Improvement of the bed skew calibration.

This commit is contained in:
bubnikv 2016-07-04 19:00:42 +02:00
parent 0389b23514
commit 58b2aa9fb8
12 changed files with 858 additions and 218 deletions

View file

@ -26,6 +26,9 @@
#define EEPROM_BED_CALIBRATION_VEC_X (EEPROM_BED_CALIBRATION_CENTER-2*4)
#define EEPROM_BED_CALIBRATION_VEC_Y (EEPROM_BED_CALIBRATION_VEC_X-2*4)
// Offsets of the Z heiths of the calibration points from the first point.
// The offsets are saved as 16bit signed int, scaled to tenths of microns.
#define EEPROM_BED_CALIBRATION_Z_JITTER (EEPROM_BED_CALIBRATION_VEC_Y-2*8)
// This configuration file contains the basic settings.
// Advanced settings can be found in Configuration_adv.h

View file

@ -212,7 +212,7 @@ void ClearToSend();
void get_coordinates();
void prepare_move();
void kill();
void kill(const char *full_screen_message = NULL);
void Stop();
bool IsStopped();
@ -257,6 +257,8 @@ extern float max_pos[3];
extern bool axis_known_position[3];
extern float zprobe_zoffset;
extern int fanSpeed;
extern void homeaxis(int axis);
#ifdef FAN_SOFT_PWM
extern unsigned char fanSpeedSoftPwm;

View file

@ -1469,7 +1469,7 @@ static float probe_pt(float x, float y, float z_before) {
#endif // #ifdef ENABLE_AUTO_BED_LEVELING
static void homeaxis(int axis) {
void homeaxis(int axis) {
#define HOMEAXIS_DO(LETTER) \
((LETTER##_MIN_PIN > -1 && LETTER##_HOME_DIR==-1) || (LETTER##_MAX_PIN > -1 && LETTER##_HOME_DIR==1))
@ -1996,18 +1996,19 @@ void process_commands()
}
// 1st mesh bed leveling measurement point, corrected.
world2machine_initialize();
destination[X_AXIS] = world2machine_rotation_and_skew[0][0] * pgm_read_float(bed_ref_points) + world2machine_rotation_and_skew[0][1] * pgm_read_float(bed_ref_points+1) + world2machine_shift[0];
destination[Y_AXIS] = world2machine_rotation_and_skew[1][0] * pgm_read_float(bed_ref_points) + world2machine_rotation_and_skew[1][1] * pgm_read_float(bed_ref_points+1) + world2machine_shift[1];
world2machine(pgm_read_float(bed_ref_points), pgm_read_float(bed_ref_points+1), destination[X_AXIS], destination[Y_AXIS]);
world2machine_reset();
destination[Z_AXIS] = MESH_HOME_Z_SEARCH; // Set destination away from bed
feedrate = homing_feedrate[Z_AXIS]/10;
current_position[Z_AXIS] = 0;
enable_endstops(false);
plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
st_synchronize();
current_position[X_AXIS] = destination[X_AXIS];
current_position[Y_AXIS] = destination[Y_AXIS];
enable_endstops(true);
endstops_hit_on_purpose();
homeaxis(Z_AXIS);
_doMeshL = true;
#else // MESH_BED_LEVELING
@ -2342,19 +2343,32 @@ void process_commands()
int XY_AXIS_FEEDRATE = homing_feedrate[X_AXIS]/20;
int Z_PROBE_FEEDRATE = homing_feedrate[Z_AXIS]/60;
int Z_LIFT_FEEDRATE = homing_feedrate[Z_AXIS]/40;
bool has_z = is_bed_z_jitter_data_valid();
setup_for_endstop_move();
const char *kill_message = NULL;
while (mesh_point != MESH_MEAS_NUM_X_POINTS * MESH_MEAS_NUM_Y_POINTS) {
// Get coords of a measuring point.
ix = mesh_point % MESH_MEAS_NUM_X_POINTS;
iy = mesh_point / MESH_MEAS_NUM_X_POINTS;
if (iy & 1) ix = (MESH_MEAS_NUM_X_POINTS - 1) - ix; // Zig zag
float z0 = 0.f;
if (has_z && mesh_point > 0) {
uint16_t z_offset_u = eeprom_read_word((uint16_t*)(EEPROM_BED_CALIBRATION_Z_JITTER + 2 * (ix + iy * 3 - 1)));
z0 = mbl.z_values[0][0] + *reinterpret_cast<int16_t*>(&z_offset_u) * 0.01;
#if 0
SERIAL_ECHOPGM("Bed leveling, point: ");
MYSERIAL.print(mesh_point);
SERIAL_ECHOPGM(", calibration z: ");
MYSERIAL.print(z0, 5);
SERIAL_ECHOLNPGM("");
#endif
}
// Move Z to proper distance
current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
st_synchronize();
// Get cords of measuring point
ix = mesh_point % MESH_MEAS_NUM_X_POINTS;
iy = mesh_point / MESH_MEAS_NUM_X_POINTS;
if (iy & 1) ix = (MESH_MEAS_NUM_X_POINTS - 1) - ix; // Zig zag
current_position[X_AXIS] = pgm_read_float(bed_ref_points+2*mesh_point);
current_position[Y_AXIS] = pgm_read_float(bed_ref_points+2*mesh_point+1);
// mbl.get_meas_xy(ix, iy, current_position[X_AXIS], current_position[Y_AXIS], false);
@ -2363,9 +2377,18 @@ void process_commands()
st_synchronize();
// Go down until endstop is hit
find_bed_induction_sensor_point_z();
const float Z_CALIBRATION_THRESHOLD = 0.5f;
if (! find_bed_induction_sensor_point_z((has_z && mesh_point > 0) ? z0 - Z_CALIBRATION_THRESHOLD : -10.f)) {
kill_message = MSG_BED_LEVELING_FAILED_POINT_LOW;
break;
}
if (has_z && fabs(z0 - current_position[Z_AXIS]) > Z_CALIBRATION_THRESHOLD) {
kill_message = MSG_BED_LEVELING_FAILED_POINT_HIGH;
break;
}
mbl.set_z(ix, iy, current_position[Z_AXIS]);
if (!IS_SD_PRINTING)
{
custom_message_state--;
@ -2373,9 +2396,13 @@ void process_commands()
mesh_point++;
}
clean_up_after_endstop_move();
current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
if (mesh_point != MESH_MEAS_NUM_X_POINTS * MESH_MEAS_NUM_Y_POINTS) {
st_synchronize();
kill(kill_message);
}
clean_up_after_endstop_move();
mbl.upsample_3x3();
mbl.active = 1;
current_position[X_AXIS] = X_MIN_POS+0.2;
@ -2769,13 +2796,13 @@ void process_commands()
char c = strchr_pointer[1];
verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
}
bool success = find_bed_offset_and_skew(verbosity_level);
BedSkewOffsetDetectionResultType result = find_bed_offset_and_skew(verbosity_level);
clean_up_after_endstop_move();
// Print head up.
current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], homing_feedrate[Z_AXIS]/40, active_extruder);
st_synchronize();
if (result != BED_SKEW_OFFSET_DETECTION_FAILED) {
// Second half: The fine adjustment.
// Let the planner use the uncorrected coordinates.
mbl.reset();
@ -2783,19 +2810,22 @@ void process_commands()
// Home in the XY plane.
setup_for_endstop_move();
home_xy();
success = improve_bed_offset_and_skew(1, verbosity_level);
result = improve_bed_offset_and_skew(1, verbosity_level);
clean_up_after_endstop_move();
// Print head up.
current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], homing_feedrate[Z_AXIS]/40, active_extruder);
st_synchronize();
if (success) {
}
lcd_bed_calibration_show_result(result);
/*
if (result != BED_SKEW_OFFSET_DETECTION_FAILED) {
// Mesh bed leveling.
// Push the commands to the front of the message queue in the reverse order!
// There shall be always enough space reserved for these commands.
enquecommand_front_P((PSTR("G80")));
}
*/
lcd_update_enable(true);
lcd_implementation_clear();
// lcd_return_to_status();
@ -2844,7 +2874,7 @@ void process_commands()
break;
}
#if 0
#if 1
case 48: // M48: scan the bed induction sensor points, print the sensor trigger coordinates to the serial line for visualization on the PC.
{
// Disable the default update procedure of the display. We will do a modal dialog.
@ -4686,22 +4716,64 @@ void get_arc_coordinates()
void clamp_to_software_endstops(float target[3])
{
if (world2machine_correction_mode == WORLD2MACHINE_CORRECTION_NONE || world2machine_correction_mode == WORLD2MACHINE_CORRECTION_SHIFT) {
// No correction or only a shift correction.
// Save computational cycles by not performing the skew correction.
if (world2machine_correction_mode == WORLD2MACHINE_CORRECTION_SHIFT) {
target[0] += world2machine_shift[0];
target[1] += world2machine_shift[1];
}
if (min_software_endstops) {
if (target[X_AXIS] < min_pos[X_AXIS]) target[X_AXIS] = min_pos[X_AXIS];
if (target[Y_AXIS] < min_pos[Y_AXIS]) target[Y_AXIS] = min_pos[Y_AXIS];
}
if (max_software_endstops) {
if (target[X_AXIS] > max_pos[X_AXIS]) target[X_AXIS] = max_pos[X_AXIS];
if (target[Y_AXIS] > max_pos[Y_AXIS]) target[Y_AXIS] = max_pos[Y_AXIS];
}
if (world2machine_correction_mode == WORLD2MACHINE_CORRECTION_SHIFT) {
target[0] -= world2machine_shift[0];
target[1] -= world2machine_shift[1];
}
} else {
// Skew correction is in action.
float x, y;
world2machine(target[0], target[1], x, y);
bool clamped = false;
if (min_software_endstops) {
if (x < min_pos[X_AXIS]) {
x = min_pos[X_AXIS];
clamped = true;
}
if (y < min_pos[Y_AXIS]) {
y = min_pos[Y_AXIS];
clamped = true;
}
}
if (max_software_endstops) {
if (x > max_pos[X_AXIS]) {
x = max_pos[X_AXIS];
clamped = true;
}
if (y > max_pos[Y_AXIS]) {
y = max_pos[Y_AXIS];
clamped = true;
}
}
if (clamped)
machine2world(x, y, target[X_AXIS], target[Y_AXIS]);
}
// Clamp the Z coordinate.
if (min_software_endstops) {
float negative_z_offset = 0;
#ifdef ENABLE_AUTO_BED_LEVELING
if (Z_PROBE_OFFSET_FROM_EXTRUDER < 0) negative_z_offset = negative_z_offset + Z_PROBE_OFFSET_FROM_EXTRUDER;
if (add_homing[Z_AXIS] < 0) negative_z_offset = negative_z_offset + add_homing[Z_AXIS];
#endif
if (target[Z_AXIS] < min_pos[Z_AXIS]+negative_z_offset) target[Z_AXIS] = min_pos[Z_AXIS]+negative_z_offset;
}
if (max_software_endstops) {
if (target[X_AXIS] > max_pos[X_AXIS]) target[X_AXIS] = max_pos[X_AXIS];
if (target[Y_AXIS] > max_pos[Y_AXIS]) target[Y_AXIS] = max_pos[Y_AXIS];
if (target[Z_AXIS] > max_pos[Z_AXIS]) target[Z_AXIS] = max_pos[Z_AXIS];
}
}
@ -4996,7 +5068,7 @@ void manage_inactivity(bool ignore_stepper_queue/*=false*/) //default argument s
check_axes_activity();
}
void kill()
void kill(const char *full_screen_message)
{
cli(); // Stop interrupts
disable_heater();
@ -5014,7 +5086,12 @@ void kill()
#endif
SERIAL_ERROR_START;
SERIAL_ERRORLNRPGM(MSG_ERR_KILLED);
if (full_screen_message != NULL) {
SERIAL_ERRORLNRPGM(full_screen_message);
lcd_display_message_fullscreen_P(full_screen_message);
} else {
LCD_ALERTMESSAGERPGM(MSG_KILLED);
}
// FMC small patch to update the LCD before ending
sei(); // enable interrupts

View file

@ -252,6 +252,110 @@ const char * const MSG_BED_HEATING_LANG_TABLE[LANG_NUM] PROGMEM = {
MSG_BED_HEATING_PL
};
const char MSG_BED_LEVELING_FAILED_POINT_HIGH_EN[] PROGMEM = "Bed leveling failed. Sensor triggered too high. Waiting for reset.";
const char MSG_BED_LEVELING_FAILED_POINT_HIGH_CZ[] PROGMEM = "Kalibrace Z selhala. Sensor sepnul prilis vysoko. Cekam na reset.";
const char MSG_BED_LEVELING_FAILED_POINT_HIGH_IT[] PROGMEM = "Bed leveling failed. Sensor triggered too high. Waiting for reset.";
const char MSG_BED_LEVELING_FAILED_POINT_HIGH_ES[] PROGMEM = "Bed leveling failed. Sensor triggered too high. Waiting for reset.";
const char MSG_BED_LEVELING_FAILED_POINT_HIGH_PL[] PROGMEM = "Bed leveling failed. Sensor triggered too high. Waiting for reset.";
const char * const MSG_BED_LEVELING_FAILED_POINT_HIGH_LANG_TABLE[LANG_NUM] PROGMEM = {
MSG_BED_LEVELING_FAILED_POINT_HIGH_EN,
MSG_BED_LEVELING_FAILED_POINT_HIGH_CZ,
MSG_BED_LEVELING_FAILED_POINT_HIGH_IT,
MSG_BED_LEVELING_FAILED_POINT_HIGH_ES,
MSG_BED_LEVELING_FAILED_POINT_HIGH_PL
};
const char MSG_BED_LEVELING_FAILED_POINT_LOW_EN[] PROGMEM = "Bed leveling failed. Sensor didnt trigger. Debris on nozzle? Waiting for reset.";
const char MSG_BED_LEVELING_FAILED_POINT_LOW_CZ[] PROGMEM = "Kalibrace Z selhala. Sensor nesepnul. Znecistena tryska? Cekam na reset.";
const char MSG_BED_LEVELING_FAILED_POINT_LOW_IT[] PROGMEM = "Bed leveling failed. Sensor didnt trigger. Debris on nozzle? Waiting for reset.";
const char MSG_BED_LEVELING_FAILED_POINT_LOW_ES[] PROGMEM = "Bed leveling failed. Sensor didnt trigger. Debris on nozzle? Waiting for reset.";
const char MSG_BED_LEVELING_FAILED_POINT_LOW_PL[] PROGMEM = "Bed leveling failed. Sensor didnt trigger. Debris on nozzle? Waiting for reset.";
const char * const MSG_BED_LEVELING_FAILED_POINT_LOW_LANG_TABLE[LANG_NUM] PROGMEM = {
MSG_BED_LEVELING_FAILED_POINT_LOW_EN,
MSG_BED_LEVELING_FAILED_POINT_LOW_CZ,
MSG_BED_LEVELING_FAILED_POINT_LOW_IT,
MSG_BED_LEVELING_FAILED_POINT_LOW_ES,
MSG_BED_LEVELING_FAILED_POINT_LOW_PL
};
const char MSG_BED_SKEW_OFFSET_DETECTION_FAILED_EN[] PROGMEM = "X/Y calibration failed. Please consult manual.";
const char MSG_BED_SKEW_OFFSET_DETECTION_FAILED_CZ[] PROGMEM = "Kalibrace X/Y selhala. Nahlednete do manualu.";
const char MSG_BED_SKEW_OFFSET_DETECTION_FAILED_IT[] PROGMEM = "X/Y calibration failed. Please consult manual.";
const char MSG_BED_SKEW_OFFSET_DETECTION_FAILED_ES[] PROGMEM = "X/Y calibration failed. Please consult manual.";
const char MSG_BED_SKEW_OFFSET_DETECTION_FAILED_PL[] PROGMEM = "X/Y calibration failed. Please consult manual.";
const char * const MSG_BED_SKEW_OFFSET_DETECTION_FAILED_LANG_TABLE[LANG_NUM] PROGMEM = {
MSG_BED_SKEW_OFFSET_DETECTION_FAILED_EN,
MSG_BED_SKEW_OFFSET_DETECTION_FAILED_CZ,
MSG_BED_SKEW_OFFSET_DETECTION_FAILED_IT,
MSG_BED_SKEW_OFFSET_DETECTION_FAILED_ES,
MSG_BED_SKEW_OFFSET_DETECTION_FAILED_PL
};
const char MSG_BED_SKEW_OFFSET_DETECTION_FRONT_LEFT_FAR_EN[] PROGMEM = "X/Y calibration bad. Left front corner not reachable. Fix the printer.";
const char MSG_BED_SKEW_OFFSET_DETECTION_FRONT_LEFT_FAR_CZ[] PROGMEM = "Kalibrace selhala. Levy predni bod moc vpredu. Srovnejte tiskarnu.";
const char MSG_BED_SKEW_OFFSET_DETECTION_FRONT_LEFT_FAR_IT[] PROGMEM = "X/Y calibration bad. Left front corner not reachable. Fix the printer.";
const char MSG_BED_SKEW_OFFSET_DETECTION_FRONT_LEFT_FAR_ES[] PROGMEM = "X/Y calibration bad. Left front corner not reachable. Fix the printer.";
const char MSG_BED_SKEW_OFFSET_DETECTION_FRONT_LEFT_FAR_PL[] PROGMEM = "X/Y calibration bad. Left front corner not reachable. Fix the printer.";
const char * const MSG_BED_SKEW_OFFSET_DETECTION_FRONT_LEFT_FAR_LANG_TABLE[LANG_NUM] PROGMEM = {
MSG_BED_SKEW_OFFSET_DETECTION_FRONT_LEFT_FAR_EN,
MSG_BED_SKEW_OFFSET_DETECTION_FRONT_LEFT_FAR_CZ,
MSG_BED_SKEW_OFFSET_DETECTION_FRONT_LEFT_FAR_IT,
MSG_BED_SKEW_OFFSET_DETECTION_FRONT_LEFT_FAR_ES,
MSG_BED_SKEW_OFFSET_DETECTION_FRONT_LEFT_FAR_PL
};
const char MSG_BED_SKEW_OFFSET_DETECTION_FRONT_RIGHT_FAR_EN[] PROGMEM = "X/Y calibration bad. Right front corner not reachable. Fix the printer.";
const char MSG_BED_SKEW_OFFSET_DETECTION_FRONT_RIGHT_FAR_CZ[] PROGMEM = "Kalibrace selhala. Pravy predni bod moc vpredu. Srovnejte tiskarnu.";
const char MSG_BED_SKEW_OFFSET_DETECTION_FRONT_RIGHT_FAR_IT[] PROGMEM = "X/Y calibration bad. Right front corner not reachable. Fix the printer.";
const char MSG_BED_SKEW_OFFSET_DETECTION_FRONT_RIGHT_FAR_ES[] PROGMEM = "X/Y calibration bad. Right front corner not reachable. Fix the printer.";
const char MSG_BED_SKEW_OFFSET_DETECTION_FRONT_RIGHT_FAR_PL[] PROGMEM = "X/Y calibration bad. Right front corner not reachable. Fix the printer.";
const char * const MSG_BED_SKEW_OFFSET_DETECTION_FRONT_RIGHT_FAR_LANG_TABLE[LANG_NUM] PROGMEM = {
MSG_BED_SKEW_OFFSET_DETECTION_FRONT_RIGHT_FAR_EN,
MSG_BED_SKEW_OFFSET_DETECTION_FRONT_RIGHT_FAR_CZ,
MSG_BED_SKEW_OFFSET_DETECTION_FRONT_RIGHT_FAR_IT,
MSG_BED_SKEW_OFFSET_DETECTION_FRONT_RIGHT_FAR_ES,
MSG_BED_SKEW_OFFSET_DETECTION_FRONT_RIGHT_FAR_PL
};
const char MSG_BED_SKEW_OFFSET_DETECTION_PERFECT_EN[] PROGMEM = "X/Y calibration ok. X/Y axes are perpendicular.";
const char MSG_BED_SKEW_OFFSET_DETECTION_PERFECT_CZ[] PROGMEM = "Kalibrace X/Y perfektni. X/Y osy jsou kolme.";
const char MSG_BED_SKEW_OFFSET_DETECTION_PERFECT_IT[] PROGMEM = "X/Y calibration ok. X/Y axes are perpendicular.";
const char MSG_BED_SKEW_OFFSET_DETECTION_PERFECT_ES[] PROGMEM = "X/Y calibration ok. X/Y axes are perpendicular.";
const char MSG_BED_SKEW_OFFSET_DETECTION_PERFECT_PL[] PROGMEM = "X/Y calibration ok. X/Y axes are perpendicular.";
const char * const MSG_BED_SKEW_OFFSET_DETECTION_PERFECT_LANG_TABLE[LANG_NUM] PROGMEM = {
MSG_BED_SKEW_OFFSET_DETECTION_PERFECT_EN,
MSG_BED_SKEW_OFFSET_DETECTION_PERFECT_CZ,
MSG_BED_SKEW_OFFSET_DETECTION_PERFECT_IT,
MSG_BED_SKEW_OFFSET_DETECTION_PERFECT_ES,
MSG_BED_SKEW_OFFSET_DETECTION_PERFECT_PL
};
const char MSG_BED_SKEW_OFFSET_DETECTION_SKEW_EXTREME_EN[] PROGMEM = "X/Y skewed severly. Skew will be corrected automatically.";
const char MSG_BED_SKEW_OFFSET_DETECTION_SKEW_EXTREME_CZ[] PROGMEM = "X/Y osy jsou silne zkosene. Zkoseni bude automaticky vyrovnano pri tisku.";
const char MSG_BED_SKEW_OFFSET_DETECTION_SKEW_EXTREME_IT[] PROGMEM = "X/Y skewed severly. Skew will be corrected automatically.";
const char MSG_BED_SKEW_OFFSET_DETECTION_SKEW_EXTREME_ES[] PROGMEM = "X/Y skewed severly. Skew will be corrected automatically.";
const char MSG_BED_SKEW_OFFSET_DETECTION_SKEW_EXTREME_PL[] PROGMEM = "X/Y skewed severly. Skew will be corrected automatically.";
const char * const MSG_BED_SKEW_OFFSET_DETECTION_SKEW_EXTREME_LANG_TABLE[LANG_NUM] PROGMEM = {
MSG_BED_SKEW_OFFSET_DETECTION_SKEW_EXTREME_EN,
MSG_BED_SKEW_OFFSET_DETECTION_SKEW_EXTREME_CZ,
MSG_BED_SKEW_OFFSET_DETECTION_SKEW_EXTREME_IT,
MSG_BED_SKEW_OFFSET_DETECTION_SKEW_EXTREME_ES,
MSG_BED_SKEW_OFFSET_DETECTION_SKEW_EXTREME_PL
};
const char MSG_BED_SKEW_OFFSET_DETECTION_SKEW_MILD_EN[] PROGMEM = "X/Y calibration all right. X/Y axes are slightly skewed.";
const char MSG_BED_SKEW_OFFSET_DETECTION_SKEW_MILD_CZ[] PROGMEM = "Kalibrace X/Y v poradku. X/Y osy mirne zkosene.";
const char MSG_BED_SKEW_OFFSET_DETECTION_SKEW_MILD_IT[] PROGMEM = "X/Y calibration all right. X/Y axes are slightly skewed.";
const char MSG_BED_SKEW_OFFSET_DETECTION_SKEW_MILD_ES[] PROGMEM = "X/Y calibration all right. X/Y axes are slightly skewed.";
const char MSG_BED_SKEW_OFFSET_DETECTION_SKEW_MILD_PL[] PROGMEM = "X/Y calibration all right. X/Y axes are slightly skewed.";
const char * const MSG_BED_SKEW_OFFSET_DETECTION_SKEW_MILD_LANG_TABLE[LANG_NUM] PROGMEM = {
MSG_BED_SKEW_OFFSET_DETECTION_SKEW_MILD_EN,
MSG_BED_SKEW_OFFSET_DETECTION_SKEW_MILD_CZ,
MSG_BED_SKEW_OFFSET_DETECTION_SKEW_MILD_IT,
MSG_BED_SKEW_OFFSET_DETECTION_SKEW_MILD_ES,
MSG_BED_SKEW_OFFSET_DETECTION_SKEW_MILD_PL
};
const char MSG_BEGIN_FILE_LIST_EN[] PROGMEM = "Begin file list";
const char MSG_BEGIN_FILE_LIST_CZ[] PROGMEM = "Begin file list";
const char MSG_BEGIN_FILE_LIST_IT[] PROGMEM = "Begin file list";
@ -278,11 +382,11 @@ const char * const MSG_BROWNOUT_RESET_LANG_TABLE[LANG_NUM] PROGMEM = {
MSG_BROWNOUT_RESET_PL
};
const char MSG_CALIBRATE_BED_EN[] PROGMEM = "Calibrate bed";
const char MSG_CALIBRATE_BED_CZ[] PROGMEM = "Calibrate bed";
const char MSG_CALIBRATE_BED_IT[] PROGMEM = "Calibrate bed";
const char MSG_CALIBRATE_BED_ES[] PROGMEM = "Calibrate bed";
const char MSG_CALIBRATE_BED_PL[] PROGMEM = "Calibrate bed";
const char MSG_CALIBRATE_BED_EN[] PROGMEM = "Calibrate X/Y";
const char MSG_CALIBRATE_BED_CZ[] PROGMEM = "Kalibrace X/Y";
const char MSG_CALIBRATE_BED_IT[] PROGMEM = "Calibrate X/Y";
const char MSG_CALIBRATE_BED_ES[] PROGMEM = "Calibrate X/Y";
const char MSG_CALIBRATE_BED_PL[] PROGMEM = "Calibrate X/Y";
const char * const MSG_CALIBRATE_BED_LANG_TABLE[LANG_NUM] PROGMEM = {
MSG_CALIBRATE_BED_EN,
MSG_CALIBRATE_BED_CZ,
@ -291,11 +395,11 @@ const char * const MSG_CALIBRATE_BED_LANG_TABLE[LANG_NUM] PROGMEM = {
MSG_CALIBRATE_BED_PL
};
const char MSG_CALIBRATE_BED_RESET_EN[] PROGMEM = "Reset bed calibration";
const char MSG_CALIBRATE_BED_RESET_CZ[] PROGMEM = "Reset bed calibration";
const char MSG_CALIBRATE_BED_RESET_IT[] PROGMEM = "Reset bed calibration";
const char MSG_CALIBRATE_BED_RESET_ES[] PROGMEM = "Reset bed calibration";
const char MSG_CALIBRATE_BED_RESET_PL[] PROGMEM = "Reset bed calibration";
const char MSG_CALIBRATE_BED_RESET_EN[] PROGMEM = "Reset X/Y calibr.";
const char MSG_CALIBRATE_BED_RESET_CZ[] PROGMEM = "Reset X/Y kalibr.";
const char MSG_CALIBRATE_BED_RESET_IT[] PROGMEM = "Reset X/Y calibr.";
const char MSG_CALIBRATE_BED_RESET_ES[] PROGMEM = "Reset X/Y calibr.";
const char MSG_CALIBRATE_BED_RESET_PL[] PROGMEM = "Reset X/Y calibr.";
const char * const MSG_CALIBRATE_BED_RESET_LANG_TABLE[LANG_NUM] PROGMEM = {
MSG_CALIBRATE_BED_RESET_EN,
MSG_CALIBRATE_BED_RESET_CZ,
@ -370,7 +474,7 @@ const char * const MSG_CONFIGURATION_VER_LANG_TABLE[LANG_NUM] PROGMEM = {
};
const char MSG_CONFIRM_CARRIAGE_AT_THE_TOP_LINE1_EN[] PROGMEM = "Are left and right";
const char MSG_CONFIRM_CARRIAGE_AT_THE_TOP_LINE1_CZ[] PROGMEM = "Are left and right";
const char MSG_CONFIRM_CARRIAGE_AT_THE_TOP_LINE1_CZ[] PROGMEM = "Dojely oba Z voziky";
const char MSG_CONFIRM_CARRIAGE_AT_THE_TOP_LINE1_IT[] PROGMEM = "Are left and right";
const char MSG_CONFIRM_CARRIAGE_AT_THE_TOP_LINE1_ES[] PROGMEM = "Are left and right";
const char MSG_CONFIRM_CARRIAGE_AT_THE_TOP_LINE1_PL[] PROGMEM = "Are left and right";
@ -383,7 +487,7 @@ const char * const MSG_CONFIRM_CARRIAGE_AT_THE_TOP_LINE1_LANG_TABLE[LANG_NUM] PR
};
const char MSG_CONFIRM_CARRIAGE_AT_THE_TOP_LINE2_EN[] PROGMEM = "Z carriages all up?";
const char MSG_CONFIRM_CARRIAGE_AT_THE_TOP_LINE2_CZ[] PROGMEM = "Z carriages all up?";
const char MSG_CONFIRM_CARRIAGE_AT_THE_TOP_LINE2_CZ[] PROGMEM = "k hornimu dorazu?";
const char MSG_CONFIRM_CARRIAGE_AT_THE_TOP_LINE2_IT[] PROGMEM = "Z carriages all up?";
const char MSG_CONFIRM_CARRIAGE_AT_THE_TOP_LINE2_ES[] PROGMEM = "Z carriages all up?";
const char MSG_CONFIRM_CARRIAGE_AT_THE_TOP_LINE2_PL[] PROGMEM = "Z carriages all up?";
@ -942,7 +1046,7 @@ const char * const MSG_FILE_SAVED_LANG_TABLE[LANG_NUM] PROGMEM = {
};
const char MSG_FIND_BED_OFFSET_AND_SKEW_LINE1_EN[] PROGMEM = "Searching bed";
const char MSG_FIND_BED_OFFSET_AND_SKEW_LINE1_CZ[] PROGMEM = "Searching bed";
const char MSG_FIND_BED_OFFSET_AND_SKEW_LINE1_CZ[] PROGMEM = "Hledam kalibracni";
const char MSG_FIND_BED_OFFSET_AND_SKEW_LINE1_IT[] PROGMEM = "Searching bed";
const char MSG_FIND_BED_OFFSET_AND_SKEW_LINE1_ES[] PROGMEM = "Searching bed";
const char MSG_FIND_BED_OFFSET_AND_SKEW_LINE1_PL[] PROGMEM = "Searching bed";
@ -955,7 +1059,7 @@ const char * const MSG_FIND_BED_OFFSET_AND_SKEW_LINE1_LANG_TABLE[LANG_NUM] PROGM
};
const char MSG_FIND_BED_OFFSET_AND_SKEW_LINE2_EN[] PROGMEM = "calibration point";
const char MSG_FIND_BED_OFFSET_AND_SKEW_LINE2_CZ[] PROGMEM = "calibration point";
const char MSG_FIND_BED_OFFSET_AND_SKEW_LINE2_CZ[] PROGMEM = "bod podlozky";
const char MSG_FIND_BED_OFFSET_AND_SKEW_LINE2_IT[] PROGMEM = "calibration point";
const char MSG_FIND_BED_OFFSET_AND_SKEW_LINE2_ES[] PROGMEM = "calibration point";
const char MSG_FIND_BED_OFFSET_AND_SKEW_LINE2_PL[] PROGMEM = "calibration point";
@ -968,7 +1072,7 @@ const char * const MSG_FIND_BED_OFFSET_AND_SKEW_LINE2_LANG_TABLE[LANG_NUM] PROGM
};
const char MSG_FIND_BED_OFFSET_AND_SKEW_LINE3_EN[] PROGMEM = " of 4";
const char MSG_FIND_BED_OFFSET_AND_SKEW_LINE3_CZ[] PROGMEM = " of 4";
const char MSG_FIND_BED_OFFSET_AND_SKEW_LINE3_CZ[] PROGMEM = " z 4";
const char MSG_FIND_BED_OFFSET_AND_SKEW_LINE3_IT[] PROGMEM = " of 4";
const char MSG_FIND_BED_OFFSET_AND_SKEW_LINE3_ES[] PROGMEM = " of 4";
const char MSG_FIND_BED_OFFSET_AND_SKEW_LINE3_PL[] PROGMEM = " of 4";
@ -1124,7 +1228,7 @@ const char * const MSG_HOTEND_OFFSET_LANG_TABLE[LANG_NUM] PROGMEM = {
};
const char MSG_IMPROVE_BED_OFFSET_AND_SKEW_LINE1_EN[] PROGMEM = "Improving bed";
const char MSG_IMPROVE_BED_OFFSET_AND_SKEW_LINE1_CZ[] PROGMEM = "Improving bed";
const char MSG_IMPROVE_BED_OFFSET_AND_SKEW_LINE1_CZ[] PROGMEM = "Zlepsuji presnost";
const char MSG_IMPROVE_BED_OFFSET_AND_SKEW_LINE1_IT[] PROGMEM = "Improving bed";
const char MSG_IMPROVE_BED_OFFSET_AND_SKEW_LINE1_ES[] PROGMEM = "Improving bed";
const char MSG_IMPROVE_BED_OFFSET_AND_SKEW_LINE1_PL[] PROGMEM = "Improving bed";
@ -1137,7 +1241,7 @@ const char * const MSG_IMPROVE_BED_OFFSET_AND_SKEW_LINE1_LANG_TABLE[LANG_NUM] PR
};
const char MSG_IMPROVE_BED_OFFSET_AND_SKEW_LINE2_EN[] PROGMEM = "calibration point";
const char MSG_IMPROVE_BED_OFFSET_AND_SKEW_LINE2_CZ[] PROGMEM = "calibration point";
const char MSG_IMPROVE_BED_OFFSET_AND_SKEW_LINE2_CZ[] PROGMEM = "kalibracniho bodu";
const char MSG_IMPROVE_BED_OFFSET_AND_SKEW_LINE2_IT[] PROGMEM = "calibration point";
const char MSG_IMPROVE_BED_OFFSET_AND_SKEW_LINE2_ES[] PROGMEM = "calibration point";
const char MSG_IMPROVE_BED_OFFSET_AND_SKEW_LINE2_PL[] PROGMEM = "calibration point";
@ -1150,7 +1254,7 @@ const char * const MSG_IMPROVE_BED_OFFSET_AND_SKEW_LINE2_LANG_TABLE[LANG_NUM] PR
};
const char MSG_IMPROVE_BED_OFFSET_AND_SKEW_LINE3_EN[] PROGMEM = " of 9";
const char MSG_IMPROVE_BED_OFFSET_AND_SKEW_LINE3_CZ[] PROGMEM = " of 9";
const char MSG_IMPROVE_BED_OFFSET_AND_SKEW_LINE3_CZ[] PROGMEM = " z 9";
const char MSG_IMPROVE_BED_OFFSET_AND_SKEW_LINE3_IT[] PROGMEM = " of 9";
const char MSG_IMPROVE_BED_OFFSET_AND_SKEW_LINE3_ES[] PROGMEM = " of 9";
const char MSG_IMPROVE_BED_OFFSET_AND_SKEW_LINE3_PL[] PROGMEM = " of 9";
@ -1500,11 +1604,11 @@ const char * const MSG_MOVE_AXIS_LANG_TABLE[LANG_NUM] PROGMEM = {
MSG_MOVE_AXIS_PL
};
const char MSG_MOVE_CARRIAGE_TO_THE_TOP_LINE1_EN[] PROGMEM = "Calibrating bed.";
const char MSG_MOVE_CARRIAGE_TO_THE_TOP_LINE1_CZ[] PROGMEM = "Calibrating bed.";
const char MSG_MOVE_CARRIAGE_TO_THE_TOP_LINE1_IT[] PROGMEM = "Calibrating bed.";
const char MSG_MOVE_CARRIAGE_TO_THE_TOP_LINE1_ES[] PROGMEM = "Calibrating bed.";
const char MSG_MOVE_CARRIAGE_TO_THE_TOP_LINE1_PL[] PROGMEM = "Calibrating bed.";
const char MSG_MOVE_CARRIAGE_TO_THE_TOP_LINE1_EN[] PROGMEM = "Calibrating X/Y.";
const char MSG_MOVE_CARRIAGE_TO_THE_TOP_LINE1_CZ[] PROGMEM = "Kalibrace X/Y";
const char MSG_MOVE_CARRIAGE_TO_THE_TOP_LINE1_IT[] PROGMEM = "Calibrating X/Y.";
const char MSG_MOVE_CARRIAGE_TO_THE_TOP_LINE1_ES[] PROGMEM = "Calibrating X/Y.";
const char MSG_MOVE_CARRIAGE_TO_THE_TOP_LINE1_PL[] PROGMEM = "Calibrating X/Y.";
const char * const MSG_MOVE_CARRIAGE_TO_THE_TOP_LINE1_LANG_TABLE[LANG_NUM] PROGMEM = {
MSG_MOVE_CARRIAGE_TO_THE_TOP_LINE1_EN,
MSG_MOVE_CARRIAGE_TO_THE_TOP_LINE1_CZ,
@ -1514,7 +1618,7 @@ const char * const MSG_MOVE_CARRIAGE_TO_THE_TOP_LINE1_LANG_TABLE[LANG_NUM] PROGM
};
const char MSG_MOVE_CARRIAGE_TO_THE_TOP_LINE2_EN[] PROGMEM = "Move Z carriage up";
const char MSG_MOVE_CARRIAGE_TO_THE_TOP_LINE2_CZ[] PROGMEM = "Move Z carriage up";
const char MSG_MOVE_CARRIAGE_TO_THE_TOP_LINE2_CZ[] PROGMEM = "Posunte prosim Z osu";
const char MSG_MOVE_CARRIAGE_TO_THE_TOP_LINE2_IT[] PROGMEM = "Move Z carriage up";
const char MSG_MOVE_CARRIAGE_TO_THE_TOP_LINE2_ES[] PROGMEM = "Move Z carriage up";
const char MSG_MOVE_CARRIAGE_TO_THE_TOP_LINE2_PL[] PROGMEM = "Move Z carriage up";
@ -1527,7 +1631,7 @@ const char * const MSG_MOVE_CARRIAGE_TO_THE_TOP_LINE2_LANG_TABLE[LANG_NUM] PROGM
};
const char MSG_MOVE_CARRIAGE_TO_THE_TOP_LINE3_EN[] PROGMEM = "to the end stoppers.";
const char MSG_MOVE_CARRIAGE_TO_THE_TOP_LINE3_CZ[] PROGMEM = "to the end stoppers.";
const char MSG_MOVE_CARRIAGE_TO_THE_TOP_LINE3_CZ[] PROGMEM = "az k hornimu dorazu.";
const char MSG_MOVE_CARRIAGE_TO_THE_TOP_LINE3_IT[] PROGMEM = "to the end stoppers.";
const char MSG_MOVE_CARRIAGE_TO_THE_TOP_LINE3_ES[] PROGMEM = "to the end stoppers.";
const char MSG_MOVE_CARRIAGE_TO_THE_TOP_LINE3_PL[] PROGMEM = "to the end stoppers.";
@ -1540,7 +1644,7 @@ const char * const MSG_MOVE_CARRIAGE_TO_THE_TOP_LINE3_LANG_TABLE[LANG_NUM] PROGM
};
const char MSG_MOVE_CARRIAGE_TO_THE_TOP_LINE4_EN[] PROGMEM = "Click when done.";
const char MSG_MOVE_CARRIAGE_TO_THE_TOP_LINE4_CZ[] PROGMEM = "Click when done.";
const char MSG_MOVE_CARRIAGE_TO_THE_TOP_LINE4_CZ[] PROGMEM = "Potvrdte tlacitkem.";
const char MSG_MOVE_CARRIAGE_TO_THE_TOP_LINE4_IT[] PROGMEM = "Click when done.";
const char MSG_MOVE_CARRIAGE_TO_THE_TOP_LINE4_ES[] PROGMEM = "Click when done.";
const char MSG_MOVE_CARRIAGE_TO_THE_TOP_LINE4_PL[] PROGMEM = "Click when done.";
@ -2839,6 +2943,19 @@ const char * const MSG_SET_ORIGIN_LANG_TABLE[LANG_NUM] PROGMEM = {
MSG_SET_ORIGIN_PL
};
const char MSG_SHOW_END_STOPS_EN[] PROGMEM = "Show end stops";
const char MSG_SHOW_END_STOPS_CZ[] PROGMEM = "Zobraz konc. spinace";
const char MSG_SHOW_END_STOPS_IT[] PROGMEM = "Show end stops";
const char MSG_SHOW_END_STOPS_ES[] PROGMEM = "Show end stops";
const char MSG_SHOW_END_STOPS_PL[] PROGMEM = "Show end stops";
const char * const MSG_SHOW_END_STOPS_LANG_TABLE[LANG_NUM] PROGMEM = {
MSG_SHOW_END_STOPS_EN,
MSG_SHOW_END_STOPS_CZ,
MSG_SHOW_END_STOPS_IT,
MSG_SHOW_END_STOPS_ES,
MSG_SHOW_END_STOPS_PL
};
const char MSG_SILENT_MODE_OFF_EN[] PROGMEM = "Mode [high power]";
const char MSG_SILENT_MODE_OFF_CZ[] PROGMEM = "Mod [vys. vykon]";
const char MSG_SILENT_MODE_OFF_IT[] PROGMEM = "Modo [piu forza]";

View file

@ -46,6 +46,22 @@ extern const char* const MSG_BED_DONE_LANG_TABLE[LANG_NUM];
#define MSG_BED_DONE LANG_TABLE_SELECT(MSG_BED_DONE_LANG_TABLE)
extern const char* const MSG_BED_HEATING_LANG_TABLE[LANG_NUM];
#define MSG_BED_HEATING LANG_TABLE_SELECT(MSG_BED_HEATING_LANG_TABLE)
extern const char* const MSG_BED_LEVELING_FAILED_POINT_HIGH_LANG_TABLE[LANG_NUM];
#define MSG_BED_LEVELING_FAILED_POINT_HIGH LANG_TABLE_SELECT(MSG_BED_LEVELING_FAILED_POINT_HIGH_LANG_TABLE)
extern const char* const MSG_BED_LEVELING_FAILED_POINT_LOW_LANG_TABLE[LANG_NUM];
#define MSG_BED_LEVELING_FAILED_POINT_LOW LANG_TABLE_SELECT(MSG_BED_LEVELING_FAILED_POINT_LOW_LANG_TABLE)
extern const char* const MSG_BED_SKEW_OFFSET_DETECTION_FAILED_LANG_TABLE[LANG_NUM];
#define MSG_BED_SKEW_OFFSET_DETECTION_FAILED LANG_TABLE_SELECT(MSG_BED_SKEW_OFFSET_DETECTION_FAILED_LANG_TABLE)
extern const char* const MSG_BED_SKEW_OFFSET_DETECTION_FRONT_LEFT_FAR_LANG_TABLE[LANG_NUM];
#define MSG_BED_SKEW_OFFSET_DETECTION_FRONT_LEFT_FAR LANG_TABLE_SELECT(MSG_BED_SKEW_OFFSET_DETECTION_FRONT_LEFT_FAR_LANG_TABLE)
extern const char* const MSG_BED_SKEW_OFFSET_DETECTION_FRONT_RIGHT_FAR_LANG_TABLE[LANG_NUM];
#define MSG_BED_SKEW_OFFSET_DETECTION_FRONT_RIGHT_FAR LANG_TABLE_SELECT(MSG_BED_SKEW_OFFSET_DETECTION_FRONT_RIGHT_FAR_LANG_TABLE)
extern const char* const MSG_BED_SKEW_OFFSET_DETECTION_PERFECT_LANG_TABLE[LANG_NUM];
#define MSG_BED_SKEW_OFFSET_DETECTION_PERFECT LANG_TABLE_SELECT(MSG_BED_SKEW_OFFSET_DETECTION_PERFECT_LANG_TABLE)
extern const char* const MSG_BED_SKEW_OFFSET_DETECTION_SKEW_EXTREME_LANG_TABLE[LANG_NUM];
#define MSG_BED_SKEW_OFFSET_DETECTION_SKEW_EXTREME LANG_TABLE_SELECT(MSG_BED_SKEW_OFFSET_DETECTION_SKEW_EXTREME_LANG_TABLE)
extern const char* const MSG_BED_SKEW_OFFSET_DETECTION_SKEW_MILD_LANG_TABLE[LANG_NUM];
#define MSG_BED_SKEW_OFFSET_DETECTION_SKEW_MILD LANG_TABLE_SELECT(MSG_BED_SKEW_OFFSET_DETECTION_SKEW_MILD_LANG_TABLE)
extern const char* const MSG_BEGIN_FILE_LIST_LANG_TABLE[LANG_NUM];
#define MSG_BEGIN_FILE_LIST LANG_TABLE_SELECT(MSG_BEGIN_FILE_LIST_LANG_TABLE)
extern const char* const MSG_BROWNOUT_RESET_LANG_TABLE[LANG_NUM];
@ -446,6 +462,8 @@ extern const char* const MSG_SET_HOME_OFFSETS_LANG_TABLE[LANG_NUM];
#define MSG_SET_HOME_OFFSETS LANG_TABLE_SELECT(MSG_SET_HOME_OFFSETS_LANG_TABLE)
extern const char* const MSG_SET_ORIGIN_LANG_TABLE[LANG_NUM];
#define MSG_SET_ORIGIN LANG_TABLE_SELECT(MSG_SET_ORIGIN_LANG_TABLE)
extern const char* const MSG_SHOW_END_STOPS_LANG_TABLE[LANG_NUM];
#define MSG_SHOW_END_STOPS LANG_TABLE_SELECT(MSG_SHOW_END_STOPS_LANG_TABLE)
extern const char* const MSG_SILENT_MODE_OFF_LANG_TABLE[LANG_NUM];
#define MSG_SILENT_MODE_OFF LANG_TABLE_SELECT(MSG_SILENT_MODE_OFF_LANG_TABLE)
extern const char* const MSG_SILENT_MODE_ON_LANG_TABLE[LANG_NUM];

View file

@ -278,4 +278,33 @@
#define MSG_STATISTICS "Statistika "
#define MSG_USB_PRINTING "Tisk z USB "
#define MSG_SHOW_END_STOPS "Zobraz konc. spinace"
#define MSG_CALIBRATE_BED "Kalibrace X/Y"
#define MSG_CALIBRATE_BED_RESET "Reset X/Y kalibr."
#define MSG_MOVE_CARRIAGE_TO_THE_TOP_LINE1 "Kalibrace X/Y"
#define MSG_MOVE_CARRIAGE_TO_THE_TOP_LINE2 "Posunte prosim Z osu"
#define MSG_MOVE_CARRIAGE_TO_THE_TOP_LINE3 "az k hornimu dorazu."
#define MSG_MOVE_CARRIAGE_TO_THE_TOP_LINE4 "Potvrdte tlacitkem."
#define MSG_CONFIRM_CARRIAGE_AT_THE_TOP_LINE1 "Dojely oba Z voziky"
#define MSG_CONFIRM_CARRIAGE_AT_THE_TOP_LINE2 "k hornimu dorazu?"
#define MSG_FIND_BED_OFFSET_AND_SKEW_LINE1 "Hledam kalibracni"
#define MSG_FIND_BED_OFFSET_AND_SKEW_LINE2 "bod podlozky"
#define MSG_FIND_BED_OFFSET_AND_SKEW_LINE3 " z 4"
#define MSG_IMPROVE_BED_OFFSET_AND_SKEW_LINE1 "Zlepsuji presnost"
#define MSG_IMPROVE_BED_OFFSET_AND_SKEW_LINE2 "kalibracniho bodu"
#define MSG_IMPROVE_BED_OFFSET_AND_SKEW_LINE3 " z 9"
#define MSG_BED_SKEW_OFFSET_DETECTION_FAILED "Kalibrace X/Y selhala. Nahlednete do manualu."
#define MSG_BED_SKEW_OFFSET_DETECTION_PERFECT "Kalibrace X/Y perfektni. X/Y osy jsou kolme."
#define MSG_BED_SKEW_OFFSET_DETECTION_SKEW_MILD "Kalibrace X/Y v poradku. X/Y osy mirne zkosene."
#define MSG_BED_SKEW_OFFSET_DETECTION_SKEW_EXTREME "X/Y osy jsou silne zkosene. Zkoseni bude automaticky vyrovnano pri tisku."
#define MSG_BED_SKEW_OFFSET_DETECTION_FRONT_LEFT_FAR "Kalibrace selhala. Levy predni bod moc vpredu. Srovnejte tiskarnu."
#define MSG_BED_SKEW_OFFSET_DETECTION_FRONT_RIGHT_FAR "Kalibrace selhala. Pravy predni bod moc vpredu. Srovnejte tiskarnu."
#define MSG_BED_LEVELING_FAILED_POINT_LOW "Kalibrace Z selhala. Sensor nesepnul. Znecistena tryska? Cekam na reset."
#define MSG_BED_LEVELING_FAILED_POINT_HIGH "Kalibrace Z selhala. Sensor sepnul prilis vysoko. Cekam na reset."
#endif // LANGUAGE_EN_H

View file

@ -271,10 +271,11 @@
#define MSG_HOMEYZ_PROGRESS "Calibrating Z"
#define MSG_HOMEYZ_DONE "Calibration done"
#define MSG_CALIBRATE_BED "Calibrate bed"
#define MSG_CALIBRATE_BED_RESET "Reset bed calibration"
#define MSG_SHOW_END_STOPS "Show end stops"
#define MSG_CALIBRATE_BED "Calibrate X/Y"
#define MSG_CALIBRATE_BED_RESET "Reset X/Y calibr."
#define MSG_MOVE_CARRIAGE_TO_THE_TOP_LINE1 "Calibrating bed."
#define MSG_MOVE_CARRIAGE_TO_THE_TOP_LINE1 "Calibrating X/Y."
#define MSG_MOVE_CARRIAGE_TO_THE_TOP_LINE2 "Move Z carriage up"
#define MSG_MOVE_CARRIAGE_TO_THE_TOP_LINE3 "to the end stoppers."
#define MSG_MOVE_CARRIAGE_TO_THE_TOP_LINE4 "Click when done."
@ -289,4 +290,14 @@
#define MSG_IMPROVE_BED_OFFSET_AND_SKEW_LINE2 "calibration point"
#define MSG_IMPROVE_BED_OFFSET_AND_SKEW_LINE3 " of 9"
#define MSG_BED_SKEW_OFFSET_DETECTION_FAILED "X/Y calibration failed. Please consult manual."
#define MSG_BED_SKEW_OFFSET_DETECTION_PERFECT "X/Y calibration ok. X/Y axes are perpendicular."
#define MSG_BED_SKEW_OFFSET_DETECTION_SKEW_MILD "X/Y calibration all right. X/Y axes are slightly skewed."
#define MSG_BED_SKEW_OFFSET_DETECTION_SKEW_EXTREME "X/Y skewed severly. Skew will be corrected automatically."
#define MSG_BED_SKEW_OFFSET_DETECTION_FRONT_LEFT_FAR "X/Y calibration bad. Left front corner not reachable. Fix the printer."
#define MSG_BED_SKEW_OFFSET_DETECTION_FRONT_RIGHT_FAR "X/Y calibration bad. Right front corner not reachable. Fix the printer."
#define MSG_BED_LEVELING_FAILED_POINT_LOW "Bed leveling failed. Sensor didnt trigger. Debris on nozzle? Waiting for reset."
#define MSG_BED_LEVELING_FAILED_POINT_HIGH "Bed leveling failed. Sensor triggered too high. Waiting for reset."
#endif // LANGUAGE_EN_H

View file

@ -9,7 +9,9 @@
extern float home_retract_mm_ext(int axis);
uint8_t world2machine_correction_mode;
float world2machine_rotation_and_skew[2][2];
float world2machine_rotation_and_skew_inv[2][2];
float world2machine_shift[2];
// Weight of the Y coordinate for the least squares fitting of the bed induction sensor targets.
@ -24,6 +26,13 @@ float world2machine_shift[2];
#define MACHINE_AXIS_SCALE_X ((250.f + 0.5f) / 250.f)
#define MACHINE_AXIS_SCALE_Y ((250.f + 0.5f) / 250.f)
#define BED_SKEW_ANGLE_MILD (0.12f * M_PI / 180.f)
#define BED_SKEW_ANGLE_EXTREME (0.25f * M_PI / 180.f)
#define BED_CALIBRATION_POINT_OFFSET_MAX_EUCLIDIAN (0.8f)
#define BED_CALIBRATION_POINT_OFFSET_MAX_1ST_ROW_X (0.8f)
#define BED_CALIBRATION_POINT_OFFSET_MAX_1ST_ROW_Y (1.5f)
// Positions of the bed reference points in the machine coordinates, referenced to the P.I.N.D.A sensor.
// The points are ordered in a zig-zag fashion to speed up the calibration.
const float bed_ref_points[] PROGMEM = {
@ -352,7 +361,7 @@ bool calculate_machine_skew_and_offset_LS(
// using the Gauss-Newton method.
// This method will maintain a unity length of the machine axes,
// which is the correct approach if the sensor points are not measured precisely.
bool calculate_machine_skew_and_offset_LS(
BedSkewOffsetDetectionResultType calculate_machine_skew_and_offset_LS(
// Matrix of maximum 9 2D points (18 floats)
const float *measured_pts,
uint8_t npts,
@ -533,6 +542,18 @@ bool calculate_machine_skew_and_offset_LS(
vec_y[0] = -sin(a2) * MACHINE_AXIS_SCALE_Y;
vec_y[1] = cos(a2) * MACHINE_AXIS_SCALE_Y;
BedSkewOffsetDetectionResultType result = BED_SKEW_OFFSET_DETECTION_PERFECT;
{
float angleDiff = fabs(a2 - a1);
if (angleDiff > BED_SKEW_ANGLE_MILD)
result = (angleDiff > BED_SKEW_ANGLE_EXTREME) ?
BED_SKEW_OFFSET_DETECTION_SKEW_EXTREME :
BED_SKEW_OFFSET_DETECTION_SKEW_MILD;
if (fabs(a1) > BED_SKEW_ANGLE_EXTREME ||
fabs(a2) > BED_SKEW_ANGLE_EXTREME)
result = BED_SKEW_OFFSET_DETECTION_SKEW_EXTREME;
}
if (verbosity_level >= 1) {
SERIAL_ECHOPGM("correction angles: ");
MYSERIAL.print(180.f * a1 / M_PI, 5);
@ -563,9 +584,24 @@ bool calculate_machine_skew_and_offset_LS(
delay_keep_alive(100);
SERIAL_ECHOLNPGM("Error after correction: ");
}
// Measure the error after correction.
for (uint8_t i = 0; i < npts; ++i) {
float x = vec_x[0] * measured_pts[i * 2] + vec_y[0] * measured_pts[i * 2 + 1] + cntr[0];
float y = vec_x[1] * measured_pts[i * 2] + vec_y[1] * measured_pts[i * 2 + 1] + cntr[1];
float errX = sqr(pgm_read_float(true_pts + i * 2) - x);
float errY = sqr(pgm_read_float(true_pts + i * 2 + 1) - y);
float err = sqrt(errX + errY);
if (i < 3) {
if (sqrt(errX) > BED_CALIBRATION_POINT_OFFSET_MAX_1ST_ROW_X ||
sqrt(errY) > BED_CALIBRATION_POINT_OFFSET_MAX_1ST_ROW_Y)
result = BED_SKEW_OFFSET_DETECTION_FAILED;
} else {
if (err > BED_CALIBRATION_POINT_OFFSET_MAX_EUCLIDIAN)
result = BED_SKEW_OFFSET_DETECTION_FAILED;
}
if (verbosity_level >= 10) {
SERIAL_ECHOPGM("point #");
MYSERIAL.print(int(i));
SERIAL_ECHOPGM(" measured: (");
@ -581,11 +617,20 @@ bool calculate_machine_skew_and_offset_LS(
SERIAL_ECHOPGM(", ");
MYSERIAL.print(pgm_read_float(true_pts + i * 2 + 1), 5);
SERIAL_ECHOPGM("), error: ");
MYSERIAL.print(sqrt(sqr(pgm_read_float(true_pts + i * 2) - x) + sqr(pgm_read_float(true_pts + i * 2 + 1) - y)));
MYSERIAL.print(err);
SERIAL_ECHOLNPGM("");
}
}
if (result == BED_SKEW_OFFSET_DETECTION_PERFECT && fabs(a1) < BED_SKEW_ANGLE_MILD && fabs(a2) < BED_SKEW_ANGLE_MILD) {
if (verbosity_level > 0)
SERIAL_ECHOLNPGM("Very little skew detected. Disabling skew correction.");
vec_x[0] = MACHINE_AXIS_SCALE_X;
vec_x[1] = 0.f;
vec_y[0] = 0.f;
vec_y[1] = MACHINE_AXIS_SCALE_Y;
}
// Invert the transformation matrix made of vec_x, vec_y and cntr.
{
float d = vec_x[0] * vec_y[1] - vec_x[1] * vec_y[0];
@ -653,7 +698,7 @@ bool calculate_machine_skew_and_offset_LS(
delay_keep_alive(100);
}
return true;
return result;
}
#endif
@ -666,18 +711,57 @@ void reset_bed_offset_and_skew()
eeprom_update_dword((uint32_t*)(EEPROM_BED_CALIBRATION_VEC_X +4), 0x0FFFFFFFF);
eeprom_update_dword((uint32_t*)(EEPROM_BED_CALIBRATION_VEC_Y +0), 0x0FFFFFFFF);
eeprom_update_dword((uint32_t*)(EEPROM_BED_CALIBRATION_VEC_Y +4), 0x0FFFFFFFF);
// Reset the 8 16bit offsets.
for (int8_t i = 0; i < 4; ++ i)
eeprom_update_dword((uint32_t*)(EEPROM_BED_CALIBRATION_Z_JITTER+i*4), 0x0FFFFFFFF);
}
bool is_bed_z_jitter_data_valid()
{
for (int8_t i = 0; i < 8; ++ i)
if (eeprom_read_word((uint16_t*)(EEPROM_BED_CALIBRATION_Z_JITTER+i*2)) == 0x0FFFF)
return false;
return true;
}
static void world2machine_update(const float vec_x[2], const float vec_y[2], const float cntr[2])
{
world2machine_rotation_and_skew[0][0] = vec_x[0];
world2machine_rotation_and_skew[1][0] = vec_x[1];
world2machine_rotation_and_skew[0][1] = vec_y[0];
world2machine_rotation_and_skew[1][1] = vec_y[1];
world2machine_shift[0] = cntr[0];
world2machine_shift[1] = cntr[1];
// No correction.
world2machine_correction_mode = WORLD2MACHINE_CORRECTION_NONE;
if (world2machine_shift[0] != 0.f || world2machine_shift[1] != 0.f)
// Shift correction.
world2machine_correction_mode |= WORLD2MACHINE_CORRECTION_SHIFT;
if (world2machine_rotation_and_skew[0][0] != 1.f || world2machine_rotation_and_skew[0][1] != 0.f ||
world2machine_rotation_and_skew[1][0] != 0.f || world2machine_rotation_and_skew[1][1] != 1.f) {
// Rotation & skew correction.
world2machine_correction_mode |= WORLD2MACHINE_CORRECTION_SKEW;
// Invert the world2machine matrix.
float d = world2machine_rotation_and_skew[0][0] * world2machine_rotation_and_skew[1][1] - world2machine_rotation_and_skew[1][0] * world2machine_rotation_and_skew[0][1];
world2machine_rotation_and_skew_inv[0][0] = world2machine_rotation_and_skew[1][1] / d;
world2machine_rotation_and_skew_inv[0][1] = -world2machine_rotation_and_skew[0][1] / d;
world2machine_rotation_and_skew_inv[1][0] = -world2machine_rotation_and_skew[1][0] / d;
world2machine_rotation_and_skew_inv[1][1] = world2machine_rotation_and_skew[0][0] / d;
} else {
world2machine_rotation_and_skew_inv[0][0] = 1.f;
world2machine_rotation_and_skew_inv[0][1] = 0.f;
world2machine_rotation_and_skew_inv[1][0] = 0.f;
world2machine_rotation_and_skew_inv[1][1] = 1.f;
}
}
void world2machine_reset()
{
// Identity transformation.
world2machine_rotation_and_skew[0][0] = 1.f;
world2machine_rotation_and_skew[0][1] = 0.f;
world2machine_rotation_and_skew[1][0] = 0.f;
world2machine_rotation_and_skew[1][1] = 1.f;
// Zero shift.
world2machine_shift[0] = 0.f;
world2machine_shift[1] = 0.f;
const float vx[] = { 1.f, 0.f };
const float vy[] = { 0.f, 1.f };
const float cntr[] = { 0.f, 0.f };
world2machine_update(vx, vy, cntr);
}
static inline bool vec_undef(const float v[2])
@ -688,6 +772,7 @@ static inline bool vec_undef(const float v[2])
void world2machine_initialize()
{
SERIAL_ECHOLNPGM("world2machine_initialize()");
float cntr[2] = {
eeprom_read_float((float*)(EEPROM_BED_CALIBRATION_CENTER+0)),
eeprom_read_float((float*)(EEPROM_BED_CALIBRATION_CENTER+4))
@ -734,16 +819,24 @@ void world2machine_initialize()
}
if (reset) {
// SERIAL_ECHOLNPGM("Invalid bed correction matrix. Resetting to identity.");
SERIAL_ECHOLNPGM("Invalid bed correction matrix. Resetting to identity.");
reset_bed_offset_and_skew();
world2machine_reset();
} else {
world2machine_rotation_and_skew[0][0] = vec_x[0];
world2machine_rotation_and_skew[1][0] = vec_x[1];
world2machine_rotation_and_skew[0][1] = vec_y[0];
world2machine_rotation_and_skew[1][1] = vec_y[1];
world2machine_shift[0] = cntr[0];
world2machine_shift[1] = cntr[1];
world2machine_update(vec_x, vec_y, cntr);
SERIAL_ECHOPGM("world2machine_initialize() loaded: ");
MYSERIAL.print(world2machine_rotation_and_skew[0][0], 5);
SERIAL_ECHOPGM(", ");
MYSERIAL.print(world2machine_rotation_and_skew[0][1], 5);
SERIAL_ECHOPGM(", ");
MYSERIAL.print(world2machine_rotation_and_skew[1][0], 5);
SERIAL_ECHOPGM(", ");
MYSERIAL.print(world2machine_rotation_and_skew[1][1], 5);
SERIAL_ECHOPGM(", offset ");
MYSERIAL.print(world2machine_shift[0], 5);
SERIAL_ECHOPGM(", ");
MYSERIAL.print(world2machine_shift[1], 5);
SERIAL_ECHOLNPGM("");
}
}
@ -753,16 +846,10 @@ void world2machine_initialize()
// and stores the result into current_position[x,y].
void world2machine_update_current()
{
// Invert the transformation matrix made of vec_x, vec_y and cntr.
float d = world2machine_rotation_and_skew[0][0] * world2machine_rotation_and_skew[1][1] - world2machine_rotation_and_skew[1][0] * world2machine_rotation_and_skew[0][1];
float Ainv[2][2] = {
{ world2machine_rotation_and_skew[1][1] / d, - world2machine_rotation_and_skew[0][1] / d },
{ - world2machine_rotation_and_skew[1][0] / d, world2machine_rotation_and_skew[0][0] / d }
};
float x = current_position[X_AXIS] - world2machine_shift[0];
float y = current_position[Y_AXIS] - world2machine_shift[1];
current_position[X_AXIS] = Ainv[0][0] * x + Ainv[0][1] * y;
current_position[Y_AXIS] = Ainv[1][0] * x + Ainv[1][1] * y;
current_position[X_AXIS] = world2machine_rotation_and_skew_inv[0][0] * x + world2machine_rotation_and_skew_inv[0][1] * y;
current_position[Y_AXIS] = world2machine_rotation_and_skew_inv[1][0] * x + world2machine_rotation_and_skew_inv[1][1] * y;
}
static inline void go_xyz(float x, float y, float z, float fr)
@ -798,16 +885,19 @@ static inline void update_current_position_z()
}
// At the current position, find the Z stop.
inline void find_bed_induction_sensor_point_z()
inline bool find_bed_induction_sensor_point_z(float minimum_z)
{
bool endstops_enabled = enable_endstops(true);
bool endstop_z_enabled = enable_z_endstop(false);
endstop_z_hit_on_purpose();
// move down until you find the bed
current_position[Z_AXIS] = -10;
current_position[Z_AXIS] = minimum_z;
go_to_current(homing_feedrate[Z_AXIS]/60);
// we have to let the planner know where we are right now as it is not where we said to go.
update_current_position_z();
if (! endstop_z_hit_on_purpose())
goto error;
// move up the retract distance
current_position[Z_AXIS] += home_retract_mm_ext(Z_AXIS);
@ -815,12 +905,21 @@ inline void find_bed_induction_sensor_point_z()
// move back down slowly to find bed
current_position[Z_AXIS] -= home_retract_mm_ext(Z_AXIS) * 2;
current_position[Z_AXIS] = min(current_position[Z_AXIS], minimum_z);
go_to_current(homing_feedrate[Z_AXIS]/(4*60));
// we have to let the planner know where we are right now as it is not where we said to go.
update_current_position_z();
if (! endstop_z_hit_on_purpose())
goto error;
enable_endstops(endstops_enabled);
enable_z_endstop(endstop_z_enabled);
return true;
error:
enable_endstops(endstops_enabled);
enable_z_endstop(endstop_z_enabled);
return false;
}
// Search around the current_position[X,Y],
@ -1097,11 +1196,24 @@ inline bool improve_bed_induction_sensor_point()
return found;
}
static inline void debug_output_point(const char *type, const float &x, const float &y, const float &z)
{
SERIAL_ECHOPGM("Measured ");
SERIAL_ECHORPGM(type);
SERIAL_ECHOPGM(" ");
MYSERIAL.print(x, 5);
SERIAL_ECHOPGM(", ");
MYSERIAL.print(y, 5);
SERIAL_ECHOPGM(", ");
MYSERIAL.print(z, 5);
SERIAL_ECHOLNPGM("");
}
// Search around the current_position[X,Y,Z].
// It is expected, that the induction sensor is switched on at the current position.
// Look around this center point by painting a star around the point.
#define IMPROVE_BED_INDUCTION_SENSOR_SEARCH_RADIUS (8.f)
inline bool improve_bed_induction_sensor_point2(bool lift_z_on_min_y)
inline bool improve_bed_induction_sensor_point2(bool lift_z_on_min_y, int8_t verbosity_level)
{
float center_old_x = current_position[X_AXIS];
float center_old_y = current_position[Y_AXIS];
@ -1138,6 +1250,10 @@ inline bool improve_bed_induction_sensor_point2(bool lift_z_on_min_y)
goto canceled;
}
b = current_position[X_AXIS];
if (verbosity_level >= 5) {
debug_output_point(PSTR("left" ), a, current_position[Y_AXIS], current_position[Z_AXIS]);
debug_output_point(PSTR("right"), b, current_position[Y_AXIS], current_position[Z_AXIS]);
}
// Go to the center.
enable_z_endstop(false);
@ -1188,6 +1304,10 @@ inline bool improve_bed_induction_sensor_point2(bool lift_z_on_min_y)
goto canceled;
}
b = current_position[Y_AXIS];
if (verbosity_level >= 5) {
debug_output_point(PSTR("top" ), current_position[X_AXIS], a, current_position[Z_AXIS]);
debug_output_point(PSTR("bottom"), current_position[X_AXIS], b, current_position[Z_AXIS]);
}
// Go to the center.
enable_z_endstop(false);
@ -1208,11 +1328,20 @@ canceled:
// Searching in a zig-zag movement in a plane for the maximum width of the response.
#define IMPROVE_BED_INDUCTION_SENSOR_POINT3_SEARCH_RADIUS (4.f)
#define IMPROVE_BED_INDUCTION_SENSOR_POINT3_SEARCH_STEP_FINE_Y (0.1f)
inline bool improve_bed_induction_sensor_point3(int verbosity_level)
enum InductionSensorPointStatusType
{
INDUCTION_SENSOR_POINT_FAILED = -1,
INDUCTION_SENSOR_POINT_OK = 0,
INDUCTION_SENSOR_POINT_FAR,
};
inline InductionSensorPointStatusType improve_bed_induction_sensor_point3(int verbosity_level)
{
float center_old_x = current_position[X_AXIS];
float center_old_y = current_position[Y_AXIS];
float a, b;
// Was the sensor point detected too far in the minus Y axis?
// If yes, the center of the induction point cannot be reached by the machine.
bool y_too_far = false;
{
float x0 = center_old_x - IMPROVE_BED_INDUCTION_SENSOR_POINT3_SEARCH_RADIUS;
float x1 = center_old_x + IMPROVE_BED_INDUCTION_SENSOR_POINT3_SEARCH_RADIUS;
@ -1266,16 +1395,9 @@ inline bool improve_bed_induction_sensor_point3(int verbosity_level)
// goto canceled;
}
b = current_position[X_AXIS];
if (verbosity_level > 20) {
SERIAL_ECHOPGM("Measured left ");
MYSERIAL.print(a, 5);
SERIAL_ECHOPGM("right ");
MYSERIAL.print(b, 5);
SERIAL_ECHOPGM(", ");
MYSERIAL.print(y, 5);
SERIAL_ECHOPGM(", ");
MYSERIAL.print(current_position[Z_AXIS], 5);
SERIAL_ECHOLNPGM("");
if (verbosity_level >= 5) {
debug_output_point(PSTR("left" ), a, current_position[Y_AXIS], current_position[Z_AXIS]);
debug_output_point(PSTR("right"), b, current_position[Y_AXIS], current_position[Z_AXIS]);
}
float d = b - a;
if (d > dmax) {
@ -1291,7 +1413,7 @@ inline bool improve_bed_induction_sensor_point3(int verbosity_level)
goto canceled;
}
SERIAL_PROTOCOLPGM("ok 1\n");
// SERIAL_PROTOCOLPGM("ok 1\n");
// Search in the negative Y direction, until a maximum diameter is found.
dmax = 0.;
if (y0 + 1.f < y1)
@ -1325,16 +1447,9 @@ inline bool improve_bed_induction_sensor_point3(int verbosity_level)
*/
}
b = current_position[X_AXIS];
if (verbosity_level > 20) {
SERIAL_ECHOPGM("Measured left ");
MYSERIAL.print(a, 5);
SERIAL_ECHOPGM("right ");
MYSERIAL.print(b, 5);
SERIAL_ECHOPGM(", ");
MYSERIAL.print(y, 5);
SERIAL_ECHOPGM(", ");
MYSERIAL.print(current_position[Z_AXIS], 5);
SERIAL_ECHOLNPGM("");
if (verbosity_level >= 5) {
debug_output_point(PSTR("left" ), a, current_position[Y_AXIS], current_position[Z_AXIS]);
debug_output_point(PSTR("right"), b, current_position[Y_AXIS], current_position[Z_AXIS]);
}
float d = b - a;
if (d > dmax) {
@ -1352,6 +1467,7 @@ inline bool improve_bed_induction_sensor_point3(int verbosity_level)
// Found only the point going from ymin to ymax.
current_position[X_AXIS] = xmax1;
current_position[Y_AXIS] = y0;
y_too_far = true;
} else {
// Both points found (from ymin to ymax and from ymax to ymin).
float p = 0.5f;
@ -1403,6 +1519,10 @@ inline bool improve_bed_induction_sensor_point3(int verbosity_level)
goto canceled;
}
b = current_position[X_AXIS];
if (verbosity_level >= 5) {
debug_output_point(PSTR("left" ), a, current_position[Y_AXIS], current_position[Z_AXIS]);
debug_output_point(PSTR("right"), b, current_position[Y_AXIS], current_position[Z_AXIS]);
}
// Go to the center.
enable_z_endstop(false);
@ -1410,13 +1530,13 @@ inline bool improve_bed_induction_sensor_point3(int verbosity_level)
go_xy(current_position[X_AXIS], current_position[Y_AXIS], homing_feedrate[X_AXIS] / 60.f);
}
return true;
return y_too_far ? INDUCTION_SENSOR_POINT_FAR : INDUCTION_SENSOR_POINT_OK;
canceled:
// Go back to the center.
enable_z_endstop(false);
go_xy(current_position[X_AXIS], current_position[Y_AXIS], homing_feedrate[X_AXIS] / 60.f);
return false;
return INDUCTION_SENSOR_POINT_FAILED;
}
// Scan the mesh bed induction points one by one by a left-right zig-zag movement,
@ -1447,29 +1567,15 @@ inline void scan_bed_induction_sensor_point()
enable_z_endstop(true);
go_xy(x1, y, homing_feedrate[X_AXIS] / 60.f);
update_current_position_xyz();
if (endstop_z_hit_on_purpose()) {
SERIAL_ECHOPGM("Measured left: ");
MYSERIAL.print(current_position[X_AXIS], 5);
SERIAL_ECHOPGM(", ");
MYSERIAL.print(y, 5);
SERIAL_ECHOPGM(", ");
MYSERIAL.print(current_position[Z_AXIS], 5);
SERIAL_ECHOLNPGM("");
}
if (endstop_z_hit_on_purpose())
debug_output_point(PSTR("left" ), current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS]);
enable_z_endstop(false);
go_xy(x1, y, homing_feedrate[X_AXIS] / 60.f);
enable_z_endstop(true);
go_xy(x0, y, homing_feedrate[X_AXIS] / 60.f);
update_current_position_xyz();
if (endstop_z_hit_on_purpose()) {
SERIAL_ECHOPGM("Measured right: ");
MYSERIAL.print(current_position[X_AXIS], 5);
SERIAL_ECHOPGM(", ");
MYSERIAL.print(y, 5);
SERIAL_ECHOPGM(", ");
MYSERIAL.print(current_position[Z_AXIS], 5);
SERIAL_ECHOLNPGM("");
}
if (endstop_z_hit_on_purpose())
debug_output_point(PSTR("right"), current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS]);
}
enable_z_endstop(false);
@ -1480,7 +1586,7 @@ inline void scan_bed_induction_sensor_point()
#define MESH_BED_CALIBRATION_SHOW_LCD
bool find_bed_offset_and_skew(int8_t verbosity_level)
BedSkewOffsetDetectionResultType find_bed_offset_and_skew(int8_t verbosity_level)
{
// Don't let the manage_inactivity() function remove power from the motors.
refresh_cmd_timeout();
@ -1533,17 +1639,17 @@ bool find_bed_offset_and_skew(int8_t verbosity_level)
if (verbosity_level >= 10)
delay_keep_alive(3000);
if (! find_bed_induction_sensor_point_xy())
return false;
return BED_SKEW_OFFSET_DETECTION_FAILED;
find_bed_induction_sensor_point_z();
#if 1
if (k == 0) {
// Improve the position of the 1st row sensor points by a zig-zag movement.
int8_t i = 4;
for (;;) {
if (improve_bed_induction_sensor_point3(verbosity_level))
if (improve_bed_induction_sensor_point3(verbosity_level) != INDUCTION_SENSOR_POINT_FAILED)
break;
if (-- i == 0)
return false;
return BED_SKEW_OFFSET_DETECTION_FAILED;
// Try to move the Z axis down a bit to increase a chance of the sensor to trigger.
current_position[Z_AXIS] -= 0.025f;
enable_endstops(false);
@ -1552,7 +1658,7 @@ bool find_bed_offset_and_skew(int8_t verbosity_level)
}
if (i == 0)
// not found
return false;
return BED_SKEW_OFFSET_DETECTION_FAILED;
}
#endif
if (verbosity_level >= 10)
@ -1587,12 +1693,7 @@ bool find_bed_offset_and_skew(int8_t verbosity_level)
}
calculate_machine_skew_and_offset_LS(pts, 4, bed_ref_points_4, vec_x, vec_y, cntr, verbosity_level);
world2machine_rotation_and_skew[0][0] = vec_x[0];
world2machine_rotation_and_skew[1][0] = vec_x[1];
world2machine_rotation_and_skew[0][1] = vec_y[0];
world2machine_rotation_and_skew[1][1] = vec_y[1];
world2machine_shift[0] = cntr[0];
world2machine_shift[1] = cntr[1];
world2machine_update(vec_x, vec_y, cntr);
#if 1
// Fearlessly store the calibration values into the eeprom.
eeprom_update_float((float*)(EEPROM_BED_CALIBRATION_CENTER+0), cntr [0]);
@ -1621,10 +1722,10 @@ bool find_bed_offset_and_skew(int8_t verbosity_level)
}
}
return true;
return BED_SKEW_OFFSET_DETECTION_PERFECT;
}
bool improve_bed_offset_and_skew(int8_t method, int8_t verbosity_level)
BedSkewOffsetDetectionResultType improve_bed_offset_and_skew(int8_t method, int8_t verbosity_level)
{
// Don't let the manage_inactivity() function remove power from the motors.
refresh_cmd_timeout();
@ -1657,6 +1758,9 @@ bool improve_bed_offset_and_skew(int8_t method, int8_t verbosity_level)
#endif /* MESH_BED_CALIBRATION_SHOW_LCD */
// Collect a matrix of 9x9 points.
bool leftFrontTooFar = false;
bool rightFrontTooFar = false;
BedSkewOffsetDetectionResultType result = BED_SKEW_OFFSET_DETECTION_PERFECT;
for (int8_t mesh_point = 0; mesh_point < 9; ++ mesh_point) {
// Don't let the manage_inactivity() function remove power from the motors.
refresh_cmd_timeout();
@ -1715,11 +1819,19 @@ bool improve_bed_offset_and_skew(int8_t method, int8_t verbosity_level)
// of the sensor points, the y position cannot be measured
// by a cross center method.
// Use a zig-zag search for the first row of the points.
found = improve_bed_induction_sensor_point3(verbosity_level);
InductionSensorPointStatusType status = improve_bed_induction_sensor_point3(verbosity_level);
if (status == INDUCTION_SENSOR_POINT_FAILED) {
found = false;
} else {
found = true;
if (iter == 7 && INDUCTION_SENSOR_POINT_FAR && mesh_point != 1)
// Remember, which side of the bed is shifted too far in the minus y direction.
result = (mesh_point == 0) ? BED_SKEW_OFFSET_DETECTION_FRONT_LEFT_FAR : BED_SKEW_OFFSET_DETECTION_FRONT_RIGHT_FAR;
}
} else {
switch (method) {
case 0: found = improve_bed_induction_sensor_point(); break;
case 1: found = improve_bed_induction_sensor_point2(mesh_point < 3); break;
case 1: found = improve_bed_induction_sensor_point2(mesh_point < 3, verbosity_level); break;
default: break;
}
}
@ -1763,7 +1875,7 @@ bool improve_bed_offset_and_skew(int8_t method, int8_t verbosity_level)
enable_endstops(false);
enable_z_endstop(false);
if (verbosity_level >= 10) {
if (verbosity_level >= 5) {
// Test the positions. Are the positions reproducible?
for (int8_t mesh_point = 0; mesh_point < 9; ++ mesh_point) {
// Don't let the manage_inactivity() function remove power from the motors.
@ -1772,10 +1884,10 @@ bool improve_bed_offset_and_skew(int8_t method, int8_t verbosity_level)
// Use the coorrected coordinate, which is a result of find_bed_offset_and_skew().
current_position[X_AXIS] = pts[mesh_point*2];
current_position[Y_AXIS] = pts[mesh_point*2+1];
if (verbosity_level >= 10) {
go_to_current(homing_feedrate[X_AXIS]/60);
delay_keep_alive(3000);
#if 0
if (verbosity_level > 20) {
}
SERIAL_ECHOPGM("Final measured bed point ");
SERIAL_ECHO(mesh_point);
SERIAL_ECHOPGM(": ");
@ -1784,17 +1896,13 @@ bool improve_bed_offset_and_skew(int8_t method, int8_t verbosity_level)
MYSERIAL.print(current_position[Y_AXIS], 5);
SERIAL_ECHOLNPGM("");
}
#endif
}
}
calculate_machine_skew_and_offset_LS(pts, 9, bed_ref_points, vec_x, vec_y, cntr, verbosity_level);
world2machine_rotation_and_skew[0][0] = vec_x[0];
world2machine_rotation_and_skew[1][0] = vec_x[1];
world2machine_rotation_and_skew[0][1] = vec_y[0];
world2machine_rotation_and_skew[1][1] = vec_y[1];
world2machine_shift[0] = cntr[0];
world2machine_shift[1] = cntr[1];
result = calculate_machine_skew_and_offset_LS(pts, 9, bed_ref_points, vec_x, vec_y, cntr, verbosity_level);
if (result == BED_SKEW_OFFSET_DETECTION_FAILED)
goto canceled;
world2machine_update(vec_x, vec_y, cntr);
#if 1
// Fearlessly store the calibration values into the eeprom.
eeprom_update_float((float*)(EEPROM_BED_CALIBRATION_CENTER+0), cntr [0]);
@ -1811,7 +1919,7 @@ bool improve_bed_offset_and_skew(int8_t method, int8_t verbosity_level)
enable_endstops(false);
enable_z_endstop(false);
if (verbosity_level >= 10) {
if (verbosity_level >= 5) {
// Test the positions. Are the positions reproducible? Now the calibration is active in the planner.
delay_keep_alive(3000);
for (int8_t mesh_point = 0; mesh_point < 9; ++ mesh_point) {
@ -1821,10 +1929,10 @@ bool improve_bed_offset_and_skew(int8_t method, int8_t verbosity_level)
// Use the coorrected coordinate, which is a result of find_bed_offset_and_skew().
current_position[X_AXIS] = pgm_read_float(bed_ref_points+mesh_point*2);
current_position[Y_AXIS] = pgm_read_float(bed_ref_points+mesh_point*2+1);
if (verbosity_level >= 10) {
go_to_current(homing_feedrate[X_AXIS]/60);
delay_keep_alive(3000);
#if 0
if (verbosity_level > 20) {
}
SERIAL_ECHOPGM("Final calculated bed point ");
SERIAL_ECHO(mesh_point);
SERIAL_ECHOPGM(": ");
@ -1833,25 +1941,113 @@ bool improve_bed_offset_and_skew(int8_t method, int8_t verbosity_level)
MYSERIAL.print(st_get_position_mm(Y_AXIS), 5);
SERIAL_ECHOLNPGM("");
}
#endif
}
// Sample Z heights for the mesh bed leveling.
// In addition, store the results into an eeprom, to be used later for verification of the bed leveling process.
{
// The first point defines the reference.
current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
go_to_current(homing_feedrate[Z_AXIS]/60);
current_position[X_AXIS] = pgm_read_float(bed_ref_points);
current_position[Y_AXIS] = pgm_read_float(bed_ref_points+1);
go_to_current(homing_feedrate[X_AXIS]/60);
memcpy(destination, current_position, sizeof(destination));
enable_endstops(true);
homeaxis(Z_AXIS);
mbl.set_z(0, 0, current_position[Z_AXIS]);
enable_endstops(false);
}
for (int8_t mesh_point = 1; mesh_point != MESH_MEAS_NUM_X_POINTS * MESH_MEAS_NUM_Y_POINTS; ++ mesh_point) {
current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
go_to_current(homing_feedrate[Z_AXIS]/60);
current_position[X_AXIS] = pgm_read_float(bed_ref_points+2*mesh_point);
current_position[Y_AXIS] = pgm_read_float(bed_ref_points+2*mesh_point+1);
go_to_current(homing_feedrate[X_AXIS]/60);
find_bed_induction_sensor_point_z();
// Get cords of measuring point
int8_t ix = mesh_point % MESH_MEAS_NUM_X_POINTS;
int8_t iy = mesh_point / MESH_MEAS_NUM_X_POINTS;
if (iy & 1) ix = (MESH_MEAS_NUM_X_POINTS - 1) - ix; // Zig zag
mbl.set_z(ix, iy, current_position[Z_AXIS]);
}
{
// Verify the span of the Z values.
float zmin = mbl.z_values[0][0];
float zmax = zmax;
for (int8_t j = 0; j < 3; ++ j)
for (int8_t i = 0; i < 3; ++ i) {
zmin = min(zmin, mbl.z_values[j][i]);
zmax = min(zmax, mbl.z_values[j][i]);
}
if (zmax - zmin > 3.f) {
// The span of the Z offsets is extreme. Give up.
// Homing failed on some of the points.
SERIAL_PROTOCOLLNPGM("Exreme span of the Z values!");
goto canceled;
}
}
// Store the correction values to EEPROM.
// Offsets of the Z heiths of the calibration points from the first point.
// The offsets are saved as 16bit signed int, scaled to tenths of microns.
{
uint16_t addr = EEPROM_BED_CALIBRATION_Z_JITTER;
for (int8_t j = 0; j < 3; ++ j)
for (int8_t i = 0; i < 3; ++ i) {
if (i == 0 && j == 0)
continue;
float dif = mbl.z_values[j][i] - mbl.z_values[0][0];
int16_t dif_quantized = int16_t(floor(dif * 100.f + 0.5f));
eeprom_update_word((uint16_t*)addr, *reinterpret_cast<uint16_t*>(&dif_quantized));
{
uint16_t z_offset_u = eeprom_read_word((uint16_t*)addr);
float dif2 = *reinterpret_cast<int16_t*>(&z_offset_u) * 0.01;
SERIAL_ECHOPGM("Bed point ");
SERIAL_ECHO(i);
SERIAL_ECHOPGM(",");
SERIAL_ECHO(j);
SERIAL_ECHOPGM(", differences: written ");
MYSERIAL.print(dif, 5);
SERIAL_ECHOPGM(", read: ");
MYSERIAL.print(dif2, 5);
SERIAL_ECHOLNPGM("");
}
addr += 2;
}
}
mbl.upsample_3x3();
mbl.active = true;
// Don't let the manage_inactivity() function remove power from the motors.
refresh_cmd_timeout();
// Go home.
current_position[Z_AXIS] = Z_MIN_POS;
go_to_current(homing_feedrate[Z_AXIS]/60);
current_position[X_AXIS] = X_MIN_POS+0.2;
current_position[Y_AXIS] = Y_MIN_POS+0.2;
go_to_current(homing_feedrate[X_AXIS]/60);
enable_endstops(endstops_enabled);
enable_z_endstop(endstop_z_enabled);
return true;
// Don't let the manage_inactivity() function remove power from the motors.
refresh_cmd_timeout();
return result;
canceled:
// Don't let the manage_inactivity() function remove power from the motors.
refresh_cmd_timeout();
// Print head up.
current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
go_to_current(homing_feedrate[Z_AXIS]/60);
// Store the identity matrix to EEPROM.
reset_bed_offset_and_skew();
enable_endstops(endstops_enabled);
enable_z_endstop(endstop_z_enabled);
return false;
return BED_SKEW_OFFSET_DETECTION_FAILED;
}
bool scan_bed_induction_points(int8_t verbosity_level)

View file

@ -6,10 +6,19 @@
// is built properly, the end stops are at the correct positions and the axes are perpendicular.
extern const float bed_ref_points[] PROGMEM;
// Is the world2machine correction activated?
enum World2MachineCorrectionMode
{
WORLD2MACHINE_CORRECTION_NONE = 0,
WORLD2MACHINE_CORRECTION_SHIFT = 1,
WORLD2MACHINE_CORRECTION_SKEW = 2,
};
extern uint8_t world2machine_correction_mode;
// 2x2 transformation matrix from the world coordinates to the machine coordinates.
// Corrects for the rotation and skew of the machine axes.
// Used by the planner's plan_buffer_line() and plan_set_position().
extern float world2machine_rotation_and_skew[2][2];
extern float world2machine_rotation_and_skew_inv[2][2];
// Shift of the machine zero point, in the machine coordinates.
extern float world2machine_shift[2];
@ -23,13 +32,110 @@ extern void world2machine_initialize();
// to current_position[x,y].
extern void world2machine_update_current();
inline void world2machine(const float &x, const float &y, float &out_x, float &out_y)
{
if (world2machine_correction_mode == WORLD2MACHINE_CORRECTION_NONE) {
// No correction.
out_x = x;
out_y = y;
} else {
if (world2machine_correction_mode & WORLD2MACHINE_CORRECTION_SKEW) {
// Firs the skew & rotation correction.
out_x = world2machine_rotation_and_skew[0][0] * x + world2machine_rotation_and_skew[0][1] * y;
out_y = world2machine_rotation_and_skew[1][0] * x + world2machine_rotation_and_skew[1][1] * y;
}
if (world2machine_correction_mode & WORLD2MACHINE_CORRECTION_SHIFT) {
// Then add the offset.
out_x += world2machine_shift[0];
out_y += world2machine_shift[1];
}
}
}
extern void find_bed_induction_sensor_point_z();
inline void world2machine(float &x, float &y)
{
if (world2machine_correction_mode == WORLD2MACHINE_CORRECTION_NONE) {
// No correction.
} else {
if (world2machine_correction_mode & WORLD2MACHINE_CORRECTION_SKEW) {
// Firs the skew & rotation correction.
float out_x = world2machine_rotation_and_skew[0][0] * x + world2machine_rotation_and_skew[0][1] * y;
float out_y = world2machine_rotation_and_skew[1][0] * x + world2machine_rotation_and_skew[1][1] * y;
x = out_x;
y = out_y;
}
if (world2machine_correction_mode & WORLD2MACHINE_CORRECTION_SHIFT) {
// Then add the offset.
x += world2machine_shift[0];
y += world2machine_shift[1];
}
}
}
inline void machine2world(float x, float y, float &out_x, float &out_y)
{
if (world2machine_correction_mode == WORLD2MACHINE_CORRECTION_NONE) {
// No correction.
out_x = x;
out_y = y;
} else {
if (world2machine_correction_mode & WORLD2MACHINE_CORRECTION_SHIFT) {
// Then add the offset.
x -= world2machine_shift[0];
y -= world2machine_shift[1];
}
if (world2machine_correction_mode & WORLD2MACHINE_CORRECTION_SKEW) {
// Firs the skew & rotation correction.
out_x = world2machine_rotation_and_skew_inv[0][0] * x + world2machine_rotation_and_skew_inv[0][1] * y;
out_y = world2machine_rotation_and_skew_inv[1][0] * x + world2machine_rotation_and_skew_inv[1][1] * y;
}
}
}
inline void machine2world(float &x, float &y)
{
if (world2machine_correction_mode == WORLD2MACHINE_CORRECTION_NONE) {
// No correction.
} else {
if (world2machine_correction_mode & WORLD2MACHINE_CORRECTION_SHIFT) {
// Then add the offset.
x -= world2machine_shift[0];
y -= world2machine_shift[1];
}
if (world2machine_correction_mode & WORLD2MACHINE_CORRECTION_SKEW) {
// Firs the skew & rotation correction.
float out_x = world2machine_rotation_and_skew_inv[0][0] * x + world2machine_rotation_and_skew_inv[0][1] * y;
float out_y = world2machine_rotation_and_skew_inv[1][0] * x + world2machine_rotation_and_skew_inv[1][1] * y;
x = out_x;
y = out_y;
}
}
}
extern bool find_bed_induction_sensor_point_z(float minimum_z = -10.f);
extern bool find_bed_induction_sensor_point_xy();
extern bool find_bed_offset_and_skew(int8_t verbosity_level);
extern bool improve_bed_offset_and_skew(int8_t method, int8_t verbosity_level);
// Positive or zero: ok
// Negative: failed
enum BedSkewOffsetDetectionResultType {
// Detection failed, some point was not found.
BED_SKEW_OFFSET_DETECTION_FAILED = -1,
// Detection finished with success.
BED_SKEW_OFFSET_DETECTION_PERFECT = 0,
BED_SKEW_OFFSET_DETECTION_SKEW_MILD,
BED_SKEW_OFFSET_DETECTION_SKEW_EXTREME,
// Detection finished with success, but it is recommended to fix the printer mechanically.
BED_SKEW_OFFSET_DETECTION_FRONT_LEFT_FAR,
BED_SKEW_OFFSET_DETECTION_FRONT_RIGHT_FAR
};
extern BedSkewOffsetDetectionResultType find_bed_offset_and_skew(int8_t verbosity_level);
extern BedSkewOffsetDetectionResultType improve_bed_offset_and_skew(int8_t method, int8_t verbosity_level);
extern void reset_bed_offset_and_skew();
extern bool is_bed_z_jitter_data_valid();
// Scan the mesh bed induction points one by one by a left-right zig-zag movement,
// write the trigger coordinates to the serial line.

View file

@ -567,10 +567,7 @@ void plan_buffer_line(float x, float y, float z, const float &e, float feed_rate
SERIAL_ECHOLNPGM("");
#endif
float tmpx = x;
float tmpy = y;
x = world2machine_rotation_and_skew[0][0] * tmpx + world2machine_rotation_and_skew[0][1] * tmpy + world2machine_shift[0];
y = world2machine_rotation_and_skew[1][0] * tmpx + world2machine_rotation_and_skew[1][1] * tmpy + world2machine_shift[1];
world2machine(x, y);
#if 0
SERIAL_ECHOPGM("Planner, target position, corrected: ");

View file

@ -1316,6 +1316,82 @@ canceled:
return false;
}
static inline bool pgm_is_whitespace(const char *c)
{
return pgm_read_byte(c) == ' ' || pgm_read_byte(c) == '\t' || pgm_read_byte(c) == '\r' || pgm_read_byte(c) == '\n';
}
void lcd_display_message_fullscreen_P(const char *msg)
{
// Disable update of the screen by the usual lcd_update() routine.
lcd_update_enable(false);
lcd_implementation_clear();
lcd.setCursor(0, 0);
for (int8_t row = 0; row < 4; ++ row) {
while (pgm_is_whitespace(msg))
++ msg;
if (pgm_read_byte(msg) == 0)
// End of the message.
break;
lcd.setCursor(0, row);
const char *msgend2 = msg + min(strlen_P(msg), 20);
const char *msgend = msgend2;
if (pgm_read_byte(msgend) != 0 && ! pgm_is_whitespace(msgend)) {
// Splitting a word. Find the start of the current word.
while (msgend > msg && ! pgm_is_whitespace(msgend - 1))
-- msgend;
if (msgend == msg)
// Found a single long word, which cannot be split. Just cut it.
msgend = msgend2;
}
for (; msg < msgend; ++ msg) {
char c = char(pgm_read_byte(msg));
if (c == '~')
c = ' ';
lcd.print(c);
}
}
}
void lcd_bed_calibration_show_result(BedSkewOffsetDetectionResultType result)
{
const char *msg = NULL;
switch (result) {
case BED_SKEW_OFFSET_DETECTION_FAILED:
default:
msg = MSG_BED_SKEW_OFFSET_DETECTION_FAILED;
break;
case BED_SKEW_OFFSET_DETECTION_PERFECT:
msg = MSG_BED_SKEW_OFFSET_DETECTION_PERFECT;
break;
case BED_SKEW_OFFSET_DETECTION_SKEW_MILD:
msg = MSG_BED_SKEW_OFFSET_DETECTION_SKEW_MILD;
break;
case BED_SKEW_OFFSET_DETECTION_SKEW_EXTREME:
msg = MSG_BED_SKEW_OFFSET_DETECTION_SKEW_EXTREME;
break;
case BED_SKEW_OFFSET_DETECTION_FRONT_LEFT_FAR:
msg = MSG_BED_SKEW_OFFSET_DETECTION_FRONT_LEFT_FAR;
break;
case BED_SKEW_OFFSET_DETECTION_FRONT_RIGHT_FAR:
msg = MSG_BED_SKEW_OFFSET_DETECTION_FRONT_RIGHT_FAR;
break;
}
lcd_display_message_fullscreen_P(msg);
// Until confirmed by a button click.
for (;;) {
delay_keep_alive(50);
if (lcd_clicked()) {
while (lcd_clicked()) ;
delay(10);
while (lcd_clicked()) ;
break;
}
}
}
static void lcd_show_end_stops() {
lcd.setCursor(0, 0);
lcd_printPGM((PSTR("End stops diag")));
@ -1596,7 +1672,7 @@ static void lcd_settings_menu()
if (!isPrintPaused)
{
MENU_ITEM(submenu, MSG_SELFTEST, lcd_selftest);
MENU_ITEM(submenu, PSTR("Show end stops"), menu_show_end_stops);
MENU_ITEM(submenu, MSG_SHOW_END_STOPS, menu_show_end_stops);
MENU_ITEM(submenu, MSG_CALIBRATE_BED, lcd_mesh_calibration);
MENU_ITEM(gcode, MSG_CALIBRATE_BED_RESET, PSTR("M44"));
}

View file

@ -2,6 +2,7 @@
#define ULTRALCD_H
#include "Marlin.h"
#include "mesh_bed_calibration.h"
#ifdef ULTRA_LCD
@ -37,7 +38,14 @@
static void lcd_selftest_error(int _error_no, const char *_error_1, const char *_error_2);
static void lcd_menu_statistics();
extern void lcd_display_message_fullscreen_P(const char *msg);
// Ask the user to move the Z axis up to the end stoppers and let
// the user confirm that it has been done.
extern bool lcd_calibrate_z_end_stop_manual();
// Show the result of the calibration process on the LCD screen.
extern void lcd_bed_calibration_show_result(BedSkewOffsetDetectionResultType result);
extern void lcd_diag_show_end_stops();
#ifdef DOGLCD