Formatting sanity
This commit is contained in:
parent
eeea2725cb
commit
45563bfdd3
@ -126,8 +126,8 @@ float extrude_min_temp=EXTRUDE_MINTEMP;
|
||||
#endif
|
||||
|
||||
#ifdef LIN_ADVANCE
|
||||
float extruder_advance_K = LIN_ADVANCE_K,
|
||||
position_float[NUM_AXIS] = { 0 };
|
||||
float extruder_advance_K = LIN_ADVANCE_K;
|
||||
float position_float[NUM_AXIS] = { 0 };
|
||||
#endif
|
||||
|
||||
// Returns the index of the next block in the ring buffer
|
||||
@ -402,11 +402,11 @@ void planner_recalculate(const float &safe_final_speed)
|
||||
// NOTE: Entry and exit factors always > 0 by all previous logic operations.
|
||||
calculate_trapezoid_for_block(prev, prev->entry_speed, current->entry_speed);
|
||||
#ifdef LIN_ADVANCE
|
||||
if (current->use_advance_lead) {
|
||||
const float comp = current->e_D_ratio * extruder_advance_K * axis_steps_per_unit[E_AXIS];
|
||||
current->max_adv_steps = current->nominal_speed * comp;
|
||||
current->final_adv_steps = next->entry_speed * comp;
|
||||
}
|
||||
if (current->use_advance_lead) {
|
||||
const float comp = current->e_D_ratio * extruder_advance_K * axis_steps_per_unit[E_AXIS];
|
||||
current->max_adv_steps = current->nominal_speed * comp;
|
||||
current->final_adv_steps = next->entry_speed * comp;
|
||||
}
|
||||
#endif
|
||||
// Reset current only to ensure next trapezoid is computed.
|
||||
prev->flag &= ~BLOCK_FLAG_RECALCULATE;
|
||||
@ -422,11 +422,11 @@ void planner_recalculate(const float &safe_final_speed)
|
||||
current = block_buffer + prev_block_index(block_buffer_head);
|
||||
calculate_trapezoid_for_block(current, current->entry_speed, safe_final_speed);
|
||||
#ifdef LIN_ADVANCE
|
||||
if (current->use_advance_lead) {
|
||||
const float comp = current->e_D_ratio * extruder_advance_K * axis_steps_per_unit[E_AXIS];
|
||||
current->max_adv_steps = current->nominal_speed * comp;
|
||||
current->final_adv_steps = safe_final_speed * comp;
|
||||
}
|
||||
if (current->use_advance_lead) {
|
||||
const float comp = current->e_D_ratio * extruder_advance_K * axis_steps_per_unit[E_AXIS];
|
||||
current->max_adv_steps = current->nominal_speed * comp;
|
||||
current->final_adv_steps = safe_final_speed * comp;
|
||||
}
|
||||
#endif
|
||||
current->flag &= ~BLOCK_FLAG_RECALCULATE;
|
||||
|
||||
@ -437,9 +437,9 @@ void plan_init() {
|
||||
block_buffer_head = 0;
|
||||
block_buffer_tail = 0;
|
||||
memset(position, 0, sizeof(position)); // clear position
|
||||
#ifdef LIN_ADVANCE
|
||||
#ifdef LIN_ADVANCE
|
||||
memset(position_float, 0, sizeof(position)); // clear position
|
||||
#endif
|
||||
#endif
|
||||
previous_speed[0] = 0.0;
|
||||
previous_speed[1] = 0.0;
|
||||
previous_speed[2] = 0.0;
|
||||
@ -767,9 +767,9 @@ void plan_buffer_line(float x, float y, float z, const float &e, float feed_rate
|
||||
if(degHotend(active_extruder)<extrude_min_temp)
|
||||
{
|
||||
position[E_AXIS]=target[E_AXIS]; //behave as if the move really took place, but ignore E part
|
||||
#ifdef LIN_ADVANCE
|
||||
#ifdef LIN_ADVANCE
|
||||
position_float[E_AXIS] = e;
|
||||
#endif
|
||||
#endif
|
||||
SERIAL_ECHO_START;
|
||||
SERIAL_ECHOLNRPGM(_n(" cold extrusion prevented"));////MSG_ERR_COLD_EXTRUDE_STOP
|
||||
}
|
||||
@ -778,9 +778,9 @@ void plan_buffer_line(float x, float y, float z, const float &e, float feed_rate
|
||||
if(labs(target[E_AXIS]-position[E_AXIS])>cs.axis_steps_per_unit[E_AXIS]*EXTRUDE_MAXLENGTH)
|
||||
{
|
||||
position[E_AXIS]=target[E_AXIS]; //behave as if the move really took place, but ignore E part
|
||||
#ifdef LIN_ADVANCE
|
||||
position_float[E_AXIS] = e;
|
||||
#endif
|
||||
#ifdef LIN_ADVANCE
|
||||
position_float[E_AXIS] = e;
|
||||
#endif
|
||||
SERIAL_ECHO_START;
|
||||
SERIAL_ECHOLNRPGM(_n(" too long extrusion prevented"));////MSG_ERR_LONG_EXTRUDE_STOP
|
||||
}
|
||||
@ -1008,7 +1008,7 @@ Having the real displacement of the head, we can calculate the total movement le
|
||||
{
|
||||
block->acceleration_st = ceil(cs.retract_acceleration * steps_per_mm); // convert to: acceleration steps/sec^2
|
||||
#ifdef LIN_ADVANCE
|
||||
block->use_advance_lead = false;
|
||||
block->use_advance_lead = false;
|
||||
#endif
|
||||
}
|
||||
else
|
||||
@ -1016,39 +1016,35 @@ Having the real displacement of the head, we can calculate the total movement le
|
||||
block->acceleration_st = ceil(cs.acceleration * steps_per_mm); // convert to: acceleration steps/sec^2
|
||||
|
||||
#ifdef LIN_ADVANCE
|
||||
/**
|
||||
*
|
||||
* Use LIN_ADVANCE for blocks if all these are true:
|
||||
*
|
||||
* block->steps_e : This is a print move, because we checked for X, Y, Z steps before.
|
||||
*
|
||||
* extruder_advance_K : There is an advance factor set.
|
||||
*
|
||||
* delta_mm[E_AXIS] > 0 : Extruder is running forward (e.g., for "Wipe while retracting" (Slic3r) or "Combing" (Cura) moves)
|
||||
*/
|
||||
block->use_advance_lead = block->steps_e
|
||||
&& extruder_advance_K
|
||||
&& delta_mm[E_AXIS] > 0;
|
||||
/**
|
||||
* Use LIN_ADVANCE for blocks if all these are true:
|
||||
*
|
||||
* block->steps_e : This is a print move, because we checked for X, Y, Z steps before.
|
||||
* extruder_advance_K : There is an advance factor set.
|
||||
* delta_mm[E_AXIS] > 0 : Extruder is running forward (e.g., for "Wipe while retracting" (Slic3r) or "Combing" (Cura) moves)
|
||||
*/
|
||||
block->use_advance_lead = block->steps_e
|
||||
&& extruder_advance_K
|
||||
&& delta_mm[E_AXIS] > 0;
|
||||
if (block->use_advance_lead) {
|
||||
block->e_D_ratio = (e - position_float[E_AXIS]) /
|
||||
sqrt(sq(x - position_float[X_AXIS])
|
||||
+ sq(y - position_float[Y_AXIS])
|
||||
+ sq(z - position_float[Z_AXIS]));
|
||||
|
||||
if (block->use_advance_lead) {
|
||||
block->e_D_ratio = (e - position_float[E_AXIS]) /
|
||||
sqrt(sq(x - position_float[X_AXIS])
|
||||
+ sq(y - position_float[Y_AXIS])
|
||||
+ sq(z - position_float[Z_AXIS]));
|
||||
|
||||
// Check for unusual high e_D ratio to detect if a retract move was combined with the last print move due to min. steps per segment. Never execute this with advance!
|
||||
// This assumes no one will use a retract length of 0mm < retr_length < ~0.2mm and no one will print 100mm wide lines using 3mm filament or 35mm wide lines using 1.75mm filament.
|
||||
if (block->e_D_ratio > 3.0)
|
||||
block->use_advance_lead = false;
|
||||
else {
|
||||
const uint32_t max_accel_steps_per_s2 = max_jerk[E_AXIS] / (extruder_advance_K * block->e_D_ratio) * steps_per_mm;
|
||||
#ifdef LA_DEBUG
|
||||
if (block->acceleration_st > max_accel_steps_per_s2)
|
||||
SERIAL_ECHOLNPGM("Acceleration limited.");
|
||||
#endif
|
||||
NOMORE(block->acceleration_st, max_accel_steps_per_s2);
|
||||
}
|
||||
// Check for unusual high e_D ratio to detect if a retract move was combined with the last print move due to min. steps per segment. Never execute this with advance!
|
||||
// This assumes no one will use a retract length of 0mm < retr_length < ~0.2mm and no one will print 100mm wide lines using 3mm filament or 35mm wide lines using 1.75mm filament.
|
||||
if (block->e_D_ratio > 3.0)
|
||||
block->use_advance_lead = false;
|
||||
else {
|
||||
const uint32_t max_accel_steps_per_s2 = max_jerk[E_AXIS] / (extruder_advance_K * block->e_D_ratio) * steps_per_mm;
|
||||
#ifdef LA_DEBUG
|
||||
if (block->acceleration_st > max_accel_steps_per_s2)
|
||||
SERIAL_ECHOLNPGM("Acceleration limited.");
|
||||
#endif
|
||||
NOMORE(block->acceleration_st, max_accel_steps_per_s2);
|
||||
}
|
||||
}
|
||||
#endif
|
||||
|
||||
// Limit acceleration per axis
|
||||
@ -1084,15 +1080,15 @@ Having the real displacement of the head, we can calculate the total movement le
|
||||
block->acceleration_rate = (long)((float)block->acceleration_st * (16777216.0 / (F_CPU / 8.0)));
|
||||
|
||||
#ifdef LIN_ADVANCE
|
||||
if (block->use_advance_lead) {
|
||||
block->advance_speed = ((F_CPU) * 0.125) / (extruder_advance_K * block->e_D_ratio * block->acceleration * axis_steps_per_unit[E_AXIS]);
|
||||
#ifdef LA_DEBUG
|
||||
if (extruder_advance_K * block->e_D_ratio * block->acceleration * 2 < block->nominal_speed * block->e_D_ratio)
|
||||
SERIAL_ECHOLNPGM("More than 2 steps per eISR loop executed.");
|
||||
if (block->advance_speed < 200)
|
||||
SERIAL_ECHOLNPGM("eISR running at > 10kHz.");
|
||||
#endif
|
||||
}
|
||||
if (block->use_advance_lead) {
|
||||
block->advance_speed = (F_CPU / 8.0) / (extruder_advance_K * block->e_D_ratio * block->acceleration * axis_steps_per_unit[E_AXIS]);
|
||||
#ifdef LA_DEBUG
|
||||
if (extruder_advance_K * block->e_D_ratio * block->acceleration * 2 < block->nominal_speed * block->e_D_ratio)
|
||||
SERIAL_ECHOLNPGM("More than 2 steps per eISR loop executed.");
|
||||
if (block->advance_speed < 200)
|
||||
SERIAL_ECHOLNPGM("eISR running at > 10kHz.");
|
||||
#endif
|
||||
}
|
||||
#endif
|
||||
|
||||
// Start with a safe speed.
|
||||
@ -1224,12 +1220,12 @@ Having the real displacement of the head, we can calculate the total movement le
|
||||
// Update position
|
||||
memcpy(position, target, sizeof(target)); // position[] = target[]
|
||||
|
||||
#ifdef LIN_ADVANCE
|
||||
#ifdef LIN_ADVANCE
|
||||
position_float[X_AXIS] = x;
|
||||
position_float[Y_AXIS] = y;
|
||||
position_float[Z_AXIS] = z;
|
||||
position_float[E_AXIS] = e;
|
||||
#endif
|
||||
#endif
|
||||
|
||||
// Recalculate the trapezoids to maximize speed at the segment transitions while respecting
|
||||
// the machine limits (maximum acceleration and maximum jerk).
|
||||
@ -1292,12 +1288,12 @@ void plan_set_position(float x, float y, float z, const float &e)
|
||||
position[Z_AXIS] = lround(z*cs.axis_steps_per_unit[Z_AXIS]);
|
||||
#endif // ENABLE_MESH_BED_LEVELING
|
||||
position[E_AXIS] = lround(e*cs.axis_steps_per_unit[E_AXIS]);
|
||||
#ifdef LIN_ADVANCE
|
||||
#ifdef LIN_ADVANCE
|
||||
position_float[X_AXIS] = x;
|
||||
position_float[Y_AXIS] = y;
|
||||
position_float[Z_AXIS] = z;
|
||||
position_float[E_AXIS] = e;
|
||||
#endif
|
||||
#endif
|
||||
st_set_position(position[X_AXIS], position[Y_AXIS], position[Z_AXIS], position[E_AXIS]);
|
||||
previous_nominal_speed = 0.0; // Resets planner junction speeds. Assumes start from rest.
|
||||
previous_speed[0] = 0.0;
|
||||
@ -1309,11 +1305,11 @@ void plan_set_position(float x, float y, float z, const float &e)
|
||||
// Only useful in the bed leveling routine, when the mesh bed leveling is off.
|
||||
void plan_set_z_position(const float &z)
|
||||
{
|
||||
#ifdef LIN_ADVANCE
|
||||
position_float[Z_AXIS] = z;
|
||||
#endif
|
||||
position[Z_AXIS] = lround(z*cs.axis_steps_per_unit[Z_AXIS]);
|
||||
st_set_position(position[X_AXIS], position[Y_AXIS], position[Z_AXIS], position[E_AXIS]);
|
||||
#ifdef LIN_ADVANCE
|
||||
position_float[Z_AXIS] = z;
|
||||
#endif
|
||||
position[Z_AXIS] = lround(z*cs.axis_steps_per_unit[Z_AXIS]);
|
||||
st_set_position(position[X_AXIS], position[Y_AXIS], position[Z_AXIS], position[E_AXIS]);
|
||||
}
|
||||
|
||||
void plan_set_e_position(const float &e)
|
||||
|
Loading…
Reference in New Issue
Block a user