Merge branch 'MK3_stepper_lowres' into MK3_fast_dbg

This commit is contained in:
bubnikv 2018-01-20 17:27:58 +01:00
commit 3efd90a9ea
5 changed files with 426 additions and 417 deletions

View file

@ -127,8 +127,6 @@
//END AUTOSET LOCATIONS OF LIMIT SWITCHES -ZP
//#define Z_LATE_ENABLE // Enable Z the last moment. Needed if your Z driver overheats.
// A single Z stepper driver is usually used to drive 2 stepper motors.
// Uncomment this define to utilize a separate stepper driver for each Z axis motor.
// Only a few motherboards support this, like RAMPS, which have dual extruder support (the 2nd, often unused, extruder driver is used

View file

@ -227,8 +227,8 @@ void calculate_trapezoid_for_block(block_t *block, float entry_speed, float exit
// Is the Plateau of Nominal Rate smaller than nothing? That means no cruising, and we will
// have to use intersection_distance() to calculate when to abort acceleration and start braking
// in order to reach the final_rate exactly at the end of this block.
if (accel_decel_steps < block->step_event_count) {
plateau_steps = block->step_event_count - accel_decel_steps;
if (accel_decel_steps < block->step_event_count.wide) {
plateau_steps = block->step_event_count.wide - accel_decel_steps;
} else {
uint32_t acceleration_x4 = acceleration << 2;
// Avoid negative numbers
@ -240,26 +240,26 @@ void calculate_trapezoid_for_block(block_t *block, float entry_speed, float exit
accelerate_steps = (block->step_event_count >> 1) + (final_rate_sqr - initial_rate_sqr + acceleration_x4 - 1 + (block->step_event_count & 1) * acceleration_x2) / acceleration_x4;
#else
accelerate_steps = final_rate_sqr - initial_rate_sqr + acceleration_x4 - 1;
if (block->step_event_count & 1)
if (block->step_event_count.wide & 1)
accelerate_steps += acceleration_x2;
accelerate_steps /= acceleration_x4;
accelerate_steps += (block->step_event_count >> 1);
accelerate_steps += (block->step_event_count.wide >> 1);
#endif
if (accelerate_steps > block->step_event_count)
accelerate_steps = block->step_event_count;
if (accelerate_steps > block->step_event_count.wide)
accelerate_steps = block->step_event_count.wide;
} else {
#if 0
decelerate_steps = (block->step_event_count >> 1) + (initial_rate_sqr - final_rate_sqr + (block->step_event_count & 1) * acceleration_x2) / acceleration_x4;
#else
decelerate_steps = initial_rate_sqr - final_rate_sqr;
if (block->step_event_count & 1)
if (block->step_event_count.wide & 1)
decelerate_steps += acceleration_x2;
decelerate_steps /= acceleration_x4;
decelerate_steps += (block->step_event_count >> 1);
decelerate_steps += (block->step_event_count.wide >> 1);
#endif
if (decelerate_steps > block->step_event_count)
decelerate_steps = block->step_event_count;
accelerate_steps = block->step_event_count - decelerate_steps;
if (decelerate_steps > block->step_event_count.wide)
decelerate_steps = block->step_event_count.wide;
accelerate_steps = block->step_event_count.wide - decelerate_steps;
}
}
@ -449,10 +449,10 @@ void getHighESpeed()
uint8_t block_index = block_buffer_tail;
while(block_index != block_buffer_head) {
if((block_buffer[block_index].steps_x != 0) ||
(block_buffer[block_index].steps_y != 0) ||
(block_buffer[block_index].steps_z != 0)) {
float se=(float(block_buffer[block_index].steps_e)/float(block_buffer[block_index].step_event_count))*block_buffer[block_index].nominal_speed;
if((block_buffer[block_index].steps_x.wide != 0) ||
(block_buffer[block_index].steps_y.wide != 0) ||
(block_buffer[block_index].steps_z.wide != 0)) {
float se=(float(block_buffer[block_index].steps_e.wide)/float(block_buffer[block_index].step_event_count.wide))*block_buffer[block_index].nominal_speed;
//se; mm/sec;
if(se>high)
{
@ -493,10 +493,10 @@ void check_axes_activity()
while(block_index != block_buffer_head)
{
block = &block_buffer[block_index];
if(block->steps_x != 0) x_active++;
if(block->steps_y != 0) y_active++;
if(block->steps_z != 0) z_active++;
if(block->steps_e != 0) e_active++;
if(block->steps_x.wide != 0) x_active++;
if(block->steps_y.wide != 0) y_active++;
if(block->steps_z.wide != 0) z_active++;
if(block->steps_e.wide != 0) e_active++;
block_index = (block_index+1) & (BLOCK_BUFFER_SIZE - 1);
}
}
@ -769,26 +769,24 @@ void plan_buffer_line(float x, float y, float z, const float &e, float feed_rate
// Number of steps for each axis
#ifndef COREXY
// default non-h-bot planning
block->steps_x = labs(target[X_AXIS]-position[X_AXIS]);
block->steps_y = labs(target[Y_AXIS]-position[Y_AXIS]);
block->steps_x.wide = labs(target[X_AXIS]-position[X_AXIS]);
block->steps_y.wide = labs(target[Y_AXIS]-position[Y_AXIS]);
#else
// corexy planning
// these equations follow the form of the dA and dB equations on http://www.corexy.com/theory.html
block->steps_x = labs((target[X_AXIS]-position[X_AXIS]) + (target[Y_AXIS]-position[Y_AXIS]));
block->steps_y = labs((target[X_AXIS]-position[X_AXIS]) - (target[Y_AXIS]-position[Y_AXIS]));
block->steps_x.wide = labs((target[X_AXIS]-position[X_AXIS]) + (target[Y_AXIS]-position[Y_AXIS]));
block->steps_y.wide = labs((target[X_AXIS]-position[X_AXIS]) - (target[Y_AXIS]-position[Y_AXIS]));
#endif
block->steps_z = labs(target[Z_AXIS]-position[Z_AXIS]);
block->steps_e = labs(target[E_AXIS]-position[E_AXIS]);
block->steps_z.wide = labs(target[Z_AXIS]-position[Z_AXIS]);
block->steps_e.wide = labs(target[E_AXIS]-position[E_AXIS]);
if (volumetric_multiplier[active_extruder] != 1.f)
block->steps_e *= volumetric_multiplier[active_extruder];
if (extrudemultiply != 100) {
block->steps_e *= extrudemultiply;
block->steps_e /= 100;
}
block->step_event_count = max(block->steps_x, max(block->steps_y, max(block->steps_z, block->steps_e)));
block->steps_e.wide *= volumetric_multiplier[active_extruder];
if (extrudemultiply != 100)
block->steps_e.wide *= extrudemultiply * 0.01;
block->step_event_count.wide = max(block->steps_x.wide, max(block->steps_y.wide, max(block->steps_z.wide, block->steps_e.wide)));
// Bail if this is a zero-length block
if (block->step_event_count <= dropsegments)
if (block->step_event_count.wide <= dropsegments)
{
#ifdef PLANNER_DIAGNOSTICS
planner_update_queue_min_counter();
@ -832,21 +830,19 @@ block->steps_y = labs((target[X_AXIS]-position[X_AXIS]) - (target[Y_AXIS]-positi
//enable active axes
#ifdef COREXY
if((block->steps_x != 0) || (block->steps_y != 0))
if((block->steps_x.wide != 0) || (block->steps_y.wide != 0))
{
enable_x();
enable_y();
}
#else
if(block->steps_x != 0) enable_x();
if(block->steps_y != 0) enable_y();
if(block->steps_x.wide != 0) enable_x();
if(block->steps_y.wide != 0) enable_y();
#endif
#ifndef Z_LATE_ENABLE
if(block->steps_z != 0) enable_z();
#endif
if(block->steps_z.wide != 0) enable_z();
// Enable extruder(s)
if(block->steps_e != 0)
if(block->steps_e.wide != 0)
{
if (DISABLE_INACTIVE_EXTRUDER) //enable only selected extruder
{
@ -888,7 +884,7 @@ block->steps_y = labs((target[X_AXIS]-position[X_AXIS]) - (target[Y_AXIS]-positi
}
}
if (block->steps_e == 0)
if (block->steps_e.wide == 0)
{
if(feed_rate<mintravelfeedrate) feed_rate=mintravelfeedrate;
}
@ -917,7 +913,7 @@ Having the real displacement of the head, we can calculate the total movement le
#endif
delta_mm[Z_AXIS] = (target[Z_AXIS]-position[Z_AXIS])/axis_steps_per_unit[Z_AXIS];
delta_mm[E_AXIS] = ((target[E_AXIS]-position[E_AXIS])/axis_steps_per_unit[E_AXIS])*volumetric_multiplier[active_extruder]*extrudemultiply/100.0;
if ( block->steps_x <=dropsegments && block->steps_y <=dropsegments && block->steps_z <=dropsegments )
if ( block->steps_x.wide <=dropsegments && block->steps_y.wide <=dropsegments && block->steps_z.wide <=dropsegments )
{
block->millimeters = fabs(delta_mm[E_AXIS]);
}
@ -950,7 +946,7 @@ Having the real displacement of the head, we can calculate the total movement le
#endif // SLOWDOWN
block->nominal_speed = block->millimeters * inverse_second; // (mm/sec) Always > 0
block->nominal_rate = ceil(block->step_event_count * inverse_second); // (step/sec) Always > 0
block->nominal_rate = ceil(block->step_event_count.wide * inverse_second); // (step/sec) Always > 0
#ifdef FILAMENT_SENSOR
//FMM update ring buffer used for delay with filament measurements
@ -1038,8 +1034,8 @@ Having the real displacement of the head, we can calculate the total movement le
// Compute and limit the acceleration rate for the trapezoid generator.
// block->step_event_count ... event count of the fastest axis
// block->millimeters ... Euclidian length of the XYZ movement or the E length, if no XYZ movement.
float steps_per_mm = block->step_event_count/block->millimeters;
if(block->steps_x == 0 && block->steps_y == 0 && block->steps_z == 0)
float steps_per_mm = block->step_event_count.wide/block->millimeters;
if(block->steps_x.wide == 0 && block->steps_y.wide == 0 && block->steps_z.wide == 0)
{
block->acceleration_st = ceil(retract_acceleration * steps_per_mm); // convert to: acceleration steps/sec^2
}
@ -1050,48 +1046,48 @@ Having the real displacement of the head, we can calculate the total movement le
#ifdef SIMPLE_ACCEL_LIMIT // in some cases can be acceleration limited inproperly
if (tmc2130_mode == TMC2130_MODE_SILENT)
{
if (block->steps_x || block->steps_y)
if (block->steps_x.wide || block->steps_y.wide)
if (block->acceleration_st > SILENT_MAX_ACCEL_ST) block->acceleration_st = SILENT_MAX_ACCEL_ST;
}
else
{
if (block->steps_x || block->steps_y)
if (block->steps_x.wide || block->steps_y.wide)
if (block->acceleration_st > NORMAL_MAX_ACCEL_ST) block->acceleration_st = NORMAL_MAX_ACCEL_ST;
}
if (block->steps_x && (block->acceleration_st > axis_steps_per_sqr_second[X_AXIS])) block->acceleration_st = axis_steps_per_sqr_second[X_AXIS];
if (block->steps_y && (block->acceleration_st > axis_steps_per_sqr_second[Y_AXIS])) block->acceleration_st = axis_steps_per_sqr_second[Y_AXIS];
if (block->steps_z && (block->acceleration_st > axis_steps_per_sqr_second[Z_AXIS])) block->acceleration_st = axis_steps_per_sqr_second[Z_AXIS];
if (block->steps_e && (block->acceleration_st > axis_steps_per_sqr_second[E_AXIS])) block->acceleration_st = axis_steps_per_sqr_second[E_AXIS];
if (block->steps_x.wide && (block->acceleration_st > axis_steps_per_sqr_second[X_AXIS])) block->acceleration_st = axis_steps_per_sqr_second[X_AXIS];
if (block->steps_y.wide && (block->acceleration_st > axis_steps_per_sqr_second[Y_AXIS])) block->acceleration_st = axis_steps_per_sqr_second[Y_AXIS];
if (block->steps_z.wide && (block->acceleration_st > axis_steps_per_sqr_second[Z_AXIS])) block->acceleration_st = axis_steps_per_sqr_second[Z_AXIS];
if (block->steps_e.wide && (block->acceleration_st > axis_steps_per_sqr_second[E_AXIS])) block->acceleration_st = axis_steps_per_sqr_second[E_AXIS];
#else // SIMPLE_ACCEL_LIMIT
if (tmc2130_mode == TMC2130_MODE_SILENT)
{
if ((block->steps_x > block->step_event_count / 2) || (block->steps_y > block->step_event_count / 2))
if ((block->steps_x.wide > block->step_event_count.wide / 2) || (block->steps_y.wide > block->step_event_count.wide / 2))
if (block->acceleration_st > SILENT_MAX_ACCEL_ST) block->acceleration_st = SILENT_MAX_ACCEL_ST;
}
else
{
if ((block->steps_x > block->step_event_count / 2) || (block->steps_y > block->step_event_count / 2))
if ((block->steps_x.wide > block->step_event_count.wide / 2) || (block->steps_y.wide > block->step_event_count.wide / 2))
if (block->acceleration_st > NORMAL_MAX_ACCEL_ST) block->acceleration_st = NORMAL_MAX_ACCEL_ST;
}
if(((float)block->acceleration_st * (float)block->steps_x / (float)block->step_event_count) > axis_steps_per_sqr_second[X_AXIS])
if(((float)block->acceleration_st * (float)block->steps_x.wide / (float)block->step_event_count.wide) > axis_steps_per_sqr_second[X_AXIS])
block->acceleration_st = axis_steps_per_sqr_second[X_AXIS];
if(((float)block->acceleration_st * (float)block->steps_y / (float)block->step_event_count) > axis_steps_per_sqr_second[Y_AXIS])
if(((float)block->acceleration_st * (float)block->steps_y.wide / (float)block->step_event_count.wide) > axis_steps_per_sqr_second[Y_AXIS])
block->acceleration_st = axis_steps_per_sqr_second[Y_AXIS];
if(((float)block->acceleration_st * (float)block->steps_z / (float)block->step_event_count ) > axis_steps_per_sqr_second[Z_AXIS])
if(((float)block->acceleration_st * (float)block->steps_z.wide / (float)block->step_event_count.wide) > axis_steps_per_sqr_second[Z_AXIS])
block->acceleration_st = axis_steps_per_sqr_second[Z_AXIS];
if(((float)block->acceleration_st * (float)block->steps_e / (float)block->step_event_count) > axis_steps_per_sqr_second[E_AXIS])
if(((float)block->acceleration_st * (float)block->steps_e.wide / (float)block->step_event_count.wide) > axis_steps_per_sqr_second[E_AXIS])
block->acceleration_st = axis_steps_per_sqr_second[E_AXIS];
#endif // SIMPLE_ACCEL_LIMIT
#else //TMC2130
// Limit acceleration per axis
//FIXME Vojtech: One shall rather limit a projection of the acceleration vector instead of using the limit.
if(((float)block->acceleration_st * (float)block->steps_x / (float)block->step_event_count) > axis_steps_per_sqr_second[X_AXIS])
if(((float)block->acceleration_st * (float)block->steps_x.wide / (float)block->step_event_count.wide) > axis_steps_per_sqr_second[X_AXIS])
block->acceleration_st = axis_steps_per_sqr_second[X_AXIS];
if(((float)block->acceleration_st * (float)block->steps_y / (float)block->step_event_count) > axis_steps_per_sqr_second[Y_AXIS])
if(((float)block->acceleration_st * (float)block->steps_y.wide / (float)block->step_event_count.wide) > axis_steps_per_sqr_second[Y_AXIS])
block->acceleration_st = axis_steps_per_sqr_second[Y_AXIS];
if(((float)block->acceleration_st * (float)block->steps_e / (float)block->step_event_count) > axis_steps_per_sqr_second[E_AXIS])
if(((float)block->acceleration_st * (float)block->steps_e.wide / (float)block->step_event_count.wide) > axis_steps_per_sqr_second[E_AXIS])
block->acceleration_st = axis_steps_per_sqr_second[E_AXIS];
if(((float)block->acceleration_st * (float)block->steps_z / (float)block->step_event_count ) > axis_steps_per_sqr_second[Z_AXIS])
if(((float)block->acceleration_st * (float)block->steps_z.wide / (float)block->step_event_count.wide ) > axis_steps_per_sqr_second[Z_AXIS])
block->acceleration_st = axis_steps_per_sqr_second[Z_AXIS];
#endif //TMC2130
}
@ -1249,10 +1245,10 @@ Having the real displacement of the head, we can calculate the total movement le
// The math is good, but we must avoid retract moves with advance!
// de_float > 0.0 : Extruder is running forward (e.g., for "Wipe while retracting" (Slic3r) or "Combing" (Cura) moves)
//
block->use_advance_lead = block->steps_e
&& (block->steps_x || block->steps_y)
block->use_advance_lead = block->steps_e.wide
&& (block->steps_x.wide || block->steps_y.wide)
&& extruder_advance_k
&& (uint32_t)block->steps_e != block->step_event_count
&& (uint32_t)block->steps_e.wide != block->step_event_count.wide
&& de_float > 0.0;
if (block->use_advance_lead)
block->abs_adv_steps_multiplier8 = lround(
@ -1267,6 +1263,9 @@ Having the real displacement of the head, we can calculate the total movement le
block->speed_factor = block->nominal_rate / block->nominal_speed;
calculate_trapezoid_for_block(block, block->entry_speed, safe_speed);
if (block->step_event_count.wide <= 32767)
block->flag |= BLOCK_FLAG_DDA_LOWRES;
// Move the buffer head. From now the block may be picked up by the stepper interrupt controller.
block_buffer_head = next_buffer_head;

View file

@ -40,6 +40,28 @@ enum BlockFlag {
// If set, the machine will start from a halt at the start of this block,
// respecting the maximum allowed jerk.
BLOCK_FLAG_START_FROM_FULL_HALT = 4,
// If set, the stepper interrupt expects, that the number of steps to tick will be lower
// than 32767, therefore the DDA algorithm may run with 16bit resolution only.
// In addition, the stepper routine will not do any end stop checking for higher performance.
BLOCK_FLAG_DDA_LOWRES = 8,
};
union dda_isteps_t
{
int32_t wide;
struct {
int16_t lo;
int16_t hi;
};
};
union dda_usteps_t
{
uint32_t wide;
struct {
uint16_t lo;
uint16_t hi;
};
};
// This struct is used when buffering the setup for each linear movement "nominal" values are as specified in
@ -47,8 +69,8 @@ enum BlockFlag {
typedef struct {
// Fields used by the bresenham algorithm for tracing the line
// steps_x.y,z, step_event_count, acceleration_rate, direction_bits and active_extruder are set by plan_buffer_line().
long steps_x, steps_y, steps_z, steps_e; // Step count along each axis
unsigned long step_event_count; // The number of step events required to complete this block
dda_isteps_t steps_x, steps_y, steps_z, steps_e; // Step count along each axis
dda_usteps_t step_event_count; // The number of step events required to complete this block
long acceleration_rate; // The acceleration rate used for acceleration calculation
unsigned char direction_bits; // The direction bit set for this block (refers to *_DIRECTION_BIT in config.h)
unsigned char active_extruder; // Selects the active extruder
@ -72,7 +94,7 @@ typedef struct {
float acceleration;
// Bit flags defined by the BlockFlag enum.
bool flag;
uint8_t flag;
// Settings for the trapezoid generator (runs inside an interrupt handler).
// Changing the following values in the planner needs to be synchronized with the interrupt handler by disabling the interrupts.

View file

@ -62,11 +62,12 @@ bool z_max_endstop = false;
// Variables used by The Stepper Driver Interrupt
static unsigned char out_bits; // The next stepping-bits to be output
static int32_t counter_x, // Counter variables for the bresenham line tracer
static dda_isteps_t
counter_x, // Counter variables for the bresenham line tracer
counter_y,
counter_z,
counter_e;
volatile uint32_t step_events_completed; // The number of step events executed in the current block
volatile dda_usteps_t step_events_completed; // The number of step events executed in the current block
static int32_t acceleration_time, deceleration_time;
//static unsigned long accelerate_until, decelerate_after, acceleration_rate, initial_rate, final_rate, nominal_rate;
static uint16_t acc_step_rate; // needed for deccelaration start point
@ -134,8 +135,6 @@ extern bool stepper_timer_overflow_state;
//=============================functions ============================
//===========================================================================
#define CHECK_ENDSTOPS if(check_endstops)
#ifndef _NO_ASM
// intRes = intIn1 * intIn2 >> 16
@ -319,7 +318,7 @@ void step_wait(){
}
FORCE_INLINE unsigned short calc_timer(unsigned short step_rate) {
FORCE_INLINE unsigned short calc_timer(uint16_t step_rate) {
unsigned short timer;
if(step_rate > MAX_STEP_FREQUENCY) step_rate = MAX_STEP_FREQUENCY;
@ -360,10 +359,10 @@ FORCE_INLINE unsigned short calc_timer(unsigned short step_rate) {
FORCE_INLINE void trapezoid_generator_reset() {
deceleration_time = 0;
// step_rate to timer interval
OCR1A_nominal = calc_timer(current_block->nominal_rate);
OCR1A_nominal = calc_timer(uint16_t(current_block->nominal_rate));
// make a note of the number of step loops required at nominal speed
step_loops_nominal = step_loops;
acc_step_rate = current_block->initial_rate;
acc_step_rate = uint16_t(current_block->initial_rate);
acceleration_time = calc_timer(acc_step_rate);
_NEXT_ISR(acceleration_time);
@ -373,7 +372,6 @@ FORCE_INLINE void trapezoid_generator_reset() {
final_estep_rate = (current_block->nominal_rate * current_block->abs_adv_steps_multiplier8) >> 17;
}
#endif
}
// "The Stepper Driver Interrupt" - This timer interrupt is the workhorse.
@ -390,157 +388,144 @@ ISR(TIMER1_COMPA_vect) {
#endif
}
void isr() {
//if (UVLO) uvlo();
// If there is no current block, attempt to pop one from the buffer
if (current_block == NULL) {
// Anything in the buffer?
current_block = plan_get_current_block();
if (current_block != NULL) {
#ifdef PAT9125
fsensor_counter = 0;
fsensor_st_block_begin(current_block);
#endif //PAT9125
// The busy flag is set by the plan_get_current_block() call.
// current_block->busy = true;
trapezoid_generator_reset();
counter_x = -(current_block->step_event_count >> 1);
counter_y = counter_x;
counter_z = counter_x;
counter_e = counter_x;
step_events_completed = 0;
#ifdef Z_LATE_ENABLE
if(current_block->steps_z > 0) {
enable_z();
_NEXT_ISR(2000); //1ms wait
return;
}
#endif
}
else {
_NEXT_ISR(2000); // 1kHz.
}
}
LastStepMask = 0;
FORCE_INLINE void stepper_next_block()
{
// Anything in the buffer?
current_block = plan_get_current_block();
if (current_block != NULL) {
// Set directions TO DO This should be done once during init of trapezoid. Endstops -> interrupt
#ifdef PAT9125
fsensor_counter = 0;
fsensor_st_block_begin(current_block);
#endif //PAT9125
// The busy flag is set by the plan_get_current_block() call.
// current_block->busy = true;
trapezoid_generator_reset();
if (current_block->flag & BLOCK_FLAG_DDA_LOWRES) {
counter_x.lo = -(current_block->step_event_count.lo >> 1);
counter_y.lo = counter_x.lo;
counter_z.lo = counter_x.lo;
counter_e.lo = counter_x.lo;
} else {
counter_x.wide = -(current_block->step_event_count.wide >> 1);
counter_y.wide = counter_x.wide;
counter_z.wide = counter_x.wide;
counter_e.wide = counter_x.wide;
}
step_events_completed.wide = 0;
// Set directions.
out_bits = current_block->direction_bits;
// Set the direction bits (X_AXIS=A_AXIS and Y_AXIS=B_AXIS for COREXY)
if((out_bits & (1<<X_AXIS))!=0){
WRITE_NC(X_DIR_PIN, INVERT_X_DIR);
WRITE_NC(X_DIR_PIN, INVERT_X_DIR);
count_direction[X_AXIS]=-1;
}
else{
WRITE_NC(X_DIR_PIN, !INVERT_X_DIR);
} else {
WRITE_NC(X_DIR_PIN, !INVERT_X_DIR);
count_direction[X_AXIS]=1;
}
if((out_bits & (1<<Y_AXIS))!=0){
WRITE_NC(Y_DIR_PIN, INVERT_Y_DIR);
#ifdef Y_DUAL_STEPPER_DRIVERS
WRITE_NC(Y2_DIR_PIN, !(INVERT_Y_DIR == INVERT_Y2_VS_Y_DIR));
#endif
count_direction[Y_AXIS]=-1;
}
else{
} else {
WRITE_NC(Y_DIR_PIN, !INVERT_Y_DIR);
#ifdef Y_DUAL_STEPPER_DRIVERS
WRITE_NC(Y2_DIR_PIN, (INVERT_Y_DIR == INVERT_Y2_VS_Y_DIR));
#endif
count_direction[Y_AXIS]=1;
}
// Set direction en check limit switches
#ifndef COREXY
if ((out_bits & (1<<X_AXIS)) != 0) { // stepping along -X axis
#else
if ((((out_bits & (1<<X_AXIS)) != 0)&&(out_bits & (1<<Y_AXIS)) != 0)) { //-X occurs for -A and -B
#endif
CHECK_ENDSTOPS
{
{
#if ( (defined(X_MIN_PIN) && (X_MIN_PIN > -1)) || defined(TMC2130_SG_HOMING) ) && !defined(DEBUG_DISABLE_XMINLIMIT)
#ifdef TMC2130_SG_HOMING
// Stall guard homing turned on
x_min_endstop = (READ(X_TMC2130_DIAG) != 0);
#else
// Normal homing
x_min_endstop = (READ(X_MIN_PIN) != X_MIN_ENDSTOP_INVERTING);
#endif
if(x_min_endstop && old_x_min_endstop && (current_block->steps_x > 0)) {
endstops_trigsteps[X_AXIS] = count_position[X_AXIS];
endstop_x_hit=true;
step_events_completed = current_block->step_event_count;
}
old_x_min_endstop = x_min_endstop;
#endif
}
}
if ((out_bits & (1<<Z_AXIS)) != 0) { // -direction
WRITE_NC(Z_DIR_PIN,INVERT_Z_DIR);
count_direction[Z_AXIS]=-1;
} else { // +direction
WRITE_NC(Z_DIR_PIN,!INVERT_Z_DIR);
count_direction[Z_AXIS]=1;
}
else { // +direction
CHECK_ENDSTOPS
{
{
#if ( (defined(X_MAX_PIN) && (X_MAX_PIN > -1)) || defined(TMC2130_SG_HOMING) ) && !defined(DEBUG_DISABLE_XMAXLIMIT)
#ifdef TMC2130_SG_HOMING
// Stall guard homing turned on
x_max_endstop = (READ(X_TMC2130_DIAG) != 0);
#else
// Normal homing
x_max_endstop = (READ(X_MAX_PIN) != X_MAX_ENDSTOP_INVERTING);
#endif
if(x_max_endstop && old_x_max_endstop && (current_block->steps_x > 0)){
endstops_trigsteps[X_AXIS] = count_position[X_AXIS];
endstop_x_hit=true;
step_events_completed = current_block->step_event_count;
}
old_x_max_endstop = x_max_endstop;
#endif
}
}
#ifndef LIN_ADVANCE
if ((out_bits & (1 << E_AXIS)) != 0) { // -direction
WRITE(E0_DIR_PIN,
#ifdef SNMM
(snmm_extruder == 0 || snmm_extruder == 2) ? !INVERT_E0_DIR :
#endif // SNMM
INVERT_E0_DIR);
count_direction[E_AXIS] = -1;
} else { // +direction
WRITE(E0_DIR_PIN,
#ifdef SNMM
(snmm_extruder == 0 || snmm_extruder == 2) ? INVERT_E0_DIR :
#endif // SNMM
!INVERT_E0_DIR);
count_direction[E_AXIS] = 1;
}
#endif /* LIN_ADVANCE */
}
else {
_NEXT_ISR(2000); // 1kHz.
}
}
// Check limit switches.
FORCE_INLINE void stepper_check_endstops()
{
if(check_endstops)
{
#ifndef COREXY
if ((out_bits & (1<<Y_AXIS)) != 0) { // -direction
if ((out_bits & (1<<X_AXIS)) != 0) // stepping along -X axis
#else
if ((((out_bits & (1<<X_AXIS)) != 0)&&(out_bits & (1<<Y_AXIS)) == 0)) { // -Y occurs for -A and +B
if ((((out_bits & (1<<X_AXIS)) != 0)&&(out_bits & (1<<Y_AXIS)) != 0)) //-X occurs for -A and -B
#endif
CHECK_ENDSTOPS
{
#if ( (defined(Y_MIN_PIN) && (Y_MIN_PIN > -1)) || defined(TMC2130_SG_HOMING) ) && !defined(DEBUG_DISABLE_YMINLIMIT)
{
#if ( (defined(X_MIN_PIN) && (X_MIN_PIN > -1)) || defined(TMC2130_SG_HOMING) ) && !defined(DEBUG_DISABLE_XMINLIMIT)
#ifdef TMC2130_SG_HOMING
// Stall guard homing turned on
x_min_endstop = (READ(X_TMC2130_DIAG) != 0);
#else
// Normal homing
x_min_endstop = (READ(X_MIN_PIN) != X_MIN_ENDSTOP_INVERTING);
#endif
if(x_min_endstop && old_x_min_endstop && (current_block->steps_x.wide > 0)) {
endstops_trigsteps[X_AXIS] = count_position[X_AXIS];
endstop_x_hit=true;
step_events_completed.wide = current_block->step_event_count.wide;
}
old_x_min_endstop = x_min_endstop;
#endif
} else { // +direction
#if ( (defined(X_MAX_PIN) && (X_MAX_PIN > -1)) || defined(TMC2130_SG_HOMING) ) && !defined(DEBUG_DISABLE_XMAXLIMIT)
#ifdef TMC2130_SG_HOMING
// Stall guard homing turned on
y_min_endstop = (READ(Y_TMC2130_DIAG) != 0);
x_max_endstop = (READ(X_TMC2130_DIAG) != 0);
#else
// Normal homing
y_min_endstop = (READ(Y_MIN_PIN) != Y_MIN_ENDSTOP_INVERTING);
x_max_endstop = (READ(X_MAX_PIN) != X_MAX_ENDSTOP_INVERTING);
#endif
if(y_min_endstop && old_y_min_endstop && (current_block->steps_y > 0)) {
endstops_trigsteps[Y_AXIS] = count_position[Y_AXIS];
endstop_y_hit=true;
step_events_completed = current_block->step_event_count;
}
old_y_min_endstop = y_min_endstop;
#endif
}
if(x_max_endstop && old_x_max_endstop && (current_block->steps_x.wide > 0)){
endstops_trigsteps[X_AXIS] = count_position[X_AXIS];
endstop_x_hit=true;
step_events_completed.wide = current_block->step_event_count.wide;
}
old_x_max_endstop = x_max_endstop;
#endif
}
else { // +direction
CHECK_ENDSTOPS
{
#if ( (defined(Y_MAX_PIN) && (Y_MAX_PIN > -1)) || defined(TMC2130_SG_HOMING) ) && !defined(DEBUG_DISABLE_YMAXLIMIT)
#ifndef COREXY
if ((out_bits & (1<<Y_AXIS)) != 0) // -direction
#else
if ((((out_bits & (1<<X_AXIS)) != 0)&&(out_bits & (1<<Y_AXIS)) == 0)) // -Y occurs for -A and +B
#endif
{
#if ( (defined(Y_MIN_PIN) && (Y_MIN_PIN > -1)) || defined(TMC2130_SG_HOMING) ) && !defined(DEBUG_DISABLE_YMINLIMIT)
#ifdef TMC2130_SG_HOMING
// Stall guard homing turned on
y_min_endstop = (READ(Y_TMC2130_DIAG) != 0);
#else
// Normal homing
y_min_endstop = (READ(Y_MIN_PIN) != Y_MIN_ENDSTOP_INVERTING);
#endif
if(y_min_endstop && old_y_min_endstop && (current_block->steps_y.wide > 0)) {
endstops_trigsteps[Y_AXIS] = count_position[Y_AXIS];
endstop_y_hit=true;
step_events_completed.wide = current_block->step_event_count.wide;
}
old_y_min_endstop = y_min_endstop;
#endif
} else { // +direction
#if ( (defined(Y_MAX_PIN) && (Y_MAX_PIN > -1)) || defined(TMC2130_SG_HOMING) ) && !defined(DEBUG_DISABLE_YMAXLIMIT)
#ifdef TMC2130_SG_HOMING
// Stall guard homing turned on
y_max_endstop = (READ(Y_TMC2130_DIAG) != 0);
@ -548,209 +533,226 @@ void isr() {
// Normal homing
y_max_endstop = (READ(Y_MAX_PIN) != Y_MAX_ENDSTOP_INVERTING);
#endif
if(y_max_endstop && old_y_max_endstop && (current_block->steps_y > 0)){
endstops_trigsteps[Y_AXIS] = count_position[Y_AXIS];
endstop_y_hit=true;
step_events_completed = current_block->step_event_count;
}
old_y_max_endstop = y_max_endstop;
#endif
}
}
if ((out_bits & (1<<Z_AXIS)) != 0) { // -direction
WRITE_NC(Z_DIR_PIN,INVERT_Z_DIR);
#ifdef Z_DUAL_STEPPER_DRIVERS
WRITE_NC(Z2_DIR_PIN,INVERT_Z_DIR);
if(y_max_endstop && old_y_max_endstop && (current_block->steps_y.wide > 0)){
endstops_trigsteps[Y_AXIS] = count_position[Y_AXIS];
endstop_y_hit=true;
step_events_completed.wide = current_block->step_event_count.wide;
}
old_y_max_endstop = y_max_endstop;
#endif
count_direction[Z_AXIS]=-1;
if(check_endstops && ! check_z_endstop)
{
#if defined(Z_MIN_PIN) && (Z_MIN_PIN > -1) && !defined(DEBUG_DISABLE_ZMINLIMIT)
#ifdef TMC2130_SG_HOMING
// Stall guard homing turned on
z_min_endstop = (READ(Z_MIN_PIN) != Z_MIN_ENDSTOP_INVERTING) || (READ(Z_TMC2130_DIAG) != 0);
#else
z_min_endstop = (READ(Z_MIN_PIN) != Z_MIN_ENDSTOP_INVERTING);
#endif //TMC2130_SG_HOMING
if(z_min_endstop && old_z_min_endstop && (current_block->steps_z > 0)) {
endstops_trigsteps[Z_AXIS] = count_position[Z_AXIS];
endstop_z_hit=true;
step_events_completed = current_block->step_event_count;
}
old_z_min_endstop = z_min_endstop;
#endif
}
}
else { // +direction
WRITE_NC(Z_DIR_PIN,!INVERT_Z_DIR);
#ifdef Z_DUAL_STEPPER_DRIVERS
WRITE_NC(Z2_DIR_PIN,!INVERT_Z_DIR);
#endif
count_direction[Z_AXIS]=1;
CHECK_ENDSTOPS
{
#if defined(Z_MAX_PIN) && (Z_MAX_PIN > -1) && !defined(DEBUG_DISABLE_ZMAXLIMIT)
#ifdef TMC2130_SG_HOMING
// Stall guard homing turned on
z_max_endstop = (READ(Z_TMC2130_DIAG) != 0);
#else
z_max_endstop = (READ(Z_MAX_PIN) != Z_MAX_ENDSTOP_INVERTING);
#endif //TMC2130_SG_HOMING
if(z_max_endstop && old_z_max_endstop && (current_block->steps_z > 0)) {
endstops_trigsteps[Z_AXIS] = count_position[Z_AXIS];
endstop_z_hit=true;
step_events_completed = current_block->step_event_count;
}
old_z_max_endstop = z_max_endstop;
#endif
}
}
// Supporting stopping on a trigger of the Z-stop induction sensor, not only for the Z-minus movements.
#if defined(Z_MIN_PIN) && (Z_MIN_PIN > -1) && !defined(DEBUG_DISABLE_ZMINLIMIT)
if(check_z_endstop) {
// Check the Z min end-stop no matter what.
// Good for searching for the center of an induction target.
#ifdef TMC2130_SG_HOMING
// Stall guard homing turned on
z_min_endstop = (READ(Z_MIN_PIN) != Z_MIN_ENDSTOP_INVERTING) || (READ(Z_TMC2130_DIAG) != 0);
#else
z_min_endstop = (READ(Z_MIN_PIN) != Z_MIN_ENDSTOP_INVERTING);
#endif //TMC2130_SG_HOMING
if(z_min_endstop && old_z_min_endstop) {
if ((out_bits & (1<<Z_AXIS)) != 0) // -direction
{
#if defined(Z_MIN_PIN) && (Z_MIN_PIN > -1) && !defined(DEBUG_DISABLE_ZMINLIMIT)
if (! check_z_endstop) {
#ifdef TMC2130_SG_HOMING
// Stall guard homing turned on
z_min_endstop = (READ(Z_MIN_PIN) != Z_MIN_ENDSTOP_INVERTING) || (READ(Z_TMC2130_DIAG) != 0);
#else
z_min_endstop = (READ(Z_MIN_PIN) != Z_MIN_ENDSTOP_INVERTING);
#endif //TMC2130_SG_HOMING
if(z_min_endstop && old_z_min_endstop && (current_block->steps_z.wide > 0)) {
endstops_trigsteps[Z_AXIS] = count_position[Z_AXIS];
endstop_z_hit=true;
step_events_completed = current_block->step_event_count;
step_events_completed.wide = current_block->step_event_count.wide;
}
old_z_min_endstop = z_min_endstop;
}
#endif
if ((out_bits & (1 << E_AXIS)) != 0)
{ // -direction
//AKU
#ifdef SNMM
if (snmm_extruder == 0 || snmm_extruder == 2)
{
NORM_E_DIR();
}
else
{
REV_E_DIR();
}
#else
REV_E_DIR();
#endif // SNMM
count_direction[E_AXIS] = -1;
}
else
{ // +direction
#ifdef SNMM
if (snmm_extruder == 0 || snmm_extruder == 2)
{
REV_E_DIR();
}
else
{
NORM_E_DIR();
}
#else
NORM_E_DIR();
#endif // SNMM
count_direction[E_AXIS] = 1;
}
for(uint8_t i=0; i < step_loops; i++) { // Take multiple steps per interrupt (For high speed moves)
#ifndef AT90USB
MSerial.checkRx(); // Check for serial chars.
#endif //RP - returned, because missing characters
#ifdef LIN_ADVANCE
counter_e += current_block->steps_e;
if (counter_e > 0) {
counter_e -= current_block->step_event_count;
count_position[E_AXIS] += count_direction[E_AXIS];
((out_bits&(1<<E_AXIS))!=0) ? --e_steps : ++e_steps;
}
#endif
counter_x += current_block->steps_x;
if (counter_x > 0) {
WRITE_NC(X_STEP_PIN, !INVERT_X_STEP_PIN);
LastStepMask |= X_AXIS_MASK;
#ifdef DEBUG_XSTEP_DUP_PIN
WRITE_NC(DEBUG_XSTEP_DUP_PIN,!INVERT_X_STEP_PIN);
#endif //DEBUG_XSTEP_DUP_PIN
counter_x -= current_block->step_event_count;
count_position[X_AXIS]+=count_direction[X_AXIS];
WRITE_NC(X_STEP_PIN, INVERT_X_STEP_PIN);
#ifdef DEBUG_XSTEP_DUP_PIN
WRITE_NC(DEBUG_XSTEP_DUP_PIN,INVERT_X_STEP_PIN);
#endif //DEBUG_XSTEP_DUP_PIN
}
counter_y += current_block->steps_y;
if (counter_y > 0) {
WRITE_NC(Y_STEP_PIN, !INVERT_Y_STEP_PIN);
LastStepMask |= Y_AXIS_MASK;
#ifdef DEBUG_YSTEP_DUP_PIN
WRITE_NC(DEBUG_YSTEP_DUP_PIN,!INVERT_Y_STEP_PIN);
#endif //DEBUG_YSTEP_DUP_PIN
#ifdef Y_DUAL_STEPPER_DRIVERS
WRITE_NC(Y2_STEP_PIN, !INVERT_Y_STEP_PIN);
#endif
counter_y -= current_block->step_event_count;
count_position[Y_AXIS]+=count_direction[Y_AXIS];
WRITE_NC(Y_STEP_PIN, INVERT_Y_STEP_PIN);
#ifdef DEBUG_YSTEP_DUP_PIN
WRITE_NC(DEBUG_YSTEP_DUP_PIN,INVERT_Y_STEP_PIN);
#endif //DEBUG_YSTEP_DUP_PIN
#ifdef Y_DUAL_STEPPER_DRIVERS
WRITE_NC(Y2_STEP_PIN, INVERT_Y_STEP_PIN);
#endif
}
counter_z += current_block->steps_z;
if (counter_z > 0) {
WRITE_NC(Z_STEP_PIN, !INVERT_Z_STEP_PIN);
LastStepMask |= Z_AXIS_MASK;
#ifdef Z_DUAL_STEPPER_DRIVERS
WRITE_NC(Z2_STEP_PIN, !INVERT_Z_STEP_PIN);
#endif
counter_z -= current_block->step_event_count;
count_position[Z_AXIS]+=count_direction[Z_AXIS];
WRITE_NC(Z_STEP_PIN, INVERT_Z_STEP_PIN);
#ifdef Z_DUAL_STEPPER_DRIVERS
WRITE_NC(Z2_STEP_PIN, INVERT_Z_STEP_PIN);
#endif
}
#ifndef LIN_ADVANCE
counter_e += current_block->steps_e;
if (counter_e > 0) {
WRITE_E_STEP(!INVERT_E_STEP_PIN);
counter_e -= current_block->step_event_count;
count_position[E_AXIS]+=count_direction[E_AXIS];
WRITE_E_STEP(INVERT_E_STEP_PIN);
#ifdef PAT9125
fsensor_counter++;
#endif //PAT9125
#endif
} else { // +direction
#if defined(Z_MAX_PIN) && (Z_MAX_PIN > -1) && !defined(DEBUG_DISABLE_ZMAXLIMIT)
#ifdef TMC2130_SG_HOMING
// Stall guard homing turned on
z_max_endstop = (READ(Z_TMC2130_DIAG) != 0);
#else
z_max_endstop = (READ(Z_MAX_PIN) != Z_MAX_ENDSTOP_INVERTING);
#endif //TMC2130_SG_HOMING
if(z_max_endstop && old_z_max_endstop && (current_block->steps_z.wide > 0)) {
endstops_trigsteps[Z_AXIS] = count_position[Z_AXIS];
endstop_z_hit=true;
step_events_completed.wide = current_block->step_event_count.wide;
}
#endif
step_events_completed += 1;
if(step_events_completed >= current_block->step_event_count) break;
old_z_max_endstop = z_max_endstop;
#endif
}
}
// Supporting stopping on a trigger of the Z-stop induction sensor, not only for the Z-minus movements.
#if defined(Z_MIN_PIN) && (Z_MIN_PIN > -1) && !defined(DEBUG_DISABLE_ZMINLIMIT)
if (check_z_endstop) {
// Check the Z min end-stop no matter what.
// Good for searching for the center of an induction target.
#ifdef TMC2130_SG_HOMING
// Stall guard homing turned on
z_min_endstop = (READ(Z_MIN_PIN) != Z_MIN_ENDSTOP_INVERTING) || (READ(Z_TMC2130_DIAG) != 0);
#else
z_min_endstop = (READ(Z_MIN_PIN) != Z_MIN_ENDSTOP_INVERTING);
#endif //TMC2130_SG_HOMING
if(z_min_endstop && old_z_min_endstop) {
endstops_trigsteps[Z_AXIS] = count_position[Z_AXIS];
endstop_z_hit=true;
step_events_completed.wide = current_block->step_event_count.wide;
}
old_z_min_endstop = z_min_endstop;
}
#endif
}
FORCE_INLINE void stepper_tick_lowres()
{
for (uint8_t i=0; i < step_loops; ++ i) { // Take multiple steps per interrupt (For high speed moves)
MSerial.checkRx(); // Check for serial chars.
#ifdef LIN_ADVANCE
counter_e.lo += current_block->steps_e.lo;
if (counter_e.lo > 0) {
counter_e.lo -= current_block->step_event_count.lo;
count_position[E_AXIS] += count_direction[E_AXIS];
((out_bits&(1<<E_AXIS))!=0) ? --e_steps : ++e_steps;
}
#endif
// Step in X axis
counter_x.lo += current_block->steps_x.lo;
if (counter_x.lo > 0) {
WRITE_NC(X_STEP_PIN, !INVERT_X_STEP_PIN);
LastStepMask |= X_AXIS_MASK;
#ifdef DEBUG_XSTEP_DUP_PIN
WRITE_NC(DEBUG_XSTEP_DUP_PIN,!INVERT_X_STEP_PIN);
#endif //DEBUG_XSTEP_DUP_PIN
counter_x.lo -= current_block->step_event_count.lo;
count_position[X_AXIS]+=count_direction[X_AXIS];
WRITE_NC(X_STEP_PIN, INVERT_X_STEP_PIN);
#ifdef DEBUG_XSTEP_DUP_PIN
WRITE_NC(DEBUG_XSTEP_DUP_PIN,INVERT_X_STEP_PIN);
#endif //DEBUG_XSTEP_DUP_PIN
}
// Step in Y axis
counter_y.lo += current_block->steps_y.lo;
if (counter_y.lo > 0) {
WRITE_NC(Y_STEP_PIN, !INVERT_Y_STEP_PIN);
LastStepMask |= Y_AXIS_MASK;
#ifdef DEBUG_YSTEP_DUP_PIN
WRITE_NC(DEBUG_YSTEP_DUP_PIN,!INVERT_Y_STEP_PIN);
#endif //DEBUG_YSTEP_DUP_PIN
counter_y.lo -= current_block->step_event_count.lo;
count_position[Y_AXIS]+=count_direction[Y_AXIS];
WRITE_NC(Y_STEP_PIN, INVERT_Y_STEP_PIN);
#ifdef DEBUG_YSTEP_DUP_PIN
WRITE_NC(DEBUG_YSTEP_DUP_PIN,INVERT_Y_STEP_PIN);
#endif //DEBUG_YSTEP_DUP_PIN
}
// Step in Z axis
counter_z.lo += current_block->steps_z.lo;
if (counter_z.lo > 0) {
WRITE_NC(Z_STEP_PIN, !INVERT_Z_STEP_PIN);
LastStepMask |= Z_AXIS_MASK;
counter_z.lo -= current_block->step_event_count.lo;
count_position[Z_AXIS]+=count_direction[Z_AXIS];
WRITE_NC(Z_STEP_PIN, INVERT_Z_STEP_PIN);
}
#ifndef LIN_ADVANCE
// Step in E axis
counter_e.lo += current_block->steps_e.lo;
if (counter_e.lo > 0) {
WRITE(E0_STEP_PIN, !INVERT_E_STEP_PIN);
counter_e.lo -= current_block->step_event_count.lo;
count_position[E_AXIS]+=count_direction[E_AXIS];
WRITE(E0_STEP_PIN, INVERT_E_STEP_PIN);
#ifdef PAT9125
++ fsensor_counter;
#endif //PAT9125
}
#endif
if(++ step_events_completed.lo >= current_block->step_event_count.lo)
break;
}
}
FORCE_INLINE void stepper_tick_highres()
{
for (uint8_t i=0; i < step_loops; ++ i) { // Take multiple steps per interrupt (For high speed moves)
MSerial.checkRx(); // Check for serial chars.
#ifdef LIN_ADVANCE
counter_e.wide += current_block->steps_e.wide;
if (counter_e.wide > 0) {
counter_e.wide -= current_block->step_event_count.wide;
count_position[E_AXIS] += count_direction[E_AXIS];
((out_bits&(1<<E_AXIS))!=0) ? --e_steps : ++e_steps;
}
#endif
// Step in X axis
counter_x.wide += current_block->steps_x.wide;
if (counter_x.wide > 0) {
WRITE_NC(X_STEP_PIN, !INVERT_X_STEP_PIN);
LastStepMask |= X_AXIS_MASK;
#ifdef DEBUG_XSTEP_DUP_PIN
WRITE_NC(DEBUG_XSTEP_DUP_PIN,!INVERT_X_STEP_PIN);
#endif //DEBUG_XSTEP_DUP_PIN
counter_x.wide -= current_block->step_event_count.wide;
count_position[X_AXIS]+=count_direction[X_AXIS];
WRITE_NC(X_STEP_PIN, INVERT_X_STEP_PIN);
#ifdef DEBUG_XSTEP_DUP_PIN
WRITE_NC(DEBUG_XSTEP_DUP_PIN,INVERT_X_STEP_PIN);
#endif //DEBUG_XSTEP_DUP_PIN
}
// Step in Y axis
counter_y.wide += current_block->steps_y.wide;
if (counter_y.wide > 0) {
WRITE_NC(Y_STEP_PIN, !INVERT_Y_STEP_PIN);
LastStepMask |= Y_AXIS_MASK;
#ifdef DEBUG_YSTEP_DUP_PIN
WRITE_NC(DEBUG_YSTEP_DUP_PIN,!INVERT_Y_STEP_PIN);
#endif //DEBUG_YSTEP_DUP_PIN
counter_y.wide -= current_block->step_event_count.wide;
count_position[Y_AXIS]+=count_direction[Y_AXIS];
WRITE_NC(Y_STEP_PIN, INVERT_Y_STEP_PIN);
#ifdef DEBUG_YSTEP_DUP_PIN
WRITE_NC(DEBUG_YSTEP_DUP_PIN,INVERT_Y_STEP_PIN);
#endif //DEBUG_YSTEP_DUP_PIN
}
// Step in Z axis
counter_z.wide += current_block->steps_z.wide;
if (counter_z.wide > 0) {
WRITE_NC(Z_STEP_PIN, !INVERT_Z_STEP_PIN);
LastStepMask |= Z_AXIS_MASK;
counter_z.wide -= current_block->step_event_count.wide;
count_position[Z_AXIS]+=count_direction[Z_AXIS];
WRITE_NC(Z_STEP_PIN, INVERT_Z_STEP_PIN);
}
#ifndef LIN_ADVANCE
// Step in E axis
counter_e.wide += current_block->steps_e.wide;
if (counter_e.wide > 0) {
WRITE(E0_STEP_PIN, !INVERT_E_STEP_PIN);
counter_e.wide -= current_block->step_event_count.wide;
count_position[E_AXIS]+=count_direction[E_AXIS];
WRITE(E0_STEP_PIN, INVERT_E_STEP_PIN);
#ifdef PAT9125
++ fsensor_counter;
#endif //PAT9125
}
#endif
if(++ step_events_completed.wide >= current_block->step_event_count.wide)
break;
}
}
void isr() {
//if (UVLO) uvlo();
// If there is no current block, attempt to pop one from the buffer
if (current_block == NULL)
stepper_next_block();
LastStepMask = 0;
if (current_block != NULL)
{
stepper_check_endstops();
if (current_block->flag & BLOCK_FLAG_DDA_LOWRES)
stepper_tick_lowres();
else
stepper_tick_highres();
#ifdef LIN_ADVANCE
if (current_block->use_advance_lead) {
const int delta_adv_steps = current_estep_rate - current_adv_steps;
@ -764,13 +766,13 @@ void isr() {
// Calculare new timer value
unsigned short timer;
uint16_t step_rate;
if (step_events_completed <= (unsigned long int)current_block->accelerate_until) {
if (step_events_completed.wide <= (unsigned long int)current_block->accelerate_until) {
// v = t * a -> acc_step_rate = acceleration_time * current_block->acceleration_rate
MultiU24X24toH16(acc_step_rate, acceleration_time, current_block->acceleration_rate);
acc_step_rate += current_block->initial_rate;
acc_step_rate += uint16_t(current_block->initial_rate);
// upper limit
if(acc_step_rate > current_block->nominal_rate)
if(acc_step_rate > uint16_t(current_block->nominal_rate))
acc_step_rate = current_block->nominal_rate;
// step_rate to timer interval
@ -785,19 +787,19 @@ void isr() {
eISR_Rate = ADV_RATE(timer, step_loops);
#endif
}
else if (step_events_completed > (unsigned long int)current_block->decelerate_after) {
else if (step_events_completed.wide > (unsigned long int)current_block->decelerate_after) {
MultiU24X24toH16(step_rate, deceleration_time, current_block->acceleration_rate);
if(step_rate > acc_step_rate) { // Check step_rate stays positive
step_rate = current_block->final_rate;
step_rate = uint16_t(current_block->final_rate);
}
else {
step_rate = acc_step_rate - step_rate; // Decelerate from aceleration end point.
}
// lower limit
if(step_rate < current_block->final_rate)
step_rate = current_block->final_rate;
if(step_rate < uint16_t(current_block->final_rate))
step_rate = uint16_t(current_block->final_rate);
// step_rate to timer interval
timer = calc_timer(step_rate);
@ -825,7 +827,7 @@ void isr() {
}
// If current block is finished, reset pointer
if (step_events_completed >= current_block->step_event_count) {
if (step_events_completed.wide >= current_block->step_event_count.wide) {
#ifdef PAT9125
fsensor_st_block_chunk(current_block, fsensor_counter);
@ -843,9 +845,11 @@ void isr() {
}
#endif //PAT9125
}
#ifdef TMC2130
tmc2130_st_isr(LastStepMask);
#endif //TMC2130
#ifdef DEBUG_STEPPER_TIMER_MISSED
// Verify whether the next planned timer interrupt has not been missed already.
// This debugging test takes < 1.125us

View file

@ -23,20 +23,6 @@
#include "planner.h"
#if EXTRUDERS > 2
#define WRITE_E_STEP(v) { if(current_block->active_extruder == 2) { WRITE(E2_STEP_PIN, v); } else { if(current_block->active_extruder == 1) { WRITE(E1_STEP_PIN, v); } else { WRITE(E0_STEP_PIN, v); }}}
#define NORM_E_DIR() { if(current_block->active_extruder == 2) { WRITE(E2_DIR_PIN, !INVERT_E2_DIR); } else { if(current_block->active_extruder == 1) { WRITE(E1_DIR_PIN, !INVERT_E1_DIR); } else { WRITE(E0_DIR_PIN, !INVERT_E0_DIR); }}}
#define REV_E_DIR() { if(current_block->active_extruder == 2) { WRITE(E2_DIR_PIN, INVERT_E2_DIR); } else { if(current_block->active_extruder == 1) { WRITE(E1_DIR_PIN, INVERT_E1_DIR); } else { WRITE(E0_DIR_PIN, INVERT_E0_DIR); }}}
#elif EXTRUDERS > 1
#define WRITE_E_STEP(v) { if(current_block->active_extruder == 1) { WRITE(E1_STEP_PIN, v); } else { WRITE(E0_STEP_PIN, v); }}
#define NORM_E_DIR() { if(current_block->active_extruder == 1) { WRITE(E1_DIR_PIN, !INVERT_E1_DIR); } else { WRITE(E0_DIR_PIN, !INVERT_E0_DIR); }}
#define REV_E_DIR() { if(current_block->active_extruder == 1) { WRITE(E1_DIR_PIN, INVERT_E1_DIR); } else { WRITE(E0_DIR_PIN, INVERT_E0_DIR); }}
#else
#define WRITE_E_STEP(v) WRITE(E0_STEP_PIN, v)
#define NORM_E_DIR() WRITE(E0_DIR_PIN, !INVERT_E0_DIR)
#define REV_E_DIR() WRITE(E0_DIR_PIN, INVERT_E0_DIR)
#endif
#ifdef ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
extern bool abort_on_endstop_hit;
#endif