_AXIS] += 0.002;
+ plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 500, active_extruder);
+
+#endif // SNMM*/
+
+ }
+#ifdef PAT9125
+ if (filament_autoload_enabled && (old_fsensor_enabled || fsensor_M600)) fsensor_autoload_check_stop();
+#endif //PAT9125
+ //WRITE(BEEPER, LOW);
+ KEEPALIVE_STATE(IN_HANDLER);
+
+
+#ifdef SNMM
+ display_loading();
+ KEEPALIVE_STATE(PAUSED_FOR_USER);
+ do {
+ target[E_AXIS] += 0.002;
+ plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 500, active_extruder);
+ delay_keep_alive(2);
+ } while (!lcd_clicked());
+ KEEPALIVE_STATE(IN_HANDLER);
+ /*if (millis() - load_filament_time > 2) {
+ load_filament_time = millis();
+ target[E_AXIS] += 0.001;
+ plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 1000, active_extruder);
+ }*/
+
+ //Filament inserted
+ //Feed the filament to the end of nozzle quickly
+ st_synchronize();
+ target[E_AXIS] += bowden_length[snmm_extruder];
+ plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 3000, active_extruder);
+ target[E_AXIS] += FIL_LOAD_LENGTH - 60;
+ plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 1400, active_extruder);
+ target[E_AXIS] += 40;
+ plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder);
+ target[E_AXIS] += 10;
+ plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 50, active_extruder);
+#else
+ target[E_AXIS] += FILAMENTCHANGE_FIRSTFEED;
+ plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EFEED, active_extruder);
+#endif // SNMM
+
+ //Extrude some filament
+ target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
+ plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EXFEED, active_extruder);
+
+ //Wait for user to check the state
+ lcd_change_fil_state = 0;
+ lcd_loading_filament();
+
+ tone(BEEPER, 500);
+ delay_keep_alive(50);
+ noTone(BEEPER);
+
+ while ((lcd_change_fil_state == 0)||(lcd_change_fil_state != 1)){
+ lcd_change_fil_state = 0;
+ KEEPALIVE_STATE(PAUSED_FOR_USER);
+ lcd_alright();
+ KEEPALIVE_STATE(IN_HANDLER);
+ switch(lcd_change_fil_state){
+
+ // Filament failed to load so load it again
+ case 2:
+#ifdef SNMM
+ display_loading();
+ do {
+ target[E_AXIS] += 0.002;
+ plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 500, active_extruder);
+ delay_keep_alive(2);
+ } while (!lcd_clicked());
+
+ st_synchronize();
+ target[E_AXIS] += bowden_length[snmm_extruder];
+ plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 3000, active_extruder);
+ target[E_AXIS] += FIL_LOAD_LENGTH - 60;
+ plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 1400, active_extruder);
+ target[E_AXIS] += 40;
+ plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder);
+ target[E_AXIS] += 10;
+ plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 50, active_extruder);
+
+#else
+ target[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
+ plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EFEED, active_extruder);
+#endif
+ target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
+ plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EXFEED, active_extruder);
+
+ lcd_loading_filament();
+
+ break;
+
+ // Filament loaded properly but color is not clear
+ case 3:
+ target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
+ plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
+ lcd_loading_color();
+ break;
+
+ // Everything good
+ default:
+ lcd_change_success();
+ lcd_update_enable(true);
+ break;
+ }
+
+ }
+
+
+ //Not let's go back to print
+ fanSpeed = fanSpeedBckp;
+
+ //Feed a little of filament to stabilize pressure
+ target[E_AXIS]+= FILAMENTCHANGE_RECFEED;
+ plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EXFEED, active_extruder);
+
+ //Retract
+ target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT;
+ plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);
+
+
+
+ //plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder); //should do nothing
+
+ //Move XY back
+ plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_XYFEED, active_extruder);
+
+ //Move Z back
+ plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_ZFEED, active_extruder);
+
+
+ target[E_AXIS]= target[E_AXIS] - FILAMENTCHANGE_FIRSTRETRACT;
+
+ //Unretract
+ plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);
+
+ //Set E position to original
+ plan_set_e_position(lastpos[E_AXIS]);
+
+ //Recover feed rate
+ feedmultiply=feedmultiplyBckp;
+ char cmd[9];
+ sprintf_P(cmd, PSTR("M220 S%i"), feedmultiplyBckp);
+ enquecommand(cmd);
+
+ lcd_setstatuspgm(_T(WELCOME_MSG));
+ custom_message = false;
+ custom_message_type = 0;
+
+#ifdef PAT9125
+ fsensor_enabled = old_fsensor_enabled; //temporary solution for unexpected restarting
+
+ if (fsensor_M600)
+ {
+ cmdqueue_pop_front(); //hack because M600 repeated 2x when enqueued to front
+ st_synchronize();
+ while (!is_buffer_empty())
+ {
+ process_commands();
+ cmdqueue_pop_front();
+ }
+ KEEPALIVE_STATE(IN_HANDLER);
+ fsensor_enable();
+ fsensor_restore_print_and_continue();
+ }
+
+#endif //PAT9125
+
+ }
+ break;
+ #endif //FILAMENTCHANGEENABLE
+ case 601: {
+ if(lcd_commands_type == 0) lcd_commands_type = LCD_COMMAND_LONG_PAUSE;
+ }
+ break;
+
+ case 602: {
+ if(lcd_commands_type == 0) lcd_commands_type = LCD_COMMAND_LONG_PAUSE_RESUME;
+ }
+ break;
+
+#ifdef PINDA_THERMISTOR
+ case 860: // M860 - Wait for PINDA thermistor to reach target temperature.
+ {
+ int set_target_pinda = 0;
+
+ if (code_seen('S')) {
+ set_target_pinda = code_value();
+ }
+ else {
+ break;
+ }
+
+ LCD_MESSAGERPGM(_T(MSG_PLEASE_WAIT));
+
+ SERIAL_PROTOCOLPGM("Wait for PINDA target temperature:");
+ SERIAL_PROTOCOL(set_target_pinda);
+ SERIAL_PROTOCOLLN("");
+
+ codenum = millis();
+ cancel_heatup = false;
+
+ bool is_pinda_cooling = false;
+ if ((degTargetBed() == 0) && (degTargetHotend(0) == 0)) {
+ is_pinda_cooling = true;
+ }
+
+ while ( ((!is_pinda_cooling) && (!cancel_heatup) && (current_temperature_pinda < set_target_pinda)) || (is_pinda_cooling && (current_temperature_pinda > set_target_pinda)) ) {
+ if ((millis() - codenum) > 1000) //Print Temp Reading every 1 second while waiting.
+ {
+ SERIAL_PROTOCOLPGM("P:");
+ SERIAL_PROTOCOL_F(current_temperature_pinda, 1);
+ SERIAL_PROTOCOLPGM("/");
+ SERIAL_PROTOCOL(set_target_pinda);
+ SERIAL_PROTOCOLLN("");
+ codenum = millis();
+ }
+ manage_heater();
+ manage_inactivity();
+ lcd_update(0);
+ }
+ LCD_MESSAGERPGM(_T(MSG_OK));
+
+ break;
+ }
+
+ case 861: // M861 - Set/Read PINDA temperature compensation offsets
+ if (code_seen('?')) { // ? - Print out current EEPROM offset values
+ uint8_t cal_status = calibration_status_pinda();
+ int16_t usteps = 0;
+ cal_status ? SERIAL_PROTOCOLLN("PINDA cal status: 1") : SERIAL_PROTOCOLLN("PINDA cal status: 0");
+ SERIAL_PROTOCOLLN("index, temp, ustep, um");
+ for (uint8_t i = 0; i < 6; i++)
+ {
+ if(i>0) EEPROM_read_B(EEPROM_PROBE_TEMP_SHIFT + (i-1) * 2, &usteps);
+ float mm = ((float)usteps) / axis_steps_per_unit[Z_AXIS];
+ i == 0 ? SERIAL_PROTOCOLPGM("n/a") : SERIAL_PROTOCOL(i - 1);
+ SERIAL_PROTOCOLPGM(", ");
+ SERIAL_PROTOCOL(35 + (i * 5));
+ SERIAL_PROTOCOLPGM(", ");
+ SERIAL_PROTOCOL(usteps);
+ SERIAL_PROTOCOLPGM(", ");
+ SERIAL_PROTOCOL(mm * 1000);
+ SERIAL_PROTOCOLLN("");
+ }
+ }
+ else if (code_seen('!')) { // ! - Set factory default values
+ eeprom_write_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 1);
+ int16_t z_shift = 8; //40C - 20um - 8usteps
+ EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT, &z_shift);
+ z_shift = 24; //45C - 60um - 24usteps
+ EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + 2, &z_shift);
+ z_shift = 48; //50C - 120um - 48usteps
+ EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + 4, &z_shift);
+ z_shift = 80; //55C - 200um - 80usteps
+ EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + 6, &z_shift);
+ z_shift = 120; //60C - 300um - 120usteps
+ EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + 8, &z_shift);
+ SERIAL_PROTOCOLLN("factory restored");
+ }
+ else if (code_seen('Z')) { // Z - Set all values to 0 (effectively disabling PINDA temperature compensation)
+ eeprom_write_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 1);
+ int16_t z_shift = 0;
+ for (uint8_t i = 0; i < 5; i++) EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i * 2, &z_shift);
+ SERIAL_PROTOCOLLN("zerorized");
+ }
+ else if (code_seen('S')) { // Sxxx Iyyy - Set compensation ustep value S for compensation table index I
+ int16_t usteps = code_value();
+ if (code_seen('I')) {
+ byte index = code_value();
+ if ((index >= 0) && (index < 5)) {
+ EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + index * 2, &usteps);
+ SERIAL_PROTOCOLLN("OK");
+ SERIAL_PROTOCOLLN("index, temp, ustep, um");
+ for (uint8_t i = 0; i < 6; i++)
+ {
+ usteps = 0;
+ if (i>0) EEPROM_read_B(EEPROM_PROBE_TEMP_SHIFT + (i - 1) * 2, &usteps);
+ float mm = ((float)usteps) / axis_steps_per_unit[Z_AXIS];
+ i == 0 ? SERIAL_PROTOCOLPGM("n/a") : SERIAL_PROTOCOL(i - 1);
+ SERIAL_PROTOCOLPGM(", ");
+ SERIAL_PROTOCOL(35 + (i * 5));
+ SERIAL_PROTOCOLPGM(", ");
+ SERIAL_PROTOCOL(usteps);
+ SERIAL_PROTOCOLPGM(", ");
+ SERIAL_PROTOCOL(mm * 1000);
+ SERIAL_PROTOCOLLN("");
+ }
+ }
+ }
+ }
+ else {
+ SERIAL_PROTOCOLPGM("no valid command");
+ }
+ break;
+
+#endif //PINDA_THERMISTOR
+
+#ifdef LIN_ADVANCE
+ case 900: // M900: Set LIN_ADVANCE options.
+ gcode_M900();
+ break;
+#endif
+
+ case 907: // M907 Set digital trimpot motor current using axis codes.
+ {
+ #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
+ for(int i=0;i -1
+ uint8_t channel,current;
+ if(code_seen('P')) channel=code_value();
+ if(code_seen('S')) current=code_value();
+ digitalPotWrite(channel, current);
+ #endif
+ }
+ break;
+
+#ifdef TMC2130
+
+ case 910: // M910 TMC2130 init
+ {
+ tmc2130_init();
+ }
+ break;
+
+ case 911: // M911 Set TMC2130 holding currents
+ {
+ if (code_seen('X')) tmc2130_set_current_h(0, code_value());
+ if (code_seen('Y')) tmc2130_set_current_h(1, code_value());
+ if (code_seen('Z')) tmc2130_set_current_h(2, code_value());
+ if (code_seen('E')) tmc2130_set_current_h(3, code_value());
+ }
+ break;
+
+ case 912: // M912 Set TMC2130 running currents
+ {
+ if (code_seen('X')) tmc2130_set_current_r(0, code_value());
+ if (code_seen('Y')) tmc2130_set_current_r(1, code_value());
+ if (code_seen('Z')) tmc2130_set_current_r(2, code_value());
+ if (code_seen('E')) tmc2130_set_current_r(3, code_value());
+ }
+ break;
+
+ case 913: // M913 Print TMC2130 currents
+ {
+ tmc2130_print_currents();
+ }
+ break;
+
+ case 914: // M914 Set normal mode
+ {
+ tmc2130_mode = TMC2130_MODE_NORMAL;
+ tmc2130_init();
+ }
+ break;
+
+ case 915: // M915 Set silent mode
+ {
+ tmc2130_mode = TMC2130_MODE_SILENT;
+ tmc2130_init();
+ }
+ break;
+
+ case 916: // M916 Set sg_thrs
+ {
+ if (code_seen('X')) tmc2130_sg_thr[X_AXIS] = code_value();
+ if (code_seen('Y')) tmc2130_sg_thr[Y_AXIS] = code_value();
+ if (code_seen('Z')) tmc2130_sg_thr[Z_AXIS] = code_value();
+ if (code_seen('E')) tmc2130_sg_thr[E_AXIS] = code_value();
+ for (uint8_t a = X_AXIS; a <= E_AXIS; a++)
+ printf_P(_N("tmc2130_sg_thr[%c]=%d\n"), "XYZE"[a], tmc2130_sg_thr[a]);
+ }
+ break;
+
+ case 917: // M917 Set TMC2130 pwm_ampl
+ {
+ if (code_seen('X')) tmc2130_set_pwm_ampl(0, code_value());
+ if (code_seen('Y')) tmc2130_set_pwm_ampl(1, code_value());
+ if (code_seen('Z')) tmc2130_set_pwm_ampl(2, code_value());
+ if (code_seen('E')) tmc2130_set_pwm_ampl(3, code_value());
+ }
+ break;
+
+ case 918: // M918 Set TMC2130 pwm_grad
+ {
+ if (code_seen('X')) tmc2130_set_pwm_grad(0, code_value());
+ if (code_seen('Y')) tmc2130_set_pwm_grad(1, code_value());
+ if (code_seen('Z')) tmc2130_set_pwm_grad(2, code_value());
+ if (code_seen('E')) tmc2130_set_pwm_grad(3, code_value());
+ }
+ break;
+
+#endif //TMC2130
+
+ case 350: // M350 Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
+ {
+ #ifdef TMC2130
+ if(code_seen('E'))
+ {
+ uint16_t res_new = code_value();
+ if ((res_new == 8) || (res_new == 16) || (res_new == 32) || (res_new == 64) || (res_new == 128))
+ {
+ st_synchronize();
+ uint8_t axis = E_AXIS;
+ uint16_t res = tmc2130_get_res(axis);
+ tmc2130_set_res(axis, res_new);
+ if (res_new > res)
+ {
+ uint16_t fac = (res_new / res);
+ axis_steps_per_unit[axis] *= fac;
+ position[E_AXIS] *= fac;
+ }
+ else
+ {
+ uint16_t fac = (res / res_new);
+ axis_steps_per_unit[axis] /= fac;
+ position[E_AXIS] /= fac;
+ }
+ }
+ }
+ #else //TMC2130
+ #if defined(X_MS1_PIN) && X_MS1_PIN > -1
+ if(code_seen('S')) for(int i=0;i<=4;i++) microstep_mode(i,code_value());
+ for(int i=0;i -1
+ if(code_seen('S')) switch((int)code_value())
+ {
+ case 1:
+ for(int i=0;i 5) WRITE(BEEPER, LOW);
+ delay_keep_alive(100);
+ counterBeep++;
+ }
+ WRITE(BEEPER, LOW);
+ st_synchronize();
+ while (lcd_clicked()) delay_keep_alive(100);
+
+ lcd_update_enable(true);
+
+ lcd_setstatuspgm(_T(WELCOME_MSG));
+ custom_message = false;
+ custom_message_type = 0;
+#ifdef PAT9125
+ fsensor_enabled = old_fsensor_enabled;
+#endif //PAT9125
+#endif
+ }
+ break;
+
+ case 999: // M999: Restart after being stopped
+ Stopped = false;
+ lcd_reset_alert_level();
+ gcode_LastN = Stopped_gcode_LastN;
+ FlushSerialRequestResend();
+ break;
+ default:
+ printf_P(PSTR("Unknown M code: %s \n"), cmdbuffer + bufindr + CMDHDRSIZE);
+ }
+
+ } // end if(code_seen('M')) (end of M codes)
+
+ else if(code_seen('T'))
+ {
+ int index;
+ st_synchronize();
+ for (index = 1; *(strchr_pointer + index) == ' ' || *(strchr_pointer + index) == '\t'; index++);
+
+ if ((*(strchr_pointer + index) < '0' || *(strchr_pointer + index) > '9') && *(strchr_pointer + index) != '?') {
+ SERIAL_ECHOLNPGM("Invalid T code.");
+ }
+ else {
+ if (*(strchr_pointer + index) == '?') {
+ tmp_extruder = choose_extruder_menu();
+ }
+ else {
+ tmp_extruder = code_value();
+ }
+ snmm_filaments_used |= (1 << tmp_extruder); //for stop print
+
+#ifdef SNMM_V2
+ printf_P(PSTR("T code: %d \n"), tmp_extruder);
+ switch (tmp_extruder)
+ {
+ case 1:
+
+ fprintf_P(uart2io, PSTR("T1\n"));
+ break;
+ case 2:
+
+ fprintf_P(uart2io, PSTR("T2\n"));
+ break;
+ case 3:
+
+ fprintf_P(uart2io, PSTR("T3\n"));
+ break;
+ case 4:
+
+ fprintf_P(uart2io, PSTR("T4\n"));
+ break;
+ default:
+
+ fprintf_P(uart2io, PSTR("T0\n"));
+ break;
+ }
+
+
+
+
+ // get response
+ uart2_rx_clr();
+ while (!uart2_rx_ok())
+ {
+ //printf_P(PSTR("waiting..\n"));
+ delay_keep_alive(100);
+ }
+ snmm_extruder = tmp_extruder; //filament change is finished
+
+ if (*(strchr_pointer + index) == '?') { // for single material usage with mmu
+ bool saved_e_relative_mode = axis_relative_modes[E_AXIS];
+ if (!saved_e_relative_mode) {
+ enquecommand_front_P(PSTR("M82")); // set extruder to relative mode
+ }
+ enquecommand_front_P((PSTR("G1 E7.2000 F562")));
+ enquecommand_front_P((PSTR("G1 E14.4000 F871")));
+ enquecommand_front_P((PSTR("G1 E36.0000 F1393")));
+ enquecommand_front_P((PSTR("G1 E14.4000 F871")));
+ if (!saved_e_relative_mode) {
+ enquecommand_front_P(PSTR("M83")); // set extruder to relative mode
+ }
+ }
+#endif
+
+#ifdef SNMM
+
+ #ifdef LIN_ADVANCE
+ if (snmm_extruder != tmp_extruder)
+ clear_current_adv_vars(); //Check if the selected extruder is not the active one and reset LIN_ADVANCE variables if so.
+ #endif
+
+ snmm_extruder = tmp_extruder;
+
+
+ delay(100);
+
+ disable_e0();
+ disable_e1();
+ disable_e2();
+
+ pinMode(E_MUX0_PIN, OUTPUT);
+ pinMode(E_MUX1_PIN, OUTPUT);
+
+ delay(100);
+ SERIAL_ECHO_START;
+ SERIAL_ECHO("T:");
+ SERIAL_ECHOLN((int)tmp_extruder);
+ switch (tmp_extruder) {
+ case 1:
+ WRITE(E_MUX0_PIN, HIGH);
+ WRITE(E_MUX1_PIN, LOW);
+
+ break;
+ case 2:
+ WRITE(E_MUX0_PIN, LOW);
+ WRITE(E_MUX1_PIN, HIGH);
+
+ break;
+ case 3:
+ WRITE(E_MUX0_PIN, HIGH);
+ WRITE(E_MUX1_PIN, HIGH);
+
+ break;
+ default:
+ WRITE(E_MUX0_PIN, LOW);
+ WRITE(E_MUX1_PIN, LOW);
+
+ break;
+ }
+ delay(100);
+
+#else
+ if (tmp_extruder >= EXTRUDERS) {
+ SERIAL_ECHO_START;
+ SERIAL_ECHOPGM("T");
+ SERIAL_PROTOCOLLN((int)tmp_extruder);
+ SERIAL_ECHOLNRPGM(_n("Invalid extruder"));////MSG_INVALID_EXTRUDER c=0 r=0
+ }
+ else {
+ boolean make_move = false;
+ if (code_seen('F')) {
+ make_move = true;
+ next_feedrate = code_value();
+ if (next_feedrate > 0.0) {
+ feedrate = next_feedrate;
+ }
+ }
+#if EXTRUDERS > 1
+ if (tmp_extruder != active_extruder) {
+ // Save current position to return to after applying extruder offset
+ memcpy(destination, current_position, sizeof(destination));
+ // Offset extruder (only by XY)
+ int i;
+ for (i = 0; i < 2; i++) {
+ current_position[i] = current_position[i] -
+ extruder_offset[i][active_extruder] +
+ extruder_offset[i][tmp_extruder];
+ }
+ // Set the new active extruder and position
+ active_extruder = tmp_extruder;
+ plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
+ // Move to the old position if 'F' was in the parameters
+ if (make_move && Stopped == false) {
+ prepare_move();
+ }
+ }
+#endif
+ SERIAL_ECHO_START;
+ SERIAL_ECHORPGM(_n("Active Extruder: "));////MSG_ACTIVE_EXTRUDER c=0 r=0
+ SERIAL_PROTOCOLLN((int)active_extruder);
+ }
+
+#endif
+ }
+ } // end if(code_seen('T')) (end of T codes)
+
+#ifdef DEBUG_DCODES
+ else if (code_seen('D')) // D codes (debug)
+ {
+ switch((int)code_value())
+ {
+ case -1: // D-1 - Endless loop
+ dcode__1(); break;
+ case 0: // D0 - Reset
+ dcode_0(); break;
+ case 1: // D1 - Clear EEPROM
+ dcode_1(); break;
+ case 2: // D2 - Read/Write RAM
+ dcode_2(); break;
+ case 3: // D3 - Read/Write EEPROM
+ dcode_3(); break;
+ case 4: // D4 - Read/Write PIN
+ dcode_4(); break;
+ case 5: // D5 - Read/Write FLASH
+// dcode_5(); break;
+ break;
+ case 6: // D6 - Read/Write external FLASH
+ dcode_6(); break;
+ case 7: // D7 - Read/Write Bootloader
+ dcode_7(); break;
+ case 8: // D8 - Read/Write PINDA
+ dcode_8(); break;
+ case 9: // D9 - Read/Write ADC
+ dcode_9(); break;
+
+ case 10: // D10 - XYZ calibration = OK
+ dcode_10(); break;
+
+
+#ifdef TMC2130
+ case 2130: // D9125 - TMC2130
+ dcode_2130(); break;
+#endif //TMC2130
+
+#ifdef PAT9125
+ case 9125: // D9125 - PAT9125
+ dcode_9125(); break;
+#endif //PAT9125
+
+ }
+ }
+#endif //DEBUG_DCODES
+
+ else
+ {
+ SERIAL_ECHO_START;
+ SERIAL_ECHORPGM(MSG_UNKNOWN_COMMAND);
+ SERIAL_ECHO(CMDBUFFER_CURRENT_STRING);
+ SERIAL_ECHOLNPGM("\"(2)");
+ }
+ KEEPALIVE_STATE(NOT_BUSY);
+ ClearToSend();
+}
+
+void FlushSerialRequestResend()
+{
+ //char cmdbuffer[bufindr][100]="Resend:";
+ MYSERIAL.flush();
+ printf_P(_N("%S: %ld\n%S\n"), _i("Resend"), gcode_LastN + 1, _T(MSG_OK));
+}
+
+// Confirm the execution of a command, if sent from a serial line.
+// Execution of a command from a SD card will not be confirmed.
+void ClearToSend()
+{
+ previous_millis_cmd = millis();
+ if ((CMDBUFFER_CURRENT_TYPE == CMDBUFFER_CURRENT_TYPE_USB) || (CMDBUFFER_CURRENT_TYPE == CMDBUFFER_CURRENT_TYPE_USB_WITH_LINENR))
+ SERIAL_PROTOCOLLNRPGM(_T(MSG_OK));
+}
+
+#if MOTHERBOARD == BOARD_RAMBO_MINI_1_0 || MOTHERBOARD == BOARD_RAMBO_MINI_1_3
+void update_currents() {
+ float current_high[3] = DEFAULT_PWM_MOTOR_CURRENT_LOUD;
+ float current_low[3] = DEFAULT_PWM_MOTOR_CURRENT;
+ float tmp_motor[3];
+
+ //SERIAL_ECHOLNPGM("Currents updated: ");
+
+ if (destination[Z_AXIS] < Z_SILENT) {
+ //SERIAL_ECHOLNPGM("LOW");
+ for (uint8_t i = 0; i < 3; i++) {
+ st_current_set(i, current_low[i]);
+ /*MYSERIAL.print(int(i));
+ SERIAL_ECHOPGM(": ");
+ MYSERIAL.println(current_low[i]);*/
+ }
+ }
+ else if (destination[Z_AXIS] > Z_HIGH_POWER) {
+ //SERIAL_ECHOLNPGM("HIGH");
+ for (uint8_t i = 0; i < 3; i++) {
+ st_current_set(i, current_high[i]);
+ /*MYSERIAL.print(int(i));
+ SERIAL_ECHOPGM(": ");
+ MYSERIAL.println(current_high[i]);*/
+ }
+ }
+ else {
+ for (uint8_t i = 0; i < 3; i++) {
+ float q = current_low[i] - Z_SILENT*((current_high[i] - current_low[i]) / (Z_HIGH_POWER - Z_SILENT));
+ tmp_motor[i] = ((current_high[i] - current_low[i]) / (Z_HIGH_POWER - Z_SILENT))*destination[Z_AXIS] + q;
+ st_current_set(i, tmp_motor[i]);
+ /*MYSERIAL.print(int(i));
+ SERIAL_ECHOPGM(": ");
+ MYSERIAL.println(tmp_motor[i]);*/
+ }
+ }
+}
+#endif //MOTHERBOARD == BOARD_RAMBO_MINI_1_0 || MOTHERBOARD == BOARD_RAMBO_MINI_1_3
+
+void get_coordinates()
+{
+ bool seen[4]={false,false,false,false};
+ for(int8_t i=0; i < NUM_AXIS; i++) {
+ if(code_seen(axis_codes[i]))
+ {
+ bool relative = axis_relative_modes[i] || relative_mode;
+ destination[i] = (float)code_value();
+ if (i == E_AXIS) {
+ float emult = extruder_multiplier[active_extruder];
+ if (emult != 1.) {
+ if (! relative) {
+ destination[i] -= current_position[i];
+ relative = true;
+ }
+ destination[i] *= emult;
+ }
+ }
+ if (relative)
+ destination[i] += current_position[i];
+ seen[i]=true;
+#if MOTHERBOARD == BOARD_RAMBO_MINI_1_0 || MOTHERBOARD == BOARD_RAMBO_MINI_1_3
+ if (i == Z_AXIS && SilentModeMenu == SILENT_MODE_AUTO) update_currents();
+#endif //MOTHERBOARD == BOARD_RAMBO_MINI_1_0 || MOTHERBOARD == BOARD_RAMBO_MINI_1_3
+ }
+ else destination[i] = current_position[i]; //Are these else lines really needed?
+ }
+ if(code_seen('F')) {
+ next_feedrate = code_value();
+#ifdef MAX_SILENT_FEEDRATE
+ if (tmc2130_mode == TMC2130_MODE_SILENT)
+ if (next_feedrate > MAX_SILENT_FEEDRATE) next_feedrate = MAX_SILENT_FEEDRATE;
+#endif //MAX_SILENT_FEEDRATE
+ if(next_feedrate > 0.0) feedrate = next_feedrate;
+ if (!seen[0] && !seen[1] && !seen[2] && seen[3])
+ {
+// float e_max_speed =
+// printf_P(PSTR("E MOVE speed %7.3f\n"), feedrate / 60)
+ }
+ }
+}
+
+void get_arc_coordinates()
+{
+#ifdef SF_ARC_FIX
+ bool relative_mode_backup = relative_mode;
+ relative_mode = true;
+#endif
+ get_coordinates();
+#ifdef SF_ARC_FIX
+ relative_mode=relative_mode_backup;
+#endif
+
+ if(code_seen('I')) {
+ offset[0] = code_value();
+ }
+ else {
+ offset[0] = 0.0;
+ }
+ if(code_seen('J')) {
+ offset[1] = code_value();
+ }
+ else {
+ offset[1] = 0.0;
+ }
+}
+
+void clamp_to_software_endstops(float target[3])
+{
+#ifdef DEBUG_DISABLE_SWLIMITS
+ return;
+#endif //DEBUG_DISABLE_SWLIMITS
+ world2machine_clamp(target[0], target[1]);
+
+ // Clamp the Z coordinate.
+ if (min_software_endstops) {
+ float negative_z_offset = 0;
+ #ifdef ENABLE_AUTO_BED_LEVELING
+ if (Z_PROBE_OFFSET_FROM_EXTRUDER < 0) negative_z_offset = negative_z_offset + Z_PROBE_OFFSET_FROM_EXTRUDER;
+ if (add_homing[Z_AXIS] < 0) negative_z_offset = negative_z_offset + add_homing[Z_AXIS];
+ #endif
+ if (target[Z_AXIS] < min_pos[Z_AXIS]+negative_z_offset) target[Z_AXIS] = min_pos[Z_AXIS]+negative_z_offset;
+ }
+ if (max_software_endstops) {
+ if (target[Z_AXIS] > max_pos[Z_AXIS]) target[Z_AXIS] = max_pos[Z_AXIS];
+ }
+}
+
+#ifdef MESH_BED_LEVELING
+ void mesh_plan_buffer_line(const float &x, const float &y, const float &z, const float &e, const float &feed_rate, const uint8_t extruder) {
+ float dx = x - current_position[X_AXIS];
+ float dy = y - current_position[Y_AXIS];
+ float dz = z - current_position[Z_AXIS];
+ int n_segments = 0;
+
+ if (mbl.active) {
+ float len = abs(dx) + abs(dy);
+ if (len > 0)
+ // Split to 3cm segments or shorter.
+ n_segments = int(ceil(len / 30.f));
+ }
+
+ if (n_segments > 1) {
+ float de = e - current_position[E_AXIS];
+ for (int i = 1; i < n_segments; ++ i) {
+ float t = float(i) / float(n_segments);
+ if (saved_printing || (mbl.active == false)) return;
+ plan_buffer_line(
+ current_position[X_AXIS] + t * dx,
+ current_position[Y_AXIS] + t * dy,
+ current_position[Z_AXIS] + t * dz,
+ current_position[E_AXIS] + t * de,
+ feed_rate, extruder);
+ }
+ }
+ // The rest of the path.
+ plan_buffer_line(x, y, z, e, feed_rate, extruder);
+ current_position[X_AXIS] = x;
+ current_position[Y_AXIS] = y;
+ current_position[Z_AXIS] = z;
+ current_position[E_AXIS] = e;
+ }
+#endif // MESH_BED_LEVELING
+
+void prepare_move()
+{
+ clamp_to_software_endstops(destination);
+ previous_millis_cmd = millis();
+
+ // Do not use feedmultiply for E or Z only moves
+ if( (current_position[X_AXIS] == destination [X_AXIS]) && (current_position[Y_AXIS] == destination [Y_AXIS])) {
+ plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
+ }
+ else {
+#ifdef MESH_BED_LEVELING
+ mesh_plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate*feedmultiply*(1./(60.f*100.f)), active_extruder);
+#else
+ plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate*feedmultiply*(1./(60.f*100.f)), active_extruder);
+#endif
+ }
+
+ for(int8_t i=0; i < NUM_AXIS; i++) {
+ current_position[i] = destination[i];
+ }
+}
+
+void prepare_arc_move(char isclockwise) {
+ float r = hypot(offset[X_AXIS], offset[Y_AXIS]); // Compute arc radius for mc_arc
+
+ // Trace the arc
+ mc_arc(current_position, destination, offset, X_AXIS, Y_AXIS, Z_AXIS, feedrate*feedmultiply/60/100.0, r, isclockwise, active_extruder);
+
+ // As far as the parser is concerned, the position is now == target. In reality the
+ // motion control system might still be processing the action and the real tool position
+ // in any intermediate location.
+ for(int8_t i=0; i < NUM_AXIS; i++) {
+ current_position[i] = destination[i];
+ }
+ previous_millis_cmd = millis();
+}
+
+#if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
+
+#if defined(FAN_PIN)
+ #if CONTROLLERFAN_PIN == FAN_PIN
+ #error "You cannot set CONTROLLERFAN_PIN equal to FAN_PIN"
+ #endif
+#endif
+
+unsigned long lastMotor = 0; //Save the time for when a motor was turned on last
+unsigned long lastMotorCheck = 0;
+
+void controllerFan()
+{
+ if ((millis() - lastMotorCheck) >= 2500) //Not a time critical function, so we only check every 2500ms
+ {
+ lastMotorCheck = millis();
+
+ if(!READ(X_ENABLE_PIN) || !READ(Y_ENABLE_PIN) || !READ(Z_ENABLE_PIN) || (soft_pwm_bed > 0)
+ #if EXTRUDERS > 2
+ || !READ(E2_ENABLE_PIN)
+ #endif
+ #if EXTRUDER > 1
+ #if defined(X2_ENABLE_PIN) && X2_ENABLE_PIN > -1
+ || !READ(X2_ENABLE_PIN)
+ #endif
+ || !READ(E1_ENABLE_PIN)
+ #endif
+ || !READ(E0_ENABLE_PIN)) //If any of the drivers are enabled...
+ {
+ lastMotor = millis(); //... set time to NOW so the fan will turn on
+ }
+
+ if ((millis() - lastMotor) >= (CONTROLLERFAN_SECS*1000UL) || lastMotor == 0) //If the last time any driver was enabled, is longer since than CONTROLLERSEC...
+ {
+ digitalWrite(CONTROLLERFAN_PIN, 0);
+ analogWrite(CONTROLLERFAN_PIN, 0);
+ }
+ else
+ {
+ // allows digital or PWM fan output to be used (see M42 handling)
+ digitalWrite(CONTROLLERFAN_PIN, CONTROLLERFAN_SPEED);
+ analogWrite(CONTROLLERFAN_PIN, CONTROLLERFAN_SPEED);
+ }
+ }
+}
+#endif
+
+#ifdef TEMP_STAT_LEDS
+static bool blue_led = false;
+static bool red_led = false;
+static uint32_t stat_update = 0;
+
+void handle_status_leds(void) {
+ float max_temp = 0.0;
+ if(millis() > stat_update) {
+ stat_update += 500; // Update every 0.5s
+ for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
+ max_temp = max(max_temp, degHotend(cur_extruder));
+ max_temp = max(max_temp, degTargetHotend(cur_extruder));
+ }
+ #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
+ max_temp = max(max_temp, degTargetBed());
+ max_temp = max(max_temp, degBed());
+ #endif
+ if((max_temp > 55.0) && (red_led == false)) {
+ digitalWrite(STAT_LED_RED, 1);
+ digitalWrite(STAT_LED_BLUE, 0);
+ red_led = true;
+ blue_led = false;
+ }
+ if((max_temp < 54.0) && (blue_led == false)) {
+ digitalWrite(STAT_LED_RED, 0);
+ digitalWrite(STAT_LED_BLUE, 1);
+ red_led = false;
+ blue_led = true;
+ }
+ }
+}
+#endif
+
+#ifdef SAFETYTIMER
+/**
+ * @brief Turn off heating after safetytimer_inactive_time milliseconds of inactivity
+ *
+ * Full screen blocking notification message is shown after heater turning off.
+ * Paused print is not considered inactivity, as nozzle is cooled anyway and bed cooling would
+ * damage print.
+ *
+ * If safetytimer_inactive_time is zero, feature is disabled (heating is never turned off because of inactivity)
+ */
+static void handleSafetyTimer()
+{
+#if (EXTRUDERS > 1)
+#error Implemented only for one extruder.
+#endif //(EXTRUDERS > 1)
+ if ((PRINTER_ACTIVE) || (!degTargetBed() && !degTargetHotend(0)) || (!safetytimer_inactive_time))
+ {
+ safetyTimer.stop();
+ }
+ else if ((degTargetBed() || degTargetHotend(0)) && (!safetyTimer.running()))
+ {
+ safetyTimer.start();
+ }
+ else if (safetyTimer.expired(safetytimer_inactive_time))
+ {
+ setTargetBed(0);
+ setTargetHotend(0, 0);
+ lcd_show_fullscreen_message_and_wait_P(_i("Heating disabled by safety timer."));////MSG_BED_HEATING_SAFETY_DISABLED c=0 r=0
+ }
+}
+#endif //SAFETYTIMER
+
+void manage_inactivity(bool ignore_stepper_queue/*=false*/) //default argument set in Marlin.h
+{
+#ifdef PAT9125
+ if (fsensor_enabled && filament_autoload_enabled && !fsensor_M600 && !moves_planned() && !IS_SD_PRINTING && !is_usb_printing && (lcd_commands_type != LCD_COMMAND_V2_CAL))
+ {
+ if (fsensor_autoload_enabled)
+ {
+ if (fsensor_check_autoload())
+ {
+
+ if (degHotend0() > EXTRUDE_MINTEMP)
+ {
+ fsensor_autoload_check_stop();
+ tone(BEEPER, 1000);
+ delay_keep_alive(50);
+ noTone(BEEPER);
+ loading_flag = true;
+ enquecommand_front_P((PSTR("M701")));
+ }
+ else
+ {
+ lcd_update_enable(false);
+ lcd_clear();
+ lcd_set_cursor(0, 0);
+ lcd_puts_P(_T(MSG_ERROR));
+ lcd_set_cursor(0, 2);
+ lcd_puts_P(_T(MSG_PREHEAT_NOZZLE));
+ delay(2000);
+ lcd_clear();
+ lcd_update_enable(true);
+ }
+
+ }
+ }
+ else
+ fsensor_autoload_check_start();
+ }
+ else
+ if (fsensor_autoload_enabled)
+ fsensor_autoload_check_stop();
+#endif //PAT9125
+
+#ifdef SAFETYTIMER
+ handleSafetyTimer();
+#endif //SAFETYTIMER
+
+#if defined(KILL_PIN) && KILL_PIN > -1
+ static int killCount = 0; // make the inactivity button a bit less responsive
+ const int KILL_DELAY = 10000;
+#endif
+
+ if(buflen < (BUFSIZE-1)){
+ get_command();
+ }
+
+ if( (millis() - previous_millis_cmd) > max_inactive_time )
+ if(max_inactive_time)
+ kill(_n(""), 4);
+ if(stepper_inactive_time) {
+ if( (millis() - previous_millis_cmd) > stepper_inactive_time )
+ {
+ if(blocks_queued() == false && ignore_stepper_queue == false) {
+ disable_x();
+// SERIAL_ECHOLNPGM("manage_inactivity - disable Y");
+ disable_y();
+ disable_z();
+ disable_e0();
+ disable_e1();
+ disable_e2();
+ }
+ }
+ }
+
+ #ifdef CHDK //Check if pin should be set to LOW after M240 set it to HIGH
+ if (chdkActive && (millis() - chdkHigh > CHDK_DELAY))
+ {
+ chdkActive = false;
+ WRITE(CHDK, LOW);
+ }
+ #endif
+
+ #if defined(KILL_PIN) && KILL_PIN > -1
+
+ // Check if the kill button was pressed and wait just in case it was an accidental
+ // key kill key press
+ // -------------------------------------------------------------------------------
+ if( 0 == READ(KILL_PIN) )
+ {
+ killCount++;
+ }
+ else if (killCount > 0)
+ {
+ killCount--;
+ }
+ // Exceeded threshold and we can confirm that it was not accidental
+ // KILL the machine
+ // ----------------------------------------------------------------
+ if ( killCount >= KILL_DELAY)
+ {
+ kill("", 5);
+ }
+ #endif
+
+ #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
+ controllerFan(); //Check if fan should be turned on to cool stepper drivers down
+ #endif
+ #ifdef EXTRUDER_RUNOUT_PREVENT
+ if( (millis() - previous_millis_cmd) > EXTRUDER_RUNOUT_SECONDS*1000 )
+ if(degHotend(active_extruder)>EXTRUDER_RUNOUT_MINTEMP)
+ {
+ bool oldstatus=READ(E0_ENABLE_PIN);
+ enable_e0();
+ float oldepos=current_position[E_AXIS];
+ float oldedes=destination[E_AXIS];
+ plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS],
+ destination[E_AXIS]+EXTRUDER_RUNOUT_EXTRUDE*EXTRUDER_RUNOUT_ESTEPS/axis_steps_per_unit[E_AXIS],
+ EXTRUDER_RUNOUT_SPEED/60.*EXTRUDER_RUNOUT_ESTEPS/axis_steps_per_unit[E_AXIS], active_extruder);
+ current_position[E_AXIS]=oldepos;
+ destination[E_AXIS]=oldedes;
+ plan_set_e_position(oldepos);
+ previous_millis_cmd=millis();
+ st_synchronize();
+ WRITE(E0_ENABLE_PIN,oldstatus);
+ }
+ #endif
+ #ifdef TEMP_STAT_LEDS
+ handle_status_leds();
+ #endif
+ check_axes_activity();
+}
+
+void kill(const char *full_screen_message, unsigned char id)
+{
+ printf_P(_N("KILL: %d\n"), id);
+ //return;
+ cli(); // Stop interrupts
+ disable_heater();
+
+ disable_x();
+// SERIAL_ECHOLNPGM("kill - disable Y");
+ disable_y();
+ disable_z();
+ disable_e0();
+ disable_e1();
+ disable_e2();
+
+#if defined(PS_ON_PIN) && PS_ON_PIN > -1
+ pinMode(PS_ON_PIN,INPUT);
+#endif
+ SERIAL_ERROR_START;
+ SERIAL_ERRORLNRPGM(_i("Printer halted. kill() called!"));////MSG_ERR_KILLED c=0 r=0
+ if (full_screen_message != NULL) {
+ SERIAL_ERRORLNRPGM(full_screen_message);
+ lcd_display_message_fullscreen_P(full_screen_message);
+ } else {
+ LCD_ALERTMESSAGERPGM(_i("KILLED. "));////MSG_KILLED c=0 r=0
+ }
+
+ // FMC small patch to update the LCD before ending
+ sei(); // enable interrupts
+ for ( int i=5; i--; lcd_update(0))
+ {
+ delay(200);
+ }
+ cli(); // disable interrupts
+ suicide();
+ while(1)
+ {
+#ifdef WATCHDOG
+ wdt_reset();
+#endif //WATCHDOG
+ /* Intentionally left empty */
+
+ } // Wait for reset
+}
+
+void Stop()
+{
+ disable_heater();
+ if(Stopped == false) {
+ Stopped = true;
+ Stopped_gcode_LastN = gcode_LastN; // Save last g_code for restart
+ SERIAL_ERROR_START;
+ SERIAL_ERRORLNRPGM(_T(MSG_ERR_STOPPED));
+ LCD_MESSAGERPGM(_T(MSG_STOPPED));
+ }
+}
+
+bool IsStopped() { return Stopped; };
+
+#ifdef FAST_PWM_FAN
+void setPwmFrequency(uint8_t pin, int val)
+{
+ val &= 0x07;
+ switch(digitalPinToTimer(pin))
+ {
+
+ #if defined(TCCR0A)
+ case TIMER0A:
+ case TIMER0B:
+// TCCR0B &= ~(_BV(CS00) | _BV(CS01) | _BV(CS02));
+// TCCR0B |= val;
+ break;
+ #endif
+
+ #if defined(TCCR1A)
+ case TIMER1A:
+ case TIMER1B:
+// TCCR1B &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
+// TCCR1B |= val;
+ break;
+ #endif
+
+ #if defined(TCCR2)
+ case TIMER2:
+ case TIMER2:
+ TCCR2 &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
+ TCCR2 |= val;
+ break;
+ #endif
+
+ #if defined(TCCR2A)
+ case TIMER2A:
+ case TIMER2B:
+ TCCR2B &= ~(_BV(CS20) | _BV(CS21) | _BV(CS22));
+ TCCR2B |= val;
+ break;
+ #endif
+
+ #if defined(TCCR3A)
+ case TIMER3A:
+ case TIMER3B:
+ case TIMER3C:
+ TCCR3B &= ~(_BV(CS30) | _BV(CS31) | _BV(CS32));
+ TCCR3B |= val;
+ break;
+ #endif
+
+ #if defined(TCCR4A)
+ case TIMER4A:
+ case TIMER4B:
+ case TIMER4C:
+ TCCR4B &= ~(_BV(CS40) | _BV(CS41) | _BV(CS42));
+ TCCR4B |= val;
+ break;
+ #endif
+
+ #if defined(TCCR5A)
+ case TIMER5A:
+ case TIMER5B:
+ case TIMER5C:
+ TCCR5B &= ~(_BV(CS50) | _BV(CS51) | _BV(CS52));
+ TCCR5B |= val;
+ break;
+ #endif
+
+ }
+}
+#endif //FAST_PWM_FAN
+
+bool setTargetedHotend(int code){
+ tmp_extruder = active_extruder;
+ if(code_seen('T')) {
+ tmp_extruder = code_value();
+ if(tmp_extruder >= EXTRUDERS) {
+ SERIAL_ECHO_START;
+ switch(code){
+ case 104:
+ SERIAL_ECHORPGM(_i("M104 Invalid extruder "));////MSG_M104_INVALID_EXTRUDER c=0 r=0
+ break;
+ case 105:
+ SERIAL_ECHO(_i("M105 Invalid extruder "));////MSG_M105_INVALID_EXTRUDER c=0 r=0
+ break;
+ case 109:
+ SERIAL_ECHO(_i("M109 Invalid extruder "));////MSG_M109_INVALID_EXTRUDER c=0 r=0
+ break;
+ case 218:
+ SERIAL_ECHO(_i("M218 Invalid extruder "));////MSG_M218_INVALID_EXTRUDER c=0 r=0
+ break;
+ case 221:
+ SERIAL_ECHO(_i("M221 Invalid extruder "));////MSG_M221_INVALID_EXTRUDER c=0 r=0
+ break;
+ }
+ SERIAL_PROTOCOLLN((int)tmp_extruder);
+ return true;
+ }
+ }
+ return false;
+}
+
+void save_statistics(unsigned long _total_filament_used, unsigned long _total_print_time) //_total_filament_used unit: mm/100; print time in s
+{
+ if (eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 1) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 2) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 3) == 255)
+ {
+ eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, 0);
+ eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, 0);
+ }
+
+ unsigned long _previous_filament = eeprom_read_dword((uint32_t *)EEPROM_FILAMENTUSED); //_previous_filament unit: cm
+ unsigned long _previous_time = eeprom_read_dword((uint32_t *)EEPROM_TOTALTIME); //_previous_time unit: min
+
+ eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, _previous_time + (_total_print_time/60)); //EEPROM_TOTALTIME unit: min
+ eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, _previous_filament + (_total_filament_used / 1000));
+
+ total_filament_used = 0;
+
+}
+
+float calculate_extruder_multiplier(float diameter) {
+ float out = 1.f;
+ if (volumetric_enabled && diameter > 0.f) {
+ float area = M_PI * diameter * diameter * 0.25;
+ out = 1.f / area;
+ }
+ if (extrudemultiply != 100)
+ out *= float(extrudemultiply) * 0.01f;
+ return out;
+}
+
+void calculate_extruder_multipliers() {
+ extruder_multiplier[0] = calculate_extruder_multiplier(filament_size[0]);
+#if EXTRUDERS > 1
+ extruder_multiplier[1] = calculate_extruder_multiplier(filament_size[1]);
+#if EXTRUDERS > 2
+ extruder_multiplier[2] = calculate_extruder_multiplier(filament_size[2]);
+#endif
+#endif
+}
+
+void delay_keep_alive(unsigned int ms)
+{
+ for (;;) {
+ manage_heater();
+ // Manage inactivity, but don't disable steppers on timeout.
+ manage_inactivity(true);
+ lcd_update(0);
+ if (ms == 0)
+ break;
+ else if (ms >= 50) {
+ delay(50);
+ ms -= 50;
+ } else {
+ delay(ms);
+ ms = 0;
+ }
+ }
+}
+
+void wait_for_heater(long codenum) {
+
+#ifdef TEMP_RESIDENCY_TIME
+ long residencyStart;
+ residencyStart = -1;
+ /* continue to loop until we have reached the target temp
+ _and_ until TEMP_RESIDENCY_TIME hasn't passed since we reached it */
+ while ((!cancel_heatup) && ((residencyStart == -1) ||
+ (residencyStart >= 0 && (((unsigned int)(millis() - residencyStart)) < (TEMP_RESIDENCY_TIME * 1000UL))))) {
+#else
+ while (target_direction ? (isHeatingHotend(tmp_extruder)) : (isCoolingHotend(tmp_extruder) && (CooldownNoWait == false))) {
+#endif //TEMP_RESIDENCY_TIME
+ if ((millis() - codenum) > 1000UL)
+ { //Print Temp Reading and remaining time every 1 second while heating up/cooling down
+ if (!farm_mode) {
+ SERIAL_PROTOCOLPGM("T:");
+ SERIAL_PROTOCOL_F(degHotend(tmp_extruder), 1);
+ SERIAL_PROTOCOLPGM(" E:");
+ SERIAL_PROTOCOL((int)tmp_extruder);
+
+#ifdef TEMP_RESIDENCY_TIME
+ SERIAL_PROTOCOLPGM(" W:");
+ if (residencyStart > -1)
+ {
+ codenum = ((TEMP_RESIDENCY_TIME * 1000UL) - (millis() - residencyStart)) / 1000UL;
+ SERIAL_PROTOCOLLN(codenum);
+ }
+ else
+ {
+ SERIAL_PROTOCOLLN("?");
+ }
+ }
+#else
+ SERIAL_PROTOCOLLN("");
+#endif
+ codenum = millis();
+ }
+ manage_heater();
+ manage_inactivity();
+ lcd_update(0);
+#ifdef TEMP_RESIDENCY_TIME
+ /* start/restart the TEMP_RESIDENCY_TIME timer whenever we reach target temp for the first time
+ or when current temp falls outside the hysteresis after target temp was reached */
+ if ((residencyStart == -1 && target_direction && (degHotend(tmp_extruder) >= (degTargetHotend(tmp_extruder) - TEMP_WINDOW))) ||
+ (residencyStart == -1 && !target_direction && (degHotend(tmp_extruder) <= (degTargetHotend(tmp_extruder) + TEMP_WINDOW))) ||
+ (residencyStart > -1 && labs(degHotend(tmp_extruder) - degTargetHotend(tmp_extruder)) > TEMP_HYSTERESIS))
+ {
+ residencyStart = millis();
+ }
+#endif //TEMP_RESIDENCY_TIME
+ }
+}
+
+void check_babystep() {
+ int babystep_z;
+ EEPROM_read_B(EEPROM_BABYSTEP_Z, &babystep_z);
+ if ((babystep_z < Z_BABYSTEP_MIN) || (babystep_z > Z_BABYSTEP_MAX)) {
+ babystep_z = 0; //if babystep value is out of min max range, set it to 0
+ SERIAL_ECHOLNPGM("Z live adjust out of range. Setting to 0");
+ EEPROM_save_B(EEPROM_BABYSTEP_Z, &babystep_z);
+ lcd_show_fullscreen_message_and_wait_P(PSTR("Z live adjust out of range. Setting to 0. Click to continue."));
+ lcd_update_enable(true);
+ }
+}
+#ifdef DIS
+void d_setup()
+{
+ pinMode(D_DATACLOCK, INPUT_PULLUP);
+ pinMode(D_DATA, INPUT_PULLUP);
+ pinMode(D_REQUIRE, OUTPUT);
+ digitalWrite(D_REQUIRE, HIGH);
+}
+
+
+float d_ReadData()
+{
+ int digit[13];
+ String mergeOutput;
+ float output;
+
+ digitalWrite(D_REQUIRE, HIGH);
+ for (int i = 0; i<13; i++)
+ {
+ for (int j = 0; j < 4; j++)
+ {
+ while (digitalRead(D_DATACLOCK) == LOW) {}
+ while (digitalRead(D_DATACLOCK) == HIGH) {}
+ bitWrite(digit[i], j, digitalRead(D_DATA));
+ }
+ }
+
+ digitalWrite(D_REQUIRE, LOW);
+ mergeOutput = "";
+ output = 0;
+ for (int r = 5; r <= 10; r++) //Merge digits
+ {
+ mergeOutput += digit[r];
+ }
+ output = mergeOutput.toFloat();
+
+ if (digit[4] == 8) //Handle sign
+ {
+ output *= -1;
+ }
+
+ for (int i = digit[11]; i > 0; i--) //Handle floating point
+ {
+ output /= 10;
+ }
+
+ return output;
+
+}
+
+void bed_analysis(float x_dimension, float y_dimension, int x_points_num, int y_points_num, float shift_x, float shift_y) {
+ int t1 = 0;
+ int t_delay = 0;
+ int digit[13];
+ int m;
+ char str[3];
+ //String mergeOutput;
+ char mergeOutput[15];
+ float output;
+
+ int mesh_point = 0; //index number of calibration point
+ float bed_zero_ref_x = (-22.f + X_PROBE_OFFSET_FROM_EXTRUDER); //shift between zero point on bed and target and between probe and nozzle
+ float bed_zero_ref_y = (-0.6f + Y_PROBE_OFFSET_FROM_EXTRUDER);
+
+ float mesh_home_z_search = 4;
+ float row[x_points_num];
+ int ix = 0;
+ int iy = 0;
+
+ char* filename_wldsd = "wldsd.txt";
+ char data_wldsd[70];
+ char numb_wldsd[10];
+
+ d_setup();
+
+ if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS])) {
+ // We don't know where we are! HOME!
+ // Push the commands to the front of the message queue in the reverse order!
+ // There shall be always enough space reserved for these commands.
+ repeatcommand_front(); // repeat G80 with all its parameters
+
+ enquecommand_front_P((PSTR("G28 W0")));
+ enquecommand_front_P((PSTR("G1 Z5")));
+ return;
+ }
+ bool custom_message_old = custom_message;
+ unsigned int custom_message_type_old = custom_message_type;
+ unsigned int custom_message_state_old = custom_message_state;
+ custom_message = true;
+ custom_message_type = 1;
+ custom_message_state = (x_points_num * y_points_num) + 10;
+ lcd_update(1);
+
+ mbl.reset();
+ babystep_undo();
+
+ card.openFile(filename_wldsd, false);
+
+ current_position[Z_AXIS] = mesh_home_z_search;
+ plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 60, active_extruder);
+
+ int XY_AXIS_FEEDRATE = homing_feedrate[X_AXIS] / 20;
+ int Z_PROBE_FEEDRATE = homing_feedrate[Z_AXIS] / 60;
+ int Z_LIFT_FEEDRATE = homing_feedrate[Z_AXIS] / 40;
+
+ setup_for_endstop_move(false);
+
+ SERIAL_PROTOCOLPGM("Num X,Y: ");
+ SERIAL_PROTOCOL(x_points_num);
+ SERIAL_PROTOCOLPGM(",");
+ SERIAL_PROTOCOL(y_points_num);
+ SERIAL_PROTOCOLPGM("\nZ search height: ");
+ SERIAL_PROTOCOL(mesh_home_z_search);
+ SERIAL_PROTOCOLPGM("\nDimension X,Y: ");
+ SERIAL_PROTOCOL(x_dimension);
+ SERIAL_PROTOCOLPGM(",");
+ SERIAL_PROTOCOL(y_dimension);
+ SERIAL_PROTOCOLLNPGM("\nMeasured points:");
+
+ while (mesh_point != x_points_num * y_points_num) {
+ ix = mesh_point % x_points_num; // from 0 to MESH_NUM_X_POINTS - 1
+ iy = mesh_point / x_points_num;
+ if (iy & 1) ix = (x_points_num - 1) - ix; // Zig zag
+ float z0 = 0.f;
+ current_position[Z_AXIS] = mesh_home_z_search;
+ plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
+ st_synchronize();
+
+
+ current_position[X_AXIS] = 13.f + ix * (x_dimension / (x_points_num - 1)) - bed_zero_ref_x + shift_x;
+ current_position[Y_AXIS] = 6.4f + iy * (y_dimension / (y_points_num - 1)) - bed_zero_ref_y + shift_y;
+
+ plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], XY_AXIS_FEEDRATE, active_extruder);
+ st_synchronize();
+
+ if (!find_bed_induction_sensor_point_z(-10.f)) { //if we have data from z calibration max allowed difference is 1mm for each point, if we dont have data max difference is 10mm from initial point
+ break;
+ card.closefile();
+ }
+
+
+ //memset(numb_wldsd, 0, sizeof(numb_wldsd));
+ //dtostrf(d_ReadData(), 8, 5, numb_wldsd);
+ //strcat(data_wldsd, numb_wldsd);
+
+
+
+ //MYSERIAL.println(data_wldsd);
+ //delay(1000);
+ //delay(3000);
+ //t1 = millis();
+
+ //while (digitalRead(D_DATACLOCK) == LOW) {}
+ //while (digitalRead(D_DATACLOCK) == HIGH) {}
+ memset(digit, 0, sizeof(digit));
+ //cli();
+ digitalWrite(D_REQUIRE, LOW);
+
+ for (int i = 0; i<13; i++)
+ {
+ //t1 = millis();
+ for (int j = 0; j < 4; j++)
+ {
+ while (digitalRead(D_DATACLOCK) == LOW) {}
+ while (digitalRead(D_DATACLOCK) == HIGH) {}
+ bitWrite(digit[i], j, digitalRead(D_DATA));
+ }
+ //t_delay = (millis() - t1);
+ //SERIAL_PROTOCOLPGM(" ");
+ //SERIAL_PROTOCOL_F(t_delay, 5);
+ //SERIAL_PROTOCOLPGM(" ");
+ }
+ //sei();
+ digitalWrite(D_REQUIRE, HIGH);
+ mergeOutput[0] = '\0';
+ output = 0;
+ for (int r = 5; r <= 10; r++) //Merge digits
+ {
+ sprintf(str, "%d", digit[r]);
+ strcat(mergeOutput, str);
+ }
+
+ output = atof(mergeOutput);
+
+ if (digit[4] == 8) //Handle sign
+ {
+ output *= -1;
+ }
+
+ for (int i = digit[11]; i > 0; i--) //Handle floating point
+ {
+ output *= 0.1;
+ }
+
+
+ //output = d_ReadData();
+
+ //row[ix] = current_position[Z_AXIS];
+
+ memset(data_wldsd, 0, sizeof(data_wldsd));
+
+ for (int i = 0; i <3; i++) {
+ memset(numb_wldsd, 0, sizeof(numb_wldsd));
+ dtostrf(current_position[i], 8, 5, numb_wldsd);
+ strcat(data_wldsd, numb_wldsd);
+ strcat(data_wldsd, ";");
+
+ }
+ memset(numb_wldsd, 0, sizeof(numb_wldsd));
+ dtostrf(output, 8, 5, numb_wldsd);
+ strcat(data_wldsd, numb_wldsd);
+ //strcat(data_wldsd, ";");
+ card.write_command(data_wldsd);
+
+
+ //row[ix] = d_ReadData();
+
+ row[ix] = output; // current_position[Z_AXIS];
+
+ if (iy % 2 == 1 ? ix == 0 : ix == x_points_num - 1) {
+ for (int i = 0; i < x_points_num; i++) {
+ SERIAL_PROTOCOLPGM(" ");
+ SERIAL_PROTOCOL_F(row[i], 5);
+
+
+ }
+ SERIAL_PROTOCOLPGM("\n");
+ }
+ custom_message_state--;
+ mesh_point++;
+ lcd_update(1);
+
+ }
+ card.closefile();
+
+}
+#endif
+
+void temp_compensation_start() {
+
+ custom_message = true;
+ custom_message_type = 5;
+ custom_message_state = PINDA_HEAT_T + 1;
+ lcd_update(2);
+ if (degHotend(active_extruder) > EXTRUDE_MINTEMP) {
+ current_position[E_AXIS] -= DEFAULT_RETRACTION;
+ }
+ plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400, active_extruder);
+
+ current_position[X_AXIS] = PINDA_PREHEAT_X;
+ current_position[Y_AXIS] = PINDA_PREHEAT_Y;
+ current_position[Z_AXIS] = PINDA_PREHEAT_Z;
+ plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
+ st_synchronize();
+ while (fabs(degBed() - target_temperature_bed) > 1) delay_keep_alive(1000);
+
+ for (int i = 0; i < PINDA_HEAT_T; i++) {
+ delay_keep_alive(1000);
+ custom_message_state = PINDA_HEAT_T - i;
+ if (custom_message_state == 99 || custom_message_state == 9) lcd_update(2); //force whole display redraw if number of digits changed
+ else lcd_update(1);
+ }
+ custom_message_type = 0;
+ custom_message_state = 0;
+ custom_message = false;
+}
+
+void temp_compensation_apply() {
+ int i_add;
+ int compensation_value;
+ int z_shift = 0;
+ float z_shift_mm;
+
+ if (calibration_status() == CALIBRATION_STATUS_CALIBRATED) {
+ if (target_temperature_bed % 10 == 0 && target_temperature_bed >= 60 && target_temperature_bed <= 100) {
+ i_add = (target_temperature_bed - 60) / 10;
+ EEPROM_read_B(EEPROM_PROBE_TEMP_SHIFT + i_add * 2, &z_shift);
+ z_shift_mm = z_shift / axis_steps_per_unit[Z_AXIS];
+ }else {
+ //interpolation
+ z_shift_mm = temp_comp_interpolation(target_temperature_bed) / axis_steps_per_unit[Z_AXIS];
+ }
+ printf_P(_N("\nZ shift applied:%.3f\n"), z_shift_mm);
+ plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS] - z_shift_mm, current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
+ st_synchronize();
+ plan_set_z_position(current_position[Z_AXIS]);
+ }
+ else {
+ //we have no temp compensation data
+ }
+}
+
+float temp_comp_interpolation(float inp_temperature) {
+
+ //cubic spline interpolation
+
+ int n, i, j, k;
+ float h[10], a, b, c, d, sum, s[10] = { 0 }, x[10], F[10], f[10], m[10][10] = { 0 }, temp;
+ int shift[10];
+ int temp_C[10];
+
+ n = 6; //number of measured points
+
+ shift[0] = 0;
+ for (i = 0; i < n; i++) {
+ if (i>0) EEPROM_read_B(EEPROM_PROBE_TEMP_SHIFT + (i-1) * 2, &shift[i]); //read shift in steps from EEPROM
+ temp_C[i] = 50 + i * 10; //temperature in C
+#ifdef PINDA_THERMISTOR
+ temp_C[i] = 35 + i * 5; //temperature in C
+#else
+ temp_C[i] = 50 + i * 10; //temperature in C
+#endif
+ x[i] = (float)temp_C[i];
+ f[i] = (float)shift[i];
+ }
+ if (inp_temperature < x[0]) return 0;
+
+
+ for (i = n - 1; i>0; i--) {
+ F[i] = (f[i] - f[i - 1]) / (x[i] - x[i - 1]);
+ h[i - 1] = x[i] - x[i - 1];
+ }
+ //*********** formation of h, s , f matrix **************
+ for (i = 1; i0; i--) {
+ sum = 0;
+ for (j = i; j <= n - 2; j++)
+ sum += m[i][j] * s[j];
+ s[i] = (m[i][n - 1] - sum) / m[i][i];
+ }
+
+ for (i = 0; i x[i + 1])) {
+ a = (s[i + 1] - s[i]) / (6 * h[i]);
+ b = s[i] / 2;
+ c = (f[i + 1] - f[i]) / h[i] - (2 * h[i] * s[i] + s[i + 1] * h[i]) / 6;
+ d = f[i];
+ sum = a*pow((inp_temperature - x[i]), 3) + b*pow((inp_temperature - x[i]), 2) + c*(inp_temperature - x[i]) + d;
+ }
+
+ return sum;
+
+}
+
+#ifdef PINDA_THERMISTOR
+float temp_compensation_pinda_thermistor_offset(float temperature_pinda)
+{
+ if (!temp_cal_active) return 0;
+ if (!calibration_status_pinda()) return 0;
+ return temp_comp_interpolation(temperature_pinda) / axis_steps_per_unit[Z_AXIS];
+}
+#endif //PINDA_THERMISTOR
+
+void long_pause() //long pause print
+{
+ st_synchronize();
+
+ //save currently set parameters to global variables
+ saved_feedmultiply = feedmultiply;
+ HotendTempBckp = degTargetHotend(active_extruder);
+ fanSpeedBckp = fanSpeed;
+ start_pause_print = millis();
+
+
+ //save position
+ pause_lastpos[X_AXIS] = current_position[X_AXIS];
+ pause_lastpos[Y_AXIS] = current_position[Y_AXIS];
+ pause_lastpos[Z_AXIS] = current_position[Z_AXIS];
+ pause_lastpos[E_AXIS] = current_position[E_AXIS];
+
+ //retract
+ current_position[E_AXIS] -= DEFAULT_RETRACTION;
+ plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400, active_extruder);
+
+ //lift z
+ current_position[Z_AXIS] += Z_PAUSE_LIFT;
+ if (current_position[Z_AXIS] > Z_MAX_POS) current_position[Z_AXIS] = Z_MAX_POS;
+ plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 15, active_extruder);
+
+ //set nozzle target temperature to 0
+ setTargetHotend(0, 0);
+ setTargetHotend(0, 1);
+ setTargetHotend(0, 2);
+
+ //Move XY to side
+ current_position[X_AXIS] = X_PAUSE_POS;
+ current_position[Y_AXIS] = Y_PAUSE_POS;
+ plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 50, active_extruder);
+
+ // Turn off the print fan
+ fanSpeed = 0;
+
+ st_synchronize();
+}
+
+void serialecho_temperatures() {
+ float tt = degHotend(active_extruder);
+ SERIAL_PROTOCOLPGM("T:");
+ SERIAL_PROTOCOL(tt);
+ SERIAL_PROTOCOLPGM(" E:");
+ SERIAL_PROTOCOL((int)active_extruder);
+ SERIAL_PROTOCOLPGM(" B:");
+ SERIAL_PROTOCOL_F(degBed(), 1);
+ SERIAL_PROTOCOLLN("");
+}
+
+extern uint32_t sdpos_atomic;
+
+#ifdef UVLO_SUPPORT
+
+void uvlo_()
+{
+ unsigned long time_start = millis();
+ bool sd_print = card.sdprinting;
+ // Conserve power as soon as possible.
+ disable_x();
+ disable_y();
+
+#ifdef TMC2130
+ tmc2130_set_current_h(Z_AXIS, 20);
+ tmc2130_set_current_r(Z_AXIS, 20);
+ tmc2130_set_current_h(E_AXIS, 20);
+ tmc2130_set_current_r(E_AXIS, 20);
+#endif //TMC2130
+
+
+ // Indicate that the interrupt has been triggered.
+ // SERIAL_ECHOLNPGM("UVLO");
+
+ // Read out the current Z motor microstep counter. This will be later used
+ // for reaching the zero full step before powering off.
+ uint16_t z_microsteps = 0;
+#ifdef TMC2130
+ z_microsteps = tmc2130_rd_MSCNT(Z_TMC2130_CS);
+#endif //TMC2130
+
+ // Calculate the file position, from which to resume this print.
+ long sd_position = sdpos_atomic; //atomic sd position of last command added in queue
+ {
+ uint16_t sdlen_planner = planner_calc_sd_length(); //length of sd commands in planner
+ sd_position -= sdlen_planner;
+ uint16_t sdlen_cmdqueue = cmdqueue_calc_sd_length(); //length of sd commands in cmdqueue
+ sd_position -= sdlen_cmdqueue;
+ if (sd_position < 0) sd_position = 0;
+ }
+
+ // Backup the feedrate in mm/min.
+ int feedrate_bckp = blocks_queued() ? (block_buffer[block_buffer_tail].nominal_speed * 60.f) : feedrate;
+
+ // After this call, the planner queue is emptied and the current_position is set to a current logical coordinate.
+ // The logical coordinate will likely differ from the machine coordinate if the skew calibration and mesh bed leveling
+ // are in action.
+ planner_abort_hard();
+
+ // Store the current extruder position.
+ eeprom_update_float((float*)(EEPROM_UVLO_CURRENT_POSITION_E), st_get_position_mm(E_AXIS));
+ eeprom_update_byte((uint8_t*)EEPROM_UVLO_E_ABS, axis_relative_modes[3]?0:1);
+
+ // Clean the input command queue.
+ cmdqueue_reset();
+ card.sdprinting = false;
+// card.closefile();
+
+ // Enable stepper driver interrupt to move Z axis.
+ // This should be fine as the planner and command queues are empty and the SD card printing is disabled.
+ //FIXME one may want to disable serial lines at this point of time to avoid interfering with the command queue,
+ // though it should not happen that the command queue is touched as the plan_buffer_line always succeed without blocking.
+ sei();
+ plan_buffer_line(
+ current_position[X_AXIS],
+ current_position[Y_AXIS],
+ current_position[Z_AXIS],
+ current_position[E_AXIS] - DEFAULT_RETRACTION,
+ 95, active_extruder);
+
+ st_synchronize();
+ disable_e0();
+
+ plan_buffer_line(
+ current_position[X_AXIS],
+ current_position[Y_AXIS],
+ current_position[Z_AXIS] + UVLO_Z_AXIS_SHIFT + float((1024 - z_microsteps + 7) >> 4) / axis_steps_per_unit[Z_AXIS],
+ current_position[E_AXIS] - DEFAULT_RETRACTION,
+ 40, active_extruder);
+
+ st_synchronize();
+ disable_e0();
+
+ plan_buffer_line(
+ current_position[X_AXIS],
+ current_position[Y_AXIS],
+ current_position[Z_AXIS] + UVLO_Z_AXIS_SHIFT + float((1024 - z_microsteps + 7) >> 4) / axis_steps_per_unit[Z_AXIS],
+ current_position[E_AXIS] - DEFAULT_RETRACTION,
+ 40, active_extruder);
+ st_synchronize();
+ disable_e0();
+ disable_z();
+
+ // Move Z up to the next 0th full step.
+ // Write the file position.
+ eeprom_update_dword((uint32_t*)(EEPROM_FILE_POSITION), sd_position);
+ // Store the mesh bed leveling offsets. This is 2*9=18 bytes, which takes 18*3.4us=52us in worst case.
+ for (int8_t mesh_point = 0; mesh_point < 9; ++ mesh_point) {
+ uint8_t ix = mesh_point % MESH_MEAS_NUM_X_POINTS; // from 0 to MESH_NUM_X_POINTS - 1
+ uint8_t iy = mesh_point / MESH_MEAS_NUM_X_POINTS;
+ // Scale the z value to 1u resolution.
+ int16_t v = mbl.active ? int16_t(floor(mbl.z_values[iy*3][ix*3] * 1000.f + 0.5f)) : 0;
+ eeprom_update_word((uint16_t*)(EEPROM_UVLO_MESH_BED_LEVELING+2*mesh_point), *reinterpret_cast(&v));
+ }
+ // Read out the current Z motor microstep counter. This will be later used
+ // for reaching the zero full step before powering off.
+ eeprom_update_word((uint16_t*)(EEPROM_UVLO_Z_MICROSTEPS), z_microsteps);
+ // Store the current position.
+ eeprom_update_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 0), current_position[X_AXIS]);
+ eeprom_update_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 4), current_position[Y_AXIS]);
+ eeprom_update_float((float*)(EEPROM_UVLO_CURRENT_POSITION_Z), current_position[Z_AXIS]);
+ // Store the current feed rate, temperatures, fan speed and extruder multipliers (flow rates)
+ EEPROM_save_B(EEPROM_UVLO_FEEDRATE, &feedrate_bckp);
+ eeprom_update_byte((uint8_t*)EEPROM_UVLO_TARGET_HOTEND, target_temperature[active_extruder]);
+ eeprom_update_byte((uint8_t*)EEPROM_UVLO_TARGET_BED, target_temperature_bed);
+ eeprom_update_byte((uint8_t*)EEPROM_UVLO_FAN_SPEED, fanSpeed);
+ eeprom_update_float((float*)(EEPROM_EXTRUDER_MULTIPLIER_0), extruder_multiplier[0]);
+#if EXTRUDERS > 1
+ eeprom_update_float((float*)(EEPROM_EXTRUDER_MULTIPLIER_1), extruder_multiplier[1]);
+#if EXTRUDERS > 2
+ eeprom_update_float((float*)(EEPROM_EXTRUDER_MULTIPLIER_2), extruder_multiplier[2]);
+#endif
+#endif
+ eeprom_update_word((uint16_t*)(EEPROM_EXTRUDEMULTIPLY), (uint16_t)extrudemultiply);
+
+ // Finaly store the "power outage" flag.
+ if(sd_print) eeprom_update_byte((uint8_t*)EEPROM_UVLO, 1);
+
+ st_synchronize();
+ printf_P(_N("stps%d\n"), tmc2130_rd_MSCNT(Z_AXIS));
+
+ disable_z();
+
+ // Increment power failure counter
+ eeprom_update_byte((uint8_t*)EEPROM_POWER_COUNT, eeprom_read_byte((uint8_t*)EEPROM_POWER_COUNT) + 1);
+ eeprom_update_word((uint16_t*)EEPROM_POWER_COUNT_TOT, eeprom_read_word((uint16_t*)EEPROM_POWER_COUNT_TOT) + 1);
+
+ printf_P(_N("UVLO - end %d\n"), millis() - time_start);
+
+#if 0
+ // Move the print head to the side of the print until all the power stored in the power supply capacitors is depleted.
+ current_position[X_AXIS] = (current_position[X_AXIS] < 0.5f * (X_MIN_POS + X_MAX_POS)) ? X_MIN_POS : X_MAX_POS;
+ plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 500, active_extruder);
+ st_synchronize();
+#endif
+
+
+ cli();
+ volatile unsigned int ppcount = 0;
+ SET_OUTPUT(BEEPER);
+ WRITE(BEEPER, HIGH);
+ for(ppcount = 0; ppcount < 2000; ppcount ++){
+ asm("nop");//50ns on 20Mhz, 62.5ns on 16Mhz
+ }
+ WRITE(BEEPER, LOW);
+ while(1){
+#if 1
+ WRITE(BEEPER, LOW);
+ for(ppcount = 0; ppcount < 8000; ppcount ++){
+ asm("nop");//50ns on 20Mhz, 62.5ns on 16Mhz
+ }
+#endif
+
+ };
+}
+#endif //UVLO_SUPPORT
+
+#if (defined(FANCHECK) && defined(TACH_1) && (TACH_1 >-1))
+
+void setup_fan_interrupt() {
+//INT7
+ DDRE &= ~(1 << 7); //input pin
+ PORTE &= ~(1 << 7); //no internal pull-up
+
+ //start with sensing rising edge
+ EICRB &= ~(1 << 6);
+ EICRB |= (1 << 7);
+
+ //enable INT7 interrupt
+ EIMSK |= (1 << 7);
+}
+
+// The fan interrupt is triggered at maximum 325Hz (may be a bit more due to component tollerances),
+// and it takes 4.24 us to process (the interrupt invocation overhead not taken into account).
+ISR(INT7_vect) {
+ //measuring speed now works for fanSpeed > 18 (approximately), which is sufficient because MIN_PRINT_FAN_SPEED is higher
+
+ if (fanSpeed < MIN_PRINT_FAN_SPEED) return;
+ if ((1 << 6) & EICRB) { //interrupt was triggered by rising edge
+ t_fan_rising_edge = millis_nc();
+ }
+ else { //interrupt was triggered by falling edge
+ if ((millis_nc() - t_fan_rising_edge) >= FAN_PULSE_WIDTH_LIMIT) {//this pulse was from sensor and not from pwm
+ fan_edge_counter[1] += 2; //we are currently counting all edges so lets count two edges for one pulse
+ }
+ }
+ EICRB ^= (1 << 6); //change edge
+}
+
+#endif
+
+#ifdef UVLO_SUPPORT
+void setup_uvlo_interrupt() {
+ DDRE &= ~(1 << 4); //input pin
+ PORTE &= ~(1 << 4); //no internal pull-up
+
+ //sensing falling edge
+ EICRB |= (1 << 0);
+ EICRB &= ~(1 << 1);
+
+ //enable INT4 interrupt
+ EIMSK |= (1 << 4);
+}
+
+ISR(INT4_vect) {
+ EIMSK &= ~(1 << 4); //disable INT4 interrupt to make sure that this code will be executed just once
+ SERIAL_ECHOLNPGM("INT4");
+ if (IS_SD_PRINTING) uvlo_();
+}
+
+void recover_print(uint8_t automatic) {
+ char cmd[30];
+ lcd_update_enable(true);
+ lcd_update(2);
+ lcd_setstatuspgm(_i("Recovering print "));////MSG_RECOVERING_PRINT c=20 r=1
+
+ recover_machine_state_after_power_panic(); //recover position, temperatures and extrude_multipliers
+
+ // Lift the print head, so one may remove the excess priming material.
+ if (current_position[Z_AXIS] < 25)
+ enquecommand_P(PSTR("G1 Z25 F800"));
+ // Home X and Y axes. Homing just X and Y shall not touch the babystep and the world2machine transformation status.
+ enquecommand_P(PSTR("G28 X Y"));
+ // Set the target bed and nozzle temperatures and wait.
+ sprintf_P(cmd, PSTR("M109 S%d"), target_temperature[active_extruder]);
+ enquecommand(cmd);
+ sprintf_P(cmd, PSTR("M190 S%d"), target_temperature_bed);
+ enquecommand(cmd);
+ enquecommand_P(PSTR("M83")); //E axis relative mode
+ //enquecommand_P(PSTR("G1 E5 F120")); //Extrude some filament to stabilize pessure
+ // If not automatically recoreverd (long power loss), extrude extra filament to stabilize
+ if(automatic == 0){
+ enquecommand_P(PSTR("G1 E5 F120")); //Extrude some filament to stabilize pessure
+ }
+ enquecommand_P(PSTR("G1 E" STRINGIFY(-DEFAULT_RETRACTION)" F480"));
+
+ // Mark the power panic status as inactive.
+ eeprom_update_byte((uint8_t*)EEPROM_UVLO, 0);
+ /*while ((abs(degHotend(0)- target_temperature[0])>5) || (abs(degBed() -target_temperature_bed)>3)) { //wait for heater and bed to reach target temp
+ delay_keep_alive(1000);
+ }*/
+
+ printf_P(_N("After waiting for temp:\nCurrent pos X_AXIS:%.3f\nCurrent pos Y_AXIS:%.3f\n"), current_position[X_AXIS], current_position[Y_AXIS]);
+
+ // Restart the print.
+ restore_print_from_eeprom();
+
+ printf_P(_N("Current pos Z_AXIS:%.3f\nCurrent pos E_AXIS:%.3f\n"), current_position[Z_AXIS], current_position[E_AXIS]);
+}
+
+void recover_machine_state_after_power_panic()
+{
+ char cmd[30];
+ // 1) Recover the logical cordinates at the time of the power panic.
+ // The logical XY coordinates are needed to recover the machine Z coordinate corrected by the mesh bed leveling.
+ current_position[X_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 0));
+ current_position[Y_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 4));
+ // Recover the logical coordinate of the Z axis at the time of the power panic.
+ // The current position after power panic is moved to the next closest 0th full step.
+ current_position[Z_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION_Z)) +
+ UVLO_Z_AXIS_SHIFT + float((1024 - eeprom_read_word((uint16_t*)(EEPROM_UVLO_Z_MICROSTEPS)) + 7) >> 4) / axis_steps_per_unit[Z_AXIS];
+ if (eeprom_read_byte((uint8_t*)EEPROM_UVLO_E_ABS)) {
+ current_position[E_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION_E));
+ sprintf_P(cmd, PSTR("G92 E"));
+ dtostrf(current_position[E_AXIS], 6, 3, cmd + strlen(cmd));
+ enquecommand(cmd);
+ }
+
+ memcpy(destination, current_position, sizeof(destination));
+
+ SERIAL_ECHOPGM("recover_machine_state_after_power_panic, initial ");
+ print_world_coordinates();
+
+ // 2) Initialize the logical to physical coordinate system transformation.
+ world2machine_initialize();
+
+ // 3) Restore the mesh bed leveling offsets. This is 2*9=18 bytes, which takes 18*3.4us=52us in worst case.
+ mbl.active = false;
+ for (int8_t mesh_point = 0; mesh_point < 9; ++ mesh_point) {
+ uint8_t ix = mesh_point % MESH_MEAS_NUM_X_POINTS; // from 0 to MESH_NUM_X_POINTS - 1
+ uint8_t iy = mesh_point / MESH_MEAS_NUM_X_POINTS;
+ // Scale the z value to 10u resolution.
+ int16_t v;
+ eeprom_read_block(&v, (void*)(EEPROM_UVLO_MESH_BED_LEVELING+2*mesh_point), 2);
+ if (v != 0)
+ mbl.active = true;
+ mbl.z_values[iy][ix] = float(v) * 0.001f;
+ }
+ if (mbl.active)
+ mbl.upsample_3x3();
+// SERIAL_ECHOPGM("recover_machine_state_after_power_panic, initial ");
+// print_mesh_bed_leveling_table();
+
+ // 4) Load the baby stepping value, which is expected to be active at the time of power panic.
+ // The baby stepping value is used to reset the physical Z axis when rehoming the Z axis.
+ babystep_load();
+
+ // 5) Set the physical positions from the logical positions using the world2machine transformation and the active bed leveling.
+ plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
+
+ // 6) Power up the motors, mark their positions as known.
+ //FIXME Verfiy, whether the X and Y axes should be powered up here, as they will later be re-homed anyway.
+ axis_known_position[X_AXIS] = true; enable_x();
+ axis_known_position[Y_AXIS] = true; enable_y();
+ axis_known_position[Z_AXIS] = true; enable_z();
+
+ SERIAL_ECHOPGM("recover_machine_state_after_power_panic, initial ");
+ print_physical_coordinates();
+
+ // 7) Recover the target temperatures.
+ target_temperature[active_extruder] = eeprom_read_byte((uint8_t*)EEPROM_UVLO_TARGET_HOTEND);
+ target_temperature_bed = eeprom_read_byte((uint8_t*)EEPROM_UVLO_TARGET_BED);
+
+ // 8) Recover extruder multipilers
+ extruder_multiplier[0] = eeprom_read_float((float*)(EEPROM_EXTRUDER_MULTIPLIER_0));
+#if EXTRUDERS > 1
+ extruder_multiplier[1] = eeprom_read_float((float*)(EEPROM_EXTRUDER_MULTIPLIER_1));
+#if EXTRUDERS > 2
+ extruder_multiplier[2] = eeprom_read_float((float*)(EEPROM_EXTRUDER_MULTIPLIER_2));
+#endif
+#endif
+ extrudemultiply = (int)eeprom_read_word((uint16_t*)(EEPROM_EXTRUDEMULTIPLY));
+}
+
+void restore_print_from_eeprom() {
+ float x_rec, y_rec, z_pos;
+ int feedrate_rec;
+ uint8_t fan_speed_rec;
+ char cmd[30];
+ char* c;
+ char filename[13];
+ uint8_t depth = 0;
+ char dir_name[9];
+
+ fan_speed_rec = eeprom_read_byte((uint8_t*)EEPROM_UVLO_FAN_SPEED);
+ EEPROM_read_B(EEPROM_UVLO_FEEDRATE, &feedrate_rec);
+ SERIAL_ECHOPGM("Feedrate:");
+ MYSERIAL.println(feedrate_rec);
+
+ depth = eeprom_read_byte((uint8_t*)EEPROM_DIR_DEPTH);
+
+ MYSERIAL.println(int(depth));
+ for (int i = 0; i < depth; i++) {
+ for (int j = 0; j < 8; j++) {
+ dir_name[j] = eeprom_read_byte((uint8_t*)EEPROM_DIRS + j + 8 * i);
+ }
+ dir_name[8] = '\0';
+ MYSERIAL.println(dir_name);
+ strcpy(dir_names[i], dir_name);
+ card.chdir(dir_name);
+ }
+
+ for (int i = 0; i < 8; i++) {
+ filename[i] = eeprom_read_byte((uint8_t*)EEPROM_FILENAME + i);
+ }
+ filename[8] = '\0';
+
+ MYSERIAL.print(filename);
+ strcat_P(filename, PSTR(".gco"));
+ sprintf_P(cmd, PSTR("M23 %s"), filename);
+ enquecommand(cmd);
+ uint32_t position = eeprom_read_dword((uint32_t*)(EEPROM_FILE_POSITION));
+ SERIAL_ECHOPGM("Position read from eeprom:");
+ MYSERIAL.println(position);
+
+ // E axis relative mode.
+ enquecommand_P(PSTR("M83"));
+ // Move to the XY print position in logical coordinates, where the print has been killed.
+ strcpy_P(cmd, PSTR("G1 X")); strcat(cmd, ftostr32(eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 0))));
+ strcat_P(cmd, PSTR(" Y")); strcat(cmd, ftostr32(eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 4))));
+ strcat_P(cmd, PSTR(" F2000"));
+ enquecommand(cmd);
+ // Move the Z axis down to the print, in logical coordinates.
+ strcpy_P(cmd, PSTR("G1 Z")); strcat(cmd, ftostr32(eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION_Z))));
+ enquecommand(cmd);
+ // Unretract.
+ enquecommand_P(PSTR("G1 E" STRINGIFY(2*DEFAULT_RETRACTION)" F480"));
+ // Set the feedrate saved at the power panic.
+ sprintf_P(cmd, PSTR("G1 F%d"), feedrate_rec);
+ enquecommand(cmd);
+ if (eeprom_read_byte((uint8_t*)EEPROM_UVLO_E_ABS))
+ {
+ float extruder_abs_pos = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION_E));
+ enquecommand_P(PSTR("M82")); //E axis abslute mode
+ }
+ // Set the fan speed saved at the power panic.
+ strcpy_P(cmd, PSTR("M106 S"));
+ strcat(cmd, itostr3(int(fan_speed_rec)));
+ enquecommand(cmd);
+
+ // Set a position in the file.
+ sprintf_P(cmd, PSTR("M26 S%lu"), position);
+ enquecommand(cmd);
+ // Start SD print.
+ enquecommand_P(PSTR("M24"));
+}
+#endif //UVLO_SUPPORT
+
+
+////////////////////////////////////////////////////////////////////////////////
+// save/restore printing
+
+void stop_and_save_print_to_ram(float z_move, float e_move)
+{
+ if (saved_printing) return;
+ unsigned char nplanner_blocks;
+ unsigned char nlines;
+ uint16_t sdlen_planner;
+ uint16_t sdlen_cmdqueue;
+
+
+ cli();
+ if (card.sdprinting) {
+ nplanner_blocks = number_of_blocks();
+ saved_sdpos = sdpos_atomic; //atomic sd position of last command added in queue
+ sdlen_planner = planner_calc_sd_length(); //length of sd commands in planner
+ saved_sdpos -= sdlen_planner;
+ sdlen_cmdqueue = cmdqueue_calc_sd_length(); //length of sd commands in cmdqueue
+ saved_sdpos -= sdlen_cmdqueue;
+ saved_printing_type = PRINTING_TYPE_SD;
+
+ }
+ else if (is_usb_printing) { //reuse saved_sdpos for storing line number
+ saved_sdpos = gcode_LastN; //start with line number of command added recently to cmd queue
+ //reuse planner_calc_sd_length function for getting number of lines of commands in planner:
+ nlines = planner_calc_sd_length(); //number of lines of commands in planner
+ saved_sdpos -= nlines;
+ saved_sdpos -= buflen; //number of blocks in cmd buffer
+ saved_printing_type = PRINTING_TYPE_USB;
+ }
+ else {
+ //not sd printing nor usb printing
+ }
+
+#if 0
+ SERIAL_ECHOPGM("SDPOS_ATOMIC="); MYSERIAL.println(sdpos_atomic, DEC);
+ SERIAL_ECHOPGM("SDPOS="); MYSERIAL.println(card.get_sdpos(), DEC);
+ SERIAL_ECHOPGM("SDLEN_PLAN="); MYSERIAL.println(sdlen_planner, DEC);
+ SERIAL_ECHOPGM("SDLEN_CMDQ="); MYSERIAL.println(sdlen_cmdqueue, DEC);
+ SERIAL_ECHOPGM("PLANNERBLOCKS="); MYSERIAL.println(int(nplanner_blocks), DEC);
+ SERIAL_ECHOPGM("SDSAVED="); MYSERIAL.println(saved_sdpos, DEC);
+ //SERIAL_ECHOPGM("SDFILELEN="); MYSERIAL.println(card.fileSize(), DEC);
+
+
+ {
+ card.setIndex(saved_sdpos);
+ SERIAL_ECHOLNPGM("Content of planner buffer: ");
+ for (unsigned int idx = 0; idx < sdlen_planner; ++ idx)
+ MYSERIAL.print(char(card.get()));
+ SERIAL_ECHOLNPGM("Content of command buffer: ");
+ for (unsigned int idx = 0; idx < sdlen_cmdqueue; ++ idx)
+ MYSERIAL.print(char(card.get()));
+ SERIAL_ECHOLNPGM("End of command buffer");
+ }
+ {
+ // Print the content of the planner buffer, line by line:
+ card.setIndex(saved_sdpos);
+ int8_t iline = 0;
+ for (unsigned char idx = block_buffer_tail; idx != block_buffer_head; idx = (idx + 1) & (BLOCK_BUFFER_SIZE - 1), ++ iline) {
+ SERIAL_ECHOPGM("Planner line (from file): ");
+ MYSERIAL.print(int(iline), DEC);
+ SERIAL_ECHOPGM(", length: ");
+ MYSERIAL.print(block_buffer[idx].sdlen, DEC);
+ SERIAL_ECHOPGM(", steps: (");
+ MYSERIAL.print(block_buffer[idx].steps_x, DEC);
+ SERIAL_ECHOPGM(",");
+ MYSERIAL.print(block_buffer[idx].steps_y, DEC);
+ SERIAL_ECHOPGM(",");
+ MYSERIAL.print(block_buffer[idx].steps_z, DEC);
+ SERIAL_ECHOPGM(",");
+ MYSERIAL.print(block_buffer[idx].steps_e, DEC);
+ SERIAL_ECHOPGM("), events: ");
+ MYSERIAL.println(block_buffer[idx].step_event_count, DEC);
+ for (int len = block_buffer[idx].sdlen; len > 0; -- len)
+ MYSERIAL.print(char(card.get()));
+ }
+ }
+ {
+ // Print the content of the command buffer, line by line:
+ int8_t iline = 0;
+ union {
+ struct {
+ char lo;
+ char hi;
+ } lohi;
+ uint16_t value;
+ } sdlen_single;
+ int _bufindr = bufindr;
+ for (int _buflen = buflen; _buflen > 0; ++ iline) {
+ if (cmdbuffer[_bufindr] == CMDBUFFER_CURRENT_TYPE_SDCARD) {
+ sdlen_single.lohi.lo = cmdbuffer[_bufindr + 1];
+ sdlen_single.lohi.hi = cmdbuffer[_bufindr + 2];
+ }
+ SERIAL_ECHOPGM("Buffer line (from buffer): ");
+ MYSERIAL.print(int(iline), DEC);
+ SERIAL_ECHOPGM(", type: ");
+ MYSERIAL.print(int(cmdbuffer[_bufindr]), DEC);
+ SERIAL_ECHOPGM(", len: ");
+ MYSERIAL.println(sdlen_single.value, DEC);
+ // Print the content of the buffer line.
+ MYSERIAL.println(cmdbuffer + _bufindr + CMDHDRSIZE);
+
+ SERIAL_ECHOPGM("Buffer line (from file): ");
+ MYSERIAL.println(int(iline), DEC);
+ for (; sdlen_single.value > 0; -- sdlen_single.value)
+ MYSERIAL.print(char(card.get()));
+
+ if (-- _buflen == 0)
+ break;
+ // First skip the current command ID and iterate up to the end of the string.
+ for (_bufindr += CMDHDRSIZE; cmdbuffer[_bufindr] != 0; ++ _bufindr) ;
+ // Second, skip the end of string null character and iterate until a nonzero command ID is found.
+ for (++ _bufindr; _bufindr < sizeof(cmdbuffer) && cmdbuffer[_bufindr] == 0; ++ _bufindr) ;
+ // If the end of the buffer was empty,
+ if (_bufindr == sizeof(cmdbuffer)) {
+ // skip to the start and find the nonzero command.
+ for (_bufindr = 0; cmdbuffer[_bufindr] == 0; ++ _bufindr) ;
+ }
+ }
+ }
+#endif
+
+#if 0
+ saved_feedrate2 = feedrate; //save feedrate
+#else
+ // Try to deduce the feedrate from the first block of the planner.
+ // Speed is in mm/min.
+ saved_feedrate2 = blocks_queued() ? (block_buffer[block_buffer_tail].nominal_speed * 60.f) : feedrate;
+#endif
+
+ planner_abort_hard(); //abort printing
+ memcpy(saved_pos, current_position, sizeof(saved_pos));
+ saved_active_extruder = active_extruder; //save active_extruder
+
+ saved_extruder_under_pressure = extruder_under_pressure; //extruder under pressure flag - currently unused
+ saved_extruder_relative_mode = axis_relative_modes[E_AXIS];
+ cmdqueue_reset(); //empty cmdqueue
+ card.sdprinting = false;
+// card.closefile();
+ saved_printing = true;
+ // We may have missed a stepper timer interrupt. Be safe than sorry, reset the stepper timer before re-enabling interrupts.
+ st_reset_timer();
+ sei();
+ if ((z_move != 0) || (e_move != 0)) { // extruder or z move
+#if 1
+ // Rather than calling plan_buffer_line directly, push the move into the command queue,
+ char buf[48];
+
+ // First unretract (relative extrusion)
+ if(!saved_extruder_relative_mode){
+ strcpy_P(buf, PSTR("M83"));
+ enquecommand(buf, false);
+ }
+
+ //retract 45mm/s
+ strcpy_P(buf, PSTR("G1 E"));
+ dtostrf(e_move, 6, 3, buf + strlen(buf));
+ strcat_P(buf, PSTR(" F"));
+ dtostrf(2700, 8, 3, buf + strlen(buf));
+ enquecommand(buf, false);
+
+ // Then lift Z axis
+ strcpy_P(buf, PSTR("G1 Z"));
+ dtostrf(saved_pos[Z_AXIS] + z_move, 8, 3, buf + strlen(buf));
+ strcat_P(buf, PSTR(" F"));
+ dtostrf(homing_feedrate[Z_AXIS], 8, 3, buf + strlen(buf));
+ // At this point the command queue is empty.
+ enquecommand(buf, false);
+ // If this call is invoked from the main Arduino loop() function, let the caller know that the command
+ // in the command queue is not the original command, but a new one, so it should not be removed from the queue.
+ repeatcommand_front();
+#else
+ plan_buffer_line(saved_pos[X_AXIS], saved_pos[Y_AXIS], saved_pos[Z_AXIS] + z_move, saved_pos[E_AXIS] + e_move, homing_feedrate[Z_AXIS], active_extruder);
+ st_synchronize(); //wait moving
+ memcpy(current_position, saved_pos, sizeof(saved_pos));
+ memcpy(destination, current_position, sizeof(destination));
+#endif
+ }
+}
+
+void restore_print_from_ram_and_continue(float e_move)
+{
+ if (!saved_printing) return;
+// for (int axis = X_AXIS; axis <= E_AXIS; axis++)
+// current_position[axis] = st_get_position_mm(axis);
+ active_extruder = saved_active_extruder; //restore active_extruder
+ feedrate = saved_feedrate2; //restore feedrate
+ axis_relative_modes[E_AXIS] = saved_extruder_relative_mode;
+ float e = saved_pos[E_AXIS] - e_move;
+ plan_set_e_position(e);
+ //first move print head in XY to the saved position:
+ plan_buffer_line(saved_pos[X_AXIS], saved_pos[Y_AXIS], current_position[Z_AXIS], saved_pos[E_AXIS] - e_move, homing_feedrate[Z_AXIS]/13, active_extruder);
+ st_synchronize();
+ //then move Z
+ plan_buffer_line(saved_pos[X_AXIS], saved_pos[Y_AXIS], saved_pos[Z_AXIS], saved_pos[E_AXIS] - e_move, homing_feedrate[Z_AXIS]/13, active_extruder);
+ st_synchronize();
+ //and finaly unretract (35mm/s)
+ plan_buffer_line(saved_pos[X_AXIS], saved_pos[Y_AXIS], saved_pos[Z_AXIS], saved_pos[E_AXIS], 35, active_extruder);
+ st_synchronize();
+
+ memcpy(current_position, saved_pos, sizeof(saved_pos));
+ memcpy(destination, current_position, sizeof(destination));
+ if (saved_printing_type == PRINTING_TYPE_SD) { //was sd printing
+ card.setIndex(saved_sdpos);
+ sdpos_atomic = saved_sdpos;
+ card.sdprinting = true;
+ printf_P(PSTR("ok\n")); //dummy response because of octoprint is waiting for this
+ }
+ else if (saved_printing_type == PRINTING_TYPE_USB) { //was usb printing
+ gcode_LastN = saved_sdpos; //saved_sdpos was reused for storing line number when usb printing
+ serial_count = 0;
+ FlushSerialRequestResend();
+ }
+ else {
+ //not sd printing nor usb printing
+ }
+ lcd_setstatuspgm(_T(WELCOME_MSG));
+ saved_printing = false;
+}
+
+void print_world_coordinates()
+{
+ printf_P(_N("world coordinates: (%.3f, %.3f, %.3f)\n"), current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS]);
+}
+
+void print_physical_coordinates()
+{
+ printf_P(_N("physical coordinates: (%.3f, %.3f, %.3f)\n"), st_get_position_mm[X_AXIS], st_get_position_mm[Y_AXIS], st_get_position_mm[Z_AXIS]);
+}
+
+void print_mesh_bed_leveling_table()
+{
+ SERIAL_ECHOPGM("mesh bed leveling: ");
+ for (int8_t y = 0; y < MESH_NUM_Y_POINTS; ++ y)
+ for (int8_t x = 0; x < MESH_NUM_Y_POINTS; ++ x) {
+ MYSERIAL.print(mbl.z_values[y][x], 3);
+ SERIAL_ECHOPGM(" ");
+ }
+ SERIAL_ECHOLNPGM("");
+}
+
+uint16_t print_time_remaining() {
+ uint16_t print_t = PRINT_TIME_REMAINING_INIT;
+ if (SilentModeMenu == SILENT_MODE_OFF) print_t = print_time_remaining_normal;
+ else print_t = print_time_remaining_silent;
+ if ((print_t != PRINT_TIME_REMAINING_INIT) && (feedmultiply != 0)) print_t = 100 * print_t / feedmultiply;
+ return print_t;
+}
+
+uint8_t print_percent_done() {
+ //in case that we have information from M73 gcode return percentage counted by slicer, else return percentage counted as byte_printed/filesize
+ uint8_t percent_done = 0;
+ if (SilentModeMenu == SILENT_MODE_OFF && print_percent_done_normal <= 100) {
+ percent_done = print_percent_done_normal;
+ }
+ else if (print_percent_done_silent <= 100) {
+ percent_done = print_percent_done_silent;
+ }
+ else {
+ percent_done = card.percentDone();
+ }
+ return percent_done;
+}
+
+static void print_time_remaining_init() {
+ print_time_remaining_normal = PRINT_TIME_REMAINING_INIT;
+ print_time_remaining_silent = PRINT_TIME_REMAINING_INIT;
+ print_percent_done_normal = PRINT_PERCENT_DONE_INIT;
+ print_percent_done_silent = PRINT_PERCENT_DONE_INIT;
+}
+
+#define FIL_LOAD_LENGTH 60
diff --git a/Firmware/ultralcd.cpp b/Firmware/ultralcd.cpp
index 2216c03a..42b50643 100644
--- a/Firmware/ultralcd.cpp
+++ b/Firmware/ultralcd.cpp
@@ -3070,7 +3070,7 @@ bool lcd_wait_for_pinda(float temp) {
}
lcd_set_custom_characters_arrows();
lcd_update_enable(true);
- return(target_temp_reached);
+ return target_temp_reached;
}
void lcd_wait_for_heater() {