Enhance arc interpolation and add M214 for controlling arc interpolation settings.

This commit is contained in:
FormerLurker 2020-05-07 11:03:08 -05:00 committed by Alex Voinea
parent e3f48ead9f
commit 4aa5a75301
14 changed files with 306 additions and 130 deletions

View file

@ -169,6 +169,10 @@ void Config_PrintSettings(uint8_t level)
echomagic, echomagic, extruder_advance_K);
#endif //LIN_ADVANCE
}
// Arc Interpolation Settings
printf_P(PSTR(
"%SArc Settings: N=Arc segment length max (mm) S=Arc segment length Min (mm), R=Min arc segments, F=Arc segments per second.\n%S M214 N%.2f S%.2f R%d F%d\n"),
echomagic, echomagic, cs.mm_per_arc_segment, cs.min_mm_per_arc_segment, cs.min_arc_segments, cs.arc_segments_per_sec);
}
#endif
@ -184,7 +188,7 @@ static_assert (false, "zprobe_zoffset was not initialized in printers in field t
"0.0, if this is not acceptable, increment EEPROM_VERSION to force use default_conf");
#endif
static_assert (sizeof(M500_conf) == 196, "sizeof(M500_conf) has changed, ensure that EEPROM_VERSION has been incremented, "
static_assert (sizeof(M500_conf) == 208, "sizeof(M500_conf) has changed, ensure that EEPROM_VERSION has been incremented, "
"or if you added members in the end of struct, ensure that historically uninitialized values will be initialized."
"If this is caused by change to more then 8bit processor, decide whether make this struct packed to save EEPROM,"
"leave as it is to keep fast code, or reorder struct members to pack more tightly.");
@ -233,6 +237,10 @@ static const M500_conf default_conf PROGMEM =
{16,16,16,16},
#endif
DEFAULT_TRAVEL_ACCELERATION,
DEFAULT_MM_PER_ARC_SEGMENT,
DEFAULT_MIN_MM_PER_ARC_SEGMENT,
DEFAULT_MIN_ARC_SEGMENTS,
DEFAULT_ARC_SEGMENTS_PER_SEC
};
@ -273,6 +281,11 @@ bool Config_RetrieveSettings()
memcpy_P(&cs.max_acceleration_units_per_sq_second_silent[i],&default_conf.max_acceleration_units_per_sq_second_silent[i],sizeof(cs.max_acceleration_units_per_sq_second_silent[i]));
}
}
// Initialize arc interpolation settings if they are not already (Not sure about this bit, please review)
if (0xff == cs.mm_per_arc_segment) cs.mm_per_arc_segment = DEFAULT_MM_PER_ARC_SEGMENT;
if (0xff == cs.min_mm_per_arc_segment) cs.min_mm_per_arc_segment = DEFAULT_MIN_MM_PER_ARC_SEGMENT;
if (0xff == cs.min_arc_segments) cs.min_arc_segments = DEFAULT_MIN_ARC_SEGMENTS;
if (0xff == cs.arc_segments_per_sec) cs.arc_segments_per_sec = DEFAULT_ARC_SEGMENTS_PER_SEC;
#ifdef TMC2130
for (uint8_t j = X_AXIS; j <= Y_AXIS; j++)

View file

@ -39,6 +39,11 @@ typedef struct
unsigned long max_acceleration_units_per_sq_second_silent[4];
unsigned char axis_ustep_resolution[4];
float travel_acceleration; //!< travel acceleration mm/s^2
// Arc Interpolation Settings, configurable via M214
float mm_per_arc_segment;
float min_mm_per_arc_segment;
int min_arc_segments; // If less than or equal to zero, this is disabled
int arc_segments_per_sec; // If less than or equal to zero, this is disabled
} M500_conf;
extern M500_conf cs;

View file

@ -289,9 +289,7 @@
//#define LA_DEBUG_LOGIC // @wavexx: setup logic channels for isr debugging
#endif
// Arc interpretation settings:
#define MM_PER_ARC_SEGMENT 1
#define N_ARC_CORRECTION 25
// Arc interpretation settings : Moded to printer default settings (Configuration_prusa.h)
const unsigned int dropsegments=5; //everything with less than this number of steps will be ignored as move and joined with the next movement

102
Firmware/Marlin_main.cpp Executable file → Normal file
View file

@ -7502,9 +7502,88 @@ Sigma_Exit:
}
}break;
#endif // FWRETRACT
#endif // FWRETRACT
/*!
### M214 - Set Arc configuration values (Use M500 to store in eeprom)
#### Usage
M214 [N] [S] [R] [F]
#### Parameters
- `N` - A float representing the max and default millimeters per arc segment. Must be greater than 0.
- `S` - A float representing the minimum allowable millimeters per arc segment. Set to 0 to disable
- `R` - An int representing the minimum number of segments per arcs of any radius,
except when the results in segment lengths greater than or less than the minimum
and maximum segment length. Set to 0 to disable.
- 'F' - An int representing the number of segments per second, unless this results in segment lengths
greater than or less than the minimum and maximum segment length. Set to 0 to disable.
*/
case 214: //!@n M214 - Set Arc Parameters (Use M500 to store in eeprom) N<MM_PER_ARC_SEGMENT> S<MIN_MM_PER_ARC_SEGMENT> R<MIN_ARC_SEGMENTS> F<ARC_SEGMENTS_PER_SEC>
{
// Extract N
float n = cs.mm_per_arc_segment;
float s = cs.min_mm_per_arc_segment;
int r = cs.min_arc_segments;
int f = cs.arc_segments_per_sec;
// Extract N
if (code_seen('N'))
{
n = code_value();
if (n <= 0 || (s != 0 && n <= s))
{
SERIAL_ECHO_START;
SERIAL_ECHORPGM(MSG_UNKNOWN_COMMAND);
SERIAL_ECHO(CMDBUFFER_CURRENT_STRING);
SERIAL_ECHOLNPGM("\"(1)");
break;
}
}
// Extract S
if (code_seen('S'))
{
s = code_value();
if (s < 0 || s >= n)
{
SERIAL_ECHO_START;
SERIAL_ECHORPGM(MSG_UNKNOWN_COMMAND);
SERIAL_ECHO(CMDBUFFER_CURRENT_STRING);
SERIAL_ECHOLNPGM("\"(1)");
break;
}
}
// Extract R
if (code_seen('R'))
{
r = code_value();
if (r < 0)
{
SERIAL_ECHO_START;
SERIAL_ECHORPGM(MSG_UNKNOWN_COMMAND);
SERIAL_ECHO(CMDBUFFER_CURRENT_STRING);
SERIAL_ECHOLNPGM("\"(1)");
break;
}
}
// Extract F
if (code_seen('F'))
{
f = code_value();
if (f < 0)
{
SERIAL_ECHO_START;
SERIAL_ECHORPGM(MSG_UNKNOWN_COMMAND);
SERIAL_ECHO(CMDBUFFER_CURRENT_STRING);
SERIAL_ECHOLNPGM("\"(1)");
break;
}
}
cs.mm_per_arc_segment = n;
cs.min_mm_per_arc_segment = s;
cs.min_arc_segments = r;
cs.arc_segments_per_sec = f;
}break;
#if EXTRUDERS > 1
/*!
@ -9641,18 +9720,15 @@ void prepare_move()
set_current_to_destination();
}
void prepare_arc_move(bool isclockwise) {
float r = hypot(offset[X_AXIS], offset[Y_AXIS]); // Compute arc radius for mc_arc
// Trace the arc
mc_arc(current_position, destination, offset, X_AXIS, Y_AXIS, Z_AXIS, feedrate*feedmultiply/60/100.0, r, isclockwise, active_extruder);
// As far as the parser is concerned, the position is now == target. In reality the
// motion control system might still be processing the action and the real tool position
// in any intermediate location.
set_current_to_destination();
previous_millis_cmd.start();
void prepare_arc_move(char isclockwise) {
float r = hypot(offset[X_AXIS], offset[Y_AXIS]); // Compute arc radius for mc_arc
// Trace the arc
mc_arc(current_position, destination, offset, feedrate * feedmultiply / 60 / 100.0, r, isclockwise, active_extruder);
// As far as the parser is concerned, the position is now == target. In reality the
// motion control system might still be processing the action and the real tool position
// in any intermediate location.
set_current_to_destination();
previous_millis_cmd.start();
}
#if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1

View file

@ -4,7 +4,8 @@
Copyright (c) 2009-2011 Simen Svale Skogsrud
Copyright (c) 2011 Sungeun K. Jeon
Copyright (c) 2020 Brad Hochgesang
Grbl is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
@ -25,121 +26,140 @@
// The arc is approximated by generating a huge number of tiny, linear segments. The length of each
// segment is configured in settings.mm_per_arc_segment.
void mc_arc(float *position, float *target, float *offset, uint8_t axis_0, uint8_t axis_1,
uint8_t axis_linear, float feed_rate, float radius, bool isclockwise, uint8_t extruder)
{
// int acceleration_manager_was_enabled = plan_is_acceleration_manager_enabled();
// plan_set_acceleration_manager_enabled(false); // disable acceleration management for the duration of the arc
float center_axis0 = position[axis_0] + offset[axis_0];
float center_axis1 = position[axis_1] + offset[axis_1];
float linear_travel = target[axis_linear] - position[axis_linear];
float extruder_travel = target[E_AXIS] - position[E_AXIS];
float r_axis0 = -offset[axis_0]; // Radius vector from center to current location
float r_axis1 = -offset[axis_1];
float rt_axis0 = target[axis_0] - center_axis0;
float rt_axis1 = target[axis_1] - center_axis1;
// CCW angle between position and target from circle center. Only one atan2() trig computation required.
float angular_travel = atan2(r_axis0*rt_axis1-r_axis1*rt_axis0, r_axis0*rt_axis0+r_axis1*rt_axis1);
if (angular_travel < 0) { angular_travel += 2*M_PI; }
if (isclockwise) { angular_travel -= 2*M_PI; }
//20141002:full circle for G03 did not work, e.g. G03 X80 Y80 I20 J0 F2000 is giving an Angle of zero so head is not moving
//to compensate when start pos = target pos && angle is zero -> angle = 2Pi
if (position[axis_0] == target[axis_0] && position[axis_1] == target[axis_1] && angular_travel == 0)
{
angular_travel += 2*M_PI;
}
//end fix G03
float millimeters_of_travel = hypot(angular_travel*radius, fabs(linear_travel));
if (millimeters_of_travel < 0.001) { return; }
uint16_t segments = floor(millimeters_of_travel/MM_PER_ARC_SEGMENT);
if(segments == 0) segments = 1;
/*
// Multiply inverse feed_rate to compensate for the fact that this movement is approximated
// by a number of discrete segments. The inverse feed_rate should be correct for the sum of
// all segments.
if (invert_feed_rate) { feed_rate *= segments; }
*/
float theta_per_segment = angular_travel/segments;
float linear_per_segment = linear_travel/segments;
float extruder_per_segment = extruder_travel/segments;
/* Vector rotation by transformation matrix: r is the original vector, r_T is the rotated vector,
and phi is the angle of rotation. Based on the solution approach by Jens Geisler.
r_T = [cos(phi) -sin(phi);
sin(phi) cos(phi] * r ;
For arc generation, the center of the circle is the axis of rotation and the radius vector is
defined from the circle center to the initial position. Each line segment is formed by successive
vector rotations. This requires only two cos() and sin() computations to form the rotation
matrix for the duration of the entire arc. Error may accumulate from numerical round-off, since
all double numbers are single precision on the Arduino. (True double precision will not have
round off issues for CNC applications.) Single precision error can accumulate to be greater than
tool precision in some cases. Therefore, arc path correction is implemented.
void mc_arc(float* position, float* target, float* offset, float feed_rate, float radius, uint8_t isclockwise, uint8_t extruder)
{
// Extract the position to reduce indexing at the cost of a few bytes of mem
float p_x = position[X_AXIS];
float p_y = position[Y_AXIS];
float p_z = position[Z_AXIS];
float p_e = position[E_AXIS];
Small angle approximation may be used to reduce computation overhead further. This approximation
holds for everything, but very small circles and large mm_per_arc_segment values. In other words,
theta_per_segment would need to be greater than 0.1 rad and N_ARC_CORRECTION would need to be large
to cause an appreciable drift error. N_ARC_CORRECTION~=25 is more than small enough to correct for
numerical drift error. N_ARC_CORRECTION may be on the order a hundred(s) before error becomes an
issue for CNC machines with the single precision Arduino calculations.
This approximation also allows mc_arc to immediately insert a line segment into the planner
without the initial overhead of computing cos() or sin(). By the time the arc needs to be applied
a correction, the planner should have caught up to the lag caused by the initial mc_arc overhead.
This is important when there are successive arc motions.
*/
// Vector rotation matrix values
float cos_T = 1-0.5*theta_per_segment*theta_per_segment; // Small angle approximation
float sin_T = theta_per_segment;
float arc_target[4];
float sin_Ti;
float cos_Ti;
float r_axisi;
uint16_t i;
int8_t count = 0;
float t_x = target[X_AXIS];
float t_y = target[Y_AXIS];
float t_z = target[Z_AXIS];
float t_e = target[E_AXIS];
// Initialize the linear axis
arc_target[axis_linear] = position[axis_linear];
// Initialize the extruder axis
arc_target[E_AXIS] = position[E_AXIS];
float r_axis_x = -offset[X_AXIS]; // Radius vector from center to current location
float r_axis_y = -offset[Y_AXIS];
float center_axis_x = p_x - r_axis_x;
float center_axis_y = p_y - r_axis_y;
float travel_z = t_z - p_z;
float extruder_travel_total = t_e - p_e;
for (i = 1; i<segments; i++) { // Increment (segments-1)
if (count < N_ARC_CORRECTION) {
// Apply vector rotation matrix
r_axisi = r_axis0*sin_T + r_axis1*cos_T;
r_axis0 = r_axis0*cos_T - r_axis1*sin_T;
r_axis1 = r_axisi;
count++;
} else {
// Arc correction to radius vector. Computed only every N_ARC_CORRECTION increments.
// Compute exact location by applying transformation matrix from initial radius vector(=-offset).
cos_Ti = cos(i*theta_per_segment);
sin_Ti = sin(i*theta_per_segment);
r_axis0 = -offset[axis_0]*cos_Ti + offset[axis_1]*sin_Ti;
r_axis1 = -offset[axis_0]*sin_Ti - offset[axis_1]*cos_Ti;
count = 0;
float rt_x = t_x - center_axis_x;
float rt_y = t_y - center_axis_y;
// 20200419 - Add a variable that will be used to hold the arc segment length
float mm_per_arc_segment = cs.mm_per_arc_segment;
// CCW angle between position and target from circle center. Only one atan2() trig computation required.
float angular_travel_total = atan2(r_axis_x * rt_y - r_axis_y * rt_x, r_axis_x * rt_x + r_axis_y * rt_y);
if (angular_travel_total < 0) { angular_travel_total += 2 * M_PI; }
bool check_mm_per_arc_segment_max = false;
if (cs.min_arc_segments > 0)
{
// 20200417 - FormerLurker - Implement MIN_ARC_SEGMENTS if it is defined - from Marlin 2.0 implementation
// Do this before converting the angular travel for clockwise rotation
mm_per_arc_segment = radius * ((2.0f * M_PI) / cs.min_arc_segments);
check_mm_per_arc_segment_max = true;
}
// Update arc_target location
arc_target[axis_0] = center_axis0 + r_axis0;
arc_target[axis_1] = center_axis1 + r_axis1;
arc_target[axis_linear] += linear_per_segment;
arc_target[E_AXIS] += extruder_per_segment;
if (cs.arc_segments_per_sec > 0)
{
// 20200417 - FormerLurker - Implement MIN_ARC_SEGMENTS if it is defined - from Marlin 2.0 implementation
float mm_per_arc_segment_sec = (feed_rate / 60.0f) * (1.0f / cs.arc_segments_per_sec);
if (mm_per_arc_segment_sec < mm_per_arc_segment)
mm_per_arc_segment = mm_per_arc_segment_sec;
check_mm_per_arc_segment_max = true;
}
clamp_to_software_endstops(arc_target);
plan_buffer_line(arc_target[X_AXIS], arc_target[Y_AXIS], arc_target[Z_AXIS], arc_target[E_AXIS], feed_rate, extruder);
}
// Ensure last segment arrives at target location.
plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], feed_rate, extruder);
if (cs.min_mm_per_arc_segment > 0)
{
check_mm_per_arc_segment_max = true;
// 20200417 - FormerLurker - Implement MIN_MM_PER_ARC_SEGMENT if it is defined
// This prevents a very high number of segments from being generated for curves of a short radius
if (mm_per_arc_segment < cs.min_mm_per_arc_segment) mm_per_arc_segment = cs.min_mm_per_arc_segment;
}
// plan_set_acceleration_manager_enabled(acceleration_manager_was_enabled);
if (check_mm_per_arc_segment_max && mm_per_arc_segment > cs.mm_per_arc_segment) mm_per_arc_segment = cs.mm_per_arc_segment;
// Adjust the angular travel if the direction is clockwise
if (isclockwise) { angular_travel_total -= 2 * M_PI; }
//20141002:full circle for G03 did not work, e.g. G03 X80 Y80 I20 J0 F2000 is giving an Angle of zero so head is not moving
//to compensate when start pos = target pos && angle is zero -> angle = 2Pi
if (p_x == t_x && p_y == t_y && angular_travel_total == 0)
{
angular_travel_total += 2 * M_PI;
}
//end fix G03
// 20200417 - FormerLurker - rename millimeters_of_travel to millimeters_of_travel_arc to better describe what we are
// calculating here
float millimeters_of_travel_arc = hypot(angular_travel_total * radius, fabs(travel_z));
if (millimeters_of_travel_arc < 0.001) { return; }
// Calculate the total travel per segment
// Calculate the number of arc segments
uint16_t segments = static_cast<uint16_t>(ceil(millimeters_of_travel_arc / mm_per_arc_segment));
// Calculate theta per segments and linear (z) travel per segment
float theta_per_segment = angular_travel_total / segments;
float linear_per_segment = travel_z / (segments);
// Calculate the extrusion amount per segment
float segment_extruder_travel = extruder_travel_total / (segments);
/* Vector rotation by transformation matrix: r is the original vector, r_T is the rotated vector,
and phi is the angle of rotation. Based on the solution approach by Jens Geisler.
r_T = [cos(phi) -sin(phi);
sin(phi) cos(phi] * r ;
For arc generation, the center of the circle is the axis of rotation and the radius vector is
defined from the circle center to the initial position. Each line segment is formed by successive
vector rotations. This requires only two cos() and sin() computations to form the rotation
matrix for the duration of the entire arc. Error may accumulate from numerical round-off, since
all double numbers are single precision on the Arduino. (True double precision will not have
round off issues for CNC applications.) Single precision error can accumulate to be greater than
tool precision in some cases. Therefore, arc path correction is implemented.
The small angle approximation was removed because of excessive errors for small circles (perhaps unique to
3d printing applications, causing significant path deviation and extrusion issues).
Now there will be no corrections applied, but an accurate initial sin and cos will be calculated.
This seems to work with a very high degree of accuracy and results in much simpler code.
Finding a faster way to approximate sin, knowing that there can be substantial deviations from the true
arc when using the previous approximation, would be beneficial.
*/
// Don't bother calculating cot_T or sin_T if there is only 1 segment.
if (segments > 1)
{
// Initialize the extruder axis
float cos_T = cos(theta_per_segment);
float sin_T = sin(theta_per_segment);
float r_axisi;
uint16_t i;
for (i = 1; i < segments; i++) { // Increment (segments-1)
r_axisi = r_axis_x * sin_T + r_axis_y * cos_T;
r_axis_x = r_axis_x * cos_T - r_axis_y * sin_T;
r_axis_y = r_axisi;
// Update arc_target location
p_x = center_axis_x + r_axis_x;
p_y = center_axis_y + r_axis_y;
p_z += linear_per_segment;
p_e += segment_extruder_travel;
// We can't clamp to the target because we are interpolating! We would need to update a position, clamp to it
// after updating from calculated values.
//clamp_to_software_endstops(position);
plan_buffer_line(p_x, p_y, p_z, p_e, feed_rate, extruder);
}
}
// Ensure last segment arrives at target location.
// Here we could clamp, but why bother. We would need to update our current position, clamp to it
//clamp_to_software_endstops(target);
plan_buffer_line(t_x, t_y, t_z, t_e, feed_rate, extruder);
}

View file

@ -26,7 +26,7 @@
// offset == offset from current xyz, axis_XXX defines circle plane in tool space, axis_linear is
// the direction of helical travel, radius == circle radius, isclockwise boolean. Used
// for vector transformation direction.
void mc_arc(float *position, float *target, float *offset, uint8_t axis_0, uint8_t axis_1,
uint8_t axis_linear, float feed_rate, float radius, bool isclockwise, uint8_t extruder);
void mc_arc(float *position, float *target, float *offset, float feed_rate, float radius,
unsigned char isclockwise, uint8_t extruder);
#endif

View file

@ -525,4 +525,12 @@
#define MMU_IDLER_SENSOR_ATTEMPTS_NR 21 //max. number of attempts to load filament if first load failed; value for max bowden length and case when loading fails right at the beginning
// Default Arc Interpolation Settings (Now configurable via M214)
#define DEFAULT_MM_PER_ARC_SEGMENT 1.0f // REQUIRED - The enforced maximum length of an arc segment
#define DEFAULT_MIN_MM_PER_ARC_SEGMENT 0.5f /* OPTIONAL - the enforced minimum length of an interpolated segment. Must be smaller than
MM_PER_ARC_SEGMENT. Only has an effect if MIN_ARC_SEGMENTS > 0 or ARC_SEGMENTS_PER_SEC > 0 */
// If both MIN_ARC_SEGMENTS and ARC_SEGMENTS_PER_SEC is defined, the minimum calculated segment length is used.
#define DEFAULT_MIN_ARC_SEGMENTS 20 // OPTIONAL - The enforced minimum segments in a full circle of the same radius.
#define DEFAULT_ARC_SEGMENTS_PER_SEC 0 // OPTIONAL - Use feedrate to choose segment length.
#endif //__CONFIGURATION_PRUSA_H

View file

@ -529,4 +529,12 @@
//#define HEATBED_ANALYSIS //for meash bed leveling and heatbed analysis D-codes D80 and D81
//#define MICROMETER_LOGGING //related to D-codes D80 and D81, currently works on MK2.5 only (MK3 board pin definitions missing)
// Default Arc Interpolation Settings (Now configurable via M214)
#define DEFAULT_MM_PER_ARC_SEGMENT 1.0f // REQUIRED - The enforced maximum length of an arc segment
#define DEFAULT_MIN_MM_PER_ARC_SEGMENT 0.5f /* OPTIONAL - the enforced minimum length of an interpolated segment. Must be smaller than
MM_PER_ARC_SEGMENT. Only has an effect if MIN_ARC_SEGMENTS > 0 or ARC_SEGMENTS_PER_SEC > 0 */
// If both MIN_ARC_SEGMENTS and ARC_SEGMENTS_PER_SEC is defined, the minimum calculated segment length is used.
#define DEFAULT_MIN_ARC_SEGMENTS 20 // OPTIONAL - The enforced minimum segments in a full circle of the same radius.
#define DEFAULT_ARC_SEGMENTS_PER_SEC 0 // OPTIONAL - Use feedrate to choose segment length.
#endif //__CONFIGURATION_PRUSA_H

View file

@ -532,4 +532,12 @@
//#define MMU_ALWAYS_CUT
#define MMU_IDLER_SENSOR_ATTEMPTS_NR 21 //max. number of attempts to load filament if first load failed; value for max bowden length and case when loading fails right at the beginning
// Default Arc Interpolation Settings (Now configurable via M214)
#define DEFAULT_MM_PER_ARC_SEGMENT 1.0f // REQUIRED - The enforced maximum length of an arc segment
#define DEFAULT_MIN_MM_PER_ARC_SEGMENT 0.5f /* OPTIONAL - the enforced minimum length of an interpolated segment. Must be smaller than
MM_PER_ARC_SEGMENT. Only has an effect if MIN_ARC_SEGMENTS > 0 or ARC_SEGMENTS_PER_SEC > 0 */
// If both MIN_ARC_SEGMENTS and ARC_SEGMENTS_PER_SEC is defined, the minimum calculated segment length is used.
#define DEFAULT_MIN_ARC_SEGMENTS 20 // OPTIONAL - The enforced minimum segments in a full circle of the same radius.
#define DEFAULT_ARC_SEGMENTS_PER_SEC 0 // OPTIONAL - Use feedrate to choose segment length.
#endif //__CONFIGURATION_PRUSA_H

View file

@ -533,4 +533,12 @@
//#define MMU_ALWAYS_CUT
#define MMU_IDLER_SENSOR_ATTEMPTS_NR 21 //max. number of attempts to load filament if first load failed; value for max bowden length and case when loading fails right at the beginning
// Default Arc Interpolation Settings (Now configurable via M214)
#define DEFAULT_MM_PER_ARC_SEGMENT 1.0f // REQUIRED - The enforced maximum length of an arc segment
#define DEFAULT_MIN_MM_PER_ARC_SEGMENT 0.5f /* OPTIONAL - the enforced minimum length of an interpolated segment. Must be smaller than
MM_PER_ARC_SEGMENT. Only has an effect if MIN_ARC_SEGMENTS > 0 or ARC_SEGMENTS_PER_SEC > 0 */
// If both MIN_ARC_SEGMENTS and ARC_SEGMENTS_PER_SEC is defined, the minimum calculated segment length is used.
#define DEFAULT_MIN_ARC_SEGMENTS 20 // OPTIONAL - The enforced minimum segments in a full circle of the same radius.
#define DEFAULT_ARC_SEGMENTS_PER_SEC 0 // OPTIONAL - Use feedrate to choose segment length.
#endif //__CONFIGURATION_PRUSA_H

View file

@ -671,4 +671,12 @@
#define MMU_HAS_CUTTER
#define MMU_IDLER_SENSOR_ATTEMPTS_NR 21 //max. number of attempts to load filament if first load failed; value for max bowden length and case when loading fails right at the beginning
// Default Arc Interpolation Settings (Now configurable via M214)
#define DEFAULT_MM_PER_ARC_SEGMENT 1.0f // REQUIRED - The enforced maximum length of an arc segment
#define DEFAULT_MIN_MM_PER_ARC_SEGMENT 0.5f /* OPTIONAL - the enforced minimum length of an interpolated segment. Must be smaller than
MM_PER_ARC_SEGMENT. Only has an effect if MIN_ARC_SEGMENTS > 0 or ARC_SEGMENTS_PER_SEC > 0 */
// If both MIN_ARC_SEGMENTS and ARC_SEGMENTS_PER_SEC is defined, the minimum calculated segment length is used.
#define DEFAULT_MIN_ARC_SEGMENTS 20 // OPTIONAL - The enforced minimum segments in a full circle of the same radius.
#define DEFAULT_ARC_SEGMENTS_PER_SEC 0 // OPTIONAL - Use feedrate to choose segment length.
#endif //__CONFIGURATION_PRUSA_H

View file

@ -683,4 +683,12 @@
//#define MMU_ALWAYS_CUT
#define MMU_IDLER_SENSOR_ATTEMPTS_NR 21 //max. number of attempts to load filament if first load failed; value for max bowden length and case when loading fails right at the beginning
// Default Arc Interpolation Settings (Now configurable via M214)
#define DEFAULT_MM_PER_ARC_SEGMENT 1.0f // REQUIRED - The enforced maximum length of an arc segment
#define DEFAULT_MIN_MM_PER_ARC_SEGMENT 0.5f /* OPTIONAL - the enforced minimum length of an interpolated segment. Must be smaller than
MM_PER_ARC_SEGMENT. Only has an effect if MIN_ARC_SEGMENTS > 0 or ARC_SEGMENTS_PER_SEC > 0 */
// If both MIN_ARC_SEGMENTS and ARC_SEGMENTS_PER_SEC is defined, the minimum calculated segment length is used.
#define DEFAULT_MIN_ARC_SEGMENTS 20 // OPTIONAL - The enforced minimum segments in a full circle of the same radius.
#define DEFAULT_ARC_SEGMENTS_PER_SEC 0 // OPTIONAL - Use feedrate to choose segment length.
#endif //__CONFIGURATION_PRUSA_H

View file

@ -449,4 +449,12 @@ THERMISTORS SETTINGS
#define MMU_IDLER_SENSOR_ATTEMPTS_NR 21 //max. number of attempts to load filament if first load failed; value for max bowden length and case when loading fails right at the beginning
// Default Arc Interpolation Settings (Now configurable via M214)
#define DEFAULT_MM_PER_ARC_SEGMENT 1.0f // REQUIRED - The enforced maximum length of an arc segment
#define DEFAULT_MIN_MM_PER_ARC_SEGMENT 0.5f /* OPTIONAL - the enforced minimum length of an interpolated segment. Must be smaller than
MM_PER_ARC_SEGMENT. Only has an effect if MIN_ARC_SEGMENTS > 0 or ARC_SEGMENTS_PER_SEC > 0 */
// If both MIN_ARC_SEGMENTS and ARC_SEGMENTS_PER_SEC is defined, the minimum calculated segment length is used.
#define DEFAULT_MIN_ARC_SEGMENTS 20 // OPTIONAL - The enforced minimum segments in a full circle of the same radius.
#define DEFAULT_ARC_SEGMENTS_PER_SEC 0 // OPTIONAL - Use feedrate to choose segment length.
#endif //__CONFIGURATION_PRUSA_H

View file

@ -438,4 +438,12 @@ THERMISTORS SETTINGS
#define MMU_IDLER_SENSOR_ATTEMPTS_NR 21 //max. number of attempts to load filament if first load failed; value for max bowden length and case when loading fails right at the beginning
// Default Arc Interpolation Settings (Now configurable via M214)
#define DEFAULT_MM_PER_ARC_SEGMENT 1.0f // REQUIRED - The enforced maximum length of an arc segment
#define DEFAULT_MIN_MM_PER_ARC_SEGMENT 0.5f /* OPTIONAL - the enforced minimum length of an interpolated segment. Must be smaller than
MM_PER_ARC_SEGMENT. Only has an effect if MIN_ARC_SEGMENTS > 0 or ARC_SEGMENTS_PER_SEC > 0 */
// If both MIN_ARC_SEGMENTS and ARC_SEGMENTS_PER_SEC is defined, the minimum calculated segment length is used.
#define DEFAULT_MIN_ARC_SEGMENTS 20 // OPTIONAL - The enforced minimum segments in a full circle of the same radius.
#define DEFAULT_ARC_SEGMENTS_PER_SEC 0 // OPTIONAL - Use feedrate to choose segment length.
#endif //__CONFIGURATION_PRUSA_H