From 0a43b9ce6bce5a6e5f81c42a910b3a8b1968288a Mon Sep 17 00:00:00 2001 From: PavelSindler Date: Wed, 18 Jul 2018 16:17:45 +0200 Subject: [PATCH] timeout when waiting for mmu OK --- Firmware/Marlin.h | 4 +- Firmware/Marlin_main.cpp | 37 +- Firmware/Marlin_main.cpp~RF6ca149ac.TMP | 9143 +++++++++++++++++++++++ Firmware/ultralcd.cpp | 2 +- 4 files changed, 9171 insertions(+), 15 deletions(-) create mode 100644 Firmware/Marlin_main.cpp~RF6ca149ac.TMP diff --git a/Firmware/Marlin.h b/Firmware/Marlin.h index 58d269d6..c720531c 100644 --- a/Firmware/Marlin.h +++ b/Firmware/Marlin.h @@ -464,4 +464,6 @@ void gcode_M701(); #define UVLO !(PINE & (1<<4)) -void proc_commands(); \ No newline at end of file +void proc_commands(); + +bool mmu_get_reponse(); \ No newline at end of file diff --git a/Firmware/Marlin_main.cpp b/Firmware/Marlin_main.cpp index b51b486d..8675c77d 100644 --- a/Firmware/Marlin_main.cpp +++ b/Firmware/Marlin_main.cpp @@ -3364,7 +3364,12 @@ void process_commands() } else if (code_seen("thx")) { no_response = false; - } + } + else if (code_seen("MMURES")) { + fprintf_P(uart2io, PSTR("x0")); + bool response = mmu_get_reponse(); + if (!response) printf_P(PSTR("MMU not responding")); + } else if (code_seen("RESET")) { // careful! if (farm_mode) { @@ -7119,18 +7124,7 @@ Sigma_Exit: fprintf_P(uart2io, PSTR("T0\n")); break; } - - - - - // get response - uart2_rx_clr(); - while (!uart2_rx_ok()) - { - //printf_P(PSTR("waiting..\n")); - delay_keep_alive(100); - } - snmm_extruder = tmp_extruder; //filament change is finished + snmm_extruder = tmp_extruder; //filament change is finished if (*(strchr_pointer + index) == '?') { // for single material usage with mmu bool saved_e_relative_mode = axis_relative_modes[E_AXIS]; @@ -9137,4 +9131,21 @@ static void print_time_remaining_init() { print_percent_done_silent = PRINT_PERCENT_DONE_INIT; } +bool mmu_get_reponse() { + bool response = true; + LongTimer mmu_get_reponse_timeout; + uart2_rx_clr(); + + mmu_get_reponse_timeout.start(); + while (!uart2_rx_ok()) + { + delay_keep_alive(100); + if (mmu_get_reponse_timeout.expired(30 * 1000ul)) { //PINDA cooling from 60 C to 35 C takes about 7 minutes + response = false; + break; + } + } + return response; +} + #define FIL_LOAD_LENGTH 60 diff --git a/Firmware/Marlin_main.cpp~RF6ca149ac.TMP b/Firmware/Marlin_main.cpp~RF6ca149ac.TMP new file mode 100644 index 00000000..239b5b34 --- /dev/null +++ b/Firmware/Marlin_main.cpp~RF6ca149ac.TMP @@ -0,0 +1,9143 @@ +/* -*- c++ -*- */ +/** + * @file + */ + +/** + * @mainpage Reprap 3D printer firmware based on Sprinter and grbl. + * + * @section intro_sec Introduction + * + * This firmware is a mashup between Sprinter and grbl. + * https://github.com/kliment/Sprinter + * https://github.com/simen/grbl/tree + * + * It has preliminary support for Matthew Roberts advance algorithm + * http://reprap.org/pipermail/reprap-dev/2011-May/003323.html + * + * Prusa Research s.r.o. https://www.prusa3d.cz + * + * @section copyright_sec Copyright + * + * Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm + * + * This program is free software: you can redistribute it and/or modify + * it under the terms of the GNU General Public License as published by + * the Free Software Foundation, either version 3 of the License, or + * (at your option) any later version. + * + * This program is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + * GNU General Public License for more details. + * + * You should have received a copy of the GNU General Public License + * along with this program. If not, see . + * + * @section notes_sec Notes + * + * * Do not create static objects in global functions. + * Otherwise constructor guard against concurrent calls is generated costing + * about 8B RAM and 14B flash. + * + * + */ + +#include "Marlin.h" + +#ifdef ENABLE_AUTO_BED_LEVELING +#include "vector_3.h" + #ifdef AUTO_BED_LEVELING_GRID + #include "qr_solve.h" + #endif +#endif // ENABLE_AUTO_BED_LEVELING + +#ifdef MESH_BED_LEVELING + #include "mesh_bed_leveling.h" + #include "mesh_bed_calibration.h" +#endif + +#include "printers.h" + +#include "menu.h" +#include "ultralcd.h" + +#include "planner.h" +#include "stepper.h" +#include "temperature.h" +#include "motion_control.h" +#include "cardreader.h" +#include "ConfigurationStore.h" +#include "language.h" +#include "pins_arduino.h" +#include "math.h" +#include "util.h" +#include "Timer.h" +#include "uart2.h" + +#include +#include + +#include "Dcodes.h" + + +#ifdef SWSPI +#include "swspi.h" +#endif //SWSPI + +#include "spi.h" + +#ifdef SWI2C +#include "swi2c.h" +#endif //SWI2C + +#ifdef PAT9125 +#include "pat9125.h" +#include "fsensor.h" +#endif //PAT9125 + +#ifdef TMC2130 +#include "tmc2130.h" +#endif //TMC2130 + +#ifdef W25X20CL +#include "w25x20cl.h" +#include "optiboot_w25x20cl.h" +#endif //W25X20CL + +#ifdef BLINKM +#include "BlinkM.h" +#include "Wire.h" +#endif + +#ifdef ULTRALCD +#include "ultralcd.h" +#endif + +#if NUM_SERVOS > 0 +#include "Servo.h" +#endif + +#if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1 +#include +#endif + +#define VERSION_STRING "1.0.2" + + +#include "ultralcd.h" + +#include "cmdqueue.h" + +// Macros for bit masks +#define BIT(b) (1<<(b)) +#define TEST(n,b) (((n)&BIT(b))!=0) +#define SET_BIT(n,b,value) (n) ^= ((-value)^(n)) & (BIT(b)) + +//Macro for print fan speed +#define FAN_PULSE_WIDTH_LIMIT ((fanSpeed > 100) ? 3 : 4) //time in ms + +#define PRINTING_TYPE_SD 0 +#define PRINTING_TYPE_USB 1 + +// look here for descriptions of G-codes: http://linuxcnc.org/handbook/gcode/g-code.html +// http://objects.reprap.org/wiki/Mendel_User_Manual:_RepRapGCodes + +//Implemented Codes +//------------------- + +// PRUSA CODES +// P F - Returns FW versions +// P R - Returns revision of printer + +// G0 -> G1 +// G1 - Coordinated Movement X Y Z E +// G2 - CW ARC +// G3 - CCW ARC +// G4 - Dwell S or P +// G10 - retract filament according to settings of M207 +// G11 - retract recover filament according to settings of M208 +// G28 - Home all Axis +// G29 - Detailed Z-Probe, probes the bed at 3 or more points. Will fail if you haven't homed yet. +// G30 - Single Z Probe, probes bed at current XY location. +// G31 - Dock sled (Z_PROBE_SLED only) +// G32 - Undock sled (Z_PROBE_SLED only) +// G80 - Automatic mesh bed leveling +// G81 - Print bed profile +// G90 - Use Absolute Coordinates +// G91 - Use Relative Coordinates +// G92 - Set current position to coordinates given + +// M Codes +// M0 - Unconditional stop - Wait for user to press a button on the LCD +// M1 - Same as M0 +// M17 - Enable/Power all stepper motors +// M18 - Disable all stepper motors; same as M84 +// M20 - List SD card +// M21 - Init SD card +// M22 - Release SD card +// M23 - Select SD file (M23 filename.g) +// M24 - Start/resume SD print +// M25 - Pause SD print +// M26 - Set SD position in bytes (M26 S12345) +// M27 - Report SD print status +// M28 - Start SD write (M28 filename.g) +// M29 - Stop SD write +// M30 - Delete file from SD (M30 filename.g) +// M31 - Output time since last M109 or SD card start to serial +// M32 - Select file and start SD print (Can be used _while_ printing from SD card files): +// syntax "M32 /path/filename#", or "M32 S !filename#" +// Call gcode file : "M32 P !filename#" and return to caller file after finishing (similar to #include). +// The '#' is necessary when calling from within sd files, as it stops buffer prereading +// M42 - Change pin status via gcode Use M42 Px Sy to set pin x to value y, when omitting Px the onboard led will be used. +// M73 - Show percent done and print time remaining +// M80 - Turn on Power Supply +// M81 - Turn off Power Supply +// M82 - Set E codes absolute (default) +// M83 - Set E codes relative while in Absolute Coordinates (G90) mode +// M84 - Disable steppers until next move, +// or use S to specify an inactivity timeout, after which the steppers will be disabled. S0 to disable the timeout. +// M85 - Set inactivity shutdown timer with parameter S. To disable set zero (default) +// M86 - Set safety timer expiration time with parameter S; M86 S0 will disable safety timer +// M92 - Set axis_steps_per_unit - same syntax as G92 +// M104 - Set extruder target temp +// M105 - Read current temp +// M106 - Fan on +// M107 - Fan off +// M109 - Sxxx Wait for extruder current temp to reach target temp. Waits only when heating +// Rxxx Wait for extruder current temp to reach target temp. Waits when heating and cooling +// IF AUTOTEMP is enabled, S B F. Exit autotemp by any M109 without F +// M112 - Emergency stop +// M113 - Get or set the timeout interval for Host Keepalive "busy" messages +// M114 - Output current position to serial port +// M115 - Capabilities string +// M117 - display message +// M119 - Output Endstop status to serial port +// M126 - Solenoid Air Valve Open (BariCUDA support by jmil) +// M127 - Solenoid Air Valve Closed (BariCUDA vent to atmospheric pressure by jmil) +// M128 - EtoP Open (BariCUDA EtoP = electricity to air pressure transducer by jmil) +// M129 - EtoP Closed (BariCUDA EtoP = electricity to air pressure transducer by jmil) +// M140 - Set bed target temp +// M150 - Set BlinkM Color Output R: Red<0-255> U(!): Green<0-255> B: Blue<0-255> over i2c, G for green does not work. +// M190 - Sxxx Wait for bed current temp to reach target temp. Waits only when heating +// Rxxx Wait for bed current temp to reach target temp. Waits when heating and cooling +// M200 D- set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters). +// M201 - Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000) +// M202 - Set max acceleration in units/s^2 for travel moves (M202 X1000 Y1000) Unused in Marlin!! +// M203 - Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in mm/sec +// M204 - Set default acceleration: S normal moves T filament only moves (M204 S3000 T7000) in mm/sec^2 also sets minimum segment time in ms (B20000) to prevent buffer under-runs and M20 minimum feedrate +// M205 - advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk, E=maximum E jerk +// M206 - set additional homing offset +// M207 - set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop], stays in mm regardless of M200 setting +// M208 - set recover=unretract length S[positive mm surplus to the M207 S*] F[feedrate mm/sec] +// M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction. +// M218 - set hotend offset (in mm): T X Y +// M220 S- set speed factor override percentage +// M221 S- set extrude factor override percentage +// M226 P S- Wait until the specified pin reaches the state required +// M240 - Trigger a camera to take a photograph +// M250 - Set LCD contrast C (value 0..63) +// M280 - set servo position absolute. P: servo index, S: angle or microseconds +// M300 - Play beep sound S P +// M301 - Set PID parameters P I and D +// M302 - Allow cold extrudes, or set the minimum extrude S. +// M303 - PID relay autotune S sets the target temperature. (default target temperature = 150C) +// M304 - Set bed PID parameters P I and D +// M400 - Finish all moves +// M401 - Lower z-probe if present +// M402 - Raise z-probe if present +// M404 - N Enter the nominal filament width (3mm, 1.75mm ) or will display nominal filament width without parameters +// M405 - Turn on Filament Sensor extrusion control. Optional D to set delay in centimeters between sensor and extruder +// M406 - Turn off Filament Sensor extrusion control +// M407 - Displays measured filament diameter +// M500 - stores parameters in EEPROM +// M501 - reads parameters from EEPROM (if you need reset them after you changed them temporarily). +// M502 - reverts to the default "factory settings". You still need to store them in EEPROM afterwards if you want to. +// M503 - print the current settings (from memory not from EEPROM) +// M509 - force language selection on next restart +// M540 - Use S[0|1] to enable or disable the stop SD card print on endstop hit (requires ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED) +// M600 - Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal] +// M605 - Set dual x-carriage movement mode: S [ X R ] +// M860 - Wait for PINDA thermistor to reach target temperature. +// M861 - Set / Read PINDA temperature compensation offsets +// M900 - Set LIN_ADVANCE options, if enabled. See Configuration_adv.h for details. +// M907 - Set digital trimpot motor current using axis codes. +// M908 - Control digital trimpot directly. +// M350 - Set microstepping mode. +// M351 - Toggle MS1 MS2 pins directly. + +// M928 - Start SD logging (M928 filename.g) - ended by M29 +// M999 - Restart after being stopped by error + +//Stepper Movement Variables + +//=========================================================================== +//=============================imported variables============================ +//=========================================================================== + + +//=========================================================================== +//=============================public variables============================= +//=========================================================================== +#ifdef SDSUPPORT +CardReader card; +#endif + +unsigned long PingTime = millis(); +unsigned long NcTime; + +union Data +{ +byte b[2]; +int value; +}; + +float homing_feedrate[] = HOMING_FEEDRATE; +// Currently only the extruder axis may be switched to a relative mode. +// Other axes are always absolute or relative based on the common relative_mode flag. +bool axis_relative_modes[] = AXIS_RELATIVE_MODES; +int feedmultiply=100; //100->1 200->2 +int saved_feedmultiply; +int extrudemultiply=100; //100->1 200->2 +int extruder_multiply[EXTRUDERS] = {100 + #if EXTRUDERS > 1 + , 100 + #if EXTRUDERS > 2 + , 100 + #endif + #endif +}; + +int bowden_length[4] = {385, 385, 385, 385}; + +bool is_usb_printing = false; +bool homing_flag = false; + +bool temp_cal_active = false; + +unsigned long kicktime = millis()+100000; + +unsigned int usb_printing_counter; + +int lcd_change_fil_state = 0; + +int feedmultiplyBckp = 100; +float HotendTempBckp = 0; +int fanSpeedBckp = 0; +float pause_lastpos[4]; +unsigned long pause_time = 0; +unsigned long start_pause_print = millis(); +unsigned long t_fan_rising_edge = millis(); +static LongTimer safetyTimer; +static LongTimer crashDetTimer; + +//unsigned long load_filament_time; + +bool mesh_bed_leveling_flag = false; +bool mesh_bed_run_from_menu = false; + +int8_t FarmMode = 0; + +bool prusa_sd_card_upload = false; + +unsigned int status_number = 0; + +unsigned long total_filament_used; +unsigned int heating_status; +unsigned int heating_status_counter; +bool custom_message; +bool loading_flag = false; +unsigned int custom_message_type; +unsigned int custom_message_state; +char snmm_filaments_used = 0; + +bool fan_state[2]; +int fan_edge_counter[2]; +int fan_speed[2]; + +char dir_names[3][9]; + +bool sortAlpha = false; + +bool volumetric_enabled = false; +float filament_size[EXTRUDERS] = { DEFAULT_NOMINAL_FILAMENT_DIA + #if EXTRUDERS > 1 + , DEFAULT_NOMINAL_FILAMENT_DIA + #if EXTRUDERS > 2 + , DEFAULT_NOMINAL_FILAMENT_DIA + #endif + #endif +}; +float extruder_multiplier[EXTRUDERS] = {1.0 + #if EXTRUDERS > 1 + , 1.0 + #if EXTRUDERS > 2 + , 1.0 + #endif + #endif +}; + +float current_position[NUM_AXIS] = { 0.0, 0.0, 0.0, 0.0 }; +//shortcuts for more readable code +#define _x current_position[X_AXIS] +#define _y current_position[Y_AXIS] +#define _z current_position[Z_AXIS] +#define _e current_position[E_AXIS] + + +float add_homing[3]={0,0,0}; + +float min_pos[3] = { X_MIN_POS, Y_MIN_POS, Z_MIN_POS }; +float max_pos[3] = { X_MAX_POS, Y_MAX_POS, Z_MAX_POS }; +bool axis_known_position[3] = {false, false, false}; +float zprobe_zoffset; + +// Extruder offset +#if EXTRUDERS > 1 + #define NUM_EXTRUDER_OFFSETS 2 // only in XY plane +float extruder_offset[NUM_EXTRUDER_OFFSETS][EXTRUDERS] = { +#if defined(EXTRUDER_OFFSET_X) && defined(EXTRUDER_OFFSET_Y) + EXTRUDER_OFFSET_X, EXTRUDER_OFFSET_Y +#endif +}; +#endif + +uint8_t active_extruder = 0; +int fanSpeed=0; + +#ifdef FWRETRACT + bool autoretract_enabled=false; + bool retracted[EXTRUDERS]={false + #if EXTRUDERS > 1 + , false + #if EXTRUDERS > 2 + , false + #endif + #endif + }; + bool retracted_swap[EXTRUDERS]={false + #if EXTRUDERS > 1 + , false + #if EXTRUDERS > 2 + , false + #endif + #endif + }; + + float retract_length = RETRACT_LENGTH; + float retract_length_swap = RETRACT_LENGTH_SWAP; + float retract_feedrate = RETRACT_FEEDRATE; + float retract_zlift = RETRACT_ZLIFT; + float retract_recover_length = RETRACT_RECOVER_LENGTH; + float retract_recover_length_swap = RETRACT_RECOVER_LENGTH_SWAP; + float retract_recover_feedrate = RETRACT_RECOVER_FEEDRATE; +#endif + + #ifdef PS_DEFAULT_OFF + bool powersupply = false; + #else + bool powersupply = true; + #endif + +bool cancel_heatup = false ; + +#ifdef HOST_KEEPALIVE_FEATURE + + int busy_state = NOT_BUSY; + static long prev_busy_signal_ms = -1; + uint8_t host_keepalive_interval = HOST_KEEPALIVE_INTERVAL; +#else + #define host_keepalive(); + #define KEEPALIVE_STATE(n); +#endif + + +const char errormagic[] PROGMEM = "Error:"; +const char echomagic[] PROGMEM = "echo:"; + +bool no_response = false; +uint8_t important_status; +uint8_t saved_filament_type; + +// save/restore printing +bool saved_printing = false; + +// storing estimated time to end of print counted by slicer +uint8_t print_percent_done_normal = PRINT_PERCENT_DONE_INIT; +uint16_t print_time_remaining_normal = PRINT_TIME_REMAINING_INIT; //estimated remaining print time in minutes +uint8_t print_percent_done_silent = PRINT_PERCENT_DONE_INIT; +uint16_t print_time_remaining_silent = PRINT_TIME_REMAINING_INIT; //estimated remaining print time in minutes + +//=========================================================================== +//=============================Private Variables============================= +//=========================================================================== +const char axis_codes[NUM_AXIS] = {'X', 'Y', 'Z', 'E'}; +float destination[NUM_AXIS] = { 0.0, 0.0, 0.0, 0.0}; + +static float delta[3] = {0.0, 0.0, 0.0}; + +// For tracing an arc +static float offset[3] = {0.0, 0.0, 0.0}; +static float feedrate = 1500.0, next_feedrate, saved_feedrate; + +// Determines Absolute or Relative Coordinates. +// Also there is bool axis_relative_modes[] per axis flag. +static bool relative_mode = false; + +#ifndef _DISABLE_M42_M226 +const int sensitive_pins[] = SENSITIVE_PINS; // Sensitive pin list for M42 +#endif //_DISABLE_M42_M226 + +//static float tt = 0; +//static float bt = 0; + +//Inactivity shutdown variables +static unsigned long previous_millis_cmd = 0; +unsigned long max_inactive_time = 0; +static unsigned long stepper_inactive_time = DEFAULT_STEPPER_DEACTIVE_TIME*1000l; +static unsigned long safetytimer_inactive_time = DEFAULT_SAFETYTIMER_TIME_MINS*60*1000ul; + +unsigned long starttime=0; +unsigned long stoptime=0; +unsigned long _usb_timer = 0; + +static uint8_t tmp_extruder; + +bool extruder_under_pressure = true; + + +bool Stopped=false; + +#if NUM_SERVOS > 0 + Servo servos[NUM_SERVOS]; +#endif + +bool CooldownNoWait = true; +bool target_direction; + +//Insert variables if CHDK is defined +#ifdef CHDK +unsigned long chdkHigh = 0; +boolean chdkActive = false; +#endif + +// save/restore printing +static uint32_t saved_sdpos = 0; +static uint8_t saved_printing_type = PRINTING_TYPE_SD; +static float saved_pos[4] = { 0, 0, 0, 0 }; +// Feedrate hopefully derived from an active block of the planner at the time the print has been canceled, in mm/min. +static float saved_feedrate2 = 0; +static uint8_t saved_active_extruder = 0; +static bool saved_extruder_under_pressure = false; +static bool saved_extruder_relative_mode = false; + +//=========================================================================== +//=============================Routines====================================== +//=========================================================================== + +void get_arc_coordinates(); +bool setTargetedHotend(int code); + +void serial_echopair_P(const char *s_P, float v) + { serialprintPGM(s_P); SERIAL_ECHO(v); } +void serial_echopair_P(const char *s_P, double v) + { serialprintPGM(s_P); SERIAL_ECHO(v); } +void serial_echopair_P(const char *s_P, unsigned long v) + { serialprintPGM(s_P); SERIAL_ECHO(v); } + +#ifdef SDSUPPORT + #include "SdFatUtil.h" + int freeMemory() { return SdFatUtil::FreeRam(); } +#else + extern "C" { + extern unsigned int __bss_end; + extern unsigned int __heap_start; + extern void *__brkval; + + int freeMemory() { + int free_memory; + + if ((int)__brkval == 0) + free_memory = ((int)&free_memory) - ((int)&__bss_end); + else + free_memory = ((int)&free_memory) - ((int)__brkval); + + return free_memory; + } + } +#endif //!SDSUPPORT + +void setup_killpin() +{ + #if defined(KILL_PIN) && KILL_PIN > -1 + SET_INPUT(KILL_PIN); + WRITE(KILL_PIN,HIGH); + #endif +} + +// Set home pin +void setup_homepin(void) +{ +#if defined(HOME_PIN) && HOME_PIN > -1 + SET_INPUT(HOME_PIN); + WRITE(HOME_PIN,HIGH); +#endif +} + +void setup_photpin() +{ + #if defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1 + SET_OUTPUT(PHOTOGRAPH_PIN); + WRITE(PHOTOGRAPH_PIN, LOW); + #endif +} + +void setup_powerhold() +{ + #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1 + SET_OUTPUT(SUICIDE_PIN); + WRITE(SUICIDE_PIN, HIGH); + #endif + #if defined(PS_ON_PIN) && PS_ON_PIN > -1 + SET_OUTPUT(PS_ON_PIN); + #if defined(PS_DEFAULT_OFF) + WRITE(PS_ON_PIN, PS_ON_ASLEEP); + #else + WRITE(PS_ON_PIN, PS_ON_AWAKE); + #endif + #endif +} + +void suicide() +{ + #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1 + SET_OUTPUT(SUICIDE_PIN); + WRITE(SUICIDE_PIN, LOW); + #endif +} + +void servo_init() +{ + #if (NUM_SERVOS >= 1) && defined(SERVO0_PIN) && (SERVO0_PIN > -1) + servos[0].attach(SERVO0_PIN); + #endif + #if (NUM_SERVOS >= 2) && defined(SERVO1_PIN) && (SERVO1_PIN > -1) + servos[1].attach(SERVO1_PIN); + #endif + #if (NUM_SERVOS >= 3) && defined(SERVO2_PIN) && (SERVO2_PIN > -1) + servos[2].attach(SERVO2_PIN); + #endif + #if (NUM_SERVOS >= 4) && defined(SERVO3_PIN) && (SERVO3_PIN > -1) + servos[3].attach(SERVO3_PIN); + #endif + #if (NUM_SERVOS >= 5) + #error "TODO: enter initalisation code for more servos" + #endif +} + + +void stop_and_save_print_to_ram(float z_move, float e_move); +void restore_print_from_ram_and_continue(float e_move); + +bool fans_check_enabled = true; +bool filament_autoload_enabled = true; + + +#ifdef TMC2130 + +extern int8_t CrashDetectMenu; + +void crashdet_enable() +{ + tmc2130_sg_stop_on_crash = true; + eeprom_update_byte((uint8_t*)EEPROM_CRASH_DET, 0xFF); + CrashDetectMenu = 1; + +} + +void crashdet_disable() +{ + tmc2130_sg_stop_on_crash = false; + tmc2130_sg_crash = 0; + eeprom_update_byte((uint8_t*)EEPROM_CRASH_DET, 0x00); + CrashDetectMenu = 0; +} + +void crashdet_stop_and_save_print() +{ + stop_and_save_print_to_ram(10, -DEFAULT_RETRACTION); //XY - no change, Z 10mm up, E -1mm retract +} + +void crashdet_restore_print_and_continue() +{ + restore_print_from_ram_and_continue(DEFAULT_RETRACTION); //XYZ = orig, E +1mm unretract +// babystep_apply(); +} + + +void crashdet_stop_and_save_print2() +{ + cli(); + planner_abort_hard(); //abort printing + cmdqueue_reset(); //empty cmdqueue + card.sdprinting = false; + card.closefile(); + // Reset and re-enable the stepper timer just before the global interrupts are enabled. + st_reset_timer(); + sei(); +} + +void crashdet_detected(uint8_t mask) +{ +// printf("CRASH_DETECTED"); +/* while (!is_buffer_empty()) + { + process_commands(); + cmdqueue_pop_front(); + }*/ + st_synchronize(); + static uint8_t crashDet_counter = 0; + bool automatic_recovery_after_crash = true; + + if (crashDet_counter++ == 0) { + crashDetTimer.start(); + } + else if (crashDetTimer.expired(CRASHDET_TIMER * 1000ul)){ + crashDetTimer.stop(); + crashDet_counter = 0; + } + else if(crashDet_counter == CRASHDET_COUNTER_MAX){ + automatic_recovery_after_crash = false; + crashDetTimer.stop(); + crashDet_counter = 0; + } + else { + crashDetTimer.start(); + } + + lcd_update_enable(true); + lcd_clear(); + lcd_update(2); + + if (mask & X_AXIS_MASK) + { + eeprom_update_byte((uint8_t*)EEPROM_CRASH_COUNT_X, eeprom_read_byte((uint8_t*)EEPROM_CRASH_COUNT_X) + 1); + eeprom_update_word((uint16_t*)EEPROM_CRASH_COUNT_X_TOT, eeprom_read_word((uint16_t*)EEPROM_CRASH_COUNT_X_TOT) + 1); + } + if (mask & Y_AXIS_MASK) + { + eeprom_update_byte((uint8_t*)EEPROM_CRASH_COUNT_Y, eeprom_read_byte((uint8_t*)EEPROM_CRASH_COUNT_Y) + 1); + eeprom_update_word((uint16_t*)EEPROM_CRASH_COUNT_Y_TOT, eeprom_read_word((uint16_t*)EEPROM_CRASH_COUNT_Y_TOT) + 1); + } + + + + lcd_update_enable(true); + lcd_update(2); + lcd_setstatuspgm(_T(MSG_CRASH_DETECTED)); + gcode_G28(true, true, false); //home X and Y + st_synchronize(); + + if (automatic_recovery_after_crash) { + enquecommand_P(PSTR("CRASH_RECOVER")); + }else{ + HotendTempBckp = degTargetHotend(active_extruder); + setTargetHotend(0, active_extruder); + bool yesno = lcd_show_fullscreen_message_yes_no_and_wait_P(_i("Crash detected. Resume print?"), false); + lcd_update_enable(true); + if (yesno) + { + char cmd1[10]; + strcpy(cmd1, "M109 S"); + strcat(cmd1, ftostr3(HotendTempBckp)); + enquecommand(cmd1); + enquecommand_P(PSTR("CRASH_RECOVER")); + } + else + { + enquecommand_P(PSTR("CRASH_CANCEL")); + } + } +} + +void crashdet_recover() +{ + crashdet_restore_print_and_continue(); + tmc2130_sg_stop_on_crash = true; +} + +void crashdet_cancel() +{ + tmc2130_sg_stop_on_crash = true; + if (saved_printing_type == PRINTING_TYPE_SD) { + lcd_print_stop(); + }else if(saved_printing_type == PRINTING_TYPE_USB){ + SERIAL_ECHOLNPGM("// action:cancel"); //for Octoprint: works the same as clicking "Abort" button in Octoprint GUI + SERIAL_PROTOCOLLNRPGM(_T(MSG_OK)); + } +} + +#endif //TMC2130 + +void failstats_reset_print() +{ + eeprom_update_byte((uint8_t *)EEPROM_CRASH_COUNT_X, 0); + eeprom_update_byte((uint8_t *)EEPROM_CRASH_COUNT_Y, 0); + eeprom_update_byte((uint8_t *)EEPROM_FERROR_COUNT, 0); + eeprom_update_byte((uint8_t *)EEPROM_POWER_COUNT, 0); +} + + + +#ifdef MESH_BED_LEVELING + enum MeshLevelingState { MeshReport, MeshStart, MeshNext, MeshSet }; +#endif + + +// Factory reset function +// This function is used to erase parts or whole EEPROM memory which is used for storing calibration and and so on. +// Level input parameter sets depth of reset +// Quiet parameter masks all waitings for user interact. +int er_progress = 0; +void factory_reset(char level, bool quiet) +{ + lcd_clear(); + int cursor_pos = 0; + switch (level) { + + // Level 0: Language reset + case 0: + WRITE(BEEPER, HIGH); + _delay_ms(100); + WRITE(BEEPER, LOW); + lang_reset(); + break; + + //Level 1: Reset statistics + case 1: + WRITE(BEEPER, HIGH); + _delay_ms(100); + WRITE(BEEPER, LOW); + eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, 0); + eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, 0); + + eeprom_update_byte((uint8_t *)EEPROM_CRASH_COUNT_X, 0); + eeprom_update_byte((uint8_t *)EEPROM_CRASH_COUNT_Y, 0); + eeprom_update_byte((uint8_t *)EEPROM_FERROR_COUNT, 0); + eeprom_update_byte((uint8_t *)EEPROM_POWER_COUNT, 0); + + eeprom_update_word((uint16_t *)EEPROM_CRASH_COUNT_X_TOT, 0); + eeprom_update_word((uint16_t *)EEPROM_CRASH_COUNT_Y_TOT, 0); + eeprom_update_word((uint16_t *)EEPROM_FERROR_COUNT_TOT, 0); + eeprom_update_word((uint16_t *)EEPROM_POWER_COUNT_TOT, 0); + + lcd_menu_statistics(); + + break; + + // Level 2: Prepare for shipping + case 2: + //lcd_puts_P(PSTR("Factory RESET")); + //lcd_puts_at_P(1,2,PSTR("Shipping prep")); + + // Force language selection at the next boot up. + lang_reset(); + // Force the "Follow calibration flow" message at the next boot up. + calibration_status_store(CALIBRATION_STATUS_Z_CALIBRATION); + eeprom_write_byte((uint8_t*)EEPROM_WIZARD_ACTIVE, 1); //run wizard + farm_no = 0; + farm_mode = false; + eeprom_update_byte((uint8_t*)EEPROM_FARM_MODE, farm_mode); + EEPROM_save_B(EEPROM_FARM_NUMBER, &farm_no); + + eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, 0); + eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, 0); + eeprom_update_word((uint16_t *)EEPROM_CRASH_COUNT_X_TOT, 0); + eeprom_update_word((uint16_t *)EEPROM_CRASH_COUNT_Y_TOT, 0); + eeprom_update_word((uint16_t *)EEPROM_FERROR_COUNT_TOT, 0); + eeprom_update_word((uint16_t *)EEPROM_POWER_COUNT_TOT, 0); + + fsensor_enable(); + fautoload_set(true); + + WRITE(BEEPER, HIGH); + _delay_ms(100); + WRITE(BEEPER, LOW); + //_delay_ms(2000); + break; + + // Level 3: erase everything, whole EEPROM will be set to 0xFF + + case 3: + lcd_puts_P(PSTR("Factory RESET")); + lcd_puts_at_P(1, 2, PSTR("ERASING all data")); + + WRITE(BEEPER, HIGH); + _delay_ms(100); + WRITE(BEEPER, LOW); + + er_progress = 0; + lcd_puts_at_P(3, 3, PSTR(" ")); + lcd_set_cursor(3, 3); + lcd_print(er_progress); + + // Erase EEPROM + for (int i = 0; i < 4096; i++) { + eeprom_write_byte((uint8_t*)i, 0xFF); + + if (i % 41 == 0) { + er_progress++; + lcd_puts_at_P(3, 3, PSTR(" ")); + lcd_set_cursor(3, 3); + lcd_print(er_progress); + lcd_puts_P(PSTR("%")); + } + + } + + + break; + case 4: + bowden_menu(); + break; + + default: + break; + } + + +} + + +FILE _uartout = {0}; + +int uart_putchar(char c, FILE *stream) +{ + MYSERIAL.write(c); + return 0; +} + + +void lcd_splash() +{ +// lcd_puts_at_P(0, 1, PSTR(" Original Prusa ")); +// lcd_puts_at_P(0, 2, PSTR(" 3D Printers ")); +// lcd_puts_P(PSTR("\x1b[1;3HOriginal Prusa\x1b[2;4H3D Printers")); +// fputs_P(PSTR(ESC_2J ESC_H(1,1) "Original Prusa i3" ESC_H(3,2) "Prusa Research"), lcdout); + lcd_puts_P(PSTR(ESC_2J ESC_H(1,1) "Original Prusa i3" ESC_H(3,2) "Prusa Research")); +// lcd_printf_P(_N(ESC_2J "x:%.3f\ny:%.3f\nz:%.3f\ne:%.3f"), _x, _y, _z, _e); +} + + +void factory_reset() +{ + KEEPALIVE_STATE(PAUSED_FOR_USER); + if (!READ(BTN_ENC)) + { + _delay_ms(1000); + if (!READ(BTN_ENC)) + { + lcd_clear(); + + + lcd_puts_P(PSTR("Factory RESET")); + + + SET_OUTPUT(BEEPER); + WRITE(BEEPER, HIGH); + + while (!READ(BTN_ENC)); + + WRITE(BEEPER, LOW); + + + + _delay_ms(2000); + + char level = reset_menu(); + factory_reset(level, false); + + switch (level) { + case 0: _delay_ms(0); break; + case 1: _delay_ms(0); break; + case 2: _delay_ms(0); break; + case 3: _delay_ms(0); break; + } + // _delay_ms(100); + /* + #ifdef MESH_BED_LEVELING + _delay_ms(2000); + + if (!READ(BTN_ENC)) + { + WRITE(BEEPER, HIGH); + _delay_ms(100); + WRITE(BEEPER, LOW); + _delay_ms(200); + WRITE(BEEPER, HIGH); + _delay_ms(100); + WRITE(BEEPER, LOW); + + int _z = 0; + calibration_status_store(CALIBRATION_STATUS_CALIBRATED); + EEPROM_save_B(EEPROM_BABYSTEP_X, &_z); + EEPROM_save_B(EEPROM_BABYSTEP_Y, &_z); + EEPROM_save_B(EEPROM_BABYSTEP_Z, &_z); + } + else + { + + WRITE(BEEPER, HIGH); + _delay_ms(100); + WRITE(BEEPER, LOW); + } + #endif // mesh */ + + } + } + else + { + //_delay_ms(1000); // wait 1sec to display the splash screen // what's this and why do we need it?? - andre + } + KEEPALIVE_STATE(IN_HANDLER); +} + +void show_fw_version_warnings() { + if (FW_DEV_VERSION == FW_VERSION_GOLD || FW_DEV_VERSION == FW_VERSION_RC) return; + switch (FW_DEV_VERSION) { + case(FW_VERSION_ALPHA): lcd_show_fullscreen_message_and_wait_P(_i("You are using firmware alpha version. This is development version. Using this version is not recommended and may cause printer damage.")); break;////MSG_FW_VERSION_ALPHA c=20 r=8 + case(FW_VERSION_BETA): lcd_show_fullscreen_message_and_wait_P(_i("You are using firmware beta version. This is development version. Using this version is not recommended and may cause printer damage.")); break;////MSG_FW_VERSION_BETA c=20 r=8 + case(FW_VERSION_DEVEL): + case(FW_VERSION_DEBUG): + lcd_update_enable(false); + lcd_clear(); + #if FW_DEV_VERSION == FW_VERSION_DEVEL + lcd_puts_at_P(0, 0, PSTR("Development build !!")); + #else + lcd_puts_at_P(0, 0, PSTR("Debbugging build !!!")); + #endif + lcd_puts_at_P(0, 1, PSTR("May destroy printer!")); + lcd_puts_at_P(0, 2, PSTR("ver ")); lcd_puts_P(PSTR(FW_VERSION_FULL)); + lcd_puts_at_P(0, 3, PSTR(FW_REPOSITORY)); + lcd_wait_for_click(); + break; +// default: lcd_show_fullscreen_message_and_wait_P(_i("WARNING: This is an unofficial, unsupported build. Use at your own risk!")); break;////MSG_FW_VERSION_UNKNOWN c=20 r=8 + } + lcd_update_enable(true); +} + +uint8_t check_printer_version() +{ + uint8_t version_changed = 0; + uint16_t printer_type = eeprom_read_word((uint16_t*)EEPROM_PRINTER_TYPE); + uint16_t motherboard = eeprom_read_word((uint16_t*)EEPROM_BOARD_TYPE); + + if (printer_type != PRINTER_TYPE) { + if (printer_type == 0xffff) eeprom_write_word((uint16_t*)EEPROM_PRINTER_TYPE, PRINTER_TYPE); + else version_changed |= 0b10; + } + if (motherboard != MOTHERBOARD) { + if(motherboard == 0xffff) eeprom_write_word((uint16_t*)EEPROM_BOARD_TYPE, MOTHERBOARD); + else version_changed |= 0b01; + } + return version_changed; +} + +void erase_eeprom_section(uint16_t offset, uint16_t bytes) +{ + for (int i = offset; i < (offset+bytes); i++) eeprom_write_byte((uint8_t*)i, 0xFF); +} + + +#if (LANG_MODE != 0) //secondary language support + +#ifdef W25X20CL + +#include "bootapp.h" //bootloader support + +// language update from external flash +#define LANGBOOT_BLOCKSIZE 0x1000 +#define LANGBOOT_RAMBUFFER 0x0800 + +void update_sec_lang_from_external_flash() +{ + if ((boot_app_magic == BOOT_APP_MAGIC) && (boot_app_flags & BOOT_APP_FLG_USER0)) + { + uint8_t lang = boot_reserved >> 4; + uint8_t state = boot_reserved & 0xf; + lang_table_header_t header; + uint32_t src_addr; + if (lang_get_header(lang, &header, &src_addr)) + { + fputs_P(PSTR(ESC_H(1,3) "Language update."), lcdout); + for (uint8_t i = 0; i < state; i++) fputc('.', lcdout); + delay(100); + boot_reserved = (state + 1) | (lang << 4); + if ((state * LANGBOOT_BLOCKSIZE) < header.size) + { + cli(); + uint16_t size = header.size - state * LANGBOOT_BLOCKSIZE; + if (size > LANGBOOT_BLOCKSIZE) size = LANGBOOT_BLOCKSIZE; + w25x20cl_rd_data(src_addr + state * LANGBOOT_BLOCKSIZE, (uint8_t*)LANGBOOT_RAMBUFFER, size); + if (state == 0) + { + //TODO - check header integrity + } + bootapp_ram2flash(LANGBOOT_RAMBUFFER, _SEC_LANG_TABLE + state * LANGBOOT_BLOCKSIZE, size); + } + else + { + //TODO - check sec lang data integrity + eeprom_update_byte((unsigned char *)EEPROM_LANG, LANG_ID_SEC); + } + } + } + boot_app_flags &= ~BOOT_APP_FLG_USER0; +} + + +#ifdef DEBUG_W25X20CL + +uint8_t lang_xflash_enum_codes(uint16_t* codes) +{ + lang_table_header_t header; + uint8_t count = 0; + uint32_t addr = 0x00000; + while (1) + { + printf_P(_n("LANGTABLE%d:"), count); + w25x20cl_rd_data(addr, (uint8_t*)&header, sizeof(lang_table_header_t)); + if (header.magic != LANG_MAGIC) + { + printf_P(_n("NG!\n")); + break; + } + printf_P(_n("OK\n")); + printf_P(_n(" _lt_magic = 0x%08lx %S\n"), header.magic, (header.magic==LANG_MAGIC)?_n("OK"):_n("NA")); + printf_P(_n(" _lt_size = 0x%04x (%d)\n"), header.size, header.size); + printf_P(_n(" _lt_count = 0x%04x (%d)\n"), header.count, header.count); + printf_P(_n(" _lt_chsum = 0x%04x\n"), header.checksum); + printf_P(_n(" _lt_code = 0x%04x (%c%c)\n"), header.code, header.code >> 8, header.code & 0xff); + printf_P(_n(" _lt_sign = 0x%08lx\n"), header.signature); + + addr += header.size; + codes[count] = header.code; + count ++; + } + return count; +} + +void list_sec_lang_from_external_flash() +{ + uint16_t codes[8]; + uint8_t count = lang_xflash_enum_codes(codes); + printf_P(_n("XFlash lang count = %hhd\n"), count); +} + +#endif //DEBUG_W25X20CL + +#endif //W25X20CL + +#endif //(LANG_MODE != 0) + + +// "Setup" function is called by the Arduino framework on startup. +// Before startup, the Timers-functions (PWM)/Analog RW and HardwareSerial provided by the Arduino-code +// are initialized by the main() routine provided by the Arduino framework. +void setup() +{ + ultralcd_init(); + + spi_init(); + + lcd_splash(); + +#ifdef W25X20CL + // Enter an STK500 compatible Optiboot boot loader waiting for flashing the languages to an external flash memory. + // optiboot_w25x20cl_enter(); +#endif + +#if (LANG_MODE != 0) //secondary language support +#ifdef W25X20CL + if (w25x20cl_init()) + update_sec_lang_from_external_flash(); + else + kill(_i("External SPI flash W25X20CL not responding.")); +#endif //W25X20CL +#endif //(LANG_MODE != 0) + + setup_killpin(); + setup_powerhold(); + + farm_mode = eeprom_read_byte((uint8_t*)EEPROM_FARM_MODE); + EEPROM_read_B(EEPROM_FARM_NUMBER, &farm_no); + if ((farm_mode == 0xFF && farm_no == 0) || ((uint16_t)farm_no == 0xFFFF)) + farm_mode = false; //if farm_mode has not been stored to eeprom yet and farm number is set to zero or EEPROM is fresh, deactivate farm mode + if ((uint16_t)farm_no == 0xFFFF) farm_no = 0; + + selectedSerialPort = eeprom_read_byte((uint8_t*)EEPROM_SECOND_SERIAL_ACTIVE); + if (selectedSerialPort == 0xFF) selectedSerialPort = 0; + if (farm_mode) + { + no_response = true; //we need confirmation by recieving PRUSA thx + important_status = 8; + prusa_statistics(8); + selectedSerialPort = 1; +#ifdef TMC2130 + //increased extruder current (PFW363) + tmc2130_current_h[E_AXIS] = 36; + tmc2130_current_r[E_AXIS] = 36; +#endif //TMC2130 + //disabled filament autoload (PFW360) + filament_autoload_enabled = false; + eeprom_update_byte((uint8_t*)EEPROM_FSENS_AUTOLOAD_ENABLED, 0); + } + MYSERIAL.begin(BAUDRATE); + fdev_setup_stream(uartout, uart_putchar, NULL, _FDEV_SETUP_WRITE); //setup uart out stream + stdout = uartout; + SERIAL_PROTOCOLLNPGM("start"); + SERIAL_ECHO_START; + printf_P(PSTR(" " FW_VERSION_FULL "\n")); + + uart2_init(); + + +#ifdef DEBUG_SEC_LANG + lang_table_header_t header; + uint32_t src_addr = 0x00000; + if (lang_get_header(1, &header, &src_addr)) + { +//this is comparsion of some printing-methods regarding to flash space usage and code size/readability +#define LT_PRINT_TEST 2 +// flash usage +// total p.test +//0 252718 t+c text code +//1 253142 424 170 254 +//2 253040 322 164 158 +//3 253248 530 135 395 +#if (LT_PRINT_TEST==1) //not optimized printf + printf_P(_n(" _src_addr = 0x%08lx\n"), src_addr); + printf_P(_n(" _lt_magic = 0x%08lx %S\n"), header.magic, (header.magic==LANG_MAGIC)?_n("OK"):_n("NA")); + printf_P(_n(" _lt_size = 0x%04x (%d)\n"), header.size, header.size); + printf_P(_n(" _lt_count = 0x%04x (%d)\n"), header.count, header.count); + printf_P(_n(" _lt_chsum = 0x%04x\n"), header.checksum); + printf_P(_n(" _lt_code = 0x%04x (%c%c)\n"), header.code, header.code >> 8, header.code & 0xff); + printf_P(_n(" _lt_sign = 0x%08lx\n"), header.signature); +#elif (LT_PRINT_TEST==2) //optimized printf + printf_P( + _n( + " _src_addr = 0x%08lx\n" + " _lt_magic = 0x%08lx %S\n" + " _lt_size = 0x%04x (%d)\n" + " _lt_count = 0x%04x (%d)\n" + " _lt_chsum = 0x%04x\n" + " _lt_code = 0x%04x (%c%c)\n" + " _lt_resv1 = 0x%08lx\n" + ), + src_addr, + header.magic, (header.magic==LANG_MAGIC)?_n("OK"):_n("NA"), + header.size, header.size, + header.count, header.count, + header.checksum, + header.code, header.code >> 8, header.code & 0xff, + header.signature + ); +#elif (LT_PRINT_TEST==3) //arduino print/println (leading zeros not solved) + MYSERIAL.print(" _src_addr = 0x"); + MYSERIAL.println(src_addr, 16); + MYSERIAL.print(" _lt_magic = 0x"); + MYSERIAL.print(header.magic, 16); + MYSERIAL.println((header.magic==LANG_MAGIC)?" OK":" NA"); + MYSERIAL.print(" _lt_size = 0x"); + MYSERIAL.print(header.size, 16); + MYSERIAL.print(" ("); + MYSERIAL.print(header.size, 10); + MYSERIAL.println(")"); + MYSERIAL.print(" _lt_count = 0x"); + MYSERIAL.print(header.count, 16); + MYSERIAL.print(" ("); + MYSERIAL.print(header.count, 10); + MYSERIAL.println(")"); + MYSERIAL.print(" _lt_chsum = 0x"); + MYSERIAL.println(header.checksum, 16); + MYSERIAL.print(" _lt_code = 0x"); + MYSERIAL.print(header.code, 16); + MYSERIAL.print(" ("); + MYSERIAL.print((char)(header.code >> 8), 0); + MYSERIAL.print((char)(header.code & 0xff), 0); + MYSERIAL.println(")"); + MYSERIAL.print(" _lt_resv1 = 0x"); + MYSERIAL.println(header.signature, 16); +#endif //(LT_PRINT_TEST==) +#undef LT_PRINT_TEST + +#if 0 + w25x20cl_rd_data(0x25ba, (uint8_t*)&block_buffer, 1024); + for (uint16_t i = 0; i < 1024; i++) + { + if ((i % 16) == 0) printf_P(_n("%04x:"), 0x25ba+i); + printf_P(_n(" %02x"), ((uint8_t*)&block_buffer)[i]); + if ((i % 16) == 15) putchar('\n'); + } +#endif + uint16_t sum = 0; + for (uint16_t i = 0; i < header.size; i++) + sum += (uint16_t)pgm_read_byte((uint8_t*)(_SEC_LANG_TABLE + i)) << ((i & 1)?0:8); + printf_P(_n("_SEC_LANG_TABLE checksum = %04x\n"), sum); + sum -= header.checksum; //subtract checksum + printf_P(_n("_SEC_LANG_TABLE checksum = %04x\n"), sum); + sum = (sum >> 8) | ((sum & 0xff) << 8); //swap bytes + if (sum == header.checksum) + printf_P(_n("Checksum OK\n"), sum); + else + printf_P(_n("Checksum NG\n"), sum); + } + else + printf_P(_n("lang_get_header failed!\n")); + +#if 0 + for (uint16_t i = 0; i < 1024*10; i++) + { + if ((i % 16) == 0) printf_P(_n("%04x:"), _SEC_LANG_TABLE+i); + printf_P(_n(" %02x"), pgm_read_byte((uint8_t*)(_SEC_LANG_TABLE+i))); + if ((i % 16) == 15) putchar('\n'); + } +#endif + +#if 0 + SERIAL_ECHOLN("Reading eeprom from 0 to 100: start"); + for (int i = 0; i < 4096; ++i) { + int b = eeprom_read_byte((unsigned char*)i); + if (b != 255) { + SERIAL_ECHO(i); + SERIAL_ECHO(":"); + SERIAL_ECHO(b); + SERIAL_ECHOLN(""); + } + } + SERIAL_ECHOLN("Reading eeprom from 0 to 100: done"); +#endif + +#endif //DEBUG_SEC_LANG + + // Check startup - does nothing if bootloader sets MCUSR to 0 + byte mcu = MCUSR; +/* if (mcu & 1) SERIAL_ECHOLNRPGM(_T(MSG_POWERUP)); + if (mcu & 2) SERIAL_ECHOLNRPGM(MSG_EXTERNAL_RESET); + if (mcu & 4) SERIAL_ECHOLNRPGM(MSG_BROWNOUT_RESET); + if (mcu & 8) SERIAL_ECHOLNRPGM(MSG_WATCHDOG_RESET); + if (mcu & 32) SERIAL_ECHOLNRPGM(MSG_SOFTWARE_RESET);*/ + if (mcu & 1) puts_P(_T(MSG_POWERUP)); + if (mcu & 2) puts_P(MSG_EXTERNAL_RESET); + if (mcu & 4) puts_P(MSG_BROWNOUT_RESET); + if (mcu & 8) puts_P(MSG_WATCHDOG_RESET); + if (mcu & 32) puts_P(MSG_SOFTWARE_RESET); + MCUSR = 0; + + //SERIAL_ECHORPGM(MSG_MARLIN); + //SERIAL_ECHOLNRPGM(VERSION_STRING); + +#ifdef STRING_VERSION_CONFIG_H +#ifdef STRING_CONFIG_H_AUTHOR + SERIAL_ECHO_START; + SERIAL_ECHORPGM(_i(" Last Updated: "));////MSG_CONFIGURATION_VER c=0 r=0 + SERIAL_ECHOPGM(STRING_VERSION_CONFIG_H); + SERIAL_ECHORPGM(_n(" | Author: "));////MSG_AUTHOR c=0 r=0 + SERIAL_ECHOLNPGM(STRING_CONFIG_H_AUTHOR); + SERIAL_ECHOPGM("Compiled: "); + SERIAL_ECHOLNPGM(__DATE__); +#endif +#endif + + SERIAL_ECHO_START; + SERIAL_ECHORPGM(_i(" Free Memory: "));////MSG_FREE_MEMORY c=0 r=0 + SERIAL_ECHO(freeMemory()); + SERIAL_ECHORPGM(_i(" PlannerBufferBytes: "));////MSG_PLANNER_BUFFER_BYTES c=0 r=0 + SERIAL_ECHOLN((int)sizeof(block_t)*BLOCK_BUFFER_SIZE); + //lcd_update_enable(false); // why do we need this?? - andre + // loads data from EEPROM if available else uses defaults (and resets step acceleration rate) + + bool previous_settings_retrieved = false; + uint8_t hw_changed = check_printer_version(); + if (!(hw_changed & 0b10)) { //if printer version wasn't changed, check for eeprom version and retrieve settings from eeprom in case that version wasn't changed + previous_settings_retrieved = Config_RetrieveSettings(EEPROM_OFFSET); + } + else { //printer version was changed so use default settings + Config_ResetDefault(); + } + SdFatUtil::set_stack_guard(); //writes magic number at the end of static variables to protect against overwriting static memory by stack + + tp_init(); // Initialize temperature loop + + lcd_splash(); // we need to do this again, because tp_init() kills lcd + + plan_init(); // Initialize planner; + + factory_reset(); + +#ifdef TMC2130 + uint8_t silentMode = eeprom_read_byte((uint8_t*)EEPROM_SILENT); + if (silentMode == 0xff) silentMode = 0; +// tmc2130_mode = silentMode?TMC2130_MODE_SILENT:TMC2130_MODE_NORMAL; + tmc2130_mode = TMC2130_MODE_NORMAL; + uint8_t crashdet = eeprom_read_byte((uint8_t*)EEPROM_CRASH_DET); + if (crashdet && !farm_mode) + { + crashdet_enable(); + puts_P(_N("CrashDetect ENABLED!")); + } + else + { + crashdet_disable(); + puts_P(_N("CrashDetect DISABLED")); + } + +#ifdef TMC2130_LINEARITY_CORRECTION +#ifdef TMC2130_LINEARITY_CORRECTION_XYZ + tmc2130_wave_fac[X_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_WAVE_X_FAC); + tmc2130_wave_fac[Y_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_WAVE_Y_FAC); + tmc2130_wave_fac[Z_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_WAVE_Z_FAC); +#endif //TMC2130_LINEARITY_CORRECTION_XYZ + tmc2130_wave_fac[E_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_WAVE_E_FAC); + if (tmc2130_wave_fac[X_AXIS] == 0xff) tmc2130_wave_fac[X_AXIS] = 0; + if (tmc2130_wave_fac[Y_AXIS] == 0xff) tmc2130_wave_fac[Y_AXIS] = 0; + if (tmc2130_wave_fac[Z_AXIS] == 0xff) tmc2130_wave_fac[Z_AXIS] = 0; + if (tmc2130_wave_fac[E_AXIS] == 0xff) tmc2130_wave_fac[E_AXIS] = 0; +#endif //TMC2130_LINEARITY_CORRECTION + +#ifdef TMC2130_VARIABLE_RESOLUTION + tmc2130_mres[X_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_X_MRES); + tmc2130_mres[Y_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_Y_MRES); + tmc2130_mres[Z_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_Z_MRES); + tmc2130_mres[E_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_E_MRES); + if (tmc2130_mres[X_AXIS] == 0xff) tmc2130_mres[X_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_XY); + if (tmc2130_mres[Y_AXIS] == 0xff) tmc2130_mres[Y_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_XY); + if (tmc2130_mres[Z_AXIS] == 0xff) tmc2130_mres[Z_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_Z); + if (tmc2130_mres[E_AXIS] == 0xff) tmc2130_mres[E_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_E); + eeprom_update_byte((uint8_t*)EEPROM_TMC2130_X_MRES, tmc2130_mres[X_AXIS]); + eeprom_update_byte((uint8_t*)EEPROM_TMC2130_Y_MRES, tmc2130_mres[Y_AXIS]); + eeprom_update_byte((uint8_t*)EEPROM_TMC2130_Z_MRES, tmc2130_mres[Z_AXIS]); + eeprom_update_byte((uint8_t*)EEPROM_TMC2130_E_MRES, tmc2130_mres[E_AXIS]); +#else //TMC2130_VARIABLE_RESOLUTION + tmc2130_mres[X_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_XY); + tmc2130_mres[Y_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_XY); + tmc2130_mres[Z_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_Z); + tmc2130_mres[E_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_E); +#endif //TMC2130_VARIABLE_RESOLUTION + +#endif //TMC2130 + + + st_init(); // Initialize stepper, this enables interrupts! + +#ifdef TMC2130 + tmc2130_mode = silentMode?TMC2130_MODE_SILENT:TMC2130_MODE_NORMAL; + tmc2130_init(); +#endif //TMC2130 + + setup_photpin(); + + servo_init(); + // Reset the machine correction matrix. + // It does not make sense to load the correction matrix until the machine is homed. + world2machine_reset(); + +#ifdef PAT9125 + fsensor_init(); +#endif //PAT9125 + + +#if defined(CONTROLLERFAN_PIN) && (CONTROLLERFAN_PIN > -1) + SET_OUTPUT(CONTROLLERFAN_PIN); //Set pin used for driver cooling fan +#endif + + + setup_homepin(); + +#ifdef TMC2130 + + if (1) { + // try to run to zero phase before powering the Z motor. + // Move in negative direction + WRITE(Z_DIR_PIN,INVERT_Z_DIR); + // Round the current micro-micro steps to micro steps. + for (uint16_t phase = (tmc2130_rd_MSCNT(Z_AXIS) + 8) >> 4; phase > 0; -- phase) { + // Until the phase counter is reset to zero. + WRITE(Z_STEP_PIN, !INVERT_Z_STEP_PIN); + delay(2); + WRITE(Z_STEP_PIN, INVERT_Z_STEP_PIN); + delay(2); + } + } +#endif //TMC2130 + +#if defined(Z_AXIS_ALWAYS_ON) + enable_z(); +#endif + farm_mode = eeprom_read_byte((uint8_t*)EEPROM_FARM_MODE); + EEPROM_read_B(EEPROM_FARM_NUMBER, &farm_no); + if ((farm_mode == 0xFF && farm_no == 0) || (farm_no == 0xFFFF)) farm_mode = false; //if farm_mode has not been stored to eeprom yet and farm number is set to zero or EEPROM is fresh, deactivate farm mode + if (farm_no == 0xFFFF) farm_no = 0; + if (farm_mode) + { + prusa_statistics(8); + } + + // Enable Toshiba FlashAir SD card / WiFi enahanced card. + card.ToshibaFlashAir_enable(eeprom_read_byte((unsigned char*)EEPROM_TOSHIBA_FLASH_AIR_COMPATIBLITY) == 1); + + if (eeprom_read_dword((uint32_t*)(EEPROM_TOP - 4)) == 0x0ffffffff && + eeprom_read_dword((uint32_t*)(EEPROM_TOP - 8)) == 0x0ffffffff) { + // Maiden startup. The firmware has been loaded and first started on a virgin RAMBo board, + // where all the EEPROM entries are set to 0x0ff. + // Once a firmware boots up, it forces at least a language selection, which changes + // EEPROM_LANG to number lower than 0x0ff. + // 1) Set a high power mode. +#ifdef TMC2130 + eeprom_write_byte((uint8_t*)EEPROM_SILENT, 0); + tmc2130_mode = TMC2130_MODE_NORMAL; +#endif //TMC2130 + eeprom_write_byte((uint8_t*)EEPROM_WIZARD_ACTIVE, 1); //run wizard + } + + // Force SD card update. Otherwise the SD card update is done from loop() on card.checkautostart(false), + // but this times out if a blocking dialog is shown in setup(). + card.initsd(); +#ifdef DEBUG_SD_SPEED_TEST + if (card.cardOK) + { + uint8_t* buff = (uint8_t*)block_buffer; + uint32_t block = 0; + uint32_t sumr = 0; + uint32_t sumw = 0; + for (int i = 0; i < 1024; i++) + { + uint32_t u = micros(); + bool res = card.card.readBlock(i, buff); + u = micros() - u; + if (res) + { + printf_P(PSTR("readBlock %4d 512 bytes %lu us\n"), i, u); + sumr += u; + u = micros(); + res = card.card.writeBlock(i, buff); + u = micros() - u; + if (res) + { + printf_P(PSTR("writeBlock %4d 512 bytes %lu us\n"), i, u); + sumw += u; + } + else + { + printf_P(PSTR("writeBlock %4d error\n"), i); + break; + } + } + else + { + printf_P(PSTR("readBlock %4d error\n"), i); + break; + } + } + uint32_t avg_rspeed = (1024 * 1000000) / (sumr / 512); + uint32_t avg_wspeed = (1024 * 1000000) / (sumw / 512); + printf_P(PSTR("avg read speed %lu bytes/s\n"), avg_rspeed); + printf_P(PSTR("avg write speed %lu bytes/s\n"), avg_wspeed); + } + else + printf_P(PSTR("Card NG!\n")); +#endif //DEBUG_SD_SPEED_TEST + + if (eeprom_read_byte((uint8_t*)EEPROM_POWER_COUNT) == 0xff) eeprom_write_byte((uint8_t*)EEPROM_POWER_COUNT, 0); + if (eeprom_read_byte((uint8_t*)EEPROM_CRASH_COUNT_X) == 0xff) eeprom_write_byte((uint8_t*)EEPROM_CRASH_COUNT_X, 0); + if (eeprom_read_byte((uint8_t*)EEPROM_CRASH_COUNT_Y) == 0xff) eeprom_write_byte((uint8_t*)EEPROM_CRASH_COUNT_Y, 0); + if (eeprom_read_byte((uint8_t*)EEPROM_FERROR_COUNT) == 0xff) eeprom_write_byte((uint8_t*)EEPROM_FERROR_COUNT, 0); + if (eeprom_read_word((uint16_t*)EEPROM_POWER_COUNT_TOT) == 0xffff) eeprom_write_word((uint16_t*)EEPROM_POWER_COUNT_TOT, 0); + if (eeprom_read_word((uint16_t*)EEPROM_CRASH_COUNT_X_TOT) == 0xffff) eeprom_write_word((uint16_t*)EEPROM_CRASH_COUNT_X_TOT, 0); + if (eeprom_read_word((uint16_t*)EEPROM_CRASH_COUNT_Y_TOT) == 0xffff) eeprom_write_word((uint16_t*)EEPROM_CRASH_COUNT_Y_TOT, 0); + if (eeprom_read_word((uint16_t*)EEPROM_FERROR_COUNT_TOT) == 0xffff) eeprom_write_word((uint16_t*)EEPROM_FERROR_COUNT_TOT, 0); +#ifdef SNMM + if (eeprom_read_dword((uint32_t*)EEPROM_BOWDEN_LENGTH) == 0x0ffffffff) { //bowden length used for SNMM + int _z = BOWDEN_LENGTH; + for(int i = 0; i<4; i++) EEPROM_save_B(EEPROM_BOWDEN_LENGTH + i * 2, &_z); + } +#endif + + // In the future, somewhere here would one compare the current firmware version against the firmware version stored in the EEPROM. + // If they differ, an update procedure may need to be performed. At the end of this block, the current firmware version + // is being written into the EEPROM, so the update procedure will be triggered only once. + + +#if (LANG_MODE != 0) //secondary language support + +#ifdef DEBUG_W25X20CL + W25X20CL_SPI_ENTER(); + uint8_t uid[8]; // 64bit unique id + w25x20cl_rd_uid(uid); + puts_P(_n("W25X20CL UID=")); + for (uint8_t i = 0; i < 8; i ++) + printf_P(PSTR("%02hhx"), uid[i]); + putchar('\n'); + list_sec_lang_from_external_flash(); +#endif //DEBUG_W25X20CL + +// lang_reset(); + if (!lang_select(eeprom_read_byte((uint8_t*)EEPROM_LANG))) + lcd_language(); + +#ifdef DEBUG_SEC_LANG + + uint16_t sec_lang_code = lang_get_code(1); + uint16_t ui = _SEC_LANG_TABLE; //table pointer + printf_P(_n("lang_selected=%d\nlang_table=0x%04x\nSEC_LANG_CODE=0x%04x (%c%c)\n"), lang_selected, ui, sec_lang_code, sec_lang_code >> 8, sec_lang_code & 0xff); + +// lang_print_sec_lang(uartout); +#endif //DEBUG_SEC_LANG + +#endif //(LANG_MODE != 0) + + if (eeprom_read_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE) == 255) { + eeprom_write_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE, 0); + temp_cal_active = false; + } else temp_cal_active = eeprom_read_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE); + + if (eeprom_read_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA) == 255) { + //eeprom_write_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 0); + eeprom_write_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 1); + int16_t z_shift = 0; + for (uint8_t i = 0; i < 5; i++) EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i * 2, &z_shift); + eeprom_write_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE, 0); + temp_cal_active = false; + } + if (eeprom_read_byte((uint8_t*)EEPROM_UVLO) == 255) { + eeprom_write_byte((uint8_t*)EEPROM_UVLO, 0); + } + if (eeprom_read_byte((uint8_t*)EEPROM_SD_SORT) == 255) { + eeprom_write_byte((uint8_t*)EEPROM_SD_SORT, 0); + } + + check_babystep(); //checking if Z babystep is in allowed range + +#ifdef UVLO_SUPPORT + setup_uvlo_interrupt(); +#endif //UVLO_SUPPORT + +#if !defined(DEBUG_DISABLE_FANCHECK) && defined(FANCHECK) && defined(TACH_1) && TACH_1 >-1 + setup_fan_interrupt(); +#endif //DEBUG_DISABLE_FANCHECK + +#ifdef PAT9125 +#ifndef DEBUG_DISABLE_FSENSORCHECK + fsensor_setup_interrupt(); +#endif //DEBUG_DISABLE_FSENSORCHECK +#endif //PAT9125 + for (int i = 0; i<4; i++) EEPROM_read_B(EEPROM_BOWDEN_LENGTH + i * 2, &bowden_length[i]); + +#ifndef DEBUG_DISABLE_STARTMSGS + KEEPALIVE_STATE(PAUSED_FOR_USER); + + show_fw_version_warnings(); + + switch (hw_changed) { + //if motherboard or printer type was changed inform user as it can indicate flashing wrong firmware version + //if user confirms with knob, new hw version (printer and/or motherboard) is written to eeprom and message will be not shown next time + case(0b01): + lcd_show_fullscreen_message_and_wait_P(_i("Warning: motherboard type changed.")); ////MSG_CHANGED_MOTHERBOARD c=20 r=4 + eeprom_write_word((uint16_t*)EEPROM_BOARD_TYPE, MOTHERBOARD); + break; + case(0b10): + lcd_show_fullscreen_message_and_wait_P(_i("Warning: printer type changed.")); ////MSG_CHANGED_PRINTER c=20 r=4 + eeprom_write_word((uint16_t*)EEPROM_PRINTER_TYPE, PRINTER_TYPE); + break; + case(0b11): + lcd_show_fullscreen_message_and_wait_P(_i("Warning: both printer type and motherboard type changed.")); ////MSG_CHANGED_BOTH c=20 r=4 + eeprom_write_word((uint16_t*)EEPROM_PRINTER_TYPE, PRINTER_TYPE); + eeprom_write_word((uint16_t*)EEPROM_BOARD_TYPE, MOTHERBOARD); + break; + default: break; //no change, show no message + } + + if (!previous_settings_retrieved) { + lcd_show_fullscreen_message_and_wait_P(_i("Old settings found. Default PID, Esteps etc. will be set.")); //if EEPROM version or printer type was changed, inform user that default setting were loaded////MSG_DEFAULT_SETTINGS_LOADED c=20 r=4 + erase_eeprom_section(EEPROM_OFFSET, 156); //erase M500 part of eeprom + } + if (eeprom_read_byte((uint8_t*)EEPROM_WIZARD_ACTIVE) == 1) { + lcd_wizard(0); + } + if (eeprom_read_byte((uint8_t*)EEPROM_WIZARD_ACTIVE) == 0) { //dont show calibration status messages if wizard is currently active + if (calibration_status() == CALIBRATION_STATUS_ASSEMBLED || + calibration_status() == CALIBRATION_STATUS_UNKNOWN || + calibration_status() == CALIBRATION_STATUS_XYZ_CALIBRATION) { + // Reset the babystepping values, so the printer will not move the Z axis up when the babystepping is enabled. + eeprom_update_word((uint16_t*)EEPROM_BABYSTEP_Z, 0); + // Show the message. + lcd_show_fullscreen_message_and_wait_P(_T(MSG_FOLLOW_CALIBRATION_FLOW)); + } + else if (calibration_status() == CALIBRATION_STATUS_LIVE_ADJUST) { + // Show the message. + lcd_show_fullscreen_message_and_wait_P(_T(MSG_BABYSTEP_Z_NOT_SET)); + lcd_update_enable(true); + } + else if (calibration_status() == CALIBRATION_STATUS_CALIBRATED && temp_cal_active == true && calibration_status_pinda() == false) { + //lcd_show_fullscreen_message_and_wait_P(_i("Temperature calibration has not been run yet"));////MSG_PINDA_NOT_CALIBRATED c=20 r=4 + lcd_update_enable(true); + } + else if (calibration_status() == CALIBRATION_STATUS_Z_CALIBRATION) { + // Show the message. + lcd_show_fullscreen_message_and_wait_P(_T(MSG_FOLLOW_CALIBRATION_FLOW)); + } + } + +#if !defined (DEBUG_DISABLE_FORCE_SELFTEST) && defined (TMC2130) + if (force_selftest_if_fw_version() && calibration_status() < CALIBRATION_STATUS_ASSEMBLED) { + lcd_show_fullscreen_message_and_wait_P(_i("Selftest will be run to calibrate accurate sensorless rehoming."));////MSG_FORCE_SELFTEST c=20 r=8 + update_current_firmware_version_to_eeprom(); + lcd_selftest(); + } +#endif //TMC2130 && !DEBUG_DISABLE_FORCE_SELFTEST + + KEEPALIVE_STATE(IN_PROCESS); +#endif //DEBUG_DISABLE_STARTMSGS + lcd_update_enable(true); + lcd_clear(); + lcd_update(2); + // Store the currently running firmware into an eeprom, + // so the next time the firmware gets updated, it will know from which version it has been updated. + update_current_firmware_version_to_eeprom(); + +#ifdef TMC2130 + tmc2130_home_origin[X_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_X_ORIGIN); + tmc2130_home_bsteps[X_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_X_BSTEPS); + tmc2130_home_fsteps[X_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_X_FSTEPS); + if (tmc2130_home_origin[X_AXIS] == 0xff) tmc2130_home_origin[X_AXIS] = 0; + if (tmc2130_home_bsteps[X_AXIS] == 0xff) tmc2130_home_bsteps[X_AXIS] = 48; + if (tmc2130_home_fsteps[X_AXIS] == 0xff) tmc2130_home_fsteps[X_AXIS] = 48; + + tmc2130_home_origin[Y_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_Y_ORIGIN); + tmc2130_home_bsteps[Y_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_Y_BSTEPS); + tmc2130_home_fsteps[Y_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_Y_FSTEPS); + if (tmc2130_home_origin[Y_AXIS] == 0xff) tmc2130_home_origin[Y_AXIS] = 0; + if (tmc2130_home_bsteps[Y_AXIS] == 0xff) tmc2130_home_bsteps[Y_AXIS] = 48; + if (tmc2130_home_fsteps[Y_AXIS] == 0xff) tmc2130_home_fsteps[Y_AXIS] = 48; + + tmc2130_home_enabled = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_ENABLED); + if (tmc2130_home_enabled == 0xff) tmc2130_home_enabled = 0; +#endif //TMC2130 + +#ifdef UVLO_SUPPORT + if (eeprom_read_byte((uint8_t*)EEPROM_UVLO) == 1) { //previous print was terminated by UVLO +/* + if (lcd_show_fullscreen_message_yes_no_and_wait_P(_T(MSG_RECOVER_PRINT), false)) recover_print(); + else { + eeprom_update_byte((uint8_t*)EEPROM_UVLO, 0); + lcd_update_enable(true); + lcd_update(2); + lcd_setstatuspgm(_T(WELCOME_MSG)); + } +*/ + manage_heater(); // Update temperatures +#ifdef DEBUG_UVLO_AUTOMATIC_RECOVER + printf_P(_N("Power panic detected!\nCurrent bed temp:%d\nSaved bed temp:%d\n"), (int)degBed(), eeprom_read_byte((uint8_t*)EEPROM_UVLO_TARGET_BED)) +#endif + if ( degBed() > ( (float)eeprom_read_byte((uint8_t*)EEPROM_UVLO_TARGET_BED) - AUTOMATIC_UVLO_BED_TEMP_OFFSET) ){ + #ifdef DEBUG_UVLO_AUTOMATIC_RECOVER + puts_P(_N("Automatic recovery!")); + #endif + recover_print(1); + } + else{ + #ifdef DEBUG_UVLO_AUTOMATIC_RECOVER + puts_P(_N("Normal recovery!")); + #endif + if ( lcd_show_fullscreen_message_yes_no_and_wait_P(_T(MSG_RECOVER_PRINT), false) ) recover_print(0); + else { + eeprom_update_byte((uint8_t*)EEPROM_UVLO, 0); + lcd_update_enable(true); + lcd_update(2); + lcd_setstatuspgm(_T(WELCOME_MSG)); + } + + } + + } +#endif //UVLO_SUPPORT + + KEEPALIVE_STATE(NOT_BUSY); +#ifdef WATCHDOG + wdt_enable(WDTO_4S); +#endif //WATCHDOG +} + +#ifdef PAT9125 +void fsensor_init() { + int pat9125 = pat9125_init(); + printf_P(_N("PAT9125_init:%d\n"), pat9125); + uint8_t fsensor = eeprom_read_byte((uint8_t*)EEPROM_FSENSOR); + filament_autoload_enabled=eeprom_read_byte((uint8_t*)EEPROM_FSENS_AUTOLOAD_ENABLED); + if (!pat9125) + { + fsensor = 0; //disable sensor + fsensor_not_responding = true; + } + else { + fsensor_not_responding = false; + } + puts_P(PSTR("FSensor ")); + if (fsensor) + { + puts_P(PSTR("ENABLED\n")); + fsensor_enable(); + } + else + { + puts_P(PSTR("DISABLED\n")); + fsensor_disable(); + } +#ifdef DEBUG_DISABLE_FSENSORCHECK + filament_autoload_enabled = false; + fsensor_disable(); +#endif //DEBUG_DISABLE_FSENSORCHECK +} + +#endif //PAT9125 + +void trace(); + +#define CHUNK_SIZE 64 // bytes +#define SAFETY_MARGIN 1 +char chunk[CHUNK_SIZE+SAFETY_MARGIN]; +int chunkHead = 0; + +int serial_read_stream() { + + setTargetHotend(0, 0); + setTargetBed(0); + + lcd_clear(); + lcd_puts_P(PSTR(" Upload in progress")); + + // first wait for how many bytes we will receive + uint32_t bytesToReceive; + + // receive the four bytes + char bytesToReceiveBuffer[4]; + for (int i=0; i<4; i++) { + int data; + while ((data = MYSERIAL.read()) == -1) {}; + bytesToReceiveBuffer[i] = data; + + } + + // make it a uint32 + memcpy(&bytesToReceive, &bytesToReceiveBuffer, 4); + + // we're ready, notify the sender + MYSERIAL.write('+'); + + // lock in the routine + uint32_t receivedBytes = 0; + while (prusa_sd_card_upload) { + int i; + for (i=0; i 0) && ((millis()-_usb_timer) > 1000)) + { + is_usb_printing = true; + usb_printing_counter--; + _usb_timer = millis(); + } + if (usb_printing_counter == 0) + { + is_usb_printing = false; + } + + if (prusa_sd_card_upload) + { + //we read byte-by byte + serial_read_stream(); + } else + { + + get_command(); + + #ifdef SDSUPPORT + card.checkautostart(false); + #endif + if(buflen) + { + cmdbuffer_front_already_processed = false; + #ifdef SDSUPPORT + if(card.saving) + { + // Saving a G-code file onto an SD-card is in progress. + // Saving starts with M28, saving until M29 is seen. + if(strstr_P(CMDBUFFER_CURRENT_STRING, PSTR("M29")) == NULL) { + card.write_command(CMDBUFFER_CURRENT_STRING); + if(card.logging) + process_commands(); + else + SERIAL_PROTOCOLLNRPGM(_T(MSG_OK)); + } else { + card.closefile(); + SERIAL_PROTOCOLLNRPGM(MSG_FILE_SAVED); + } + } else { + process_commands(); + } + #else + process_commands(); + #endif //SDSUPPORT + + if (! cmdbuffer_front_already_processed && buflen) + { + // ptr points to the start of the block currently being processed. + // The first character in the block is the block type. + char *ptr = cmdbuffer + bufindr; + if (*ptr == CMDBUFFER_CURRENT_TYPE_SDCARD) { + // To support power panic, move the lenght of the command on the SD card to a planner buffer. + union { + struct { + char lo; + char hi; + } lohi; + uint16_t value; + } sdlen; + sdlen.value = 0; + { + // This block locks the interrupts globally for 3.25 us, + // which corresponds to a maximum repeat frequency of 307.69 kHz. + // This blocking is safe in the context of a 10kHz stepper driver interrupt + // or a 115200 Bd serial line receive interrupt, which will not trigger faster than 12kHz. + cli(); + // Reset the command to something, which will be ignored by the power panic routine, + // so this buffer length will not be counted twice. + *ptr ++ = CMDBUFFER_CURRENT_TYPE_TO_BE_REMOVED; + // Extract the current buffer length. + sdlen.lohi.lo = *ptr ++; + sdlen.lohi.hi = *ptr; + // and pass it to the planner queue. + planner_add_sd_length(sdlen.value); + sei(); + } + } + else if((*ptr == CMDBUFFER_CURRENT_TYPE_USB_WITH_LINENR) && !IS_SD_PRINTING){ + + cli(); + *ptr ++ = CMDBUFFER_CURRENT_TYPE_TO_BE_REMOVED; + // and one for each command to previous block in the planner queue. + planner_add_sd_length(1); + sei(); + } + // Now it is safe to release the already processed command block. If interrupted by the power panic now, + // this block's SD card length will not be counted twice as its command type has been replaced + // by CMDBUFFER_CURRENT_TYPE_TO_BE_REMOVED. + cmdqueue_pop_front(); + } + host_keepalive(); + } +} + //check heater every n milliseconds + manage_heater(); + isPrintPaused ? manage_inactivity(true) : manage_inactivity(false); + checkHitEndstops(); + lcd_update(0); +#ifdef PAT9125 + fsensor_update(); +#endif //PAT9125 +#ifdef TMC2130 + tmc2130_check_overtemp(); + if (tmc2130_sg_crash) + { + uint8_t crash = tmc2130_sg_crash; + tmc2130_sg_crash = 0; +// crashdet_stop_and_save_print(); + switch (crash) + { + case 1: enquecommand_P((PSTR("CRASH_DETECTEDX"))); break; + case 2: enquecommand_P((PSTR("CRASH_DETECTEDY"))); break; + case 3: enquecommand_P((PSTR("CRASH_DETECTEDXY"))); break; + } + } +#endif //TMC2130 + +} + +#define DEFINE_PGM_READ_ANY(type, reader) \ + static inline type pgm_read_any(const type *p) \ + { return pgm_read_##reader##_near(p); } + +DEFINE_PGM_READ_ANY(float, float); +DEFINE_PGM_READ_ANY(signed char, byte); + +#define XYZ_CONSTS_FROM_CONFIG(type, array, CONFIG) \ +static const PROGMEM type array##_P[3] = \ + { X_##CONFIG, Y_##CONFIG, Z_##CONFIG }; \ +static inline type array(int axis) \ + { return pgm_read_any(&array##_P[axis]); } \ +type array##_ext(int axis) \ + { return pgm_read_any(&array##_P[axis]); } + +XYZ_CONSTS_FROM_CONFIG(float, base_min_pos, MIN_POS); +XYZ_CONSTS_FROM_CONFIG(float, base_max_pos, MAX_POS); +XYZ_CONSTS_FROM_CONFIG(float, base_home_pos, HOME_POS); +XYZ_CONSTS_FROM_CONFIG(float, max_length, MAX_LENGTH); +XYZ_CONSTS_FROM_CONFIG(float, home_retract_mm, HOME_RETRACT_MM); +XYZ_CONSTS_FROM_CONFIG(signed char, home_dir, HOME_DIR); + +static void axis_is_at_home(int axis) { + current_position[axis] = base_home_pos(axis) + add_homing[axis]; + min_pos[axis] = base_min_pos(axis) + add_homing[axis]; + max_pos[axis] = base_max_pos(axis) + add_homing[axis]; +} + + +inline void set_current_to_destination() { memcpy(current_position, destination, sizeof(current_position)); } +inline void set_destination_to_current() { memcpy(destination, current_position, sizeof(destination)); } + + +static void setup_for_endstop_move(bool enable_endstops_now = true) { + saved_feedrate = feedrate; + saved_feedmultiply = feedmultiply; + feedmultiply = 100; + previous_millis_cmd = millis(); + + enable_endstops(enable_endstops_now); +} + +static void clean_up_after_endstop_move() { +#ifdef ENDSTOPS_ONLY_FOR_HOMING + enable_endstops(false); +#endif + + feedrate = saved_feedrate; + feedmultiply = saved_feedmultiply; + previous_millis_cmd = millis(); +} + + + +#ifdef ENABLE_AUTO_BED_LEVELING +#ifdef AUTO_BED_LEVELING_GRID +static void set_bed_level_equation_lsq(double *plane_equation_coefficients) +{ + vector_3 planeNormal = vector_3(-plane_equation_coefficients[0], -plane_equation_coefficients[1], 1); + planeNormal.debug("planeNormal"); + plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal); + //bedLevel.debug("bedLevel"); + + //plan_bed_level_matrix.debug("bed level before"); + //vector_3 uncorrected_position = plan_get_position_mm(); + //uncorrected_position.debug("position before"); + + vector_3 corrected_position = plan_get_position(); +// corrected_position.debug("position after"); + current_position[X_AXIS] = corrected_position.x; + current_position[Y_AXIS] = corrected_position.y; + current_position[Z_AXIS] = corrected_position.z; + + // put the bed at 0 so we don't go below it. + current_position[Z_AXIS] = zprobe_zoffset; // in the lsq we reach here after raising the extruder due to the loop structure + + plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]); +} + +#else // not AUTO_BED_LEVELING_GRID + +static void set_bed_level_equation_3pts(float z_at_pt_1, float z_at_pt_2, float z_at_pt_3) { + + plan_bed_level_matrix.set_to_identity(); + + vector_3 pt1 = vector_3(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, z_at_pt_1); + vector_3 pt2 = vector_3(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, z_at_pt_2); + vector_3 pt3 = vector_3(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, z_at_pt_3); + + vector_3 from_2_to_1 = (pt1 - pt2).get_normal(); + vector_3 from_2_to_3 = (pt3 - pt2).get_normal(); + vector_3 planeNormal = vector_3::cross(from_2_to_1, from_2_to_3).get_normal(); + planeNormal = vector_3(planeNormal.x, planeNormal.y, abs(planeNormal.z)); + + plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal); + + vector_3 corrected_position = plan_get_position(); + current_position[X_AXIS] = corrected_position.x; + current_position[Y_AXIS] = corrected_position.y; + current_position[Z_AXIS] = corrected_position.z; + + // put the bed at 0 so we don't go below it. + current_position[Z_AXIS] = zprobe_zoffset; + + plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]); + +} + +#endif // AUTO_BED_LEVELING_GRID + +static void run_z_probe() { + plan_bed_level_matrix.set_to_identity(); + feedrate = homing_feedrate[Z_AXIS]; + + // move down until you find the bed + float zPosition = -10; + plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder); + st_synchronize(); + + // we have to let the planner know where we are right now as it is not where we said to go. + zPosition = st_get_position_mm(Z_AXIS); + plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS]); + + // move up the retract distance + zPosition += home_retract_mm(Z_AXIS); + plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder); + st_synchronize(); + + // move back down slowly to find bed + feedrate = homing_feedrate[Z_AXIS]/4; + zPosition -= home_retract_mm(Z_AXIS) * 2; + plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder); + st_synchronize(); + + current_position[Z_AXIS] = st_get_position_mm(Z_AXIS); + // make sure the planner knows where we are as it may be a bit different than we last said to move to + plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]); +} + +static void do_blocking_move_to(float x, float y, float z) { + float oldFeedRate = feedrate; + + feedrate = homing_feedrate[Z_AXIS]; + + current_position[Z_AXIS] = z; + plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate/60, active_extruder); + st_synchronize(); + + feedrate = XY_TRAVEL_SPEED; + + current_position[X_AXIS] = x; + current_position[Y_AXIS] = y; + plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate/60, active_extruder); + st_synchronize(); + + feedrate = oldFeedRate; +} + +static void do_blocking_move_relative(float offset_x, float offset_y, float offset_z) { + do_blocking_move_to(current_position[X_AXIS] + offset_x, current_position[Y_AXIS] + offset_y, current_position[Z_AXIS] + offset_z); +} + + +/// Probe bed height at position (x,y), returns the measured z value +static float probe_pt(float x, float y, float z_before) { + // move to right place + do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], z_before); + do_blocking_move_to(x - X_PROBE_OFFSET_FROM_EXTRUDER, y - Y_PROBE_OFFSET_FROM_EXTRUDER, current_position[Z_AXIS]); + + run_z_probe(); + float measured_z = current_position[Z_AXIS]; + + SERIAL_PROTOCOLRPGM(_T(MSG_BED)); + SERIAL_PROTOCOLPGM(" x: "); + SERIAL_PROTOCOL(x); + SERIAL_PROTOCOLPGM(" y: "); + SERIAL_PROTOCOL(y); + SERIAL_PROTOCOLPGM(" z: "); + SERIAL_PROTOCOL(measured_z); + SERIAL_PROTOCOLPGM("\n"); + return measured_z; +} + +#endif // #ifdef ENABLE_AUTO_BED_LEVELING + +#ifdef LIN_ADVANCE + /** + * M900: Set and/or Get advance K factor and WH/D ratio + * + * K Set advance K factor + * R Set ratio directly (overrides WH/D) + * W H D Set ratio from WH/D + */ +inline void gcode_M900() { + st_synchronize(); + + const float newK = code_seen('K') ? code_value_float() : -1; + if (newK >= 0) extruder_advance_k = newK; + + float newR = code_seen('R') ? code_value_float() : -1; + if (newR < 0) { + const float newD = code_seen('D') ? code_value_float() : -1, + newW = code_seen('W') ? code_value_float() : -1, + newH = code_seen('H') ? code_value_float() : -1; + if (newD >= 0 && newW >= 0 && newH >= 0) + newR = newD ? (newW * newH) / (sq(newD * 0.5) * M_PI) : 0; + } + if (newR >= 0) advance_ed_ratio = newR; + + SERIAL_ECHO_START; + SERIAL_ECHOPGM("Advance K="); + SERIAL_ECHOLN(extruder_advance_k); + SERIAL_ECHOPGM(" E/D="); + const float ratio = advance_ed_ratio; + if (ratio) SERIAL_ECHOLN(ratio); else SERIAL_ECHOLNPGM("Auto"); + } +#endif // LIN_ADVANCE + +bool check_commands() { + bool end_command_found = false; + + while (buflen) + { + if ((code_seen("M84")) || (code_seen("M 84"))) end_command_found = true; + if (!cmdbuffer_front_already_processed) + cmdqueue_pop_front(); + cmdbuffer_front_already_processed = false; + } + return end_command_found; + +} + +#ifdef TMC2130 +bool calibrate_z_auto() +{ + //lcd_display_message_fullscreen_P(_T(MSG_CALIBRATE_Z_AUTO)); + lcd_clear(); + lcd_puts_at_P(0,1, _T(MSG_CALIBRATE_Z_AUTO)); + bool endstops_enabled = enable_endstops(true); + int axis_up_dir = -home_dir(Z_AXIS); + tmc2130_home_enter(Z_AXIS_MASK); + current_position[Z_AXIS] = 0; + plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]); + set_destination_to_current(); + destination[Z_AXIS] += (1.1 * max_length(Z_AXIS) * axis_up_dir); + feedrate = homing_feedrate[Z_AXIS]; + plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder); + st_synchronize(); +// current_position[axis] = 0; +// plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]); + tmc2130_home_exit(); + enable_endstops(false); + current_position[Z_AXIS] = 0; + plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]); + set_destination_to_current(); + destination[Z_AXIS] += 10 * axis_up_dir; //10mm up + feedrate = homing_feedrate[Z_AXIS] / 2; + plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder); + st_synchronize(); + enable_endstops(endstops_enabled); + current_position[Z_AXIS] = Z_MAX_POS+2.0; + plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]); + return true; +} +#endif //TMC2130 + +void homeaxis(int axis, uint8_t cnt, uint8_t* pstep) +{ + bool endstops_enabled = enable_endstops(true); //RP: endstops should be allways enabled durring homing +#define HOMEAXIS_DO(LETTER) \ +((LETTER##_MIN_PIN > -1 && LETTER##_HOME_DIR==-1) || (LETTER##_MAX_PIN > -1 && LETTER##_HOME_DIR==1)) + if ((axis==X_AXIS)?HOMEAXIS_DO(X):(axis==Y_AXIS)?HOMEAXIS_DO(Y):0) + { + int axis_home_dir = home_dir(axis); + feedrate = homing_feedrate[axis]; + +#ifdef TMC2130 + tmc2130_home_enter(X_AXIS_MASK << axis); +#endif //TMC2130 + + + // Move right a bit, so that the print head does not touch the left end position, + // and the following left movement has a chance to achieve the required velocity + // for the stall guard to work. + current_position[axis] = 0; + plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]); + set_destination_to_current(); +// destination[axis] = 11.f; + destination[axis] = 3.f; + plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder); + st_synchronize(); + // Move left away from the possible collision with the collision detection disabled. + endstops_hit_on_purpose(); + enable_endstops(false); + current_position[axis] = 0; + plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]); + destination[axis] = - 1.; + plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder); + st_synchronize(); + // Now continue to move up to the left end stop with the collision detection enabled. + enable_endstops(true); + destination[axis] = - 1.1 * max_length(axis); + plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder); + st_synchronize(); + for (uint8_t i = 0; i < cnt; i++) + { + // Move right from the collision to a known distance from the left end stop with the collision detection disabled. + endstops_hit_on_purpose(); + enable_endstops(false); + current_position[axis] = 0; + plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]); + destination[axis] = 10.f; + plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder); + st_synchronize(); + endstops_hit_on_purpose(); + // Now move left up to the collision, this time with a repeatable velocity. + enable_endstops(true); + destination[axis] = - 11.f; +#ifdef TMC2130 + feedrate = homing_feedrate[axis]; +#else //TMC2130 + feedrate = homing_feedrate[axis] / 2; +#endif //TMC2130 + plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder); + st_synchronize(); +#ifdef TMC2130 + uint16_t mscnt = tmc2130_rd_MSCNT(axis); + if (pstep) pstep[i] = mscnt >> 4; + printf_P(PSTR("%3d step=%2d mscnt=%4d\n"), i, mscnt >> 4, mscnt); +#endif //TMC2130 + } + endstops_hit_on_purpose(); + enable_endstops(false); + +#ifdef TMC2130 + uint8_t orig = tmc2130_home_origin[axis]; + uint8_t back = tmc2130_home_bsteps[axis]; + if (tmc2130_home_enabled && (orig <= 63)) + { + tmc2130_goto_step(axis, orig, 2, 1000, tmc2130_get_res(axis)); + if (back > 0) + tmc2130_do_steps(axis, back, 1, 1000); + } + else + tmc2130_do_steps(axis, 8, 2, 1000); + tmc2130_home_exit(); +#endif //TMC2130 + + axis_is_at_home(axis); + axis_known_position[axis] = true; + // Move from minimum +#ifdef TMC2130 + float dist = 0.01f * tmc2130_home_fsteps[axis]; +#else //TMC2130 + float dist = 0.01f * 64; +#endif //TMC2130 + current_position[axis] -= dist; + plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]); + current_position[axis] += dist; + destination[axis] = current_position[axis]; + plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], 0.5f*feedrate/60, active_extruder); + st_synchronize(); + + feedrate = 0.0; + } + else if ((axis==Z_AXIS)?HOMEAXIS_DO(Z):0) + { +#ifdef TMC2130 + FORCE_HIGH_POWER_START; +#endif + int axis_home_dir = home_dir(axis); + current_position[axis] = 0; + plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]); + destination[axis] = 1.5 * max_length(axis) * axis_home_dir; + feedrate = homing_feedrate[axis]; + plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder); + st_synchronize(); +#ifdef TMC2130 + if (READ(Z_TMC2130_DIAG) != 0) { //Z crash + FORCE_HIGH_POWER_END; + kill(_T(MSG_BED_LEVELING_FAILED_POINT_LOW)); + return; + } +#endif //TMC2130 + current_position[axis] = 0; + plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]); + destination[axis] = -home_retract_mm(axis) * axis_home_dir; + plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder); + st_synchronize(); + destination[axis] = 2*home_retract_mm(axis) * axis_home_dir; + feedrate = homing_feedrate[axis]/2 ; + plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder); + st_synchronize(); +#ifdef TMC2130 + if (READ(Z_TMC2130_DIAG) != 0) { //Z crash + FORCE_HIGH_POWER_END; + kill(_T(MSG_BED_LEVELING_FAILED_POINT_LOW)); + return; + } +#endif //TMC2130 + axis_is_at_home(axis); + destination[axis] = current_position[axis]; + feedrate = 0.0; + endstops_hit_on_purpose(); + axis_known_position[axis] = true; +#ifdef TMC2130 + FORCE_HIGH_POWER_END; +#endif + } + enable_endstops(endstops_enabled); +} + +/**/ +void home_xy() +{ + set_destination_to_current(); + homeaxis(X_AXIS); + homeaxis(Y_AXIS); + plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]); + endstops_hit_on_purpose(); +} + +void refresh_cmd_timeout(void) +{ + previous_millis_cmd = millis(); +} + +#ifdef FWRETRACT + void retract(bool retracting, bool swapretract = false) { + if(retracting && !retracted[active_extruder]) { + destination[X_AXIS]=current_position[X_AXIS]; + destination[Y_AXIS]=current_position[Y_AXIS]; + destination[Z_AXIS]=current_position[Z_AXIS]; + destination[E_AXIS]=current_position[E_AXIS]; + current_position[E_AXIS]+=(swapretract?retract_length_swap:retract_length)*float(extrudemultiply)*0.01f; + plan_set_e_position(current_position[E_AXIS]); + float oldFeedrate = feedrate; + feedrate=retract_feedrate*60; + retracted[active_extruder]=true; + prepare_move(); + current_position[Z_AXIS]-=retract_zlift; + plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]); + prepare_move(); + feedrate = oldFeedrate; + } else if(!retracting && retracted[active_extruder]) { + destination[X_AXIS]=current_position[X_AXIS]; + destination[Y_AXIS]=current_position[Y_AXIS]; + destination[Z_AXIS]=current_position[Z_AXIS]; + destination[E_AXIS]=current_position[E_AXIS]; + current_position[Z_AXIS]+=retract_zlift; + plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]); + current_position[E_AXIS]-=(swapretract?(retract_length_swap+retract_recover_length_swap):(retract_length+retract_recover_length))*float(extrudemultiply)*0.01f; + plan_set_e_position(current_position[E_AXIS]); + float oldFeedrate = feedrate; + feedrate=retract_recover_feedrate*60; + retracted[active_extruder]=false; + prepare_move(); + feedrate = oldFeedrate; + } + } //retract +#endif //FWRETRACT + +void trace() { + tone(BEEPER, 440); + delay(25); + noTone(BEEPER); + delay(20); +} +/* +void ramming() { +// float tmp[4] = DEFAULT_MAX_FEEDRATE; + if (current_temperature[0] < 230) { + //PLA + + max_feedrate[E_AXIS] = 50; + //current_position[E_AXIS] -= 8; + //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder); + //current_position[E_AXIS] += 8; + //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder); + current_position[E_AXIS] += 5.4; + plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2800 / 60, active_extruder); + current_position[E_AXIS] += 3.2; + plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder); + current_position[E_AXIS] += 3; + plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3400 / 60, active_extruder); + st_synchronize(); + max_feedrate[E_AXIS] = 80; + current_position[E_AXIS] -= 82; + plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 9500 / 60, active_extruder); + max_feedrate[E_AXIS] = 50;//tmp[E_AXIS]; + current_position[E_AXIS] -= 20; + plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 1200 / 60, active_extruder); + current_position[E_AXIS] += 5; + plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400 / 60, active_extruder); + current_position[E_AXIS] += 5; + plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder); + current_position[E_AXIS] -= 10; + st_synchronize(); + plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder); + current_position[E_AXIS] += 10; + plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder); + current_position[E_AXIS] -= 10; + plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder); + current_position[E_AXIS] += 10; + plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder); + current_position[E_AXIS] -= 10; + plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder); + st_synchronize(); + } + else { + //ABS + max_feedrate[E_AXIS] = 50; + //current_position[E_AXIS] -= 8; + //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder); + //current_position[E_AXIS] += 8; + //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder); + current_position[E_AXIS] += 3.1; + plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2000 / 60, active_extruder); + current_position[E_AXIS] += 3.1; + plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2500 / 60, active_extruder); + current_position[E_AXIS] += 4; + plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder); + st_synchronize(); + //current_position[X_AXIS] += 23; //delay + //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600/60, active_extruder); //delay + //current_position[X_AXIS] -= 23; //delay + //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600/60, active_extruder); //delay + delay(4700); + max_feedrate[E_AXIS] = 80; + current_position[E_AXIS] -= 92; + plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 9900 / 60, active_extruder); + max_feedrate[E_AXIS] = 50;//tmp[E_AXIS]; + current_position[E_AXIS] -= 5; + plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder); + current_position[E_AXIS] += 5; + plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400 / 60, active_extruder); + current_position[E_AXIS] -= 5; + plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder); + st_synchronize(); + current_position[E_AXIS] += 5; + plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder); + current_position[E_AXIS] -= 5; + plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder); + current_position[E_AXIS] += 5; + plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder); + current_position[E_AXIS] -= 5; + plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder); + st_synchronize(); + + } + } +*/ + +#ifdef TMC2130 +void force_high_power_mode(bool start_high_power_section) { + uint8_t silent; + silent = eeprom_read_byte((uint8_t*)EEPROM_SILENT); + if (silent == 1) { + //we are in silent mode, set to normal mode to enable crash detection + + // Wait for the planner queue to drain and for the stepper timer routine to reach an idle state. + st_synchronize(); + cli(); + tmc2130_mode = (start_high_power_section == true) ? TMC2130_MODE_NORMAL : TMC2130_MODE_SILENT; + tmc2130_init(); + // We may have missed a stepper timer interrupt due to the time spent in the tmc2130_init() routine. + // Be safe than sorry, reset the stepper timer before re-enabling interrupts. + st_reset_timer(); + sei(); + } +} +#endif //TMC2130 + +void gcode_G28(bool home_x_axis, bool home_y_axis, bool home_z_axis) { + gcode_G28(home_x_axis, 0, home_y_axis, 0, home_z_axis, 0, false, true); +} + +void gcode_G28(bool home_x_axis, long home_x_value, bool home_y_axis, long home_y_value, bool home_z_axis, long home_z_value, bool calib, bool without_mbl) { + st_synchronize(); + +#if 0 + SERIAL_ECHOPGM("G28, initial "); print_world_coordinates(); + SERIAL_ECHOPGM("G28, initial "); print_physical_coordinates(); +#endif + + // Flag for the display update routine and to disable the print cancelation during homing. + homing_flag = true; + + // Which axes should be homed? + bool home_x = home_x_axis; + bool home_y = home_y_axis; + bool home_z = home_z_axis; + + // Either all X,Y,Z codes are present, or none of them. + bool home_all_axes = home_x == home_y && home_x == home_z; + if (home_all_axes) + // No X/Y/Z code provided means to home all axes. + home_x = home_y = home_z = true; + + //if we are homing all axes, first move z higher to protect heatbed/steel sheet + if (home_all_axes) { + current_position[Z_AXIS] += MESH_HOME_Z_SEARCH; + feedrate = homing_feedrate[Z_AXIS]; + plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate / 60, active_extruder); + st_synchronize(); + } +#ifdef ENABLE_AUTO_BED_LEVELING + plan_bed_level_matrix.set_to_identity(); //Reset the plane ("erase" all leveling data) +#endif //ENABLE_AUTO_BED_LEVELING + + // Reset world2machine_rotation_and_skew and world2machine_shift, therefore + // the planner will not perform any adjustments in the XY plane. + // Wait for the motors to stop and update the current position with the absolute values. + world2machine_revert_to_uncorrected(); + + // For mesh bed leveling deactivate the matrix temporarily. + // It is necessary to disable the bed leveling for the X and Y homing moves, so that the move is performed + // in a single axis only. + // In case of re-homing the X or Y axes only, the mesh bed leveling is restored after G28. +#ifdef MESH_BED_LEVELING + uint8_t mbl_was_active = mbl.active; + mbl.active = 0; + current_position[Z_AXIS] = st_get_position_mm(Z_AXIS); +#endif + + // Reset baby stepping to zero, if the babystepping has already been loaded before. The babystepsTodo value will be + // consumed during the first movements following this statement. + if (home_z) + babystep_undo(); + + saved_feedrate = feedrate; + saved_feedmultiply = feedmultiply; + feedmultiply = 100; + previous_millis_cmd = millis(); + + enable_endstops(true); + + memcpy(destination, current_position, sizeof(destination)); + feedrate = 0.0; + + #if Z_HOME_DIR > 0 // If homing away from BED do Z first + if(home_z) + homeaxis(Z_AXIS); + #endif + + #ifdef QUICK_HOME + // In the quick mode, if both x and y are to be homed, a diagonal move will be performed initially. + if(home_x && home_y) //first diagonal move + { + current_position[X_AXIS] = 0;current_position[Y_AXIS] = 0; + + int x_axis_home_dir = home_dir(X_AXIS); + + plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]); + destination[X_AXIS] = 1.5 * max_length(X_AXIS) * x_axis_home_dir;destination[Y_AXIS] = 1.5 * max_length(Y_AXIS) * home_dir(Y_AXIS); + feedrate = homing_feedrate[X_AXIS]; + if(homing_feedrate[Y_AXIS] max_length(Y_AXIS)) { + feedrate *= sqrt(pow(max_length(Y_AXIS) / max_length(X_AXIS), 2) + 1); + } else { + feedrate *= sqrt(pow(max_length(X_AXIS) / max_length(Y_AXIS), 2) + 1); + } + plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder); + st_synchronize(); + + axis_is_at_home(X_AXIS); + axis_is_at_home(Y_AXIS); + plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]); + destination[X_AXIS] = current_position[X_AXIS]; + destination[Y_AXIS] = current_position[Y_AXIS]; + plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder); + feedrate = 0.0; + st_synchronize(); + endstops_hit_on_purpose(); + + current_position[X_AXIS] = destination[X_AXIS]; + current_position[Y_AXIS] = destination[Y_AXIS]; + current_position[Z_AXIS] = destination[Z_AXIS]; + } + #endif /* QUICK_HOME */ + +#ifdef TMC2130 + if(home_x) + { + if (!calib) + homeaxis(X_AXIS); + else + tmc2130_home_calibrate(X_AXIS); + } + + if(home_y) + { + if (!calib) + homeaxis(Y_AXIS); + else + tmc2130_home_calibrate(Y_AXIS); + } +#endif //TMC2130 + + + if(home_x_axis && home_x_value != 0) + current_position[X_AXIS]=home_x_value+add_homing[X_AXIS]; + + if(home_y_axis && home_y_value != 0) + current_position[Y_AXIS]=home_y_value+add_homing[Y_AXIS]; + + #if Z_HOME_DIR < 0 // If homing towards BED do Z last + #ifndef Z_SAFE_HOMING + if(home_z) { + #if defined (Z_RAISE_BEFORE_HOMING) && (Z_RAISE_BEFORE_HOMING > 0) + destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed + feedrate = max_feedrate[Z_AXIS]; + plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder); + st_synchronize(); + #endif // defined (Z_RAISE_BEFORE_HOMING) && (Z_RAISE_BEFORE_HOMING > 0) + #if (defined(MESH_BED_LEVELING) && !defined(MK1BP)) // If Mesh bed leveling, move X&Y to safe position for home + if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] )) + { + homeaxis(X_AXIS); + homeaxis(Y_AXIS); + } + // 1st mesh bed leveling measurement point, corrected. + world2machine_initialize(); + world2machine(pgm_read_float(bed_ref_points_4), pgm_read_float(bed_ref_points_4+1), destination[X_AXIS], destination[Y_AXIS]); + world2machine_reset(); + if (destination[Y_AXIS] < Y_MIN_POS) + destination[Y_AXIS] = Y_MIN_POS; + destination[Z_AXIS] = MESH_HOME_Z_SEARCH; // Set destination away from bed + feedrate = homing_feedrate[Z_AXIS]/10; + current_position[Z_AXIS] = 0; + enable_endstops(false); +#ifdef DEBUG_BUILD + SERIAL_ECHOLNPGM("plan_set_position()"); + MYSERIAL.println(current_position[X_AXIS]);MYSERIAL.println(current_position[Y_AXIS]); + MYSERIAL.println(current_position[Z_AXIS]);MYSERIAL.println(current_position[E_AXIS]); +#endif + plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]); +#ifdef DEBUG_BUILD + SERIAL_ECHOLNPGM("plan_buffer_line()"); + MYSERIAL.println(destination[X_AXIS]);MYSERIAL.println(destination[Y_AXIS]); + MYSERIAL.println(destination[Z_AXIS]);MYSERIAL.println(destination[E_AXIS]); + MYSERIAL.println(feedrate);MYSERIAL.println(active_extruder); +#endif + plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder); + st_synchronize(); + current_position[X_AXIS] = destination[X_AXIS]; + current_position[Y_AXIS] = destination[Y_AXIS]; + enable_endstops(true); + endstops_hit_on_purpose(); + homeaxis(Z_AXIS); + #else // MESH_BED_LEVELING + homeaxis(Z_AXIS); + #endif // MESH_BED_LEVELING + } + #else // defined(Z_SAFE_HOMING): Z Safe mode activated. + if(home_all_axes) { + destination[X_AXIS] = round(Z_SAFE_HOMING_X_POINT - X_PROBE_OFFSET_FROM_EXTRUDER); + destination[Y_AXIS] = round(Z_SAFE_HOMING_Y_POINT - Y_PROBE_OFFSET_FROM_EXTRUDER); + destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed + feedrate = XY_TRAVEL_SPEED/60; + current_position[Z_AXIS] = 0; + + plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]); + plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder); + st_synchronize(); + current_position[X_AXIS] = destination[X_AXIS]; + current_position[Y_AXIS] = destination[Y_AXIS]; + + homeaxis(Z_AXIS); + } + // Let's see if X and Y are homed and probe is inside bed area. + if(home_z) { + if ( (axis_known_position[X_AXIS]) && (axis_known_position[Y_AXIS]) \ + && (current_position[X_AXIS]+X_PROBE_OFFSET_FROM_EXTRUDER >= X_MIN_POS) \ + && (current_position[X_AXIS]+X_PROBE_OFFSET_FROM_EXTRUDER <= X_MAX_POS) \ + && (current_position[Y_AXIS]+Y_PROBE_OFFSET_FROM_EXTRUDER >= Y_MIN_POS) \ + && (current_position[Y_AXIS]+Y_PROBE_OFFSET_FROM_EXTRUDER <= Y_MAX_POS)) { + + current_position[Z_AXIS] = 0; + plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]); + destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed + feedrate = max_feedrate[Z_AXIS]; + plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder); + st_synchronize(); + + homeaxis(Z_AXIS); + } else if (!((axis_known_position[X_AXIS]) && (axis_known_position[Y_AXIS]))) { + LCD_MESSAGERPGM(MSG_POSITION_UNKNOWN); + SERIAL_ECHO_START; + SERIAL_ECHOLNRPGM(MSG_POSITION_UNKNOWN); + } else { + LCD_MESSAGERPGM(MSG_ZPROBE_OUT); + SERIAL_ECHO_START; + SERIAL_ECHOLNRPGM(MSG_ZPROBE_OUT); + } + } + #endif // Z_SAFE_HOMING + #endif // Z_HOME_DIR < 0 + + if(home_z_axis && home_z_value != 0) + current_position[Z_AXIS]=home_z_value+add_homing[Z_AXIS]; + #ifdef ENABLE_AUTO_BED_LEVELING + if(home_z) + current_position[Z_AXIS] += zprobe_zoffset; //Add Z_Probe offset (the distance is negative) + #endif + + // Set the planner and stepper routine positions. + // At this point the mesh bed leveling and world2machine corrections are disabled and current_position + // contains the machine coordinates. + plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]); + + #ifdef ENDSTOPS_ONLY_FOR_HOMING + enable_endstops(false); + #endif + + feedrate = saved_feedrate; + feedmultiply = saved_feedmultiply; + previous_millis_cmd = millis(); + endstops_hit_on_purpose(); +#ifndef MESH_BED_LEVELING + // If MESH_BED_LEVELING is not active, then it is the original Prusa i3. + // Offer the user to load the baby step value, which has been adjusted at the previous print session. + if(card.sdprinting && eeprom_read_word((uint16_t *)EEPROM_BABYSTEP_Z)) + lcd_adjust_z(); +#endif + + // Load the machine correction matrix + world2machine_initialize(); + // and correct the current_position XY axes to match the transformed coordinate system. + world2machine_update_current(); + +#if (defined(MESH_BED_LEVELING) && !defined(MK1BP)) + if (home_x_axis || home_y_axis || without_mbl || home_z_axis) + { + if (! home_z && mbl_was_active) { + // Re-enable the mesh bed leveling if only the X and Y axes were re-homed. + mbl.active = true; + // and re-adjust the current logical Z axis with the bed leveling offset applicable at the current XY position. + current_position[Z_AXIS] -= mbl.get_z(st_get_position_mm(X_AXIS), st_get_position_mm(Y_AXIS)); + } + } + else + { + st_synchronize(); + homing_flag = false; + } +#endif + + if (farm_mode) { prusa_statistics(20); }; + + homing_flag = false; +#if 0 + SERIAL_ECHOPGM("G28, final "); print_world_coordinates(); + SERIAL_ECHOPGM("G28, final "); print_physical_coordinates(); + SERIAL_ECHOPGM("G28, final "); print_mesh_bed_leveling_table(); +#endif +} + + +bool gcode_M45(bool onlyZ, int8_t verbosity_level) +{ + bool final_result = false; + #ifdef TMC2130 + FORCE_HIGH_POWER_START; + #endif // TMC2130 + // Only Z calibration? + if (!onlyZ) + { + setTargetBed(0); + setTargetHotend(0, 0); + setTargetHotend(0, 1); + setTargetHotend(0, 2); + adjust_bed_reset(); //reset bed level correction + } + + // Disable the default update procedure of the display. We will do a modal dialog. + lcd_update_enable(false); + // Let the planner use the uncorrected coordinates. + mbl.reset(); + // Reset world2machine_rotation_and_skew and world2machine_shift, therefore + // the planner will not perform any adjustments in the XY plane. + // Wait for the motors to stop and update the current position with the absolute values. + world2machine_revert_to_uncorrected(); + // Reset the baby step value applied without moving the axes. + babystep_reset(); + // Mark all axes as in a need for homing. + memset(axis_known_position, 0, sizeof(axis_known_position)); + + // Home in the XY plane. + //set_destination_to_current(); + setup_for_endstop_move(); + lcd_display_message_fullscreen_P(_T(MSG_AUTO_HOME)); + home_xy(); + + enable_endstops(false); + current_position[X_AXIS] += 5; + current_position[Y_AXIS] += 5; + plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder); + st_synchronize(); + + // Let the user move the Z axes up to the end stoppers. +#ifdef TMC2130 + if (calibrate_z_auto()) + { +#else //TMC2130 + if (lcd_calibrate_z_end_stop_manual(onlyZ)) + { +#endif //TMC2130 + refresh_cmd_timeout(); + #ifndef STEEL_SHEET + if (((degHotend(0) > MAX_HOTEND_TEMP_CALIBRATION) || (degBed() > MAX_BED_TEMP_CALIBRATION)) && (!onlyZ)) + { + lcd_wait_for_cool_down(); + } + #endif //STEEL_SHEET + if(!onlyZ) + { + KEEPALIVE_STATE(PAUSED_FOR_USER); + #ifdef STEEL_SHEET + bool result = lcd_show_fullscreen_message_yes_no_and_wait_P(_T(MSG_STEEL_SHEET_CHECK), false, false); + if(result) lcd_show_fullscreen_message_and_wait_P(_T(MSG_REMOVE_STEEL_SHEET)); + #endif //STEEL_SHEET + lcd_show_fullscreen_message_and_wait_P(_T(MSG_CONFIRM_NOZZLE_CLEAN)); + lcd_show_fullscreen_message_and_wait_P(_T(MSG_PAPER)); + KEEPALIVE_STATE(IN_HANDLER); + lcd_display_message_fullscreen_P(_T(MSG_FIND_BED_OFFSET_AND_SKEW_LINE1)); + lcd_set_cursor(0, 2); + lcd_print(1); + lcd_puts_P(_T(MSG_FIND_BED_OFFSET_AND_SKEW_LINE2)); + } + // Move the print head close to the bed. + current_position[Z_AXIS] = MESH_HOME_Z_SEARCH; + + bool endstops_enabled = enable_endstops(true); +#ifdef TMC2130 + tmc2130_home_enter(Z_AXIS_MASK); +#endif //TMC2130 + + plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder); + + st_synchronize(); +#ifdef TMC2130 + tmc2130_home_exit(); +#endif //TMC2130 + enable_endstops(endstops_enabled); + + if (st_get_position_mm(Z_AXIS) == MESH_HOME_Z_SEARCH) + { + + int8_t verbosity_level = 0; + if (code_seen('V')) + { + // Just 'V' without a number counts as V1. + char c = strchr_pointer[1]; + verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short(); + } + + if (onlyZ) + { + clean_up_after_endstop_move(); + // Z only calibration. + // Load the machine correction matrix + world2machine_initialize(); + // and correct the current_position to match the transformed coordinate system. + world2machine_update_current(); + //FIXME + bool result = sample_mesh_and_store_reference(); + if (result) + { + if (calibration_status() == CALIBRATION_STATUS_Z_CALIBRATION) + // Shipped, the nozzle height has been set already. The user can start printing now. + calibration_status_store(CALIBRATION_STATUS_CALIBRATED); + final_result = true; + // babystep_apply(); + } + } + else + { + // Reset the baby step value and the baby step applied flag. + calibration_status_store(CALIBRATION_STATUS_XYZ_CALIBRATION); + eeprom_update_word((uint16_t*)EEPROM_BABYSTEP_Z, 0); + // Complete XYZ calibration. + uint8_t point_too_far_mask = 0; + BedSkewOffsetDetectionResultType result = find_bed_offset_and_skew(verbosity_level, point_too_far_mask); + clean_up_after_endstop_move(); + // Print head up. + current_position[Z_AXIS] = MESH_HOME_Z_SEARCH; + plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder); + st_synchronize(); +//#ifndef NEW_XYZCAL + if (result >= 0) + { + #ifdef HEATBED_V2 + sample_z(); + #else //HEATBED_V2 + point_too_far_mask = 0; + // Second half: The fine adjustment. + // Let the planner use the uncorrected coordinates. + mbl.reset(); + world2machine_reset(); + // Home in the XY plane. + setup_for_endstop_move(); + home_xy(); + result = improve_bed_offset_and_skew(1, verbosity_level, point_too_far_mask); + clean_up_after_endstop_move(); + // Print head up. + current_position[Z_AXIS] = MESH_HOME_Z_SEARCH; + plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder); + st_synchronize(); + // if (result >= 0) babystep_apply(); + #endif //HEATBED_V2 + } +//#endif //NEW_XYZCAL + lcd_update_enable(true); + lcd_update(2); + + lcd_bed_calibration_show_result(result, point_too_far_mask); + if (result >= 0) + { + // Calibration valid, the machine should be able to print. Advise the user to run the V2Calibration.gcode. + calibration_status_store(CALIBRATION_STATUS_LIVE_ADJUST); + if (eeprom_read_byte((uint8_t*)EEPROM_WIZARD_ACTIVE) != 1) lcd_show_fullscreen_message_and_wait_P(_T(MSG_BABYSTEP_Z_NOT_SET)); + final_result = true; + } + } +#ifdef TMC2130 + tmc2130_home_exit(); +#endif + } + else + { + lcd_show_fullscreen_message_and_wait_P(PSTR("Calibration failed! Check the axes and run again.")); + final_result = false; + } + } + else + { + // Timeouted. + } + lcd_update_enable(true); +#ifdef TMC2130 + FORCE_HIGH_POWER_END; +#endif // TMC2130 + return final_result; +} + +void gcode_M114() +{ + SERIAL_PROTOCOLPGM("X:"); + SERIAL_PROTOCOL(current_position[X_AXIS]); + SERIAL_PROTOCOLPGM(" Y:"); + SERIAL_PROTOCOL(current_position[Y_AXIS]); + SERIAL_PROTOCOLPGM(" Z:"); + SERIAL_PROTOCOL(current_position[Z_AXIS]); + SERIAL_PROTOCOLPGM(" E:"); + SERIAL_PROTOCOL(current_position[E_AXIS]); + + SERIAL_PROTOCOLRPGM(_n(" Count X: "));////MSG_COUNT_X c=0 r=0 + SERIAL_PROTOCOL(float(st_get_position(X_AXIS)) / axis_steps_per_unit[X_AXIS]); + SERIAL_PROTOCOLPGM(" Y:"); + SERIAL_PROTOCOL(float(st_get_position(Y_AXIS)) / axis_steps_per_unit[Y_AXIS]); + SERIAL_PROTOCOLPGM(" Z:"); + SERIAL_PROTOCOL(float(st_get_position(Z_AXIS)) / axis_steps_per_unit[Z_AXIS]); + SERIAL_PROTOCOLPGM(" E:"); + SERIAL_PROTOCOL(float(st_get_position(E_AXIS)) / axis_steps_per_unit[E_AXIS]); + + SERIAL_PROTOCOLLN(""); +} + +void gcode_M701() +{ +#if defined (SNMM) || defined (SNMM_V2) + extr_adj(snmm_extruder);//loads current extruder +#else + enable_z(); + custom_message = true; + custom_message_type = 2; + + + + lcd_setstatuspgm(_T(MSG_LOADING_FILAMENT)); + current_position[E_AXIS] += 40; + plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400 / 60, active_extruder); //fast sequence + st_synchronize(); + + if (current_position[Z_AXIS] < 20) current_position[Z_AXIS] += 30; + current_position[E_AXIS] += 30; + plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400 / 60, active_extruder); //fast sequence + st_synchronize(); + current_position[E_AXIS] += 25; + plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 100 / 60, active_extruder); //slow sequence + st_synchronize(); + + tone(BEEPER, 500); + delay_keep_alive(50); + noTone(BEEPER); + + if (!farm_mode && loading_flag) { + bool clean = lcd_show_fullscreen_message_yes_no_and_wait_P(_T(MSG_FILAMENT_CLEAN), false, true); + + while (!clean) { + lcd_update_enable(true); + lcd_update(2); + current_position[E_AXIS] += 25; + plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 100 / 60, active_extruder); //slow sequence + st_synchronize(); + clean = lcd_show_fullscreen_message_yes_no_and_wait_P(_T(MSG_FILAMENT_CLEAN), false, true); + + } + + } + lcd_update_enable(true); + lcd_update(2); + lcd_setstatuspgm(_T(WELCOME_MSG)); + disable_z(); + loading_flag = false; + custom_message = false; + custom_message_type = 0; +#endif + +} +/** + * @brief Get serial number from 32U2 processor + * + * Typical format of S/N is:CZPX0917X003XC13518 + * + * Command operates only in farm mode, if not in farm mode, "Not in farm mode." is written to MYSERIAL. + * + * Send command ;S to serial port 0 to retrieve serial number stored in 32U2 processor, + * reply is transmitted to serial port 1 character by character. + * Operation takes typically 23 ms. If the retransmit is not finished until 100 ms, + * it is interrupted, so less, or no characters are retransmitted, only newline character is send + * in any case. + */ +static void gcode_PRUSA_SN() +{ + if (farm_mode) { + selectedSerialPort = 0; + putchar(';'); + putchar('S'); + int numbersRead = 0; + ShortTimer timeout; + timeout.start(); + + while (numbersRead < 19) { + while (MSerial.available() > 0) { + uint8_t serial_char = MSerial.read(); + selectedSerialPort = 1; + putchar(serial_char); + numbersRead++; + selectedSerialPort = 0; + } + if (timeout.expired(100u)) break; + } + selectedSerialPort = 1; + putchar('\n'); +#if 0 + for (int b = 0; b < 3; b++) { + tone(BEEPER, 110); + delay(50); + noTone(BEEPER); + delay(50); + } +#endif + } else { + puts_P(_N("Not in farm mode.")); + } +} + +#ifdef BACKLASH_X +extern uint8_t st_backlash_x; +#endif //BACKLASH_X +#ifdef BACKLASH_Y +extern uint8_t st_backlash_y; +#endif //BACKLASH_Y + +void process_commands() +{ + if (!buflen) return; //empty command + #ifdef FILAMENT_RUNOUT_SUPPORT + SET_INPUT(FR_SENS); + #endif + +#ifdef CMDBUFFER_DEBUG + SERIAL_ECHOPGM("Processing a GCODE command: "); + SERIAL_ECHO(cmdbuffer+bufindr+CMDHDRSIZE); + SERIAL_ECHOLNPGM(""); + SERIAL_ECHOPGM("In cmdqueue: "); + SERIAL_ECHO(buflen); + SERIAL_ECHOLNPGM(""); +#endif /* CMDBUFFER_DEBUG */ + + unsigned long codenum; //throw away variable + char *starpos = NULL; +#ifdef ENABLE_AUTO_BED_LEVELING + float x_tmp, y_tmp, z_tmp, real_z; +#endif + + // PRUSA GCODES + KEEPALIVE_STATE(IN_HANDLER); + +#ifdef SNMM + float tmp_motor[3] = DEFAULT_PWM_MOTOR_CURRENT; + float tmp_motor_loud[3] = DEFAULT_PWM_MOTOR_CURRENT_LOUD; + int8_t SilentMode; +#endif + + if (code_seen("M117")) { //moved to highest priority place to be able to to print strings which includes "G", "PRUSA" and "^" + starpos = (strchr(strchr_pointer + 5, '*')); + if (starpos != NULL) + *(starpos) = '\0'; + lcd_setstatus(strchr_pointer + 5); + } + +#ifdef TMC2130 + else if (strncmp_P(CMDBUFFER_CURRENT_STRING, PSTR("CRASH_"), 6) == 0) + { + if(code_seen("CRASH_DETECTED")) + { + uint8_t mask = 0; + if (code_seen("X")) mask |= X_AXIS_MASK; + if (code_seen("Y")) mask |= Y_AXIS_MASK; + crashdet_detected(mask); + } + else if(code_seen("CRASH_RECOVER")) + crashdet_recover(); + else if(code_seen("CRASH_CANCEL")) + crashdet_cancel(); + } + else if (strncmp_P(CMDBUFFER_CURRENT_STRING, PSTR("TMC_"), 4) == 0) + { + if (strncmp_P(CMDBUFFER_CURRENT_STRING + 4, PSTR("SET_WAVE_"), 9) == 0) + { + uint8_t axis = *(CMDBUFFER_CURRENT_STRING + 13); + axis = (axis == 'E')?3:(axis - 'X'); + if (axis < 4) + { + uint8_t fac = (uint8_t)strtol(CMDBUFFER_CURRENT_STRING + 14, NULL, 10); + tmc2130_set_wave(axis, 247, fac); + } + } + else if (strncmp_P(CMDBUFFER_CURRENT_STRING + 4, PSTR("SET_STEP_"), 9) == 0) + { + uint8_t axis = *(CMDBUFFER_CURRENT_STRING + 13); + axis = (axis == 'E')?3:(axis - 'X'); + if (axis < 4) + { + uint8_t step = (uint8_t)strtol(CMDBUFFER_CURRENT_STRING + 14, NULL, 10); + uint16_t res = tmc2130_get_res(axis); + tmc2130_goto_step(axis, step & (4*res - 1), 2, 1000, res); + } + } + else if (strncmp_P(CMDBUFFER_CURRENT_STRING + 4, PSTR("SET_CHOP_"), 9) == 0) + { + uint8_t axis = *(CMDBUFFER_CURRENT_STRING + 13); + axis = (axis == 'E')?3:(axis - 'X'); + if (axis < 4) + { + uint8_t chop0 = tmc2130_chopper_config[axis].toff; + uint8_t chop1 = tmc2130_chopper_config[axis].hstr; + uint8_t chop2 = tmc2130_chopper_config[axis].hend; + uint8_t chop3 = tmc2130_chopper_config[axis].tbl; + char* str_end = 0; + if (CMDBUFFER_CURRENT_STRING[14]) + { + chop0 = (uint8_t)strtol(CMDBUFFER_CURRENT_STRING + 14, &str_end, 10) & 15; + if (str_end && *str_end) + { + chop1 = (uint8_t)strtol(str_end, &str_end, 10) & 7; + if (str_end && *str_end) + { + chop2 = (uint8_t)strtol(str_end, &str_end, 10) & 15; + if (str_end && *str_end) + chop3 = (uint8_t)strtol(str_end, &str_end, 10) & 3; + } + } + } + tmc2130_chopper_config[axis].toff = chop0; + tmc2130_chopper_config[axis].hstr = chop1 & 7; + tmc2130_chopper_config[axis].hend = chop2 & 15; + tmc2130_chopper_config[axis].tbl = chop3 & 3; + tmc2130_setup_chopper(axis, tmc2130_mres[axis], tmc2130_current_h[axis], tmc2130_current_r[axis]); + //printf_P(_N("TMC_SET_CHOP_%c %hhd %hhd %hhd %hhd\n"), "xyze"[axis], chop0, chop1, chop2, chop3); + } + } + } +#ifdef BACKLASH_X + else if (strncmp_P(CMDBUFFER_CURRENT_STRING, PSTR("BACKLASH_X"), 10) == 0) + { + uint8_t bl = (uint8_t)strtol(CMDBUFFER_CURRENT_STRING + 10, NULL, 10); + st_backlash_x = bl; + printf_P(_N("st_backlash_x = %hhd\n"), st_backlash_x); + } +#endif //BACKLASH_X +#ifdef BACKLASH_Y + else if (strncmp_P(CMDBUFFER_CURRENT_STRING, PSTR("BACKLASH_Y"), 10) == 0) + { + uint8_t bl = (uint8_t)strtol(CMDBUFFER_CURRENT_STRING + 10, NULL, 10); + st_backlash_y = bl; + printf_P(_N("st_backlash_y = %hhd\n"), st_backlash_y); + } +#endif //BACKLASH_Y +#endif //TMC2130 + + else if(code_seen("PRUSA")){ + if (code_seen("Ping")) { //PRUSA Ping + if (farm_mode) { + PingTime = millis(); + //MYSERIAL.print(farm_no); MYSERIAL.println(": OK"); + } + } + else if (code_seen("PRN")) { + printf_P(_N("%d"), status_number); + + }else if (code_seen("FAN")) { + printf_P(_N("E0:%d RPM\nPRN0:%d RPM\n"), 60*fan_speed[0], 60*fan_speed[1]); + }else if (code_seen("fn")) { + if (farm_mode) { + printf_P(_N("%d"), farm_no); + } + else { + puts_P(_N("Not in farm mode.")); + } + + } + else if (code_seen("thx")) { + no_response = false; + } + else if (code_seen("MMURES")) { + fprintf_P(uart2io, PSTR("x0")); + } + else if (code_seen("RESET")) { + // careful! + if (farm_mode) { +#ifdef WATCHDOG + boot_app_magic = BOOT_APP_MAGIC; + boot_app_flags = BOOT_APP_FLG_RUN; + wdt_enable(WDTO_15MS); + cli(); + while(1); +#else //WATCHDOG + asm volatile("jmp 0x3E000"); +#endif //WATCHDOG + } + else { + MYSERIAL.println("Not in farm mode."); + } + }else if (code_seen("fv")) { + // get file version + #ifdef SDSUPPORT + card.openFile(strchr_pointer + 3,true); + while (true) { + uint16_t readByte = card.get(); + MYSERIAL.write(readByte); + if (readByte=='\n') { + break; + } + } + card.closefile(); + + #endif // SDSUPPORT + + } else if (code_seen("M28")) { + trace(); + prusa_sd_card_upload = true; + card.openFile(strchr_pointer+4,false); + + } else if (code_seen("SN")) { + gcode_PRUSA_SN(); + + } else if(code_seen("Fir")){ + + SERIAL_PROTOCOLLN(FW_VERSION); + + } else if(code_seen("Rev")){ + + SERIAL_PROTOCOLLN(FILAMENT_SIZE "-" ELECTRONICS "-" NOZZLE_TYPE ); + + } else if(code_seen("Lang")) { + lang_reset(); + + } else if(code_seen("Lz")) { + EEPROM_save_B(EEPROM_BABYSTEP_Z,0); + + } else if(code_seen("Beat")) { + // Kick farm link timer + kicktime = millis(); + + } else if(code_seen("FR")) { + // Factory full reset + factory_reset(0,true); + } + //else if (code_seen('Cal')) { + // lcd_calibration(); + // } + + } + else if (code_seen('^')) { + // nothing, this is a version line + } else if(code_seen('G')) + { + switch((int)code_value()) + { + case 0: // G0 -> G1 + case 1: // G1 + if(Stopped == false) { + + #ifdef FILAMENT_RUNOUT_SUPPORT + + if(READ(FR_SENS)){ + + feedmultiplyBckp=feedmultiply; + float target[4]; + float lastpos[4]; + target[X_AXIS]=current_position[X_AXIS]; + target[Y_AXIS]=current_position[Y_AXIS]; + target[Z_AXIS]=current_position[Z_AXIS]; + target[E_AXIS]=current_position[E_AXIS]; + lastpos[X_AXIS]=current_position[X_AXIS]; + lastpos[Y_AXIS]=current_position[Y_AXIS]; + lastpos[Z_AXIS]=current_position[Z_AXIS]; + lastpos[E_AXIS]=current_position[E_AXIS]; + //retract by E + + target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT ; + + plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder); + + + target[Z_AXIS]+= FILAMENTCHANGE_ZADD ; + + plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 300, active_extruder); + + target[X_AXIS]= FILAMENTCHANGE_XPOS ; + + target[Y_AXIS]= FILAMENTCHANGE_YPOS ; + + + plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder); + + target[E_AXIS]+= FILAMENTCHANGE_FINALRETRACT ; + + + plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder); + + //finish moves + st_synchronize(); + //disable extruder steppers so filament can be removed + disable_e0(); + disable_e1(); + disable_e2(); + delay(100); + + //LCD_ALERTMESSAGEPGM(_T(MSG_FILAMENTCHANGE)); + uint8_t cnt=0; + int counterBeep = 0; + lcd_wait_interact(); + while(!lcd_clicked()){ + cnt++; + manage_heater(); + manage_inactivity(true); + //lcd_update(0); + if(cnt==0) + { + #if BEEPER > 0 + + if (counterBeep== 500){ + counterBeep = 0; + + } + + + SET_OUTPUT(BEEPER); + if (counterBeep== 0){ + WRITE(BEEPER,HIGH); + } + + if (counterBeep== 20){ + WRITE(BEEPER,LOW); + } + + + + + counterBeep++; + #else + #endif + } + } + + WRITE(BEEPER,LOW); + + target[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ; + plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder); + + + target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ; + plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder); + + + + + + lcd_change_fil_state = 0; + lcd_loading_filament(); + while ((lcd_change_fil_state == 0)||(lcd_change_fil_state != 1)){ + + lcd_change_fil_state = 0; + lcd_alright(); + switch(lcd_change_fil_state){ + + case 2: + target[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ; + plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder); + + + target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ; + plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder); + + + lcd_loading_filament(); + break; + case 3: + target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ; + plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder); + lcd_loading_color(); + break; + + default: + lcd_change_success(); + break; + } + + } + + + + target[E_AXIS]+= 5; + plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder); + + target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT; + plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder); + + + //current_position[E_AXIS]=target[E_AXIS]; //the long retract of L is compensated by manual filament feeding + //plan_set_e_position(current_position[E_AXIS]); + plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder); //should do nothing + plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder); //move xy back + plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], 200, active_extruder); //move z back + + + target[E_AXIS]= target[E_AXIS] - FILAMENTCHANGE_FIRSTRETRACT; + + + + plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], 5, active_extruder); //final untretract + + + plan_set_e_position(lastpos[E_AXIS]); + + feedmultiply=feedmultiplyBckp; + + + + char cmd[9]; + + sprintf_P(cmd, PSTR("M220 S%i"), feedmultiplyBckp); + enquecommand(cmd); + + } + + + + #endif + + + get_coordinates(); // For X Y Z E F + if (total_filament_used > ((current_position[E_AXIS] - destination[E_AXIS]) * 100)) { //protection against total_filament_used overflow + total_filament_used = total_filament_used + ((destination[E_AXIS] - current_position[E_AXIS]) * 100); + } + #ifdef FWRETRACT + if(autoretract_enabled) + if( !(code_seen('X') || code_seen('Y') || code_seen('Z')) && code_seen('E')) { + float echange=destination[E_AXIS]-current_position[E_AXIS]; + + if((echange<-MIN_RETRACT && !retracted[active_extruder]) || (echange>MIN_RETRACT && retracted[active_extruder])) { //move appears to be an attempt to retract or recover + current_position[E_AXIS] = destination[E_AXIS]; //hide the slicer-generated retract/recover from calculations + plan_set_e_position(current_position[E_AXIS]); //AND from the planner + retract(!retracted[active_extruder]); + return; + } + + + } + #endif //FWRETRACT + prepare_move(); + //ClearToSend(); + } + break; + case 2: // G2 - CW ARC + if(Stopped == false) { + get_arc_coordinates(); + prepare_arc_move(true); + } + break; + case 3: // G3 - CCW ARC + if(Stopped == false) { + get_arc_coordinates(); + prepare_arc_move(false); + } + break; + case 4: // G4 dwell + codenum = 0; + if(code_seen('P')) codenum = code_value(); // milliseconds to wait + if(code_seen('S')) codenum = code_value() * 1000; // seconds to wait + if(codenum != 0) LCD_MESSAGERPGM(_i("Sleep..."));////MSG_DWELL c=0 r=0 + st_synchronize(); + codenum += millis(); // keep track of when we started waiting + previous_millis_cmd = millis(); + while(millis() < codenum) { + manage_heater(); + manage_inactivity(); + lcd_update(0); + } + break; + #ifdef FWRETRACT + case 10: // G10 retract + #if EXTRUDERS > 1 + retracted_swap[active_extruder]=(code_seen('S') && code_value_long() == 1); // checks for swap retract argument + retract(true,retracted_swap[active_extruder]); + #else + retract(true); + #endif + break; + case 11: // G11 retract_recover + #if EXTRUDERS > 1 + retract(false,retracted_swap[active_extruder]); + #else + retract(false); + #endif + break; + #endif //FWRETRACT + case 28: //G28 Home all Axis one at a time + { + long home_x_value = 0; + long home_y_value = 0; + long home_z_value = 0; + // Which axes should be homed? + bool home_x = code_seen(axis_codes[X_AXIS]); + home_x_value = code_value_long(); + bool home_y = code_seen(axis_codes[Y_AXIS]); + home_y_value = code_value_long(); + bool home_z = code_seen(axis_codes[Z_AXIS]); + home_z_value = code_value_long(); + bool without_mbl = code_seen('W'); + // calibrate? + bool calib = code_seen('C'); + gcode_G28(home_x, home_x_value, home_y, home_y_value, home_z, home_z_value, calib, without_mbl); + if ((home_x || home_y || without_mbl || home_z) == false) { + // Push the commands to the front of the message queue in the reverse order! + // There shall be always enough space reserved for these commands. + goto case_G80; + } + break; + } +#ifdef ENABLE_AUTO_BED_LEVELING + case 29: // G29 Detailed Z-Probe, probes the bed at 3 or more points. + { + #if Z_MIN_PIN == -1 + #error "You must have a Z_MIN endstop in order to enable Auto Bed Leveling feature! Z_MIN_PIN must point to a valid hardware pin." + #endif + + // Prevent user from running a G29 without first homing in X and Y + if (! (axis_known_position[X_AXIS] && axis_known_position[Y_AXIS]) ) + { + LCD_MESSAGERPGM(MSG_POSITION_UNKNOWN); + SERIAL_ECHO_START; + SERIAL_ECHOLNRPGM(MSG_POSITION_UNKNOWN); + break; // abort G29, since we don't know where we are + } + + st_synchronize(); + // make sure the bed_level_rotation_matrix is identity or the planner will get it incorectly + //vector_3 corrected_position = plan_get_position_mm(); + //corrected_position.debug("position before G29"); + plan_bed_level_matrix.set_to_identity(); + vector_3 uncorrected_position = plan_get_position(); + //uncorrected_position.debug("position durring G29"); + current_position[X_AXIS] = uncorrected_position.x; + current_position[Y_AXIS] = uncorrected_position.y; + current_position[Z_AXIS] = uncorrected_position.z; + plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]); + setup_for_endstop_move(); + + feedrate = homing_feedrate[Z_AXIS]; +#ifdef AUTO_BED_LEVELING_GRID + // probe at the points of a lattice grid + + int xGridSpacing = (RIGHT_PROBE_BED_POSITION - LEFT_PROBE_BED_POSITION) / (AUTO_BED_LEVELING_GRID_POINTS-1); + int yGridSpacing = (BACK_PROBE_BED_POSITION - FRONT_PROBE_BED_POSITION) / (AUTO_BED_LEVELING_GRID_POINTS-1); + + + // solve the plane equation ax + by + d = z + // A is the matrix with rows [x y 1] for all the probed points + // B is the vector of the Z positions + // the normal vector to the plane is formed by the coefficients of the plane equation in the standard form, which is Vx*x+Vy*y+Vz*z+d = 0 + // so Vx = -a Vy = -b Vz = 1 (we want the vector facing towards positive Z + + // "A" matrix of the linear system of equations + double eqnAMatrix[AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS*3]; + // "B" vector of Z points + double eqnBVector[AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS]; + + + int probePointCounter = 0; + bool zig = true; + + for (int yProbe=FRONT_PROBE_BED_POSITION; yProbe <= BACK_PROBE_BED_POSITION; yProbe += yGridSpacing) + { + int xProbe, xInc; + if (zig) + { + xProbe = LEFT_PROBE_BED_POSITION; + //xEnd = RIGHT_PROBE_BED_POSITION; + xInc = xGridSpacing; + zig = false; + } else // zag + { + xProbe = RIGHT_PROBE_BED_POSITION; + //xEnd = LEFT_PROBE_BED_POSITION; + xInc = -xGridSpacing; + zig = true; + } + + for (int xCount=0; xCount < AUTO_BED_LEVELING_GRID_POINTS; xCount++) + { + float z_before; + if (probePointCounter == 0) + { + // raise before probing + z_before = Z_RAISE_BEFORE_PROBING; + } else + { + // raise extruder + z_before = current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS; + } + + float measured_z = probe_pt(xProbe, yProbe, z_before); + + eqnBVector[probePointCounter] = measured_z; + + eqnAMatrix[probePointCounter + 0*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = xProbe; + eqnAMatrix[probePointCounter + 1*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = yProbe; + eqnAMatrix[probePointCounter + 2*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = 1; + probePointCounter++; + xProbe += xInc; + } + } + clean_up_after_endstop_move(); + + // solve lsq problem + double *plane_equation_coefficients = qr_solve(AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS, 3, eqnAMatrix, eqnBVector); + + SERIAL_PROTOCOLPGM("Eqn coefficients: a: "); + SERIAL_PROTOCOL(plane_equation_coefficients[0]); + SERIAL_PROTOCOLPGM(" b: "); + SERIAL_PROTOCOL(plane_equation_coefficients[1]); + SERIAL_PROTOCOLPGM(" d: "); + SERIAL_PROTOCOLLN(plane_equation_coefficients[2]); + + + set_bed_level_equation_lsq(plane_equation_coefficients); + + free(plane_equation_coefficients); + +#else // AUTO_BED_LEVELING_GRID not defined + + // Probe at 3 arbitrary points + // probe 1 + float z_at_pt_1 = probe_pt(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, Z_RAISE_BEFORE_PROBING); + + // probe 2 + float z_at_pt_2 = probe_pt(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS); + + // probe 3 + float z_at_pt_3 = probe_pt(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS); + + clean_up_after_endstop_move(); + + set_bed_level_equation_3pts(z_at_pt_1, z_at_pt_2, z_at_pt_3); + + +#endif // AUTO_BED_LEVELING_GRID + st_synchronize(); + + // The following code correct the Z height difference from z-probe position and hotend tip position. + // The Z height on homing is measured by Z-Probe, but the probe is quite far from the hotend. + // When the bed is uneven, this height must be corrected. + real_z = float(st_get_position(Z_AXIS))/axis_steps_per_unit[Z_AXIS]; //get the real Z (since the auto bed leveling is already correcting the plane) + x_tmp = current_position[X_AXIS] + X_PROBE_OFFSET_FROM_EXTRUDER; + y_tmp = current_position[Y_AXIS] + Y_PROBE_OFFSET_FROM_EXTRUDER; + z_tmp = current_position[Z_AXIS]; + + apply_rotation_xyz(plan_bed_level_matrix, x_tmp, y_tmp, z_tmp); //Apply the correction sending the probe offset + current_position[Z_AXIS] = z_tmp - real_z + current_position[Z_AXIS]; //The difference is added to current position and sent to planner. + plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]); + } + break; +#ifndef Z_PROBE_SLED + case 30: // G30 Single Z Probe + { + st_synchronize(); + // TODO: make sure the bed_level_rotation_matrix is identity or the planner will get set incorectly + setup_for_endstop_move(); + + feedrate = homing_feedrate[Z_AXIS]; + + run_z_probe(); + SERIAL_PROTOCOLPGM(_T(MSG_BED)); + SERIAL_PROTOCOLPGM(" X: "); + SERIAL_PROTOCOL(current_position[X_AXIS]); + SERIAL_PROTOCOLPGM(" Y: "); + SERIAL_PROTOCOL(current_position[Y_AXIS]); + SERIAL_PROTOCOLPGM(" Z: "); + SERIAL_PROTOCOL(current_position[Z_AXIS]); + SERIAL_PROTOCOLPGM("\n"); + + clean_up_after_endstop_move(); + } + break; +#else + case 31: // dock the sled + dock_sled(true); + break; + case 32: // undock the sled + dock_sled(false); + break; +#endif // Z_PROBE_SLED +#endif // ENABLE_AUTO_BED_LEVELING + +#ifdef MESH_BED_LEVELING + case 30: // G30 Single Z Probe + { + st_synchronize(); + // TODO: make sure the bed_level_rotation_matrix is identity or the planner will get set incorectly + setup_for_endstop_move(); + + feedrate = homing_feedrate[Z_AXIS]; + + find_bed_induction_sensor_point_z(-10.f, 3); + + printf_P(_N("%S X: %.5f Y: %.5f Z: %.5f\n"), _T(MSG_BED), _x, _y, _z); + + clean_up_after_endstop_move(); + } + break; + + + case 75: + { + for (int i = 40; i <= 110; i++) + printf_P(_N("%d %.2f"), i, temp_comp_interpolation(i)); + } + break; + + case 76: //PINDA probe temperature calibration + { +#ifdef PINDA_THERMISTOR + if (true) + { + + if (calibration_status() >= CALIBRATION_STATUS_XYZ_CALIBRATION) { + //we need to know accurate position of first calibration point + //if xyz calibration was not performed yet, interrupt temperature calibration and inform user that xyz cal. is needed + lcd_show_fullscreen_message_and_wait_P(_i("Please run XYZ calibration first.")); + break; + } + + if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS])) + { + // We don't know where we are! HOME! + // Push the commands to the front of the message queue in the reverse order! + // There shall be always enough space reserved for these commands. + repeatcommand_front(); // repeat G76 with all its parameters + enquecommand_front_P((PSTR("G28 W0"))); + break; + } + lcd_show_fullscreen_message_and_wait_P(_i("Stable ambient temperature 21-26C is needed a rigid stand is required."));////MSG_TEMP_CAL_WARNING c=20 r=4 + bool result = lcd_show_fullscreen_message_yes_no_and_wait_P(_T(MSG_STEEL_SHEET_CHECK), false, false); + + if (result) + { + current_position[Z_AXIS] = MESH_HOME_Z_SEARCH; + plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder); + current_position[Z_AXIS] = 50; + current_position[Y_AXIS] = 180; + plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder); + st_synchronize(); + lcd_show_fullscreen_message_and_wait_P(_T(MSG_REMOVE_STEEL_SHEET)); + current_position[Y_AXIS] = pgm_read_float(bed_ref_points_4 + 1); + current_position[X_AXIS] = pgm_read_float(bed_ref_points_4); + plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder); + st_synchronize(); + gcode_G28(false, false, true); + + } + if ((current_temperature_pinda > 35) && (farm_mode == false)) { + //waiting for PIDNA probe to cool down in case that we are not in farm mode + current_position[Z_AXIS] = 100; + plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder); + if (lcd_wait_for_pinda(35) == false) { //waiting for PINDA probe to cool, if this takes more then time expected, temp. cal. fails + lcd_temp_cal_show_result(false); + break; + } + } + lcd_update_enable(true); + KEEPALIVE_STATE(NOT_BUSY); //no need to print busy messages as we print current temperatures periodicaly + SERIAL_ECHOLNPGM("PINDA probe calibration start"); + + float zero_z; + int z_shift = 0; //unit: steps + float start_temp = 5 * (int)(current_temperature_pinda / 5); + if (start_temp < 35) start_temp = 35; + if (start_temp < current_temperature_pinda) start_temp += 5; + printf_P(_N("start temperature: %.1f\n"), start_temp); + +// setTargetHotend(200, 0); + setTargetBed(70 + (start_temp - 30)); + + custom_message = true; + custom_message_type = 4; + custom_message_state = 1; + custom_message = _T(MSG_TEMP_CALIBRATION); + current_position[Z_AXIS] = MESH_HOME_Z_SEARCH; + plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder); + current_position[X_AXIS] = PINDA_PREHEAT_X; + current_position[Y_AXIS] = PINDA_PREHEAT_Y; + plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder); + current_position[Z_AXIS] = PINDA_PREHEAT_Z; + plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder); + st_synchronize(); + + while (current_temperature_pinda < start_temp) + { + delay_keep_alive(1000); + serialecho_temperatures(); + } + + eeprom_update_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 0); //invalidate temp. calibration in case that in will be aborted during the calibration process + + current_position[Z_AXIS] = MESH_HOME_Z_SEARCH; + plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder); + current_position[X_AXIS] = pgm_read_float(bed_ref_points_4); + current_position[Y_AXIS] = pgm_read_float(bed_ref_points_4 + 1); + plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder); + st_synchronize(); + + bool find_z_result = find_bed_induction_sensor_point_z(-1.f); + if (find_z_result == false) { + lcd_temp_cal_show_result(find_z_result); + break; + } + zero_z = current_position[Z_AXIS]; + + printf_P(_N("\nZERO: %.3f\n"), current_position[Z_AXIS]); + + int i = -1; for (; i < 5; i++) + { + float temp = (40 + i * 5); + printf_P(_N("\nStep: %d/6 (skipped)\nPINDA temperature: %d Z shift (mm):0\n"), i + 2, (40 + i*5)); + if (i >= 0) EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i * 2, &z_shift); + if (start_temp <= temp) break; + } + + for (i++; i < 5; i++) + { + float temp = (40 + i * 5); + printf_P(_N("\nStep: %d/6\n"), i + 2); + custom_message_state = i + 2; + setTargetBed(50 + 10 * (temp - 30) / 5); +// setTargetHotend(255, 0); + current_position[Z_AXIS] = MESH_HOME_Z_SEARCH; + plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder); + current_position[X_AXIS] = PINDA_PREHEAT_X; + current_position[Y_AXIS] = PINDA_PREHEAT_Y; + plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder); + current_position[Z_AXIS] = PINDA_PREHEAT_Z; + plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder); + st_synchronize(); + while (current_temperature_pinda < temp) + { + delay_keep_alive(1000); + serialecho_temperatures(); + } + current_position[Z_AXIS] = MESH_HOME_Z_SEARCH; + plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder); + current_position[X_AXIS] = pgm_read_float(bed_ref_points_4); + current_position[Y_AXIS] = pgm_read_float(bed_ref_points_4 + 1); + plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder); + st_synchronize(); + find_z_result = find_bed_induction_sensor_point_z(-1.f); + if (find_z_result == false) { + lcd_temp_cal_show_result(find_z_result); + break; + } + z_shift = (int)((current_position[Z_AXIS] - zero_z)*axis_steps_per_unit[Z_AXIS]); + + printf_P(_N("\nPINDA temperature: %.1f Z shift (mm): %.3f"), current_temperature_pinda, current_position[Z_AXIS] - zero_z); + + EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i * 2, &z_shift); + + } + lcd_temp_cal_show_result(true); + + break; + } +#endif //PINDA_THERMISTOR + + setTargetBed(PINDA_MIN_T); + float zero_z; + int z_shift = 0; //unit: steps + int t_c; // temperature + + if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS])) { + // We don't know where we are! HOME! + // Push the commands to the front of the message queue in the reverse order! + // There shall be always enough space reserved for these commands. + repeatcommand_front(); // repeat G76 with all its parameters + enquecommand_front_P((PSTR("G28 W0"))); + break; + } + puts_P(_N("PINDA probe calibration start")); + custom_message = true; + custom_message_type = 4; + custom_message_state = 1; + custom_message = _T(MSG_TEMP_CALIBRATION); + current_position[X_AXIS] = PINDA_PREHEAT_X; + current_position[Y_AXIS] = PINDA_PREHEAT_Y; + current_position[Z_AXIS] = PINDA_PREHEAT_Z; + plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder); + st_synchronize(); + + while (abs(degBed() - PINDA_MIN_T) > 1) { + delay_keep_alive(1000); + serialecho_temperatures(); + } + + //enquecommand_P(PSTR("M190 S50")); + for (int i = 0; i < PINDA_HEAT_T; i++) { + delay_keep_alive(1000); + serialecho_temperatures(); + } + eeprom_update_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 0); //invalidate temp. calibration in case that in will be aborted during the calibration process + + current_position[Z_AXIS] = 5; + plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder); + + current_position[X_AXIS] = pgm_read_float(bed_ref_points); + current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 1); + plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder); + st_synchronize(); + + find_bed_induction_sensor_point_z(-1.f); + zero_z = current_position[Z_AXIS]; + + printf_P(_N("\nZERO: %.3f\n"), current_position[Z_AXIS]); + + for (int i = 0; i<5; i++) { + printf_P(_N("\nStep: %d/6\n"), i + 2); + custom_message_state = i + 2; + t_c = 60 + i * 10; + + setTargetBed(t_c); + current_position[X_AXIS] = PINDA_PREHEAT_X; + current_position[Y_AXIS] = PINDA_PREHEAT_Y; + current_position[Z_AXIS] = PINDA_PREHEAT_Z; + plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder); + st_synchronize(); + while (degBed() < t_c) { + delay_keep_alive(1000); + serialecho_temperatures(); + } + for (int i = 0; i < PINDA_HEAT_T; i++) { + delay_keep_alive(1000); + serialecho_temperatures(); + } + current_position[Z_AXIS] = 5; + plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder); + current_position[X_AXIS] = pgm_read_float(bed_ref_points); + current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 1); + plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder); + st_synchronize(); + find_bed_induction_sensor_point_z(-1.f); + z_shift = (int)((current_position[Z_AXIS] - zero_z)*axis_steps_per_unit[Z_AXIS]); + + printf_P(_N("\nTemperature: %d Z shift (mm): %.3f\n"), t_c, current_position[Z_AXIS] - zero_z); + + EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i*2, &z_shift); + + + } + custom_message_type = 0; + custom_message = false; + + eeprom_update_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 1); + puts_P(_N("Temperature calibration done.")); + disable_x(); + disable_y(); + disable_z(); + disable_e0(); + disable_e1(); + disable_e2(); + setTargetBed(0); //set bed target temperature back to 0 + lcd_show_fullscreen_message_and_wait_P(_T(MSG_TEMP_CALIBRATION_DONE)); + temp_cal_active = true; + eeprom_update_byte((unsigned char *)EEPROM_TEMP_CAL_ACTIVE, 1); + lcd_update_enable(true); + lcd_update(2); + + + + } + break; + +#ifdef DIS + case 77: + { + //G77 X200 Y150 XP100 YP15 XO10 Y015 + + //for 9 point mesh bed leveling G77 X203 Y196 XP3 YP3 XO0 YO0 + + + //G77 X232 Y218 XP116 YP109 XO-11 YO0 + + float dimension_x = 40; + float dimension_y = 40; + int points_x = 40; + int points_y = 40; + float offset_x = 74; + float offset_y = 33; + + if (code_seen('X')) dimension_x = code_value(); + if (code_seen('Y')) dimension_y = code_value(); + if (code_seen('XP')) points_x = code_value(); + if (code_seen('YP')) points_y = code_value(); + if (code_seen('XO')) offset_x = code_value(); + if (code_seen('YO')) offset_y = code_value(); + + bed_analysis(dimension_x,dimension_y,points_x,points_y,offset_x,offset_y); + + } break; + +#endif + + case 79: { + for (int i = 255; i > 0; i = i - 5) { + fanSpeed = i; + //delay_keep_alive(2000); + for (int j = 0; j < 100; j++) { + delay_keep_alive(100); + + } + fan_speed[1]; + printf_P(_N("%d: %d\n"), i, fan_speed[1]); + } + }break; + + /** + * G80: Mesh-based Z probe, probes a grid and produces a + * mesh to compensate for variable bed height + * + * The S0 report the points as below + * + * +----> X-axis + * | + * | + * v Y-axis + * + */ + + case 80: +#ifdef MK1BP + break; +#endif //MK1BP + case_G80: + { + mesh_bed_leveling_flag = true; + int8_t verbosity_level = 0; + static bool run = false; + + if (code_seen('V')) { + // Just 'V' without a number counts as V1. + char c = strchr_pointer[1]; + verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short(); + } + // Firstly check if we know where we are + if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS])) { + // We don't know where we are! HOME! + // Push the commands to the front of the message queue in the reverse order! + // There shall be always enough space reserved for these commands. + if (lcd_commands_type != LCD_COMMAND_STOP_PRINT) { + repeatcommand_front(); // repeat G80 with all its parameters + enquecommand_front_P((PSTR("G28 W0"))); + } + else { + mesh_bed_leveling_flag = false; + } + break; + } + + + bool temp_comp_start = true; +#ifdef PINDA_THERMISTOR + temp_comp_start = false; +#endif //PINDA_THERMISTOR + + if (temp_comp_start) + if (run == false && temp_cal_active == true && calibration_status_pinda() == true && target_temperature_bed >= 50) { + if (lcd_commands_type != LCD_COMMAND_STOP_PRINT) { + temp_compensation_start(); + run = true; + repeatcommand_front(); // repeat G80 with all its parameters + enquecommand_front_P((PSTR("G28 W0"))); + } + else { + mesh_bed_leveling_flag = false; + } + break; + } + run = false; + if (lcd_commands_type == LCD_COMMAND_STOP_PRINT) { + mesh_bed_leveling_flag = false; + break; + } + // Save custom message state, set a new custom message state to display: Calibrating point 9. + bool custom_message_old = custom_message; + unsigned int custom_message_type_old = custom_message_type; + unsigned int custom_message_state_old = custom_message_state; + custom_message = true; + custom_message_type = 1; + custom_message_state = (MESH_MEAS_NUM_X_POINTS * MESH_MEAS_NUM_Y_POINTS) + 10; + lcd_update(1); + + mbl.reset(); //reset mesh bed leveling + + // Reset baby stepping to zero, if the babystepping has already been loaded before. The babystepsTodo value will be + // consumed during the first movements following this statement. + babystep_undo(); + + // Cycle through all points and probe them + // First move up. During this first movement, the babystepping will be reverted. + current_position[Z_AXIS] = MESH_HOME_Z_SEARCH; + plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 60, active_extruder); + // The move to the first calibration point. + current_position[X_AXIS] = pgm_read_float(bed_ref_points); + current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 1); + bool clamped = world2machine_clamp(current_position[X_AXIS], current_position[Y_AXIS]); + + #ifdef SUPPORT_VERBOSITY + if (verbosity_level >= 1) { + clamped ? SERIAL_PROTOCOLPGM("First calibration point clamped.\n") : SERIAL_PROTOCOLPGM("No clamping for first calibration point.\n"); + } + #endif //SUPPORT_VERBOSITY + // mbl.get_meas_xy(0, 0, current_position[X_AXIS], current_position[Y_AXIS], false); + plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[X_AXIS] / 30, active_extruder); + // Wait until the move is finished. + st_synchronize(); + + int mesh_point = 0; //index number of calibration point + + int ix = 0; + int iy = 0; + + int XY_AXIS_FEEDRATE = homing_feedrate[X_AXIS] / 20; + int Z_PROBE_FEEDRATE = homing_feedrate[Z_AXIS] / 60; + int Z_LIFT_FEEDRATE = homing_feedrate[Z_AXIS] / 40; + bool has_z = is_bed_z_jitter_data_valid(); //checks if we have data from Z calibration (offsets of the Z heiths of the 8 calibration points from the first point) + #ifdef SUPPORT_VERBOSITY + if (verbosity_level >= 1) { + has_z ? SERIAL_PROTOCOLPGM("Z jitter data from Z cal. valid.\n") : SERIAL_PROTOCOLPGM("Z jitter data from Z cal. not valid.\n"); + } + #endif // SUPPORT_VERBOSITY + setup_for_endstop_move(false); //save feedrate and feedmultiply, sets feedmultiply to 100 + const char *kill_message = NULL; + while (mesh_point != MESH_MEAS_NUM_X_POINTS * MESH_MEAS_NUM_Y_POINTS) { + // Get coords of a measuring point. + ix = mesh_point % MESH_MEAS_NUM_X_POINTS; // from 0 to MESH_NUM_X_POINTS - 1 + iy = mesh_point / MESH_MEAS_NUM_X_POINTS; + if (iy & 1) ix = (MESH_MEAS_NUM_X_POINTS - 1) - ix; // Zig zag + float z0 = 0.f; + if (has_z && mesh_point > 0) { + uint16_t z_offset_u = eeprom_read_word((uint16_t*)(EEPROM_BED_CALIBRATION_Z_JITTER + 2 * (ix + iy * 3 - 1))); + z0 = mbl.z_values[0][0] + *reinterpret_cast(&z_offset_u) * 0.01; + //#if 0 + #ifdef SUPPORT_VERBOSITY + if (verbosity_level >= 1) { + SERIAL_ECHOLNPGM(""); + SERIAL_ECHOPGM("Bed leveling, point: "); + MYSERIAL.print(mesh_point); + SERIAL_ECHOPGM(", calibration z: "); + MYSERIAL.print(z0, 5); + SERIAL_ECHOLNPGM(""); + } + #endif // SUPPORT_VERBOSITY + //#endif + } + + // Move Z up to MESH_HOME_Z_SEARCH. + current_position[Z_AXIS] = MESH_HOME_Z_SEARCH; + plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], Z_LIFT_FEEDRATE, active_extruder); + st_synchronize(); + + // Move to XY position of the sensor point. + current_position[X_AXIS] = pgm_read_float(bed_ref_points + 2 * mesh_point); + current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 2 * mesh_point + 1); + + + + world2machine_clamp(current_position[X_AXIS], current_position[Y_AXIS]); + #ifdef SUPPORT_VERBOSITY + if (verbosity_level >= 1) { + + SERIAL_PROTOCOL(mesh_point); + clamped ? SERIAL_PROTOCOLPGM(": xy clamped.\n") : SERIAL_PROTOCOLPGM(": no xy clamping\n"); + } + #endif // SUPPORT_VERBOSITY + + plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], XY_AXIS_FEEDRATE, active_extruder); + st_synchronize(); + + // Go down until endstop is hit + const float Z_CALIBRATION_THRESHOLD = 1.f; + if (!find_bed_induction_sensor_point_z((has_z && mesh_point > 0) ? z0 - Z_CALIBRATION_THRESHOLD : -10.f)) { //if we have data from z calibration max allowed difference is 1mm for each point, if we dont have data max difference is 10mm from initial point + kill_message = _T(MSG_BED_LEVELING_FAILED_POINT_LOW); + break; + } + if (MESH_HOME_Z_SEARCH - current_position[Z_AXIS] < 0.1f) { + kill_message = _i("Bed leveling failed. Sensor disconnected or cable broken. Waiting for reset.");////MSG_BED_LEVELING_FAILED_PROBE_DISCONNECTED c=20 r=4 + break; + } + if (has_z && fabs(z0 - current_position[Z_AXIS]) > Z_CALIBRATION_THRESHOLD) { //if we have data from z calibration, max. allowed difference is 1mm for each point + kill_message = _i("Bed leveling failed. Sensor triggered too high. Waiting for reset.");////MSG_BED_LEVELING_FAILED_POINT_HIGH c=20 r=4 + break; + } + #ifdef SUPPORT_VERBOSITY + if (verbosity_level >= 10) { + SERIAL_ECHOPGM("X: "); + MYSERIAL.print(current_position[X_AXIS], 5); + SERIAL_ECHOLNPGM(""); + SERIAL_ECHOPGM("Y: "); + MYSERIAL.print(current_position[Y_AXIS], 5); + SERIAL_PROTOCOLPGM("\n"); + } + #endif // SUPPORT_VERBOSITY + float offset_z = 0; + +#ifdef PINDA_THERMISTOR + offset_z = temp_compensation_pinda_thermistor_offset(current_temperature_pinda); +#endif //PINDA_THERMISTOR +// #ifdef SUPPORT_VERBOSITY +/* if (verbosity_level >= 1) + { + SERIAL_ECHOPGM("mesh bed leveling: "); + MYSERIAL.print(current_position[Z_AXIS], 5); + SERIAL_ECHOPGM(" offset: "); + MYSERIAL.print(offset_z, 5); + SERIAL_ECHOLNPGM(""); + }*/ +// #endif // SUPPORT_VERBOSITY + mbl.set_z(ix, iy, current_position[Z_AXIS] - offset_z); //store measured z values z_values[iy][ix] = z - offset_z; + + custom_message_state--; + mesh_point++; + lcd_update(1); + } + current_position[Z_AXIS] = MESH_HOME_Z_SEARCH; + #ifdef SUPPORT_VERBOSITY + if (verbosity_level >= 20) { + SERIAL_ECHOLNPGM("Mesh bed leveling while loop finished."); + SERIAL_ECHOLNPGM("MESH_HOME_Z_SEARCH: "); + MYSERIAL.print(current_position[Z_AXIS], 5); + } + #endif // SUPPORT_VERBOSITY + plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], Z_LIFT_FEEDRATE, active_extruder); + st_synchronize(); + if (mesh_point != MESH_MEAS_NUM_X_POINTS * MESH_MEAS_NUM_Y_POINTS) { + kill(kill_message); + SERIAL_ECHOLNPGM("killed"); + } + clean_up_after_endstop_move(); +// SERIAL_ECHOLNPGM("clean up finished "); + + bool apply_temp_comp = true; +#ifdef PINDA_THERMISTOR + apply_temp_comp = false; +#endif + if (apply_temp_comp) + if(temp_cal_active == true && calibration_status_pinda() == true) temp_compensation_apply(); //apply PINDA temperature compensation + babystep_apply(); // Apply Z height correction aka baby stepping before mesh bed leveing gets activated. +// SERIAL_ECHOLNPGM("babystep applied"); + bool eeprom_bed_correction_valid = eeprom_read_byte((unsigned char*)EEPROM_BED_CORRECTION_VALID) == 1; + #ifdef SUPPORT_VERBOSITY + if (verbosity_level >= 1) { + eeprom_bed_correction_valid ? SERIAL_PROTOCOLPGM("Bed correction data valid\n") : SERIAL_PROTOCOLPGM("Bed correction data not valid\n"); + } + #endif // SUPPORT_VERBOSITY + + for (uint8_t i = 0; i < 4; ++i) { + unsigned char codes[4] = { 'L', 'R', 'F', 'B' }; + long correction = 0; + if (code_seen(codes[i])) + correction = code_value_long(); + else if (eeprom_bed_correction_valid) { + unsigned char *addr = (i < 2) ? + ((i == 0) ? (unsigned char*)EEPROM_BED_CORRECTION_LEFT : (unsigned char*)EEPROM_BED_CORRECTION_RIGHT) : + ((i == 2) ? (unsigned char*)EEPROM_BED_CORRECTION_FRONT : (unsigned char*)EEPROM_BED_CORRECTION_REAR); + correction = eeprom_read_int8(addr); + } + if (correction == 0) + continue; + float offset = float(correction) * 0.001f; + if (fabs(offset) > 0.101f) { + SERIAL_ERROR_START; + SERIAL_ECHOPGM("Excessive bed leveling correction: "); + SERIAL_ECHO(offset); + SERIAL_ECHOLNPGM(" microns"); + } + else { + switch (i) { + case 0: + for (uint8_t row = 0; row < 3; ++row) { + mbl.z_values[row][1] += 0.5f * offset; + mbl.z_values[row][0] += offset; + } + break; + case 1: + for (uint8_t row = 0; row < 3; ++row) { + mbl.z_values[row][1] += 0.5f * offset; + mbl.z_values[row][2] += offset; + } + break; + case 2: + for (uint8_t col = 0; col < 3; ++col) { + mbl.z_values[1][col] += 0.5f * offset; + mbl.z_values[0][col] += offset; + } + break; + case 3: + for (uint8_t col = 0; col < 3; ++col) { + mbl.z_values[1][col] += 0.5f * offset; + mbl.z_values[2][col] += offset; + } + break; + } + } + } +// SERIAL_ECHOLNPGM("Bed leveling correction finished"); + mbl.upsample_3x3(); //bilinear interpolation from 3x3 to 7x7 points while using the same array z_values[iy][ix] for storing (just coppying measured data to new destination and interpolating between them) +// SERIAL_ECHOLNPGM("Upsample finished"); + mbl.active = 1; //activate mesh bed leveling +// SERIAL_ECHOLNPGM("Mesh bed leveling activated"); + go_home_with_z_lift(); +// SERIAL_ECHOLNPGM("Go home finished"); + //unretract (after PINDA preheat retraction) + if (degHotend(active_extruder) > EXTRUDE_MINTEMP && temp_cal_active == true && calibration_status_pinda() == true && target_temperature_bed >= 50) { + current_position[E_AXIS] += DEFAULT_RETRACTION; + plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400, active_extruder); + } + KEEPALIVE_STATE(NOT_BUSY); + // Restore custom message state + lcd_setstatuspgm(_T(WELCOME_MSG)); + custom_message = custom_message_old; + custom_message_type = custom_message_type_old; + custom_message_state = custom_message_state_old; + mesh_bed_leveling_flag = false; + mesh_bed_run_from_menu = false; + lcd_update(2); + + } + break; + + /** + * G81: Print mesh bed leveling status and bed profile if activated + */ + case 81: + if (mbl.active) { + SERIAL_PROTOCOLPGM("Num X,Y: "); + SERIAL_PROTOCOL(MESH_NUM_X_POINTS); + SERIAL_PROTOCOLPGM(","); + SERIAL_PROTOCOL(MESH_NUM_Y_POINTS); + SERIAL_PROTOCOLPGM("\nZ search height: "); + SERIAL_PROTOCOL(MESH_HOME_Z_SEARCH); + SERIAL_PROTOCOLLNPGM("\nMeasured points:"); + for (int y = MESH_NUM_Y_POINTS-1; y >= 0; y--) { + for (int x = 0; x < MESH_NUM_X_POINTS; x++) { + SERIAL_PROTOCOLPGM(" "); + SERIAL_PROTOCOL_F(mbl.z_values[y][x], 5); + } + SERIAL_PROTOCOLPGM("\n"); + } + } + else + SERIAL_PROTOCOLLNPGM("Mesh bed leveling not active."); + break; + +#if 0 + /** + * G82: Single Z probe at current location + * + * WARNING! USE WITH CAUTION! If you'll try to probe where is no leveling pad, nasty things can happen! + * + */ + case 82: + SERIAL_PROTOCOLLNPGM("Finding bed "); + setup_for_endstop_move(); + find_bed_induction_sensor_point_z(); + clean_up_after_endstop_move(); + SERIAL_PROTOCOLPGM("Bed found at: "); + SERIAL_PROTOCOL_F(current_position[Z_AXIS], 5); + SERIAL_PROTOCOLPGM("\n"); + break; + + /** + * G83: Prusa3D specific: Babystep in Z and store to EEPROM + */ + case 83: + { + int babystepz = code_seen('S') ? code_value() : 0; + int BabyPosition = code_seen('P') ? code_value() : 0; + + if (babystepz != 0) { + //FIXME Vojtech: What shall be the index of the axis Z: 3 or 4? + // Is the axis indexed starting with zero or one? + if (BabyPosition > 4) { + SERIAL_PROTOCOLLNPGM("Index out of bounds"); + }else{ + // Save it to the eeprom + babystepLoadZ = babystepz; + EEPROM_save_B(EEPROM_BABYSTEP_Z0+(BabyPosition*2),&babystepLoadZ); + // adjust the Z + babystepsTodoZadd(babystepLoadZ); + } + + } + + } + break; + /** + * G84: Prusa3D specific: UNDO Babystep Z (move Z axis back) + */ + case 84: + babystepsTodoZsubtract(babystepLoadZ); + // babystepLoadZ = 0; + break; + + /** + * G85: Prusa3D specific: Pick best babystep + */ + case 85: + lcd_pick_babystep(); + break; +#endif + + /** + * G86: Prusa3D specific: Disable babystep correction after home. + * This G-code will be performed at the start of a calibration script. + */ + case 86: + calibration_status_store(CALIBRATION_STATUS_LIVE_ADJUST); + break; + /** + * G87: Prusa3D specific: Enable babystep correction after home + * This G-code will be performed at the end of a calibration script. + */ + case 87: + calibration_status_store(CALIBRATION_STATUS_CALIBRATED); + break; + + /** + * G88: Prusa3D specific: Don't know what it is for, it is in V2Calibration.gcode + */ + case 88: + break; + + +#endif // ENABLE_MESH_BED_LEVELING + + + case 90: // G90 + relative_mode = false; + break; + case 91: // G91 + relative_mode = true; + break; + case 92: // G92 + if(!code_seen(axis_codes[E_AXIS])) + st_synchronize(); + for(int8_t i=0; i < NUM_AXIS; i++) { + if(code_seen(axis_codes[i])) { + if(i == E_AXIS) { + current_position[i] = code_value(); + plan_set_e_position(current_position[E_AXIS]); + } + else { + current_position[i] = code_value()+add_homing[i]; + plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]); + } + } + } + break; + + case 98: // G98 (activate farm mode) + farm_mode = 1; + PingTime = millis(); + eeprom_update_byte((unsigned char *)EEPROM_FARM_MODE, farm_mode); + SilentModeMenu = SILENT_MODE_OFF; + eeprom_update_byte((unsigned char *)EEPROM_SILENT, SilentModeMenu); + break; + + case 99: // G99 (deactivate farm mode) + farm_mode = 0; + lcd_printer_connected(); + eeprom_update_byte((unsigned char *)EEPROM_FARM_MODE, farm_mode); + lcd_update(2); + break; + default: + printf_P(PSTR("Unknown G code: %s \n"), cmdbuffer + bufindr + CMDHDRSIZE); + } + } // end if(code_seen('G')) + + else if(code_seen('M')) + { + int index; + for (index = 1; *(strchr_pointer + index) == ' ' || *(strchr_pointer + index) == '\t'; index++); + + /*for (++strchr_pointer; *strchr_pointer == ' ' || *strchr_pointer == '\t'; ++strchr_pointer);*/ + if (*(strchr_pointer+index) < '0' || *(strchr_pointer+index) > '9') { + printf_P(PSTR("Invalid M code: %s \n"), cmdbuffer + bufindr + CMDHDRSIZE); + + } else + switch((int)code_value()) + { + + case 0: // M0 - Unconditional stop - Wait for user button press on LCD + case 1: // M1 - Conditional stop - Wait for user button press on LCD + { + char *src = strchr_pointer + 2; + + codenum = 0; + + bool hasP = false, hasS = false; + if (code_seen('P')) { + codenum = code_value(); // milliseconds to wait + hasP = codenum > 0; + } + if (code_seen('S')) { + codenum = code_value() * 1000; // seconds to wait + hasS = codenum > 0; + } + starpos = strchr(src, '*'); + if (starpos != NULL) *(starpos) = '\0'; + while (*src == ' ') ++src; + if (!hasP && !hasS && *src != '\0') { + lcd_setstatus(src); + } else { + LCD_MESSAGERPGM(_i("Wait for user..."));////MSG_USERWAIT c=0 r=0 + } + + lcd_ignore_click(); //call lcd_ignore_click aslo for else ??? + st_synchronize(); + previous_millis_cmd = millis(); + if (codenum > 0){ + codenum += millis(); // keep track of when we started waiting + KEEPALIVE_STATE(PAUSED_FOR_USER); + while(millis() < codenum && !lcd_clicked()){ + manage_heater(); + manage_inactivity(true); + lcd_update(0); + } + KEEPALIVE_STATE(IN_HANDLER); + lcd_ignore_click(false); + }else{ + KEEPALIVE_STATE(PAUSED_FOR_USER); + while(!lcd_clicked()){ + manage_heater(); + manage_inactivity(true); + lcd_update(0); + } + KEEPALIVE_STATE(IN_HANDLER); + } + if (IS_SD_PRINTING) + LCD_MESSAGERPGM(_T(MSG_RESUMING_PRINT)); + else + LCD_MESSAGERPGM(_T(WELCOME_MSG)); + } + break; + case 17: + LCD_MESSAGERPGM(_i("No move."));////MSG_NO_MOVE c=0 r=0 + enable_x(); + enable_y(); + enable_z(); + enable_e0(); + enable_e1(); + enable_e2(); + break; + +#ifdef SDSUPPORT + case 20: // M20 - list SD card + SERIAL_PROTOCOLLNRPGM(_N("Begin file list"));////MSG_BEGIN_FILE_LIST c=0 r=0 + card.ls(); + SERIAL_PROTOCOLLNRPGM(_N("End file list"));////MSG_END_FILE_LIST c=0 r=0 + break; + case 21: // M21 - init SD card + + card.initsd(); + + break; + case 22: //M22 - release SD card + card.release(); + + break; + case 23: //M23 - Select file + starpos = (strchr(strchr_pointer + 4,'*')); + if(starpos!=NULL) + *(starpos)='\0'; + card.openFile(strchr_pointer + 4,true); + break; + case 24: //M24 - Start SD print + if (!card.paused) + failstats_reset_print(); + card.startFileprint(); + starttime=millis(); + break; + case 25: //M25 - Pause SD print + card.pauseSDPrint(); + break; + case 26: //M26 - Set SD index + if(card.cardOK && code_seen('S')) { + card.setIndex(code_value_long()); + } + break; + case 27: //M27 - Get SD status + card.getStatus(); + break; + case 28: //M28 - Start SD write + starpos = (strchr(strchr_pointer + 4,'*')); + if(starpos != NULL){ + char* npos = strchr(CMDBUFFER_CURRENT_STRING, 'N'); + strchr_pointer = strchr(npos,' ') + 1; + *(starpos) = '\0'; + } + card.openFile(strchr_pointer+4,false); + break; + case 29: //M29 - Stop SD write + //processed in write to file routine above + //card,saving = false; + break; + case 30: //M30 Delete File + if (card.cardOK){ + card.closefile(); + starpos = (strchr(strchr_pointer + 4,'*')); + if(starpos != NULL){ + char* npos = strchr(CMDBUFFER_CURRENT_STRING, 'N'); + strchr_pointer = strchr(npos,' ') + 1; + *(starpos) = '\0'; + } + card.removeFile(strchr_pointer + 4); + } + break; + case 32: //M32 - Select file and start SD print + { + if(card.sdprinting) { + st_synchronize(); + + } + starpos = (strchr(strchr_pointer + 4,'*')); + + char* namestartpos = (strchr(strchr_pointer + 4,'!')); //find ! to indicate filename string start. + if(namestartpos==NULL) + { + namestartpos=strchr_pointer + 4; //default name position, 4 letters after the M + } + else + namestartpos++; //to skip the '!' + + if(starpos!=NULL) + *(starpos)='\0'; + + bool call_procedure=(code_seen('P')); + + if(strchr_pointer>namestartpos) + call_procedure=false; //false alert, 'P' found within filename + + if( card.cardOK ) + { + card.openFile(namestartpos,true,!call_procedure); + if(code_seen('S')) + if(strchr_pointer= 0 && pin_status <= 255) + pin_number = code_value(); + for(int8_t i = 0; i < (int8_t)(sizeof(sensitive_pins)/sizeof(int)); i++) + { + if (sensitive_pins[i] == pin_number) + { + pin_number = -1; + break; + } + } + #if defined(FAN_PIN) && FAN_PIN > -1 + if (pin_number == FAN_PIN) + fanSpeed = pin_status; + #endif + if (pin_number > -1) + { + pinMode(pin_number, OUTPUT); + digitalWrite(pin_number, pin_status); + analogWrite(pin_number, pin_status); + } + } + break; +#endif //_DISABLE_M42_M226 + case 44: // M44: Prusa3D: Reset the bed skew and offset calibration. + + // Reset the baby step value and the baby step applied flag. + calibration_status_store(CALIBRATION_STATUS_ASSEMBLED); + eeprom_update_word((uint16_t*)EEPROM_BABYSTEP_Z, 0); + + // Reset the skew and offset in both RAM and EEPROM. + reset_bed_offset_and_skew(); + // Reset world2machine_rotation_and_skew and world2machine_shift, therefore + // the planner will not perform any adjustments in the XY plane. + // Wait for the motors to stop and update the current position with the absolute values. + world2machine_revert_to_uncorrected(); + break; + + case 45: // M45: Prusa3D: bed skew and offset with manual Z up + { + int8_t verbosity_level = 0; + bool only_Z = code_seen('Z'); + #ifdef SUPPORT_VERBOSITY + if (code_seen('V')) + { + // Just 'V' without a number counts as V1. + char c = strchr_pointer[1]; + verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short(); + } + #endif //SUPPORT_VERBOSITY + gcode_M45(only_Z, verbosity_level); + } + break; + + /* + case 46: + { + // M46: Prusa3D: Show the assigned IP address. + uint8_t ip[4]; + bool hasIP = card.ToshibaFlashAir_GetIP(ip); + if (hasIP) { + SERIAL_ECHOPGM("Toshiba FlashAir current IP: "); + SERIAL_ECHO(int(ip[0])); + SERIAL_ECHOPGM("."); + SERIAL_ECHO(int(ip[1])); + SERIAL_ECHOPGM("."); + SERIAL_ECHO(int(ip[2])); + SERIAL_ECHOPGM("."); + SERIAL_ECHO(int(ip[3])); + SERIAL_ECHOLNPGM(""); + } else { + SERIAL_ECHOLNPGM("Toshiba FlashAir GetIP failed"); + } + break; + } + */ + + case 47: + // M47: Prusa3D: Show end stops dialog on the display. + KEEPALIVE_STATE(PAUSED_FOR_USER); + lcd_diag_show_end_stops(); + KEEPALIVE_STATE(IN_HANDLER); + break; + +#if 0 + case 48: // M48: scan the bed induction sensor points, print the sensor trigger coordinates to the serial line for visualization on the PC. + { + // Disable the default update procedure of the display. We will do a modal dialog. + lcd_update_enable(false); + // Let the planner use the uncorrected coordinates. + mbl.reset(); + // Reset world2machine_rotation_and_skew and world2machine_shift, therefore + // the planner will not perform any adjustments in the XY plane. + // Wait for the motors to stop and update the current position with the absolute values. + world2machine_revert_to_uncorrected(); + // Move the print head close to the bed. + current_position[Z_AXIS] = MESH_HOME_Z_SEARCH; + plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], homing_feedrate[Z_AXIS]/40, active_extruder); + st_synchronize(); + // Home in the XY plane. + set_destination_to_current(); + setup_for_endstop_move(); + home_xy(); + int8_t verbosity_level = 0; + if (code_seen('V')) { + // Just 'V' without a number counts as V1. + char c = strchr_pointer[1]; + verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short(); + } + bool success = scan_bed_induction_points(verbosity_level); + clean_up_after_endstop_move(); + // Print head up. + current_position[Z_AXIS] = MESH_HOME_Z_SEARCH; + plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], homing_feedrate[Z_AXIS]/40, active_extruder); + st_synchronize(); + lcd_update_enable(true); + break; + } +#endif + +// M48 Z-Probe repeatability measurement function. +// +// Usage: M48 +// +// This function assumes the bed has been homed. Specificaly, that a G28 command +// as been issued prior to invoking the M48 Z-Probe repeatability measurement function. +// Any information generated by a prior G29 Bed leveling command will be lost and need to be +// regenerated. +// +// The number of samples will default to 10 if not specified. You can use upper or lower case +// letters for any of the options EXCEPT n. n must be in lower case because Marlin uses a capital +// N for its communication protocol and will get horribly confused if you send it a capital N. +// + +#ifdef ENABLE_AUTO_BED_LEVELING +#ifdef Z_PROBE_REPEATABILITY_TEST + + case 48: // M48 Z-Probe repeatability + { + #if Z_MIN_PIN == -1 + #error "You must have a Z_MIN endstop in order to enable calculation of Z-Probe repeatability." + #endif + + double sum=0.0; + double mean=0.0; + double sigma=0.0; + double sample_set[50]; + int verbose_level=1, n=0, j, n_samples = 10, n_legs=0; + double X_current, Y_current, Z_current; + double X_probe_location, Y_probe_location, Z_start_location, ext_position; + + if (code_seen('V') || code_seen('v')) { + verbose_level = code_value(); + if (verbose_level<0 || verbose_level>4 ) { + SERIAL_PROTOCOLPGM("?Verbose Level not plausable.\n"); + goto Sigma_Exit; + } + } + + if (verbose_level > 0) { + SERIAL_PROTOCOLPGM("M48 Z-Probe Repeatability test. Version 2.00\n"); + SERIAL_PROTOCOLPGM("Full support at: http://3dprintboard.com/forum.php\n"); + } + + if (code_seen('n')) { + n_samples = code_value(); + if (n_samples<4 || n_samples>50 ) { + SERIAL_PROTOCOLPGM("?Specified sample size not plausable.\n"); + goto Sigma_Exit; + } + } + + X_current = X_probe_location = st_get_position_mm(X_AXIS); + Y_current = Y_probe_location = st_get_position_mm(Y_AXIS); + Z_current = st_get_position_mm(Z_AXIS); + Z_start_location = st_get_position_mm(Z_AXIS) + Z_RAISE_BEFORE_PROBING; + ext_position = st_get_position_mm(E_AXIS); + + if (code_seen('X') || code_seen('x') ) { + X_probe_location = code_value() - X_PROBE_OFFSET_FROM_EXTRUDER; + if (X_probe_locationX_MAX_POS ) { + SERIAL_PROTOCOLPGM("?Specified X position out of range.\n"); + goto Sigma_Exit; + } + } + + if (code_seen('Y') || code_seen('y') ) { + Y_probe_location = code_value() - Y_PROBE_OFFSET_FROM_EXTRUDER; + if (Y_probe_locationY_MAX_POS ) { + SERIAL_PROTOCOLPGM("?Specified Y position out of range.\n"); + goto Sigma_Exit; + } + } + + if (code_seen('L') || code_seen('l') ) { + n_legs = code_value(); + if ( n_legs==1 ) + n_legs = 2; + if ( n_legs<0 || n_legs>15 ) { + SERIAL_PROTOCOLPGM("?Specified number of legs in movement not plausable.\n"); + goto Sigma_Exit; + } + } + +// +// Do all the preliminary setup work. First raise the probe. +// + + st_synchronize(); + plan_bed_level_matrix.set_to_identity(); + plan_buffer_line( X_current, Y_current, Z_start_location, + ext_position, + homing_feedrate[Z_AXIS]/60, + active_extruder); + st_synchronize(); + +// +// Now get everything to the specified probe point So we can safely do a probe to +// get us close to the bed. If the Z-Axis is far from the bed, we don't want to +// use that as a starting point for each probe. +// + if (verbose_level > 2) + SERIAL_PROTOCOL("Positioning probe for the test.\n"); + + plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location, + ext_position, + homing_feedrate[X_AXIS]/60, + active_extruder); + st_synchronize(); + + current_position[X_AXIS] = X_current = st_get_position_mm(X_AXIS); + current_position[Y_AXIS] = Y_current = st_get_position_mm(Y_AXIS); + current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS); + current_position[E_AXIS] = ext_position = st_get_position_mm(E_AXIS); + +// +// OK, do the inital probe to get us close to the bed. +// Then retrace the right amount and use that in subsequent probes +// + + setup_for_endstop_move(); + run_z_probe(); + + current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS); + Z_start_location = st_get_position_mm(Z_AXIS) + Z_RAISE_BEFORE_PROBING; + + plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location, + ext_position, + homing_feedrate[X_AXIS]/60, + active_extruder); + st_synchronize(); + current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS); + + for( n=0; nX_MAX_POS) + X_current = X_MAX_POS; + + if ( Y_currentY_MAX_POS) + Y_current = Y_MAX_POS; + + if (verbose_level>3 ) { + SERIAL_ECHOPAIR("x: ", X_current); + SERIAL_ECHOPAIR("y: ", Y_current); + SERIAL_PROTOCOLLNPGM(""); + } + + do_blocking_move_to( X_current, Y_current, Z_current ); + } + do_blocking_move_to( X_probe_location, Y_probe_location, Z_start_location); // Go back to the probe location + } + + setup_for_endstop_move(); + run_z_probe(); + + sample_set[n] = current_position[Z_AXIS]; + +// +// Get the current mean for the data points we have so far +// + sum=0.0; + for( j=0; j<=n; j++) { + sum = sum + sample_set[j]; + } + mean = sum / (double (n+1)); +// +// Now, use that mean to calculate the standard deviation for the +// data points we have so far +// + + sum=0.0; + for( j=0; j<=n; j++) { + sum = sum + (sample_set[j]-mean) * (sample_set[j]-mean); + } + sigma = sqrt( sum / (double (n+1)) ); + + if (verbose_level > 1) { + SERIAL_PROTOCOL(n+1); + SERIAL_PROTOCOL(" of "); + SERIAL_PROTOCOL(n_samples); + SERIAL_PROTOCOLPGM(" z: "); + SERIAL_PROTOCOL_F(current_position[Z_AXIS], 6); + } + + if (verbose_level > 2) { + SERIAL_PROTOCOL(" mean: "); + SERIAL_PROTOCOL_F(mean,6); + + SERIAL_PROTOCOL(" sigma: "); + SERIAL_PROTOCOL_F(sigma,6); + } + + if (verbose_level > 0) + SERIAL_PROTOCOLPGM("\n"); + + plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location, + current_position[E_AXIS], homing_feedrate[Z_AXIS]/60, active_extruder); + st_synchronize(); + + } + + delay(1000); + + clean_up_after_endstop_move(); + +// enable_endstops(true); + + if (verbose_level > 0) { + SERIAL_PROTOCOLPGM("Mean: "); + SERIAL_PROTOCOL_F(mean, 6); + SERIAL_PROTOCOLPGM("\n"); + } + +SERIAL_PROTOCOLPGM("Standard Deviation: "); +SERIAL_PROTOCOL_F(sigma, 6); +SERIAL_PROTOCOLPGM("\n\n"); + +Sigma_Exit: + break; + } +#endif // Z_PROBE_REPEATABILITY_TEST +#endif // ENABLE_AUTO_BED_LEVELING + case 73: //M73 show percent done and time remaining + if(code_seen('P')) print_percent_done_normal = code_value(); + if(code_seen('R')) print_time_remaining_normal = code_value(); + if(code_seen('Q')) print_percent_done_silent = code_value(); + if(code_seen('S')) print_time_remaining_silent = code_value(); + + { + const char* _msg_mode_done_remain = _N("%S MODE: Percent done: %d; print time remaining in mins: %d\n"); + printf_P(_msg_mode_done_remain, _N("NORMAL"), int(print_percent_done_normal), print_time_remaining_normal); + printf_P(_msg_mode_done_remain, _N("SILENT"), int(print_percent_done_silent), print_time_remaining_silent); + } + break; + + case 104: // M104 + if(setTargetedHotend(104)){ + break; + } + if (code_seen('S')) setTargetHotend(code_value(), tmp_extruder); + setWatch(); + break; + case 112: // M112 -Emergency Stop + kill(_n(""), 3); + break; + case 140: // M140 set bed temp + if (code_seen('S')) setTargetBed(code_value()); + break; + case 105 : // M105 + if(setTargetedHotend(105)){ + break; + } + #if defined(TEMP_0_PIN) && TEMP_0_PIN > -1 + SERIAL_PROTOCOLPGM("ok T:"); + SERIAL_PROTOCOL_F(degHotend(tmp_extruder),1); + SERIAL_PROTOCOLPGM(" /"); + SERIAL_PROTOCOL_F(degTargetHotend(tmp_extruder),1); + #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1 + SERIAL_PROTOCOLPGM(" B:"); + SERIAL_PROTOCOL_F(degBed(),1); + SERIAL_PROTOCOLPGM(" /"); + SERIAL_PROTOCOL_F(degTargetBed(),1); + #endif //TEMP_BED_PIN + for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) { + SERIAL_PROTOCOLPGM(" T"); + SERIAL_PROTOCOL(cur_extruder); + SERIAL_PROTOCOLPGM(":"); + SERIAL_PROTOCOL_F(degHotend(cur_extruder),1); + SERIAL_PROTOCOLPGM(" /"); + SERIAL_PROTOCOL_F(degTargetHotend(cur_extruder),1); + } + #else + SERIAL_ERROR_START; + SERIAL_ERRORLNRPGM(_i("No thermistors - no temperature"));////MSG_ERR_NO_THERMISTORS c=0 r=0 + #endif + + SERIAL_PROTOCOLPGM(" @:"); + #ifdef EXTRUDER_WATTS + SERIAL_PROTOCOL((EXTRUDER_WATTS * getHeaterPower(tmp_extruder))/127); + SERIAL_PROTOCOLPGM("W"); + #else + SERIAL_PROTOCOL(getHeaterPower(tmp_extruder)); + #endif + + SERIAL_PROTOCOLPGM(" B@:"); + #ifdef BED_WATTS + SERIAL_PROTOCOL((BED_WATTS * getHeaterPower(-1))/127); + SERIAL_PROTOCOLPGM("W"); + #else + SERIAL_PROTOCOL(getHeaterPower(-1)); + #endif + +#ifdef PINDA_THERMISTOR + SERIAL_PROTOCOLPGM(" P:"); + SERIAL_PROTOCOL_F(current_temperature_pinda,1); +#endif //PINDA_THERMISTOR + +#ifdef AMBIENT_THERMISTOR + SERIAL_PROTOCOLPGM(" A:"); + SERIAL_PROTOCOL_F(current_temperature_ambient,1); +#endif //AMBIENT_THERMISTOR + + + #ifdef SHOW_TEMP_ADC_VALUES + {float raw = 0.0; + + #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1 + SERIAL_PROTOCOLPGM(" ADC B:"); + SERIAL_PROTOCOL_F(degBed(),1); + SERIAL_PROTOCOLPGM("C->"); + raw = rawBedTemp(); + SERIAL_PROTOCOL_F(raw/OVERSAMPLENR,5); + SERIAL_PROTOCOLPGM(" Rb->"); + SERIAL_PROTOCOL_F(100 * (1 + (PtA * (raw/OVERSAMPLENR)) + (PtB * sq((raw/OVERSAMPLENR)))), 5); + SERIAL_PROTOCOLPGM(" Rxb->"); + SERIAL_PROTOCOL_F(raw, 5); + #endif + for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) { + SERIAL_PROTOCOLPGM(" T"); + SERIAL_PROTOCOL(cur_extruder); + SERIAL_PROTOCOLPGM(":"); + SERIAL_PROTOCOL_F(degHotend(cur_extruder),1); + SERIAL_PROTOCOLPGM("C->"); + raw = rawHotendTemp(cur_extruder); + SERIAL_PROTOCOL_F(raw/OVERSAMPLENR,5); + SERIAL_PROTOCOLPGM(" Rt"); + SERIAL_PROTOCOL(cur_extruder); + SERIAL_PROTOCOLPGM("->"); + SERIAL_PROTOCOL_F(100 * (1 + (PtA * (raw/OVERSAMPLENR)) + (PtB * sq((raw/OVERSAMPLENR)))), 5); + SERIAL_PROTOCOLPGM(" Rx"); + SERIAL_PROTOCOL(cur_extruder); + SERIAL_PROTOCOLPGM("->"); + SERIAL_PROTOCOL_F(raw, 5); + }} + #endif + SERIAL_PROTOCOLLN(""); + KEEPALIVE_STATE(NOT_BUSY); + return; + break; + case 109: + {// M109 - Wait for extruder heater to reach target. + if(setTargetedHotend(109)){ + break; + } + LCD_MESSAGERPGM(_T(MSG_HEATING)); + heating_status = 1; + if (farm_mode) { prusa_statistics(1); }; + +#ifdef AUTOTEMP + autotemp_enabled=false; + #endif + if (code_seen('S')) { + setTargetHotend(code_value(), tmp_extruder); + CooldownNoWait = true; + } else if (code_seen('R')) { + setTargetHotend(code_value(), tmp_extruder); + CooldownNoWait = false; + } + #ifdef AUTOTEMP + if (code_seen('S')) autotemp_min=code_value(); + if (code_seen('B')) autotemp_max=code_value(); + if (code_seen('F')) + { + autotemp_factor=code_value(); + autotemp_enabled=true; + } + #endif + + setWatch(); + codenum = millis(); + + /* See if we are heating up or cooling down */ + target_direction = isHeatingHotend(tmp_extruder); // true if heating, false if cooling + + KEEPALIVE_STATE(NOT_BUSY); + + cancel_heatup = false; + + wait_for_heater(codenum); //loops until target temperature is reached + + LCD_MESSAGERPGM(_T(MSG_HEATING_COMPLETE)); + KEEPALIVE_STATE(IN_HANDLER); + heating_status = 2; + if (farm_mode) { prusa_statistics(2); }; + + //starttime=millis(); + previous_millis_cmd = millis(); + } + break; + case 190: // M190 - Wait for bed heater to reach target. + #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1 + LCD_MESSAGERPGM(_T(MSG_BED_HEATING)); + heating_status = 3; + if (farm_mode) { prusa_statistics(1); }; + if (code_seen('S')) + { + setTargetBed(code_value()); + CooldownNoWait = true; + } + else if (code_seen('R')) + { + setTargetBed(code_value()); + CooldownNoWait = false; + } + codenum = millis(); + + cancel_heatup = false; + target_direction = isHeatingBed(); // true if heating, false if cooling + + KEEPALIVE_STATE(NOT_BUSY); + while ( (target_direction)&&(!cancel_heatup) ? (isHeatingBed()) : (isCoolingBed()&&(CooldownNoWait==false)) ) + { + if(( millis() - codenum) > 1000 ) //Print Temp Reading every 1 second while heating up. + { + if (!farm_mode) { + float tt = degHotend(active_extruder); + SERIAL_PROTOCOLPGM("T:"); + SERIAL_PROTOCOL(tt); + SERIAL_PROTOCOLPGM(" E:"); + SERIAL_PROTOCOL((int)active_extruder); + SERIAL_PROTOCOLPGM(" B:"); + SERIAL_PROTOCOL_F(degBed(), 1); + SERIAL_PROTOCOLLN(""); + } + codenum = millis(); + + } + manage_heater(); + manage_inactivity(); + lcd_update(0); + } + LCD_MESSAGERPGM(_T(MSG_BED_DONE)); + KEEPALIVE_STATE(IN_HANDLER); + heating_status = 4; + + previous_millis_cmd = millis(); + #endif + break; + + #if defined(FAN_PIN) && FAN_PIN > -1 + case 106: //M106 Fan On + if (code_seen('S')){ + fanSpeed=constrain(code_value(),0,255); + } + else { + fanSpeed=255; + } + break; + case 107: //M107 Fan Off + fanSpeed = 0; + break; + #endif //FAN_PIN + + #if defined(PS_ON_PIN) && PS_ON_PIN > -1 + case 80: // M80 - Turn on Power Supply + SET_OUTPUT(PS_ON_PIN); //GND + WRITE(PS_ON_PIN, PS_ON_AWAKE); + + // If you have a switch on suicide pin, this is useful + // if you want to start another print with suicide feature after + // a print without suicide... + #if defined SUICIDE_PIN && SUICIDE_PIN > -1 + SET_OUTPUT(SUICIDE_PIN); + WRITE(SUICIDE_PIN, HIGH); + #endif + + powersupply = true; + LCD_MESSAGERPGM(_T(WELCOME_MSG)); + lcd_update(0); + break; + #endif + + case 81: // M81 - Turn off Power Supply + disable_heater(); + st_synchronize(); + disable_e0(); + disable_e1(); + disable_e2(); + finishAndDisableSteppers(); + fanSpeed = 0; + delay(1000); // Wait a little before to switch off + #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1 + st_synchronize(); + suicide(); + #elif defined(PS_ON_PIN) && PS_ON_PIN > -1 + SET_OUTPUT(PS_ON_PIN); + WRITE(PS_ON_PIN, PS_ON_ASLEEP); + #endif + powersupply = false; + LCD_MESSAGERPGM(CAT4(CUSTOM_MENDEL_NAME,PSTR(" "),MSG_OFF,PSTR("."))); + lcd_update(0); + break; + + case 82: + axis_relative_modes[3] = false; + break; + case 83: + axis_relative_modes[3] = true; + break; + case 18: //compatibility + case 84: // M84 + if(code_seen('S')){ + stepper_inactive_time = code_value() * 1000; + } + else + { + bool all_axis = !((code_seen(axis_codes[X_AXIS])) || (code_seen(axis_codes[Y_AXIS])) || (code_seen(axis_codes[Z_AXIS]))|| (code_seen(axis_codes[E_AXIS]))); + if(all_axis) + { + st_synchronize(); + disable_e0(); + disable_e1(); + disable_e2(); + finishAndDisableSteppers(); + } + else + { + st_synchronize(); + if (code_seen('X')) disable_x(); + if (code_seen('Y')) disable_y(); + if (code_seen('Z')) disable_z(); +#if ((E0_ENABLE_PIN != X_ENABLE_PIN) && (E1_ENABLE_PIN != Y_ENABLE_PIN)) // Only enable on boards that have seperate ENABLE_PINS + if (code_seen('E')) { + disable_e0(); + disable_e1(); + disable_e2(); + } + #endif + } + } + //in the end of print set estimated time to end of print and extruders used during print to default values for next print + print_time_remaining_init(); + snmm_filaments_used = 0; + break; + case 85: // M85 + if(code_seen('S')) { + max_inactive_time = code_value() * 1000; + } + break; +#ifdef SAFETYTIMER + case 86: // M86 - set safety timer expiration time in seconds; M86 S0 will disable safety timer + //when safety timer expires heatbed and nozzle target temperatures are set to zero + if (code_seen('S')) { + safetytimer_inactive_time = code_value() * 1000; + safetyTimer.start(); + } + break; +#endif + case 92: // M92 + for(int8_t i=0; i < NUM_AXIS; i++) + { + if(code_seen(axis_codes[i])) + { + if(i == 3) { // E + float value = code_value(); + if(value < 20.0) { + float factor = axis_steps_per_unit[i] / value; // increase e constants if M92 E14 is given for netfab. + max_jerk[E_AXIS] *= factor; + max_feedrate[i] *= factor; + axis_steps_per_sqr_second[i] *= factor; + } + axis_steps_per_unit[i] = value; + } + else { + axis_steps_per_unit[i] = code_value(); + } + } + } + break; + case 110: // M110 - reset line pos + if (code_seen('N')) + gcode_LastN = code_value_long(); + break; +#ifdef HOST_KEEPALIVE_FEATURE + case 113: // M113 - Get or set Host Keepalive interval + if (code_seen('S')) { + host_keepalive_interval = (uint8_t)code_value_short(); +// NOMORE(host_keepalive_interval, 60); + } + else { + SERIAL_ECHO_START; + SERIAL_ECHOPAIR("M113 S", (unsigned long)host_keepalive_interval); + SERIAL_PROTOCOLLN(""); + } + break; +#endif + case 115: // M115 + if (code_seen('V')) { + // Report the Prusa version number. + SERIAL_PROTOCOLLNRPGM(FW_VERSION_STR_P()); + } else if (code_seen('U')) { + // Check the firmware version provided. If the firmware version provided by the U code is higher than the currently running firmware, + // pause the print and ask the user to upgrade the firmware. + show_upgrade_dialog_if_version_newer(++ strchr_pointer); + } else { + SERIAL_ECHOPGM("FIRMWARE_NAME:Prusa-Firmware "); + SERIAL_ECHORPGM(FW_VERSION_STR_P()); + SERIAL_ECHOPGM(" based on Marlin FIRMWARE_URL:https://github.com/prusa3d/Prusa-Firmware PROTOCOL_VERSION:"); + SERIAL_ECHOPGM(PROTOCOL_VERSION); + SERIAL_ECHOPGM(" MACHINE_TYPE:"); + SERIAL_ECHOPGM(CUSTOM_MENDEL_NAME); + SERIAL_ECHOPGM(" EXTRUDER_COUNT:"); + SERIAL_ECHOPGM(STRINGIFY(EXTRUDERS)); + SERIAL_ECHOPGM(" UUID:"); + SERIAL_ECHOLNPGM(MACHINE_UUID); + } + break; +/* case 117: // M117 display message + starpos = (strchr(strchr_pointer + 5,'*')); + if(starpos!=NULL) + *(starpos)='\0'; + lcd_setstatus(strchr_pointer + 5); + break;*/ + case 114: // M114 + gcode_M114(); + break; + case 120: // M120 + enable_endstops(false) ; + break; + case 121: // M121 + enable_endstops(true) ; + break; + case 119: // M119 + SERIAL_PROTOCOLRPGM(_N("Reporting endstop status"));////MSG_M119_REPORT c=0 r=0 + SERIAL_PROTOCOLLN(""); + #if defined(X_MIN_PIN) && X_MIN_PIN > -1 + SERIAL_PROTOCOLRPGM(_n("x_min: "));////MSG_X_MIN c=0 r=0 + if(READ(X_MIN_PIN)^X_MIN_ENDSTOP_INVERTING){ + SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_HIT)); + }else{ + SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_OPEN)); + } + SERIAL_PROTOCOLLN(""); + #endif + #if defined(X_MAX_PIN) && X_MAX_PIN > -1 + SERIAL_PROTOCOLRPGM(_n("x_max: "));////MSG_X_MAX c=0 r=0 + if(READ(X_MAX_PIN)^X_MAX_ENDSTOP_INVERTING){ + SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_HIT)); + }else{ + SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_OPEN)); + } + SERIAL_PROTOCOLLN(""); + #endif + #if defined(Y_MIN_PIN) && Y_MIN_PIN > -1 + SERIAL_PROTOCOLRPGM(_n("y_min: "));////MSG_Y_MIN c=0 r=0 + if(READ(Y_MIN_PIN)^Y_MIN_ENDSTOP_INVERTING){ + SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_HIT)); + }else{ + SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_OPEN)); + } + SERIAL_PROTOCOLLN(""); + #endif + #if defined(Y_MAX_PIN) && Y_MAX_PIN > -1 + SERIAL_PROTOCOLRPGM(_n("y_max: "));////MSG_Y_MAX c=0 r=0 + if(READ(Y_MAX_PIN)^Y_MAX_ENDSTOP_INVERTING){ + SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_HIT)); + }else{ + SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_OPEN)); + } + SERIAL_PROTOCOLLN(""); + #endif + #if defined(Z_MIN_PIN) && Z_MIN_PIN > -1 + SERIAL_PROTOCOLRPGM(MSG_Z_MIN); + if(READ(Z_MIN_PIN)^Z_MIN_ENDSTOP_INVERTING){ + SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_HIT)); + }else{ + SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_OPEN)); + } + SERIAL_PROTOCOLLN(""); + #endif + #if defined(Z_MAX_PIN) && Z_MAX_PIN > -1 + SERIAL_PROTOCOLRPGM(MSG_Z_MAX); + if(READ(Z_MAX_PIN)^Z_MAX_ENDSTOP_INVERTING){ + SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_HIT)); + }else{ + SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_OPEN)); + } + SERIAL_PROTOCOLLN(""); + #endif + break; + //TODO: update for all axis, use for loop + #ifdef BLINKM + case 150: // M150 + { + byte red; + byte grn; + byte blu; + + if(code_seen('R')) red = code_value(); + if(code_seen('U')) grn = code_value(); + if(code_seen('B')) blu = code_value(); + + SendColors(red,grn,blu); + } + break; + #endif //BLINKM + case 200: // M200 D set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters). + { + + tmp_extruder = active_extruder; + if(code_seen('T')) { + tmp_extruder = code_value(); + if(tmp_extruder >= EXTRUDERS) { + SERIAL_ECHO_START; + SERIAL_ECHO(_i("M200 Invalid extruder "));////MSG_M200_INVALID_EXTRUDER c=0 r=0 + break; + } + } + + float area = .0; + if(code_seen('D')) { + float diameter = (float)code_value(); + if (diameter == 0.0) { + // setting any extruder filament size disables volumetric on the assumption that + // slicers either generate in extruder values as cubic mm or as as filament feeds + // for all extruders + volumetric_enabled = false; + } else { + filament_size[tmp_extruder] = (float)code_value(); + // make sure all extruders have some sane value for the filament size + filament_size[0] = (filament_size[0] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : filament_size[0]); + #if EXTRUDERS > 1 + filament_size[1] = (filament_size[1] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : filament_size[1]); + #if EXTRUDERS > 2 + filament_size[2] = (filament_size[2] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : filament_size[2]); + #endif + #endif + volumetric_enabled = true; + } + } else { + //reserved for setting filament diameter via UFID or filament measuring device + break; + } + calculate_extruder_multipliers(); + } + break; + case 201: // M201 + for(int8_t i=0; i < NUM_AXIS; i++) + { + if(code_seen(axis_codes[i])) + { + max_acceleration_units_per_sq_second[i] = code_value(); + } + } + // steps per sq second need to be updated to agree with the units per sq second (as they are what is used in the planner) + reset_acceleration_rates(); + break; + #if 0 // Not used for Sprinter/grbl gen6 + case 202: // M202 + for(int8_t i=0; i < NUM_AXIS; i++) { + if(code_seen(axis_codes[i])) axis_travel_steps_per_sqr_second[i] = code_value() * axis_steps_per_unit[i]; + } + break; + #endif + case 203: // M203 max feedrate mm/sec + for(int8_t i=0; i < NUM_AXIS; i++) { + if(code_seen(axis_codes[i])) max_feedrate[i] = code_value(); + } + break; + case 204: // M204 acclereration S normal moves T filmanent only moves + { + if(code_seen('S')) acceleration = code_value() ; + if(code_seen('T')) retract_acceleration = code_value() ; + } + break; + case 205: //M205 advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk + { + if(code_seen('S')) minimumfeedrate = code_value(); + if(code_seen('T')) mintravelfeedrate = code_value(); + if(code_seen('B')) minsegmenttime = code_value() ; + if(code_seen('X')) max_jerk[X_AXIS] = max_jerk[Y_AXIS] = code_value(); + if(code_seen('Y')) max_jerk[Y_AXIS] = code_value(); + if(code_seen('Z')) max_jerk[Z_AXIS] = code_value(); + if(code_seen('E')) max_jerk[E_AXIS] = code_value(); + if (max_jerk[X_AXIS] > DEFAULT_XJERK) max_jerk[X_AXIS] = DEFAULT_XJERK; + if (max_jerk[Y_AXIS] > DEFAULT_YJERK) max_jerk[Y_AXIS] = DEFAULT_YJERK; + } + break; + case 206: // M206 additional homing offset + for(int8_t i=0; i < 3; i++) + { + if(code_seen(axis_codes[i])) add_homing[i] = code_value(); + } + break; + #ifdef FWRETRACT + case 207: //M207 - set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop] + { + if(code_seen('S')) + { + retract_length = code_value() ; + } + if(code_seen('F')) + { + retract_feedrate = code_value()/60 ; + } + if(code_seen('Z')) + { + retract_zlift = code_value() ; + } + }break; + case 208: // M208 - set retract recover length S[positive mm surplus to the M207 S*] F[feedrate mm/min] + { + if(code_seen('S')) + { + retract_recover_length = code_value() ; + } + if(code_seen('F')) + { + retract_recover_feedrate = code_value()/60 ; + } + }break; + case 209: // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction. + { + if(code_seen('S')) + { + int t= code_value() ; + switch(t) + { + case 0: + { + autoretract_enabled=false; + retracted[0]=false; + #if EXTRUDERS > 1 + retracted[1]=false; + #endif + #if EXTRUDERS > 2 + retracted[2]=false; + #endif + }break; + case 1: + { + autoretract_enabled=true; + retracted[0]=false; + #if EXTRUDERS > 1 + retracted[1]=false; + #endif + #if EXTRUDERS > 2 + retracted[2]=false; + #endif + }break; + default: + SERIAL_ECHO_START; + SERIAL_ECHORPGM(MSG_UNKNOWN_COMMAND); + SERIAL_ECHO(CMDBUFFER_CURRENT_STRING); + SERIAL_ECHOLNPGM("\"(1)"); + } + } + + }break; + #endif // FWRETRACT + #if EXTRUDERS > 1 + case 218: // M218 - set hotend offset (in mm), T X Y + { + if(setTargetedHotend(218)){ + break; + } + if(code_seen('X')) + { + extruder_offset[X_AXIS][tmp_extruder] = code_value(); + } + if(code_seen('Y')) + { + extruder_offset[Y_AXIS][tmp_extruder] = code_value(); + } + SERIAL_ECHO_START; + SERIAL_ECHORPGM(MSG_HOTEND_OFFSET); + for(tmp_extruder = 0; tmp_extruder < EXTRUDERS; tmp_extruder++) + { + SERIAL_ECHO(" "); + SERIAL_ECHO(extruder_offset[X_AXIS][tmp_extruder]); + SERIAL_ECHO(","); + SERIAL_ECHO(extruder_offset[Y_AXIS][tmp_extruder]); + } + SERIAL_ECHOLN(""); + }break; + #endif + case 220: // M220 S- set speed factor override percentage + { + if(code_seen('S')) + { + feedmultiply = code_value() ; + } + } + break; + case 221: // M221 S- set extrude factor override percentage + { + if(code_seen('S')) + { + int tmp_code = code_value(); + if (code_seen('T')) + { + if(setTargetedHotend(221)){ + break; + } + extruder_multiply[tmp_extruder] = tmp_code; + } + else + { + extrudemultiply = tmp_code ; + } + } + calculate_extruder_multipliers(); + } + break; + +#ifndef _DISABLE_M42_M226 + case 226: // M226 P S- Wait until the specified pin reaches the state required + { + if(code_seen('P')){ + int pin_number = code_value(); // pin number + int pin_state = -1; // required pin state - default is inverted + + if(code_seen('S')) pin_state = code_value(); // required pin state + + if(pin_state >= -1 && pin_state <= 1){ + + for(int8_t i = 0; i < (int8_t)(sizeof(sensitive_pins)/sizeof(int)); i++) + { + if (sensitive_pins[i] == pin_number) + { + pin_number = -1; + break; + } + } + + if (pin_number > -1) + { + int target = LOW; + + st_synchronize(); + + pinMode(pin_number, INPUT); + + switch(pin_state){ + case 1: + target = HIGH; + break; + + case 0: + target = LOW; + break; + + case -1: + target = !digitalRead(pin_number); + break; + } + + while(digitalRead(pin_number) != target){ + manage_heater(); + manage_inactivity(); + lcd_update(0); + } + } + } + } + } + break; +#endif //_DISABLE_M42_M226 + + #if NUM_SERVOS > 0 + case 280: // M280 - set servo position absolute. P: servo index, S: angle or microseconds + { + int servo_index = -1; + int servo_position = 0; + if (code_seen('P')) + servo_index = code_value(); + if (code_seen('S')) { + servo_position = code_value(); + if ((servo_index >= 0) && (servo_index < NUM_SERVOS)) { +#if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0) + servos[servo_index].attach(0); +#endif + servos[servo_index].write(servo_position); +#if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0) + delay(PROBE_SERVO_DEACTIVATION_DELAY); + servos[servo_index].detach(); +#endif + } + else { + SERIAL_ECHO_START; + SERIAL_ECHO("Servo "); + SERIAL_ECHO(servo_index); + SERIAL_ECHOLN(" out of range"); + } + } + else if (servo_index >= 0) { + SERIAL_PROTOCOL(_T(MSG_OK)); + SERIAL_PROTOCOL(" Servo "); + SERIAL_PROTOCOL(servo_index); + SERIAL_PROTOCOL(": "); + SERIAL_PROTOCOL(servos[servo_index].read()); + SERIAL_PROTOCOLLN(""); + } + } + break; + #endif // NUM_SERVOS > 0 + + #if (LARGE_FLASH == true && ( BEEPER > 0 || defined(ULTRALCD) || defined(LCD_USE_I2C_BUZZER))) + case 300: // M300 + { + int beepS = code_seen('S') ? code_value() : 110; + int beepP = code_seen('P') ? code_value() : 1000; + if (beepS > 0) + { + #if BEEPER > 0 + tone(BEEPER, beepS); + delay(beepP); + noTone(BEEPER); + #endif + } + else + { + delay(beepP); + } + } + break; + #endif // M300 + + #ifdef PIDTEMP + case 301: // M301 + { + if(code_seen('P')) Kp = code_value(); + if(code_seen('I')) Ki = scalePID_i(code_value()); + if(code_seen('D')) Kd = scalePID_d(code_value()); + + #ifdef PID_ADD_EXTRUSION_RATE + if(code_seen('C')) Kc = code_value(); + #endif + + updatePID(); + SERIAL_PROTOCOLRPGM(_T(MSG_OK)); + SERIAL_PROTOCOL(" p:"); + SERIAL_PROTOCOL(Kp); + SERIAL_PROTOCOL(" i:"); + SERIAL_PROTOCOL(unscalePID_i(Ki)); + SERIAL_PROTOCOL(" d:"); + SERIAL_PROTOCOL(unscalePID_d(Kd)); + #ifdef PID_ADD_EXTRUSION_RATE + SERIAL_PROTOCOL(" c:"); + //Kc does not have scaling applied above, or in resetting defaults + SERIAL_PROTOCOL(Kc); + #endif + SERIAL_PROTOCOLLN(""); + } + break; + #endif //PIDTEMP + #ifdef PIDTEMPBED + case 304: // M304 + { + if(code_seen('P')) bedKp = code_value(); + if(code_seen('I')) bedKi = scalePID_i(code_value()); + if(code_seen('D')) bedKd = scalePID_d(code_value()); + + updatePID(); + SERIAL_PROTOCOLRPGM(_T(MSG_OK)); + SERIAL_PROTOCOL(" p:"); + SERIAL_PROTOCOL(bedKp); + SERIAL_PROTOCOL(" i:"); + SERIAL_PROTOCOL(unscalePID_i(bedKi)); + SERIAL_PROTOCOL(" d:"); + SERIAL_PROTOCOL(unscalePID_d(bedKd)); + SERIAL_PROTOCOLLN(""); + } + break; + #endif //PIDTEMP + case 240: // M240 Triggers a camera by emulating a Canon RC-1 : http://www.doc-diy.net/photo/rc-1_hacked/ + { + #ifdef CHDK + + SET_OUTPUT(CHDK); + WRITE(CHDK, HIGH); + chdkHigh = millis(); + chdkActive = true; + + #else + + #if defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1 + const uint8_t NUM_PULSES=16; + const float PULSE_LENGTH=0.01524; + for(int i=0; i < NUM_PULSES; i++) { + WRITE(PHOTOGRAPH_PIN, HIGH); + _delay_ms(PULSE_LENGTH); + WRITE(PHOTOGRAPH_PIN, LOW); + _delay_ms(PULSE_LENGTH); + } + delay(7.33); + for(int i=0; i < NUM_PULSES; i++) { + WRITE(PHOTOGRAPH_PIN, HIGH); + _delay_ms(PULSE_LENGTH); + WRITE(PHOTOGRAPH_PIN, LOW); + _delay_ms(PULSE_LENGTH); + } + #endif + #endif //chdk end if + } + break; + #ifdef PREVENT_DANGEROUS_EXTRUDE + case 302: // allow cold extrudes, or set the minimum extrude temperature + { + float temp = .0; + if (code_seen('S')) temp=code_value(); + set_extrude_min_temp(temp); + } + break; + #endif + case 303: // M303 PID autotune + { + float temp = 150.0; + int e=0; + int c=5; + if (code_seen('E')) e=code_value(); + if (e<0) + temp=70; + if (code_seen('S')) temp=code_value(); + if (code_seen('C')) c=code_value(); + PID_autotune(temp, e, c); + } + break; + case 400: // M400 finish all moves + { + st_synchronize(); + } + break; + + case 500: // M500 Store settings in EEPROM + { + Config_StoreSettings(EEPROM_OFFSET); + } + break; + case 501: // M501 Read settings from EEPROM + { + Config_RetrieveSettings(EEPROM_OFFSET); + } + break; + case 502: // M502 Revert to default settings + { + Config_ResetDefault(); + } + break; + case 503: // M503 print settings currently in memory + { + Config_PrintSettings(); + } + break; + case 509: //M509 Force language selection + { + lang_reset(); + SERIAL_ECHO_START; + SERIAL_PROTOCOLPGM(("LANG SEL FORCED")); + } + break; + #ifdef ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED + case 540: + { + if(code_seen('S')) abort_on_endstop_hit = code_value() > 0; + } + break; + #endif + + #ifdef CUSTOM_M_CODE_SET_Z_PROBE_OFFSET + case CUSTOM_M_CODE_SET_Z_PROBE_OFFSET: + { + float value; + if (code_seen('Z')) + { + value = code_value(); + if ((Z_PROBE_OFFSET_RANGE_MIN <= value) && (value <= Z_PROBE_OFFSET_RANGE_MAX)) + { + zprobe_zoffset = -value; // compare w/ line 278 of ConfigurationStore.cpp + SERIAL_ECHO_START; + SERIAL_ECHOLNRPGM(CAT4(MSG_ZPROBE_ZOFFSET, " ", _T(MSG_OK),PSTR(""))); + SERIAL_PROTOCOLLN(""); + } + else + { + SERIAL_ECHO_START; + SERIAL_ECHORPGM(MSG_ZPROBE_ZOFFSET); + SERIAL_ECHORPGM(MSG_Z_MIN); + SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MIN); + SERIAL_ECHORPGM(MSG_Z_MAX); + SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MAX); + SERIAL_PROTOCOLLN(""); + } + } + else + { + SERIAL_ECHO_START; + SERIAL_ECHOLNRPGM(CAT2(MSG_ZPROBE_ZOFFSET, PSTR(" : "))); + SERIAL_ECHO(-zprobe_zoffset); + SERIAL_PROTOCOLLN(""); + } + break; + } + #endif // CUSTOM_M_CODE_SET_Z_PROBE_OFFSET + + #ifdef FILAMENTCHANGEENABLE + case 600: //Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal] + { +#ifdef PAT9125 + bool old_fsensor_enabled = fsensor_enabled; + fsensor_enabled = false; //temporary solution for unexpected restarting +#endif //PAT9125 + + st_synchronize(); + float target[4]; + float lastpos[4]; + + if (farm_mode) + + { + + prusa_statistics(22); + + } + + feedmultiplyBckp=feedmultiply; + int8_t TooLowZ = 0; + + float HotendTempBckp = degTargetHotend(active_extruder); + int fanSpeedBckp = fanSpeed; + target[X_AXIS]=current_position[X_AXIS]; + target[Y_AXIS]=current_position[Y_AXIS]; + target[Z_AXIS]=current_position[Z_AXIS]; + target[E_AXIS]=current_position[E_AXIS]; + lastpos[X_AXIS]=current_position[X_AXIS]; + lastpos[Y_AXIS]=current_position[Y_AXIS]; + lastpos[Z_AXIS]=current_position[Z_AXIS]; + lastpos[E_AXIS]=current_position[E_AXIS]; + + //Restract extruder + if(code_seen('E')) + { + target[E_AXIS]+= code_value(); + } + else + { + #ifdef FILAMENTCHANGE_FIRSTRETRACT + target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT ; + #endif + } + plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder); + + //Lift Z + if(code_seen('Z')) + { + target[Z_AXIS]+= code_value(); + } + else + { + #ifdef FILAMENTCHANGE_ZADD + target[Z_AXIS]+= FILAMENTCHANGE_ZADD ; + if(target[Z_AXIS] < 10){ + target[Z_AXIS]+= 10 ; + TooLowZ = 1; + }else{ + TooLowZ = 0; + } + #endif + + + } + plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_ZFEED, active_extruder); + + //Move XY to side + if(code_seen('X')) + { + target[X_AXIS]+= code_value(); + } + else + { + #ifdef FILAMENTCHANGE_XPOS + target[X_AXIS]= FILAMENTCHANGE_XPOS ; + #endif + } + if(code_seen('Y')) + { + target[Y_AXIS]= code_value(); + } + else + { + #ifdef FILAMENTCHANGE_YPOS + target[Y_AXIS]= FILAMENTCHANGE_YPOS ; + #endif + } + plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_XYFEED, active_extruder); + st_synchronize(); + KEEPALIVE_STATE(PAUSED_FOR_USER); + + uint8_t cnt = 0; + int counterBeep = 0; + fanSpeed = 0; + unsigned long waiting_start_time = millis(); + uint8_t wait_for_user_state = 0; + lcd_display_message_fullscreen_P(_T(MSG_PRESS_TO_UNLOAD)); + while (!(wait_for_user_state == 0 && lcd_clicked())){ + + //cnt++; + manage_heater(); + manage_inactivity(true); + + /*#ifdef SNMM + target[E_AXIS] += 0.002; + plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 500, active_extruder); + + #endif // SNMM*/ + + //if (cnt == 0) + { +#if BEEPER > 0 + if (counterBeep == 500) { + counterBeep = 0; + } + SET_OUTPUT(BEEPER); + if (counterBeep == 0) { + WRITE(BEEPER, HIGH); + } + if (counterBeep == 20) { + WRITE(BEEPER, LOW); + } + + counterBeep++; +#else +#endif + } + + switch (wait_for_user_state) { + case 0: + delay_keep_alive(4); + + if (millis() > waiting_start_time + (unsigned long)M600_TIMEOUT * 1000) { + lcd_display_message_fullscreen_P(_i("Press knob to preheat nozzle and continue."));////MSG_PRESS_TO_PREHEAT c=20 r=4 + wait_for_user_state = 1; + setTargetHotend(0, 0); + setTargetHotend(0, 1); + setTargetHotend(0, 2); + st_synchronize(); + disable_e0(); + disable_e1(); + disable_e2(); + } + break; + case 1: + delay_keep_alive(4); + + if (lcd_clicked()) { + setTargetHotend(HotendTempBckp, active_extruder); + lcd_wait_for_heater(); + + wait_for_user_state = 2; + } + break; + case 2: + + if (abs(degTargetHotend(active_extruder) - degHotend(active_extruder)) < 1) { + lcd_display_message_fullscreen_P(_T(MSG_PRESS_TO_UNLOAD)); + waiting_start_time = millis(); + wait_for_user_state = 0; + } + else { + counterBeep = 20; //beeper will be inactive during waiting for nozzle preheat + lcd_set_cursor(1, 4); + lcd_print(ftostr3(degHotend(active_extruder))); + } + break; + + } + + } + WRITE(BEEPER, LOW); + + lcd_change_fil_state = 0; + + + // Unload filament + lcd_display_message_fullscreen_P(_T(MSG_UNLOADING_FILAMENT)); + KEEPALIVE_STATE(IN_HANDLER); + custom_message = true; + lcd_setstatuspgm(_T(MSG_UNLOADING_FILAMENT)); + + if (code_seen('L')) + { + target[E_AXIS] += code_value(); + } + else + { +#ifdef SNMM + +#else +#ifdef FILAMENTCHANGE_FINALRETRACT + target[E_AXIS] += FILAMENTCHANGE_FINALRETRACT; +#endif +#endif // SNMM + } + +#ifdef SNMM + target[E_AXIS] += 12; + plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 3500, active_extruder); + target[E_AXIS] += 6; + plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 5000, active_extruder); + target[E_AXIS] += (FIL_LOAD_LENGTH * -1); + plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 5000, active_extruder); + st_synchronize(); + target[E_AXIS] += (FIL_COOLING); + plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 50, active_extruder); + target[E_AXIS] += (FIL_COOLING*-1); + plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 50, active_extruder); + target[E_AXIS] += (bowden_length[snmm_extruder] * -1); + plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 3000, active_extruder); + st_synchronize(); + +#else + // plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder); + //plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 3500 / 60, active_extruder); + + target[E_AXIS] -= FILAMENTCHANGE_FINALRETRACT; + st_synchronize(); +#ifdef TMC2130 + uint8_t tmc2130_current_r_bckp = tmc2130_current_r[E_AXIS]; + tmc2130_set_current_r(E_AXIS, TMC2130_UNLOAD_CURRENT_R); +#else + + st_current_set(2, 200); //set lower E motor current for unload to protect filament sensor and ptfe tube + float tmp_motor[3] = DEFAULT_PWM_MOTOR_CURRENT; + float tmp_motor_loud[3] = DEFAULT_PWM_MOTOR_CURRENT_LOUD; + +#endif //TMC2130 + + target[E_AXIS] -= 45; + plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 5200 / 60, active_extruder); + st_synchronize(); + target[E_AXIS] -= 15; + plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 1000 / 60, active_extruder); + st_synchronize(); + target[E_AXIS] -= 20; + plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 1000 / 60, active_extruder); + st_synchronize(); + +#ifdef TMC2130 + tmc2130_set_current_r(E_AXIS, tmc2130_current_r_bckp); +#else + uint8_t silentMode = eeprom_read_byte((uint8_t*)EEPROM_SILENT); + if(silentMode != SILENT_MODE_POWER) st_current_set(2, tmp_motor[2]); //set E back to normal operation currents + else st_current_set(2, tmp_motor_loud[2]); +#endif //TMC2130 + +#endif // SNMM + + + //finish moves + st_synchronize(); + + lcd_display_message_fullscreen_P(_T(MSG_PULL_OUT_FILAMENT)); + + //disable extruder steppers so filament can be removed + disable_e0(); + disable_e1(); + disable_e2(); + delay(100); + + + WRITE(BEEPER, HIGH); + counterBeep = 0; + while(!lcd_clicked() && (counterBeep < 50)) { + if(counterBeep > 5) WRITE(BEEPER, LOW); + delay_keep_alive(100); + counterBeep++; + } + WRITE(BEEPER, LOW); + + KEEPALIVE_STATE(PAUSED_FOR_USER); + lcd_change_fil_state = lcd_show_fullscreen_message_yes_no_and_wait_P(_i("Was filament unload successful?"), false, true);////MSG_UNLOAD_SUCCESSFUL c=20 r=2 + if (lcd_change_fil_state == 0) lcd_show_fullscreen_message_and_wait_P(_i("Please open idler and remove filament manually."));////MSG_CHECK_IDLER c=20 r=4 + //lcd_return_to_status(); + lcd_update_enable(true); + + //Wait for user to insert filament + lcd_wait_interact(); + //load_filament_time = millis(); + KEEPALIVE_STATE(PAUSED_FOR_USER); + +#ifdef PAT9125 + if (filament_autoload_enabled && (old_fsensor_enabled || fsensor_M600)) fsensor_autoload_check_start(); +#endif //PAT9125 +// printf_P(PSTR("M600 PAT9125 filament_autoload_enabled=%d, old_fsensor_enabled=%d, fsensor_M600=%d"), filament_autoload_enabled, old_fsensor_enabled, fsensor_M600); + while(!lcd_clicked()) + { + manage_heater(); + manage_inactivity(true); +#ifdef PAT9125 + if (filament_autoload_enabled && (old_fsensor_enabled || fsensor_M600) && fsensor_check_autoload()) + { + tone(BEEPER, 1000); + delay_keep_alive(50); + noTone(BEEPER); + break; + } +#endif //PAT9125 +/*#ifdef SNMM + target[E_AXIS] += 0.002; + plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 500, active_extruder); + +#endif // SNMM*/ + + } +#ifdef PAT9125 + if (filament_autoload_enabled && (old_fsensor_enabled || fsensor_M600)) fsensor_autoload_check_stop(); +#endif //PAT9125 + //WRITE(BEEPER, LOW); + KEEPALIVE_STATE(IN_HANDLER); + + +#ifdef SNMM + display_loading(); + KEEPALIVE_STATE(PAUSED_FOR_USER); + do { + target[E_AXIS] += 0.002; + plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 500, active_extruder); + delay_keep_alive(2); + } while (!lcd_clicked()); + KEEPALIVE_STATE(IN_HANDLER); + /*if (millis() - load_filament_time > 2) { + load_filament_time = millis(); + target[E_AXIS] += 0.001; + plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 1000, active_extruder); + }*/ + + //Filament inserted + //Feed the filament to the end of nozzle quickly + st_synchronize(); + target[E_AXIS] += bowden_length[snmm_extruder]; + plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 3000, active_extruder); + target[E_AXIS] += FIL_LOAD_LENGTH - 60; + plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 1400, active_extruder); + target[E_AXIS] += 40; + plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder); + target[E_AXIS] += 10; + plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 50, active_extruder); +#else + target[E_AXIS] += FILAMENTCHANGE_FIRSTFEED; + plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EFEED, active_extruder); +#endif // SNMM + + //Extrude some filament + target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ; + plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EXFEED, active_extruder); + + //Wait for user to check the state + lcd_change_fil_state = 0; + lcd_loading_filament(); + + tone(BEEPER, 500); + delay_keep_alive(50); + noTone(BEEPER); + + while ((lcd_change_fil_state == 0)||(lcd_change_fil_state != 1)){ + lcd_change_fil_state = 0; + KEEPALIVE_STATE(PAUSED_FOR_USER); + lcd_alright(); + KEEPALIVE_STATE(IN_HANDLER); + switch(lcd_change_fil_state){ + + // Filament failed to load so load it again + case 2: +#ifdef SNMM + display_loading(); + do { + target[E_AXIS] += 0.002; + plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 500, active_extruder); + delay_keep_alive(2); + } while (!lcd_clicked()); + + st_synchronize(); + target[E_AXIS] += bowden_length[snmm_extruder]; + plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 3000, active_extruder); + target[E_AXIS] += FIL_LOAD_LENGTH - 60; + plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 1400, active_extruder); + target[E_AXIS] += 40; + plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder); + target[E_AXIS] += 10; + plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 50, active_extruder); + +#else + target[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ; + plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EFEED, active_extruder); +#endif + target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ; + plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EXFEED, active_extruder); + + lcd_loading_filament(); + + break; + + // Filament loaded properly but color is not clear + case 3: + target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ; + plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder); + lcd_loading_color(); + break; + + // Everything good + default: + lcd_change_success(); + lcd_update_enable(true); + break; + } + + } + + + //Not let's go back to print + fanSpeed = fanSpeedBckp; + + //Feed a little of filament to stabilize pressure + target[E_AXIS]+= FILAMENTCHANGE_RECFEED; + plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EXFEED, active_extruder); + + //Retract + target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT; + plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder); + + + + //plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder); //should do nothing + + //Move XY back + plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_XYFEED, active_extruder); + + //Move Z back + plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_ZFEED, active_extruder); + + + target[E_AXIS]= target[E_AXIS] - FILAMENTCHANGE_FIRSTRETRACT; + + //Unretract + plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder); + + //Set E position to original + plan_set_e_position(lastpos[E_AXIS]); + + //Recover feed rate + feedmultiply=feedmultiplyBckp; + char cmd[9]; + sprintf_P(cmd, PSTR("M220 S%i"), feedmultiplyBckp); + enquecommand(cmd); + + lcd_setstatuspgm(_T(WELCOME_MSG)); + custom_message = false; + custom_message_type = 0; + +#ifdef PAT9125 + fsensor_enabled = old_fsensor_enabled; //temporary solution for unexpected restarting + + if (fsensor_M600) + { + cmdqueue_pop_front(); //hack because M600 repeated 2x when enqueued to front + st_synchronize(); + while (!is_buffer_empty()) + { + process_commands(); + cmdqueue_pop_front(); + } + KEEPALIVE_STATE(IN_HANDLER); + fsensor_enable(); + fsensor_restore_print_and_continue(); + } + +#endif //PAT9125 + + } + break; + #endif //FILAMENTCHANGEENABLE + case 601: { + if(lcd_commands_type == 0) lcd_commands_type = LCD_COMMAND_LONG_PAUSE; + } + break; + + case 602: { + if(lcd_commands_type == 0) lcd_commands_type = LCD_COMMAND_LONG_PAUSE_RESUME; + } + break; + +#ifdef PINDA_THERMISTOR + case 860: // M860 - Wait for PINDA thermistor to reach target temperature. + { + int set_target_pinda = 0; + + if (code_seen('S')) { + set_target_pinda = code_value(); + } + else { + break; + } + + LCD_MESSAGERPGM(_T(MSG_PLEASE_WAIT)); + + SERIAL_PROTOCOLPGM("Wait for PINDA target temperature:"); + SERIAL_PROTOCOL(set_target_pinda); + SERIAL_PROTOCOLLN(""); + + codenum = millis(); + cancel_heatup = false; + + bool is_pinda_cooling = false; + if ((degTargetBed() == 0) && (degTargetHotend(0) == 0)) { + is_pinda_cooling = true; + } + + while ( ((!is_pinda_cooling) && (!cancel_heatup) && (current_temperature_pinda < set_target_pinda)) || (is_pinda_cooling && (current_temperature_pinda > set_target_pinda)) ) { + if ((millis() - codenum) > 1000) //Print Temp Reading every 1 second while waiting. + { + SERIAL_PROTOCOLPGM("P:"); + SERIAL_PROTOCOL_F(current_temperature_pinda, 1); + SERIAL_PROTOCOLPGM("/"); + SERIAL_PROTOCOL(set_target_pinda); + SERIAL_PROTOCOLLN(""); + codenum = millis(); + } + manage_heater(); + manage_inactivity(); + lcd_update(0); + } + LCD_MESSAGERPGM(_T(MSG_OK)); + + break; + } + + case 861: // M861 - Set/Read PINDA temperature compensation offsets + if (code_seen('?')) { // ? - Print out current EEPROM offset values + uint8_t cal_status = calibration_status_pinda(); + int16_t usteps = 0; + cal_status ? SERIAL_PROTOCOLLN("PINDA cal status: 1") : SERIAL_PROTOCOLLN("PINDA cal status: 0"); + SERIAL_PROTOCOLLN("index, temp, ustep, um"); + for (uint8_t i = 0; i < 6; i++) + { + if(i>0) EEPROM_read_B(EEPROM_PROBE_TEMP_SHIFT + (i-1) * 2, &usteps); + float mm = ((float)usteps) / axis_steps_per_unit[Z_AXIS]; + i == 0 ? SERIAL_PROTOCOLPGM("n/a") : SERIAL_PROTOCOL(i - 1); + SERIAL_PROTOCOLPGM(", "); + SERIAL_PROTOCOL(35 + (i * 5)); + SERIAL_PROTOCOLPGM(", "); + SERIAL_PROTOCOL(usteps); + SERIAL_PROTOCOLPGM(", "); + SERIAL_PROTOCOL(mm * 1000); + SERIAL_PROTOCOLLN(""); + } + } + else if (code_seen('!')) { // ! - Set factory default values + eeprom_write_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 1); + int16_t z_shift = 8; //40C - 20um - 8usteps + EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT, &z_shift); + z_shift = 24; //45C - 60um - 24usteps + EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + 2, &z_shift); + z_shift = 48; //50C - 120um - 48usteps + EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + 4, &z_shift); + z_shift = 80; //55C - 200um - 80usteps + EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + 6, &z_shift); + z_shift = 120; //60C - 300um - 120usteps + EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + 8, &z_shift); + SERIAL_PROTOCOLLN("factory restored"); + } + else if (code_seen('Z')) { // Z - Set all values to 0 (effectively disabling PINDA temperature compensation) + eeprom_write_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 1); + int16_t z_shift = 0; + for (uint8_t i = 0; i < 5; i++) EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i * 2, &z_shift); + SERIAL_PROTOCOLLN("zerorized"); + } + else if (code_seen('S')) { // Sxxx Iyyy - Set compensation ustep value S for compensation table index I + int16_t usteps = code_value(); + if (code_seen('I')) { + byte index = code_value(); + if ((index >= 0) && (index < 5)) { + EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + index * 2, &usteps); + SERIAL_PROTOCOLLN("OK"); + SERIAL_PROTOCOLLN("index, temp, ustep, um"); + for (uint8_t i = 0; i < 6; i++) + { + usteps = 0; + if (i>0) EEPROM_read_B(EEPROM_PROBE_TEMP_SHIFT + (i - 1) * 2, &usteps); + float mm = ((float)usteps) / axis_steps_per_unit[Z_AXIS]; + i == 0 ? SERIAL_PROTOCOLPGM("n/a") : SERIAL_PROTOCOL(i - 1); + SERIAL_PROTOCOLPGM(", "); + SERIAL_PROTOCOL(35 + (i * 5)); + SERIAL_PROTOCOLPGM(", "); + SERIAL_PROTOCOL(usteps); + SERIAL_PROTOCOLPGM(", "); + SERIAL_PROTOCOL(mm * 1000); + SERIAL_PROTOCOLLN(""); + } + } + } + } + else { + SERIAL_PROTOCOLPGM("no valid command"); + } + break; + +#endif //PINDA_THERMISTOR + +#ifdef LIN_ADVANCE + case 900: // M900: Set LIN_ADVANCE options. + gcode_M900(); + break; +#endif + + case 907: // M907 Set digital trimpot motor current using axis codes. + { + #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1 + for(int i=0;i -1 + uint8_t channel,current; + if(code_seen('P')) channel=code_value(); + if(code_seen('S')) current=code_value(); + digitalPotWrite(channel, current); + #endif + } + break; + +#ifdef TMC2130 + + case 910: // M910 TMC2130 init + { + tmc2130_init(); + } + break; + + case 911: // M911 Set TMC2130 holding currents + { + if (code_seen('X')) tmc2130_set_current_h(0, code_value()); + if (code_seen('Y')) tmc2130_set_current_h(1, code_value()); + if (code_seen('Z')) tmc2130_set_current_h(2, code_value()); + if (code_seen('E')) tmc2130_set_current_h(3, code_value()); + } + break; + + case 912: // M912 Set TMC2130 running currents + { + if (code_seen('X')) tmc2130_set_current_r(0, code_value()); + if (code_seen('Y')) tmc2130_set_current_r(1, code_value()); + if (code_seen('Z')) tmc2130_set_current_r(2, code_value()); + if (code_seen('E')) tmc2130_set_current_r(3, code_value()); + } + break; + + case 913: // M913 Print TMC2130 currents + { + tmc2130_print_currents(); + } + break; + + case 914: // M914 Set normal mode + { + tmc2130_mode = TMC2130_MODE_NORMAL; + tmc2130_init(); + } + break; + + case 915: // M915 Set silent mode + { + tmc2130_mode = TMC2130_MODE_SILENT; + tmc2130_init(); + } + break; + + case 916: // M916 Set sg_thrs + { + if (code_seen('X')) tmc2130_sg_thr[X_AXIS] = code_value(); + if (code_seen('Y')) tmc2130_sg_thr[Y_AXIS] = code_value(); + if (code_seen('Z')) tmc2130_sg_thr[Z_AXIS] = code_value(); + if (code_seen('E')) tmc2130_sg_thr[E_AXIS] = code_value(); + for (uint8_t a = X_AXIS; a <= E_AXIS; a++) + printf_P(_N("tmc2130_sg_thr[%c]=%d\n"), "XYZE"[a], tmc2130_sg_thr[a]); + } + break; + + case 917: // M917 Set TMC2130 pwm_ampl + { + if (code_seen('X')) tmc2130_set_pwm_ampl(0, code_value()); + if (code_seen('Y')) tmc2130_set_pwm_ampl(1, code_value()); + if (code_seen('Z')) tmc2130_set_pwm_ampl(2, code_value()); + if (code_seen('E')) tmc2130_set_pwm_ampl(3, code_value()); + } + break; + + case 918: // M918 Set TMC2130 pwm_grad + { + if (code_seen('X')) tmc2130_set_pwm_grad(0, code_value()); + if (code_seen('Y')) tmc2130_set_pwm_grad(1, code_value()); + if (code_seen('Z')) tmc2130_set_pwm_grad(2, code_value()); + if (code_seen('E')) tmc2130_set_pwm_grad(3, code_value()); + } + break; + +#endif //TMC2130 + + case 350: // M350 Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers. + { + #ifdef TMC2130 + if(code_seen('E')) + { + uint16_t res_new = code_value(); + if ((res_new == 8) || (res_new == 16) || (res_new == 32) || (res_new == 64) || (res_new == 128)) + { + st_synchronize(); + uint8_t axis = E_AXIS; + uint16_t res = tmc2130_get_res(axis); + tmc2130_set_res(axis, res_new); + if (res_new > res) + { + uint16_t fac = (res_new / res); + axis_steps_per_unit[axis] *= fac; + position[E_AXIS] *= fac; + } + else + { + uint16_t fac = (res / res_new); + axis_steps_per_unit[axis] /= fac; + position[E_AXIS] /= fac; + } + } + } + #else //TMC2130 + #if defined(X_MS1_PIN) && X_MS1_PIN > -1 + if(code_seen('S')) for(int i=0;i<=4;i++) microstep_mode(i,code_value()); + for(int i=0;i -1 + if(code_seen('S')) switch((int)code_value()) + { + case 1: + for(int i=0;i 5) WRITE(BEEPER, LOW); + delay_keep_alive(100); + counterBeep++; + } + WRITE(BEEPER, LOW); + st_synchronize(); + while (lcd_clicked()) delay_keep_alive(100); + + lcd_update_enable(true); + + lcd_setstatuspgm(_T(WELCOME_MSG)); + custom_message = false; + custom_message_type = 0; +#ifdef PAT9125 + fsensor_enabled = old_fsensor_enabled; +#endif //PAT9125 +#endif + } + break; + + case 999: // M999: Restart after being stopped + Stopped = false; + lcd_reset_alert_level(); + gcode_LastN = Stopped_gcode_LastN; + FlushSerialRequestResend(); + break; + default: + printf_P(PSTR("Unknown M code: %s \n"), cmdbuffer + bufindr + CMDHDRSIZE); + } + + } // end if(code_seen('M')) (end of M codes) + + else if(code_seen('T')) + { + int index; + st_synchronize(); + for (index = 1; *(strchr_pointer + index) == ' ' || *(strchr_pointer + index) == '\t'; index++); + + if ((*(strchr_pointer + index) < '0' || *(strchr_pointer + index) > '9') && *(strchr_pointer + index) != '?') { + SERIAL_ECHOLNPGM("Invalid T code."); + } + else { + if (*(strchr_pointer + index) == '?') { + tmp_extruder = choose_extruder_menu(); + } + else { + tmp_extruder = code_value(); + } + snmm_filaments_used |= (1 << tmp_extruder); //for stop print + +#ifdef SNMM_V2 + printf_P(PSTR("T code: %d \n"), tmp_extruder); + switch (tmp_extruder) + { + case 1: + + fprintf_P(uart2io, PSTR("T1\n")); + break; + case 2: + + fprintf_P(uart2io, PSTR("T2\n")); + break; + case 3: + + fprintf_P(uart2io, PSTR("T3\n")); + break; + case 4: + + fprintf_P(uart2io, PSTR("T4\n")); + break; + default: + + fprintf_P(uart2io, PSTR("T0\n")); + break; + } + + + + + // get response + uart2_rx_clr(); + while (!uart2_rx_ok()) + { + //printf_P(PSTR("waiting..\n")); + delay_keep_alive(100); + } + snmm_extruder = tmp_extruder; //filament change is finished + + if (*(strchr_pointer + index) == '?') { // for single material usage with mmu + bool saved_e_relative_mode = axis_relative_modes[E_AXIS]; + if (!saved_e_relative_mode) { + enquecommand_front_P(PSTR("M82")); // set extruder to relative mode + } + enquecommand_front_P((PSTR("G1 E7.2000 F562"))); + enquecommand_front_P((PSTR("G1 E14.4000 F871"))); + enquecommand_front_P((PSTR("G1 E36.0000 F1393"))); + enquecommand_front_P((PSTR("G1 E14.4000 F871"))); + if (!saved_e_relative_mode) { + enquecommand_front_P(PSTR("M83")); // set extruder to relative mode + } + } +#endif + +#ifdef SNMM + + #ifdef LIN_ADVANCE + if (snmm_extruder != tmp_extruder) + clear_current_adv_vars(); //Check if the selected extruder is not the active one and reset LIN_ADVANCE variables if so. + #endif + + snmm_extruder = tmp_extruder; + + + delay(100); + + disable_e0(); + disable_e1(); + disable_e2(); + + pinMode(E_MUX0_PIN, OUTPUT); + pinMode(E_MUX1_PIN, OUTPUT); + + delay(100); + SERIAL_ECHO_START; + SERIAL_ECHO("T:"); + SERIAL_ECHOLN((int)tmp_extruder); + switch (tmp_extruder) { + case 1: + WRITE(E_MUX0_PIN, HIGH); + WRITE(E_MUX1_PIN, LOW); + + break; + case 2: + WRITE(E_MUX0_PIN, LOW); + WRITE(E_MUX1_PIN, HIGH); + + break; + case 3: + WRITE(E_MUX0_PIN, HIGH); + WRITE(E_MUX1_PIN, HIGH); + + break; + default: + WRITE(E_MUX0_PIN, LOW); + WRITE(E_MUX1_PIN, LOW); + + break; + } + delay(100); + +#else + if (tmp_extruder >= EXTRUDERS) { + SERIAL_ECHO_START; + SERIAL_ECHOPGM("T"); + SERIAL_PROTOCOLLN((int)tmp_extruder); + SERIAL_ECHOLNRPGM(_n("Invalid extruder"));////MSG_INVALID_EXTRUDER c=0 r=0 + } + else { + boolean make_move = false; + if (code_seen('F')) { + make_move = true; + next_feedrate = code_value(); + if (next_feedrate > 0.0) { + feedrate = next_feedrate; + } + } +#if EXTRUDERS > 1 + if (tmp_extruder != active_extruder) { + // Save current position to return to after applying extruder offset + memcpy(destination, current_position, sizeof(destination)); + // Offset extruder (only by XY) + int i; + for (i = 0; i < 2; i++) { + current_position[i] = current_position[i] - + extruder_offset[i][active_extruder] + + extruder_offset[i][tmp_extruder]; + } + // Set the new active extruder and position + active_extruder = tmp_extruder; + plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]); + // Move to the old position if 'F' was in the parameters + if (make_move && Stopped == false) { + prepare_move(); + } + } +#endif + SERIAL_ECHO_START; + SERIAL_ECHORPGM(_n("Active Extruder: "));////MSG_ACTIVE_EXTRUDER c=0 r=0 + SERIAL_PROTOCOLLN((int)active_extruder); + } + +#endif + } + } // end if(code_seen('T')) (end of T codes) + +#ifdef DEBUG_DCODES + else if (code_seen('D')) // D codes (debug) + { + switch((int)code_value()) + { + case -1: // D-1 - Endless loop + dcode__1(); break; + case 0: // D0 - Reset + dcode_0(); break; + case 1: // D1 - Clear EEPROM + dcode_1(); break; + case 2: // D2 - Read/Write RAM + dcode_2(); break; + case 3: // D3 - Read/Write EEPROM + dcode_3(); break; + case 4: // D4 - Read/Write PIN + dcode_4(); break; + case 5: // D5 - Read/Write FLASH +// dcode_5(); break; + break; + case 6: // D6 - Read/Write external FLASH + dcode_6(); break; + case 7: // D7 - Read/Write Bootloader + dcode_7(); break; + case 8: // D8 - Read/Write PINDA + dcode_8(); break; + case 9: // D9 - Read/Write ADC + dcode_9(); break; + + case 10: // D10 - XYZ calibration = OK + dcode_10(); break; + + +#ifdef TMC2130 + case 2130: // D9125 - TMC2130 + dcode_2130(); break; +#endif //TMC2130 + +#ifdef PAT9125 + case 9125: // D9125 - PAT9125 + dcode_9125(); break; +#endif //PAT9125 + + } + } +#endif //DEBUG_DCODES + + else + { + SERIAL_ECHO_START; + SERIAL_ECHORPGM(MSG_UNKNOWN_COMMAND); + SERIAL_ECHO(CMDBUFFER_CURRENT_STRING); + SERIAL_ECHOLNPGM("\"(2)"); + } + KEEPALIVE_STATE(NOT_BUSY); + ClearToSend(); +} + +void FlushSerialRequestResend() +{ + //char cmdbuffer[bufindr][100]="Resend:"; + MYSERIAL.flush(); + printf_P(_N("%S: %ld\n%S\n"), _i("Resend"), gcode_LastN + 1, _T(MSG_OK)); +} + +// Confirm the execution of a command, if sent from a serial line. +// Execution of a command from a SD card will not be confirmed. +void ClearToSend() +{ + previous_millis_cmd = millis(); + if ((CMDBUFFER_CURRENT_TYPE == CMDBUFFER_CURRENT_TYPE_USB) || (CMDBUFFER_CURRENT_TYPE == CMDBUFFER_CURRENT_TYPE_USB_WITH_LINENR)) + SERIAL_PROTOCOLLNRPGM(_T(MSG_OK)); +} + +#if MOTHERBOARD == BOARD_RAMBO_MINI_1_0 || MOTHERBOARD == BOARD_RAMBO_MINI_1_3 +void update_currents() { + float current_high[3] = DEFAULT_PWM_MOTOR_CURRENT_LOUD; + float current_low[3] = DEFAULT_PWM_MOTOR_CURRENT; + float tmp_motor[3]; + + //SERIAL_ECHOLNPGM("Currents updated: "); + + if (destination[Z_AXIS] < Z_SILENT) { + //SERIAL_ECHOLNPGM("LOW"); + for (uint8_t i = 0; i < 3; i++) { + st_current_set(i, current_low[i]); + /*MYSERIAL.print(int(i)); + SERIAL_ECHOPGM(": "); + MYSERIAL.println(current_low[i]);*/ + } + } + else if (destination[Z_AXIS] > Z_HIGH_POWER) { + //SERIAL_ECHOLNPGM("HIGH"); + for (uint8_t i = 0; i < 3; i++) { + st_current_set(i, current_high[i]); + /*MYSERIAL.print(int(i)); + SERIAL_ECHOPGM(": "); + MYSERIAL.println(current_high[i]);*/ + } + } + else { + for (uint8_t i = 0; i < 3; i++) { + float q = current_low[i] - Z_SILENT*((current_high[i] - current_low[i]) / (Z_HIGH_POWER - Z_SILENT)); + tmp_motor[i] = ((current_high[i] - current_low[i]) / (Z_HIGH_POWER - Z_SILENT))*destination[Z_AXIS] + q; + st_current_set(i, tmp_motor[i]); + /*MYSERIAL.print(int(i)); + SERIAL_ECHOPGM(": "); + MYSERIAL.println(tmp_motor[i]);*/ + } + } +} +#endif //MOTHERBOARD == BOARD_RAMBO_MINI_1_0 || MOTHERBOARD == BOARD_RAMBO_MINI_1_3 + +void get_coordinates() +{ + bool seen[4]={false,false,false,false}; + for(int8_t i=0; i < NUM_AXIS; i++) { + if(code_seen(axis_codes[i])) + { + bool relative = axis_relative_modes[i] || relative_mode; + destination[i] = (float)code_value(); + if (i == E_AXIS) { + float emult = extruder_multiplier[active_extruder]; + if (emult != 1.) { + if (! relative) { + destination[i] -= current_position[i]; + relative = true; + } + destination[i] *= emult; + } + } + if (relative) + destination[i] += current_position[i]; + seen[i]=true; +#if MOTHERBOARD == BOARD_RAMBO_MINI_1_0 || MOTHERBOARD == BOARD_RAMBO_MINI_1_3 + if (i == Z_AXIS && SilentModeMenu == SILENT_MODE_AUTO) update_currents(); +#endif //MOTHERBOARD == BOARD_RAMBO_MINI_1_0 || MOTHERBOARD == BOARD_RAMBO_MINI_1_3 + } + else destination[i] = current_position[i]; //Are these else lines really needed? + } + if(code_seen('F')) { + next_feedrate = code_value(); +#ifdef MAX_SILENT_FEEDRATE + if (tmc2130_mode == TMC2130_MODE_SILENT) + if (next_feedrate > MAX_SILENT_FEEDRATE) next_feedrate = MAX_SILENT_FEEDRATE; +#endif //MAX_SILENT_FEEDRATE + if(next_feedrate > 0.0) feedrate = next_feedrate; + if (!seen[0] && !seen[1] && !seen[2] && seen[3]) + { +// float e_max_speed = +// printf_P(PSTR("E MOVE speed %7.3f\n"), feedrate / 60) + } + } +} + +void get_arc_coordinates() +{ +#ifdef SF_ARC_FIX + bool relative_mode_backup = relative_mode; + relative_mode = true; +#endif + get_coordinates(); +#ifdef SF_ARC_FIX + relative_mode=relative_mode_backup; +#endif + + if(code_seen('I')) { + offset[0] = code_value(); + } + else { + offset[0] = 0.0; + } + if(code_seen('J')) { + offset[1] = code_value(); + } + else { + offset[1] = 0.0; + } +} + +void clamp_to_software_endstops(float target[3]) +{ +#ifdef DEBUG_DISABLE_SWLIMITS + return; +#endif //DEBUG_DISABLE_SWLIMITS + world2machine_clamp(target[0], target[1]); + + // Clamp the Z coordinate. + if (min_software_endstops) { + float negative_z_offset = 0; + #ifdef ENABLE_AUTO_BED_LEVELING + if (Z_PROBE_OFFSET_FROM_EXTRUDER < 0) negative_z_offset = negative_z_offset + Z_PROBE_OFFSET_FROM_EXTRUDER; + if (add_homing[Z_AXIS] < 0) negative_z_offset = negative_z_offset + add_homing[Z_AXIS]; + #endif + if (target[Z_AXIS] < min_pos[Z_AXIS]+negative_z_offset) target[Z_AXIS] = min_pos[Z_AXIS]+negative_z_offset; + } + if (max_software_endstops) { + if (target[Z_AXIS] > max_pos[Z_AXIS]) target[Z_AXIS] = max_pos[Z_AXIS]; + } +} + +#ifdef MESH_BED_LEVELING + void mesh_plan_buffer_line(const float &x, const float &y, const float &z, const float &e, const float &feed_rate, const uint8_t extruder) { + float dx = x - current_position[X_AXIS]; + float dy = y - current_position[Y_AXIS]; + float dz = z - current_position[Z_AXIS]; + int n_segments = 0; + + if (mbl.active) { + float len = abs(dx) + abs(dy); + if (len > 0) + // Split to 3cm segments or shorter. + n_segments = int(ceil(len / 30.f)); + } + + if (n_segments > 1) { + float de = e - current_position[E_AXIS]; + for (int i = 1; i < n_segments; ++ i) { + float t = float(i) / float(n_segments); + if (saved_printing || (mbl.active == false)) return; + plan_buffer_line( + current_position[X_AXIS] + t * dx, + current_position[Y_AXIS] + t * dy, + current_position[Z_AXIS] + t * dz, + current_position[E_AXIS] + t * de, + feed_rate, extruder); + } + } + // The rest of the path. + plan_buffer_line(x, y, z, e, feed_rate, extruder); + current_position[X_AXIS] = x; + current_position[Y_AXIS] = y; + current_position[Z_AXIS] = z; + current_position[E_AXIS] = e; + } +#endif // MESH_BED_LEVELING + +void prepare_move() +{ + clamp_to_software_endstops(destination); + previous_millis_cmd = millis(); + + // Do not use feedmultiply for E or Z only moves + if( (current_position[X_AXIS] == destination [X_AXIS]) && (current_position[Y_AXIS] == destination [Y_AXIS])) { + plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder); + } + else { +#ifdef MESH_BED_LEVELING + mesh_plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate*feedmultiply*(1./(60.f*100.f)), active_extruder); +#else + plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate*feedmultiply*(1./(60.f*100.f)), active_extruder); +#endif + } + + for(int8_t i=0; i < NUM_AXIS; i++) { + current_position[i] = destination[i]; + } +} + +void prepare_arc_move(char isclockwise) { + float r = hypot(offset[X_AXIS], offset[Y_AXIS]); // Compute arc radius for mc_arc + + // Trace the arc + mc_arc(current_position, destination, offset, X_AXIS, Y_AXIS, Z_AXIS, feedrate*feedmultiply/60/100.0, r, isclockwise, active_extruder); + + // As far as the parser is concerned, the position is now == target. In reality the + // motion control system might still be processing the action and the real tool position + // in any intermediate location. + for(int8_t i=0; i < NUM_AXIS; i++) { + current_position[i] = destination[i]; + } + previous_millis_cmd = millis(); +} + +#if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1 + +#if defined(FAN_PIN) + #if CONTROLLERFAN_PIN == FAN_PIN + #error "You cannot set CONTROLLERFAN_PIN equal to FAN_PIN" + #endif +#endif + +unsigned long lastMotor = 0; //Save the time for when a motor was turned on last +unsigned long lastMotorCheck = 0; + +void controllerFan() +{ + if ((millis() - lastMotorCheck) >= 2500) //Not a time critical function, so we only check every 2500ms + { + lastMotorCheck = millis(); + + if(!READ(X_ENABLE_PIN) || !READ(Y_ENABLE_PIN) || !READ(Z_ENABLE_PIN) || (soft_pwm_bed > 0) + #if EXTRUDERS > 2 + || !READ(E2_ENABLE_PIN) + #endif + #if EXTRUDER > 1 + #if defined(X2_ENABLE_PIN) && X2_ENABLE_PIN > -1 + || !READ(X2_ENABLE_PIN) + #endif + || !READ(E1_ENABLE_PIN) + #endif + || !READ(E0_ENABLE_PIN)) //If any of the drivers are enabled... + { + lastMotor = millis(); //... set time to NOW so the fan will turn on + } + + if ((millis() - lastMotor) >= (CONTROLLERFAN_SECS*1000UL) || lastMotor == 0) //If the last time any driver was enabled, is longer since than CONTROLLERSEC... + { + digitalWrite(CONTROLLERFAN_PIN, 0); + analogWrite(CONTROLLERFAN_PIN, 0); + } + else + { + // allows digital or PWM fan output to be used (see M42 handling) + digitalWrite(CONTROLLERFAN_PIN, CONTROLLERFAN_SPEED); + analogWrite(CONTROLLERFAN_PIN, CONTROLLERFAN_SPEED); + } + } +} +#endif + +#ifdef TEMP_STAT_LEDS +static bool blue_led = false; +static bool red_led = false; +static uint32_t stat_update = 0; + +void handle_status_leds(void) { + float max_temp = 0.0; + if(millis() > stat_update) { + stat_update += 500; // Update every 0.5s + for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) { + max_temp = max(max_temp, degHotend(cur_extruder)); + max_temp = max(max_temp, degTargetHotend(cur_extruder)); + } + #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1 + max_temp = max(max_temp, degTargetBed()); + max_temp = max(max_temp, degBed()); + #endif + if((max_temp > 55.0) && (red_led == false)) { + digitalWrite(STAT_LED_RED, 1); + digitalWrite(STAT_LED_BLUE, 0); + red_led = true; + blue_led = false; + } + if((max_temp < 54.0) && (blue_led == false)) { + digitalWrite(STAT_LED_RED, 0); + digitalWrite(STAT_LED_BLUE, 1); + red_led = false; + blue_led = true; + } + } +} +#endif + +#ifdef SAFETYTIMER +/** + * @brief Turn off heating after safetytimer_inactive_time milliseconds of inactivity + * + * Full screen blocking notification message is shown after heater turning off. + * Paused print is not considered inactivity, as nozzle is cooled anyway and bed cooling would + * damage print. + * + * If safetytimer_inactive_time is zero, feature is disabled (heating is never turned off because of inactivity) + */ +static void handleSafetyTimer() +{ +#if (EXTRUDERS > 1) +#error Implemented only for one extruder. +#endif //(EXTRUDERS > 1) + if ((PRINTER_ACTIVE) || (!degTargetBed() && !degTargetHotend(0)) || (!safetytimer_inactive_time)) + { + safetyTimer.stop(); + } + else if ((degTargetBed() || degTargetHotend(0)) && (!safetyTimer.running())) + { + safetyTimer.start(); + } + else if (safetyTimer.expired(safetytimer_inactive_time)) + { + setTargetBed(0); + setTargetHotend(0, 0); + lcd_show_fullscreen_message_and_wait_P(_i("Heating disabled by safety timer."));////MSG_BED_HEATING_SAFETY_DISABLED c=0 r=0 + } +} +#endif //SAFETYTIMER + +void manage_inactivity(bool ignore_stepper_queue/*=false*/) //default argument set in Marlin.h +{ +#ifdef PAT9125 + if (fsensor_enabled && filament_autoload_enabled && !fsensor_M600 && !moves_planned() && !IS_SD_PRINTING && !is_usb_printing && (lcd_commands_type != LCD_COMMAND_V2_CAL)) + { + if (fsensor_autoload_enabled) + { + if (fsensor_check_autoload()) + { + + if (degHotend0() > EXTRUDE_MINTEMP) + { + fsensor_autoload_check_stop(); + tone(BEEPER, 1000); + delay_keep_alive(50); + noTone(BEEPER); + loading_flag = true; + enquecommand_front_P((PSTR("M701"))); + } + else + { + lcd_update_enable(false); + lcd_clear(); + lcd_set_cursor(0, 0); + lcd_puts_P(_T(MSG_ERROR)); + lcd_set_cursor(0, 2); + lcd_puts_P(_T(MSG_PREHEAT_NOZZLE)); + delay(2000); + lcd_clear(); + lcd_update_enable(true); + } + + } + } + else + fsensor_autoload_check_start(); + } + else + if (fsensor_autoload_enabled) + fsensor_autoload_check_stop(); +#endif //PAT9125 + +#ifdef SAFETYTIMER + handleSafetyTimer(); +#endif //SAFETYTIMER + +#if defined(KILL_PIN) && KILL_PIN > -1 + static int killCount = 0; // make the inactivity button a bit less responsive + const int KILL_DELAY = 10000; +#endif + + if(buflen < (BUFSIZE-1)){ + get_command(); + } + + if( (millis() - previous_millis_cmd) > max_inactive_time ) + if(max_inactive_time) + kill(_n(""), 4); + if(stepper_inactive_time) { + if( (millis() - previous_millis_cmd) > stepper_inactive_time ) + { + if(blocks_queued() == false && ignore_stepper_queue == false) { + disable_x(); +// SERIAL_ECHOLNPGM("manage_inactivity - disable Y"); + disable_y(); + disable_z(); + disable_e0(); + disable_e1(); + disable_e2(); + } + } + } + + #ifdef CHDK //Check if pin should be set to LOW after M240 set it to HIGH + if (chdkActive && (millis() - chdkHigh > CHDK_DELAY)) + { + chdkActive = false; + WRITE(CHDK, LOW); + } + #endif + + #if defined(KILL_PIN) && KILL_PIN > -1 + + // Check if the kill button was pressed and wait just in case it was an accidental + // key kill key press + // ------------------------------------------------------------------------------- + if( 0 == READ(KILL_PIN) ) + { + killCount++; + } + else if (killCount > 0) + { + killCount--; + } + // Exceeded threshold and we can confirm that it was not accidental + // KILL the machine + // ---------------------------------------------------------------- + if ( killCount >= KILL_DELAY) + { + kill("", 5); + } + #endif + + #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1 + controllerFan(); //Check if fan should be turned on to cool stepper drivers down + #endif + #ifdef EXTRUDER_RUNOUT_PREVENT + if( (millis() - previous_millis_cmd) > EXTRUDER_RUNOUT_SECONDS*1000 ) + if(degHotend(active_extruder)>EXTRUDER_RUNOUT_MINTEMP) + { + bool oldstatus=READ(E0_ENABLE_PIN); + enable_e0(); + float oldepos=current_position[E_AXIS]; + float oldedes=destination[E_AXIS]; + plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], + destination[E_AXIS]+EXTRUDER_RUNOUT_EXTRUDE*EXTRUDER_RUNOUT_ESTEPS/axis_steps_per_unit[E_AXIS], + EXTRUDER_RUNOUT_SPEED/60.*EXTRUDER_RUNOUT_ESTEPS/axis_steps_per_unit[E_AXIS], active_extruder); + current_position[E_AXIS]=oldepos; + destination[E_AXIS]=oldedes; + plan_set_e_position(oldepos); + previous_millis_cmd=millis(); + st_synchronize(); + WRITE(E0_ENABLE_PIN,oldstatus); + } + #endif + #ifdef TEMP_STAT_LEDS + handle_status_leds(); + #endif + check_axes_activity(); +} + +void kill(const char *full_screen_message, unsigned char id) +{ + printf_P(_N("KILL: %d\n"), id); + //return; + cli(); // Stop interrupts + disable_heater(); + + disable_x(); +// SERIAL_ECHOLNPGM("kill - disable Y"); + disable_y(); + disable_z(); + disable_e0(); + disable_e1(); + disable_e2(); + +#if defined(PS_ON_PIN) && PS_ON_PIN > -1 + pinMode(PS_ON_PIN,INPUT); +#endif + SERIAL_ERROR_START; + SERIAL_ERRORLNRPGM(_i("Printer halted. kill() called!"));////MSG_ERR_KILLED c=0 r=0 + if (full_screen_message != NULL) { + SERIAL_ERRORLNRPGM(full_screen_message); + lcd_display_message_fullscreen_P(full_screen_message); + } else { + LCD_ALERTMESSAGERPGM(_i("KILLED. "));////MSG_KILLED c=0 r=0 + } + + // FMC small patch to update the LCD before ending + sei(); // enable interrupts + for ( int i=5; i--; lcd_update(0)) + { + delay(200); + } + cli(); // disable interrupts + suicide(); + while(1) + { +#ifdef WATCHDOG + wdt_reset(); +#endif //WATCHDOG + /* Intentionally left empty */ + + } // Wait for reset +} + +void Stop() +{ + disable_heater(); + if(Stopped == false) { + Stopped = true; + Stopped_gcode_LastN = gcode_LastN; // Save last g_code for restart + SERIAL_ERROR_START; + SERIAL_ERRORLNRPGM(_T(MSG_ERR_STOPPED)); + LCD_MESSAGERPGM(_T(MSG_STOPPED)); + } +} + +bool IsStopped() { return Stopped; }; + +#ifdef FAST_PWM_FAN +void setPwmFrequency(uint8_t pin, int val) +{ + val &= 0x07; + switch(digitalPinToTimer(pin)) + { + + #if defined(TCCR0A) + case TIMER0A: + case TIMER0B: +// TCCR0B &= ~(_BV(CS00) | _BV(CS01) | _BV(CS02)); +// TCCR0B |= val; + break; + #endif + + #if defined(TCCR1A) + case TIMER1A: + case TIMER1B: +// TCCR1B &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12)); +// TCCR1B |= val; + break; + #endif + + #if defined(TCCR2) + case TIMER2: + case TIMER2: + TCCR2 &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12)); + TCCR2 |= val; + break; + #endif + + #if defined(TCCR2A) + case TIMER2A: + case TIMER2B: + TCCR2B &= ~(_BV(CS20) | _BV(CS21) | _BV(CS22)); + TCCR2B |= val; + break; + #endif + + #if defined(TCCR3A) + case TIMER3A: + case TIMER3B: + case TIMER3C: + TCCR3B &= ~(_BV(CS30) | _BV(CS31) | _BV(CS32)); + TCCR3B |= val; + break; + #endif + + #if defined(TCCR4A) + case TIMER4A: + case TIMER4B: + case TIMER4C: + TCCR4B &= ~(_BV(CS40) | _BV(CS41) | _BV(CS42)); + TCCR4B |= val; + break; + #endif + + #if defined(TCCR5A) + case TIMER5A: + case TIMER5B: + case TIMER5C: + TCCR5B &= ~(_BV(CS50) | _BV(CS51) | _BV(CS52)); + TCCR5B |= val; + break; + #endif + + } +} +#endif //FAST_PWM_FAN + +bool setTargetedHotend(int code){ + tmp_extruder = active_extruder; + if(code_seen('T')) { + tmp_extruder = code_value(); + if(tmp_extruder >= EXTRUDERS) { + SERIAL_ECHO_START; + switch(code){ + case 104: + SERIAL_ECHORPGM(_i("M104 Invalid extruder "));////MSG_M104_INVALID_EXTRUDER c=0 r=0 + break; + case 105: + SERIAL_ECHO(_i("M105 Invalid extruder "));////MSG_M105_INVALID_EXTRUDER c=0 r=0 + break; + case 109: + SERIAL_ECHO(_i("M109 Invalid extruder "));////MSG_M109_INVALID_EXTRUDER c=0 r=0 + break; + case 218: + SERIAL_ECHO(_i("M218 Invalid extruder "));////MSG_M218_INVALID_EXTRUDER c=0 r=0 + break; + case 221: + SERIAL_ECHO(_i("M221 Invalid extruder "));////MSG_M221_INVALID_EXTRUDER c=0 r=0 + break; + } + SERIAL_PROTOCOLLN((int)tmp_extruder); + return true; + } + } + return false; +} + +void save_statistics(unsigned long _total_filament_used, unsigned long _total_print_time) //_total_filament_used unit: mm/100; print time in s +{ + if (eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 1) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 2) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 3) == 255) + { + eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, 0); + eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, 0); + } + + unsigned long _previous_filament = eeprom_read_dword((uint32_t *)EEPROM_FILAMENTUSED); //_previous_filament unit: cm + unsigned long _previous_time = eeprom_read_dword((uint32_t *)EEPROM_TOTALTIME); //_previous_time unit: min + + eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, _previous_time + (_total_print_time/60)); //EEPROM_TOTALTIME unit: min + eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, _previous_filament + (_total_filament_used / 1000)); + + total_filament_used = 0; + +} + +float calculate_extruder_multiplier(float diameter) { + float out = 1.f; + if (volumetric_enabled && diameter > 0.f) { + float area = M_PI * diameter * diameter * 0.25; + out = 1.f / area; + } + if (extrudemultiply != 100) + out *= float(extrudemultiply) * 0.01f; + return out; +} + +void calculate_extruder_multipliers() { + extruder_multiplier[0] = calculate_extruder_multiplier(filament_size[0]); +#if EXTRUDERS > 1 + extruder_multiplier[1] = calculate_extruder_multiplier(filament_size[1]); +#if EXTRUDERS > 2 + extruder_multiplier[2] = calculate_extruder_multiplier(filament_size[2]); +#endif +#endif +} + +void delay_keep_alive(unsigned int ms) +{ + for (;;) { + manage_heater(); + // Manage inactivity, but don't disable steppers on timeout. + manage_inactivity(true); + lcd_update(0); + if (ms == 0) + break; + else if (ms >= 50) { + delay(50); + ms -= 50; + } else { + delay(ms); + ms = 0; + } + } +} + +void wait_for_heater(long codenum) { + +#ifdef TEMP_RESIDENCY_TIME + long residencyStart; + residencyStart = -1; + /* continue to loop until we have reached the target temp + _and_ until TEMP_RESIDENCY_TIME hasn't passed since we reached it */ + while ((!cancel_heatup) && ((residencyStart == -1) || + (residencyStart >= 0 && (((unsigned int)(millis() - residencyStart)) < (TEMP_RESIDENCY_TIME * 1000UL))))) { +#else + while (target_direction ? (isHeatingHotend(tmp_extruder)) : (isCoolingHotend(tmp_extruder) && (CooldownNoWait == false))) { +#endif //TEMP_RESIDENCY_TIME + if ((millis() - codenum) > 1000UL) + { //Print Temp Reading and remaining time every 1 second while heating up/cooling down + if (!farm_mode) { + SERIAL_PROTOCOLPGM("T:"); + SERIAL_PROTOCOL_F(degHotend(tmp_extruder), 1); + SERIAL_PROTOCOLPGM(" E:"); + SERIAL_PROTOCOL((int)tmp_extruder); + +#ifdef TEMP_RESIDENCY_TIME + SERIAL_PROTOCOLPGM(" W:"); + if (residencyStart > -1) + { + codenum = ((TEMP_RESIDENCY_TIME * 1000UL) - (millis() - residencyStart)) / 1000UL; + SERIAL_PROTOCOLLN(codenum); + } + else + { + SERIAL_PROTOCOLLN("?"); + } + } +#else + SERIAL_PROTOCOLLN(""); +#endif + codenum = millis(); + } + manage_heater(); + manage_inactivity(); + lcd_update(0); +#ifdef TEMP_RESIDENCY_TIME + /* start/restart the TEMP_RESIDENCY_TIME timer whenever we reach target temp for the first time + or when current temp falls outside the hysteresis after target temp was reached */ + if ((residencyStart == -1 && target_direction && (degHotend(tmp_extruder) >= (degTargetHotend(tmp_extruder) - TEMP_WINDOW))) || + (residencyStart == -1 && !target_direction && (degHotend(tmp_extruder) <= (degTargetHotend(tmp_extruder) + TEMP_WINDOW))) || + (residencyStart > -1 && labs(degHotend(tmp_extruder) - degTargetHotend(tmp_extruder)) > TEMP_HYSTERESIS)) + { + residencyStart = millis(); + } +#endif //TEMP_RESIDENCY_TIME + } +} + +void check_babystep() { + int babystep_z; + EEPROM_read_B(EEPROM_BABYSTEP_Z, &babystep_z); + if ((babystep_z < Z_BABYSTEP_MIN) || (babystep_z > Z_BABYSTEP_MAX)) { + babystep_z = 0; //if babystep value is out of min max range, set it to 0 + SERIAL_ECHOLNPGM("Z live adjust out of range. Setting to 0"); + EEPROM_save_B(EEPROM_BABYSTEP_Z, &babystep_z); + lcd_show_fullscreen_message_and_wait_P(PSTR("Z live adjust out of range. Setting to 0. Click to continue.")); + lcd_update_enable(true); + } +} +#ifdef DIS +void d_setup() +{ + pinMode(D_DATACLOCK, INPUT_PULLUP); + pinMode(D_DATA, INPUT_PULLUP); + pinMode(D_REQUIRE, OUTPUT); + digitalWrite(D_REQUIRE, HIGH); +} + + +float d_ReadData() +{ + int digit[13]; + String mergeOutput; + float output; + + digitalWrite(D_REQUIRE, HIGH); + for (int i = 0; i<13; i++) + { + for (int j = 0; j < 4; j++) + { + while (digitalRead(D_DATACLOCK) == LOW) {} + while (digitalRead(D_DATACLOCK) == HIGH) {} + bitWrite(digit[i], j, digitalRead(D_DATA)); + } + } + + digitalWrite(D_REQUIRE, LOW); + mergeOutput = ""; + output = 0; + for (int r = 5; r <= 10; r++) //Merge digits + { + mergeOutput += digit[r]; + } + output = mergeOutput.toFloat(); + + if (digit[4] == 8) //Handle sign + { + output *= -1; + } + + for (int i = digit[11]; i > 0; i--) //Handle floating point + { + output /= 10; + } + + return output; + +} + +void bed_analysis(float x_dimension, float y_dimension, int x_points_num, int y_points_num, float shift_x, float shift_y) { + int t1 = 0; + int t_delay = 0; + int digit[13]; + int m; + char str[3]; + //String mergeOutput; + char mergeOutput[15]; + float output; + + int mesh_point = 0; //index number of calibration point + float bed_zero_ref_x = (-22.f + X_PROBE_OFFSET_FROM_EXTRUDER); //shift between zero point on bed and target and between probe and nozzle + float bed_zero_ref_y = (-0.6f + Y_PROBE_OFFSET_FROM_EXTRUDER); + + float mesh_home_z_search = 4; + float row[x_points_num]; + int ix = 0; + int iy = 0; + + char* filename_wldsd = "wldsd.txt"; + char data_wldsd[70]; + char numb_wldsd[10]; + + d_setup(); + + if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS])) { + // We don't know where we are! HOME! + // Push the commands to the front of the message queue in the reverse order! + // There shall be always enough space reserved for these commands. + repeatcommand_front(); // repeat G80 with all its parameters + + enquecommand_front_P((PSTR("G28 W0"))); + enquecommand_front_P((PSTR("G1 Z5"))); + return; + } + bool custom_message_old = custom_message; + unsigned int custom_message_type_old = custom_message_type; + unsigned int custom_message_state_old = custom_message_state; + custom_message = true; + custom_message_type = 1; + custom_message_state = (x_points_num * y_points_num) + 10; + lcd_update(1); + + mbl.reset(); + babystep_undo(); + + card.openFile(filename_wldsd, false); + + current_position[Z_AXIS] = mesh_home_z_search; + plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 60, active_extruder); + + int XY_AXIS_FEEDRATE = homing_feedrate[X_AXIS] / 20; + int Z_PROBE_FEEDRATE = homing_feedrate[Z_AXIS] / 60; + int Z_LIFT_FEEDRATE = homing_feedrate[Z_AXIS] / 40; + + setup_for_endstop_move(false); + + SERIAL_PROTOCOLPGM("Num X,Y: "); + SERIAL_PROTOCOL(x_points_num); + SERIAL_PROTOCOLPGM(","); + SERIAL_PROTOCOL(y_points_num); + SERIAL_PROTOCOLPGM("\nZ search height: "); + SERIAL_PROTOCOL(mesh_home_z_search); + SERIAL_PROTOCOLPGM("\nDimension X,Y: "); + SERIAL_PROTOCOL(x_dimension); + SERIAL_PROTOCOLPGM(","); + SERIAL_PROTOCOL(y_dimension); + SERIAL_PROTOCOLLNPGM("\nMeasured points:"); + + while (mesh_point != x_points_num * y_points_num) { + ix = mesh_point % x_points_num; // from 0 to MESH_NUM_X_POINTS - 1 + iy = mesh_point / x_points_num; + if (iy & 1) ix = (x_points_num - 1) - ix; // Zig zag + float z0 = 0.f; + current_position[Z_AXIS] = mesh_home_z_search; + plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], Z_LIFT_FEEDRATE, active_extruder); + st_synchronize(); + + + current_position[X_AXIS] = 13.f + ix * (x_dimension / (x_points_num - 1)) - bed_zero_ref_x + shift_x; + current_position[Y_AXIS] = 6.4f + iy * (y_dimension / (y_points_num - 1)) - bed_zero_ref_y + shift_y; + + plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], XY_AXIS_FEEDRATE, active_extruder); + st_synchronize(); + + if (!find_bed_induction_sensor_point_z(-10.f)) { //if we have data from z calibration max allowed difference is 1mm for each point, if we dont have data max difference is 10mm from initial point + break; + card.closefile(); + } + + + //memset(numb_wldsd, 0, sizeof(numb_wldsd)); + //dtostrf(d_ReadData(), 8, 5, numb_wldsd); + //strcat(data_wldsd, numb_wldsd); + + + + //MYSERIAL.println(data_wldsd); + //delay(1000); + //delay(3000); + //t1 = millis(); + + //while (digitalRead(D_DATACLOCK) == LOW) {} + //while (digitalRead(D_DATACLOCK) == HIGH) {} + memset(digit, 0, sizeof(digit)); + //cli(); + digitalWrite(D_REQUIRE, LOW); + + for (int i = 0; i<13; i++) + { + //t1 = millis(); + for (int j = 0; j < 4; j++) + { + while (digitalRead(D_DATACLOCK) == LOW) {} + while (digitalRead(D_DATACLOCK) == HIGH) {} + bitWrite(digit[i], j, digitalRead(D_DATA)); + } + //t_delay = (millis() - t1); + //SERIAL_PROTOCOLPGM(" "); + //SERIAL_PROTOCOL_F(t_delay, 5); + //SERIAL_PROTOCOLPGM(" "); + } + //sei(); + digitalWrite(D_REQUIRE, HIGH); + mergeOutput[0] = '\0'; + output = 0; + for (int r = 5; r <= 10; r++) //Merge digits + { + sprintf(str, "%d", digit[r]); + strcat(mergeOutput, str); + } + + output = atof(mergeOutput); + + if (digit[4] == 8) //Handle sign + { + output *= -1; + } + + for (int i = digit[11]; i > 0; i--) //Handle floating point + { + output *= 0.1; + } + + + //output = d_ReadData(); + + //row[ix] = current_position[Z_AXIS]; + + memset(data_wldsd, 0, sizeof(data_wldsd)); + + for (int i = 0; i <3; i++) { + memset(numb_wldsd, 0, sizeof(numb_wldsd)); + dtostrf(current_position[i], 8, 5, numb_wldsd); + strcat(data_wldsd, numb_wldsd); + strcat(data_wldsd, ";"); + + } + memset(numb_wldsd, 0, sizeof(numb_wldsd)); + dtostrf(output, 8, 5, numb_wldsd); + strcat(data_wldsd, numb_wldsd); + //strcat(data_wldsd, ";"); + card.write_command(data_wldsd); + + + //row[ix] = d_ReadData(); + + row[ix] = output; // current_position[Z_AXIS]; + + if (iy % 2 == 1 ? ix == 0 : ix == x_points_num - 1) { + for (int i = 0; i < x_points_num; i++) { + SERIAL_PROTOCOLPGM(" "); + SERIAL_PROTOCOL_F(row[i], 5); + + + } + SERIAL_PROTOCOLPGM("\n"); + } + custom_message_state--; + mesh_point++; + lcd_update(1); + + } + card.closefile(); + +} +#endif + +void temp_compensation_start() { + + custom_message = true; + custom_message_type = 5; + custom_message_state = PINDA_HEAT_T + 1; + lcd_update(2); + if (degHotend(active_extruder) > EXTRUDE_MINTEMP) { + current_position[E_AXIS] -= DEFAULT_RETRACTION; + } + plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400, active_extruder); + + current_position[X_AXIS] = PINDA_PREHEAT_X; + current_position[Y_AXIS] = PINDA_PREHEAT_Y; + current_position[Z_AXIS] = PINDA_PREHEAT_Z; + plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder); + st_synchronize(); + while (fabs(degBed() - target_temperature_bed) > 1) delay_keep_alive(1000); + + for (int i = 0; i < PINDA_HEAT_T; i++) { + delay_keep_alive(1000); + custom_message_state = PINDA_HEAT_T - i; + if (custom_message_state == 99 || custom_message_state == 9) lcd_update(2); //force whole display redraw if number of digits changed + else lcd_update(1); + } + custom_message_type = 0; + custom_message_state = 0; + custom_message = false; +} + +void temp_compensation_apply() { + int i_add; + int compensation_value; + int z_shift = 0; + float z_shift_mm; + + if (calibration_status() == CALIBRATION_STATUS_CALIBRATED) { + if (target_temperature_bed % 10 == 0 && target_temperature_bed >= 60 && target_temperature_bed <= 100) { + i_add = (target_temperature_bed - 60) / 10; + EEPROM_read_B(EEPROM_PROBE_TEMP_SHIFT + i_add * 2, &z_shift); + z_shift_mm = z_shift / axis_steps_per_unit[Z_AXIS]; + }else { + //interpolation + z_shift_mm = temp_comp_interpolation(target_temperature_bed) / axis_steps_per_unit[Z_AXIS]; + } + printf_P(_N("\nZ shift applied:%.3f\n"), z_shift_mm); + plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS] - z_shift_mm, current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder); + st_synchronize(); + plan_set_z_position(current_position[Z_AXIS]); + } + else { + //we have no temp compensation data + } +} + +float temp_comp_interpolation(float inp_temperature) { + + //cubic spline interpolation + + int n, i, j, k; + float h[10], a, b, c, d, sum, s[10] = { 0 }, x[10], F[10], f[10], m[10][10] = { 0 }, temp; + int shift[10]; + int temp_C[10]; + + n = 6; //number of measured points + + shift[0] = 0; + for (i = 0; i < n; i++) { + if (i>0) EEPROM_read_B(EEPROM_PROBE_TEMP_SHIFT + (i-1) * 2, &shift[i]); //read shift in steps from EEPROM + temp_C[i] = 50 + i * 10; //temperature in C +#ifdef PINDA_THERMISTOR + temp_C[i] = 35 + i * 5; //temperature in C +#else + temp_C[i] = 50 + i * 10; //temperature in C +#endif + x[i] = (float)temp_C[i]; + f[i] = (float)shift[i]; + } + if (inp_temperature < x[0]) return 0; + + + for (i = n - 1; i>0; i--) { + F[i] = (f[i] - f[i - 1]) / (x[i] - x[i - 1]); + h[i - 1] = x[i] - x[i - 1]; + } + //*********** formation of h, s , f matrix ************** + for (i = 1; i0; i--) { + sum = 0; + for (j = i; j <= n - 2; j++) + sum += m[i][j] * s[j]; + s[i] = (m[i][n - 1] - sum) / m[i][i]; + } + + for (i = 0; i x[i + 1])) { + a = (s[i + 1] - s[i]) / (6 * h[i]); + b = s[i] / 2; + c = (f[i + 1] - f[i]) / h[i] - (2 * h[i] * s[i] + s[i + 1] * h[i]) / 6; + d = f[i]; + sum = a*pow((inp_temperature - x[i]), 3) + b*pow((inp_temperature - x[i]), 2) + c*(inp_temperature - x[i]) + d; + } + + return sum; + +} + +#ifdef PINDA_THERMISTOR +float temp_compensation_pinda_thermistor_offset(float temperature_pinda) +{ + if (!temp_cal_active) return 0; + if (!calibration_status_pinda()) return 0; + return temp_comp_interpolation(temperature_pinda) / axis_steps_per_unit[Z_AXIS]; +} +#endif //PINDA_THERMISTOR + +void long_pause() //long pause print +{ + st_synchronize(); + + //save currently set parameters to global variables + saved_feedmultiply = feedmultiply; + HotendTempBckp = degTargetHotend(active_extruder); + fanSpeedBckp = fanSpeed; + start_pause_print = millis(); + + + //save position + pause_lastpos[X_AXIS] = current_position[X_AXIS]; + pause_lastpos[Y_AXIS] = current_position[Y_AXIS]; + pause_lastpos[Z_AXIS] = current_position[Z_AXIS]; + pause_lastpos[E_AXIS] = current_position[E_AXIS]; + + //retract + current_position[E_AXIS] -= DEFAULT_RETRACTION; + plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400, active_extruder); + + //lift z + current_position[Z_AXIS] += Z_PAUSE_LIFT; + if (current_position[Z_AXIS] > Z_MAX_POS) current_position[Z_AXIS] = Z_MAX_POS; + plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 15, active_extruder); + + //set nozzle target temperature to 0 + setTargetHotend(0, 0); + setTargetHotend(0, 1); + setTargetHotend(0, 2); + + //Move XY to side + current_position[X_AXIS] = X_PAUSE_POS; + current_position[Y_AXIS] = Y_PAUSE_POS; + plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 50, active_extruder); + + // Turn off the print fan + fanSpeed = 0; + + st_synchronize(); +} + +void serialecho_temperatures() { + float tt = degHotend(active_extruder); + SERIAL_PROTOCOLPGM("T:"); + SERIAL_PROTOCOL(tt); + SERIAL_PROTOCOLPGM(" E:"); + SERIAL_PROTOCOL((int)active_extruder); + SERIAL_PROTOCOLPGM(" B:"); + SERIAL_PROTOCOL_F(degBed(), 1); + SERIAL_PROTOCOLLN(""); +} + +extern uint32_t sdpos_atomic; + +#ifdef UVLO_SUPPORT + +void uvlo_() +{ + unsigned long time_start = millis(); + bool sd_print = card.sdprinting; + // Conserve power as soon as possible. + disable_x(); + disable_y(); + +#ifdef TMC2130 + tmc2130_set_current_h(Z_AXIS, 20); + tmc2130_set_current_r(Z_AXIS, 20); + tmc2130_set_current_h(E_AXIS, 20); + tmc2130_set_current_r(E_AXIS, 20); +#endif //TMC2130 + + + // Indicate that the interrupt has been triggered. + // SERIAL_ECHOLNPGM("UVLO"); + + // Read out the current Z motor microstep counter. This will be later used + // for reaching the zero full step before powering off. + uint16_t z_microsteps = 0; +#ifdef TMC2130 + z_microsteps = tmc2130_rd_MSCNT(Z_TMC2130_CS); +#endif //TMC2130 + + // Calculate the file position, from which to resume this print. + long sd_position = sdpos_atomic; //atomic sd position of last command added in queue + { + uint16_t sdlen_planner = planner_calc_sd_length(); //length of sd commands in planner + sd_position -= sdlen_planner; + uint16_t sdlen_cmdqueue = cmdqueue_calc_sd_length(); //length of sd commands in cmdqueue + sd_position -= sdlen_cmdqueue; + if (sd_position < 0) sd_position = 0; + } + + // Backup the feedrate in mm/min. + int feedrate_bckp = blocks_queued() ? (block_buffer[block_buffer_tail].nominal_speed * 60.f) : feedrate; + + // After this call, the planner queue is emptied and the current_position is set to a current logical coordinate. + // The logical coordinate will likely differ from the machine coordinate if the skew calibration and mesh bed leveling + // are in action. + planner_abort_hard(); + + // Store the current extruder position. + eeprom_update_float((float*)(EEPROM_UVLO_CURRENT_POSITION_E), st_get_position_mm(E_AXIS)); + eeprom_update_byte((uint8_t*)EEPROM_UVLO_E_ABS, axis_relative_modes[3]?0:1); + + // Clean the input command queue. + cmdqueue_reset(); + card.sdprinting = false; +// card.closefile(); + + // Enable stepper driver interrupt to move Z axis. + // This should be fine as the planner and command queues are empty and the SD card printing is disabled. + //FIXME one may want to disable serial lines at this point of time to avoid interfering with the command queue, + // though it should not happen that the command queue is touched as the plan_buffer_line always succeed without blocking. + sei(); + plan_buffer_line( + current_position[X_AXIS], + current_position[Y_AXIS], + current_position[Z_AXIS], + current_position[E_AXIS] - DEFAULT_RETRACTION, + 95, active_extruder); + + st_synchronize(); + disable_e0(); + + plan_buffer_line( + current_position[X_AXIS], + current_position[Y_AXIS], + current_position[Z_AXIS] + UVLO_Z_AXIS_SHIFT + float((1024 - z_microsteps + 7) >> 4) / axis_steps_per_unit[Z_AXIS], + current_position[E_AXIS] - DEFAULT_RETRACTION, + 40, active_extruder); + + st_synchronize(); + disable_e0(); + + plan_buffer_line( + current_position[X_AXIS], + current_position[Y_AXIS], + current_position[Z_AXIS] + UVLO_Z_AXIS_SHIFT + float((1024 - z_microsteps + 7) >> 4) / axis_steps_per_unit[Z_AXIS], + current_position[E_AXIS] - DEFAULT_RETRACTION, + 40, active_extruder); + st_synchronize(); + disable_e0(); + disable_z(); + + // Move Z up to the next 0th full step. + // Write the file position. + eeprom_update_dword((uint32_t*)(EEPROM_FILE_POSITION), sd_position); + // Store the mesh bed leveling offsets. This is 2*9=18 bytes, which takes 18*3.4us=52us in worst case. + for (int8_t mesh_point = 0; mesh_point < 9; ++ mesh_point) { + uint8_t ix = mesh_point % MESH_MEAS_NUM_X_POINTS; // from 0 to MESH_NUM_X_POINTS - 1 + uint8_t iy = mesh_point / MESH_MEAS_NUM_X_POINTS; + // Scale the z value to 1u resolution. + int16_t v = mbl.active ? int16_t(floor(mbl.z_values[iy*3][ix*3] * 1000.f + 0.5f)) : 0; + eeprom_update_word((uint16_t*)(EEPROM_UVLO_MESH_BED_LEVELING+2*mesh_point), *reinterpret_cast(&v)); + } + // Read out the current Z motor microstep counter. This will be later used + // for reaching the zero full step before powering off. + eeprom_update_word((uint16_t*)(EEPROM_UVLO_Z_MICROSTEPS), z_microsteps); + // Store the current position. + eeprom_update_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 0), current_position[X_AXIS]); + eeprom_update_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 4), current_position[Y_AXIS]); + eeprom_update_float((float*)(EEPROM_UVLO_CURRENT_POSITION_Z), current_position[Z_AXIS]); + // Store the current feed rate, temperatures, fan speed and extruder multipliers (flow rates) + EEPROM_save_B(EEPROM_UVLO_FEEDRATE, &feedrate_bckp); + eeprom_update_byte((uint8_t*)EEPROM_UVLO_TARGET_HOTEND, target_temperature[active_extruder]); + eeprom_update_byte((uint8_t*)EEPROM_UVLO_TARGET_BED, target_temperature_bed); + eeprom_update_byte((uint8_t*)EEPROM_UVLO_FAN_SPEED, fanSpeed); + eeprom_update_float((float*)(EEPROM_EXTRUDER_MULTIPLIER_0), extruder_multiplier[0]); +#if EXTRUDERS > 1 + eeprom_update_float((float*)(EEPROM_EXTRUDER_MULTIPLIER_1), extruder_multiplier[1]); +#if EXTRUDERS > 2 + eeprom_update_float((float*)(EEPROM_EXTRUDER_MULTIPLIER_2), extruder_multiplier[2]); +#endif +#endif + eeprom_update_word((uint16_t*)(EEPROM_EXTRUDEMULTIPLY), (uint16_t)extrudemultiply); + + // Finaly store the "power outage" flag. + if(sd_print) eeprom_update_byte((uint8_t*)EEPROM_UVLO, 1); + + st_synchronize(); + printf_P(_N("stps%d\n"), tmc2130_rd_MSCNT(Z_AXIS)); + + disable_z(); + + // Increment power failure counter + eeprom_update_byte((uint8_t*)EEPROM_POWER_COUNT, eeprom_read_byte((uint8_t*)EEPROM_POWER_COUNT) + 1); + eeprom_update_word((uint16_t*)EEPROM_POWER_COUNT_TOT, eeprom_read_word((uint16_t*)EEPROM_POWER_COUNT_TOT) + 1); + + printf_P(_N("UVLO - end %d\n"), millis() - time_start); + +#if 0 + // Move the print head to the side of the print until all the power stored in the power supply capacitors is depleted. + current_position[X_AXIS] = (current_position[X_AXIS] < 0.5f * (X_MIN_POS + X_MAX_POS)) ? X_MIN_POS : X_MAX_POS; + plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 500, active_extruder); + st_synchronize(); +#endif + + + cli(); + volatile unsigned int ppcount = 0; + SET_OUTPUT(BEEPER); + WRITE(BEEPER, HIGH); + for(ppcount = 0; ppcount < 2000; ppcount ++){ + asm("nop");//50ns on 20Mhz, 62.5ns on 16Mhz + } + WRITE(BEEPER, LOW); + while(1){ +#if 1 + WRITE(BEEPER, LOW); + for(ppcount = 0; ppcount < 8000; ppcount ++){ + asm("nop");//50ns on 20Mhz, 62.5ns on 16Mhz + } +#endif + + }; +} +#endif //UVLO_SUPPORT + +#if (defined(FANCHECK) && defined(TACH_1) && (TACH_1 >-1)) + +void setup_fan_interrupt() { +//INT7 + DDRE &= ~(1 << 7); //input pin + PORTE &= ~(1 << 7); //no internal pull-up + + //start with sensing rising edge + EICRB &= ~(1 << 6); + EICRB |= (1 << 7); + + //enable INT7 interrupt + EIMSK |= (1 << 7); +} + +// The fan interrupt is triggered at maximum 325Hz (may be a bit more due to component tollerances), +// and it takes 4.24 us to process (the interrupt invocation overhead not taken into account). +ISR(INT7_vect) { + //measuring speed now works for fanSpeed > 18 (approximately), which is sufficient because MIN_PRINT_FAN_SPEED is higher + + if (fanSpeed < MIN_PRINT_FAN_SPEED) return; + if ((1 << 6) & EICRB) { //interrupt was triggered by rising edge + t_fan_rising_edge = millis_nc(); + } + else { //interrupt was triggered by falling edge + if ((millis_nc() - t_fan_rising_edge) >= FAN_PULSE_WIDTH_LIMIT) {//this pulse was from sensor and not from pwm + fan_edge_counter[1] += 2; //we are currently counting all edges so lets count two edges for one pulse + } + } + EICRB ^= (1 << 6); //change edge +} + +#endif + +#ifdef UVLO_SUPPORT +void setup_uvlo_interrupt() { + DDRE &= ~(1 << 4); //input pin + PORTE &= ~(1 << 4); //no internal pull-up + + //sensing falling edge + EICRB |= (1 << 0); + EICRB &= ~(1 << 1); + + //enable INT4 interrupt + EIMSK |= (1 << 4); +} + +ISR(INT4_vect) { + EIMSK &= ~(1 << 4); //disable INT4 interrupt to make sure that this code will be executed just once + SERIAL_ECHOLNPGM("INT4"); + if (IS_SD_PRINTING) uvlo_(); +} + +void recover_print(uint8_t automatic) { + char cmd[30]; + lcd_update_enable(true); + lcd_update(2); + lcd_setstatuspgm(_i("Recovering print "));////MSG_RECOVERING_PRINT c=20 r=1 + + recover_machine_state_after_power_panic(); //recover position, temperatures and extrude_multipliers + + // Lift the print head, so one may remove the excess priming material. + if (current_position[Z_AXIS] < 25) + enquecommand_P(PSTR("G1 Z25 F800")); + // Home X and Y axes. Homing just X and Y shall not touch the babystep and the world2machine transformation status. + enquecommand_P(PSTR("G28 X Y")); + // Set the target bed and nozzle temperatures and wait. + sprintf_P(cmd, PSTR("M109 S%d"), target_temperature[active_extruder]); + enquecommand(cmd); + sprintf_P(cmd, PSTR("M190 S%d"), target_temperature_bed); + enquecommand(cmd); + enquecommand_P(PSTR("M83")); //E axis relative mode + //enquecommand_P(PSTR("G1 E5 F120")); //Extrude some filament to stabilize pessure + // If not automatically recoreverd (long power loss), extrude extra filament to stabilize + if(automatic == 0){ + enquecommand_P(PSTR("G1 E5 F120")); //Extrude some filament to stabilize pessure + } + enquecommand_P(PSTR("G1 E" STRINGIFY(-DEFAULT_RETRACTION)" F480")); + + // Mark the power panic status as inactive. + eeprom_update_byte((uint8_t*)EEPROM_UVLO, 0); + /*while ((abs(degHotend(0)- target_temperature[0])>5) || (abs(degBed() -target_temperature_bed)>3)) { //wait for heater and bed to reach target temp + delay_keep_alive(1000); + }*/ + + printf_P(_N("After waiting for temp:\nCurrent pos X_AXIS:%.3f\nCurrent pos Y_AXIS:%.3f\n"), current_position[X_AXIS], current_position[Y_AXIS]); + + // Restart the print. + restore_print_from_eeprom(); + + printf_P(_N("Current pos Z_AXIS:%.3f\nCurrent pos E_AXIS:%.3f\n"), current_position[Z_AXIS], current_position[E_AXIS]); +} + +void recover_machine_state_after_power_panic() +{ + char cmd[30]; + // 1) Recover the logical cordinates at the time of the power panic. + // The logical XY coordinates are needed to recover the machine Z coordinate corrected by the mesh bed leveling. + current_position[X_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 0)); + current_position[Y_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 4)); + // Recover the logical coordinate of the Z axis at the time of the power panic. + // The current position after power panic is moved to the next closest 0th full step. + current_position[Z_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION_Z)) + + UVLO_Z_AXIS_SHIFT + float((1024 - eeprom_read_word((uint16_t*)(EEPROM_UVLO_Z_MICROSTEPS)) + 7) >> 4) / axis_steps_per_unit[Z_AXIS]; + if (eeprom_read_byte((uint8_t*)EEPROM_UVLO_E_ABS)) { + current_position[E_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION_E)); + sprintf_P(cmd, PSTR("G92 E")); + dtostrf(current_position[E_AXIS], 6, 3, cmd + strlen(cmd)); + enquecommand(cmd); + } + + memcpy(destination, current_position, sizeof(destination)); + + SERIAL_ECHOPGM("recover_machine_state_after_power_panic, initial "); + print_world_coordinates(); + + // 2) Initialize the logical to physical coordinate system transformation. + world2machine_initialize(); + + // 3) Restore the mesh bed leveling offsets. This is 2*9=18 bytes, which takes 18*3.4us=52us in worst case. + mbl.active = false; + for (int8_t mesh_point = 0; mesh_point < 9; ++ mesh_point) { + uint8_t ix = mesh_point % MESH_MEAS_NUM_X_POINTS; // from 0 to MESH_NUM_X_POINTS - 1 + uint8_t iy = mesh_point / MESH_MEAS_NUM_X_POINTS; + // Scale the z value to 10u resolution. + int16_t v; + eeprom_read_block(&v, (void*)(EEPROM_UVLO_MESH_BED_LEVELING+2*mesh_point), 2); + if (v != 0) + mbl.active = true; + mbl.z_values[iy][ix] = float(v) * 0.001f; + } + if (mbl.active) + mbl.upsample_3x3(); +// SERIAL_ECHOPGM("recover_machine_state_after_power_panic, initial "); +// print_mesh_bed_leveling_table(); + + // 4) Load the baby stepping value, which is expected to be active at the time of power panic. + // The baby stepping value is used to reset the physical Z axis when rehoming the Z axis. + babystep_load(); + + // 5) Set the physical positions from the logical positions using the world2machine transformation and the active bed leveling. + plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]); + + // 6) Power up the motors, mark their positions as known. + //FIXME Verfiy, whether the X and Y axes should be powered up here, as they will later be re-homed anyway. + axis_known_position[X_AXIS] = true; enable_x(); + axis_known_position[Y_AXIS] = true; enable_y(); + axis_known_position[Z_AXIS] = true; enable_z(); + + SERIAL_ECHOPGM("recover_machine_state_after_power_panic, initial "); + print_physical_coordinates(); + + // 7) Recover the target temperatures. + target_temperature[active_extruder] = eeprom_read_byte((uint8_t*)EEPROM_UVLO_TARGET_HOTEND); + target_temperature_bed = eeprom_read_byte((uint8_t*)EEPROM_UVLO_TARGET_BED); + + // 8) Recover extruder multipilers + extruder_multiplier[0] = eeprom_read_float((float*)(EEPROM_EXTRUDER_MULTIPLIER_0)); +#if EXTRUDERS > 1 + extruder_multiplier[1] = eeprom_read_float((float*)(EEPROM_EXTRUDER_MULTIPLIER_1)); +#if EXTRUDERS > 2 + extruder_multiplier[2] = eeprom_read_float((float*)(EEPROM_EXTRUDER_MULTIPLIER_2)); +#endif +#endif + extrudemultiply = (int)eeprom_read_word((uint16_t*)(EEPROM_EXTRUDEMULTIPLY)); +} + +void restore_print_from_eeprom() { + float x_rec, y_rec, z_pos; + int feedrate_rec; + uint8_t fan_speed_rec; + char cmd[30]; + char* c; + char filename[13]; + uint8_t depth = 0; + char dir_name[9]; + + fan_speed_rec = eeprom_read_byte((uint8_t*)EEPROM_UVLO_FAN_SPEED); + EEPROM_read_B(EEPROM_UVLO_FEEDRATE, &feedrate_rec); + SERIAL_ECHOPGM("Feedrate:"); + MYSERIAL.println(feedrate_rec); + + depth = eeprom_read_byte((uint8_t*)EEPROM_DIR_DEPTH); + + MYSERIAL.println(int(depth)); + for (int i = 0; i < depth; i++) { + for (int j = 0; j < 8; j++) { + dir_name[j] = eeprom_read_byte((uint8_t*)EEPROM_DIRS + j + 8 * i); + } + dir_name[8] = '\0'; + MYSERIAL.println(dir_name); + strcpy(dir_names[i], dir_name); + card.chdir(dir_name); + } + + for (int i = 0; i < 8; i++) { + filename[i] = eeprom_read_byte((uint8_t*)EEPROM_FILENAME + i); + } + filename[8] = '\0'; + + MYSERIAL.print(filename); + strcat_P(filename, PSTR(".gco")); + sprintf_P(cmd, PSTR("M23 %s"), filename); + enquecommand(cmd); + uint32_t position = eeprom_read_dword((uint32_t*)(EEPROM_FILE_POSITION)); + SERIAL_ECHOPGM("Position read from eeprom:"); + MYSERIAL.println(position); + + // E axis relative mode. + enquecommand_P(PSTR("M83")); + // Move to the XY print position in logical coordinates, where the print has been killed. + strcpy_P(cmd, PSTR("G1 X")); strcat(cmd, ftostr32(eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 0)))); + strcat_P(cmd, PSTR(" Y")); strcat(cmd, ftostr32(eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 4)))); + strcat_P(cmd, PSTR(" F2000")); + enquecommand(cmd); + // Move the Z axis down to the print, in logical coordinates. + strcpy_P(cmd, PSTR("G1 Z")); strcat(cmd, ftostr32(eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION_Z)))); + enquecommand(cmd); + // Unretract. + enquecommand_P(PSTR("G1 E" STRINGIFY(2*DEFAULT_RETRACTION)" F480")); + // Set the feedrate saved at the power panic. + sprintf_P(cmd, PSTR("G1 F%d"), feedrate_rec); + enquecommand(cmd); + if (eeprom_read_byte((uint8_t*)EEPROM_UVLO_E_ABS)) + { + float extruder_abs_pos = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION_E)); + enquecommand_P(PSTR("M82")); //E axis abslute mode + } + // Set the fan speed saved at the power panic. + strcpy_P(cmd, PSTR("M106 S")); + strcat(cmd, itostr3(int(fan_speed_rec))); + enquecommand(cmd); + + // Set a position in the file. + sprintf_P(cmd, PSTR("M26 S%lu"), position); + enquecommand(cmd); + // Start SD print. + enquecommand_P(PSTR("M24")); +} +#endif //UVLO_SUPPORT + + +//////////////////////////////////////////////////////////////////////////////// +// save/restore printing + +void stop_and_save_print_to_ram(float z_move, float e_move) +{ + if (saved_printing) return; + unsigned char nplanner_blocks; + unsigned char nlines; + uint16_t sdlen_planner; + uint16_t sdlen_cmdqueue; + + + cli(); + if (card.sdprinting) { + nplanner_blocks = number_of_blocks(); + saved_sdpos = sdpos_atomic; //atomic sd position of last command added in queue + sdlen_planner = planner_calc_sd_length(); //length of sd commands in planner + saved_sdpos -= sdlen_planner; + sdlen_cmdqueue = cmdqueue_calc_sd_length(); //length of sd commands in cmdqueue + saved_sdpos -= sdlen_cmdqueue; + saved_printing_type = PRINTING_TYPE_SD; + + } + else if (is_usb_printing) { //reuse saved_sdpos for storing line number + saved_sdpos = gcode_LastN; //start with line number of command added recently to cmd queue + //reuse planner_calc_sd_length function for getting number of lines of commands in planner: + nlines = planner_calc_sd_length(); //number of lines of commands in planner + saved_sdpos -= nlines; + saved_sdpos -= buflen; //number of blocks in cmd buffer + saved_printing_type = PRINTING_TYPE_USB; + } + else { + //not sd printing nor usb printing + } + +#if 0 + SERIAL_ECHOPGM("SDPOS_ATOMIC="); MYSERIAL.println(sdpos_atomic, DEC); + SERIAL_ECHOPGM("SDPOS="); MYSERIAL.println(card.get_sdpos(), DEC); + SERIAL_ECHOPGM("SDLEN_PLAN="); MYSERIAL.println(sdlen_planner, DEC); + SERIAL_ECHOPGM("SDLEN_CMDQ="); MYSERIAL.println(sdlen_cmdqueue, DEC); + SERIAL_ECHOPGM("PLANNERBLOCKS="); MYSERIAL.println(int(nplanner_blocks), DEC); + SERIAL_ECHOPGM("SDSAVED="); MYSERIAL.println(saved_sdpos, DEC); + //SERIAL_ECHOPGM("SDFILELEN="); MYSERIAL.println(card.fileSize(), DEC); + + + { + card.setIndex(saved_sdpos); + SERIAL_ECHOLNPGM("Content of planner buffer: "); + for (unsigned int idx = 0; idx < sdlen_planner; ++ idx) + MYSERIAL.print(char(card.get())); + SERIAL_ECHOLNPGM("Content of command buffer: "); + for (unsigned int idx = 0; idx < sdlen_cmdqueue; ++ idx) + MYSERIAL.print(char(card.get())); + SERIAL_ECHOLNPGM("End of command buffer"); + } + { + // Print the content of the planner buffer, line by line: + card.setIndex(saved_sdpos); + int8_t iline = 0; + for (unsigned char idx = block_buffer_tail; idx != block_buffer_head; idx = (idx + 1) & (BLOCK_BUFFER_SIZE - 1), ++ iline) { + SERIAL_ECHOPGM("Planner line (from file): "); + MYSERIAL.print(int(iline), DEC); + SERIAL_ECHOPGM(", length: "); + MYSERIAL.print(block_buffer[idx].sdlen, DEC); + SERIAL_ECHOPGM(", steps: ("); + MYSERIAL.print(block_buffer[idx].steps_x, DEC); + SERIAL_ECHOPGM(","); + MYSERIAL.print(block_buffer[idx].steps_y, DEC); + SERIAL_ECHOPGM(","); + MYSERIAL.print(block_buffer[idx].steps_z, DEC); + SERIAL_ECHOPGM(","); + MYSERIAL.print(block_buffer[idx].steps_e, DEC); + SERIAL_ECHOPGM("), events: "); + MYSERIAL.println(block_buffer[idx].step_event_count, DEC); + for (int len = block_buffer[idx].sdlen; len > 0; -- len) + MYSERIAL.print(char(card.get())); + } + } + { + // Print the content of the command buffer, line by line: + int8_t iline = 0; + union { + struct { + char lo; + char hi; + } lohi; + uint16_t value; + } sdlen_single; + int _bufindr = bufindr; + for (int _buflen = buflen; _buflen > 0; ++ iline) { + if (cmdbuffer[_bufindr] == CMDBUFFER_CURRENT_TYPE_SDCARD) { + sdlen_single.lohi.lo = cmdbuffer[_bufindr + 1]; + sdlen_single.lohi.hi = cmdbuffer[_bufindr + 2]; + } + SERIAL_ECHOPGM("Buffer line (from buffer): "); + MYSERIAL.print(int(iline), DEC); + SERIAL_ECHOPGM(", type: "); + MYSERIAL.print(int(cmdbuffer[_bufindr]), DEC); + SERIAL_ECHOPGM(", len: "); + MYSERIAL.println(sdlen_single.value, DEC); + // Print the content of the buffer line. + MYSERIAL.println(cmdbuffer + _bufindr + CMDHDRSIZE); + + SERIAL_ECHOPGM("Buffer line (from file): "); + MYSERIAL.println(int(iline), DEC); + for (; sdlen_single.value > 0; -- sdlen_single.value) + MYSERIAL.print(char(card.get())); + + if (-- _buflen == 0) + break; + // First skip the current command ID and iterate up to the end of the string. + for (_bufindr += CMDHDRSIZE; cmdbuffer[_bufindr] != 0; ++ _bufindr) ; + // Second, skip the end of string null character and iterate until a nonzero command ID is found. + for (++ _bufindr; _bufindr < sizeof(cmdbuffer) && cmdbuffer[_bufindr] == 0; ++ _bufindr) ; + // If the end of the buffer was empty, + if (_bufindr == sizeof(cmdbuffer)) { + // skip to the start and find the nonzero command. + for (_bufindr = 0; cmdbuffer[_bufindr] == 0; ++ _bufindr) ; + } + } + } +#endif + +#if 0 + saved_feedrate2 = feedrate; //save feedrate +#else + // Try to deduce the feedrate from the first block of the planner. + // Speed is in mm/min. + saved_feedrate2 = blocks_queued() ? (block_buffer[block_buffer_tail].nominal_speed * 60.f) : feedrate; +#endif + + planner_abort_hard(); //abort printing + memcpy(saved_pos, current_position, sizeof(saved_pos)); + saved_active_extruder = active_extruder; //save active_extruder + + saved_extruder_under_pressure = extruder_under_pressure; //extruder under pressure flag - currently unused + saved_extruder_relative_mode = axis_relative_modes[E_AXIS]; + cmdqueue_reset(); //empty cmdqueue + card.sdprinting = false; +// card.closefile(); + saved_printing = true; + // We may have missed a stepper timer interrupt. Be safe than sorry, reset the stepper timer before re-enabling interrupts. + st_reset_timer(); + sei(); + if ((z_move != 0) || (e_move != 0)) { // extruder or z move +#if 1 + // Rather than calling plan_buffer_line directly, push the move into the command queue, + char buf[48]; + + // First unretract (relative extrusion) + if(!saved_extruder_relative_mode){ + strcpy_P(buf, PSTR("M83")); + enquecommand(buf, false); + } + + //retract 45mm/s + strcpy_P(buf, PSTR("G1 E")); + dtostrf(e_move, 6, 3, buf + strlen(buf)); + strcat_P(buf, PSTR(" F")); + dtostrf(2700, 8, 3, buf + strlen(buf)); + enquecommand(buf, false); + + // Then lift Z axis + strcpy_P(buf, PSTR("G1 Z")); + dtostrf(saved_pos[Z_AXIS] + z_move, 8, 3, buf + strlen(buf)); + strcat_P(buf, PSTR(" F")); + dtostrf(homing_feedrate[Z_AXIS], 8, 3, buf + strlen(buf)); + // At this point the command queue is empty. + enquecommand(buf, false); + // If this call is invoked from the main Arduino loop() function, let the caller know that the command + // in the command queue is not the original command, but a new one, so it should not be removed from the queue. + repeatcommand_front(); +#else + plan_buffer_line(saved_pos[X_AXIS], saved_pos[Y_AXIS], saved_pos[Z_AXIS] + z_move, saved_pos[E_AXIS] + e_move, homing_feedrate[Z_AXIS], active_extruder); + st_synchronize(); //wait moving + memcpy(current_position, saved_pos, sizeof(saved_pos)); + memcpy(destination, current_position, sizeof(destination)); +#endif + } +} + +void restore_print_from_ram_and_continue(float e_move) +{ + if (!saved_printing) return; +// for (int axis = X_AXIS; axis <= E_AXIS; axis++) +// current_position[axis] = st_get_position_mm(axis); + active_extruder = saved_active_extruder; //restore active_extruder + feedrate = saved_feedrate2; //restore feedrate + axis_relative_modes[E_AXIS] = saved_extruder_relative_mode; + float e = saved_pos[E_AXIS] - e_move; + plan_set_e_position(e); + //first move print head in XY to the saved position: + plan_buffer_line(saved_pos[X_AXIS], saved_pos[Y_AXIS], current_position[Z_AXIS], saved_pos[E_AXIS] - e_move, homing_feedrate[Z_AXIS]/13, active_extruder); + st_synchronize(); + //then move Z + plan_buffer_line(saved_pos[X_AXIS], saved_pos[Y_AXIS], saved_pos[Z_AXIS], saved_pos[E_AXIS] - e_move, homing_feedrate[Z_AXIS]/13, active_extruder); + st_synchronize(); + //and finaly unretract (35mm/s) + plan_buffer_line(saved_pos[X_AXIS], saved_pos[Y_AXIS], saved_pos[Z_AXIS], saved_pos[E_AXIS], 35, active_extruder); + st_synchronize(); + + memcpy(current_position, saved_pos, sizeof(saved_pos)); + memcpy(destination, current_position, sizeof(destination)); + if (saved_printing_type == PRINTING_TYPE_SD) { //was sd printing + card.setIndex(saved_sdpos); + sdpos_atomic = saved_sdpos; + card.sdprinting = true; + printf_P(PSTR("ok\n")); //dummy response because of octoprint is waiting for this + } + else if (saved_printing_type == PRINTING_TYPE_USB) { //was usb printing + gcode_LastN = saved_sdpos; //saved_sdpos was reused for storing line number when usb printing + serial_count = 0; + FlushSerialRequestResend(); + } + else { + //not sd printing nor usb printing + } + lcd_setstatuspgm(_T(WELCOME_MSG)); + saved_printing = false; +} + +void print_world_coordinates() +{ + printf_P(_N("world coordinates: (%.3f, %.3f, %.3f)\n"), current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS]); +} + +void print_physical_coordinates() +{ + printf_P(_N("physical coordinates: (%.3f, %.3f, %.3f)\n"), st_get_position_mm[X_AXIS], st_get_position_mm[Y_AXIS], st_get_position_mm[Z_AXIS]); +} + +void print_mesh_bed_leveling_table() +{ + SERIAL_ECHOPGM("mesh bed leveling: "); + for (int8_t y = 0; y < MESH_NUM_Y_POINTS; ++ y) + for (int8_t x = 0; x < MESH_NUM_Y_POINTS; ++ x) { + MYSERIAL.print(mbl.z_values[y][x], 3); + SERIAL_ECHOPGM(" "); + } + SERIAL_ECHOLNPGM(""); +} + +uint16_t print_time_remaining() { + uint16_t print_t = PRINT_TIME_REMAINING_INIT; + if (SilentModeMenu == SILENT_MODE_OFF) print_t = print_time_remaining_normal; + else print_t = print_time_remaining_silent; + if ((print_t != PRINT_TIME_REMAINING_INIT) && (feedmultiply != 0)) print_t = 100 * print_t / feedmultiply; + return print_t; +} + +uint8_t print_percent_done() { + //in case that we have information from M73 gcode return percentage counted by slicer, else return percentage counted as byte_printed/filesize + uint8_t percent_done = 0; + if (SilentModeMenu == SILENT_MODE_OFF && print_percent_done_normal <= 100) { + percent_done = print_percent_done_normal; + } + else if (print_percent_done_silent <= 100) { + percent_done = print_percent_done_silent; + } + else { + percent_done = card.percentDone(); + } + return percent_done; +} + +static void print_time_remaining_init() { + print_time_remaining_normal = PRINT_TIME_REMAINING_INIT; + print_time_remaining_silent = PRINT_TIME_REMAINING_INIT; + print_percent_done_normal = PRINT_PERCENT_DONE_INIT; + print_percent_done_silent = PRINT_PERCENT_DONE_INIT; +} + +#define FIL_LOAD_LENGTH 60 diff --git a/Firmware/ultralcd.cpp b/Firmware/ultralcd.cpp index 2216c03a..42b50643 100644 --- a/Firmware/ultralcd.cpp +++ b/Firmware/ultralcd.cpp @@ -3070,7 +3070,7 @@ bool lcd_wait_for_pinda(float temp) { } lcd_set_custom_characters_arrows(); lcd_update_enable(true); - return(target_temp_reached); + return target_temp_reached; } void lcd_wait_for_heater() {