Merge remote-tracking branch 'remotes/origin/M221_fix' into MK3_fast_dbg
This commit is contained in:
commit
11e7eb27ee
@ -8,7 +8,7 @@
|
||||
|
||||
// Firmware version
|
||||
#define FW_VERSION "3.1.1"
|
||||
#define FW_COMMIT_NR 197
|
||||
#define FW_COMMIT_NR 201
|
||||
// FW_VERSION_UNKNOWN means this is an unofficial build.
|
||||
// The firmware should only be checked into github with this symbol.
|
||||
#define FW_DEV_VERSION FW_VERSION_UNKNOWN
|
||||
@ -133,6 +133,45 @@
|
||||
#define EEPROM_POWER_COUNT_TOT (EEPROM_FERROR_COUNT_TOT - 2) // uint16
|
||||
|
||||
|
||||
////////////////////////////////////////
|
||||
// TMC2130 Accurate sensorless homing
|
||||
|
||||
// X-axis home origin (stepper phase in microsteps, 0..63 for 16ustep resolution)
|
||||
#define EEPROM_TMC2130_HOME_X_ORIGIN (EEPROM_POWER_COUNT_TOT - 1) // uint8
|
||||
// X-axis home bsteps (number of microsteps backward)
|
||||
#define EEPROM_TMC2130_HOME_X_BSTEPS (EEPROM_TMC2130_HOME_X_ORIGIN - 1) // uint8
|
||||
// X-axis home fsteps (number of microsteps forward)
|
||||
#define EEPROM_TMC2130_HOME_X_FSTEPS (EEPROM_TMC2130_HOME_X_BSTEPS - 1) // uint8
|
||||
// Y-axis home origin (stepper phase in microsteps, 0..63 for 16ustep resolution)
|
||||
#define EEPROM_TMC2130_HOME_Y_ORIGIN (EEPROM_TMC2130_HOME_X_FSTEPS - 1) // uint8
|
||||
// X-axis home bsteps (number of microsteps backward)
|
||||
#define EEPROM_TMC2130_HOME_Y_BSTEPS (EEPROM_TMC2130_HOME_Y_ORIGIN - 1) // uint8
|
||||
// X-axis home fsteps (number of microsteps forward)
|
||||
#define EEPROM_TMC2130_HOME_Y_FSTEPS (EEPROM_TMC2130_HOME_Y_BSTEPS - 1) // uint8
|
||||
// Accurate homing enabled
|
||||
#define EEPROM_TMC2130_HOME_ENABLED (EEPROM_TMC2130_HOME_Y_FSTEPS - 1) // uint8
|
||||
|
||||
|
||||
////////////////////////////////////////
|
||||
// TMC2130 uStep linearity correction
|
||||
|
||||
// Linearity correction factor (XYZE) encoded as uint8 (0=>1, 1=>1.001, 254=>1.254, 255=>clear eeprom/disabled)
|
||||
#define EEPROM_TMC2130_WAVE_X_FAC (EEPROM_TMC2130_HOME_ENABLED - 1) // uint8
|
||||
#define EEPROM_TMC2130_WAVE_Y_FAC (EEPROM_TMC2130_WAVE_X_FAC - 1) // uint8
|
||||
#define EEPROM_TMC2130_WAVE_Z_FAC (EEPROM_TMC2130_WAVE_Y_FAC - 1) // uint8
|
||||
#define EEPROM_TMC2130_WAVE_E_FAC (EEPROM_TMC2130_WAVE_Z_FAC - 1) // uint8
|
||||
|
||||
|
||||
////////////////////////////////////////
|
||||
// TMC2130 uStep resolution
|
||||
|
||||
// microstep resolution (XYZE): usteps = (256 >> mres)
|
||||
#define EEPROM_TMC2130_X_MRES (EEPROM_TMC2130_WAVE_E_FAC - 1) // uint8
|
||||
#define EEPROM_TMC2130_Y_MRES (EEPROM_TMC2130_X_MRES - 1) // uint8
|
||||
#define EEPROM_TMC2130_Z_MRES (EEPROM_TMC2130_Y_MRES - 1) // uint8
|
||||
#define EEPROM_TMC2130_E_MRES (EEPROM_TMC2130_Z_MRES - 1) // uint8
|
||||
|
||||
|
||||
//TMC2130 configuration
|
||||
#define EEPROM_TMC_AXIS_SIZE //axis configuration block size
|
||||
#define EEPROM_TMC_X (EEPROM_TMC + 0 * EEPROM_TMC_AXIS_SIZE) //X axis configuration blok
|
||||
@ -792,34 +831,7 @@ const bool Z_MAX_ENDSTOP_INVERTING = true; // set to true to invert the logic of
|
||||
//
|
||||
//#define NUM_SERVOS 3 // Servo index starts with 0 for M280 command
|
||||
|
||||
/**********************************************************************\
|
||||
* Support for a filament diameter sensor
|
||||
* Also allows adjustment of diameter at print time (vs at slicing)
|
||||
* Single extruder only at this point (extruder 0)
|
||||
*
|
||||
* Motherboards
|
||||
* 34 - RAMPS1.4 - uses Analog input 5 on the AUX2 connector
|
||||
* 81 - Printrboard - Uses Analog input 2 on the Exp1 connector (version B,C,D,E)
|
||||
* 301 - Rambo - uses Analog input 3
|
||||
* Note may require analog pins to be defined for different motherboards
|
||||
**********************************************************************/
|
||||
// Uncomment below to enable
|
||||
//#define FILAMENT_SENSOR
|
||||
|
||||
#define FILAMENT_SENSOR_EXTRUDER_NUM 0 //The number of the extruder that has the filament sensor (0,1,2)
|
||||
#define MEASUREMENT_DELAY_CM 14 //measurement delay in cm. This is the distance from filament sensor to middle of barrel
|
||||
|
||||
#define DEFAULT_NOMINAL_FILAMENT_DIA 3.0 //Enter the diameter (in mm) of the filament generally used (3.0 mm or 1.75 mm) - this is then used in the slicer software. Used for sensor reading validation
|
||||
#define MEASURED_UPPER_LIMIT 3.30 //upper limit factor used for sensor reading validation in mm
|
||||
#define MEASURED_LOWER_LIMIT 1.90 //lower limit factor for sensor reading validation in mm
|
||||
#define MAX_MEASUREMENT_DELAY 20 //delay buffer size in bytes (1 byte = 1cm)- limits maximum measurement delay allowable (must be larger than MEASUREMENT_DELAY_CM and lower number saves RAM)
|
||||
|
||||
//defines used in the code
|
||||
#define DEFAULT_MEASURED_FILAMENT_DIA DEFAULT_NOMINAL_FILAMENT_DIA //set measured to nominal initially
|
||||
|
||||
//When using an LCD, uncomment the line below to display the Filament sensor data on the last line instead of status. Status will appear for 5 sec.
|
||||
//#define FILAMENT_LCD_DISPLAY
|
||||
|
||||
#define DEFAULT_NOMINAL_FILAMENT_DIA 1.75 //Enter the diameter (in mm) of the filament generally used (3.0 mm or 1.75 mm). Used by the volumetric extrusion.
|
||||
|
||||
// Calibration status of the machine, to be stored into the EEPROM,
|
||||
// (unsigned char*)EEPROM_CALIBRATION_STATUS
|
||||
|
@ -136,10 +136,12 @@ void Config_StoreSettings(uint16_t offset, uint8_t level)
|
||||
}
|
||||
#endif //LIN_ADVANCE
|
||||
|
||||
/*MYSERIAL.print("Top address used:\n");
|
||||
/* MYSERIAL.print("Top address used:\n");
|
||||
MYSERIAL.print(i);
|
||||
MYSERIAL.print("\n");
|
||||
*/
|
||||
MYSERIAL.print("; (0x");
|
||||
MYSERIAL.print(i, HEX);
|
||||
MYSERIAL.println(")");
|
||||
*/
|
||||
char ver2[4]=EEPROM_VERSION;
|
||||
i=offset;
|
||||
EEPROM_WRITE_VAR(i,ver2); // validate data
|
||||
@ -470,7 +472,7 @@ void Config_ResetDefault()
|
||||
filament_size[2] = DEFAULT_NOMINAL_FILAMENT_DIA;
|
||||
#endif
|
||||
#endif
|
||||
calculate_volumetric_multipliers();
|
||||
calculate_extruder_multipliers();
|
||||
|
||||
SERIAL_ECHO_START;
|
||||
SERIAL_ECHOLNPGM("Hardcoded Default Settings Loaded");
|
||||
|
@ -203,8 +203,8 @@ const bool Z_MIN_ENDSTOP_INVERTING = false; // set to true to invert the logic o
|
||||
#define TMC2130_SG_THRS_E 3 // stallguard sensitivity for E axis
|
||||
|
||||
//new settings is possible for vsense = 1, running current value > 31 set vsense to zero and shift both currents by 1 bit right (Z axis only)
|
||||
#define TMC2130_CURRENTS_H {13, 20, 25, 35} // default holding currents for all axes
|
||||
#define TMC2130_CURRENTS_R {13, 20, 25, 35} // default running currents for all axes
|
||||
#define TMC2130_CURRENTS_H {16, 20, 28, 36} // default holding currents for all axes
|
||||
#define TMC2130_CURRENTS_R {16, 20, 28, 36} // default running currents for all axes
|
||||
#define TMC2130_UNLOAD_CURRENT_R 12 // lowe current for M600 to protect filament sensor
|
||||
|
||||
//#define TMC2130_DEBUG
|
||||
|
@ -447,11 +447,8 @@ void dcode_10()
|
||||
}
|
||||
|
||||
void dcode_12()
|
||||
{//Reset Filament error, Power loss and crash counter ( Do it before every print and you can get stats for the print )
|
||||
LOG("D12 - Reset failstat counters\n");
|
||||
eeprom_update_byte((uint8_t*)EEPROM_CRASH_COUNT_X, 0x00);
|
||||
eeprom_update_byte((uint8_t*)EEPROM_FERROR_COUNT, 0x00);
|
||||
eeprom_update_byte((uint8_t*)EEPROM_POWER_COUNT, 0x00);
|
||||
{//Time
|
||||
LOG("D12 - Time\n");
|
||||
}
|
||||
|
||||
#include "tmc2130.h"
|
||||
@ -461,28 +458,101 @@ extern void st_synchronize();
|
||||
|
||||
void dcode_2130()
|
||||
{
|
||||
// printf("test");
|
||||
printf_P(PSTR("D2130 - TMC2130\n"));
|
||||
uint8_t axis = 0xff;
|
||||
if (code_seen('X'))
|
||||
axis = X_AXIS;
|
||||
else if (code_seen('Y'))
|
||||
axis = Y_AXIS;
|
||||
switch (strchr_pointer[1+4])
|
||||
{
|
||||
case 'X': axis = X_AXIS; break;
|
||||
case 'Y': axis = Y_AXIS; break;
|
||||
case 'Z': axis = Z_AXIS; break;
|
||||
case 'E': axis = E_AXIS; break;
|
||||
}
|
||||
if (axis != 0xff)
|
||||
{
|
||||
homeaxis(axis);
|
||||
tmc2130_sg_meassure_start(axis);
|
||||
memcpy(destination, current_position, sizeof(destination));
|
||||
destination[axis] = 200;
|
||||
plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], homing_feedrate[X_AXIS]/60, active_extruder);
|
||||
st_synchronize();
|
||||
memcpy(destination, current_position, sizeof(destination));
|
||||
destination[axis] = 0;
|
||||
plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], homing_feedrate[X_AXIS]/60, active_extruder);
|
||||
st_synchronize();
|
||||
uint16_t sg = tmc2130_sg_meassure_stop();
|
||||
tmc2130_sg_meassure = 0xff;
|
||||
printf_P(PSTR("Meassure avg = %d\n"), sg);
|
||||
char ch_axis = strchr_pointer[1+4];
|
||||
if (strchr_pointer[1+5] == '0') { tmc2130_set_pwr(axis, 0); }
|
||||
else if (strchr_pointer[1+5] == '1') { tmc2130_set_pwr(axis, 1); }
|
||||
else if (strchr_pointer[1+5] == '+')
|
||||
{
|
||||
if (strchr_pointer[1+6] == 0)
|
||||
{
|
||||
tmc2130_set_dir(axis, 0);
|
||||
tmc2130_do_step(axis);
|
||||
}
|
||||
else
|
||||
{
|
||||
uint8_t steps = atoi(strchr_pointer + 1 + 6);
|
||||
tmc2130_do_steps(axis, steps, 0, 1000);
|
||||
}
|
||||
}
|
||||
else if (strchr_pointer[1+5] == '-')
|
||||
{
|
||||
if (strchr_pointer[1+6] == 0)
|
||||
{
|
||||
tmc2130_set_dir(axis, 1);
|
||||
tmc2130_do_step(axis);
|
||||
}
|
||||
else
|
||||
{
|
||||
uint8_t steps = atoi(strchr_pointer + 1 + 6);
|
||||
tmc2130_do_steps(axis, steps, 1, 1000);
|
||||
}
|
||||
}
|
||||
else if (strchr_pointer[1+5] == '?')
|
||||
{
|
||||
if (strcmp(strchr_pointer + 7, "mres") == 0) printf_P(PSTR("%c mres=%d\n"), ch_axis, tmc2130_mres[axis]);
|
||||
else if (strcmp(strchr_pointer + 7, "step") == 0) printf_P(PSTR("%c step=%d\n"), ch_axis, tmc2130_rd_MSCNT(axis) >> tmc2130_mres[axis]);
|
||||
else if (strcmp(strchr_pointer + 7, "mscnt") == 0) printf_P(PSTR("%c MSCNT=%d\n"), ch_axis, tmc2130_rd_MSCNT(axis));
|
||||
else if (strcmp(strchr_pointer + 7, "mscuract") == 0)
|
||||
{
|
||||
uint32_t val = tmc2130_rd_MSCURACT(axis);
|
||||
int curA = (val & 0xff);
|
||||
int curB = ((val >> 16) & 0xff);
|
||||
if ((val << 7) & 0x8000) curA -= 256;
|
||||
if ((val >> 9) & 0x8000) curB -= 256;
|
||||
printf_P(PSTR("%c MSCURACT=0x%08lx A=%d B=%d\n"), ch_axis, val, curA, curB);
|
||||
}
|
||||
else if (strcmp(strchr_pointer + 7, "wave") == 0)
|
||||
{
|
||||
tmc2130_get_wave(axis, 0, stdout);
|
||||
}
|
||||
}
|
||||
else if (strchr_pointer[1+5] == '!')
|
||||
{
|
||||
if (strncmp(strchr_pointer + 7, "step", 4) == 0)
|
||||
{
|
||||
uint8_t step = atoi(strchr_pointer + 11);
|
||||
uint16_t res = tmc2130_get_res(axis);
|
||||
tmc2130_goto_step(axis, step & (4*res - 1), 2, 1000, res);
|
||||
}
|
||||
else if (strncmp(strchr_pointer + 7, "mres", 4) == 0)
|
||||
{
|
||||
uint8_t mres = strchr_pointer[11] - '0';
|
||||
if ((mres >= 0) && (mres <= 8))
|
||||
{
|
||||
st_synchronize();
|
||||
uint16_t res = tmc2130_get_res(axis);
|
||||
uint16_t res_new = tmc2130_mres2usteps(mres);
|
||||
tmc2130_set_res(axis, res_new);
|
||||
if (res_new > res)
|
||||
axis_steps_per_unit[axis] *= (res_new / res);
|
||||
else
|
||||
axis_steps_per_unit[axis] /= (res / res_new);
|
||||
}
|
||||
}
|
||||
else if (strncmp(strchr_pointer + 7, "wave", 4) == 0)
|
||||
{
|
||||
uint8_t fac200 = atoi(strchr_pointer + 11) & 0xff;
|
||||
if (fac200 < TMC2130_WAVE_FAC200_MIN) fac200 = 0;
|
||||
if (fac200 > TMC2130_WAVE_FAC200_MAX) fac200 = TMC2130_WAVE_FAC200_MAX;
|
||||
tmc2130_set_wave(axis, 247, fac200);
|
||||
tmc2130_wave_fac[axis] = fac200;
|
||||
}
|
||||
}
|
||||
else if (strchr_pointer[1+5] == '@')
|
||||
{
|
||||
tmc2130_home_calibrate(axis);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -15,7 +15,6 @@ extern void dcode_8(); //D8 - Read/Write PINDA
|
||||
extern void dcode_9(); //D9 - Read/Write ADC (Write=enable simulated, Read=disable simulated)
|
||||
|
||||
extern void dcode_10(); //D10 - XYZ calibration = OK
|
||||
extern void dcode_12(); //D12 - Reset failstat counters
|
||||
|
||||
extern void dcode_2130(); //D2130 - TMC2130
|
||||
extern void dcode_9125(); //D9125 - PAT9125
|
||||
|
@ -276,24 +276,13 @@ extern float max_pos[3];
|
||||
extern bool axis_known_position[3];
|
||||
extern float zprobe_zoffset;
|
||||
extern int fanSpeed;
|
||||
extern void homeaxis(int axis);
|
||||
extern void homeaxis(int axis, uint8_t cnt = 1, uint8_t* pstep = 0);
|
||||
|
||||
|
||||
#ifdef FAN_SOFT_PWM
|
||||
extern unsigned char fanSpeedSoftPwm;
|
||||
#endif
|
||||
|
||||
|
||||
#ifdef FILAMENT_SENSOR
|
||||
extern float filament_width_nominal; //holds the theoretical filament diameter ie., 3.00 or 1.75
|
||||
extern bool filament_sensor; //indicates that filament sensor readings should control extrusion
|
||||
extern float filament_width_meas; //holds the filament diameter as accurately measured
|
||||
extern signed char measurement_delay[]; //ring buffer to delay measurement
|
||||
extern int delay_index1, delay_index2; //index into ring buffer
|
||||
extern float delay_dist; //delay distance counter
|
||||
extern int meas_delay_cm; //delay distance
|
||||
#endif
|
||||
|
||||
#ifdef FWRETRACT
|
||||
extern bool autoretract_enabled;
|
||||
extern bool retracted[EXTRUDERS];
|
||||
@ -358,7 +347,7 @@ extern bool sortAlpha;
|
||||
|
||||
extern char dir_names[3][9];
|
||||
|
||||
extern void calculate_volumetric_multipliers();
|
||||
extern void calculate_extruder_multipliers();
|
||||
|
||||
// Similar to the default Arduino delay function,
|
||||
// but it keeps the background tasks running.
|
||||
@ -379,6 +368,7 @@ float temp_comp_interpolation(float temperature);
|
||||
void temp_compensation_apply();
|
||||
void temp_compensation_start();
|
||||
void show_fw_version_warnings();
|
||||
void erase_eeprom_section(uint16_t offset, uint16_t bytes);
|
||||
|
||||
#ifdef PINDA_THERMISTOR
|
||||
float temp_compensation_pinda_thermistor_offset(float temperature_pinda);
|
||||
|
@ -333,7 +333,7 @@ float filament_size[EXTRUDERS] = { DEFAULT_NOMINAL_FILAMENT_DIA
|
||||
#endif
|
||||
#endif
|
||||
};
|
||||
float volumetric_multiplier[EXTRUDERS] = {1.0
|
||||
float extruder_multiplier[EXTRUDERS] = {1.0
|
||||
#if EXTRUDERS > 1
|
||||
, 1.0
|
||||
#if EXTRUDERS > 2
|
||||
@ -410,18 +410,6 @@ bool cancel_heatup = false ;
|
||||
#define KEEPALIVE_STATE(n);
|
||||
#endif
|
||||
|
||||
#ifdef FILAMENT_SENSOR
|
||||
//Variables for Filament Sensor input
|
||||
float filament_width_nominal=DEFAULT_NOMINAL_FILAMENT_DIA; //Set nominal filament width, can be changed with M404
|
||||
bool filament_sensor=false; //M405 turns on filament_sensor control, M406 turns it off
|
||||
float filament_width_meas=DEFAULT_MEASURED_FILAMENT_DIA; //Stores the measured filament diameter
|
||||
signed char measurement_delay[MAX_MEASUREMENT_DELAY+1]; //ring buffer to delay measurement store extruder factor after subtracting 100
|
||||
int delay_index1=0; //index into ring buffer
|
||||
int delay_index2=-1; //index into ring buffer - set to -1 on startup to indicate ring buffer needs to be initialized
|
||||
float delay_dist=0; //delay distance counter
|
||||
int meas_delay_cm = MEASUREMENT_DELAY_CM; //distance delay setting
|
||||
#endif
|
||||
|
||||
const char errormagic[] PROGMEM = "Error:";
|
||||
const char echomagic[] PROGMEM = "echo:";
|
||||
|
||||
@ -930,6 +918,13 @@ void show_fw_version_warnings() {
|
||||
lcd_update_enable(true);
|
||||
}
|
||||
|
||||
|
||||
|
||||
void erase_eeprom_section(uint16_t offset, uint16_t bytes)
|
||||
{
|
||||
for (int i = offset; i < (offset+bytes); i++) eeprom_write_byte((uint8_t*)i, 0xFF);
|
||||
}
|
||||
|
||||
// "Setup" function is called by the Arduino framework on startup.
|
||||
// Before startup, the Timers-functions (PWM)/Analog RW and HardwareSerial provided by the Arduino-code
|
||||
// are initialized by the main() routine provided by the Arduino framework.
|
||||
@ -1024,6 +1019,7 @@ void setup()
|
||||
|
||||
#ifdef TMC2130
|
||||
uint8_t silentMode = eeprom_read_byte((uint8_t*)EEPROM_SILENT);
|
||||
if (silentMode == 0xff) silentMode = 0;
|
||||
tmc2130_mode = silentMode?TMC2130_MODE_SILENT:TMC2130_MODE_NORMAL;
|
||||
uint8_t crashdet = eeprom_read_byte((uint8_t*)EEPROM_CRASH_DET);
|
||||
if (crashdet)
|
||||
@ -1037,6 +1033,28 @@ void setup()
|
||||
MYSERIAL.println("CrashDetect DISABLED");
|
||||
}
|
||||
|
||||
tmc2130_wave_fac[X_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_WAVE_X_FAC);
|
||||
tmc2130_wave_fac[Y_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_WAVE_Y_FAC);
|
||||
tmc2130_wave_fac[Z_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_WAVE_Z_FAC);
|
||||
tmc2130_wave_fac[E_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_WAVE_E_FAC);
|
||||
if (tmc2130_wave_fac[X_AXIS] == 0xff) tmc2130_wave_fac[X_AXIS] = 0;
|
||||
if (tmc2130_wave_fac[Y_AXIS] == 0xff) tmc2130_wave_fac[Y_AXIS] = 0;
|
||||
if (tmc2130_wave_fac[Z_AXIS] == 0xff) tmc2130_wave_fac[Z_AXIS] = 0;
|
||||
if (tmc2130_wave_fac[E_AXIS] == 0xff) tmc2130_wave_fac[E_AXIS] = 0;
|
||||
|
||||
tmc2130_mres[X_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_X_MRES);
|
||||
tmc2130_mres[Y_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_Y_MRES);
|
||||
tmc2130_mres[Z_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_Z_MRES);
|
||||
tmc2130_mres[E_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_E_MRES);
|
||||
if (tmc2130_mres[X_AXIS] == 0xff) tmc2130_mres[X_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_XY);
|
||||
if (tmc2130_mres[Y_AXIS] == 0xff) tmc2130_mres[Y_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_XY);
|
||||
if (tmc2130_mres[Z_AXIS] == 0xff) tmc2130_mres[Z_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_Z);
|
||||
if (tmc2130_mres[E_AXIS] == 0xff) tmc2130_mres[E_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_E);
|
||||
eeprom_update_byte((uint8_t*)EEPROM_TMC2130_X_MRES, tmc2130_mres[X_AXIS]);
|
||||
eeprom_update_byte((uint8_t*)EEPROM_TMC2130_Y_MRES, tmc2130_mres[Y_AXIS]);
|
||||
eeprom_update_byte((uint8_t*)EEPROM_TMC2130_Z_MRES, tmc2130_mres[Z_AXIS]);
|
||||
eeprom_update_byte((uint8_t*)EEPROM_TMC2130_E_MRES, tmc2130_mres[E_AXIS]);
|
||||
|
||||
#endif //TMC2130
|
||||
|
||||
st_init(); // Initialize stepper, this enables interrupts!
|
||||
@ -1064,19 +1082,19 @@ void setup()
|
||||
setup_homepin();
|
||||
|
||||
if (1) {
|
||||
/// SERIAL_ECHOPGM("initial zsteps on power up: "); MYSERIAL.println(tmc2130_rd_MSCNT(Z_TMC2130_CS));
|
||||
/// SERIAL_ECHOPGM("initial zsteps on power up: "); MYSERIAL.println(tmc2130_rd_MSCNT(Z_AXIS));
|
||||
// try to run to zero phase before powering the Z motor.
|
||||
// Move in negative direction
|
||||
WRITE(Z_DIR_PIN,INVERT_Z_DIR);
|
||||
// Round the current micro-micro steps to micro steps.
|
||||
for (uint16_t phase = (tmc2130_rd_MSCNT(Z_TMC2130_CS) + 8) >> 4; phase > 0; -- phase) {
|
||||
for (uint16_t phase = (tmc2130_rd_MSCNT(Z_AXIS) + 8) >> 4; phase > 0; -- phase) {
|
||||
// Until the phase counter is reset to zero.
|
||||
WRITE(Z_STEP_PIN, !INVERT_Z_STEP_PIN);
|
||||
delay(2);
|
||||
WRITE(Z_STEP_PIN, INVERT_Z_STEP_PIN);
|
||||
delay(2);
|
||||
}
|
||||
// SERIAL_ECHOPGM("initial zsteps after reset: "); MYSERIAL.println(tmc2130_rd_MSCNT(Z_TMC2130_CS));
|
||||
// SERIAL_ECHOPGM("initial zsteps after reset: "); MYSERIAL.println(tmc2130_rd_MSCNT(Z_AXIS));
|
||||
}
|
||||
|
||||
#if defined(Z_AXIS_ALWAYS_ON)
|
||||
@ -1172,8 +1190,10 @@ void setup()
|
||||
|
||||
show_fw_version_warnings();
|
||||
|
||||
if (!previous_settings_retrieved) lcd_show_fullscreen_message_and_wait_P(MSG_DEFAULT_SETTINGS_LOADED); //if EEPROM version was changed, inform user that default setting were loaded
|
||||
|
||||
if (!previous_settings_retrieved) {
|
||||
lcd_show_fullscreen_message_and_wait_P(MSG_DEFAULT_SETTINGS_LOADED); //if EEPROM version was changed, inform user that default setting were loaded
|
||||
erase_eeprom_section(EEPROM_OFFSET, 156); //erase M500 part of eeprom
|
||||
}
|
||||
if (eeprom_read_byte((uint8_t*)EEPROM_WIZARD_ACTIVE) == 1) {
|
||||
lcd_wizard(0);
|
||||
}
|
||||
@ -1207,7 +1227,24 @@ void setup()
|
||||
// Store the currently running firmware into an eeprom,
|
||||
// so the next time the firmware gets updated, it will know from which version it has been updated.
|
||||
update_current_firmware_version_to_eeprom();
|
||||
|
||||
|
||||
tmc2130_home_origin[X_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_X_ORIGIN);
|
||||
tmc2130_home_bsteps[X_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_X_BSTEPS);
|
||||
tmc2130_home_fsteps[X_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_X_FSTEPS);
|
||||
if (tmc2130_home_origin[X_AXIS] == 0xff) tmc2130_home_origin[X_AXIS] = 0;
|
||||
if (tmc2130_home_bsteps[X_AXIS] == 0xff) tmc2130_home_bsteps[X_AXIS] = 48;
|
||||
if (tmc2130_home_fsteps[X_AXIS] == 0xff) tmc2130_home_fsteps[X_AXIS] = 48;
|
||||
|
||||
tmc2130_home_origin[Y_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_Y_ORIGIN);
|
||||
tmc2130_home_bsteps[Y_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_Y_BSTEPS);
|
||||
tmc2130_home_fsteps[Y_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_Y_FSTEPS);
|
||||
if (tmc2130_home_origin[Y_AXIS] == 0xff) tmc2130_home_origin[Y_AXIS] = 0;
|
||||
if (tmc2130_home_bsteps[Y_AXIS] == 0xff) tmc2130_home_bsteps[Y_AXIS] = 48;
|
||||
if (tmc2130_home_fsteps[Y_AXIS] == 0xff) tmc2130_home_fsteps[Y_AXIS] = 48;
|
||||
|
||||
tmc2130_home_enabled = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_ENABLED);
|
||||
if (tmc2130_home_enabled == 0xff) tmc2130_home_enabled = 0;
|
||||
|
||||
if (eeprom_read_byte((uint8_t*)EEPROM_UVLO) == 1) { //previous print was terminated by UVLO
|
||||
/*
|
||||
if (lcd_show_fullscreen_message_yes_no_and_wait_P(MSG_RECOVER_PRINT, false)) recover_print();
|
||||
@ -1776,9 +1813,9 @@ bool calibrate_z_auto()
|
||||
}
|
||||
#endif //TMC2130
|
||||
|
||||
void homeaxis(int axis)
|
||||
void homeaxis(int axis, uint8_t cnt, uint8_t* pstep)
|
||||
{
|
||||
bool endstops_enabled = enable_endstops(true); //RP: endstops should be allways enabled durring homming
|
||||
bool endstops_enabled = enable_endstops(true); //RP: endstops should be allways enabled durring homing
|
||||
#define HOMEAXIS_DO(LETTER) \
|
||||
((LETTER##_MIN_PIN > -1 && LETTER##_HOME_DIR==-1) || (LETTER##_MAX_PIN > -1 && LETTER##_HOME_DIR==1))
|
||||
if ((axis==X_AXIS)?HOMEAXIS_DO(X):(axis==Y_AXIS)?HOMEAXIS_DO(Y):0)
|
||||
@ -1788,7 +1825,8 @@ void homeaxis(int axis)
|
||||
|
||||
#ifdef TMC2130
|
||||
tmc2130_home_enter(X_AXIS_MASK << axis);
|
||||
#endif
|
||||
#endif //TMC2130
|
||||
|
||||
|
||||
// Move right a bit, so that the print head does not touch the left end position,
|
||||
// and the following left movement has a chance to achieve the required velocity
|
||||
@ -1812,44 +1850,66 @@ void homeaxis(int axis)
|
||||
destination[axis] = - 1.1 * max_length(axis);
|
||||
plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
|
||||
st_synchronize();
|
||||
// Move right from the collision to a known distance from the left end stop with the collision detection disabled.
|
||||
endstops_hit_on_purpose();
|
||||
enable_endstops(false);
|
||||
current_position[axis] = 0;
|
||||
plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
|
||||
destination[axis] = 10.f;
|
||||
plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
|
||||
st_synchronize();
|
||||
endstops_hit_on_purpose();
|
||||
// Now move left up to the collision, this time with a repeatable velocity.
|
||||
enable_endstops(true);
|
||||
destination[axis] = - 15.f;
|
||||
feedrate = homing_feedrate[axis]/2;
|
||||
plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
|
||||
st_synchronize();
|
||||
for (uint8_t i = 0; i < cnt; i++)
|
||||
{
|
||||
// Move right from the collision to a known distance from the left end stop with the collision detection disabled.
|
||||
endstops_hit_on_purpose();
|
||||
enable_endstops(false);
|
||||
current_position[axis] = 0;
|
||||
plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
|
||||
destination[axis] = 10.f;
|
||||
plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
|
||||
st_synchronize();
|
||||
endstops_hit_on_purpose();
|
||||
// Now move left up to the collision, this time with a repeatable velocity.
|
||||
enable_endstops(true);
|
||||
destination[axis] = - 11.f;
|
||||
#ifdef TMC2130
|
||||
feedrate = homing_feedrate[axis];
|
||||
#else //TMC2130
|
||||
feedrate = homing_feedrate[axis] / 2;
|
||||
#endif //TMC2130
|
||||
plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
|
||||
st_synchronize();
|
||||
#ifdef TMC2130
|
||||
uint16_t mscnt = tmc2130_rd_MSCNT(axis);
|
||||
if (pstep) pstep[i] = mscnt >> 4;
|
||||
printf_P(PSTR("%3d step=%2d mscnt=%4d\n"), i, mscnt >> 4, mscnt);
|
||||
#endif //TMC2130
|
||||
}
|
||||
endstops_hit_on_purpose();
|
||||
enable_endstops(false);
|
||||
|
||||
#ifdef TMC2130
|
||||
uint8_t orig = tmc2130_home_origin[axis];
|
||||
uint8_t back = tmc2130_home_bsteps[axis];
|
||||
if (tmc2130_home_enabled && (orig <= 63))
|
||||
{
|
||||
tmc2130_goto_step(axis, orig, 2, 1000, tmc2130_get_res(axis));
|
||||
if (back > 0)
|
||||
tmc2130_do_steps(axis, back, 1, 1000);
|
||||
}
|
||||
else
|
||||
tmc2130_do_steps(axis, 8, 2, 1000);
|
||||
tmc2130_home_exit();
|
||||
#endif //TMC2130
|
||||
|
||||
axis_is_at_home(axis);
|
||||
axis_known_position[axis] = true;
|
||||
|
||||
// Move from minimum
|
||||
#ifdef TMC2130
|
||||
tmc2130_home_exit();
|
||||
#endif
|
||||
// Move the X carriage away from the collision.
|
||||
// If this is not done, the X cariage will jump from the collision at the instant the Trinamic driver reduces power on idle.
|
||||
endstops_hit_on_purpose();
|
||||
enable_endstops(false);
|
||||
{
|
||||
// Two full periods (4 full steps).
|
||||
float gap = 0.32f * 2.f;
|
||||
current_position[axis] -= gap;
|
||||
plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
|
||||
current_position[axis] += gap;
|
||||
}
|
||||
float dist = 0.01f * tmc2130_home_fsteps[axis];
|
||||
#else //TMC2130
|
||||
float dist = 0.01f * 64;
|
||||
#endif //TMC2130
|
||||
current_position[axis] -= dist;
|
||||
plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
|
||||
current_position[axis] += dist;
|
||||
destination[axis] = current_position[axis];
|
||||
plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], 0.3f*feedrate/60, active_extruder);
|
||||
plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], 0.5f*feedrate/60, active_extruder);
|
||||
st_synchronize();
|
||||
|
||||
feedrate = 0.0;
|
||||
feedrate = 0.0;
|
||||
}
|
||||
else if ((axis==Z_AXIS)?HOMEAXIS_DO(Z):0)
|
||||
{
|
||||
@ -1900,11 +1960,7 @@ void refresh_cmd_timeout(void)
|
||||
destination[Y_AXIS]=current_position[Y_AXIS];
|
||||
destination[Z_AXIS]=current_position[Z_AXIS];
|
||||
destination[E_AXIS]=current_position[E_AXIS];
|
||||
if (swapretract) {
|
||||
current_position[E_AXIS]+=retract_length_swap/volumetric_multiplier[active_extruder];
|
||||
} else {
|
||||
current_position[E_AXIS]+=retract_length/volumetric_multiplier[active_extruder];
|
||||
}
|
||||
current_position[E_AXIS]+=(swapretract?retract_length_swap:retract_length)*float(extrudemultiply)*0.01f;
|
||||
plan_set_e_position(current_position[E_AXIS]);
|
||||
float oldFeedrate = feedrate;
|
||||
feedrate=retract_feedrate*60;
|
||||
@ -1921,12 +1977,7 @@ void refresh_cmd_timeout(void)
|
||||
destination[E_AXIS]=current_position[E_AXIS];
|
||||
current_position[Z_AXIS]+=retract_zlift;
|
||||
plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
|
||||
//prepare_move();
|
||||
if (swapretract) {
|
||||
current_position[E_AXIS]-=(retract_length_swap+retract_recover_length_swap)/volumetric_multiplier[active_extruder];
|
||||
} else {
|
||||
current_position[E_AXIS]-=(retract_length+retract_recover_length)/volumetric_multiplier[active_extruder];
|
||||
}
|
||||
current_position[E_AXIS]-=(swapretract?(retract_length_swap+retract_recover_length_swap):(retract_length+retract_recover_length))*float(extrudemultiply)*0.01f;
|
||||
plan_set_e_position(current_position[E_AXIS]);
|
||||
float oldFeedrate = feedrate;
|
||||
feedrate=retract_recover_feedrate*60;
|
||||
@ -2689,6 +2740,8 @@ void process_commands()
|
||||
bool home_x = code_seen(axis_codes[X_AXIS]);
|
||||
bool home_y = code_seen(axis_codes[Y_AXIS]);
|
||||
bool home_z = code_seen(axis_codes[Z_AXIS]);
|
||||
// calibrate?
|
||||
bool calib = code_seen('C');
|
||||
// Either all X,Y,Z codes are present, or none of them.
|
||||
bool home_all_axes = home_x == home_y && home_x == home_z;
|
||||
if (home_all_axes)
|
||||
@ -2773,10 +2826,20 @@ void process_commands()
|
||||
|
||||
|
||||
if(home_x)
|
||||
homeaxis(X_AXIS);
|
||||
{
|
||||
if (!calib)
|
||||
homeaxis(X_AXIS);
|
||||
else
|
||||
tmc2130_home_calibrate(X_AXIS);
|
||||
}
|
||||
|
||||
if(home_y)
|
||||
homeaxis(Y_AXIS);
|
||||
{
|
||||
if (!calib)
|
||||
homeaxis(Y_AXIS);
|
||||
else
|
||||
tmc2130_home_calibrate(Y_AXIS);
|
||||
}
|
||||
|
||||
if(code_seen(axis_codes[X_AXIS]) && code_value_long() != 0)
|
||||
current_position[X_AXIS]=code_value()+add_homing[X_AXIS];
|
||||
@ -4977,7 +5040,7 @@ Sigma_Exit:
|
||||
//reserved for setting filament diameter via UFID or filament measuring device
|
||||
break;
|
||||
}
|
||||
calculate_volumetric_multipliers();
|
||||
calculate_extruder_multipliers();
|
||||
}
|
||||
break;
|
||||
case 201: // M201
|
||||
@ -5145,6 +5208,7 @@ Sigma_Exit:
|
||||
extrudemultiply = tmp_code ;
|
||||
}
|
||||
}
|
||||
calculate_extruder_multipliers();
|
||||
}
|
||||
break;
|
||||
|
||||
@ -5383,69 +5447,6 @@ Sigma_Exit:
|
||||
}
|
||||
break;
|
||||
|
||||
#ifdef FILAMENT_SENSOR
|
||||
case 404: //M404 Enter the nominal filament width (3mm, 1.75mm ) N<3.0> or display nominal filament width
|
||||
{
|
||||
#if (FILWIDTH_PIN > -1)
|
||||
if(code_seen('N')) filament_width_nominal=code_value();
|
||||
else{
|
||||
SERIAL_PROTOCOLPGM("Filament dia (nominal mm):");
|
||||
SERIAL_PROTOCOLLN(filament_width_nominal);
|
||||
}
|
||||
#endif
|
||||
}
|
||||
break;
|
||||
|
||||
case 405: //M405 Turn on filament sensor for control
|
||||
{
|
||||
|
||||
|
||||
if(code_seen('D')) meas_delay_cm=code_value();
|
||||
|
||||
if(meas_delay_cm> MAX_MEASUREMENT_DELAY)
|
||||
meas_delay_cm = MAX_MEASUREMENT_DELAY;
|
||||
|
||||
if(delay_index2 == -1) //initialize the ring buffer if it has not been done since startup
|
||||
{
|
||||
int temp_ratio = widthFil_to_size_ratio();
|
||||
|
||||
for (delay_index1=0; delay_index1<(MAX_MEASUREMENT_DELAY+1); ++delay_index1 ){
|
||||
measurement_delay[delay_index1]=temp_ratio-100; //subtract 100 to scale within a signed byte
|
||||
}
|
||||
delay_index1=0;
|
||||
delay_index2=0;
|
||||
}
|
||||
|
||||
filament_sensor = true ;
|
||||
|
||||
//SERIAL_PROTOCOLPGM("Filament dia (measured mm):");
|
||||
//SERIAL_PROTOCOL(filament_width_meas);
|
||||
//SERIAL_PROTOCOLPGM("Extrusion ratio(%):");
|
||||
//SERIAL_PROTOCOL(extrudemultiply);
|
||||
}
|
||||
break;
|
||||
|
||||
case 406: //M406 Turn off filament sensor for control
|
||||
{
|
||||
filament_sensor = false ;
|
||||
}
|
||||
break;
|
||||
|
||||
case 407: //M407 Display measured filament diameter
|
||||
{
|
||||
|
||||
|
||||
|
||||
SERIAL_PROTOCOLPGM("Filament dia (measured mm):");
|
||||
SERIAL_PROTOCOLLN(filament_width_meas);
|
||||
}
|
||||
break;
|
||||
#endif
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
case 500: // M500 Store settings in EEPROM
|
||||
{
|
||||
Config_StoreSettings(EEPROM_OFFSET);
|
||||
@ -6111,12 +6112,38 @@ case 404: //M404 Enter the nominal filament width (3mm, 1.75mm ) N<3.0> or disp
|
||||
|
||||
case 350: // M350 Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
|
||||
{
|
||||
#ifdef TMC2130
|
||||
if(code_seen('E'))
|
||||
{
|
||||
uint16_t res_new = code_value();
|
||||
if ((res_new == 8) || (res_new == 16) || (res_new == 32) || (res_new == 64) || (res_new == 128))
|
||||
{
|
||||
st_synchronize();
|
||||
uint8_t axis = E_AXIS;
|
||||
uint16_t res = tmc2130_get_res(axis);
|
||||
tmc2130_set_res(axis, res_new);
|
||||
if (res_new > res)
|
||||
{
|
||||
uint16_t fac = (res_new / res);
|
||||
axis_steps_per_unit[axis] *= fac;
|
||||
position[E_AXIS] *= fac;
|
||||
}
|
||||
else
|
||||
{
|
||||
uint16_t fac = (res / res_new);
|
||||
axis_steps_per_unit[axis] /= fac;
|
||||
position[E_AXIS] /= fac;
|
||||
}
|
||||
}
|
||||
}
|
||||
#else //TMC2130
|
||||
#if defined(X_MS1_PIN) && X_MS1_PIN > -1
|
||||
if(code_seen('S')) for(int i=0;i<=4;i++) microstep_mode(i,code_value());
|
||||
for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_mode(i,(uint8_t)code_value());
|
||||
if(code_seen('B')) microstep_mode(4,code_value());
|
||||
microstep_readings();
|
||||
#endif
|
||||
#endif //TMC2130
|
||||
}
|
||||
break;
|
||||
case 351: // M351 Toggle MS1 MS2 pins directly, S# determines MS1 or MS2, X# sets the pin high/low.
|
||||
@ -6361,9 +6388,6 @@ case 404: //M404 Enter the nominal filament width (3mm, 1.75mm ) N<3.0> or disp
|
||||
case 10: // D10 - XYZ calibration = OK
|
||||
dcode_10(); break;
|
||||
|
||||
case 12: //D12 - Reset failstat counters
|
||||
dcode_12(); break;
|
||||
|
||||
case 2130: // D9125 - TMC2130
|
||||
dcode_2130(); break;
|
||||
case 9125: // D9125 - PAT9125
|
||||
@ -6408,7 +6432,20 @@ void get_coordinates()
|
||||
for(int8_t i=0; i < NUM_AXIS; i++) {
|
||||
if(code_seen(axis_codes[i]))
|
||||
{
|
||||
destination[i] = (float)code_value() + (axis_relative_modes[i] || relative_mode)*current_position[i];
|
||||
bool relative = axis_relative_modes[i] || relative_mode;
|
||||
destination[i] = (float)code_value();
|
||||
if (i == E_AXIS) {
|
||||
float emult = extruder_multiplier[active_extruder];
|
||||
if (emult != 1.) {
|
||||
if (! relative) {
|
||||
destination[i] -= current_position[i];
|
||||
relative = true;
|
||||
}
|
||||
destination[i] *= emult;
|
||||
}
|
||||
}
|
||||
if (relative)
|
||||
destination[i] += current_position[i];
|
||||
seen[i]=true;
|
||||
}
|
||||
else destination[i] = current_position[i]; //Are these else lines really needed?
|
||||
@ -6922,27 +6959,20 @@ void save_statistics(unsigned long _total_filament_used, unsigned long _total_pr
|
||||
|
||||
}
|
||||
|
||||
float calculate_volumetric_multiplier(float diameter) {
|
||||
float area = .0;
|
||||
float radius = .0;
|
||||
|
||||
radius = diameter * .5;
|
||||
if (! volumetric_enabled || radius == 0) {
|
||||
area = 1;
|
||||
}
|
||||
else {
|
||||
area = M_PI * pow(radius, 2);
|
||||
}
|
||||
|
||||
return 1.0 / area;
|
||||
float calculate_extruder_multiplier(float diameter) {
|
||||
bool enabled = volumetric_enabled && diameter > 0;
|
||||
float area = enabled ? (M_PI * pow(diameter * .5, 2)) : 0;
|
||||
return (extrudemultiply == 100) ?
|
||||
(enabled ? (1.f / area) : 1.f) :
|
||||
(enabled ? ((float(extrudemultiply) * 0.01f) / area) : 1.f);
|
||||
}
|
||||
|
||||
void calculate_volumetric_multipliers() {
|
||||
volumetric_multiplier[0] = calculate_volumetric_multiplier(filament_size[0]);
|
||||
void calculate_extruder_multipliers() {
|
||||
extruder_multiplier[0] = calculate_extruder_multiplier(filament_size[0]);
|
||||
#if EXTRUDERS > 1
|
||||
volumetric_multiplier[1] = calculate_volumetric_multiplier(filament_size[1]);
|
||||
extruder_multiplier[1] = calculate_extruder_multiplier(filament_size[1]);
|
||||
#if EXTRUDERS > 2
|
||||
volumetric_multiplier[2] = calculate_volumetric_multiplier(filament_size[2]);
|
||||
extruder_multiplier[2] = calculate_extruder_multiplier(filament_size[2]);
|
||||
#endif
|
||||
#endif
|
||||
}
|
||||
@ -7474,7 +7504,7 @@ void uvlo_()
|
||||
|
||||
// Read out the current Z motor microstep counter. This will be later used
|
||||
// for reaching the zero full step before powering off.
|
||||
uint16_t z_microsteps = tmc2130_rd_MSCNT(Z_TMC2130_CS);
|
||||
uint16_t z_microsteps = tmc2130_rd_MSCNT(Z_AXIS);
|
||||
|
||||
// Calculate the file position, from which to resume this print.
|
||||
long sd_position = sdpos_atomic; //atomic sd position of last command added in queue
|
||||
@ -7566,7 +7596,7 @@ void uvlo_()
|
||||
|
||||
st_synchronize();
|
||||
SERIAL_ECHOPGM("stps");
|
||||
MYSERIAL.println(tmc2130_rd_MSCNT(Z_TMC2130_CS));
|
||||
MYSERIAL.println(tmc2130_rd_MSCNT(Z_AXIS));
|
||||
|
||||
disable_z();
|
||||
|
||||
|
@ -360,6 +360,15 @@ static void _drawmenu_setting_edit_generic(uint8_t row, const char* pstr, char p
|
||||
#define lcd_implementation_drawmenu_setting_edit_generic(row, pstr, pre_char, data) _drawmenu_setting_edit_generic(row, pstr, pre_char, data, false)
|
||||
#define lcd_implementation_drawmenu_setting_edit_generic_P(row, pstr, pre_char, data) _drawmenu_setting_edit_generic(row, pstr, pre_char, data, true)
|
||||
|
||||
extern char *wfac_to_str5(const uint8_t &x);
|
||||
extern char *mres_to_str3(const uint8_t &x);
|
||||
|
||||
#define lcd_implementation_drawmenu_setting_edit_wfac_selected(row, pstr, pstr2, data, minValue, maxValue) lcd_implementation_drawmenu_setting_edit_generic(row, pstr, '>', wfac_to_str5(*(data)))
|
||||
#define lcd_implementation_drawmenu_setting_edit_wfac(row, pstr, pstr2, data, minValue, maxValue) lcd_implementation_drawmenu_setting_edit_generic(row, pstr, ' ', wfac_to_str5(*(data)))
|
||||
#define lcd_implementation_drawmenu_setting_edit_mres_selected(row, pstr, pstr2, data, minValue, maxValue) lcd_implementation_drawmenu_setting_edit_generic(row, pstr, '>', mres_to_str3(*(data)))
|
||||
#define lcd_implementation_drawmenu_setting_edit_mres(row, pstr, pstr2, data, minValue, maxValue) lcd_implementation_drawmenu_setting_edit_generic(row, pstr, ' ', mres_to_str3(*(data)))
|
||||
#define lcd_implementation_drawmenu_setting_edit_byte3_selected(row, pstr, pstr2, data, minValue, maxValue) lcd_implementation_drawmenu_setting_edit_generic(row, pstr, '>', itostr3((uint8_t)*(data)))
|
||||
#define lcd_implementation_drawmenu_setting_edit_byte3(row, pstr, pstr2, data, minValue, maxValue) lcd_implementation_drawmenu_setting_edit_generic(row, pstr, ' ', itostr3((uint8_t)*(data)))
|
||||
#define lcd_implementation_drawmenu_setting_edit_int3_selected(row, pstr, pstr2, data, minValue, maxValue) lcd_implementation_drawmenu_setting_edit_generic(row, pstr, '>', itostr3(*(data)))
|
||||
#define lcd_implementation_drawmenu_setting_edit_int3(row, pstr, pstr2, data, minValue, maxValue) lcd_implementation_drawmenu_setting_edit_generic(row, pstr, ' ', itostr3(*(data)))
|
||||
#define lcd_implementation_drawmenu_setting_edit_float3_selected(row, pstr, pstr2, data, minValue, maxValue) lcd_implementation_drawmenu_setting_edit_generic(row, pstr, '>', ftostr3(*(data)))
|
||||
|
@ -478,8 +478,8 @@ const char * const MSG_DATE_LANG_TABLE[LANG_NUM] PROGMEM = {
|
||||
MSG_DATE_CZ
|
||||
};
|
||||
|
||||
const char MSG_DEFAULT_SETTINGS_LOADED_EN[] PROGMEM = "Default settings loaded";
|
||||
const char MSG_DEFAULT_SETTINGS_LOADED_CZ[] PROGMEM = "Nahrano vychozi nastaveni";
|
||||
const char MSG_DEFAULT_SETTINGS_LOADED_EN[] PROGMEM = "Old settings found. Default PID, Esteps etc. will be set.";
|
||||
const char MSG_DEFAULT_SETTINGS_LOADED_CZ[] PROGMEM = "Neplatne hodnoty nastaveni. Bude pouzito vychozi PID, Esteps atd.";
|
||||
const char * const MSG_DEFAULT_SETTINGS_LOADED_LANG_TABLE[LANG_NUM] PROGMEM = {
|
||||
MSG_DEFAULT_SETTINGS_LOADED_EN,
|
||||
MSG_DEFAULT_SETTINGS_LOADED_CZ
|
||||
|
@ -375,7 +375,7 @@
|
||||
#define MSG_CHECK_IDLER "Prosim otevrete idler a manualne odstrante filament."
|
||||
#define MSG_FILE_INCOMPLETE "Soubor nekompletni. Pokracovat?"
|
||||
#define MSG_FILE_CNT "Nektere soubory nebudou setrideny. Maximalni pocet souboru pro setrideni je 100."
|
||||
#define MSG_DEFAULT_SETTINGS_LOADED "Nahrano vychozi nastaveni"
|
||||
#define MSG_DEFAULT_SETTINGS_LOADED "Neplatne hodnoty nastaveni. Bude pouzito vychozi PID, Esteps atd."
|
||||
#define MSG_SORT_TIME "Trideni [Cas]"
|
||||
#define MSG_SORT_ALPHA "Trideni [Abeceda]"
|
||||
#define MSG_SORT_NONE "Trideni [Zadne]"
|
||||
|
@ -392,7 +392,7 @@
|
||||
#define(length=20, lines=4) MSG_PULL_OUT_FILAMENT "Please pull out filament immediately"
|
||||
#define(length=20, lines=2) MSG_FILE_INCOMPLETE "File incomplete. Continue anyway?"
|
||||
|
||||
#define(length=20, lines=4) MSG_DEFAULT_SETTINGS_LOADED "Default settings loaded"
|
||||
#define(length=20, lines=4) MSG_DEFAULT_SETTINGS_LOADED "Old settings found. Default PID, Esteps etc. will be set."
|
||||
#define(length=17, lines=1) MSG_SORT_TIME "Sort: [Time]"
|
||||
#define(length=17, lines=1) MSG_SORT_ALPHA "Sort: [Alphabet]"
|
||||
#define(length=17, lines=1) MSG_SORT_NONE "Sort: [None]"
|
||||
|
@ -126,10 +126,6 @@ static uint8_t g_cntr_planner_queue_min = 0;
|
||||
float extrude_min_temp=EXTRUDE_MINTEMP;
|
||||
#endif
|
||||
|
||||
#ifdef FILAMENT_SENSOR
|
||||
static char meas_sample; //temporary variable to hold filament measurement sample
|
||||
#endif
|
||||
|
||||
#ifdef LIN_ADVANCE
|
||||
float extruder_advance_k = LIN_ADVANCE_K,
|
||||
advance_ed_ratio = LIN_ADVANCE_E_D_RATIO,
|
||||
@ -786,10 +782,6 @@ block->steps_y.wide = labs((target[X_AXIS]-position[X_AXIS]) - (target[Y_AXIS]-p
|
||||
#endif
|
||||
block->steps_z.wide = labs(target[Z_AXIS]-position[Z_AXIS]);
|
||||
block->steps_e.wide = labs(target[E_AXIS]-position[E_AXIS]);
|
||||
if (volumetric_multiplier[active_extruder] != 1.f)
|
||||
block->steps_e.wide *= volumetric_multiplier[active_extruder];
|
||||
if (extrudemultiply != 100)
|
||||
block->steps_e.wide *= extrudemultiply * 0.01;
|
||||
block->step_event_count.wide = max(block->steps_x.wide, max(block->steps_y.wide, max(block->steps_z.wide, block->steps_e.wide)));
|
||||
|
||||
// Bail if this is a zero-length block
|
||||
@ -919,7 +911,7 @@ Having the real displacement of the head, we can calculate the total movement le
|
||||
delta_mm[Y_AXIS] = ((target[X_AXIS]-position[X_AXIS]) - (target[Y_AXIS]-position[Y_AXIS]))/axis_steps_per_unit[Y_AXIS];
|
||||
#endif
|
||||
delta_mm[Z_AXIS] = (target[Z_AXIS]-position[Z_AXIS])/axis_steps_per_unit[Z_AXIS];
|
||||
delta_mm[E_AXIS] = ((target[E_AXIS]-position[E_AXIS])/axis_steps_per_unit[E_AXIS])*volumetric_multiplier[active_extruder]*extrudemultiply/100.0;
|
||||
delta_mm[E_AXIS] = (target[E_AXIS]-position[E_AXIS])/axis_steps_per_unit[E_AXIS];
|
||||
if ( block->steps_x.wide <=dropsegments && block->steps_y.wide <=dropsegments && block->steps_z.wide <=dropsegments )
|
||||
{
|
||||
block->millimeters = fabs(delta_mm[E_AXIS]);
|
||||
@ -955,49 +947,6 @@ Having the real displacement of the head, we can calculate the total movement le
|
||||
block->nominal_speed = block->millimeters * inverse_second; // (mm/sec) Always > 0
|
||||
block->nominal_rate = ceil(block->step_event_count.wide * inverse_second); // (step/sec) Always > 0
|
||||
|
||||
#ifdef FILAMENT_SENSOR
|
||||
//FMM update ring buffer used for delay with filament measurements
|
||||
|
||||
|
||||
if((extruder==FILAMENT_SENSOR_EXTRUDER_NUM) && (delay_index2 > -1)) //only for extruder with filament sensor and if ring buffer is initialized
|
||||
{
|
||||
delay_dist = delay_dist + delta_mm[E_AXIS]; //increment counter with next move in e axis
|
||||
|
||||
while (delay_dist >= (10*(MAX_MEASUREMENT_DELAY+1))) //check if counter is over max buffer size in mm
|
||||
delay_dist = delay_dist - 10*(MAX_MEASUREMENT_DELAY+1); //loop around the buffer
|
||||
while (delay_dist<0)
|
||||
delay_dist = delay_dist + 10*(MAX_MEASUREMENT_DELAY+1); //loop around the buffer
|
||||
|
||||
delay_index1=delay_dist/10.0; //calculate index
|
||||
|
||||
//ensure the number is within range of the array after converting from floating point
|
||||
if(delay_index1<0)
|
||||
delay_index1=0;
|
||||
else if (delay_index1>MAX_MEASUREMENT_DELAY)
|
||||
delay_index1=MAX_MEASUREMENT_DELAY;
|
||||
|
||||
if(delay_index1 != delay_index2) //moved index
|
||||
{
|
||||
meas_sample=widthFil_to_size_ratio()-100; //subtract off 100 to reduce magnitude - to store in a signed char
|
||||
}
|
||||
while( delay_index1 != delay_index2)
|
||||
{
|
||||
delay_index2 = delay_index2 + 1;
|
||||
if(delay_index2>MAX_MEASUREMENT_DELAY)
|
||||
delay_index2=delay_index2-(MAX_MEASUREMENT_DELAY+1); //loop around buffer when incrementing
|
||||
if(delay_index2<0)
|
||||
delay_index2=0;
|
||||
else if (delay_index2>MAX_MEASUREMENT_DELAY)
|
||||
delay_index2=MAX_MEASUREMENT_DELAY;
|
||||
|
||||
measurement_delay[delay_index2]=meas_sample;
|
||||
}
|
||||
|
||||
|
||||
}
|
||||
#endif
|
||||
|
||||
|
||||
// Calculate and limit speed in mm/sec for each axis
|
||||
float current_speed[4];
|
||||
float speed_factor = 1.0; //factor <=1 do decrease speed
|
||||
|
@ -170,6 +170,8 @@ extern float max_jerk[NUM_AXIS];
|
||||
extern float mintravelfeedrate;
|
||||
extern unsigned long axis_steps_per_sqr_second[NUM_AXIS];
|
||||
|
||||
extern long position[NUM_AXIS];
|
||||
|
||||
#ifdef AUTOTEMP
|
||||
extern bool autotemp_enabled;
|
||||
extern float autotemp_max;
|
||||
|
@ -1521,6 +1521,9 @@ void microstep_init()
|
||||
#endif
|
||||
}
|
||||
|
||||
|
||||
#ifndef TMC2130
|
||||
|
||||
void microstep_ms(uint8_t driver, int8_t ms1, int8_t ms2)
|
||||
{
|
||||
if(ms1 > -1) switch(driver)
|
||||
@ -1578,3 +1581,4 @@ void microstep_readings()
|
||||
SERIAL_PROTOCOLLN( digitalRead(E1_MS2_PIN));
|
||||
#endif
|
||||
}
|
||||
#endif //TMC2130
|
||||
|
@ -104,9 +104,6 @@ unsigned char soft_pwm_bed;
|
||||
volatile int babystepsTodo[3]={0,0,0};
|
||||
#endif
|
||||
|
||||
#ifdef FILAMENT_SENSOR
|
||||
int current_raw_filwidth = 0; //Holds measured filament diameter - one extruder only
|
||||
#endif
|
||||
//===========================================================================
|
||||
//=============================private variables============================
|
||||
//===========================================================================
|
||||
@ -204,9 +201,6 @@ unsigned long watchmillis[EXTRUDERS] = ARRAY_BY_EXTRUDERS(0,0,0);
|
||||
#define SOFT_PWM_SCALE 0
|
||||
#endif
|
||||
|
||||
#ifdef FILAMENT_SENSOR
|
||||
static int meas_shift_index; //used to point to a delayed sample in buffer for filament width sensor
|
||||
#endif
|
||||
//===========================================================================
|
||||
//============================= functions ============================
|
||||
//===========================================================================
|
||||
@ -794,27 +788,6 @@ void manage_heater()
|
||||
#endif
|
||||
#endif
|
||||
|
||||
//code for controlling the extruder rate based on the width sensor
|
||||
#ifdef FILAMENT_SENSOR
|
||||
if(filament_sensor)
|
||||
{
|
||||
meas_shift_index=delay_index1-meas_delay_cm;
|
||||
if(meas_shift_index<0)
|
||||
meas_shift_index = meas_shift_index + (MAX_MEASUREMENT_DELAY+1); //loop around buffer if needed
|
||||
|
||||
//get the delayed info and add 100 to reconstitute to a percent of the nominal filament diameter
|
||||
//then square it to get an area
|
||||
|
||||
if(meas_shift_index<0)
|
||||
meas_shift_index=0;
|
||||
else if (meas_shift_index>MAX_MEASUREMENT_DELAY)
|
||||
meas_shift_index=MAX_MEASUREMENT_DELAY;
|
||||
|
||||
volumetric_multiplier[FILAMENT_SENSOR_EXTRUDER_NUM] = pow((float)(100+measurement_delay[meas_shift_index])/100.0,2);
|
||||
if (volumetric_multiplier[FILAMENT_SENSOR_EXTRUDER_NUM] <0.01)
|
||||
volumetric_multiplier[FILAMENT_SENSOR_EXTRUDER_NUM]=0.01;
|
||||
}
|
||||
#endif
|
||||
#ifdef HOST_KEEPALIVE_FEATURE
|
||||
host_keepalive();
|
||||
#endif
|
||||
@ -967,9 +940,7 @@ static void updateTemperaturesFromRawValues()
|
||||
#ifdef TEMP_SENSOR_1_AS_REDUNDANT
|
||||
redundant_temperature = analog2temp(redundant_temperature_raw, 1);
|
||||
#endif
|
||||
#if defined (FILAMENT_SENSOR) && (FILWIDTH_PIN > -1) //check if a sensor is supported
|
||||
filament_width_meas = analog2widthFil();
|
||||
#endif
|
||||
|
||||
//Reset the watchdog after we know we have a temperature measurement.
|
||||
watchdog_reset();
|
||||
|
||||
@ -979,35 +950,6 @@ static void updateTemperaturesFromRawValues()
|
||||
}
|
||||
|
||||
|
||||
// For converting raw Filament Width to milimeters
|
||||
#ifdef FILAMENT_SENSOR
|
||||
float analog2widthFil() {
|
||||
return current_raw_filwidth/16383.0*5.0;
|
||||
//return current_raw_filwidth;
|
||||
}
|
||||
|
||||
// For converting raw Filament Width to a ratio
|
||||
int widthFil_to_size_ratio() {
|
||||
|
||||
float temp;
|
||||
|
||||
temp=filament_width_meas;
|
||||
if(filament_width_meas<MEASURED_LOWER_LIMIT)
|
||||
temp=filament_width_nominal; //assume sensor cut out
|
||||
else if (filament_width_meas>MEASURED_UPPER_LIMIT)
|
||||
temp= MEASURED_UPPER_LIMIT;
|
||||
|
||||
|
||||
return(filament_width_nominal/temp*100);
|
||||
|
||||
|
||||
}
|
||||
#endif
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
void tp_init()
|
||||
{
|
||||
#if MB(RUMBA) && ((TEMP_SENSOR_0==-1)||(TEMP_SENSOR_1==-1)||(TEMP_SENSOR_2==-1)||(TEMP_SENSOR_BED==-1))
|
||||
|
@ -31,14 +31,6 @@
|
||||
void tp_init(); //initialize the heating
|
||||
void manage_heater(); //it is critical that this is called periodically.
|
||||
|
||||
#ifdef FILAMENT_SENSOR
|
||||
// For converting raw Filament Width to milimeters
|
||||
float analog2widthFil();
|
||||
|
||||
// For converting raw Filament Width to an extrusion ratio
|
||||
int widthFil_to_size_ratio();
|
||||
#endif
|
||||
|
||||
// low level conversion routines
|
||||
// do not use these routines and variables outside of temperature.cpp
|
||||
extern int target_temperature[EXTRUDERS];
|
||||
|
@ -20,8 +20,6 @@ extern long st_get_position(uint8_t axis);
|
||||
extern void crashdet_stop_and_save_print();
|
||||
extern void crashdet_stop_and_save_print2();
|
||||
|
||||
//chipselect pins
|
||||
uint8_t tmc2130_cs[4] = { X_TMC2130_CS, Y_TMC2130_CS, Z_TMC2130_CS, E0_TMC2130_CS };
|
||||
//mode
|
||||
uint8_t tmc2130_mode = TMC2130_MODE_NORMAL;
|
||||
//holding currents
|
||||
@ -30,7 +28,7 @@ uint8_t tmc2130_current_h[4] = TMC2130_CURRENTS_H;
|
||||
uint8_t tmc2130_current_r[4] = TMC2130_CURRENTS_R;
|
||||
|
||||
//running currents for homing
|
||||
uint8_t tmc2130_current_r_home[4] = {10, 10, 20, 10};
|
||||
uint8_t tmc2130_current_r_home[4] = {8, 10, 20, 18};
|
||||
|
||||
|
||||
//pwm_ampl
|
||||
@ -55,6 +53,12 @@ uint8_t tmc2130_sg_meassure = 0xff;
|
||||
uint16_t tmc2130_sg_meassure_cnt = 0;
|
||||
uint32_t tmc2130_sg_meassure_val = 0;
|
||||
|
||||
uint8_t tmc2130_home_enabled = 0;
|
||||
uint8_t tmc2130_home_origin[2] = {0, 0};
|
||||
uint8_t tmc2130_home_bsteps[2] = {48, 48};
|
||||
uint8_t tmc2130_home_fsteps[2] = {48, 48};
|
||||
|
||||
uint8_t tmc2130_wave_fac[4] = {0, 0, 0, 0};
|
||||
|
||||
bool tmc2130_sg_stop_on_crash = true;
|
||||
uint8_t tmc2130_sg_diag_mask = 0x00;
|
||||
@ -104,21 +108,19 @@ bool skip_debug_msg = false;
|
||||
#define TMC2130_REG_LOST_STEPS 0x73 // 20 bits
|
||||
|
||||
|
||||
uint16_t tmc2130_rd_TSTEP(uint8_t cs);
|
||||
uint16_t tmc2130_rd_MSCNT(uint8_t cs);
|
||||
uint16_t tmc2130_rd_DRV_STATUS(uint8_t cs);
|
||||
uint16_t tmc2130_rd_TSTEP(uint8_t axis);
|
||||
uint16_t tmc2130_rd_MSCNT(uint8_t axis);
|
||||
uint32_t tmc2130_rd_MSCURACT(uint8_t axis);
|
||||
|
||||
void tmc2130_wr_CHOPCONF(uint8_t cs, uint8_t toff = 3, uint8_t hstrt = 4, uint8_t hend = 1, uint8_t fd3 = 0, uint8_t disfdcc = 0, uint8_t rndtf = 0, uint8_t chm = 0, uint8_t tbl = 2, uint8_t vsense = 0, uint8_t vhighfs = 0, uint8_t vhighchm = 0, uint8_t sync = 0, uint8_t mres = 0b0100, uint8_t intpol = 1, uint8_t dedge = 0, uint8_t diss2g = 0);
|
||||
void tmc2130_wr_PWMCONF(uint8_t cs, uint8_t pwm_ampl, uint8_t pwm_grad, uint8_t pwm_freq, uint8_t pwm_auto, uint8_t pwm_symm, uint8_t freewheel);
|
||||
void tmc2130_wr_TPWMTHRS(uint8_t cs, uint32_t val32);
|
||||
void tmc2130_wr_THIGH(uint8_t cs, uint32_t val32);
|
||||
void tmc2130_wr_CHOPCONF(uint8_t axis, uint8_t toff = 3, uint8_t hstrt = 4, uint8_t hend = 1, uint8_t fd3 = 0, uint8_t disfdcc = 0, uint8_t rndtf = 0, uint8_t chm = 0, uint8_t tbl = 2, uint8_t vsense = 0, uint8_t vhighfs = 0, uint8_t vhighchm = 0, uint8_t sync = 0, uint8_t mres = 0b0100, uint8_t intpol = 1, uint8_t dedge = 0, uint8_t diss2g = 0);
|
||||
void tmc2130_wr_PWMCONF(uint8_t axis, uint8_t pwm_ampl, uint8_t pwm_grad, uint8_t pwm_freq, uint8_t pwm_auto, uint8_t pwm_symm, uint8_t freewheel);
|
||||
void tmc2130_wr_TPWMTHRS(uint8_t axis, uint32_t val32);
|
||||
void tmc2130_wr_THIGH(uint8_t axis, uint32_t val32);
|
||||
|
||||
uint8_t tmc2130_axis_by_cs(uint8_t cs);
|
||||
uint8_t tmc2130_calc_mres(uint16_t microstep_resolution);
|
||||
|
||||
uint8_t tmc2130_wr(uint8_t cs, uint8_t addr, uint32_t wval);
|
||||
uint8_t tmc2130_rd(uint8_t cs, uint8_t addr, uint32_t* rval);
|
||||
uint8_t tmc2130_txrx(uint8_t cs, uint8_t addr, uint32_t wval, uint32_t* rval);
|
||||
uint8_t tmc2130_wr(uint8_t axis, uint8_t addr, uint32_t wval);
|
||||
uint8_t tmc2130_rd(uint8_t axis, uint8_t addr, uint32_t* rval);
|
||||
uint8_t tmc2130_txrx(uint8_t axis, uint8_t addr, uint32_t wval, uint32_t* rval);
|
||||
|
||||
|
||||
void tmc2130_setup_chopper(uint8_t axis, uint8_t mres, uint8_t current_h, uint8_t current_r);
|
||||
@ -128,10 +130,10 @@ void tmc2130_setup_chopper(uint8_t axis, uint8_t mres, uint8_t current_h, uint8_
|
||||
void tmc2130_init()
|
||||
{
|
||||
DBG(_n("tmc2130_init(), mode=%S\n"), tmc2130_mode?_n("STEALTH"):_n("NORMAL"));
|
||||
tmc2130_mres[0] = tmc2130_calc_mres(TMC2130_USTEPS_XY);
|
||||
tmc2130_mres[1] = tmc2130_calc_mres(TMC2130_USTEPS_XY);
|
||||
tmc2130_mres[2] = tmc2130_calc_mres(TMC2130_USTEPS_Z);
|
||||
tmc2130_mres[3] = tmc2130_calc_mres(TMC2130_USTEPS_E);
|
||||
/* tmc2130_mres[X_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_XY);
|
||||
tmc2130_mres[Y_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_XY);
|
||||
tmc2130_mres[Z_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_Z);
|
||||
tmc2130_mres[E_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_E);*/
|
||||
WRITE(X_TMC2130_CS, HIGH);
|
||||
WRITE(Y_TMC2130_CS, HIGH);
|
||||
WRITE(Z_TMC2130_CS, HIGH);
|
||||
@ -147,65 +149,33 @@ void tmc2130_init()
|
||||
SPI.begin();
|
||||
for (int axis = 0; axis < 2; axis++) // X Y axes
|
||||
{
|
||||
/* if (tmc2130_current_r[axis] <= 31)
|
||||
{
|
||||
tmc2130_wr_CHOPCONF(tmc2130_cs[axis], 3, 5, 1, 0, 0, 0, 0, 2, 1, 0, 0, 0, mres, TMC2130_INTPOL_XY, 0, 0);
|
||||
tmc2130_wr(tmc2130_cs[axis], TMC2130_REG_IHOLD_IRUN, 0x000f0000 | ((tmc2130_current_r[axis] & 0x1f) << 8) | (tmc2130_current_h[axis] & 0x1f));
|
||||
}
|
||||
else
|
||||
{
|
||||
tmc2130_wr_CHOPCONF(tmc2130_cs[axis], 3, 5, 1, 0, 0, 0, 0, 2, 0, 0, 0, 0, mres, TMC2130_INTPOL_XY, 0, 0);
|
||||
tmc2130_wr(tmc2130_cs[axis], TMC2130_REG_IHOLD_IRUN, 0x000f0000 | (((tmc2130_current_r[axis] >> 1) & 0x1f) << 8) | ((tmc2130_current_h[axis] >> 1) & 0x1f));
|
||||
}*/
|
||||
tmc2130_setup_chopper(axis, tmc2130_mres[axis], tmc2130_current_h[axis], tmc2130_current_r[axis]);
|
||||
|
||||
// tmc2130_wr_CHOPCONF(tmc2130_cs[axis], 3, 5, 1, 0, 0, 0, 0, 2, 1, 0, 0, 0, mres, TMC2130_INTPOL_XY, 0, 0);
|
||||
// tmc2130_wr(tmc2130_cs[axis], TMC2130_REG_IHOLD_IRUN, 0x000f0000 | ((tmc2130_current_r[axis] & 0x1f) << 8) | (tmc2130_current_h[axis] & 0x1f));
|
||||
tmc2130_wr(tmc2130_cs[axis], TMC2130_REG_TPOWERDOWN, 0x00000000);
|
||||
// tmc2130_wr(tmc2130_cs[axis], TMC2130_REG_COOLCONF, (((uint32_t)tmc2130_sg_thr[axis]) << 16) | ((uint32_t)1 << 24));
|
||||
tmc2130_wr(tmc2130_cs[axis], TMC2130_REG_COOLCONF, (((uint32_t)tmc2130_sg_thr[axis]) << 16));
|
||||
tmc2130_wr(tmc2130_cs[axis], TMC2130_REG_TCOOLTHRS, (tmc2130_mode == TMC2130_MODE_SILENT)?0:((axis==X_AXIS)?TMC2130_TCOOLTHRS_X:TMC2130_TCOOLTHRS_Y));
|
||||
tmc2130_wr(tmc2130_cs[axis], TMC2130_REG_GCONF, (tmc2130_mode == TMC2130_MODE_SILENT)?TMC2130_GCONF_SILENT:TMC2130_GCONF_SGSENS);
|
||||
tmc2130_wr_PWMCONF(tmc2130_cs[axis], tmc2130_pwm_ampl[axis], tmc2130_pwm_grad[axis], tmc2130_pwm_freq[axis], tmc2130_pwm_auto[axis], 0, 0);
|
||||
tmc2130_wr_TPWMTHRS(tmc2130_cs[axis], TMC2130_TPWMTHRS);
|
||||
//tmc2130_wr_THIGH(tmc2130_cs[axis], TMC2130_THIGH);
|
||||
tmc2130_wr(axis, TMC2130_REG_TPOWERDOWN, 0x00000000);
|
||||
tmc2130_wr(axis, TMC2130_REG_COOLCONF, (((uint32_t)tmc2130_sg_thr[axis]) << 16));
|
||||
tmc2130_wr(axis, TMC2130_REG_TCOOLTHRS, (tmc2130_mode == TMC2130_MODE_SILENT)?0:((axis==X_AXIS)?TMC2130_TCOOLTHRS_X:TMC2130_TCOOLTHRS_Y));
|
||||
tmc2130_wr(axis, TMC2130_REG_GCONF, (tmc2130_mode == TMC2130_MODE_SILENT)?TMC2130_GCONF_SILENT:TMC2130_GCONF_SGSENS);
|
||||
tmc2130_wr_PWMCONF(axis, tmc2130_pwm_ampl[axis], tmc2130_pwm_grad[axis], tmc2130_pwm_freq[axis], tmc2130_pwm_auto[axis], 0, 0);
|
||||
tmc2130_wr_TPWMTHRS(axis, TMC2130_TPWMTHRS);
|
||||
//tmc2130_wr_THIGH(axis, TMC2130_THIGH);
|
||||
}
|
||||
for (int axis = 2; axis < 3; axis++) // Z axis
|
||||
{
|
||||
// uint8_t mres = tmc2130_mres(TMC2130_USTEPS_Z);
|
||||
/* if (tmc2130_current_r[axis] <= 31)
|
||||
{
|
||||
tmc2130_wr_CHOPCONF(tmc2130_cs[axis], 3, 5, 1, 0, 0, 0, 0, 2, 1, 0, 0, 0, mres, TMC2130_INTPOL_Z, 0, 0);
|
||||
tmc2130_wr(tmc2130_cs[axis], TMC2130_REG_IHOLD_IRUN, 0x000f0000 | ((tmc2130_current_r[axis] & 0x1f) << 8) | (tmc2130_current_h[axis] & 0x1f));
|
||||
}
|
||||
else
|
||||
{
|
||||
tmc2130_wr_CHOPCONF(tmc2130_cs[axis], 3, 5, 1, 0, 0, 0, 0, 2, 0, 0, 0, 0, mres, TMC2130_INTPOL_Z, 0, 0);
|
||||
tmc2130_wr(tmc2130_cs[axis], TMC2130_REG_IHOLD_IRUN, 0x000f0000 | (((tmc2130_current_r[axis] >> 1) & 0x1f) << 8) | ((tmc2130_current_h[axis] >> 1) & 0x1f));
|
||||
}*/
|
||||
tmc2130_setup_chopper(axis, tmc2130_mres[axis], tmc2130_current_h[axis], tmc2130_current_r[axis]);
|
||||
|
||||
tmc2130_wr(tmc2130_cs[axis], TMC2130_REG_TPOWERDOWN, 0x00000000);
|
||||
tmc2130_wr(tmc2130_cs[axis], TMC2130_REG_GCONF, TMC2130_GCONF_SGSENS);
|
||||
|
||||
tmc2130_wr(axis, TMC2130_REG_TPOWERDOWN, 0x00000000);
|
||||
tmc2130_wr(axis, TMC2130_REG_GCONF, TMC2130_GCONF_SGSENS);
|
||||
}
|
||||
for (int axis = 3; axis < 4; axis++) // E axis
|
||||
{
|
||||
// uint8_t mres = tmc2130_mres(TMC2130_USTEPS_E);
|
||||
tmc2130_setup_chopper(axis, tmc2130_mres[axis], tmc2130_current_h[axis], tmc2130_current_r[axis]);
|
||||
|
||||
// tmc2130_wr_CHOPCONF(tmc2130_cs[axis], 3, 5, 1, 0, 0, 0, 0, 2, 1, 0, 0, 0, mres, TMC2130_INTPOL_E, 0, 0);
|
||||
// tmc2130_wr(tmc2130_cs[axis], TMC2130_REG_IHOLD_IRUN, 0x000f0000 | ((tmc2130_current_r[axis] & 0x1f) << 8) | (tmc2130_current_h[axis] & 0x1f));
|
||||
|
||||
tmc2130_wr(tmc2130_cs[axis], TMC2130_REG_TPOWERDOWN, 0x00000000);
|
||||
tmc2130_wr(axis, TMC2130_REG_TPOWERDOWN, 0x00000000);
|
||||
#ifndef TMC2130_STEALTH_E
|
||||
tmc2130_wr(tmc2130_cs[axis], TMC2130_REG_GCONF, TMC2130_GCONF_SGSENS);
|
||||
tmc2130_wr(axis, TMC2130_REG_GCONF, TMC2130_GCONF_SGSENS);
|
||||
#else //TMC2130_STEALTH_E
|
||||
tmc2130_wr(tmc2130_cs[axis], TMC2130_REG_COOLCONF, (((uint32_t)tmc2130_sg_thr[axis]) << 16));
|
||||
tmc2130_wr(tmc2130_cs[axis], TMC2130_REG_TCOOLTHRS, 0);
|
||||
tmc2130_wr(tmc2130_cs[axis], TMC2130_REG_GCONF, TMC2130_GCONF_SILENT);
|
||||
tmc2130_wr_PWMCONF(tmc2130_cs[axis], tmc2130_pwm_ampl[axis], tmc2130_pwm_grad[axis], tmc2130_pwm_freq[axis], tmc2130_pwm_auto[axis], 0, 0);
|
||||
tmc2130_wr_TPWMTHRS(tmc2130_cs[axis], TMC2130_TPWMTHRS);
|
||||
tmc2130_wr(axis, TMC2130_REG_COOLCONF, (((uint32_t)tmc2130_sg_thr[axis]) << 16));
|
||||
tmc2130_wr(axis, TMC2130_REG_TCOOLTHRS, 0);
|
||||
tmc2130_wr(axis, TMC2130_REG_GCONF, TMC2130_GCONF_SILENT);
|
||||
tmc2130_wr_PWMCONF(axis, tmc2130_pwm_ampl[axis], tmc2130_pwm_grad[axis], tmc2130_pwm_freq[axis], tmc2130_pwm_auto[axis], 0, 0);
|
||||
tmc2130_wr_TPWMTHRS(axis, TMC2130_TPWMTHRS);
|
||||
#endif //TMC2130_STEALTH_E
|
||||
}
|
||||
|
||||
@ -217,6 +187,11 @@ void tmc2130_init()
|
||||
tmc2130_sg_cnt[1] = 0;
|
||||
tmc2130_sg_cnt[2] = 0;
|
||||
tmc2130_sg_cnt[3] = 0;
|
||||
|
||||
tmc2130_set_wave(X_AXIS, 247, tmc2130_wave_fac[X_AXIS]);
|
||||
tmc2130_set_wave(Y_AXIS, 247, tmc2130_wave_fac[Y_AXIS]);
|
||||
tmc2130_set_wave(Z_AXIS, 247, tmc2130_wave_fac[Z_AXIS]);
|
||||
tmc2130_set_wave(E_AXIS, 247, tmc2130_wave_fac[E_AXIS]);
|
||||
}
|
||||
|
||||
uint8_t tmc2130_sample_diag()
|
||||
@ -279,11 +254,10 @@ bool tmc2130_update_sg()
|
||||
{
|
||||
if (tmc2130_sg_meassure <= E_AXIS)
|
||||
{
|
||||
uint8_t cs = tmc2130_cs[tmc2130_sg_meassure];
|
||||
uint16_t sg = tmc2130_rd_DRV_STATUS(cs) & 0x3ff;
|
||||
tmc2130_sg_meassure_val += sg;
|
||||
uint32_t val32 = 0;
|
||||
tmc2130_rd(tmc2130_sg_meassure, TMC2130_REG_DRV_STATUS, &val32);
|
||||
tmc2130_sg_meassure_val += (val32 & 0x3ff);
|
||||
tmc2130_sg_meassure_cnt++;
|
||||
// printf_P(PSTR("tmc2130_update_sg - meassure - sg=%d\n"), sg);
|
||||
return true;
|
||||
}
|
||||
return false;
|
||||
@ -296,18 +270,17 @@ void tmc2130_home_enter(uint8_t axes_mask)
|
||||
for (uint8_t axis = X_AXIS; axis <= Z_AXIS; axis++) //X Y and Z axes
|
||||
{
|
||||
uint8_t mask = (X_AXIS_MASK << axis);
|
||||
uint8_t cs = tmc2130_cs[axis];
|
||||
if (axes_mask & mask)
|
||||
{
|
||||
sg_homing_axes_mask |= mask;
|
||||
//Configuration to spreadCycle
|
||||
tmc2130_wr(cs, TMC2130_REG_GCONF, TMC2130_GCONF_NORMAL);
|
||||
tmc2130_wr(cs, TMC2130_REG_COOLCONF, (((uint32_t)tmc2130_sg_thr_home[axis]) << 16));
|
||||
// tmc2130_wr(cs, TMC2130_REG_COOLCONF, (((uint32_t)tmc2130_sg_thr[axis]) << 16) | ((uint32_t)1 << 24));
|
||||
tmc2130_wr(cs, TMC2130_REG_TCOOLTHRS, (axis==X_AXIS)?TMC2130_TCOOLTHRS_X:TMC2130_TCOOLTHRS_Y);
|
||||
tmc2130_wr(axis, TMC2130_REG_GCONF, TMC2130_GCONF_NORMAL);
|
||||
tmc2130_wr(axis, TMC2130_REG_COOLCONF, (((uint32_t)tmc2130_sg_thr_home[axis]) << 16));
|
||||
// tmc2130_wr(axis, TMC2130_REG_COOLCONF, (((uint32_t)tmc2130_sg_thr[axis]) << 16) | ((uint32_t)1 << 24));
|
||||
tmc2130_wr(axis, TMC2130_REG_TCOOLTHRS, (axis==X_AXIS)?TMC2130_TCOOLTHRS_X:TMC2130_TCOOLTHRS_Y);
|
||||
tmc2130_setup_chopper(axis, tmc2130_mres[axis], tmc2130_current_h[axis], tmc2130_current_r_home[axis]);
|
||||
if (mask & (X_AXIS_MASK | Y_AXIS_MASK | Z_AXIS_MASK))
|
||||
tmc2130_wr(cs, TMC2130_REG_GCONF, TMC2130_GCONF_SGSENS); //stallguard output DIAG1, DIAG1 = pushpull
|
||||
tmc2130_wr(axis, TMC2130_REG_GCONF, TMC2130_GCONF_SGSENS); //stallguard output DIAG1, DIAG1 = pushpull
|
||||
}
|
||||
}
|
||||
#endif //TMC2130_SG_HOMING
|
||||
@ -326,18 +299,18 @@ void tmc2130_home_exit()
|
||||
{
|
||||
if (tmc2130_mode == TMC2130_MODE_SILENT)
|
||||
{
|
||||
tmc2130_wr(tmc2130_cs[axis], TMC2130_REG_GCONF, TMC2130_GCONF_SILENT); // Configuration back to stealthChop
|
||||
tmc2130_wr(tmc2130_cs[axis], TMC2130_REG_TCOOLTHRS, 0);
|
||||
// tmc2130_wr_PWMCONF(tmc2130_cs[i], tmc2130_pwm_ampl[i], tmc2130_pwm_grad[i], tmc2130_pwm_freq[i], tmc2130_pwm_auto[i], 0, 0);
|
||||
tmc2130_wr(axis, TMC2130_REG_GCONF, TMC2130_GCONF_SILENT); // Configuration back to stealthChop
|
||||
tmc2130_wr(axis, TMC2130_REG_TCOOLTHRS, 0);
|
||||
// tmc2130_wr_PWMCONF(i, tmc2130_pwm_ampl[i], tmc2130_pwm_grad[i], tmc2130_pwm_freq[i], tmc2130_pwm_auto[i], 0, 0);
|
||||
}
|
||||
else
|
||||
{
|
||||
// tmc2130_wr(tmc2130_cs[axis], TMC2130_REG_GCONF, TMC2130_GCONF_NORMAL);
|
||||
// tmc2130_wr(axis, TMC2130_REG_GCONF, TMC2130_GCONF_NORMAL);
|
||||
tmc2130_setup_chopper(axis, tmc2130_mres[axis], tmc2130_current_h[axis], tmc2130_current_r[axis]);
|
||||
// tmc2130_wr(tmc2130_cs[axis], TMC2130_REG_COOLCONF, (((uint32_t)tmc2130_sg_thr[axis]) << 16) | ((uint32_t)1 << 24));
|
||||
tmc2130_wr(tmc2130_cs[axis], TMC2130_REG_COOLCONF, (((uint32_t)tmc2130_sg_thr[axis]) << 16));
|
||||
tmc2130_wr(tmc2130_cs[axis], TMC2130_REG_TCOOLTHRS, (tmc2130_mode == TMC2130_MODE_SILENT)?0:((axis==X_AXIS)?TMC2130_TCOOLTHRS_X:TMC2130_TCOOLTHRS_Y));
|
||||
tmc2130_wr(tmc2130_cs[axis], TMC2130_REG_GCONF, TMC2130_GCONF_SGSENS);
|
||||
// tmc2130_wr(axis, TMC2130_REG_COOLCONF, (((uint32_t)tmc2130_sg_thr[axis]) << 16) | ((uint32_t)1 << 24));
|
||||
tmc2130_wr(axis, TMC2130_REG_COOLCONF, (((uint32_t)tmc2130_sg_thr[axis]) << 16));
|
||||
tmc2130_wr(axis, TMC2130_REG_TCOOLTHRS, (tmc2130_mode == TMC2130_MODE_SILENT)?0:((axis==X_AXIS)?TMC2130_TCOOLTHRS_X:TMC2130_TCOOLTHRS_Y));
|
||||
tmc2130_wr(axis, TMC2130_REG_GCONF, TMC2130_GCONF_SGSENS);
|
||||
}
|
||||
}
|
||||
}
|
||||
@ -369,8 +342,8 @@ bool tmc2130_wait_standstill_xy(int timeout)
|
||||
{
|
||||
uint32_t drv_status_x = 0;
|
||||
uint32_t drv_status_y = 0;
|
||||
tmc2130_rd(tmc2130_cs[X_AXIS], TMC2130_REG_DRV_STATUS, &drv_status_x);
|
||||
tmc2130_rd(tmc2130_cs[Y_AXIS], TMC2130_REG_DRV_STATUS, &drv_status_y);
|
||||
tmc2130_rd(X_AXIS, TMC2130_REG_DRV_STATUS, &drv_status_x);
|
||||
tmc2130_rd(Y_AXIS, TMC2130_REG_DRV_STATUS, &drv_status_y);
|
||||
// DBG(_n("\tdrv_status_x=0x%08x drv_status_x=0x%08x\n"), drv_status_x, drv_status_y);
|
||||
standstill = (drv_status_x & 0x80000000) && (drv_status_y & 0x80000000);
|
||||
tmc2130_check_overtemp();
|
||||
@ -390,13 +363,13 @@ void tmc2130_check_overtemp()
|
||||
{
|
||||
uint32_t drv_status = 0;
|
||||
skip_debug_msg = true;
|
||||
tmc2130_rd(tmc2130_cs[i], TMC2130_REG_DRV_STATUS, &drv_status);
|
||||
tmc2130_rd(i, TMC2130_REG_DRV_STATUS, &drv_status);
|
||||
if (drv_status & ((uint32_t)1 << 26))
|
||||
{ // BIT 26 - over temp prewarning ~120C (+-20C)
|
||||
SERIAL_ERRORRPGM(TMC_OVERTEMP_MSG);
|
||||
SERIAL_ECHOLN(i);
|
||||
for (int j = 0; j < 4; j++)
|
||||
tmc2130_wr(tmc2130_cs[j], TMC2130_REG_CHOPCONF, 0x00010000);
|
||||
tmc2130_wr(j, TMC2130_REG_CHOPCONF, 0x00010000);
|
||||
kill(TMC_OVERTEMP_MSG);
|
||||
}
|
||||
|
||||
@ -420,7 +393,6 @@ void tmc2130_check_overtemp()
|
||||
|
||||
void tmc2130_setup_chopper(uint8_t axis, uint8_t mres, uint8_t current_h, uint8_t current_r)
|
||||
{
|
||||
uint8_t cs = tmc2130_cs[axis];
|
||||
uint8_t intpol = 1;
|
||||
uint8_t toff = TMC2130_TOFF_XYZ; // toff = 3 (fchop = 27.778kHz)
|
||||
uint8_t hstrt = 5; //initial 4, modified to 5
|
||||
@ -443,13 +415,13 @@ void tmc2130_setup_chopper(uint8_t axis, uint8_t mres, uint8_t current_h, uint8_
|
||||
}
|
||||
if (current_r <= 31)
|
||||
{
|
||||
tmc2130_wr_CHOPCONF(cs, toff, hstrt, hend, fd3, 0, rndtf, chm, tbl, 1, 0, 0, 0, mres, intpol, 0, 0);
|
||||
tmc2130_wr(cs, TMC2130_REG_IHOLD_IRUN, 0x000f0000 | ((current_r & 0x1f) << 8) | (current_h & 0x1f));
|
||||
tmc2130_wr_CHOPCONF(axis, toff, hstrt, hend, fd3, 0, rndtf, chm, tbl, 1, 0, 0, 0, mres, intpol, 0, 0);
|
||||
tmc2130_wr(axis, TMC2130_REG_IHOLD_IRUN, 0x000f0000 | ((current_r & 0x1f) << 8) | (current_h & 0x1f));
|
||||
}
|
||||
else
|
||||
{
|
||||
tmc2130_wr_CHOPCONF(cs, toff, hstrt, hend, fd3, 0, 0, 0, tbl, 0, 0, 0, 0, mres, intpol, 0, 0);
|
||||
tmc2130_wr(cs, TMC2130_REG_IHOLD_IRUN, 0x000f0000 | (((current_r >> 1) & 0x1f) << 8) | ((current_h >> 1) & 0x1f));
|
||||
tmc2130_wr_CHOPCONF(axis, toff, hstrt, hend, fd3, 0, 0, 0, tbl, 0, 0, 0, 0, mres, intpol, 0, 0);
|
||||
tmc2130_wr(axis, TMC2130_REG_IHOLD_IRUN, 0x000f0000 | (((current_r >> 1) & 0x1f) << 8) | ((current_h >> 1) & 0x1f));
|
||||
}
|
||||
}
|
||||
|
||||
@ -485,7 +457,7 @@ void tmc2130_set_pwm_ampl(uint8_t axis, uint8_t pwm_ampl)
|
||||
MYSERIAL.println((int)pwm_ampl);
|
||||
tmc2130_pwm_ampl[axis] = pwm_ampl;
|
||||
if (((axis == 0) || (axis == 1)) && (tmc2130_mode == TMC2130_MODE_SILENT))
|
||||
tmc2130_wr_PWMCONF(tmc2130_cs[axis], tmc2130_pwm_ampl[axis], tmc2130_pwm_grad[axis], tmc2130_pwm_freq[axis], tmc2130_pwm_auto[axis], 0, 0);
|
||||
tmc2130_wr_PWMCONF(axis, tmc2130_pwm_ampl[axis], tmc2130_pwm_grad[axis], tmc2130_pwm_freq[axis], tmc2130_pwm_auto[axis], 0, 0);
|
||||
}
|
||||
|
||||
void tmc2130_set_pwm_grad(uint8_t axis, uint8_t pwm_grad)
|
||||
@ -496,32 +468,61 @@ void tmc2130_set_pwm_grad(uint8_t axis, uint8_t pwm_grad)
|
||||
MYSERIAL.println((int)pwm_grad);
|
||||
tmc2130_pwm_grad[axis] = pwm_grad;
|
||||
if (((axis == 0) || (axis == 1)) && (tmc2130_mode == TMC2130_MODE_SILENT))
|
||||
tmc2130_wr_PWMCONF(tmc2130_cs[axis], tmc2130_pwm_ampl[axis], tmc2130_pwm_grad[axis], tmc2130_pwm_freq[axis], tmc2130_pwm_auto[axis], 0, 0);
|
||||
tmc2130_wr_PWMCONF(axis, tmc2130_pwm_ampl[axis], tmc2130_pwm_grad[axis], tmc2130_pwm_freq[axis], tmc2130_pwm_auto[axis], 0, 0);
|
||||
}
|
||||
|
||||
uint16_t tmc2130_rd_TSTEP(uint8_t cs)
|
||||
uint16_t tmc2130_rd_TSTEP(uint8_t axis)
|
||||
{
|
||||
uint32_t val32 = 0;
|
||||
tmc2130_rd(cs, TMC2130_REG_TSTEP, &val32);
|
||||
tmc2130_rd(axis, TMC2130_REG_TSTEP, &val32);
|
||||
if (val32 & 0x000f0000) return 0xffff;
|
||||
return val32 & 0xffff;
|
||||
}
|
||||
|
||||
uint16_t tmc2130_rd_MSCNT(uint8_t cs)
|
||||
uint16_t tmc2130_rd_MSCNT(uint8_t axis)
|
||||
{
|
||||
uint32_t val32 = 0;
|
||||
tmc2130_rd(cs, TMC2130_REG_MSCNT, &val32);
|
||||
tmc2130_rd(axis, TMC2130_REG_MSCNT, &val32);
|
||||
return val32 & 0x3ff;
|
||||
}
|
||||
|
||||
uint16_t tmc2130_rd_DRV_STATUS(uint8_t cs)
|
||||
uint32_t tmc2130_rd_MSCURACT(uint8_t axis)
|
||||
{
|
||||
uint32_t val32 = 0;
|
||||
tmc2130_rd(cs, TMC2130_REG_DRV_STATUS, &val32);
|
||||
tmc2130_rd(axis, TMC2130_REG_MSCURACT, &val32);
|
||||
return val32;
|
||||
}
|
||||
|
||||
void tmc2130_wr_CHOPCONF(uint8_t cs, uint8_t toff, uint8_t hstrt, uint8_t hend, uint8_t fd3, uint8_t disfdcc, uint8_t rndtf, uint8_t chm, uint8_t tbl, uint8_t vsense, uint8_t vhighfs, uint8_t vhighchm, uint8_t sync, uint8_t mres, uint8_t intpol, uint8_t dedge, uint8_t diss2g)
|
||||
void tmc2130_wr_MSLUTSTART(uint8_t axis, uint8_t start_sin, uint8_t start_sin90)
|
||||
{
|
||||
uint32_t val = 0;
|
||||
val |= (uint32_t)start_sin;
|
||||
val |= ((uint32_t)start_sin90) << 16;
|
||||
tmc2130_wr(axis, TMC2130_REG_MSLUTSTART, val);
|
||||
//printf_P(PSTR("MSLUTSTART=%08lx (start_sin=%d start_sin90=%d)\n"), val, start_sin, start_sin90);
|
||||
}
|
||||
|
||||
void tmc2130_wr_MSLUTSEL(uint8_t axis, uint8_t x1, uint8_t x2, uint8_t x3, uint8_t w0, uint8_t w1, uint8_t w2, uint8_t w3)
|
||||
{
|
||||
uint32_t val = 0;
|
||||
val |= ((uint32_t)w0);
|
||||
val |= ((uint32_t)w1) << 2;
|
||||
val |= ((uint32_t)w2) << 4;
|
||||
val |= ((uint32_t)w3) << 6;
|
||||
val |= ((uint32_t)x1) << 8;
|
||||
val |= ((uint32_t)x2) << 16;
|
||||
val |= ((uint32_t)x3) << 24;
|
||||
tmc2130_wr(axis, TMC2130_REG_MSLUTSEL, val);
|
||||
//printf_P(PSTR("MSLUTSEL=%08lx (x1=%d x2=%d x3=%d w0=%d w1=%d w2=%d w3=%d)\n"), val, x1, x2, x3, w0, w1, w2, w3);
|
||||
}
|
||||
|
||||
void tmc2130_wr_MSLUT(uint8_t axis, uint8_t i, uint32_t val)
|
||||
{
|
||||
tmc2130_wr(axis, TMC2130_REG_MSLUT0 + (i & 7), val);
|
||||
//printf_P(PSTR("MSLUT[%d]=%08lx\n"), i, val);
|
||||
}
|
||||
|
||||
void tmc2130_wr_CHOPCONF(uint8_t axis, uint8_t toff, uint8_t hstrt, uint8_t hend, uint8_t fd3, uint8_t disfdcc, uint8_t rndtf, uint8_t chm, uint8_t tbl, uint8_t vsense, uint8_t vhighfs, uint8_t vhighchm, uint8_t sync, uint8_t mres, uint8_t intpol, uint8_t dedge, uint8_t diss2g)
|
||||
{
|
||||
uint32_t val = 0;
|
||||
val |= (uint32_t)(toff & 15);
|
||||
@ -540,11 +541,11 @@ void tmc2130_wr_CHOPCONF(uint8_t cs, uint8_t toff, uint8_t hstrt, uint8_t hend,
|
||||
val |= (uint32_t)(intpol & 1) << 28;
|
||||
val |= (uint32_t)(dedge & 1) << 29;
|
||||
val |= (uint32_t)(diss2g & 1) << 30;
|
||||
tmc2130_wr(cs, TMC2130_REG_CHOPCONF, val);
|
||||
tmc2130_wr(axis, TMC2130_REG_CHOPCONF, val);
|
||||
}
|
||||
|
||||
//void tmc2130_wr_PWMCONF(uint8_t cs, uint8_t PWMautoScale, uint8_t PWMfreq, uint8_t PWMgrad, uint8_t PWMampl)
|
||||
void tmc2130_wr_PWMCONF(uint8_t cs, uint8_t pwm_ampl, uint8_t pwm_grad, uint8_t pwm_freq, uint8_t pwm_auto, uint8_t pwm_symm, uint8_t freewheel)
|
||||
//void tmc2130_wr_PWMCONF(uint8_t axis, uint8_t PWMautoScale, uint8_t PWMfreq, uint8_t PWMgrad, uint8_t PWMampl)
|
||||
void tmc2130_wr_PWMCONF(uint8_t axis, uint8_t pwm_ampl, uint8_t pwm_grad, uint8_t pwm_freq, uint8_t pwm_auto, uint8_t pwm_symm, uint8_t freewheel)
|
||||
{
|
||||
uint32_t val = 0;
|
||||
val |= (uint32_t)(pwm_ampl & 255);
|
||||
@ -553,54 +554,32 @@ void tmc2130_wr_PWMCONF(uint8_t cs, uint8_t pwm_ampl, uint8_t pwm_grad, uint8_t
|
||||
val |= (uint32_t)(pwm_auto & 1) << 18;
|
||||
val |= (uint32_t)(pwm_symm & 1) << 19;
|
||||
val |= (uint32_t)(freewheel & 3) << 20;
|
||||
tmc2130_wr(cs, TMC2130_REG_PWMCONF, val);
|
||||
// tmc2130_wr(cs, TMC2130_REG_PWMCONF, ((uint32_t)(PWMautoScale+PWMfreq) << 16) | ((uint32_t)PWMgrad << 8) | PWMampl); // TMC LJ -> For better readability changed to 0x00 and added PWMautoScale and PWMfreq
|
||||
tmc2130_wr(axis, TMC2130_REG_PWMCONF, val);
|
||||
// tmc2130_wr(axis, TMC2130_REG_PWMCONF, ((uint32_t)(PWMautoScale+PWMfreq) << 16) | ((uint32_t)PWMgrad << 8) | PWMampl); // TMC LJ -> For better readability changed to 0x00 and added PWMautoScale and PWMfreq
|
||||
}
|
||||
|
||||
void tmc2130_wr_TPWMTHRS(uint8_t cs, uint32_t val32)
|
||||
void tmc2130_wr_TPWMTHRS(uint8_t axis, uint32_t val32)
|
||||
{
|
||||
tmc2130_wr(cs, TMC2130_REG_TPWMTHRS, val32);
|
||||
tmc2130_wr(axis, TMC2130_REG_TPWMTHRS, val32);
|
||||
}
|
||||
|
||||
void tmc2130_wr_THIGH(uint8_t cs, uint32_t val32)
|
||||
void tmc2130_wr_THIGH(uint8_t axis, uint32_t val32)
|
||||
{
|
||||
tmc2130_wr(cs, TMC2130_REG_THIGH, val32);
|
||||
tmc2130_wr(axis, TMC2130_REG_THIGH, val32);
|
||||
}
|
||||
|
||||
#if defined(TMC2130_DEBUG_RD) || defined(TMC2130_DEBUG_WR)
|
||||
uint8_t tmc2130_axis_by_cs(uint8_t cs)
|
||||
uint8_t tmc2130_usteps2mres(uint16_t usteps)
|
||||
{
|
||||
switch (cs)
|
||||
{
|
||||
case X_TMC2130_CS: return 0;
|
||||
case Y_TMC2130_CS: return 1;
|
||||
case Z_TMC2130_CS: return 2;
|
||||
case E0_TMC2130_CS: return 3;
|
||||
}
|
||||
return -1;
|
||||
}
|
||||
#endif //TMC2130_DEBUG
|
||||
|
||||
uint8_t tmc2130_calc_mres(uint16_t microstep_resolution)
|
||||
{
|
||||
if (microstep_resolution == 256) return 0b0000;
|
||||
if (microstep_resolution == 128) return 0b0001;
|
||||
if (microstep_resolution == 64) return 0b0010;
|
||||
if (microstep_resolution == 32) return 0b0011;
|
||||
if (microstep_resolution == 16) return 0b0100;
|
||||
if (microstep_resolution == 8) return 0b0101;
|
||||
if (microstep_resolution == 4) return 0b0110;
|
||||
if (microstep_resolution == 2) return 0b0111;
|
||||
if (microstep_resolution == 1) return 0b1000;
|
||||
return 0;
|
||||
uint8_t mres = 8; while (mres && (usteps >>= 1)) mres--;
|
||||
return mres;
|
||||
}
|
||||
|
||||
uint8_t tmc2130_wr(uint8_t cs, uint8_t addr, uint32_t wval)
|
||||
uint8_t tmc2130_wr(uint8_t axis, uint8_t addr, uint32_t wval)
|
||||
{
|
||||
uint8_t stat = tmc2130_txrx(cs, addr | 0x80, wval, 0);
|
||||
uint8_t stat = tmc2130_txrx(axis, addr | 0x80, wval, 0);
|
||||
#ifdef TMC2130_DEBUG_WR
|
||||
MYSERIAL.print("tmc2130_wr(");
|
||||
MYSERIAL.print((unsigned char)tmc2130_axis_by_cs(cs), DEC);
|
||||
MYSERIAL.print((unsigned char)axis, DEC);
|
||||
MYSERIAL.print(", 0x");
|
||||
MYSERIAL.print((unsigned char)addr, HEX);
|
||||
MYSERIAL.print(", 0x");
|
||||
@ -611,16 +590,16 @@ uint8_t tmc2130_wr(uint8_t cs, uint8_t addr, uint32_t wval)
|
||||
return stat;
|
||||
}
|
||||
|
||||
uint8_t tmc2130_rd(uint8_t cs, uint8_t addr, uint32_t* rval)
|
||||
uint8_t tmc2130_rd(uint8_t axis, uint8_t addr, uint32_t* rval)
|
||||
{
|
||||
uint32_t val32 = 0;
|
||||
uint8_t stat = tmc2130_txrx(cs, addr, 0x00000000, &val32);
|
||||
uint8_t stat = tmc2130_txrx(axis, addr, 0x00000000, &val32);
|
||||
if (rval != 0) *rval = val32;
|
||||
#ifdef TMC2130_DEBUG_RD
|
||||
if (!skip_debug_msg)
|
||||
{
|
||||
MYSERIAL.print("tmc2130_rd(");
|
||||
MYSERIAL.print((unsigned char)tmc2130_axis_by_cs(cs), DEC);
|
||||
MYSERIAL.print((unsigned char)axis, DEC);
|
||||
MYSERIAL.print(", 0x");
|
||||
MYSERIAL.print((unsigned char)addr, HEX);
|
||||
MYSERIAL.print(", 0x");
|
||||
@ -633,28 +612,50 @@ uint8_t tmc2130_rd(uint8_t cs, uint8_t addr, uint32_t* rval)
|
||||
return stat;
|
||||
}
|
||||
|
||||
uint8_t tmc2130_txrx(uint8_t cs, uint8_t addr, uint32_t wval, uint32_t* rval)
|
||||
inline void tmc2130_cs_low(uint8_t axis)
|
||||
{
|
||||
switch (axis)
|
||||
{
|
||||
case X_AXIS: WRITE(X_TMC2130_CS, LOW); break;
|
||||
case Y_AXIS: WRITE(Y_TMC2130_CS, LOW); break;
|
||||
case Z_AXIS: WRITE(Z_TMC2130_CS, LOW); break;
|
||||
case E_AXIS: WRITE(E0_TMC2130_CS, LOW); break;
|
||||
}
|
||||
}
|
||||
|
||||
inline void tmc2130_cs_high(uint8_t axis)
|
||||
{
|
||||
switch (axis)
|
||||
{
|
||||
case X_AXIS: WRITE(X_TMC2130_CS, HIGH); break;
|
||||
case Y_AXIS: WRITE(Y_TMC2130_CS, HIGH); break;
|
||||
case Z_AXIS: WRITE(Z_TMC2130_CS, HIGH); break;
|
||||
case E_AXIS: WRITE(E0_TMC2130_CS, HIGH); break;
|
||||
}
|
||||
}
|
||||
|
||||
uint8_t tmc2130_txrx(uint8_t axis, uint8_t addr, uint32_t wval, uint32_t* rval)
|
||||
{
|
||||
//datagram1 - request
|
||||
SPI.beginTransaction(SPISettings(4000000, MSBFIRST, SPI_MODE3));
|
||||
digitalWrite(cs, LOW);
|
||||
tmc2130_cs_low(axis);
|
||||
SPI.transfer(addr); // address
|
||||
SPI.transfer((wval >> 24) & 0xff); // MSB
|
||||
SPI.transfer((wval >> 16) & 0xff);
|
||||
SPI.transfer((wval >> 8) & 0xff);
|
||||
SPI.transfer(wval & 0xff); // LSB
|
||||
digitalWrite(cs, HIGH);
|
||||
tmc2130_cs_high(axis);
|
||||
SPI.endTransaction();
|
||||
//datagram2 - response
|
||||
SPI.beginTransaction(SPISettings(4000000, MSBFIRST, SPI_MODE3));
|
||||
digitalWrite(cs, LOW);
|
||||
tmc2130_cs_low(axis);
|
||||
uint8_t stat = SPI.transfer(0); // status
|
||||
uint32_t val32 = 0;
|
||||
val32 = SPI.transfer(0); // MSB
|
||||
val32 = (val32 << 8) | SPI.transfer(0);
|
||||
val32 = (val32 << 8) | SPI.transfer(0);
|
||||
val32 = (val32 << 8) | SPI.transfer(0); // LSB
|
||||
digitalWrite(cs, HIGH);
|
||||
tmc2130_cs_high(axis);
|
||||
SPI.endTransaction();
|
||||
if (rval != 0) *rval = val32;
|
||||
return stat;
|
||||
@ -669,5 +670,461 @@ void tmc2130_eeprom_save_config()
|
||||
|
||||
}
|
||||
|
||||
#define _GET_PWR_X (READ(X_ENABLE_PIN) == X_ENABLE_ON)
|
||||
#define _GET_PWR_Y (READ(Y_ENABLE_PIN) == Y_ENABLE_ON)
|
||||
#define _GET_PWR_Z (READ(Z_ENABLE_PIN) == Z_ENABLE_ON)
|
||||
#define _GET_PWR_E (READ(E0_ENABLE_PIN) == E_ENABLE_ON)
|
||||
|
||||
#define _SET_PWR_X(ena) { WRITE(X_ENABLE_PIN, ena?X_ENABLE_ON:!X_ENABLE_ON); asm("nop"); }
|
||||
#define _SET_PWR_Y(ena) { WRITE(Y_ENABLE_PIN, ena?Y_ENABLE_ON:!Y_ENABLE_ON); asm("nop"); }
|
||||
#define _SET_PWR_Z(ena) { WRITE(Z_ENABLE_PIN, ena?Z_ENABLE_ON:!Z_ENABLE_ON); asm("nop"); }
|
||||
#define _SET_PWR_E(ena) { WRITE(E0_ENABLE_PIN, ena?E_ENABLE_ON:!E_ENABLE_ON); asm("nop"); }
|
||||
|
||||
#define _GET_DIR_X (READ(X_DIR_PIN) == INVERT_X_DIR)
|
||||
#define _GET_DIR_Y (READ(Y_DIR_PIN) == INVERT_Y_DIR)
|
||||
#define _GET_DIR_Z (READ(Z_DIR_PIN) == INVERT_Z_DIR)
|
||||
#define _GET_DIR_E (READ(E0_DIR_PIN) == INVERT_E0_DIR)
|
||||
|
||||
#define _SET_DIR_X(dir) { WRITE(X_DIR_PIN, dir?INVERT_X_DIR:!INVERT_X_DIR); asm("nop"); }
|
||||
#define _SET_DIR_Y(dir) { WRITE(Y_DIR_PIN, dir?INVERT_Y_DIR:!INVERT_Y_DIR); asm("nop"); }
|
||||
#define _SET_DIR_Z(dir) { WRITE(Z_DIR_PIN, dir?INVERT_Z_DIR:!INVERT_Z_DIR); asm("nop"); }
|
||||
#define _SET_DIR_E(dir) { WRITE(E0_DIR_PIN, dir?INVERT_E0_DIR:!INVERT_E0_DIR); asm("nop"); }
|
||||
|
||||
#define _DO_STEP_X { WRITE(X_STEP_PIN, !INVERT_X_STEP_PIN); asm("nop"); WRITE(X_STEP_PIN, INVERT_X_STEP_PIN); asm("nop"); }
|
||||
#define _DO_STEP_Y { WRITE(Y_STEP_PIN, !INVERT_Y_STEP_PIN); asm("nop"); WRITE(Y_STEP_PIN, INVERT_Y_STEP_PIN); asm("nop"); }
|
||||
#define _DO_STEP_Z { WRITE(Z_STEP_PIN, !INVERT_Z_STEP_PIN); asm("nop"); WRITE(Z_STEP_PIN, INVERT_Z_STEP_PIN); asm("nop"); }
|
||||
#define _DO_STEP_E { WRITE(E0_STEP_PIN, !INVERT_E_STEP_PIN); asm("nop"); WRITE(E0_STEP_PIN, INVERT_E_STEP_PIN); asm("nop"); }
|
||||
|
||||
|
||||
uint16_t tmc2130_get_res(uint8_t axis)
|
||||
{
|
||||
return tmc2130_mres2usteps(tmc2130_mres[axis]);
|
||||
}
|
||||
|
||||
void tmc2130_set_res(uint8_t axis, uint16_t res)
|
||||
{
|
||||
tmc2130_mres[axis] = tmc2130_usteps2mres(res);
|
||||
// uint32_t u = micros();
|
||||
tmc2130_setup_chopper(axis, tmc2130_mres[axis], tmc2130_current_h[axis], tmc2130_current_r[axis]);
|
||||
// u = micros() - u;
|
||||
// printf_P(PSTR("tmc2130_setup_chopper %c %lu us"), "XYZE"[axis], u);
|
||||
}
|
||||
|
||||
uint8_t tmc2130_get_pwr(uint8_t axis)
|
||||
{
|
||||
switch (axis)
|
||||
{
|
||||
case X_AXIS: return _GET_PWR_X;
|
||||
case Y_AXIS: return _GET_PWR_Y;
|
||||
case Z_AXIS: return _GET_PWR_Z;
|
||||
case E_AXIS: return _GET_PWR_E;
|
||||
}
|
||||
return 0;
|
||||
}
|
||||
|
||||
void tmc2130_set_pwr(uint8_t axis, uint8_t pwr)
|
||||
{
|
||||
switch (axis)
|
||||
{
|
||||
case X_AXIS: _SET_PWR_X(pwr); break;
|
||||
case Y_AXIS: _SET_PWR_Y(pwr); break;
|
||||
case Z_AXIS: _SET_PWR_Z(pwr); break;
|
||||
case E_AXIS: _SET_PWR_E(pwr); break;
|
||||
}
|
||||
}
|
||||
|
||||
uint8_t tmc2130_get_inv(uint8_t axis)
|
||||
{
|
||||
switch (axis)
|
||||
{
|
||||
case X_AXIS: return INVERT_X_DIR;
|
||||
case Y_AXIS: return INVERT_Y_DIR;
|
||||
case Z_AXIS: return INVERT_Z_DIR;
|
||||
case E_AXIS: return INVERT_E0_DIR;
|
||||
}
|
||||
return 0;
|
||||
}
|
||||
|
||||
uint8_t tmc2130_get_dir(uint8_t axis)
|
||||
{
|
||||
switch (axis)
|
||||
{
|
||||
case X_AXIS: return _GET_DIR_X;
|
||||
case Y_AXIS: return _GET_DIR_Y;
|
||||
case Z_AXIS: return _GET_DIR_Z;
|
||||
case E_AXIS: return _GET_DIR_E;
|
||||
}
|
||||
return 0;
|
||||
}
|
||||
|
||||
|
||||
void tmc2130_set_dir(uint8_t axis, uint8_t dir)
|
||||
{
|
||||
switch (axis)
|
||||
{
|
||||
case X_AXIS: _SET_DIR_X(dir); break;
|
||||
case Y_AXIS: _SET_DIR_Y(dir); break;
|
||||
case Z_AXIS: _SET_DIR_Z(dir); break;
|
||||
case E_AXIS: _SET_DIR_E(dir); break;
|
||||
}
|
||||
}
|
||||
|
||||
void tmc2130_do_step(uint8_t axis)
|
||||
{
|
||||
switch (axis)
|
||||
{
|
||||
case X_AXIS: _DO_STEP_X; break;
|
||||
case Y_AXIS: _DO_STEP_Y; break;
|
||||
case Z_AXIS: _DO_STEP_Z; break;
|
||||
case E_AXIS: _DO_STEP_E; break;
|
||||
}
|
||||
}
|
||||
|
||||
void tmc2130_do_steps(uint8_t axis, uint16_t steps, uint8_t dir, uint16_t delay_us)
|
||||
{
|
||||
tmc2130_set_dir(axis, dir);
|
||||
delayMicroseconds(100);
|
||||
while (steps--)
|
||||
{
|
||||
tmc2130_do_step(axis);
|
||||
delayMicroseconds(delay_us);
|
||||
}
|
||||
}
|
||||
|
||||
void tmc2130_goto_step(uint8_t axis, uint8_t step, uint8_t dir, uint16_t delay_us, uint16_t microstep_resolution)
|
||||
{
|
||||
printf_P(PSTR("tmc2130_goto_step %d %d %d %d \n"), axis, step, dir, delay_us, microstep_resolution);
|
||||
uint8_t shift; for (shift = 0; shift < 8; shift++) if (microstep_resolution == (256 >> shift)) break;
|
||||
uint16_t cnt = 4 * (1 << (8 - shift));
|
||||
uint16_t mscnt = tmc2130_rd_MSCNT(axis);
|
||||
if (dir == 2)
|
||||
{
|
||||
dir = tmc2130_get_inv(axis)?0:1;
|
||||
int steps = (int)step - (int)(mscnt >> shift);
|
||||
if (steps < 0)
|
||||
{
|
||||
dir ^= 1;
|
||||
steps = -steps;
|
||||
}
|
||||
if (steps > (cnt / 2))
|
||||
{
|
||||
dir ^= 1;
|
||||
steps = cnt - steps;
|
||||
}
|
||||
cnt = steps;
|
||||
}
|
||||
tmc2130_set_dir(axis, dir);
|
||||
delayMicroseconds(100);
|
||||
mscnt = tmc2130_rd_MSCNT(axis);
|
||||
while ((cnt--) && ((mscnt >> shift) != step))
|
||||
{
|
||||
tmc2130_do_step(axis);
|
||||
delayMicroseconds(delay_us);
|
||||
mscnt = tmc2130_rd_MSCNT(axis);
|
||||
}
|
||||
}
|
||||
|
||||
void tmc2130_get_wave(uint8_t axis, uint8_t* data, FILE* stream)
|
||||
{
|
||||
uint8_t pwr = tmc2130_get_pwr(axis);
|
||||
tmc2130_set_pwr(axis, 0);
|
||||
tmc2130_setup_chopper(axis, tmc2130_usteps2mres(256), tmc2130_current_h[axis], tmc2130_current_r[axis]);
|
||||
tmc2130_goto_step(axis, 0, 2, 100, 256);
|
||||
tmc2130_set_dir(axis, tmc2130_get_inv(axis)?0:1);
|
||||
for (int i = 0; i <= 255; i++)
|
||||
{
|
||||
uint32_t val = tmc2130_rd_MSCURACT(axis);
|
||||
uint16_t mscnt = tmc2130_rd_MSCNT(axis);
|
||||
int curA = (val & 0xff) | ((val << 7) & 0x8000);
|
||||
if (stream)
|
||||
{
|
||||
if (mscnt == i)
|
||||
fprintf_P(stream, PSTR("%d\t%d\n"), i, curA);
|
||||
else //TODO - remove this check
|
||||
fprintf_P(stream, PSTR("!! (i=%d MSCNT=%d)\n"), i, mscnt);
|
||||
}
|
||||
if (data) *(data++) = curA;
|
||||
tmc2130_do_step(axis);
|
||||
delayMicroseconds(100);
|
||||
}
|
||||
tmc2130_setup_chopper(axis, tmc2130_mres[axis], tmc2130_current_h[axis], tmc2130_current_r[axis]);
|
||||
}
|
||||
|
||||
void tmc2130_set_wave(uint8_t axis, uint8_t amp, uint8_t fac200)
|
||||
{
|
||||
// TMC2130 wave compression algorithm
|
||||
// optimized for minimal memory requirements
|
||||
printf_P(PSTR("tmc2130_set_wave %d %d\n"), axis, fac200);
|
||||
if (fac200 < TMC2130_WAVE_FAC200_MIN) fac200 = 0;
|
||||
if (fac200 > TMC2130_WAVE_FAC200_MAX) fac200 = TMC2130_WAVE_FAC200_MAX;
|
||||
float fac = (float)fac200/200; //correction factor
|
||||
uint8_t vA = 0; //value of currentA
|
||||
uint8_t va = 0; //previous vA
|
||||
uint8_t d0 = 0; //delta0
|
||||
uint8_t d1 = 1; //delta1
|
||||
uint8_t w[4] = {1,1,1,1}; //W bits (MSLUTSEL)
|
||||
uint8_t x[3] = {255,255,255}; //X segment bounds (MSLUTSEL)
|
||||
uint8_t s = 0; //current segment
|
||||
int8_t b; //encoded bit value
|
||||
uint8_t dA; //delta value
|
||||
int i; //microstep index
|
||||
uint32_t reg; //tmc2130 register
|
||||
tmc2130_wr_MSLUTSTART(axis, 0, amp);
|
||||
for (i = 0; i < 256; i++)
|
||||
{
|
||||
if ((i & 31) == 0)
|
||||
reg = 0;
|
||||
// calculate value
|
||||
if (fac == 0) // default TMC wave
|
||||
vA = (uint8_t)((amp+1) * sin((2*PI*i + PI)/1024) + 0.5) - 1;
|
||||
else // corrected wave
|
||||
vA = (uint8_t)(amp * pow(sin(2*PI*i/1024), fac) + 0.5);
|
||||
dA = vA - va; // calculate delta
|
||||
va = vA;
|
||||
b = -1;
|
||||
if (dA == d0) b = 0; //delta == delta0 => bit=0
|
||||
else if (dA == d1) b = 1; //delta == delta1 => bit=1
|
||||
else
|
||||
{
|
||||
if (dA < d0) // delta < delta0 => switch wbit down
|
||||
{
|
||||
//printf("dn\n");
|
||||
b = 0;
|
||||
switch (dA)
|
||||
{
|
||||
case -1: d0 = -1; d1 = 0; w[s+1] = 0; break;
|
||||
case 0: d0 = 0; d1 = 1; w[s+1] = 1; break;
|
||||
case 1: d0 = 1; d1 = 2; w[s+1] = 2; break;
|
||||
default: b = -1; break;
|
||||
}
|
||||
if (b >= 0) { x[s] = i; s++; }
|
||||
}
|
||||
else if (dA > d1) // delta > delta0 => switch wbit up
|
||||
{
|
||||
//printf("up\n");
|
||||
b = 1;
|
||||
switch (dA)
|
||||
{
|
||||
case 1: d0 = 0; d1 = 1; w[s+1] = 1; break;
|
||||
case 2: d0 = 1; d1 = 2; w[s+1] = 2; break;
|
||||
case 3: d0 = 2; d1 = 3; w[s+1] = 3; break;
|
||||
default: b = -1; break;
|
||||
}
|
||||
if (b >= 0) { x[s] = i; s++; }
|
||||
}
|
||||
}
|
||||
if (b < 0) break; // delta out of range (<-1 or >3)
|
||||
if (s > 3) break; // segment out of range (> 3)
|
||||
//printf("%d\n", vA);
|
||||
if (b == 1) reg |= 0x80000000;
|
||||
if ((i & 31) == 31)
|
||||
tmc2130_wr_MSLUT(axis, (uint8_t)(i >> 5), reg);
|
||||
else
|
||||
reg >>= 1;
|
||||
// printf("%3d\t%3d\t%2d\t%2d\t%2d\t%2d %08x\n", i, vA, dA, b, w[s], s, reg);
|
||||
}
|
||||
tmc2130_wr_MSLUTSEL(axis, x[0], x[1], x[2], w[0], w[1], w[2], w[3]);
|
||||
|
||||
/*
|
||||
// printf_P(PSTR(" tmc2130_set_wave %d %d\n"), axis, fac200);
|
||||
switch (fac200)
|
||||
{
|
||||
case 0: //default TMC wave 247/0
|
||||
tmc2130_wr_MSLUTSTART(axis, 0, 247);
|
||||
tmc2130_wr_MSLUT(axis, 0, 0xaaaab556);
|
||||
tmc2130_wr_MSLUT(axis, 1, 0x4a9554aa);
|
||||
tmc2130_wr_MSLUT(axis, 2, 0x24492929);
|
||||
tmc2130_wr_MSLUT(axis, 3, 0x10104222);
|
||||
tmc2130_wr_MSLUT(axis, 4, 0xf8000000);
|
||||
tmc2130_wr_MSLUT(axis, 5, 0xb5bb777d);
|
||||
tmc2130_wr_MSLUT(axis, 6, 0x49295556);
|
||||
tmc2130_wr_MSLUT(axis, 7, 0x00404222);
|
||||
tmc2130_wr_MSLUTSEL(axis, 2, 154, 255, 1, 2, 1, 1);
|
||||
break;
|
||||
case 210: //calculated wave 247/1.050
|
||||
tmc2130_wr_MSLUTSTART(axis, 0, 247);
|
||||
tmc2130_wr_MSLUT(axis, 0, 0x55294a4e);
|
||||
tmc2130_wr_MSLUT(axis, 1, 0xa52a552a);
|
||||
tmc2130_wr_MSLUT(axis, 2, 0x48949294);
|
||||
tmc2130_wr_MSLUT(axis, 3, 0x81042222);
|
||||
tmc2130_wr_MSLUT(axis, 4, 0x00000000);
|
||||
tmc2130_wr_MSLUT(axis, 5, 0xdb6eef7e);
|
||||
tmc2130_wr_MSLUT(axis, 6, 0x9295555a);
|
||||
tmc2130_wr_MSLUT(axis, 7, 0x00408444);
|
||||
tmc2130_wr_MSLUTSEL(axis, 3, 160, 255, 1, 2, 1, 1);
|
||||
break;
|
||||
case 212: //calculated wave 247/1.060
|
||||
tmc2130_wr_MSLUTSTART(axis, 0, 247);
|
||||
tmc2130_wr_MSLUT(axis, 0, 0x4a94948e);
|
||||
tmc2130_wr_MSLUT(axis, 1, 0x94a952a5);
|
||||
tmc2130_wr_MSLUT(axis, 2, 0x24925252);
|
||||
tmc2130_wr_MSLUT(axis, 3, 0x10421112);
|
||||
tmc2130_wr_MSLUT(axis, 4, 0xc0000020);
|
||||
tmc2130_wr_MSLUT(axis, 5, 0xdb7777df);
|
||||
tmc2130_wr_MSLUT(axis, 6, 0x9295556a);
|
||||
tmc2130_wr_MSLUT(axis, 7, 0x00408444);
|
||||
tmc2130_wr_MSLUTSEL(axis, 3, 157, 255, 1, 2, 1, 1);
|
||||
break;
|
||||
case 214: //calculated wave 247/1.070
|
||||
tmc2130_wr_MSLUTSTART(axis, 0, 247);
|
||||
tmc2130_wr_MSLUT(axis, 0, 0xa949489e);
|
||||
tmc2130_wr_MSLUT(axis, 1, 0x52a54a54);
|
||||
tmc2130_wr_MSLUT(axis, 2, 0x224a494a);
|
||||
tmc2130_wr_MSLUT(axis, 3, 0x04108889);
|
||||
tmc2130_wr_MSLUT(axis, 4, 0xffc08002);
|
||||
tmc2130_wr_MSLUT(axis, 5, 0x6dbbbdfb);
|
||||
tmc2130_wr_MSLUT(axis, 6, 0x94a555ab);
|
||||
tmc2130_wr_MSLUT(axis, 7, 0x00408444);
|
||||
tmc2130_wr_MSLUTSEL(axis, 4, 149, 255, 1, 2, 1, 1);
|
||||
break;
|
||||
case 215: //calculated wave 247/1.075
|
||||
tmc2130_wr_MSLUTSTART(axis, 0, 247);
|
||||
tmc2130_wr_MSLUT(axis, 0, 0x4a52491e);
|
||||
tmc2130_wr_MSLUT(axis, 1, 0xa54a54a9);
|
||||
tmc2130_wr_MSLUT(axis, 2, 0x49249494);
|
||||
tmc2130_wr_MSLUT(axis, 3, 0x10421122);
|
||||
tmc2130_wr_MSLUT(axis, 4, 0x00000008);
|
||||
tmc2130_wr_MSLUT(axis, 5, 0x6ddbdefc);
|
||||
tmc2130_wr_MSLUT(axis, 6, 0x94a555ad);
|
||||
tmc2130_wr_MSLUT(axis, 7, 0x00408444);
|
||||
tmc2130_wr_MSLUTSEL(axis, 4, 161, 255, 1, 2, 1, 1);
|
||||
break;
|
||||
case 216: //calculated wave 247/1.080
|
||||
tmc2130_wr_MSLUTSTART(axis, 0, 247);
|
||||
tmc2130_wr_MSLUT(axis, 0, 0x9494911e);
|
||||
tmc2130_wr_MSLUT(axis, 1, 0x4a94a94a);
|
||||
tmc2130_wr_MSLUT(axis, 2, 0x92492929);
|
||||
tmc2130_wr_MSLUT(axis, 3, 0x41044444);
|
||||
tmc2130_wr_MSLUT(axis, 4, 0x00000040);
|
||||
tmc2130_wr_MSLUT(axis, 5, 0xaedddf7f);
|
||||
tmc2130_wr_MSLUT(axis, 6, 0x94a956ad);
|
||||
tmc2130_wr_MSLUT(axis, 7, 0x00808448);
|
||||
tmc2130_wr_MSLUTSEL(axis, 4, 159, 255, 1, 2, 1, 1);
|
||||
break;
|
||||
case 218: //calculated wave 247/1.090
|
||||
tmc2130_wr_MSLUTSTART(axis, 0, 247);
|
||||
tmc2130_wr_MSLUT(axis, 0, 0x4a49223e);
|
||||
tmc2130_wr_MSLUT(axis, 1, 0x4a52a529);
|
||||
tmc2130_wr_MSLUT(axis, 2, 0x49252529);
|
||||
tmc2130_wr_MSLUT(axis, 3, 0x08422224);
|
||||
tmc2130_wr_MSLUT(axis, 4, 0xfc008004);
|
||||
tmc2130_wr_MSLUT(axis, 5, 0xb6eef7df);
|
||||
tmc2130_wr_MSLUT(axis, 6, 0xa4aaaab5);
|
||||
tmc2130_wr_MSLUT(axis, 7, 0x00808448);
|
||||
tmc2130_wr_MSLUTSEL(axis, 5, 153, 255, 1, 2, 1, 1);
|
||||
break;
|
||||
case 220: //calculated wave 247/1.100
|
||||
tmc2130_wr_MSLUTSTART(axis, 0, 247);
|
||||
tmc2130_wr_MSLUT(axis, 0, 0xa492487e);
|
||||
tmc2130_wr_MSLUT(axis, 1, 0x294a52a4);
|
||||
tmc2130_wr_MSLUT(axis, 2, 0x492494a5);
|
||||
tmc2130_wr_MSLUT(axis, 3, 0x82110912);
|
||||
tmc2130_wr_MSLUT(axis, 4, 0x00000080);
|
||||
tmc2130_wr_MSLUT(axis, 5, 0xdb777df8);
|
||||
tmc2130_wr_MSLUT(axis, 6, 0x252aaad6);
|
||||
tmc2130_wr_MSLUT(axis, 7, 0x00808449);
|
||||
tmc2130_wr_MSLUTSEL(axis, 6, 162, 255, 1, 2, 1, 1);
|
||||
break;
|
||||
case 222: //calculated wave 247/1.110
|
||||
tmc2130_wr_MSLUTSTART(axis, 0, 247);
|
||||
tmc2130_wr_MSLUT(axis, 0, 0x524910fe);
|
||||
tmc2130_wr_MSLUT(axis, 1, 0xa5294a52);
|
||||
tmc2130_wr_MSLUT(axis, 2, 0x24929294);
|
||||
tmc2130_wr_MSLUT(axis, 3, 0x20844489);
|
||||
tmc2130_wr_MSLUT(axis, 4, 0xc0004008);
|
||||
tmc2130_wr_MSLUT(axis, 5, 0xdbbbdf7f);
|
||||
tmc2130_wr_MSLUT(axis, 6, 0x252aab5a);
|
||||
tmc2130_wr_MSLUT(axis, 7, 0x00808449);
|
||||
tmc2130_wr_MSLUTSEL(axis, 7, 157, 255, 1, 2, 1, 1);
|
||||
break;
|
||||
case 224: //calculated wave 247/1.120
|
||||
tmc2130_wr_MSLUTSTART(axis, 0, 247);
|
||||
tmc2130_wr_MSLUT(axis, 0, 0x292223fe);
|
||||
tmc2130_wr_MSLUT(axis, 1, 0x94a52949);
|
||||
tmc2130_wr_MSLUT(axis, 2, 0x92524a52);
|
||||
tmc2130_wr_MSLUT(axis, 3, 0x04222244);
|
||||
tmc2130_wr_MSLUT(axis, 4, 0x00000101);
|
||||
tmc2130_wr_MSLUT(axis, 5, 0x6dddefe0);
|
||||
tmc2130_wr_MSLUT(axis, 6, 0x254aad5b);
|
||||
tmc2130_wr_MSLUT(axis, 7, 0x00810889);
|
||||
tmc2130_wr_MSLUTSEL(axis, 9, 164, 255, 1, 2, 1, 1);
|
||||
break;
|
||||
}*/
|
||||
}
|
||||
|
||||
void bubblesort_uint8(uint8_t* data, uint8_t size, uint8_t* data2)
|
||||
{
|
||||
uint8_t changed = 1;
|
||||
while (changed)
|
||||
{
|
||||
changed = 0;
|
||||
for (uint8_t i = 0; i < (size - 1); i++)
|
||||
if (data[i] > data[i+1])
|
||||
{
|
||||
uint8_t register d = data[i];
|
||||
data[i] = data[i+1];
|
||||
data[i+1] = d;
|
||||
if (data2)
|
||||
{
|
||||
d = data2[i];
|
||||
data2[i] = data2[i+1];
|
||||
data2[i+1] = d;
|
||||
}
|
||||
changed = 1;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
uint8_t clusterize_uint8(uint8_t* data, uint8_t size, uint8_t* ccnt, uint8_t* cval, uint8_t tol)
|
||||
{
|
||||
uint8_t cnt = 1;
|
||||
uint16_t sum = data[0];
|
||||
uint8_t cl = 0;
|
||||
for (uint8_t i = 1; i < size; i++)
|
||||
{
|
||||
uint8_t d = data[i];
|
||||
uint8_t val = sum / cnt;
|
||||
uint8_t dif = 0;
|
||||
if (val > d) dif = val - d;
|
||||
else dif = d - val;
|
||||
if (dif <= tol)
|
||||
{
|
||||
cnt += 1;
|
||||
sum += d;
|
||||
}
|
||||
else
|
||||
{
|
||||
if (ccnt) ccnt[cl] = cnt;
|
||||
if (cval) cval[cl] = val;
|
||||
cnt = 1;
|
||||
sum = d;
|
||||
cl += 1;
|
||||
}
|
||||
}
|
||||
if (ccnt) ccnt[cl] = cnt;
|
||||
if (cval) cval[cl] = sum / cnt;
|
||||
return ++cl;
|
||||
}
|
||||
|
||||
void tmc2130_home_calibrate(uint8_t axis)
|
||||
{
|
||||
uint8_t step[16];
|
||||
uint8_t cnt[16];
|
||||
uint8_t val[16];
|
||||
homeaxis(axis, 16, step);
|
||||
bubblesort_uint8(step, 16, 0);
|
||||
printf_P(PSTR("sorted samples:\n"));
|
||||
for (uint8_t i = 0; i < 16; i++)
|
||||
printf_P(PSTR(" i=%2d step=%2d\n"), i, step[i]);
|
||||
uint8_t cl = clusterize_uint8(step, 16, cnt, val, 1);
|
||||
printf_P(PSTR("clusters:\n"));
|
||||
for (uint8_t i = 0; i < cl; i++)
|
||||
printf_P(PSTR(" i=%2d cnt=%2d val=%2d\n"), i, cnt[i], val[i]);
|
||||
bubblesort_uint8(cnt, cl, val);
|
||||
tmc2130_home_origin[axis] = val[cl-1];
|
||||
printf_P(PSTR("result value: %d\n"), tmc2130_home_origin[axis]);
|
||||
if (axis == X_AXIS) eeprom_update_byte((uint8_t*)EEPROM_TMC2130_HOME_X_ORIGIN, tmc2130_home_origin[X_AXIS]);
|
||||
else if (axis == Y_AXIS) eeprom_update_byte((uint8_t*)EEPROM_TMC2130_HOME_Y_ORIGIN, tmc2130_home_origin[Y_AXIS]);
|
||||
}
|
||||
|
||||
#endif //TMC2130
|
||||
|
@ -1,15 +1,16 @@
|
||||
#ifndef TMC2130_H
|
||||
#define TMC2130_H
|
||||
|
||||
extern uint8_t tmc2130_cs[4];
|
||||
|
||||
//mode
|
||||
extern uint8_t tmc2130_mode;
|
||||
//holding and running currents
|
||||
extern uint8_t tmc2130_current_h[4];
|
||||
extern uint8_t tmc2130_current_r[4];
|
||||
//flags for axis stall detection
|
||||
//microstep resolution (0 means 256usteps, 8 means 1ustep
|
||||
extern uint8_t tmc2130_mres[4];
|
||||
|
||||
//flags for axis stall detection
|
||||
extern uint8_t tmc2130_sg_thr[4];
|
||||
|
||||
extern bool tmc2130_sg_stop_on_crash;
|
||||
@ -22,6 +23,18 @@ extern uint32_t tmc2130_sg_meassure_val;
|
||||
#define TMC2130_MODE_NORMAL 0
|
||||
#define TMC2130_MODE_SILENT 1
|
||||
|
||||
#define TMC2130_WAVE_FAC200_MIN 180
|
||||
#define TMC2130_WAVE_FAC200_MAX 250
|
||||
#define TMC2130_WAVE_FAC200_STP 1
|
||||
|
||||
extern uint8_t tmc2130_home_enabled;
|
||||
extern uint8_t tmc2130_home_origin[2];
|
||||
extern uint8_t tmc2130_home_bsteps[2];
|
||||
extern uint8_t tmc2130_home_fsteps[2];
|
||||
|
||||
extern uint8_t tmc2130_wave_fac[4];
|
||||
|
||||
|
||||
//initialize tmc2130
|
||||
extern void tmc2130_init();
|
||||
//check diag pins (called from stepper isr)
|
||||
@ -54,7 +67,11 @@ extern void tmc2130_set_pwm_ampl(uint8_t axis, uint8_t pwm_ampl);
|
||||
extern void tmc2130_set_pwm_grad(uint8_t axis, uint8_t pwm_ampl);
|
||||
|
||||
|
||||
extern uint16_t tmc2130_rd_MSCNT(uint8_t cs);
|
||||
extern uint16_t tmc2130_rd_MSCNT(uint8_t axis);
|
||||
extern uint32_t tmc2130_rd_MSCURACT(uint8_t axis);
|
||||
|
||||
extern uint8_t tmc2130_usteps2mres(uint16_t usteps);
|
||||
#define tmc2130_mres2usteps(mres) ((uint16_t)256 >> mres)
|
||||
|
||||
extern bool tmc2130_wait_standstill_xy(int timeout);
|
||||
|
||||
@ -89,4 +106,19 @@ struct
|
||||
} tmc2130_axis_config;
|
||||
#pragma pack(pop)
|
||||
|
||||
extern uint16_t tmc2130_get_res(uint8_t axis);
|
||||
extern void tmc2130_set_res(uint8_t axis, uint16_t res);
|
||||
extern uint8_t tmc2130_get_pwr(uint8_t axis);
|
||||
extern void tmc2130_set_pwr(uint8_t axis, uint8_t pwr);
|
||||
extern uint8_t tmc2130_get_inv(uint8_t axis);
|
||||
extern uint8_t tmc2130_get_dir(uint8_t axis);
|
||||
extern void tmc2130_set_dir(uint8_t axis, uint8_t dir);
|
||||
extern void tmc2130_do_step(uint8_t axis);
|
||||
extern void tmc2130_do_steps(uint8_t axis, uint16_t steps, uint8_t dir, uint16_t delay_us);
|
||||
extern void tmc2130_goto_step(uint8_t axis, uint8_t step, uint8_t dir, uint16_t delay_us, uint16_t microstep_resolution);
|
||||
extern void tmc2130_get_wave(uint8_t axis, uint8_t* data, FILE* stream);
|
||||
extern void tmc2130_set_wave(uint8_t axis, uint8_t amp, uint8_t fac200);
|
||||
|
||||
extern void tmc2130_home_calibrate(uint8_t axis);
|
||||
|
||||
#endif //TMC2130_H
|
@ -228,6 +228,9 @@ static void menu_action_setlang(unsigned char lang);
|
||||
static void menu_action_sdfile(const char* filename, char* longFilename);
|
||||
static void menu_action_sddirectory(const char* filename, char* longFilename);
|
||||
static void menu_action_setting_edit_bool(const char* pstr, bool* ptr);
|
||||
static void menu_action_setting_edit_wfac(const char* pstr, uint8_t* ptr, uint8_t minValue, uint8_t maxValue);
|
||||
static void menu_action_setting_edit_mres(const char* pstr, uint8_t* ptr, uint8_t minValue, uint8_t maxValue);
|
||||
static void menu_action_setting_edit_byte3(const char* pstr, uint8_t* ptr, uint8_t minValue, uint8_t maxValue);
|
||||
static void menu_action_setting_edit_int3(const char* pstr, int* ptr, int minValue, int maxValue);
|
||||
static void menu_action_setting_edit_float3(const char* pstr, float* ptr, float minValue, float maxValue);
|
||||
static void menu_action_setting_edit_float32(const char* pstr, float* ptr, float minValue, float maxValue);
|
||||
@ -3946,6 +3949,219 @@ static void lcd_selftest_()
|
||||
lcd_selftest();
|
||||
}
|
||||
|
||||
|
||||
static void lcd_experimantal_menu();
|
||||
static void lcd_homing_accuracy_menu();
|
||||
|
||||
static void lcd_accurate_home_set()
|
||||
{
|
||||
tmc2130_home_enabled = tmc2130_home_enabled?0:1;
|
||||
eeprom_update_byte((uint8_t*)EEPROM_TMC2130_HOME_ENABLED, tmc2130_home_enabled);
|
||||
}
|
||||
|
||||
static void lcd_homing_accuracy_menu_advanced_reset()
|
||||
{
|
||||
tmc2130_home_bsteps[X_AXIS] = 48;
|
||||
tmc2130_home_fsteps[X_AXIS] = 48;
|
||||
tmc2130_home_bsteps[Y_AXIS] = 48;
|
||||
tmc2130_home_fsteps[Y_AXIS] = 48;
|
||||
}
|
||||
|
||||
static void lcd_homing_accuracy_menu_advanced_save()
|
||||
{
|
||||
eeprom_update_byte((uint8_t*)EEPROM_TMC2130_HOME_X_ORIGIN, tmc2130_home_origin[X_AXIS]);
|
||||
eeprom_update_byte((uint8_t*)EEPROM_TMC2130_HOME_X_BSTEPS, tmc2130_home_bsteps[X_AXIS]);
|
||||
eeprom_update_byte((uint8_t*)EEPROM_TMC2130_HOME_X_FSTEPS, tmc2130_home_fsteps[X_AXIS]);
|
||||
eeprom_update_byte((uint8_t*)EEPROM_TMC2130_HOME_Y_ORIGIN, tmc2130_home_origin[Y_AXIS]);
|
||||
eeprom_update_byte((uint8_t*)EEPROM_TMC2130_HOME_Y_BSTEPS, tmc2130_home_bsteps[Y_AXIS]);
|
||||
eeprom_update_byte((uint8_t*)EEPROM_TMC2130_HOME_Y_FSTEPS, tmc2130_home_fsteps[Y_AXIS]);
|
||||
}
|
||||
|
||||
static void lcd_homing_accuracy_menu_advanced_back()
|
||||
{
|
||||
lcd_homing_accuracy_menu_advanced_save();
|
||||
currentMenu = lcd_homing_accuracy_menu;
|
||||
lcd_homing_accuracy_menu();
|
||||
}
|
||||
|
||||
static void lcd_homing_accuracy_menu_advanced()
|
||||
{
|
||||
lcd_timeoutToStatus = millis() + LCD_TIMEOUT_TO_STATUS;
|
||||
START_MENU();
|
||||
MENU_ITEM(back, PSTR("Homing accuracy"), lcd_homing_accuracy_menu_advanced_back);
|
||||
MENU_ITEM(function, PSTR("Reset def. steps"), lcd_homing_accuracy_menu_advanced_reset);
|
||||
MENU_ITEM_EDIT(byte3, PSTR("X-origin"), &tmc2130_home_origin[X_AXIS], 0, 63);
|
||||
MENU_ITEM_EDIT(byte3, PSTR("Y-origin"), &tmc2130_home_origin[Y_AXIS], 0, 63);
|
||||
MENU_ITEM_EDIT(byte3, PSTR("X-bsteps"), &tmc2130_home_bsteps[X_AXIS], 0, 128);
|
||||
MENU_ITEM_EDIT(byte3, PSTR("Y-bsteps"), &tmc2130_home_bsteps[Y_AXIS], 0, 128);
|
||||
MENU_ITEM_EDIT(byte3, PSTR("X-fsteps"), &tmc2130_home_fsteps[X_AXIS], 0, 128);
|
||||
MENU_ITEM_EDIT(byte3, PSTR("Y-fsteps"), &tmc2130_home_fsteps[Y_AXIS], 0, 128);
|
||||
END_MENU();
|
||||
}
|
||||
|
||||
static void lcd_homing_accuracy_menu()
|
||||
{
|
||||
START_MENU();
|
||||
MENU_ITEM(back, PSTR("Experimental"), lcd_experimantal_menu);
|
||||
MENU_ITEM(function, tmc2130_home_enabled?PSTR("Accur. homing On"):PSTR("Accur. homing Off"), lcd_accurate_home_set);
|
||||
MENU_ITEM(gcode, PSTR("Calibrate X"), PSTR("G28XC"));
|
||||
MENU_ITEM(gcode, PSTR("Calibrate Y"), PSTR("G28YC"));
|
||||
MENU_ITEM(submenu, PSTR("Advanced"), lcd_homing_accuracy_menu_advanced);
|
||||
END_MENU();
|
||||
}
|
||||
|
||||
static void lcd_ustep_resolution_menu_save()
|
||||
{
|
||||
eeprom_update_byte((uint8_t*)EEPROM_TMC2130_X_MRES, tmc2130_mres[X_AXIS]);
|
||||
eeprom_update_byte((uint8_t*)EEPROM_TMC2130_Y_MRES, tmc2130_mres[Y_AXIS]);
|
||||
eeprom_update_byte((uint8_t*)EEPROM_TMC2130_Z_MRES, tmc2130_mres[Z_AXIS]);
|
||||
eeprom_update_byte((uint8_t*)EEPROM_TMC2130_E_MRES, tmc2130_mres[E_AXIS]);
|
||||
}
|
||||
|
||||
static void lcd_ustep_resolution_menu_back()
|
||||
{
|
||||
float tmp1[]=DEFAULT_AXIS_STEPS_PER_UNIT;
|
||||
bool changed = false;
|
||||
if (tmc2130_mres[X_AXIS] != eeprom_read_byte((uint8_t*)EEPROM_TMC2130_X_MRES))
|
||||
{
|
||||
axis_steps_per_unit[X_AXIS] = tmp1[X_AXIS] * tmc2130_mres2usteps(tmc2130_mres[X_AXIS]) / TMC2130_USTEPS_XY;
|
||||
changed = true;
|
||||
}
|
||||
if (tmc2130_mres[Y_AXIS] != eeprom_read_byte((uint8_t*)EEPROM_TMC2130_Y_MRES))
|
||||
{
|
||||
axis_steps_per_unit[Y_AXIS] = tmp1[Y_AXIS] * tmc2130_mres2usteps(tmc2130_mres[Y_AXIS]) / TMC2130_USTEPS_XY;
|
||||
changed = true;
|
||||
}
|
||||
if (tmc2130_mres[Z_AXIS] != eeprom_read_byte((uint8_t*)EEPROM_TMC2130_Z_MRES))
|
||||
{
|
||||
axis_steps_per_unit[Z_AXIS] = tmp1[Z_AXIS] * tmc2130_mres2usteps(tmc2130_mres[Z_AXIS]) / TMC2130_USTEPS_Z;
|
||||
changed = true;
|
||||
}
|
||||
if (tmc2130_mres[E_AXIS] != eeprom_read_byte((uint8_t*)EEPROM_TMC2130_E_MRES))
|
||||
{
|
||||
axis_steps_per_unit[E_AXIS] = tmp1[E_AXIS] * tmc2130_mres2usteps(tmc2130_mres[E_AXIS]) / TMC2130_USTEPS_E;
|
||||
changed = true;
|
||||
}
|
||||
if (changed)
|
||||
{
|
||||
lcd_ustep_resolution_menu_save();
|
||||
Config_StoreSettings(EEPROM_OFFSET);
|
||||
tmc2130_init();
|
||||
}
|
||||
currentMenu = lcd_experimantal_menu;
|
||||
lcd_experimantal_menu();
|
||||
}
|
||||
|
||||
static void lcd_ustep_resolution_reset_def_xyze()
|
||||
{
|
||||
tmc2130_mres[X_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_XY);
|
||||
tmc2130_mres[Y_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_XY);
|
||||
tmc2130_mres[Z_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_Z);
|
||||
tmc2130_mres[E_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_E);
|
||||
float tmp1[]=DEFAULT_AXIS_STEPS_PER_UNIT;
|
||||
axis_steps_per_unit[X_AXIS] = tmp1[X_AXIS];
|
||||
axis_steps_per_unit[Y_AXIS] = tmp1[Y_AXIS];
|
||||
axis_steps_per_unit[Z_AXIS] = tmp1[Z_AXIS];
|
||||
axis_steps_per_unit[E_AXIS] = tmp1[E_AXIS];
|
||||
}
|
||||
|
||||
static void lcd_ustep_resolution_menu()
|
||||
{
|
||||
lcd_timeoutToStatus = millis() + LCD_TIMEOUT_TO_STATUS;
|
||||
START_MENU();
|
||||
MENU_ITEM(back, PSTR("Experimental"), lcd_ustep_resolution_menu_back);
|
||||
MENU_ITEM(function, PSTR("Reset defaults"), lcd_ustep_resolution_reset_def_xyze);
|
||||
MENU_ITEM_EDIT(mres, PSTR("X-resolution"), &tmc2130_mres[X_AXIS], 4, 4);
|
||||
MENU_ITEM_EDIT(mres, PSTR("Y-resolution"), &tmc2130_mres[Y_AXIS], 4, 4);
|
||||
MENU_ITEM_EDIT(mres, PSTR("Z-resolution"), &tmc2130_mres[Z_AXIS], 4, 4);
|
||||
MENU_ITEM_EDIT(mres, PSTR("E-resolution"), &tmc2130_mres[E_AXIS], 2, 5);
|
||||
END_MENU();
|
||||
}
|
||||
|
||||
static void lcd_ustep_linearity_menu_save()
|
||||
{
|
||||
eeprom_update_byte((uint8_t*)EEPROM_TMC2130_WAVE_X_FAC, tmc2130_wave_fac[X_AXIS]);
|
||||
eeprom_update_byte((uint8_t*)EEPROM_TMC2130_WAVE_Y_FAC, tmc2130_wave_fac[Y_AXIS]);
|
||||
eeprom_update_byte((uint8_t*)EEPROM_TMC2130_WAVE_Z_FAC, tmc2130_wave_fac[Z_AXIS]);
|
||||
eeprom_update_byte((uint8_t*)EEPROM_TMC2130_WAVE_E_FAC, tmc2130_wave_fac[E_AXIS]);
|
||||
}
|
||||
|
||||
static void lcd_ustep_linearity_menu_back()
|
||||
{
|
||||
bool changed = false;
|
||||
if (tmc2130_wave_fac[X_AXIS] < TMC2130_WAVE_FAC200_MIN) tmc2130_wave_fac[X_AXIS] = 0;
|
||||
if (tmc2130_wave_fac[Y_AXIS] < TMC2130_WAVE_FAC200_MIN) tmc2130_wave_fac[Y_AXIS] = 0;
|
||||
if (tmc2130_wave_fac[Z_AXIS] < TMC2130_WAVE_FAC200_MIN) tmc2130_wave_fac[Z_AXIS] = 0;
|
||||
if (tmc2130_wave_fac[E_AXIS] < TMC2130_WAVE_FAC200_MIN) tmc2130_wave_fac[E_AXIS] = 0;
|
||||
changed |= (eeprom_read_byte((uint8_t*)EEPROM_TMC2130_WAVE_X_FAC) != tmc2130_wave_fac[X_AXIS]);
|
||||
changed |= (eeprom_read_byte((uint8_t*)EEPROM_TMC2130_WAVE_Y_FAC) != tmc2130_wave_fac[Y_AXIS]);
|
||||
changed |= (eeprom_read_byte((uint8_t*)EEPROM_TMC2130_WAVE_Z_FAC) != tmc2130_wave_fac[Z_AXIS]);
|
||||
changed |= (eeprom_read_byte((uint8_t*)EEPROM_TMC2130_WAVE_E_FAC) != tmc2130_wave_fac[E_AXIS]);
|
||||
lcd_ustep_linearity_menu_save();
|
||||
if (changed) tmc2130_init();
|
||||
currentMenu = lcd_experimantal_menu;
|
||||
lcd_experimantal_menu();
|
||||
}
|
||||
|
||||
static void lcd_ustep_linearity_menu_recomended()
|
||||
{
|
||||
tmc2130_wave_fac[X_AXIS] = 220;
|
||||
tmc2130_wave_fac[Y_AXIS] = 220;
|
||||
tmc2130_wave_fac[Z_AXIS] = 220;
|
||||
tmc2130_wave_fac[E_AXIS] = 220;
|
||||
}
|
||||
|
||||
static void lcd_ustep_linearity_menu_reset()
|
||||
{
|
||||
tmc2130_wave_fac[X_AXIS] = 0;
|
||||
tmc2130_wave_fac[Y_AXIS] = 0;
|
||||
tmc2130_wave_fac[Z_AXIS] = 0;
|
||||
tmc2130_wave_fac[E_AXIS] = 0;
|
||||
}
|
||||
|
||||
static void lcd_ustep_linearity_menu()
|
||||
{
|
||||
lcd_timeoutToStatus = millis() + LCD_TIMEOUT_TO_STATUS;
|
||||
START_MENU();
|
||||
MENU_ITEM(back, PSTR("Experimental"), lcd_ustep_linearity_menu_back);
|
||||
MENU_ITEM(function, PSTR("Reset correction"), lcd_ustep_linearity_menu_reset);
|
||||
MENU_ITEM(function, PSTR("Recomended config"), lcd_ustep_linearity_menu_recomended);
|
||||
MENU_ITEM_EDIT(wfac, PSTR("X-correction"), &tmc2130_wave_fac[X_AXIS], TMC2130_WAVE_FAC200_MIN-TMC2130_WAVE_FAC200_STP, TMC2130_WAVE_FAC200_MAX);
|
||||
MENU_ITEM_EDIT(wfac, PSTR("Y-correction"), &tmc2130_wave_fac[Y_AXIS], TMC2130_WAVE_FAC200_MIN-TMC2130_WAVE_FAC200_STP, TMC2130_WAVE_FAC200_MAX);
|
||||
MENU_ITEM_EDIT(wfac, PSTR("Z-correction"), &tmc2130_wave_fac[Z_AXIS], TMC2130_WAVE_FAC200_MIN-TMC2130_WAVE_FAC200_STP, TMC2130_WAVE_FAC200_MAX);
|
||||
MENU_ITEM_EDIT(wfac, PSTR("E-correction"), &tmc2130_wave_fac[E_AXIS], TMC2130_WAVE_FAC200_MIN-TMC2130_WAVE_FAC200_STP, TMC2130_WAVE_FAC200_MAX);
|
||||
END_MENU();
|
||||
}
|
||||
|
||||
static void lcd_experimantal_menu_save_all()
|
||||
{
|
||||
eeprom_update_byte((uint8_t*)EEPROM_TMC2130_HOME_ENABLED, tmc2130_home_enabled);
|
||||
lcd_ustep_resolution_menu_save();
|
||||
lcd_ustep_linearity_menu_save();
|
||||
Config_StoreSettings(EEPROM_OFFSET);
|
||||
}
|
||||
|
||||
static void lcd_experimantal_menu_disable_all()
|
||||
{
|
||||
tmc2130_home_enabled = 0;
|
||||
lcd_ustep_resolution_reset_def_xyze();
|
||||
lcd_ustep_linearity_menu_reset();
|
||||
lcd_experimantal_menu_save_all();
|
||||
tmc2130_init();
|
||||
}
|
||||
|
||||
static void lcd_experimantal_menu()
|
||||
{
|
||||
START_MENU();
|
||||
MENU_ITEM(back, MSG_MAIN, lcd_main_menu);
|
||||
MENU_ITEM(function, PSTR("All Xfeatures off"), lcd_experimantal_menu_disable_all);
|
||||
MENU_ITEM(submenu, PSTR("Homing accuracy"), lcd_homing_accuracy_menu);
|
||||
MENU_ITEM(submenu, PSTR("uStep resolution"), lcd_ustep_resolution_menu);
|
||||
MENU_ITEM(submenu, PSTR("uStep linearity"), lcd_ustep_linearity_menu);
|
||||
END_MENU();
|
||||
}
|
||||
|
||||
|
||||
static void lcd_calibration_menu()
|
||||
{
|
||||
START_MENU();
|
||||
@ -5155,6 +5371,7 @@ static void lcd_main_menu()
|
||||
#endif
|
||||
MENU_ITEM(submenu, MSG_SETTINGS, lcd_settings_menu);
|
||||
if(!isPrintPaused) MENU_ITEM(submenu, MSG_MENU_CALIBRATION, lcd_calibration_menu);
|
||||
MENU_ITEM(submenu, PSTR("Experimantal"), lcd_experimantal_menu);
|
||||
}
|
||||
|
||||
if (!is_usb_printing && (lcd_commands_type != LCD_COMMAND_V2_CAL))
|
||||
@ -5585,6 +5802,30 @@ void lcd_sdcard_menu()
|
||||
}
|
||||
*/
|
||||
|
||||
// Convert tmc2130 mres to string
|
||||
char *mres_to_str3(const uint8_t &x)
|
||||
{
|
||||
return itostr3(256 >> x);
|
||||
}
|
||||
|
||||
extern char conv[8];
|
||||
|
||||
// Convert tmc2130 wfac to string
|
||||
char *wfac_to_str5(const uint8_t &x)
|
||||
{
|
||||
if (x>=TMC2130_WAVE_FAC200_MIN) return ftostr43(((float)(x & 0xff))/200);
|
||||
conv[0] = ' ';
|
||||
conv[1] = ' ';
|
||||
conv[2] = 'O';
|
||||
conv[3] = 'f';
|
||||
conv[4] = 'f';
|
||||
conv[5] = 0;
|
||||
return conv;
|
||||
}
|
||||
|
||||
menu_edit_type(uint8_t, wfac, wfac_to_str5, 1)
|
||||
menu_edit_type(uint8_t, mres, mres_to_str3, 1)
|
||||
menu_edit_type(uint8_t, byte3, itostr3, 1)
|
||||
menu_edit_type(int, int3, itostr3, 1)
|
||||
menu_edit_type(float, float3, ftostr3, 1)
|
||||
menu_edit_type(float, float32, ftostr32, 100)
|
||||
|
@ -1144,6 +1144,17 @@ static void lcd_implementation_drawmenu_setting_edit_generic_P(uint8_t row, cons
|
||||
lcd.print(' ');
|
||||
lcd_printPGM(data);
|
||||
}
|
||||
|
||||
|
||||
extern char *wfac_to_str5(const uint8_t &x);
|
||||
extern char *mres_to_str3(const uint8_t &x);
|
||||
|
||||
#define lcd_implementation_drawmenu_setting_edit_wfac_selected(row, pstr, pstr2, data, minValue, maxValue) lcd_implementation_drawmenu_setting_edit_generic(row, pstr, '>', wfac_to_str5(*(data)))
|
||||
#define lcd_implementation_drawmenu_setting_edit_wfac(row, pstr, pstr2, data, minValue, maxValue) lcd_implementation_drawmenu_setting_edit_generic(row, pstr, ' ', wfac_to_str5(*(data)))
|
||||
#define lcd_implementation_drawmenu_setting_edit_mres_selected(row, pstr, pstr2, data, minValue, maxValue) lcd_implementation_drawmenu_setting_edit_generic(row, pstr, '>', mres_to_str3(*(data)))
|
||||
#define lcd_implementation_drawmenu_setting_edit_mres(row, pstr, pstr2, data, minValue, maxValue) lcd_implementation_drawmenu_setting_edit_generic(row, pstr, ' ', mres_to_str3(*(data)))
|
||||
#define lcd_implementation_drawmenu_setting_edit_byte3_selected(row, pstr, pstr2, data, minValue, maxValue) lcd_implementation_drawmenu_setting_edit_generic(row, pstr, '>', itostr3((uint8_t)*(data)))
|
||||
#define lcd_implementation_drawmenu_setting_edit_byte3(row, pstr, pstr2, data, minValue, maxValue) lcd_implementation_drawmenu_setting_edit_generic(row, pstr, ' ', itostr3((uint8_t)*(data)))
|
||||
#define lcd_implementation_drawmenu_setting_edit_int3_selected(row, pstr, pstr2, data, minValue, maxValue) lcd_implementation_drawmenu_setting_edit_generic(row, pstr, '>', itostr3(*(data)))
|
||||
#define lcd_implementation_drawmenu_setting_edit_int3(row, pstr, pstr2, data, minValue, maxValue) lcd_implementation_drawmenu_setting_edit_generic(row, pstr, ' ', itostr3(*(data)))
|
||||
#define lcd_implementation_drawmenu_setting_edit_float3_selected(row, pstr, pstr2, data, minValue, maxValue) lcd_implementation_drawmenu_setting_edit_generic(row, pstr, '>', ftostr3(*(data)))
|
||||
|
Loading…
Reference in New Issue
Block a user