Redefined the DDA step and accumulator values to unions to support
access to the low / high words of the 32bit values. This is a prerequisity for an optimized 16bit only DDA in case the number of step is lower than 32767.
This commit is contained in:
parent
a1fd50ea9a
commit
30b06488ca
3 changed files with 119 additions and 98 deletions
Firmware
|
@ -227,8 +227,8 @@ void calculate_trapezoid_for_block(block_t *block, float entry_speed, float exit
|
||||||
// Is the Plateau of Nominal Rate smaller than nothing? That means no cruising, and we will
|
// Is the Plateau of Nominal Rate smaller than nothing? That means no cruising, and we will
|
||||||
// have to use intersection_distance() to calculate when to abort acceleration and start braking
|
// have to use intersection_distance() to calculate when to abort acceleration and start braking
|
||||||
// in order to reach the final_rate exactly at the end of this block.
|
// in order to reach the final_rate exactly at the end of this block.
|
||||||
if (accel_decel_steps < block->step_event_count) {
|
if (accel_decel_steps < block->step_event_count.wide) {
|
||||||
plateau_steps = block->step_event_count - accel_decel_steps;
|
plateau_steps = block->step_event_count.wide - accel_decel_steps;
|
||||||
} else {
|
} else {
|
||||||
uint32_t acceleration_x4 = acceleration << 2;
|
uint32_t acceleration_x4 = acceleration << 2;
|
||||||
// Avoid negative numbers
|
// Avoid negative numbers
|
||||||
|
@ -240,26 +240,26 @@ void calculate_trapezoid_for_block(block_t *block, float entry_speed, float exit
|
||||||
accelerate_steps = (block->step_event_count >> 1) + (final_rate_sqr - initial_rate_sqr + acceleration_x4 - 1 + (block->step_event_count & 1) * acceleration_x2) / acceleration_x4;
|
accelerate_steps = (block->step_event_count >> 1) + (final_rate_sqr - initial_rate_sqr + acceleration_x4 - 1 + (block->step_event_count & 1) * acceleration_x2) / acceleration_x4;
|
||||||
#else
|
#else
|
||||||
accelerate_steps = final_rate_sqr - initial_rate_sqr + acceleration_x4 - 1;
|
accelerate_steps = final_rate_sqr - initial_rate_sqr + acceleration_x4 - 1;
|
||||||
if (block->step_event_count & 1)
|
if (block->step_event_count.wide & 1)
|
||||||
accelerate_steps += acceleration_x2;
|
accelerate_steps += acceleration_x2;
|
||||||
accelerate_steps /= acceleration_x4;
|
accelerate_steps /= acceleration_x4;
|
||||||
accelerate_steps += (block->step_event_count >> 1);
|
accelerate_steps += (block->step_event_count.wide >> 1);
|
||||||
#endif
|
#endif
|
||||||
if (accelerate_steps > block->step_event_count)
|
if (accelerate_steps > block->step_event_count.wide)
|
||||||
accelerate_steps = block->step_event_count;
|
accelerate_steps = block->step_event_count.wide;
|
||||||
} else {
|
} else {
|
||||||
#if 0
|
#if 0
|
||||||
decelerate_steps = (block->step_event_count >> 1) + (initial_rate_sqr - final_rate_sqr + (block->step_event_count & 1) * acceleration_x2) / acceleration_x4;
|
decelerate_steps = (block->step_event_count >> 1) + (initial_rate_sqr - final_rate_sqr + (block->step_event_count & 1) * acceleration_x2) / acceleration_x4;
|
||||||
#else
|
#else
|
||||||
decelerate_steps = initial_rate_sqr - final_rate_sqr;
|
decelerate_steps = initial_rate_sqr - final_rate_sqr;
|
||||||
if (block->step_event_count & 1)
|
if (block->step_event_count.wide & 1)
|
||||||
decelerate_steps += acceleration_x2;
|
decelerate_steps += acceleration_x2;
|
||||||
decelerate_steps /= acceleration_x4;
|
decelerate_steps /= acceleration_x4;
|
||||||
decelerate_steps += (block->step_event_count >> 1);
|
decelerate_steps += (block->step_event_count.wide >> 1);
|
||||||
#endif
|
#endif
|
||||||
if (decelerate_steps > block->step_event_count)
|
if (decelerate_steps > block->step_event_count.wide)
|
||||||
decelerate_steps = block->step_event_count;
|
decelerate_steps = block->step_event_count.wide;
|
||||||
accelerate_steps = block->step_event_count - decelerate_steps;
|
accelerate_steps = block->step_event_count.wide - decelerate_steps;
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
|
@ -449,10 +449,10 @@ void getHighESpeed()
|
||||||
uint8_t block_index = block_buffer_tail;
|
uint8_t block_index = block_buffer_tail;
|
||||||
|
|
||||||
while(block_index != block_buffer_head) {
|
while(block_index != block_buffer_head) {
|
||||||
if((block_buffer[block_index].steps_x != 0) ||
|
if((block_buffer[block_index].steps_x.wide != 0) ||
|
||||||
(block_buffer[block_index].steps_y != 0) ||
|
(block_buffer[block_index].steps_y.wide != 0) ||
|
||||||
(block_buffer[block_index].steps_z != 0)) {
|
(block_buffer[block_index].steps_z.wide != 0)) {
|
||||||
float se=(float(block_buffer[block_index].steps_e)/float(block_buffer[block_index].step_event_count))*block_buffer[block_index].nominal_speed;
|
float se=(float(block_buffer[block_index].steps_e.wide)/float(block_buffer[block_index].step_event_count.wide))*block_buffer[block_index].nominal_speed;
|
||||||
//se; mm/sec;
|
//se; mm/sec;
|
||||||
if(se>high)
|
if(se>high)
|
||||||
{
|
{
|
||||||
|
@ -493,10 +493,10 @@ void check_axes_activity()
|
||||||
while(block_index != block_buffer_head)
|
while(block_index != block_buffer_head)
|
||||||
{
|
{
|
||||||
block = &block_buffer[block_index];
|
block = &block_buffer[block_index];
|
||||||
if(block->steps_x != 0) x_active++;
|
if(block->steps_x.wide != 0) x_active++;
|
||||||
if(block->steps_y != 0) y_active++;
|
if(block->steps_y.wide != 0) y_active++;
|
||||||
if(block->steps_z != 0) z_active++;
|
if(block->steps_z.wide != 0) z_active++;
|
||||||
if(block->steps_e != 0) e_active++;
|
if(block->steps_e.wide != 0) e_active++;
|
||||||
block_index = (block_index+1) & (BLOCK_BUFFER_SIZE - 1);
|
block_index = (block_index+1) & (BLOCK_BUFFER_SIZE - 1);
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
@ -769,26 +769,24 @@ void plan_buffer_line(float x, float y, float z, const float &e, float feed_rate
|
||||||
// Number of steps for each axis
|
// Number of steps for each axis
|
||||||
#ifndef COREXY
|
#ifndef COREXY
|
||||||
// default non-h-bot planning
|
// default non-h-bot planning
|
||||||
block->steps_x = labs(target[X_AXIS]-position[X_AXIS]);
|
block->steps_x.wide = labs(target[X_AXIS]-position[X_AXIS]);
|
||||||
block->steps_y = labs(target[Y_AXIS]-position[Y_AXIS]);
|
block->steps_y.wide = labs(target[Y_AXIS]-position[Y_AXIS]);
|
||||||
#else
|
#else
|
||||||
// corexy planning
|
// corexy planning
|
||||||
// these equations follow the form of the dA and dB equations on http://www.corexy.com/theory.html
|
// these equations follow the form of the dA and dB equations on http://www.corexy.com/theory.html
|
||||||
block->steps_x = labs((target[X_AXIS]-position[X_AXIS]) + (target[Y_AXIS]-position[Y_AXIS]));
|
block->steps_x.wide = labs((target[X_AXIS]-position[X_AXIS]) + (target[Y_AXIS]-position[Y_AXIS]));
|
||||||
block->steps_y = labs((target[X_AXIS]-position[X_AXIS]) - (target[Y_AXIS]-position[Y_AXIS]));
|
block->steps_y.wide = labs((target[X_AXIS]-position[X_AXIS]) - (target[Y_AXIS]-position[Y_AXIS]));
|
||||||
#endif
|
#endif
|
||||||
block->steps_z = labs(target[Z_AXIS]-position[Z_AXIS]);
|
block->steps_z.wide = labs(target[Z_AXIS]-position[Z_AXIS]);
|
||||||
block->steps_e = labs(target[E_AXIS]-position[E_AXIS]);
|
block->steps_e.wide = labs(target[E_AXIS]-position[E_AXIS]);
|
||||||
if (volumetric_multiplier[active_extruder] != 1.f)
|
if (volumetric_multiplier[active_extruder] != 1.f)
|
||||||
block->steps_e *= volumetric_multiplier[active_extruder];
|
block->steps_e.wide *= volumetric_multiplier[active_extruder];
|
||||||
if (extrudemultiply != 100) {
|
if (extrudemultiply != 100)
|
||||||
block->steps_e *= extrudemultiply;
|
block->steps_e.wide *= extrudemultiply * 0.01;
|
||||||
block->steps_e /= 100;
|
block->step_event_count.wide = max(block->steps_x.wide, max(block->steps_y.wide, max(block->steps_z.wide, block->steps_e.wide)));
|
||||||
}
|
|
||||||
block->step_event_count = max(block->steps_x, max(block->steps_y, max(block->steps_z, block->steps_e)));
|
|
||||||
|
|
||||||
// Bail if this is a zero-length block
|
// Bail if this is a zero-length block
|
||||||
if (block->step_event_count <= dropsegments)
|
if (block->step_event_count.wide <= dropsegments)
|
||||||
{
|
{
|
||||||
#ifdef PLANNER_DIAGNOSTICS
|
#ifdef PLANNER_DIAGNOSTICS
|
||||||
planner_update_queue_min_counter();
|
planner_update_queue_min_counter();
|
||||||
|
@ -832,21 +830,21 @@ block->steps_y = labs((target[X_AXIS]-position[X_AXIS]) - (target[Y_AXIS]-positi
|
||||||
|
|
||||||
//enable active axes
|
//enable active axes
|
||||||
#ifdef COREXY
|
#ifdef COREXY
|
||||||
if((block->steps_x != 0) || (block->steps_y != 0))
|
if((block->steps_x.wide != 0) || (block->steps_y.wide != 0))
|
||||||
{
|
{
|
||||||
enable_x();
|
enable_x();
|
||||||
enable_y();
|
enable_y();
|
||||||
}
|
}
|
||||||
#else
|
#else
|
||||||
if(block->steps_x != 0) enable_x();
|
if(block->steps_x.wide != 0) enable_x();
|
||||||
if(block->steps_y != 0) enable_y();
|
if(block->steps_y.wide != 0) enable_y();
|
||||||
#endif
|
#endif
|
||||||
#ifndef Z_LATE_ENABLE
|
#ifndef Z_LATE_ENABLE
|
||||||
if(block->steps_z != 0) enable_z();
|
if(block->steps_z.wide != 0) enable_z();
|
||||||
#endif
|
#endif
|
||||||
|
|
||||||
// Enable extruder(s)
|
// Enable extruder(s)
|
||||||
if(block->steps_e != 0)
|
if(block->steps_e.wide != 0)
|
||||||
{
|
{
|
||||||
if (DISABLE_INACTIVE_EXTRUDER) //enable only selected extruder
|
if (DISABLE_INACTIVE_EXTRUDER) //enable only selected extruder
|
||||||
{
|
{
|
||||||
|
@ -888,7 +886,7 @@ block->steps_y = labs((target[X_AXIS]-position[X_AXIS]) - (target[Y_AXIS]-positi
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
if (block->steps_e == 0)
|
if (block->steps_e.wide == 0)
|
||||||
{
|
{
|
||||||
if(feed_rate<mintravelfeedrate) feed_rate=mintravelfeedrate;
|
if(feed_rate<mintravelfeedrate) feed_rate=mintravelfeedrate;
|
||||||
}
|
}
|
||||||
|
@ -917,7 +915,7 @@ Having the real displacement of the head, we can calculate the total movement le
|
||||||
#endif
|
#endif
|
||||||
delta_mm[Z_AXIS] = (target[Z_AXIS]-position[Z_AXIS])/axis_steps_per_unit[Z_AXIS];
|
delta_mm[Z_AXIS] = (target[Z_AXIS]-position[Z_AXIS])/axis_steps_per_unit[Z_AXIS];
|
||||||
delta_mm[E_AXIS] = ((target[E_AXIS]-position[E_AXIS])/axis_steps_per_unit[E_AXIS])*volumetric_multiplier[active_extruder]*extrudemultiply/100.0;
|
delta_mm[E_AXIS] = ((target[E_AXIS]-position[E_AXIS])/axis_steps_per_unit[E_AXIS])*volumetric_multiplier[active_extruder]*extrudemultiply/100.0;
|
||||||
if ( block->steps_x <=dropsegments && block->steps_y <=dropsegments && block->steps_z <=dropsegments )
|
if ( block->steps_x.wide <=dropsegments && block->steps_y.wide <=dropsegments && block->steps_z.wide <=dropsegments )
|
||||||
{
|
{
|
||||||
block->millimeters = fabs(delta_mm[E_AXIS]);
|
block->millimeters = fabs(delta_mm[E_AXIS]);
|
||||||
}
|
}
|
||||||
|
@ -950,7 +948,7 @@ Having the real displacement of the head, we can calculate the total movement le
|
||||||
#endif // SLOWDOWN
|
#endif // SLOWDOWN
|
||||||
|
|
||||||
block->nominal_speed = block->millimeters * inverse_second; // (mm/sec) Always > 0
|
block->nominal_speed = block->millimeters * inverse_second; // (mm/sec) Always > 0
|
||||||
block->nominal_rate = ceil(block->step_event_count * inverse_second); // (step/sec) Always > 0
|
block->nominal_rate = ceil(block->step_event_count.wide * inverse_second); // (step/sec) Always > 0
|
||||||
|
|
||||||
#ifdef FILAMENT_SENSOR
|
#ifdef FILAMENT_SENSOR
|
||||||
//FMM update ring buffer used for delay with filament measurements
|
//FMM update ring buffer used for delay with filament measurements
|
||||||
|
@ -1027,8 +1025,8 @@ Having the real displacement of the head, we can calculate the total movement le
|
||||||
// Compute and limit the acceleration rate for the trapezoid generator.
|
// Compute and limit the acceleration rate for the trapezoid generator.
|
||||||
// block->step_event_count ... event count of the fastest axis
|
// block->step_event_count ... event count of the fastest axis
|
||||||
// block->millimeters ... Euclidian length of the XYZ movement or the E length, if no XYZ movement.
|
// block->millimeters ... Euclidian length of the XYZ movement or the E length, if no XYZ movement.
|
||||||
float steps_per_mm = block->step_event_count/block->millimeters;
|
float steps_per_mm = block->step_event_count.wide/block->millimeters;
|
||||||
if(block->steps_x == 0 && block->steps_y == 0 && block->steps_z == 0)
|
if(block->steps_x.wide == 0 && block->steps_y.wide == 0 && block->steps_z.wide == 0)
|
||||||
{
|
{
|
||||||
block->acceleration_st = ceil(retract_acceleration * steps_per_mm); // convert to: acceleration steps/sec^2
|
block->acceleration_st = ceil(retract_acceleration * steps_per_mm); // convert to: acceleration steps/sec^2
|
||||||
}
|
}
|
||||||
|
@ -1038,29 +1036,29 @@ Having the real displacement of the head, we can calculate the total movement le
|
||||||
#ifdef TMC2130
|
#ifdef TMC2130
|
||||||
if (tmc2130_mode == TMC2130_MODE_SILENT)
|
if (tmc2130_mode == TMC2130_MODE_SILENT)
|
||||||
{
|
{
|
||||||
if(((float)block->acceleration_st * (float)block->steps_x / (float)block->step_event_count) > SILENT_MAX_ACCEL_X_ST)
|
if(((float)block->acceleration_st * (float)block->steps_x.wide / (float)block->step_event_count.wide) > SILENT_MAX_ACCEL_X_ST)
|
||||||
block->acceleration_st = SILENT_MAX_ACCEL_X_ST;
|
block->acceleration_st = SILENT_MAX_ACCEL_X_ST;
|
||||||
if(((float)block->acceleration_st * (float)block->steps_y / (float)block->step_event_count) > SILENT_MAX_ACCEL_Y_ST)
|
if(((float)block->acceleration_st * (float)block->steps_y.wide / (float)block->step_event_count.wide) > SILENT_MAX_ACCEL_Y_ST)
|
||||||
block->acceleration_st = SILENT_MAX_ACCEL_Y_ST;
|
block->acceleration_st = SILENT_MAX_ACCEL_Y_ST;
|
||||||
}
|
}
|
||||||
if(((float)block->acceleration_st * (float)block->steps_x / (float)block->step_event_count) > axis_steps_per_sqr_second[X_AXIS])
|
if(((float)block->acceleration_st * (float)block->steps_x.wide / (float)block->step_event_count.wide) > axis_steps_per_sqr_second[X_AXIS])
|
||||||
block->acceleration_st = axis_steps_per_sqr_second[X_AXIS];
|
block->acceleration_st = axis_steps_per_sqr_second[X_AXIS];
|
||||||
if(((float)block->acceleration_st * (float)block->steps_y / (float)block->step_event_count) > axis_steps_per_sqr_second[Y_AXIS])
|
if(((float)block->acceleration_st * (float)block->steps_y.wide / (float)block->step_event_count.wide) > axis_steps_per_sqr_second[Y_AXIS])
|
||||||
block->acceleration_st = axis_steps_per_sqr_second[Y_AXIS];
|
block->acceleration_st = axis_steps_per_sqr_second[Y_AXIS];
|
||||||
if(((float)block->acceleration_st * (float)block->steps_e / (float)block->step_event_count) > axis_steps_per_sqr_second[E_AXIS])
|
if(((float)block->acceleration_st * (float)block->steps_e.wide / (float)block->step_event_count.wide) > axis_steps_per_sqr_second[E_AXIS])
|
||||||
block->acceleration_st = axis_steps_per_sqr_second[E_AXIS];
|
block->acceleration_st = axis_steps_per_sqr_second[E_AXIS];
|
||||||
if(((float)block->acceleration_st * (float)block->steps_z / (float)block->step_event_count ) > axis_steps_per_sqr_second[Z_AXIS])
|
if(((float)block->acceleration_st * (float)block->steps_z.wide / (float)block->step_event_count.wide ) > axis_steps_per_sqr_second[Z_AXIS])
|
||||||
block->acceleration_st = axis_steps_per_sqr_second[Z_AXIS];
|
block->acceleration_st = axis_steps_per_sqr_second[Z_AXIS];
|
||||||
#else //TMC2130
|
#else //TMC2130
|
||||||
// Limit acceleration per axis
|
// Limit acceleration per axis
|
||||||
//FIXME Vojtech: One shall rather limit a projection of the acceleration vector instead of using the limit.
|
//FIXME Vojtech: One shall rather limit a projection of the acceleration vector instead of using the limit.
|
||||||
if(((float)block->acceleration_st * (float)block->steps_x / (float)block->step_event_count) > axis_steps_per_sqr_second[X_AXIS])
|
if(((float)block->acceleration_st * (float)block->steps_x.wide / (float)block->step_event_count.wide) > axis_steps_per_sqr_second[X_AXIS])
|
||||||
block->acceleration_st = axis_steps_per_sqr_second[X_AXIS];
|
block->acceleration_st = axis_steps_per_sqr_second[X_AXIS];
|
||||||
if(((float)block->acceleration_st * (float)block->steps_y / (float)block->step_event_count) > axis_steps_per_sqr_second[Y_AXIS])
|
if(((float)block->acceleration_st * (float)block->steps_y.wide / (float)block->step_event_count.wide) > axis_steps_per_sqr_second[Y_AXIS])
|
||||||
block->acceleration_st = axis_steps_per_sqr_second[Y_AXIS];
|
block->acceleration_st = axis_steps_per_sqr_second[Y_AXIS];
|
||||||
if(((float)block->acceleration_st * (float)block->steps_e / (float)block->step_event_count) > axis_steps_per_sqr_second[E_AXIS])
|
if(((float)block->acceleration_st * (float)block->steps_e.wide / (float)block->step_event_count.wide) > axis_steps_per_sqr_second[E_AXIS])
|
||||||
block->acceleration_st = axis_steps_per_sqr_second[E_AXIS];
|
block->acceleration_st = axis_steps_per_sqr_second[E_AXIS];
|
||||||
if(((float)block->acceleration_st * (float)block->steps_z / (float)block->step_event_count ) > axis_steps_per_sqr_second[Z_AXIS])
|
if(((float)block->acceleration_st * (float)block->steps_z.wide / (float)block->step_event_count.wide ) > axis_steps_per_sqr_second[Z_AXIS])
|
||||||
block->acceleration_st = axis_steps_per_sqr_second[Z_AXIS];
|
block->acceleration_st = axis_steps_per_sqr_second[Z_AXIS];
|
||||||
#endif //TMC2130
|
#endif //TMC2130
|
||||||
}
|
}
|
||||||
|
@ -1218,10 +1216,10 @@ Having the real displacement of the head, we can calculate the total movement le
|
||||||
// The math is good, but we must avoid retract moves with advance!
|
// The math is good, but we must avoid retract moves with advance!
|
||||||
// de_float > 0.0 : Extruder is running forward (e.g., for "Wipe while retracting" (Slic3r) or "Combing" (Cura) moves)
|
// de_float > 0.0 : Extruder is running forward (e.g., for "Wipe while retracting" (Slic3r) or "Combing" (Cura) moves)
|
||||||
//
|
//
|
||||||
block->use_advance_lead = block->steps_e
|
block->use_advance_lead = block->steps_e.wide
|
||||||
&& (block->steps_x || block->steps_y)
|
&& (block->steps_x.wide || block->steps_y.wide)
|
||||||
&& extruder_advance_k
|
&& extruder_advance_k
|
||||||
&& (uint32_t)block->steps_e != block->step_event_count
|
&& (uint32_t)block->steps_e.wide != block->step_event_count.wide
|
||||||
&& de_float > 0.0;
|
&& de_float > 0.0;
|
||||||
if (block->use_advance_lead)
|
if (block->use_advance_lead)
|
||||||
block->abs_adv_steps_multiplier8 = lround(
|
block->abs_adv_steps_multiplier8 = lround(
|
||||||
|
|
|
@ -40,6 +40,28 @@ enum BlockFlag {
|
||||||
// If set, the machine will start from a halt at the start of this block,
|
// If set, the machine will start from a halt at the start of this block,
|
||||||
// respecting the maximum allowed jerk.
|
// respecting the maximum allowed jerk.
|
||||||
BLOCK_FLAG_START_FROM_FULL_HALT = 4,
|
BLOCK_FLAG_START_FROM_FULL_HALT = 4,
|
||||||
|
// If set, the stepper interrupt expects, that the number of steps to tick will be lower
|
||||||
|
// than 32767, therefore the DDA algorithm may run with 16bit resolution only.
|
||||||
|
// In addition, the stepper routine will not do any end stop checking for higher performance.
|
||||||
|
BLOCK_FLAG_DDA_LOWRES = 8,
|
||||||
|
};
|
||||||
|
|
||||||
|
union dda_isteps_t
|
||||||
|
{
|
||||||
|
int32_t wide;
|
||||||
|
struct {
|
||||||
|
uint16_t lo;
|
||||||
|
int16_t hi;
|
||||||
|
};
|
||||||
|
};
|
||||||
|
|
||||||
|
union dda_usteps_t
|
||||||
|
{
|
||||||
|
uint32_t wide;
|
||||||
|
struct {
|
||||||
|
uint16_t lo;
|
||||||
|
uint16_t hi;
|
||||||
|
};
|
||||||
};
|
};
|
||||||
|
|
||||||
// This struct is used when buffering the setup for each linear movement "nominal" values are as specified in
|
// This struct is used when buffering the setup for each linear movement "nominal" values are as specified in
|
||||||
|
@ -47,8 +69,8 @@ enum BlockFlag {
|
||||||
typedef struct {
|
typedef struct {
|
||||||
// Fields used by the bresenham algorithm for tracing the line
|
// Fields used by the bresenham algorithm for tracing the line
|
||||||
// steps_x.y,z, step_event_count, acceleration_rate, direction_bits and active_extruder are set by plan_buffer_line().
|
// steps_x.y,z, step_event_count, acceleration_rate, direction_bits and active_extruder are set by plan_buffer_line().
|
||||||
long steps_x, steps_y, steps_z, steps_e; // Step count along each axis
|
dda_isteps_t steps_x, steps_y, steps_z, steps_e; // Step count along each axis
|
||||||
unsigned long step_event_count; // The number of step events required to complete this block
|
dda_usteps_t step_event_count; // The number of step events required to complete this block
|
||||||
long acceleration_rate; // The acceleration rate used for acceleration calculation
|
long acceleration_rate; // The acceleration rate used for acceleration calculation
|
||||||
unsigned char direction_bits; // The direction bit set for this block (refers to *_DIRECTION_BIT in config.h)
|
unsigned char direction_bits; // The direction bit set for this block (refers to *_DIRECTION_BIT in config.h)
|
||||||
unsigned char active_extruder; // Selects the active extruder
|
unsigned char active_extruder; // Selects the active extruder
|
||||||
|
|
|
@ -62,11 +62,12 @@ bool z_max_endstop = false;
|
||||||
|
|
||||||
// Variables used by The Stepper Driver Interrupt
|
// Variables used by The Stepper Driver Interrupt
|
||||||
static unsigned char out_bits; // The next stepping-bits to be output
|
static unsigned char out_bits; // The next stepping-bits to be output
|
||||||
static int32_t counter_x, // Counter variables for the bresenham line tracer
|
static dda_isteps_t
|
||||||
|
counter_x, // Counter variables for the bresenham line tracer
|
||||||
counter_y,
|
counter_y,
|
||||||
counter_z,
|
counter_z,
|
||||||
counter_e;
|
counter_e;
|
||||||
volatile uint32_t step_events_completed; // The number of step events executed in the current block
|
volatile dda_usteps_t step_events_completed; // The number of step events executed in the current block
|
||||||
static int32_t acceleration_time, deceleration_time;
|
static int32_t acceleration_time, deceleration_time;
|
||||||
//static unsigned long accelerate_until, decelerate_after, acceleration_rate, initial_rate, final_rate, nominal_rate;
|
//static unsigned long accelerate_until, decelerate_after, acceleration_rate, initial_rate, final_rate, nominal_rate;
|
||||||
static uint16_t acc_step_rate; // needed for deccelaration start point
|
static uint16_t acc_step_rate; // needed for deccelaration start point
|
||||||
|
@ -404,14 +405,14 @@ void isr() {
|
||||||
// The busy flag is set by the plan_get_current_block() call.
|
// The busy flag is set by the plan_get_current_block() call.
|
||||||
// current_block->busy = true;
|
// current_block->busy = true;
|
||||||
trapezoid_generator_reset();
|
trapezoid_generator_reset();
|
||||||
counter_x = -(current_block->step_event_count >> 1);
|
counter_x.wide = -(current_block->step_event_count.wide >> 1);
|
||||||
counter_y = counter_x;
|
counter_y.wide = counter_x.wide;
|
||||||
counter_z = counter_x;
|
counter_z.wide = counter_x.wide;
|
||||||
counter_e = counter_x;
|
counter_e.wide = counter_x.wide;
|
||||||
step_events_completed = 0;
|
step_events_completed.wide = 0;
|
||||||
|
|
||||||
#ifdef Z_LATE_ENABLE
|
#ifdef Z_LATE_ENABLE
|
||||||
if(current_block->steps_z > 0) {
|
if(current_block->steps_z.wide > 0) {
|
||||||
enable_z();
|
enable_z();
|
||||||
_NEXT_ISR(2000); //1ms wait
|
_NEXT_ISR(2000); //1ms wait
|
||||||
return;
|
return;
|
||||||
|
@ -476,10 +477,10 @@ void isr() {
|
||||||
// Normal homing
|
// Normal homing
|
||||||
x_min_endstop = (READ(X_MIN_PIN) != X_MIN_ENDSTOP_INVERTING);
|
x_min_endstop = (READ(X_MIN_PIN) != X_MIN_ENDSTOP_INVERTING);
|
||||||
#endif
|
#endif
|
||||||
if(x_min_endstop && old_x_min_endstop && (current_block->steps_x > 0)) {
|
if(x_min_endstop && old_x_min_endstop && (current_block->steps_x.wide > 0)) {
|
||||||
endstops_trigsteps[X_AXIS] = count_position[X_AXIS];
|
endstops_trigsteps[X_AXIS] = count_position[X_AXIS];
|
||||||
endstop_x_hit=true;
|
endstop_x_hit=true;
|
||||||
step_events_completed = current_block->step_event_count;
|
step_events_completed.wide = current_block->step_event_count.wide;
|
||||||
}
|
}
|
||||||
old_x_min_endstop = x_min_endstop;
|
old_x_min_endstop = x_min_endstop;
|
||||||
#endif
|
#endif
|
||||||
|
@ -499,10 +500,10 @@ void isr() {
|
||||||
// Normal homing
|
// Normal homing
|
||||||
x_max_endstop = (READ(X_MAX_PIN) != X_MAX_ENDSTOP_INVERTING);
|
x_max_endstop = (READ(X_MAX_PIN) != X_MAX_ENDSTOP_INVERTING);
|
||||||
#endif
|
#endif
|
||||||
if(x_max_endstop && old_x_max_endstop && (current_block->steps_x > 0)){
|
if(x_max_endstop && old_x_max_endstop && (current_block->steps_x.wide > 0)){
|
||||||
endstops_trigsteps[X_AXIS] = count_position[X_AXIS];
|
endstops_trigsteps[X_AXIS] = count_position[X_AXIS];
|
||||||
endstop_x_hit=true;
|
endstop_x_hit=true;
|
||||||
step_events_completed = current_block->step_event_count;
|
step_events_completed.wide = current_block->step_event_count.wide;
|
||||||
}
|
}
|
||||||
old_x_max_endstop = x_max_endstop;
|
old_x_max_endstop = x_max_endstop;
|
||||||
#endif
|
#endif
|
||||||
|
@ -527,10 +528,10 @@ void isr() {
|
||||||
// Normal homing
|
// Normal homing
|
||||||
y_min_endstop = (READ(Y_MIN_PIN) != Y_MIN_ENDSTOP_INVERTING);
|
y_min_endstop = (READ(Y_MIN_PIN) != Y_MIN_ENDSTOP_INVERTING);
|
||||||
#endif
|
#endif
|
||||||
if(y_min_endstop && old_y_min_endstop && (current_block->steps_y > 0)) {
|
if(y_min_endstop && old_y_min_endstop && (current_block->steps_y.wide > 0)) {
|
||||||
endstops_trigsteps[Y_AXIS] = count_position[Y_AXIS];
|
endstops_trigsteps[Y_AXIS] = count_position[Y_AXIS];
|
||||||
endstop_y_hit=true;
|
endstop_y_hit=true;
|
||||||
step_events_completed = current_block->step_event_count;
|
step_events_completed.wide = current_block->step_event_count.wide;
|
||||||
}
|
}
|
||||||
old_y_min_endstop = y_min_endstop;
|
old_y_min_endstop = y_min_endstop;
|
||||||
#endif
|
#endif
|
||||||
|
@ -548,10 +549,10 @@ void isr() {
|
||||||
// Normal homing
|
// Normal homing
|
||||||
y_max_endstop = (READ(Y_MAX_PIN) != Y_MAX_ENDSTOP_INVERTING);
|
y_max_endstop = (READ(Y_MAX_PIN) != Y_MAX_ENDSTOP_INVERTING);
|
||||||
#endif
|
#endif
|
||||||
if(y_max_endstop && old_y_max_endstop && (current_block->steps_y > 0)){
|
if(y_max_endstop && old_y_max_endstop && (current_block->steps_y.wide > 0)){
|
||||||
endstops_trigsteps[Y_AXIS] = count_position[Y_AXIS];
|
endstops_trigsteps[Y_AXIS] = count_position[Y_AXIS];
|
||||||
endstop_y_hit=true;
|
endstop_y_hit=true;
|
||||||
step_events_completed = current_block->step_event_count;
|
step_events_completed.wide = current_block->step_event_count.wide;
|
||||||
}
|
}
|
||||||
old_y_max_endstop = y_max_endstop;
|
old_y_max_endstop = y_max_endstop;
|
||||||
#endif
|
#endif
|
||||||
|
@ -575,10 +576,10 @@ void isr() {
|
||||||
#else
|
#else
|
||||||
z_min_endstop = (READ(Z_MIN_PIN) != Z_MIN_ENDSTOP_INVERTING);
|
z_min_endstop = (READ(Z_MIN_PIN) != Z_MIN_ENDSTOP_INVERTING);
|
||||||
#endif //TMC2130_SG_HOMING
|
#endif //TMC2130_SG_HOMING
|
||||||
if(z_min_endstop && old_z_min_endstop && (current_block->steps_z > 0)) {
|
if(z_min_endstop && old_z_min_endstop && (current_block->steps_z.wide > 0)) {
|
||||||
endstops_trigsteps[Z_AXIS] = count_position[Z_AXIS];
|
endstops_trigsteps[Z_AXIS] = count_position[Z_AXIS];
|
||||||
endstop_z_hit=true;
|
endstop_z_hit=true;
|
||||||
step_events_completed = current_block->step_event_count;
|
step_events_completed.wide = current_block->step_event_count.wide;
|
||||||
}
|
}
|
||||||
old_z_min_endstop = z_min_endstop;
|
old_z_min_endstop = z_min_endstop;
|
||||||
#endif
|
#endif
|
||||||
|
@ -601,10 +602,10 @@ void isr() {
|
||||||
#else
|
#else
|
||||||
z_max_endstop = (READ(Z_MAX_PIN) != Z_MAX_ENDSTOP_INVERTING);
|
z_max_endstop = (READ(Z_MAX_PIN) != Z_MAX_ENDSTOP_INVERTING);
|
||||||
#endif //TMC2130_SG_HOMING
|
#endif //TMC2130_SG_HOMING
|
||||||
if(z_max_endstop && old_z_max_endstop && (current_block->steps_z > 0)) {
|
if(z_max_endstop && old_z_max_endstop && (current_block->steps_z.wide > 0)) {
|
||||||
endstops_trigsteps[Z_AXIS] = count_position[Z_AXIS];
|
endstops_trigsteps[Z_AXIS] = count_position[Z_AXIS];
|
||||||
endstop_z_hit=true;
|
endstop_z_hit=true;
|
||||||
step_events_completed = current_block->step_event_count;
|
step_events_completed.wide = current_block->step_event_count.wide;
|
||||||
}
|
}
|
||||||
old_z_max_endstop = z_max_endstop;
|
old_z_max_endstop = z_max_endstop;
|
||||||
#endif
|
#endif
|
||||||
|
@ -625,7 +626,7 @@ void isr() {
|
||||||
if(z_min_endstop && old_z_min_endstop) {
|
if(z_min_endstop && old_z_min_endstop) {
|
||||||
endstops_trigsteps[Z_AXIS] = count_position[Z_AXIS];
|
endstops_trigsteps[Z_AXIS] = count_position[Z_AXIS];
|
||||||
endstop_z_hit=true;
|
endstop_z_hit=true;
|
||||||
step_events_completed = current_block->step_event_count;
|
step_events_completed.wide = current_block->step_event_count.wide;
|
||||||
}
|
}
|
||||||
old_z_min_endstop = z_min_endstop;
|
old_z_min_endstop = z_min_endstop;
|
||||||
}
|
}
|
||||||
|
@ -657,22 +658,22 @@ void isr() {
|
||||||
#endif //RP - returned, because missing characters
|
#endif //RP - returned, because missing characters
|
||||||
|
|
||||||
#ifdef LIN_ADVANCE
|
#ifdef LIN_ADVANCE
|
||||||
counter_e += current_block->steps_e;
|
counter_e.wide += current_block->steps_e.wide;
|
||||||
if (counter_e > 0) {
|
if (counter_e.wide > 0) {
|
||||||
counter_e -= current_block->step_event_count;
|
counter_e.wide -= current_block->step_event_count.wide;
|
||||||
count_position[E_AXIS] += count_direction[E_AXIS];
|
count_position[E_AXIS] += count_direction[E_AXIS];
|
||||||
((out_bits&(1<<E_AXIS))!=0) ? --e_steps : ++e_steps;
|
((out_bits&(1<<E_AXIS))!=0) ? --e_steps : ++e_steps;
|
||||||
}
|
}
|
||||||
#endif
|
#endif
|
||||||
|
|
||||||
counter_x += current_block->steps_x;
|
counter_x.wide += current_block->steps_x.wide;
|
||||||
if (counter_x > 0) {
|
if (counter_x.wide > 0) {
|
||||||
WRITE_NC(X_STEP_PIN, !INVERT_X_STEP_PIN);
|
WRITE_NC(X_STEP_PIN, !INVERT_X_STEP_PIN);
|
||||||
LastStepMask |= X_AXIS_MASK;
|
LastStepMask |= X_AXIS_MASK;
|
||||||
#ifdef DEBUG_XSTEP_DUP_PIN
|
#ifdef DEBUG_XSTEP_DUP_PIN
|
||||||
WRITE_NC(DEBUG_XSTEP_DUP_PIN,!INVERT_X_STEP_PIN);
|
WRITE_NC(DEBUG_XSTEP_DUP_PIN,!INVERT_X_STEP_PIN);
|
||||||
#endif //DEBUG_XSTEP_DUP_PIN
|
#endif //DEBUG_XSTEP_DUP_PIN
|
||||||
counter_x -= current_block->step_event_count;
|
counter_x.wide -= current_block->step_event_count.wide;
|
||||||
count_position[X_AXIS]+=count_direction[X_AXIS];
|
count_position[X_AXIS]+=count_direction[X_AXIS];
|
||||||
WRITE_NC(X_STEP_PIN, INVERT_X_STEP_PIN);
|
WRITE_NC(X_STEP_PIN, INVERT_X_STEP_PIN);
|
||||||
#ifdef DEBUG_XSTEP_DUP_PIN
|
#ifdef DEBUG_XSTEP_DUP_PIN
|
||||||
|
@ -680,8 +681,8 @@ void isr() {
|
||||||
#endif //DEBUG_XSTEP_DUP_PIN
|
#endif //DEBUG_XSTEP_DUP_PIN
|
||||||
}
|
}
|
||||||
|
|
||||||
counter_y += current_block->steps_y;
|
counter_y.wide += current_block->steps_y.wide;
|
||||||
if (counter_y > 0) {
|
if (counter_y.wide > 0) {
|
||||||
WRITE_NC(Y_STEP_PIN, !INVERT_Y_STEP_PIN);
|
WRITE_NC(Y_STEP_PIN, !INVERT_Y_STEP_PIN);
|
||||||
LastStepMask |= Y_AXIS_MASK;
|
LastStepMask |= Y_AXIS_MASK;
|
||||||
#ifdef DEBUG_YSTEP_DUP_PIN
|
#ifdef DEBUG_YSTEP_DUP_PIN
|
||||||
|
@ -692,7 +693,7 @@ void isr() {
|
||||||
WRITE_NC(Y2_STEP_PIN, !INVERT_Y_STEP_PIN);
|
WRITE_NC(Y2_STEP_PIN, !INVERT_Y_STEP_PIN);
|
||||||
#endif
|
#endif
|
||||||
|
|
||||||
counter_y -= current_block->step_event_count;
|
counter_y.wide -= current_block->step_event_count.wide;
|
||||||
count_position[Y_AXIS]+=count_direction[Y_AXIS];
|
count_position[Y_AXIS]+=count_direction[Y_AXIS];
|
||||||
WRITE_NC(Y_STEP_PIN, INVERT_Y_STEP_PIN);
|
WRITE_NC(Y_STEP_PIN, INVERT_Y_STEP_PIN);
|
||||||
#ifdef DEBUG_YSTEP_DUP_PIN
|
#ifdef DEBUG_YSTEP_DUP_PIN
|
||||||
|
@ -704,15 +705,15 @@ void isr() {
|
||||||
#endif
|
#endif
|
||||||
}
|
}
|
||||||
|
|
||||||
counter_z += current_block->steps_z;
|
counter_z.wide += current_block->steps_z.wide;
|
||||||
if (counter_z > 0) {
|
if (counter_z.wide > 0) {
|
||||||
WRITE_NC(Z_STEP_PIN, !INVERT_Z_STEP_PIN);
|
WRITE_NC(Z_STEP_PIN, !INVERT_Z_STEP_PIN);
|
||||||
LastStepMask |= Z_AXIS_MASK;
|
LastStepMask |= Z_AXIS_MASK;
|
||||||
#ifdef Z_DUAL_STEPPER_DRIVERS
|
#ifdef Z_DUAL_STEPPER_DRIVERS
|
||||||
WRITE_NC(Z2_STEP_PIN, !INVERT_Z_STEP_PIN);
|
WRITE_NC(Z2_STEP_PIN, !INVERT_Z_STEP_PIN);
|
||||||
#endif
|
#endif
|
||||||
|
|
||||||
counter_z -= current_block->step_event_count;
|
counter_z.wide -= current_block->step_event_count.wide;
|
||||||
count_position[Z_AXIS]+=count_direction[Z_AXIS];
|
count_position[Z_AXIS]+=count_direction[Z_AXIS];
|
||||||
WRITE_NC(Z_STEP_PIN, INVERT_Z_STEP_PIN);
|
WRITE_NC(Z_STEP_PIN, INVERT_Z_STEP_PIN);
|
||||||
|
|
||||||
|
@ -722,10 +723,10 @@ void isr() {
|
||||||
}
|
}
|
||||||
|
|
||||||
#ifndef LIN_ADVANCE
|
#ifndef LIN_ADVANCE
|
||||||
counter_e += current_block->steps_e;
|
counter_e.wide += current_block->steps_e.wide;
|
||||||
if (counter_e > 0) {
|
if (counter_e.wide > 0) {
|
||||||
WRITE(E0_STEP_PIN, !INVERT_E_STEP_PIN);
|
WRITE(E0_STEP_PIN, !INVERT_E_STEP_PIN);
|
||||||
counter_e -= current_block->step_event_count;
|
counter_e.wide -= current_block->step_event_count.wide;
|
||||||
count_position[E_AXIS]+=count_direction[E_AXIS];
|
count_position[E_AXIS]+=count_direction[E_AXIS];
|
||||||
WRITE(E0_STEP_PIN, INVERT_E_STEP_PIN);
|
WRITE(E0_STEP_PIN, INVERT_E_STEP_PIN);
|
||||||
#ifdef PAT9125
|
#ifdef PAT9125
|
||||||
|
@ -734,8 +735,8 @@ void isr() {
|
||||||
}
|
}
|
||||||
#endif
|
#endif
|
||||||
|
|
||||||
step_events_completed += 1;
|
++ step_events_completed.wide;
|
||||||
if(step_events_completed >= current_block->step_event_count) break;
|
if(step_events_completed.wide >= current_block->step_event_count.wide) break;
|
||||||
}
|
}
|
||||||
#ifdef LIN_ADVANCE
|
#ifdef LIN_ADVANCE
|
||||||
if (current_block->use_advance_lead) {
|
if (current_block->use_advance_lead) {
|
||||||
|
@ -750,7 +751,7 @@ void isr() {
|
||||||
// Calculare new timer value
|
// Calculare new timer value
|
||||||
unsigned short timer;
|
unsigned short timer;
|
||||||
uint16_t step_rate;
|
uint16_t step_rate;
|
||||||
if (step_events_completed <= (unsigned long int)current_block->accelerate_until) {
|
if (step_events_completed.wide <= (unsigned long int)current_block->accelerate_until) {
|
||||||
// v = t * a -> acc_step_rate = acceleration_time * current_block->acceleration_rate
|
// v = t * a -> acc_step_rate = acceleration_time * current_block->acceleration_rate
|
||||||
MultiU24X24toH16(acc_step_rate, acceleration_time, current_block->acceleration_rate);
|
MultiU24X24toH16(acc_step_rate, acceleration_time, current_block->acceleration_rate);
|
||||||
acc_step_rate += current_block->initial_rate;
|
acc_step_rate += current_block->initial_rate;
|
||||||
|
@ -771,7 +772,7 @@ void isr() {
|
||||||
eISR_Rate = ADV_RATE(timer, step_loops);
|
eISR_Rate = ADV_RATE(timer, step_loops);
|
||||||
#endif
|
#endif
|
||||||
}
|
}
|
||||||
else if (step_events_completed > (unsigned long int)current_block->decelerate_after) {
|
else if (step_events_completed.wide > (unsigned long int)current_block->decelerate_after) {
|
||||||
MultiU24X24toH16(step_rate, deceleration_time, current_block->acceleration_rate);
|
MultiU24X24toH16(step_rate, deceleration_time, current_block->acceleration_rate);
|
||||||
|
|
||||||
if(step_rate > acc_step_rate) { // Check step_rate stays positive
|
if(step_rate > acc_step_rate) { // Check step_rate stays positive
|
||||||
|
@ -811,7 +812,7 @@ void isr() {
|
||||||
}
|
}
|
||||||
|
|
||||||
// If current block is finished, reset pointer
|
// If current block is finished, reset pointer
|
||||||
if (step_events_completed >= current_block->step_event_count) {
|
if (step_events_completed.wide >= current_block->step_event_count.wide) {
|
||||||
|
|
||||||
#ifdef PAT9125
|
#ifdef PAT9125
|
||||||
fsensor_st_block_chunk(current_block, fsensor_counter);
|
fsensor_st_block_chunk(current_block, fsensor_counter);
|
||||||
|
|
Loading…
Add table
Reference in a new issue