Improvement of the bed skew calibration.
This commit is contained in:
parent
0389b23514
commit
58b2aa9fb8
12 changed files with 858 additions and 218 deletions
|
@ -22,10 +22,13 @@
|
|||
// uint32_t
|
||||
#define EEPROM_TOTALTIME 4077
|
||||
|
||||
#define EEPROM_BED_CALIBRATION_CENTER (EEPROM_TOTALTIME-2*4)
|
||||
#define EEPROM_BED_CALIBRATION_VEC_X (EEPROM_BED_CALIBRATION_CENTER-2*4)
|
||||
#define EEPROM_BED_CALIBRATION_VEC_Y (EEPROM_BED_CALIBRATION_VEC_X-2*4)
|
||||
#define EEPROM_BED_CALIBRATION_CENTER (EEPROM_TOTALTIME-2*4)
|
||||
#define EEPROM_BED_CALIBRATION_VEC_X (EEPROM_BED_CALIBRATION_CENTER-2*4)
|
||||
#define EEPROM_BED_CALIBRATION_VEC_Y (EEPROM_BED_CALIBRATION_VEC_X-2*4)
|
||||
|
||||
// Offsets of the Z heiths of the calibration points from the first point.
|
||||
// The offsets are saved as 16bit signed int, scaled to tenths of microns.
|
||||
#define EEPROM_BED_CALIBRATION_Z_JITTER (EEPROM_BED_CALIBRATION_VEC_Y-2*8)
|
||||
|
||||
// This configuration file contains the basic settings.
|
||||
// Advanced settings can be found in Configuration_adv.h
|
||||
|
|
|
@ -212,7 +212,7 @@ void ClearToSend();
|
|||
|
||||
void get_coordinates();
|
||||
void prepare_move();
|
||||
void kill();
|
||||
void kill(const char *full_screen_message = NULL);
|
||||
void Stop();
|
||||
|
||||
bool IsStopped();
|
||||
|
@ -257,6 +257,8 @@ extern float max_pos[3];
|
|||
extern bool axis_known_position[3];
|
||||
extern float zprobe_zoffset;
|
||||
extern int fanSpeed;
|
||||
extern void homeaxis(int axis);
|
||||
|
||||
|
||||
#ifdef FAN_SOFT_PWM
|
||||
extern unsigned char fanSpeedSoftPwm;
|
||||
|
|
|
@ -1469,7 +1469,7 @@ static float probe_pt(float x, float y, float z_before) {
|
|||
|
||||
#endif // #ifdef ENABLE_AUTO_BED_LEVELING
|
||||
|
||||
static void homeaxis(int axis) {
|
||||
void homeaxis(int axis) {
|
||||
#define HOMEAXIS_DO(LETTER) \
|
||||
((LETTER##_MIN_PIN > -1 && LETTER##_HOME_DIR==-1) || (LETTER##_MAX_PIN > -1 && LETTER##_HOME_DIR==1))
|
||||
|
||||
|
@ -1996,18 +1996,19 @@ void process_commands()
|
|||
}
|
||||
// 1st mesh bed leveling measurement point, corrected.
|
||||
world2machine_initialize();
|
||||
destination[X_AXIS] = world2machine_rotation_and_skew[0][0] * pgm_read_float(bed_ref_points) + world2machine_rotation_and_skew[0][1] * pgm_read_float(bed_ref_points+1) + world2machine_shift[0];
|
||||
destination[Y_AXIS] = world2machine_rotation_and_skew[1][0] * pgm_read_float(bed_ref_points) + world2machine_rotation_and_skew[1][1] * pgm_read_float(bed_ref_points+1) + world2machine_shift[1];
|
||||
world2machine(pgm_read_float(bed_ref_points), pgm_read_float(bed_ref_points+1), destination[X_AXIS], destination[Y_AXIS]);
|
||||
world2machine_reset();
|
||||
destination[Z_AXIS] = MESH_HOME_Z_SEARCH; // Set destination away from bed
|
||||
feedrate = homing_feedrate[Z_AXIS]/10;
|
||||
current_position[Z_AXIS] = 0;
|
||||
|
||||
enable_endstops(false);
|
||||
plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
|
||||
plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
|
||||
st_synchronize();
|
||||
current_position[X_AXIS] = destination[X_AXIS];
|
||||
current_position[Y_AXIS] = destination[Y_AXIS];
|
||||
enable_endstops(true);
|
||||
endstops_hit_on_purpose();
|
||||
homeaxis(Z_AXIS);
|
||||
_doMeshL = true;
|
||||
#else // MESH_BED_LEVELING
|
||||
|
@ -2342,19 +2343,32 @@ void process_commands()
|
|||
int XY_AXIS_FEEDRATE = homing_feedrate[X_AXIS]/20;
|
||||
int Z_PROBE_FEEDRATE = homing_feedrate[Z_AXIS]/60;
|
||||
int Z_LIFT_FEEDRATE = homing_feedrate[Z_AXIS]/40;
|
||||
bool has_z = is_bed_z_jitter_data_valid();
|
||||
setup_for_endstop_move();
|
||||
const char *kill_message = NULL;
|
||||
while (mesh_point != MESH_MEAS_NUM_X_POINTS * MESH_MEAS_NUM_Y_POINTS) {
|
||||
// Get coords of a measuring point.
|
||||
ix = mesh_point % MESH_MEAS_NUM_X_POINTS;
|
||||
iy = mesh_point / MESH_MEAS_NUM_X_POINTS;
|
||||
if (iy & 1) ix = (MESH_MEAS_NUM_X_POINTS - 1) - ix; // Zig zag
|
||||
float z0 = 0.f;
|
||||
if (has_z && mesh_point > 0) {
|
||||
uint16_t z_offset_u = eeprom_read_word((uint16_t*)(EEPROM_BED_CALIBRATION_Z_JITTER + 2 * (ix + iy * 3 - 1)));
|
||||
z0 = mbl.z_values[0][0] + *reinterpret_cast<int16_t*>(&z_offset_u) * 0.01;
|
||||
#if 0
|
||||
SERIAL_ECHOPGM("Bed leveling, point: ");
|
||||
MYSERIAL.print(mesh_point);
|
||||
SERIAL_ECHOPGM(", calibration z: ");
|
||||
MYSERIAL.print(z0, 5);
|
||||
SERIAL_ECHOLNPGM("");
|
||||
#endif
|
||||
}
|
||||
|
||||
// Move Z to proper distance
|
||||
current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
|
||||
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
|
||||
st_synchronize();
|
||||
|
||||
// Get cords of measuring point
|
||||
ix = mesh_point % MESH_MEAS_NUM_X_POINTS;
|
||||
iy = mesh_point / MESH_MEAS_NUM_X_POINTS;
|
||||
if (iy & 1) ix = (MESH_MEAS_NUM_X_POINTS - 1) - ix; // Zig zag
|
||||
|
||||
|
||||
current_position[X_AXIS] = pgm_read_float(bed_ref_points+2*mesh_point);
|
||||
current_position[Y_AXIS] = pgm_read_float(bed_ref_points+2*mesh_point+1);
|
||||
// mbl.get_meas_xy(ix, iy, current_position[X_AXIS], current_position[Y_AXIS], false);
|
||||
|
@ -2363,9 +2377,18 @@ void process_commands()
|
|||
st_synchronize();
|
||||
|
||||
// Go down until endstop is hit
|
||||
find_bed_induction_sensor_point_z();
|
||||
|
||||
const float Z_CALIBRATION_THRESHOLD = 0.5f;
|
||||
if (! find_bed_induction_sensor_point_z((has_z && mesh_point > 0) ? z0 - Z_CALIBRATION_THRESHOLD : -10.f)) {
|
||||
kill_message = MSG_BED_LEVELING_FAILED_POINT_LOW;
|
||||
break;
|
||||
}
|
||||
if (has_z && fabs(z0 - current_position[Z_AXIS]) > Z_CALIBRATION_THRESHOLD) {
|
||||
kill_message = MSG_BED_LEVELING_FAILED_POINT_HIGH;
|
||||
break;
|
||||
}
|
||||
|
||||
mbl.set_z(ix, iy, current_position[Z_AXIS]);
|
||||
|
||||
if (!IS_SD_PRINTING)
|
||||
{
|
||||
custom_message_state--;
|
||||
|
@ -2373,9 +2396,13 @@ void process_commands()
|
|||
mesh_point++;
|
||||
|
||||
}
|
||||
clean_up_after_endstop_move();
|
||||
current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
|
||||
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
|
||||
if (mesh_point != MESH_MEAS_NUM_X_POINTS * MESH_MEAS_NUM_Y_POINTS) {
|
||||
st_synchronize();
|
||||
kill(kill_message);
|
||||
}
|
||||
clean_up_after_endstop_move();
|
||||
mbl.upsample_3x3();
|
||||
mbl.active = 1;
|
||||
current_position[X_AXIS] = X_MIN_POS+0.2;
|
||||
|
@ -2769,33 +2796,36 @@ void process_commands()
|
|||
char c = strchr_pointer[1];
|
||||
verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
|
||||
}
|
||||
bool success = find_bed_offset_and_skew(verbosity_level);
|
||||
BedSkewOffsetDetectionResultType result = find_bed_offset_and_skew(verbosity_level);
|
||||
clean_up_after_endstop_move();
|
||||
// Print head up.
|
||||
current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
|
||||
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], homing_feedrate[Z_AXIS]/40, active_extruder);
|
||||
st_synchronize();
|
||||
|
||||
// Second half: The fine adjustment.
|
||||
// Let the planner use the uncorrected coordinates.
|
||||
mbl.reset();
|
||||
world2machine_reset();
|
||||
// Home in the XY plane.
|
||||
setup_for_endstop_move();
|
||||
home_xy();
|
||||
success = improve_bed_offset_and_skew(1, verbosity_level);
|
||||
clean_up_after_endstop_move();
|
||||
// Print head up.
|
||||
current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
|
||||
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], homing_feedrate[Z_AXIS]/40, active_extruder);
|
||||
st_synchronize();
|
||||
if (success) {
|
||||
if (result != BED_SKEW_OFFSET_DETECTION_FAILED) {
|
||||
// Second half: The fine adjustment.
|
||||
// Let the planner use the uncorrected coordinates.
|
||||
mbl.reset();
|
||||
world2machine_reset();
|
||||
// Home in the XY plane.
|
||||
setup_for_endstop_move();
|
||||
home_xy();
|
||||
result = improve_bed_offset_and_skew(1, verbosity_level);
|
||||
clean_up_after_endstop_move();
|
||||
// Print head up.
|
||||
current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
|
||||
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], homing_feedrate[Z_AXIS]/40, active_extruder);
|
||||
st_synchronize();
|
||||
}
|
||||
lcd_bed_calibration_show_result(result);
|
||||
/*
|
||||
if (result != BED_SKEW_OFFSET_DETECTION_FAILED) {
|
||||
// Mesh bed leveling.
|
||||
// Push the commands to the front of the message queue in the reverse order!
|
||||
// There shall be always enough space reserved for these commands.
|
||||
enquecommand_front_P((PSTR("G80")));
|
||||
}
|
||||
|
||||
*/
|
||||
lcd_update_enable(true);
|
||||
lcd_implementation_clear();
|
||||
// lcd_return_to_status();
|
||||
|
@ -2844,7 +2874,7 @@ void process_commands()
|
|||
break;
|
||||
}
|
||||
|
||||
#if 0
|
||||
#if 1
|
||||
case 48: // M48: scan the bed induction sensor points, print the sensor trigger coordinates to the serial line for visualization on the PC.
|
||||
{
|
||||
// Disable the default update procedure of the display. We will do a modal dialog.
|
||||
|
@ -4686,24 +4716,66 @@ void get_arc_coordinates()
|
|||
|
||||
void clamp_to_software_endstops(float target[3])
|
||||
{
|
||||
if (min_software_endstops) {
|
||||
if (target[X_AXIS] < min_pos[X_AXIS]) target[X_AXIS] = min_pos[X_AXIS];
|
||||
if (target[Y_AXIS] < min_pos[Y_AXIS]) target[Y_AXIS] = min_pos[Y_AXIS];
|
||||
|
||||
float negative_z_offset = 0;
|
||||
#ifdef ENABLE_AUTO_BED_LEVELING
|
||||
if (Z_PROBE_OFFSET_FROM_EXTRUDER < 0) negative_z_offset = negative_z_offset + Z_PROBE_OFFSET_FROM_EXTRUDER;
|
||||
if (add_homing[Z_AXIS] < 0) negative_z_offset = negative_z_offset + add_homing[Z_AXIS];
|
||||
#endif
|
||||
|
||||
if (target[Z_AXIS] < min_pos[Z_AXIS]+negative_z_offset) target[Z_AXIS] = min_pos[Z_AXIS]+negative_z_offset;
|
||||
}
|
||||
if (world2machine_correction_mode == WORLD2MACHINE_CORRECTION_NONE || world2machine_correction_mode == WORLD2MACHINE_CORRECTION_SHIFT) {
|
||||
// No correction or only a shift correction.
|
||||
// Save computational cycles by not performing the skew correction.
|
||||
if (world2machine_correction_mode == WORLD2MACHINE_CORRECTION_SHIFT) {
|
||||
target[0] += world2machine_shift[0];
|
||||
target[1] += world2machine_shift[1];
|
||||
}
|
||||
if (min_software_endstops) {
|
||||
if (target[X_AXIS] < min_pos[X_AXIS]) target[X_AXIS] = min_pos[X_AXIS];
|
||||
if (target[Y_AXIS] < min_pos[Y_AXIS]) target[Y_AXIS] = min_pos[Y_AXIS];
|
||||
}
|
||||
if (max_software_endstops) {
|
||||
if (target[X_AXIS] > max_pos[X_AXIS]) target[X_AXIS] = max_pos[X_AXIS];
|
||||
if (target[Y_AXIS] > max_pos[Y_AXIS]) target[Y_AXIS] = max_pos[Y_AXIS];
|
||||
}
|
||||
if (world2machine_correction_mode == WORLD2MACHINE_CORRECTION_SHIFT) {
|
||||
target[0] -= world2machine_shift[0];
|
||||
target[1] -= world2machine_shift[1];
|
||||
}
|
||||
} else {
|
||||
// Skew correction is in action.
|
||||
float x, y;
|
||||
world2machine(target[0], target[1], x, y);
|
||||
bool clamped = false;
|
||||
if (min_software_endstops) {
|
||||
if (x < min_pos[X_AXIS]) {
|
||||
x = min_pos[X_AXIS];
|
||||
clamped = true;
|
||||
}
|
||||
if (y < min_pos[Y_AXIS]) {
|
||||
y = min_pos[Y_AXIS];
|
||||
clamped = true;
|
||||
}
|
||||
}
|
||||
if (max_software_endstops) {
|
||||
if (x > max_pos[X_AXIS]) {
|
||||
x = max_pos[X_AXIS];
|
||||
clamped = true;
|
||||
}
|
||||
if (y > max_pos[Y_AXIS]) {
|
||||
y = max_pos[Y_AXIS];
|
||||
clamped = true;
|
||||
}
|
||||
}
|
||||
if (clamped)
|
||||
machine2world(x, y, target[X_AXIS], target[Y_AXIS]);
|
||||
}
|
||||
|
||||
if (max_software_endstops) {
|
||||
if (target[X_AXIS] > max_pos[X_AXIS]) target[X_AXIS] = max_pos[X_AXIS];
|
||||
if (target[Y_AXIS] > max_pos[Y_AXIS]) target[Y_AXIS] = max_pos[Y_AXIS];
|
||||
if (target[Z_AXIS] > max_pos[Z_AXIS]) target[Z_AXIS] = max_pos[Z_AXIS];
|
||||
}
|
||||
// Clamp the Z coordinate.
|
||||
if (min_software_endstops) {
|
||||
float negative_z_offset = 0;
|
||||
#ifdef ENABLE_AUTO_BED_LEVELING
|
||||
if (Z_PROBE_OFFSET_FROM_EXTRUDER < 0) negative_z_offset = negative_z_offset + Z_PROBE_OFFSET_FROM_EXTRUDER;
|
||||
if (add_homing[Z_AXIS] < 0) negative_z_offset = negative_z_offset + add_homing[Z_AXIS];
|
||||
#endif
|
||||
if (target[Z_AXIS] < min_pos[Z_AXIS]+negative_z_offset) target[Z_AXIS] = min_pos[Z_AXIS]+negative_z_offset;
|
||||
}
|
||||
if (max_software_endstops) {
|
||||
if (target[Z_AXIS] > max_pos[Z_AXIS]) target[Z_AXIS] = max_pos[Z_AXIS];
|
||||
}
|
||||
}
|
||||
|
||||
#ifdef MESH_BED_LEVELING
|
||||
|
@ -4996,7 +5068,7 @@ void manage_inactivity(bool ignore_stepper_queue/*=false*/) //default argument s
|
|||
check_axes_activity();
|
||||
}
|
||||
|
||||
void kill()
|
||||
void kill(const char *full_screen_message)
|
||||
{
|
||||
cli(); // Stop interrupts
|
||||
disable_heater();
|
||||
|
@ -5014,8 +5086,13 @@ void kill()
|
|||
#endif
|
||||
SERIAL_ERROR_START;
|
||||
SERIAL_ERRORLNRPGM(MSG_ERR_KILLED);
|
||||
LCD_ALERTMESSAGERPGM(MSG_KILLED);
|
||||
|
||||
if (full_screen_message != NULL) {
|
||||
SERIAL_ERRORLNRPGM(full_screen_message);
|
||||
lcd_display_message_fullscreen_P(full_screen_message);
|
||||
} else {
|
||||
LCD_ALERTMESSAGERPGM(MSG_KILLED);
|
||||
}
|
||||
|
||||
// FMC small patch to update the LCD before ending
|
||||
sei(); // enable interrupts
|
||||
for ( int i=5; i--; lcd_update())
|
||||
|
|
|
@ -252,6 +252,110 @@ const char * const MSG_BED_HEATING_LANG_TABLE[LANG_NUM] PROGMEM = {
|
|||
MSG_BED_HEATING_PL
|
||||
};
|
||||
|
||||
const char MSG_BED_LEVELING_FAILED_POINT_HIGH_EN[] PROGMEM = "Bed leveling failed. Sensor triggered too high. Waiting for reset.";
|
||||
const char MSG_BED_LEVELING_FAILED_POINT_HIGH_CZ[] PROGMEM = "Kalibrace Z selhala. Sensor sepnul prilis vysoko. Cekam na reset.";
|
||||
const char MSG_BED_LEVELING_FAILED_POINT_HIGH_IT[] PROGMEM = "Bed leveling failed. Sensor triggered too high. Waiting for reset.";
|
||||
const char MSG_BED_LEVELING_FAILED_POINT_HIGH_ES[] PROGMEM = "Bed leveling failed. Sensor triggered too high. Waiting for reset.";
|
||||
const char MSG_BED_LEVELING_FAILED_POINT_HIGH_PL[] PROGMEM = "Bed leveling failed. Sensor triggered too high. Waiting for reset.";
|
||||
const char * const MSG_BED_LEVELING_FAILED_POINT_HIGH_LANG_TABLE[LANG_NUM] PROGMEM = {
|
||||
MSG_BED_LEVELING_FAILED_POINT_HIGH_EN,
|
||||
MSG_BED_LEVELING_FAILED_POINT_HIGH_CZ,
|
||||
MSG_BED_LEVELING_FAILED_POINT_HIGH_IT,
|
||||
MSG_BED_LEVELING_FAILED_POINT_HIGH_ES,
|
||||
MSG_BED_LEVELING_FAILED_POINT_HIGH_PL
|
||||
};
|
||||
|
||||
const char MSG_BED_LEVELING_FAILED_POINT_LOW_EN[] PROGMEM = "Bed leveling failed. Sensor didnt trigger. Debris on nozzle? Waiting for reset.";
|
||||
const char MSG_BED_LEVELING_FAILED_POINT_LOW_CZ[] PROGMEM = "Kalibrace Z selhala. Sensor nesepnul. Znecistena tryska? Cekam na reset.";
|
||||
const char MSG_BED_LEVELING_FAILED_POINT_LOW_IT[] PROGMEM = "Bed leveling failed. Sensor didnt trigger. Debris on nozzle? Waiting for reset.";
|
||||
const char MSG_BED_LEVELING_FAILED_POINT_LOW_ES[] PROGMEM = "Bed leveling failed. Sensor didnt trigger. Debris on nozzle? Waiting for reset.";
|
||||
const char MSG_BED_LEVELING_FAILED_POINT_LOW_PL[] PROGMEM = "Bed leveling failed. Sensor didnt trigger. Debris on nozzle? Waiting for reset.";
|
||||
const char * const MSG_BED_LEVELING_FAILED_POINT_LOW_LANG_TABLE[LANG_NUM] PROGMEM = {
|
||||
MSG_BED_LEVELING_FAILED_POINT_LOW_EN,
|
||||
MSG_BED_LEVELING_FAILED_POINT_LOW_CZ,
|
||||
MSG_BED_LEVELING_FAILED_POINT_LOW_IT,
|
||||
MSG_BED_LEVELING_FAILED_POINT_LOW_ES,
|
||||
MSG_BED_LEVELING_FAILED_POINT_LOW_PL
|
||||
};
|
||||
|
||||
const char MSG_BED_SKEW_OFFSET_DETECTION_FAILED_EN[] PROGMEM = "X/Y calibration failed. Please consult manual.";
|
||||
const char MSG_BED_SKEW_OFFSET_DETECTION_FAILED_CZ[] PROGMEM = "Kalibrace X/Y selhala. Nahlednete do manualu.";
|
||||
const char MSG_BED_SKEW_OFFSET_DETECTION_FAILED_IT[] PROGMEM = "X/Y calibration failed. Please consult manual.";
|
||||
const char MSG_BED_SKEW_OFFSET_DETECTION_FAILED_ES[] PROGMEM = "X/Y calibration failed. Please consult manual.";
|
||||
const char MSG_BED_SKEW_OFFSET_DETECTION_FAILED_PL[] PROGMEM = "X/Y calibration failed. Please consult manual.";
|
||||
const char * const MSG_BED_SKEW_OFFSET_DETECTION_FAILED_LANG_TABLE[LANG_NUM] PROGMEM = {
|
||||
MSG_BED_SKEW_OFFSET_DETECTION_FAILED_EN,
|
||||
MSG_BED_SKEW_OFFSET_DETECTION_FAILED_CZ,
|
||||
MSG_BED_SKEW_OFFSET_DETECTION_FAILED_IT,
|
||||
MSG_BED_SKEW_OFFSET_DETECTION_FAILED_ES,
|
||||
MSG_BED_SKEW_OFFSET_DETECTION_FAILED_PL
|
||||
};
|
||||
|
||||
const char MSG_BED_SKEW_OFFSET_DETECTION_FRONT_LEFT_FAR_EN[] PROGMEM = "X/Y calibration bad. Left front corner not reachable. Fix the printer.";
|
||||
const char MSG_BED_SKEW_OFFSET_DETECTION_FRONT_LEFT_FAR_CZ[] PROGMEM = "Kalibrace selhala. Levy predni bod moc vpredu. Srovnejte tiskarnu.";
|
||||
const char MSG_BED_SKEW_OFFSET_DETECTION_FRONT_LEFT_FAR_IT[] PROGMEM = "X/Y calibration bad. Left front corner not reachable. Fix the printer.";
|
||||
const char MSG_BED_SKEW_OFFSET_DETECTION_FRONT_LEFT_FAR_ES[] PROGMEM = "X/Y calibration bad. Left front corner not reachable. Fix the printer.";
|
||||
const char MSG_BED_SKEW_OFFSET_DETECTION_FRONT_LEFT_FAR_PL[] PROGMEM = "X/Y calibration bad. Left front corner not reachable. Fix the printer.";
|
||||
const char * const MSG_BED_SKEW_OFFSET_DETECTION_FRONT_LEFT_FAR_LANG_TABLE[LANG_NUM] PROGMEM = {
|
||||
MSG_BED_SKEW_OFFSET_DETECTION_FRONT_LEFT_FAR_EN,
|
||||
MSG_BED_SKEW_OFFSET_DETECTION_FRONT_LEFT_FAR_CZ,
|
||||
MSG_BED_SKEW_OFFSET_DETECTION_FRONT_LEFT_FAR_IT,
|
||||
MSG_BED_SKEW_OFFSET_DETECTION_FRONT_LEFT_FAR_ES,
|
||||
MSG_BED_SKEW_OFFSET_DETECTION_FRONT_LEFT_FAR_PL
|
||||
};
|
||||
|
||||
const char MSG_BED_SKEW_OFFSET_DETECTION_FRONT_RIGHT_FAR_EN[] PROGMEM = "X/Y calibration bad. Right front corner not reachable. Fix the printer.";
|
||||
const char MSG_BED_SKEW_OFFSET_DETECTION_FRONT_RIGHT_FAR_CZ[] PROGMEM = "Kalibrace selhala. Pravy predni bod moc vpredu. Srovnejte tiskarnu.";
|
||||
const char MSG_BED_SKEW_OFFSET_DETECTION_FRONT_RIGHT_FAR_IT[] PROGMEM = "X/Y calibration bad. Right front corner not reachable. Fix the printer.";
|
||||
const char MSG_BED_SKEW_OFFSET_DETECTION_FRONT_RIGHT_FAR_ES[] PROGMEM = "X/Y calibration bad. Right front corner not reachable. Fix the printer.";
|
||||
const char MSG_BED_SKEW_OFFSET_DETECTION_FRONT_RIGHT_FAR_PL[] PROGMEM = "X/Y calibration bad. Right front corner not reachable. Fix the printer.";
|
||||
const char * const MSG_BED_SKEW_OFFSET_DETECTION_FRONT_RIGHT_FAR_LANG_TABLE[LANG_NUM] PROGMEM = {
|
||||
MSG_BED_SKEW_OFFSET_DETECTION_FRONT_RIGHT_FAR_EN,
|
||||
MSG_BED_SKEW_OFFSET_DETECTION_FRONT_RIGHT_FAR_CZ,
|
||||
MSG_BED_SKEW_OFFSET_DETECTION_FRONT_RIGHT_FAR_IT,
|
||||
MSG_BED_SKEW_OFFSET_DETECTION_FRONT_RIGHT_FAR_ES,
|
||||
MSG_BED_SKEW_OFFSET_DETECTION_FRONT_RIGHT_FAR_PL
|
||||
};
|
||||
|
||||
const char MSG_BED_SKEW_OFFSET_DETECTION_PERFECT_EN[] PROGMEM = "X/Y calibration ok. X/Y axes are perpendicular.";
|
||||
const char MSG_BED_SKEW_OFFSET_DETECTION_PERFECT_CZ[] PROGMEM = "Kalibrace X/Y perfektni. X/Y osy jsou kolme.";
|
||||
const char MSG_BED_SKEW_OFFSET_DETECTION_PERFECT_IT[] PROGMEM = "X/Y calibration ok. X/Y axes are perpendicular.";
|
||||
const char MSG_BED_SKEW_OFFSET_DETECTION_PERFECT_ES[] PROGMEM = "X/Y calibration ok. X/Y axes are perpendicular.";
|
||||
const char MSG_BED_SKEW_OFFSET_DETECTION_PERFECT_PL[] PROGMEM = "X/Y calibration ok. X/Y axes are perpendicular.";
|
||||
const char * const MSG_BED_SKEW_OFFSET_DETECTION_PERFECT_LANG_TABLE[LANG_NUM] PROGMEM = {
|
||||
MSG_BED_SKEW_OFFSET_DETECTION_PERFECT_EN,
|
||||
MSG_BED_SKEW_OFFSET_DETECTION_PERFECT_CZ,
|
||||
MSG_BED_SKEW_OFFSET_DETECTION_PERFECT_IT,
|
||||
MSG_BED_SKEW_OFFSET_DETECTION_PERFECT_ES,
|
||||
MSG_BED_SKEW_OFFSET_DETECTION_PERFECT_PL
|
||||
};
|
||||
|
||||
const char MSG_BED_SKEW_OFFSET_DETECTION_SKEW_EXTREME_EN[] PROGMEM = "X/Y skewed severly. Skew will be corrected automatically.";
|
||||
const char MSG_BED_SKEW_OFFSET_DETECTION_SKEW_EXTREME_CZ[] PROGMEM = "X/Y osy jsou silne zkosene. Zkoseni bude automaticky vyrovnano pri tisku.";
|
||||
const char MSG_BED_SKEW_OFFSET_DETECTION_SKEW_EXTREME_IT[] PROGMEM = "X/Y skewed severly. Skew will be corrected automatically.";
|
||||
const char MSG_BED_SKEW_OFFSET_DETECTION_SKEW_EXTREME_ES[] PROGMEM = "X/Y skewed severly. Skew will be corrected automatically.";
|
||||
const char MSG_BED_SKEW_OFFSET_DETECTION_SKEW_EXTREME_PL[] PROGMEM = "X/Y skewed severly. Skew will be corrected automatically.";
|
||||
const char * const MSG_BED_SKEW_OFFSET_DETECTION_SKEW_EXTREME_LANG_TABLE[LANG_NUM] PROGMEM = {
|
||||
MSG_BED_SKEW_OFFSET_DETECTION_SKEW_EXTREME_EN,
|
||||
MSG_BED_SKEW_OFFSET_DETECTION_SKEW_EXTREME_CZ,
|
||||
MSG_BED_SKEW_OFFSET_DETECTION_SKEW_EXTREME_IT,
|
||||
MSG_BED_SKEW_OFFSET_DETECTION_SKEW_EXTREME_ES,
|
||||
MSG_BED_SKEW_OFFSET_DETECTION_SKEW_EXTREME_PL
|
||||
};
|
||||
|
||||
const char MSG_BED_SKEW_OFFSET_DETECTION_SKEW_MILD_EN[] PROGMEM = "X/Y calibration all right. X/Y axes are slightly skewed.";
|
||||
const char MSG_BED_SKEW_OFFSET_DETECTION_SKEW_MILD_CZ[] PROGMEM = "Kalibrace X/Y v poradku. X/Y osy mirne zkosene.";
|
||||
const char MSG_BED_SKEW_OFFSET_DETECTION_SKEW_MILD_IT[] PROGMEM = "X/Y calibration all right. X/Y axes are slightly skewed.";
|
||||
const char MSG_BED_SKEW_OFFSET_DETECTION_SKEW_MILD_ES[] PROGMEM = "X/Y calibration all right. X/Y axes are slightly skewed.";
|
||||
const char MSG_BED_SKEW_OFFSET_DETECTION_SKEW_MILD_PL[] PROGMEM = "X/Y calibration all right. X/Y axes are slightly skewed.";
|
||||
const char * const MSG_BED_SKEW_OFFSET_DETECTION_SKEW_MILD_LANG_TABLE[LANG_NUM] PROGMEM = {
|
||||
MSG_BED_SKEW_OFFSET_DETECTION_SKEW_MILD_EN,
|
||||
MSG_BED_SKEW_OFFSET_DETECTION_SKEW_MILD_CZ,
|
||||
MSG_BED_SKEW_OFFSET_DETECTION_SKEW_MILD_IT,
|
||||
MSG_BED_SKEW_OFFSET_DETECTION_SKEW_MILD_ES,
|
||||
MSG_BED_SKEW_OFFSET_DETECTION_SKEW_MILD_PL
|
||||
};
|
||||
|
||||
const char MSG_BEGIN_FILE_LIST_EN[] PROGMEM = "Begin file list";
|
||||
const char MSG_BEGIN_FILE_LIST_CZ[] PROGMEM = "Begin file list";
|
||||
const char MSG_BEGIN_FILE_LIST_IT[] PROGMEM = "Begin file list";
|
||||
|
@ -278,11 +382,11 @@ const char * const MSG_BROWNOUT_RESET_LANG_TABLE[LANG_NUM] PROGMEM = {
|
|||
MSG_BROWNOUT_RESET_PL
|
||||
};
|
||||
|
||||
const char MSG_CALIBRATE_BED_EN[] PROGMEM = "Calibrate bed";
|
||||
const char MSG_CALIBRATE_BED_CZ[] PROGMEM = "Calibrate bed";
|
||||
const char MSG_CALIBRATE_BED_IT[] PROGMEM = "Calibrate bed";
|
||||
const char MSG_CALIBRATE_BED_ES[] PROGMEM = "Calibrate bed";
|
||||
const char MSG_CALIBRATE_BED_PL[] PROGMEM = "Calibrate bed";
|
||||
const char MSG_CALIBRATE_BED_EN[] PROGMEM = "Calibrate X/Y";
|
||||
const char MSG_CALIBRATE_BED_CZ[] PROGMEM = "Kalibrace X/Y";
|
||||
const char MSG_CALIBRATE_BED_IT[] PROGMEM = "Calibrate X/Y";
|
||||
const char MSG_CALIBRATE_BED_ES[] PROGMEM = "Calibrate X/Y";
|
||||
const char MSG_CALIBRATE_BED_PL[] PROGMEM = "Calibrate X/Y";
|
||||
const char * const MSG_CALIBRATE_BED_LANG_TABLE[LANG_NUM] PROGMEM = {
|
||||
MSG_CALIBRATE_BED_EN,
|
||||
MSG_CALIBRATE_BED_CZ,
|
||||
|
@ -291,11 +395,11 @@ const char * const MSG_CALIBRATE_BED_LANG_TABLE[LANG_NUM] PROGMEM = {
|
|||
MSG_CALIBRATE_BED_PL
|
||||
};
|
||||
|
||||
const char MSG_CALIBRATE_BED_RESET_EN[] PROGMEM = "Reset bed calibration";
|
||||
const char MSG_CALIBRATE_BED_RESET_CZ[] PROGMEM = "Reset bed calibration";
|
||||
const char MSG_CALIBRATE_BED_RESET_IT[] PROGMEM = "Reset bed calibration";
|
||||
const char MSG_CALIBRATE_BED_RESET_ES[] PROGMEM = "Reset bed calibration";
|
||||
const char MSG_CALIBRATE_BED_RESET_PL[] PROGMEM = "Reset bed calibration";
|
||||
const char MSG_CALIBRATE_BED_RESET_EN[] PROGMEM = "Reset X/Y calibr.";
|
||||
const char MSG_CALIBRATE_BED_RESET_CZ[] PROGMEM = "Reset X/Y kalibr.";
|
||||
const char MSG_CALIBRATE_BED_RESET_IT[] PROGMEM = "Reset X/Y calibr.";
|
||||
const char MSG_CALIBRATE_BED_RESET_ES[] PROGMEM = "Reset X/Y calibr.";
|
||||
const char MSG_CALIBRATE_BED_RESET_PL[] PROGMEM = "Reset X/Y calibr.";
|
||||
const char * const MSG_CALIBRATE_BED_RESET_LANG_TABLE[LANG_NUM] PROGMEM = {
|
||||
MSG_CALIBRATE_BED_RESET_EN,
|
||||
MSG_CALIBRATE_BED_RESET_CZ,
|
||||
|
@ -370,7 +474,7 @@ const char * const MSG_CONFIGURATION_VER_LANG_TABLE[LANG_NUM] PROGMEM = {
|
|||
};
|
||||
|
||||
const char MSG_CONFIRM_CARRIAGE_AT_THE_TOP_LINE1_EN[] PROGMEM = "Are left and right";
|
||||
const char MSG_CONFIRM_CARRIAGE_AT_THE_TOP_LINE1_CZ[] PROGMEM = "Are left and right";
|
||||
const char MSG_CONFIRM_CARRIAGE_AT_THE_TOP_LINE1_CZ[] PROGMEM = "Dojely oba Z voziky";
|
||||
const char MSG_CONFIRM_CARRIAGE_AT_THE_TOP_LINE1_IT[] PROGMEM = "Are left and right";
|
||||
const char MSG_CONFIRM_CARRIAGE_AT_THE_TOP_LINE1_ES[] PROGMEM = "Are left and right";
|
||||
const char MSG_CONFIRM_CARRIAGE_AT_THE_TOP_LINE1_PL[] PROGMEM = "Are left and right";
|
||||
|
@ -383,7 +487,7 @@ const char * const MSG_CONFIRM_CARRIAGE_AT_THE_TOP_LINE1_LANG_TABLE[LANG_NUM] PR
|
|||
};
|
||||
|
||||
const char MSG_CONFIRM_CARRIAGE_AT_THE_TOP_LINE2_EN[] PROGMEM = "Z carriages all up?";
|
||||
const char MSG_CONFIRM_CARRIAGE_AT_THE_TOP_LINE2_CZ[] PROGMEM = "Z carriages all up?";
|
||||
const char MSG_CONFIRM_CARRIAGE_AT_THE_TOP_LINE2_CZ[] PROGMEM = "k hornimu dorazu?";
|
||||
const char MSG_CONFIRM_CARRIAGE_AT_THE_TOP_LINE2_IT[] PROGMEM = "Z carriages all up?";
|
||||
const char MSG_CONFIRM_CARRIAGE_AT_THE_TOP_LINE2_ES[] PROGMEM = "Z carriages all up?";
|
||||
const char MSG_CONFIRM_CARRIAGE_AT_THE_TOP_LINE2_PL[] PROGMEM = "Z carriages all up?";
|
||||
|
@ -942,7 +1046,7 @@ const char * const MSG_FILE_SAVED_LANG_TABLE[LANG_NUM] PROGMEM = {
|
|||
};
|
||||
|
||||
const char MSG_FIND_BED_OFFSET_AND_SKEW_LINE1_EN[] PROGMEM = "Searching bed";
|
||||
const char MSG_FIND_BED_OFFSET_AND_SKEW_LINE1_CZ[] PROGMEM = "Searching bed";
|
||||
const char MSG_FIND_BED_OFFSET_AND_SKEW_LINE1_CZ[] PROGMEM = "Hledam kalibracni";
|
||||
const char MSG_FIND_BED_OFFSET_AND_SKEW_LINE1_IT[] PROGMEM = "Searching bed";
|
||||
const char MSG_FIND_BED_OFFSET_AND_SKEW_LINE1_ES[] PROGMEM = "Searching bed";
|
||||
const char MSG_FIND_BED_OFFSET_AND_SKEW_LINE1_PL[] PROGMEM = "Searching bed";
|
||||
|
@ -955,7 +1059,7 @@ const char * const MSG_FIND_BED_OFFSET_AND_SKEW_LINE1_LANG_TABLE[LANG_NUM] PROGM
|
|||
};
|
||||
|
||||
const char MSG_FIND_BED_OFFSET_AND_SKEW_LINE2_EN[] PROGMEM = "calibration point";
|
||||
const char MSG_FIND_BED_OFFSET_AND_SKEW_LINE2_CZ[] PROGMEM = "calibration point";
|
||||
const char MSG_FIND_BED_OFFSET_AND_SKEW_LINE2_CZ[] PROGMEM = "bod podlozky";
|
||||
const char MSG_FIND_BED_OFFSET_AND_SKEW_LINE2_IT[] PROGMEM = "calibration point";
|
||||
const char MSG_FIND_BED_OFFSET_AND_SKEW_LINE2_ES[] PROGMEM = "calibration point";
|
||||
const char MSG_FIND_BED_OFFSET_AND_SKEW_LINE2_PL[] PROGMEM = "calibration point";
|
||||
|
@ -968,7 +1072,7 @@ const char * const MSG_FIND_BED_OFFSET_AND_SKEW_LINE2_LANG_TABLE[LANG_NUM] PROGM
|
|||
};
|
||||
|
||||
const char MSG_FIND_BED_OFFSET_AND_SKEW_LINE3_EN[] PROGMEM = " of 4";
|
||||
const char MSG_FIND_BED_OFFSET_AND_SKEW_LINE3_CZ[] PROGMEM = " of 4";
|
||||
const char MSG_FIND_BED_OFFSET_AND_SKEW_LINE3_CZ[] PROGMEM = " z 4";
|
||||
const char MSG_FIND_BED_OFFSET_AND_SKEW_LINE3_IT[] PROGMEM = " of 4";
|
||||
const char MSG_FIND_BED_OFFSET_AND_SKEW_LINE3_ES[] PROGMEM = " of 4";
|
||||
const char MSG_FIND_BED_OFFSET_AND_SKEW_LINE3_PL[] PROGMEM = " of 4";
|
||||
|
@ -1124,7 +1228,7 @@ const char * const MSG_HOTEND_OFFSET_LANG_TABLE[LANG_NUM] PROGMEM = {
|
|||
};
|
||||
|
||||
const char MSG_IMPROVE_BED_OFFSET_AND_SKEW_LINE1_EN[] PROGMEM = "Improving bed";
|
||||
const char MSG_IMPROVE_BED_OFFSET_AND_SKEW_LINE1_CZ[] PROGMEM = "Improving bed";
|
||||
const char MSG_IMPROVE_BED_OFFSET_AND_SKEW_LINE1_CZ[] PROGMEM = "Zlepsuji presnost";
|
||||
const char MSG_IMPROVE_BED_OFFSET_AND_SKEW_LINE1_IT[] PROGMEM = "Improving bed";
|
||||
const char MSG_IMPROVE_BED_OFFSET_AND_SKEW_LINE1_ES[] PROGMEM = "Improving bed";
|
||||
const char MSG_IMPROVE_BED_OFFSET_AND_SKEW_LINE1_PL[] PROGMEM = "Improving bed";
|
||||
|
@ -1137,7 +1241,7 @@ const char * const MSG_IMPROVE_BED_OFFSET_AND_SKEW_LINE1_LANG_TABLE[LANG_NUM] PR
|
|||
};
|
||||
|
||||
const char MSG_IMPROVE_BED_OFFSET_AND_SKEW_LINE2_EN[] PROGMEM = "calibration point";
|
||||
const char MSG_IMPROVE_BED_OFFSET_AND_SKEW_LINE2_CZ[] PROGMEM = "calibration point";
|
||||
const char MSG_IMPROVE_BED_OFFSET_AND_SKEW_LINE2_CZ[] PROGMEM = "kalibracniho bodu";
|
||||
const char MSG_IMPROVE_BED_OFFSET_AND_SKEW_LINE2_IT[] PROGMEM = "calibration point";
|
||||
const char MSG_IMPROVE_BED_OFFSET_AND_SKEW_LINE2_ES[] PROGMEM = "calibration point";
|
||||
const char MSG_IMPROVE_BED_OFFSET_AND_SKEW_LINE2_PL[] PROGMEM = "calibration point";
|
||||
|
@ -1150,7 +1254,7 @@ const char * const MSG_IMPROVE_BED_OFFSET_AND_SKEW_LINE2_LANG_TABLE[LANG_NUM] PR
|
|||
};
|
||||
|
||||
const char MSG_IMPROVE_BED_OFFSET_AND_SKEW_LINE3_EN[] PROGMEM = " of 9";
|
||||
const char MSG_IMPROVE_BED_OFFSET_AND_SKEW_LINE3_CZ[] PROGMEM = " of 9";
|
||||
const char MSG_IMPROVE_BED_OFFSET_AND_SKEW_LINE3_CZ[] PROGMEM = " z 9";
|
||||
const char MSG_IMPROVE_BED_OFFSET_AND_SKEW_LINE3_IT[] PROGMEM = " of 9";
|
||||
const char MSG_IMPROVE_BED_OFFSET_AND_SKEW_LINE3_ES[] PROGMEM = " of 9";
|
||||
const char MSG_IMPROVE_BED_OFFSET_AND_SKEW_LINE3_PL[] PROGMEM = " of 9";
|
||||
|
@ -1500,11 +1604,11 @@ const char * const MSG_MOVE_AXIS_LANG_TABLE[LANG_NUM] PROGMEM = {
|
|||
MSG_MOVE_AXIS_PL
|
||||
};
|
||||
|
||||
const char MSG_MOVE_CARRIAGE_TO_THE_TOP_LINE1_EN[] PROGMEM = "Calibrating bed.";
|
||||
const char MSG_MOVE_CARRIAGE_TO_THE_TOP_LINE1_CZ[] PROGMEM = "Calibrating bed.";
|
||||
const char MSG_MOVE_CARRIAGE_TO_THE_TOP_LINE1_IT[] PROGMEM = "Calibrating bed.";
|
||||
const char MSG_MOVE_CARRIAGE_TO_THE_TOP_LINE1_ES[] PROGMEM = "Calibrating bed.";
|
||||
const char MSG_MOVE_CARRIAGE_TO_THE_TOP_LINE1_PL[] PROGMEM = "Calibrating bed.";
|
||||
const char MSG_MOVE_CARRIAGE_TO_THE_TOP_LINE1_EN[] PROGMEM = "Calibrating X/Y.";
|
||||
const char MSG_MOVE_CARRIAGE_TO_THE_TOP_LINE1_CZ[] PROGMEM = "Kalibrace X/Y";
|
||||
const char MSG_MOVE_CARRIAGE_TO_THE_TOP_LINE1_IT[] PROGMEM = "Calibrating X/Y.";
|
||||
const char MSG_MOVE_CARRIAGE_TO_THE_TOP_LINE1_ES[] PROGMEM = "Calibrating X/Y.";
|
||||
const char MSG_MOVE_CARRIAGE_TO_THE_TOP_LINE1_PL[] PROGMEM = "Calibrating X/Y.";
|
||||
const char * const MSG_MOVE_CARRIAGE_TO_THE_TOP_LINE1_LANG_TABLE[LANG_NUM] PROGMEM = {
|
||||
MSG_MOVE_CARRIAGE_TO_THE_TOP_LINE1_EN,
|
||||
MSG_MOVE_CARRIAGE_TO_THE_TOP_LINE1_CZ,
|
||||
|
@ -1514,7 +1618,7 @@ const char * const MSG_MOVE_CARRIAGE_TO_THE_TOP_LINE1_LANG_TABLE[LANG_NUM] PROGM
|
|||
};
|
||||
|
||||
const char MSG_MOVE_CARRIAGE_TO_THE_TOP_LINE2_EN[] PROGMEM = "Move Z carriage up";
|
||||
const char MSG_MOVE_CARRIAGE_TO_THE_TOP_LINE2_CZ[] PROGMEM = "Move Z carriage up";
|
||||
const char MSG_MOVE_CARRIAGE_TO_THE_TOP_LINE2_CZ[] PROGMEM = "Posunte prosim Z osu";
|
||||
const char MSG_MOVE_CARRIAGE_TO_THE_TOP_LINE2_IT[] PROGMEM = "Move Z carriage up";
|
||||
const char MSG_MOVE_CARRIAGE_TO_THE_TOP_LINE2_ES[] PROGMEM = "Move Z carriage up";
|
||||
const char MSG_MOVE_CARRIAGE_TO_THE_TOP_LINE2_PL[] PROGMEM = "Move Z carriage up";
|
||||
|
@ -1527,7 +1631,7 @@ const char * const MSG_MOVE_CARRIAGE_TO_THE_TOP_LINE2_LANG_TABLE[LANG_NUM] PROGM
|
|||
};
|
||||
|
||||
const char MSG_MOVE_CARRIAGE_TO_THE_TOP_LINE3_EN[] PROGMEM = "to the end stoppers.";
|
||||
const char MSG_MOVE_CARRIAGE_TO_THE_TOP_LINE3_CZ[] PROGMEM = "to the end stoppers.";
|
||||
const char MSG_MOVE_CARRIAGE_TO_THE_TOP_LINE3_CZ[] PROGMEM = "az k hornimu dorazu.";
|
||||
const char MSG_MOVE_CARRIAGE_TO_THE_TOP_LINE3_IT[] PROGMEM = "to the end stoppers.";
|
||||
const char MSG_MOVE_CARRIAGE_TO_THE_TOP_LINE3_ES[] PROGMEM = "to the end stoppers.";
|
||||
const char MSG_MOVE_CARRIAGE_TO_THE_TOP_LINE3_PL[] PROGMEM = "to the end stoppers.";
|
||||
|
@ -1540,7 +1644,7 @@ const char * const MSG_MOVE_CARRIAGE_TO_THE_TOP_LINE3_LANG_TABLE[LANG_NUM] PROGM
|
|||
};
|
||||
|
||||
const char MSG_MOVE_CARRIAGE_TO_THE_TOP_LINE4_EN[] PROGMEM = "Click when done.";
|
||||
const char MSG_MOVE_CARRIAGE_TO_THE_TOP_LINE4_CZ[] PROGMEM = "Click when done.";
|
||||
const char MSG_MOVE_CARRIAGE_TO_THE_TOP_LINE4_CZ[] PROGMEM = "Potvrdte tlacitkem.";
|
||||
const char MSG_MOVE_CARRIAGE_TO_THE_TOP_LINE4_IT[] PROGMEM = "Click when done.";
|
||||
const char MSG_MOVE_CARRIAGE_TO_THE_TOP_LINE4_ES[] PROGMEM = "Click when done.";
|
||||
const char MSG_MOVE_CARRIAGE_TO_THE_TOP_LINE4_PL[] PROGMEM = "Click when done.";
|
||||
|
@ -2839,6 +2943,19 @@ const char * const MSG_SET_ORIGIN_LANG_TABLE[LANG_NUM] PROGMEM = {
|
|||
MSG_SET_ORIGIN_PL
|
||||
};
|
||||
|
||||
const char MSG_SHOW_END_STOPS_EN[] PROGMEM = "Show end stops";
|
||||
const char MSG_SHOW_END_STOPS_CZ[] PROGMEM = "Zobraz konc. spinace";
|
||||
const char MSG_SHOW_END_STOPS_IT[] PROGMEM = "Show end stops";
|
||||
const char MSG_SHOW_END_STOPS_ES[] PROGMEM = "Show end stops";
|
||||
const char MSG_SHOW_END_STOPS_PL[] PROGMEM = "Show end stops";
|
||||
const char * const MSG_SHOW_END_STOPS_LANG_TABLE[LANG_NUM] PROGMEM = {
|
||||
MSG_SHOW_END_STOPS_EN,
|
||||
MSG_SHOW_END_STOPS_CZ,
|
||||
MSG_SHOW_END_STOPS_IT,
|
||||
MSG_SHOW_END_STOPS_ES,
|
||||
MSG_SHOW_END_STOPS_PL
|
||||
};
|
||||
|
||||
const char MSG_SILENT_MODE_OFF_EN[] PROGMEM = "Mode [high power]";
|
||||
const char MSG_SILENT_MODE_OFF_CZ[] PROGMEM = "Mod [vys. vykon]";
|
||||
const char MSG_SILENT_MODE_OFF_IT[] PROGMEM = "Modo [piu forza]";
|
||||
|
|
|
@ -46,6 +46,22 @@ extern const char* const MSG_BED_DONE_LANG_TABLE[LANG_NUM];
|
|||
#define MSG_BED_DONE LANG_TABLE_SELECT(MSG_BED_DONE_LANG_TABLE)
|
||||
extern const char* const MSG_BED_HEATING_LANG_TABLE[LANG_NUM];
|
||||
#define MSG_BED_HEATING LANG_TABLE_SELECT(MSG_BED_HEATING_LANG_TABLE)
|
||||
extern const char* const MSG_BED_LEVELING_FAILED_POINT_HIGH_LANG_TABLE[LANG_NUM];
|
||||
#define MSG_BED_LEVELING_FAILED_POINT_HIGH LANG_TABLE_SELECT(MSG_BED_LEVELING_FAILED_POINT_HIGH_LANG_TABLE)
|
||||
extern const char* const MSG_BED_LEVELING_FAILED_POINT_LOW_LANG_TABLE[LANG_NUM];
|
||||
#define MSG_BED_LEVELING_FAILED_POINT_LOW LANG_TABLE_SELECT(MSG_BED_LEVELING_FAILED_POINT_LOW_LANG_TABLE)
|
||||
extern const char* const MSG_BED_SKEW_OFFSET_DETECTION_FAILED_LANG_TABLE[LANG_NUM];
|
||||
#define MSG_BED_SKEW_OFFSET_DETECTION_FAILED LANG_TABLE_SELECT(MSG_BED_SKEW_OFFSET_DETECTION_FAILED_LANG_TABLE)
|
||||
extern const char* const MSG_BED_SKEW_OFFSET_DETECTION_FRONT_LEFT_FAR_LANG_TABLE[LANG_NUM];
|
||||
#define MSG_BED_SKEW_OFFSET_DETECTION_FRONT_LEFT_FAR LANG_TABLE_SELECT(MSG_BED_SKEW_OFFSET_DETECTION_FRONT_LEFT_FAR_LANG_TABLE)
|
||||
extern const char* const MSG_BED_SKEW_OFFSET_DETECTION_FRONT_RIGHT_FAR_LANG_TABLE[LANG_NUM];
|
||||
#define MSG_BED_SKEW_OFFSET_DETECTION_FRONT_RIGHT_FAR LANG_TABLE_SELECT(MSG_BED_SKEW_OFFSET_DETECTION_FRONT_RIGHT_FAR_LANG_TABLE)
|
||||
extern const char* const MSG_BED_SKEW_OFFSET_DETECTION_PERFECT_LANG_TABLE[LANG_NUM];
|
||||
#define MSG_BED_SKEW_OFFSET_DETECTION_PERFECT LANG_TABLE_SELECT(MSG_BED_SKEW_OFFSET_DETECTION_PERFECT_LANG_TABLE)
|
||||
extern const char* const MSG_BED_SKEW_OFFSET_DETECTION_SKEW_EXTREME_LANG_TABLE[LANG_NUM];
|
||||
#define MSG_BED_SKEW_OFFSET_DETECTION_SKEW_EXTREME LANG_TABLE_SELECT(MSG_BED_SKEW_OFFSET_DETECTION_SKEW_EXTREME_LANG_TABLE)
|
||||
extern const char* const MSG_BED_SKEW_OFFSET_DETECTION_SKEW_MILD_LANG_TABLE[LANG_NUM];
|
||||
#define MSG_BED_SKEW_OFFSET_DETECTION_SKEW_MILD LANG_TABLE_SELECT(MSG_BED_SKEW_OFFSET_DETECTION_SKEW_MILD_LANG_TABLE)
|
||||
extern const char* const MSG_BEGIN_FILE_LIST_LANG_TABLE[LANG_NUM];
|
||||
#define MSG_BEGIN_FILE_LIST LANG_TABLE_SELECT(MSG_BEGIN_FILE_LIST_LANG_TABLE)
|
||||
extern const char* const MSG_BROWNOUT_RESET_LANG_TABLE[LANG_NUM];
|
||||
|
@ -446,6 +462,8 @@ extern const char* const MSG_SET_HOME_OFFSETS_LANG_TABLE[LANG_NUM];
|
|||
#define MSG_SET_HOME_OFFSETS LANG_TABLE_SELECT(MSG_SET_HOME_OFFSETS_LANG_TABLE)
|
||||
extern const char* const MSG_SET_ORIGIN_LANG_TABLE[LANG_NUM];
|
||||
#define MSG_SET_ORIGIN LANG_TABLE_SELECT(MSG_SET_ORIGIN_LANG_TABLE)
|
||||
extern const char* const MSG_SHOW_END_STOPS_LANG_TABLE[LANG_NUM];
|
||||
#define MSG_SHOW_END_STOPS LANG_TABLE_SELECT(MSG_SHOW_END_STOPS_LANG_TABLE)
|
||||
extern const char* const MSG_SILENT_MODE_OFF_LANG_TABLE[LANG_NUM];
|
||||
#define MSG_SILENT_MODE_OFF LANG_TABLE_SELECT(MSG_SILENT_MODE_OFF_LANG_TABLE)
|
||||
extern const char* const MSG_SILENT_MODE_ON_LANG_TABLE[LANG_NUM];
|
||||
|
|
|
@ -278,4 +278,33 @@
|
|||
#define MSG_STATISTICS "Statistika "
|
||||
#define MSG_USB_PRINTING "Tisk z USB "
|
||||
|
||||
#define MSG_SHOW_END_STOPS "Zobraz konc. spinace"
|
||||
#define MSG_CALIBRATE_BED "Kalibrace X/Y"
|
||||
#define MSG_CALIBRATE_BED_RESET "Reset X/Y kalibr."
|
||||
|
||||
#define MSG_MOVE_CARRIAGE_TO_THE_TOP_LINE1 "Kalibrace X/Y"
|
||||
#define MSG_MOVE_CARRIAGE_TO_THE_TOP_LINE2 "Posunte prosim Z osu"
|
||||
#define MSG_MOVE_CARRIAGE_TO_THE_TOP_LINE3 "az k hornimu dorazu."
|
||||
#define MSG_MOVE_CARRIAGE_TO_THE_TOP_LINE4 "Potvrdte tlacitkem."
|
||||
|
||||
#define MSG_CONFIRM_CARRIAGE_AT_THE_TOP_LINE1 "Dojely oba Z voziky"
|
||||
#define MSG_CONFIRM_CARRIAGE_AT_THE_TOP_LINE2 "k hornimu dorazu?"
|
||||
|
||||
#define MSG_FIND_BED_OFFSET_AND_SKEW_LINE1 "Hledam kalibracni"
|
||||
#define MSG_FIND_BED_OFFSET_AND_SKEW_LINE2 "bod podlozky"
|
||||
#define MSG_FIND_BED_OFFSET_AND_SKEW_LINE3 " z 4"
|
||||
#define MSG_IMPROVE_BED_OFFSET_AND_SKEW_LINE1 "Zlepsuji presnost"
|
||||
#define MSG_IMPROVE_BED_OFFSET_AND_SKEW_LINE2 "kalibracniho bodu"
|
||||
#define MSG_IMPROVE_BED_OFFSET_AND_SKEW_LINE3 " z 9"
|
||||
|
||||
#define MSG_BED_SKEW_OFFSET_DETECTION_FAILED "Kalibrace X/Y selhala. Nahlednete do manualu."
|
||||
#define MSG_BED_SKEW_OFFSET_DETECTION_PERFECT "Kalibrace X/Y perfektni. X/Y osy jsou kolme."
|
||||
#define MSG_BED_SKEW_OFFSET_DETECTION_SKEW_MILD "Kalibrace X/Y v poradku. X/Y osy mirne zkosene."
|
||||
#define MSG_BED_SKEW_OFFSET_DETECTION_SKEW_EXTREME "X/Y osy jsou silne zkosene. Zkoseni bude automaticky vyrovnano pri tisku."
|
||||
#define MSG_BED_SKEW_OFFSET_DETECTION_FRONT_LEFT_FAR "Kalibrace selhala. Levy predni bod moc vpredu. Srovnejte tiskarnu."
|
||||
#define MSG_BED_SKEW_OFFSET_DETECTION_FRONT_RIGHT_FAR "Kalibrace selhala. Pravy predni bod moc vpredu. Srovnejte tiskarnu."
|
||||
|
||||
#define MSG_BED_LEVELING_FAILED_POINT_LOW "Kalibrace Z selhala. Sensor nesepnul. Znecistena tryska? Cekam na reset."
|
||||
#define MSG_BED_LEVELING_FAILED_POINT_HIGH "Kalibrace Z selhala. Sensor sepnul prilis vysoko. Cekam na reset."
|
||||
|
||||
#endif // LANGUAGE_EN_H
|
||||
|
|
|
@ -271,10 +271,11 @@
|
|||
#define MSG_HOMEYZ_PROGRESS "Calibrating Z"
|
||||
#define MSG_HOMEYZ_DONE "Calibration done"
|
||||
|
||||
#define MSG_CALIBRATE_BED "Calibrate bed"
|
||||
#define MSG_CALIBRATE_BED_RESET "Reset bed calibration"
|
||||
#define MSG_SHOW_END_STOPS "Show end stops"
|
||||
#define MSG_CALIBRATE_BED "Calibrate X/Y"
|
||||
#define MSG_CALIBRATE_BED_RESET "Reset X/Y calibr."
|
||||
|
||||
#define MSG_MOVE_CARRIAGE_TO_THE_TOP_LINE1 "Calibrating bed."
|
||||
#define MSG_MOVE_CARRIAGE_TO_THE_TOP_LINE1 "Calibrating X/Y."
|
||||
#define MSG_MOVE_CARRIAGE_TO_THE_TOP_LINE2 "Move Z carriage up"
|
||||
#define MSG_MOVE_CARRIAGE_TO_THE_TOP_LINE3 "to the end stoppers."
|
||||
#define MSG_MOVE_CARRIAGE_TO_THE_TOP_LINE4 "Click when done."
|
||||
|
@ -289,4 +290,14 @@
|
|||
#define MSG_IMPROVE_BED_OFFSET_AND_SKEW_LINE2 "calibration point"
|
||||
#define MSG_IMPROVE_BED_OFFSET_AND_SKEW_LINE3 " of 9"
|
||||
|
||||
#define MSG_BED_SKEW_OFFSET_DETECTION_FAILED "X/Y calibration failed. Please consult manual."
|
||||
#define MSG_BED_SKEW_OFFSET_DETECTION_PERFECT "X/Y calibration ok. X/Y axes are perpendicular."
|
||||
#define MSG_BED_SKEW_OFFSET_DETECTION_SKEW_MILD "X/Y calibration all right. X/Y axes are slightly skewed."
|
||||
#define MSG_BED_SKEW_OFFSET_DETECTION_SKEW_EXTREME "X/Y skewed severly. Skew will be corrected automatically."
|
||||
#define MSG_BED_SKEW_OFFSET_DETECTION_FRONT_LEFT_FAR "X/Y calibration bad. Left front corner not reachable. Fix the printer."
|
||||
#define MSG_BED_SKEW_OFFSET_DETECTION_FRONT_RIGHT_FAR "X/Y calibration bad. Right front corner not reachable. Fix the printer."
|
||||
|
||||
#define MSG_BED_LEVELING_FAILED_POINT_LOW "Bed leveling failed. Sensor didnt trigger. Debris on nozzle? Waiting for reset."
|
||||
#define MSG_BED_LEVELING_FAILED_POINT_HIGH "Bed leveling failed. Sensor triggered too high. Waiting for reset."
|
||||
|
||||
#endif // LANGUAGE_EN_H
|
||||
|
|
|
@ -9,8 +9,10 @@
|
|||
|
||||
extern float home_retract_mm_ext(int axis);
|
||||
|
||||
float world2machine_rotation_and_skew[2][2];
|
||||
float world2machine_shift[2];
|
||||
uint8_t world2machine_correction_mode;
|
||||
float world2machine_rotation_and_skew[2][2];
|
||||
float world2machine_rotation_and_skew_inv[2][2];
|
||||
float world2machine_shift[2];
|
||||
|
||||
// Weight of the Y coordinate for the least squares fitting of the bed induction sensor targets.
|
||||
// Only used for the first row of the points, which may not befully in reach of the sensor.
|
||||
|
@ -24,6 +26,13 @@ float world2machine_shift[2];
|
|||
#define MACHINE_AXIS_SCALE_X ((250.f + 0.5f) / 250.f)
|
||||
#define MACHINE_AXIS_SCALE_Y ((250.f + 0.5f) / 250.f)
|
||||
|
||||
#define BED_SKEW_ANGLE_MILD (0.12f * M_PI / 180.f)
|
||||
#define BED_SKEW_ANGLE_EXTREME (0.25f * M_PI / 180.f)
|
||||
|
||||
#define BED_CALIBRATION_POINT_OFFSET_MAX_EUCLIDIAN (0.8f)
|
||||
#define BED_CALIBRATION_POINT_OFFSET_MAX_1ST_ROW_X (0.8f)
|
||||
#define BED_CALIBRATION_POINT_OFFSET_MAX_1ST_ROW_Y (1.5f)
|
||||
|
||||
// Positions of the bed reference points in the machine coordinates, referenced to the P.I.N.D.A sensor.
|
||||
// The points are ordered in a zig-zag fashion to speed up the calibration.
|
||||
const float bed_ref_points[] PROGMEM = {
|
||||
|
@ -352,7 +361,7 @@ bool calculate_machine_skew_and_offset_LS(
|
|||
// using the Gauss-Newton method.
|
||||
// This method will maintain a unity length of the machine axes,
|
||||
// which is the correct approach if the sensor points are not measured precisely.
|
||||
bool calculate_machine_skew_and_offset_LS(
|
||||
BedSkewOffsetDetectionResultType calculate_machine_skew_and_offset_LS(
|
||||
// Matrix of maximum 9 2D points (18 floats)
|
||||
const float *measured_pts,
|
||||
uint8_t npts,
|
||||
|
@ -533,6 +542,18 @@ bool calculate_machine_skew_and_offset_LS(
|
|||
vec_y[0] = -sin(a2) * MACHINE_AXIS_SCALE_Y;
|
||||
vec_y[1] = cos(a2) * MACHINE_AXIS_SCALE_Y;
|
||||
|
||||
BedSkewOffsetDetectionResultType result = BED_SKEW_OFFSET_DETECTION_PERFECT;
|
||||
{
|
||||
float angleDiff = fabs(a2 - a1);
|
||||
if (angleDiff > BED_SKEW_ANGLE_MILD)
|
||||
result = (angleDiff > BED_SKEW_ANGLE_EXTREME) ?
|
||||
BED_SKEW_OFFSET_DETECTION_SKEW_EXTREME :
|
||||
BED_SKEW_OFFSET_DETECTION_SKEW_MILD;
|
||||
if (fabs(a1) > BED_SKEW_ANGLE_EXTREME ||
|
||||
fabs(a2) > BED_SKEW_ANGLE_EXTREME)
|
||||
result = BED_SKEW_OFFSET_DETECTION_SKEW_EXTREME;
|
||||
}
|
||||
|
||||
if (verbosity_level >= 1) {
|
||||
SERIAL_ECHOPGM("correction angles: ");
|
||||
MYSERIAL.print(180.f * a1 / M_PI, 5);
|
||||
|
@ -563,9 +584,24 @@ bool calculate_machine_skew_and_offset_LS(
|
|||
delay_keep_alive(100);
|
||||
|
||||
SERIAL_ECHOLNPGM("Error after correction: ");
|
||||
for (uint8_t i = 0; i < npts; ++i) {
|
||||
float x = vec_x[0] * measured_pts[i * 2] + vec_y[0] * measured_pts[i * 2 + 1] + cntr[0];
|
||||
float y = vec_x[1] * measured_pts[i * 2] + vec_y[1] * measured_pts[i * 2 + 1] + cntr[1];
|
||||
}
|
||||
|
||||
// Measure the error after correction.
|
||||
for (uint8_t i = 0; i < npts; ++i) {
|
||||
float x = vec_x[0] * measured_pts[i * 2] + vec_y[0] * measured_pts[i * 2 + 1] + cntr[0];
|
||||
float y = vec_x[1] * measured_pts[i * 2] + vec_y[1] * measured_pts[i * 2 + 1] + cntr[1];
|
||||
float errX = sqr(pgm_read_float(true_pts + i * 2) - x);
|
||||
float errY = sqr(pgm_read_float(true_pts + i * 2 + 1) - y);
|
||||
float err = sqrt(errX + errY);
|
||||
if (i < 3) {
|
||||
if (sqrt(errX) > BED_CALIBRATION_POINT_OFFSET_MAX_1ST_ROW_X ||
|
||||
sqrt(errY) > BED_CALIBRATION_POINT_OFFSET_MAX_1ST_ROW_Y)
|
||||
result = BED_SKEW_OFFSET_DETECTION_FAILED;
|
||||
} else {
|
||||
if (err > BED_CALIBRATION_POINT_OFFSET_MAX_EUCLIDIAN)
|
||||
result = BED_SKEW_OFFSET_DETECTION_FAILED;
|
||||
}
|
||||
if (verbosity_level >= 10) {
|
||||
SERIAL_ECHOPGM("point #");
|
||||
MYSERIAL.print(int(i));
|
||||
SERIAL_ECHOPGM(" measured: (");
|
||||
|
@ -581,11 +617,20 @@ bool calculate_machine_skew_and_offset_LS(
|
|||
SERIAL_ECHOPGM(", ");
|
||||
MYSERIAL.print(pgm_read_float(true_pts + i * 2 + 1), 5);
|
||||
SERIAL_ECHOPGM("), error: ");
|
||||
MYSERIAL.print(sqrt(sqr(pgm_read_float(true_pts + i * 2) - x) + sqr(pgm_read_float(true_pts + i * 2 + 1) - y)));
|
||||
MYSERIAL.print(err);
|
||||
SERIAL_ECHOLNPGM("");
|
||||
}
|
||||
}
|
||||
|
||||
if (result == BED_SKEW_OFFSET_DETECTION_PERFECT && fabs(a1) < BED_SKEW_ANGLE_MILD && fabs(a2) < BED_SKEW_ANGLE_MILD) {
|
||||
if (verbosity_level > 0)
|
||||
SERIAL_ECHOLNPGM("Very little skew detected. Disabling skew correction.");
|
||||
vec_x[0] = MACHINE_AXIS_SCALE_X;
|
||||
vec_x[1] = 0.f;
|
||||
vec_y[0] = 0.f;
|
||||
vec_y[1] = MACHINE_AXIS_SCALE_Y;
|
||||
}
|
||||
|
||||
// Invert the transformation matrix made of vec_x, vec_y and cntr.
|
||||
{
|
||||
float d = vec_x[0] * vec_y[1] - vec_x[1] * vec_y[0];
|
||||
|
@ -653,7 +698,7 @@ bool calculate_machine_skew_and_offset_LS(
|
|||
delay_keep_alive(100);
|
||||
}
|
||||
|
||||
return true;
|
||||
return result;
|
||||
}
|
||||
|
||||
#endif
|
||||
|
@ -666,18 +711,57 @@ void reset_bed_offset_and_skew()
|
|||
eeprom_update_dword((uint32_t*)(EEPROM_BED_CALIBRATION_VEC_X +4), 0x0FFFFFFFF);
|
||||
eeprom_update_dword((uint32_t*)(EEPROM_BED_CALIBRATION_VEC_Y +0), 0x0FFFFFFFF);
|
||||
eeprom_update_dword((uint32_t*)(EEPROM_BED_CALIBRATION_VEC_Y +4), 0x0FFFFFFFF);
|
||||
|
||||
// Reset the 8 16bit offsets.
|
||||
for (int8_t i = 0; i < 4; ++ i)
|
||||
eeprom_update_dword((uint32_t*)(EEPROM_BED_CALIBRATION_Z_JITTER+i*4), 0x0FFFFFFFF);
|
||||
}
|
||||
|
||||
bool is_bed_z_jitter_data_valid()
|
||||
{
|
||||
for (int8_t i = 0; i < 8; ++ i)
|
||||
if (eeprom_read_word((uint16_t*)(EEPROM_BED_CALIBRATION_Z_JITTER+i*2)) == 0x0FFFF)
|
||||
return false;
|
||||
return true;
|
||||
}
|
||||
|
||||
static void world2machine_update(const float vec_x[2], const float vec_y[2], const float cntr[2])
|
||||
{
|
||||
world2machine_rotation_and_skew[0][0] = vec_x[0];
|
||||
world2machine_rotation_and_skew[1][0] = vec_x[1];
|
||||
world2machine_rotation_and_skew[0][1] = vec_y[0];
|
||||
world2machine_rotation_and_skew[1][1] = vec_y[1];
|
||||
world2machine_shift[0] = cntr[0];
|
||||
world2machine_shift[1] = cntr[1];
|
||||
// No correction.
|
||||
world2machine_correction_mode = WORLD2MACHINE_CORRECTION_NONE;
|
||||
if (world2machine_shift[0] != 0.f || world2machine_shift[1] != 0.f)
|
||||
// Shift correction.
|
||||
world2machine_correction_mode |= WORLD2MACHINE_CORRECTION_SHIFT;
|
||||
if (world2machine_rotation_and_skew[0][0] != 1.f || world2machine_rotation_and_skew[0][1] != 0.f ||
|
||||
world2machine_rotation_and_skew[1][0] != 0.f || world2machine_rotation_and_skew[1][1] != 1.f) {
|
||||
// Rotation & skew correction.
|
||||
world2machine_correction_mode |= WORLD2MACHINE_CORRECTION_SKEW;
|
||||
// Invert the world2machine matrix.
|
||||
float d = world2machine_rotation_and_skew[0][0] * world2machine_rotation_and_skew[1][1] - world2machine_rotation_and_skew[1][0] * world2machine_rotation_and_skew[0][1];
|
||||
world2machine_rotation_and_skew_inv[0][0] = world2machine_rotation_and_skew[1][1] / d;
|
||||
world2machine_rotation_and_skew_inv[0][1] = -world2machine_rotation_and_skew[0][1] / d;
|
||||
world2machine_rotation_and_skew_inv[1][0] = -world2machine_rotation_and_skew[1][0] / d;
|
||||
world2machine_rotation_and_skew_inv[1][1] = world2machine_rotation_and_skew[0][0] / d;
|
||||
} else {
|
||||
world2machine_rotation_and_skew_inv[0][0] = 1.f;
|
||||
world2machine_rotation_and_skew_inv[0][1] = 0.f;
|
||||
world2machine_rotation_and_skew_inv[1][0] = 0.f;
|
||||
world2machine_rotation_and_skew_inv[1][1] = 1.f;
|
||||
}
|
||||
}
|
||||
|
||||
void world2machine_reset()
|
||||
{
|
||||
// Identity transformation.
|
||||
world2machine_rotation_and_skew[0][0] = 1.f;
|
||||
world2machine_rotation_and_skew[0][1] = 0.f;
|
||||
world2machine_rotation_and_skew[1][0] = 0.f;
|
||||
world2machine_rotation_and_skew[1][1] = 1.f;
|
||||
// Zero shift.
|
||||
world2machine_shift[0] = 0.f;
|
||||
world2machine_shift[1] = 0.f;
|
||||
const float vx[] = { 1.f, 0.f };
|
||||
const float vy[] = { 0.f, 1.f };
|
||||
const float cntr[] = { 0.f, 0.f };
|
||||
world2machine_update(vx, vy, cntr);
|
||||
}
|
||||
|
||||
static inline bool vec_undef(const float v[2])
|
||||
|
@ -688,6 +772,7 @@ static inline bool vec_undef(const float v[2])
|
|||
|
||||
void world2machine_initialize()
|
||||
{
|
||||
SERIAL_ECHOLNPGM("world2machine_initialize()");
|
||||
float cntr[2] = {
|
||||
eeprom_read_float((float*)(EEPROM_BED_CALIBRATION_CENTER+0)),
|
||||
eeprom_read_float((float*)(EEPROM_BED_CALIBRATION_CENTER+4))
|
||||
|
@ -734,16 +819,24 @@ void world2machine_initialize()
|
|||
}
|
||||
|
||||
if (reset) {
|
||||
// SERIAL_ECHOLNPGM("Invalid bed correction matrix. Resetting to identity.");
|
||||
SERIAL_ECHOLNPGM("Invalid bed correction matrix. Resetting to identity.");
|
||||
reset_bed_offset_and_skew();
|
||||
world2machine_reset();
|
||||
} else {
|
||||
world2machine_rotation_and_skew[0][0] = vec_x[0];
|
||||
world2machine_rotation_and_skew[1][0] = vec_x[1];
|
||||
world2machine_rotation_and_skew[0][1] = vec_y[0];
|
||||
world2machine_rotation_and_skew[1][1] = vec_y[1];
|
||||
world2machine_shift[0] = cntr[0];
|
||||
world2machine_shift[1] = cntr[1];
|
||||
world2machine_update(vec_x, vec_y, cntr);
|
||||
SERIAL_ECHOPGM("world2machine_initialize() loaded: ");
|
||||
MYSERIAL.print(world2machine_rotation_and_skew[0][0], 5);
|
||||
SERIAL_ECHOPGM(", ");
|
||||
MYSERIAL.print(world2machine_rotation_and_skew[0][1], 5);
|
||||
SERIAL_ECHOPGM(", ");
|
||||
MYSERIAL.print(world2machine_rotation_and_skew[1][0], 5);
|
||||
SERIAL_ECHOPGM(", ");
|
||||
MYSERIAL.print(world2machine_rotation_and_skew[1][1], 5);
|
||||
SERIAL_ECHOPGM(", offset ");
|
||||
MYSERIAL.print(world2machine_shift[0], 5);
|
||||
SERIAL_ECHOPGM(", ");
|
||||
MYSERIAL.print(world2machine_shift[1], 5);
|
||||
SERIAL_ECHOLNPGM("");
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -753,16 +846,10 @@ void world2machine_initialize()
|
|||
// and stores the result into current_position[x,y].
|
||||
void world2machine_update_current()
|
||||
{
|
||||
// Invert the transformation matrix made of vec_x, vec_y and cntr.
|
||||
float d = world2machine_rotation_and_skew[0][0] * world2machine_rotation_and_skew[1][1] - world2machine_rotation_and_skew[1][0] * world2machine_rotation_and_skew[0][1];
|
||||
float Ainv[2][2] = {
|
||||
{ world2machine_rotation_and_skew[1][1] / d, - world2machine_rotation_and_skew[0][1] / d },
|
||||
{ - world2machine_rotation_and_skew[1][0] / d, world2machine_rotation_and_skew[0][0] / d }
|
||||
};
|
||||
float x = current_position[X_AXIS] - world2machine_shift[0];
|
||||
float y = current_position[Y_AXIS] - world2machine_shift[1];
|
||||
current_position[X_AXIS] = Ainv[0][0] * x + Ainv[0][1] * y;
|
||||
current_position[Y_AXIS] = Ainv[1][0] * x + Ainv[1][1] * y;
|
||||
current_position[X_AXIS] = world2machine_rotation_and_skew_inv[0][0] * x + world2machine_rotation_and_skew_inv[0][1] * y;
|
||||
current_position[Y_AXIS] = world2machine_rotation_and_skew_inv[1][0] * x + world2machine_rotation_and_skew_inv[1][1] * y;
|
||||
}
|
||||
|
||||
static inline void go_xyz(float x, float y, float z, float fr)
|
||||
|
@ -798,16 +885,19 @@ static inline void update_current_position_z()
|
|||
}
|
||||
|
||||
// At the current position, find the Z stop.
|
||||
inline void find_bed_induction_sensor_point_z()
|
||||
inline bool find_bed_induction_sensor_point_z(float minimum_z)
|
||||
{
|
||||
bool endstops_enabled = enable_endstops(true);
|
||||
bool endstop_z_enabled = enable_z_endstop(false);
|
||||
endstop_z_hit_on_purpose();
|
||||
|
||||
// move down until you find the bed
|
||||
current_position[Z_AXIS] = -10;
|
||||
current_position[Z_AXIS] = minimum_z;
|
||||
go_to_current(homing_feedrate[Z_AXIS]/60);
|
||||
// we have to let the planner know where we are right now as it is not where we said to go.
|
||||
update_current_position_z();
|
||||
if (! endstop_z_hit_on_purpose())
|
||||
goto error;
|
||||
|
||||
// move up the retract distance
|
||||
current_position[Z_AXIS] += home_retract_mm_ext(Z_AXIS);
|
||||
|
@ -815,12 +905,21 @@ inline void find_bed_induction_sensor_point_z()
|
|||
|
||||
// move back down slowly to find bed
|
||||
current_position[Z_AXIS] -= home_retract_mm_ext(Z_AXIS) * 2;
|
||||
current_position[Z_AXIS] = min(current_position[Z_AXIS], minimum_z);
|
||||
go_to_current(homing_feedrate[Z_AXIS]/(4*60));
|
||||
// we have to let the planner know where we are right now as it is not where we said to go.
|
||||
update_current_position_z();
|
||||
if (! endstop_z_hit_on_purpose())
|
||||
goto error;
|
||||
|
||||
enable_endstops(endstops_enabled);
|
||||
enable_z_endstop(endstop_z_enabled);
|
||||
return true;
|
||||
|
||||
error:
|
||||
enable_endstops(endstops_enabled);
|
||||
enable_z_endstop(endstop_z_enabled);
|
||||
return false;
|
||||
}
|
||||
|
||||
// Search around the current_position[X,Y],
|
||||
|
@ -1097,11 +1196,24 @@ inline bool improve_bed_induction_sensor_point()
|
|||
return found;
|
||||
}
|
||||
|
||||
static inline void debug_output_point(const char *type, const float &x, const float &y, const float &z)
|
||||
{
|
||||
SERIAL_ECHOPGM("Measured ");
|
||||
SERIAL_ECHORPGM(type);
|
||||
SERIAL_ECHOPGM(" ");
|
||||
MYSERIAL.print(x, 5);
|
||||
SERIAL_ECHOPGM(", ");
|
||||
MYSERIAL.print(y, 5);
|
||||
SERIAL_ECHOPGM(", ");
|
||||
MYSERIAL.print(z, 5);
|
||||
SERIAL_ECHOLNPGM("");
|
||||
}
|
||||
|
||||
// Search around the current_position[X,Y,Z].
|
||||
// It is expected, that the induction sensor is switched on at the current position.
|
||||
// Look around this center point by painting a star around the point.
|
||||
#define IMPROVE_BED_INDUCTION_SENSOR_SEARCH_RADIUS (8.f)
|
||||
inline bool improve_bed_induction_sensor_point2(bool lift_z_on_min_y)
|
||||
inline bool improve_bed_induction_sensor_point2(bool lift_z_on_min_y, int8_t verbosity_level)
|
||||
{
|
||||
float center_old_x = current_position[X_AXIS];
|
||||
float center_old_y = current_position[Y_AXIS];
|
||||
|
@ -1138,6 +1250,10 @@ inline bool improve_bed_induction_sensor_point2(bool lift_z_on_min_y)
|
|||
goto canceled;
|
||||
}
|
||||
b = current_position[X_AXIS];
|
||||
if (verbosity_level >= 5) {
|
||||
debug_output_point(PSTR("left" ), a, current_position[Y_AXIS], current_position[Z_AXIS]);
|
||||
debug_output_point(PSTR("right"), b, current_position[Y_AXIS], current_position[Z_AXIS]);
|
||||
}
|
||||
|
||||
// Go to the center.
|
||||
enable_z_endstop(false);
|
||||
|
@ -1188,6 +1304,10 @@ inline bool improve_bed_induction_sensor_point2(bool lift_z_on_min_y)
|
|||
goto canceled;
|
||||
}
|
||||
b = current_position[Y_AXIS];
|
||||
if (verbosity_level >= 5) {
|
||||
debug_output_point(PSTR("top" ), current_position[X_AXIS], a, current_position[Z_AXIS]);
|
||||
debug_output_point(PSTR("bottom"), current_position[X_AXIS], b, current_position[Z_AXIS]);
|
||||
}
|
||||
|
||||
// Go to the center.
|
||||
enable_z_endstop(false);
|
||||
|
@ -1208,11 +1328,20 @@ canceled:
|
|||
// Searching in a zig-zag movement in a plane for the maximum width of the response.
|
||||
#define IMPROVE_BED_INDUCTION_SENSOR_POINT3_SEARCH_RADIUS (4.f)
|
||||
#define IMPROVE_BED_INDUCTION_SENSOR_POINT3_SEARCH_STEP_FINE_Y (0.1f)
|
||||
inline bool improve_bed_induction_sensor_point3(int verbosity_level)
|
||||
enum InductionSensorPointStatusType
|
||||
{
|
||||
INDUCTION_SENSOR_POINT_FAILED = -1,
|
||||
INDUCTION_SENSOR_POINT_OK = 0,
|
||||
INDUCTION_SENSOR_POINT_FAR,
|
||||
};
|
||||
inline InductionSensorPointStatusType improve_bed_induction_sensor_point3(int verbosity_level)
|
||||
{
|
||||
float center_old_x = current_position[X_AXIS];
|
||||
float center_old_y = current_position[Y_AXIS];
|
||||
float a, b;
|
||||
// Was the sensor point detected too far in the minus Y axis?
|
||||
// If yes, the center of the induction point cannot be reached by the machine.
|
||||
bool y_too_far = false;
|
||||
{
|
||||
float x0 = center_old_x - IMPROVE_BED_INDUCTION_SENSOR_POINT3_SEARCH_RADIUS;
|
||||
float x1 = center_old_x + IMPROVE_BED_INDUCTION_SENSOR_POINT3_SEARCH_RADIUS;
|
||||
|
@ -1266,16 +1395,9 @@ inline bool improve_bed_induction_sensor_point3(int verbosity_level)
|
|||
// goto canceled;
|
||||
}
|
||||
b = current_position[X_AXIS];
|
||||
if (verbosity_level > 20) {
|
||||
SERIAL_ECHOPGM("Measured left ");
|
||||
MYSERIAL.print(a, 5);
|
||||
SERIAL_ECHOPGM("right ");
|
||||
MYSERIAL.print(b, 5);
|
||||
SERIAL_ECHOPGM(", ");
|
||||
MYSERIAL.print(y, 5);
|
||||
SERIAL_ECHOPGM(", ");
|
||||
MYSERIAL.print(current_position[Z_AXIS], 5);
|
||||
SERIAL_ECHOLNPGM("");
|
||||
if (verbosity_level >= 5) {
|
||||
debug_output_point(PSTR("left" ), a, current_position[Y_AXIS], current_position[Z_AXIS]);
|
||||
debug_output_point(PSTR("right"), b, current_position[Y_AXIS], current_position[Z_AXIS]);
|
||||
}
|
||||
float d = b - a;
|
||||
if (d > dmax) {
|
||||
|
@ -1291,7 +1413,7 @@ inline bool improve_bed_induction_sensor_point3(int verbosity_level)
|
|||
goto canceled;
|
||||
}
|
||||
|
||||
SERIAL_PROTOCOLPGM("ok 1\n");
|
||||
// SERIAL_PROTOCOLPGM("ok 1\n");
|
||||
// Search in the negative Y direction, until a maximum diameter is found.
|
||||
dmax = 0.;
|
||||
if (y0 + 1.f < y1)
|
||||
|
@ -1325,16 +1447,9 @@ inline bool improve_bed_induction_sensor_point3(int verbosity_level)
|
|||
*/
|
||||
}
|
||||
b = current_position[X_AXIS];
|
||||
if (verbosity_level > 20) {
|
||||
SERIAL_ECHOPGM("Measured left ");
|
||||
MYSERIAL.print(a, 5);
|
||||
SERIAL_ECHOPGM("right ");
|
||||
MYSERIAL.print(b, 5);
|
||||
SERIAL_ECHOPGM(", ");
|
||||
MYSERIAL.print(y, 5);
|
||||
SERIAL_ECHOPGM(", ");
|
||||
MYSERIAL.print(current_position[Z_AXIS], 5);
|
||||
SERIAL_ECHOLNPGM("");
|
||||
if (verbosity_level >= 5) {
|
||||
debug_output_point(PSTR("left" ), a, current_position[Y_AXIS], current_position[Z_AXIS]);
|
||||
debug_output_point(PSTR("right"), b, current_position[Y_AXIS], current_position[Z_AXIS]);
|
||||
}
|
||||
float d = b - a;
|
||||
if (d > dmax) {
|
||||
|
@ -1352,6 +1467,7 @@ inline bool improve_bed_induction_sensor_point3(int verbosity_level)
|
|||
// Found only the point going from ymin to ymax.
|
||||
current_position[X_AXIS] = xmax1;
|
||||
current_position[Y_AXIS] = y0;
|
||||
y_too_far = true;
|
||||
} else {
|
||||
// Both points found (from ymin to ymax and from ymax to ymin).
|
||||
float p = 0.5f;
|
||||
|
@ -1403,6 +1519,10 @@ inline bool improve_bed_induction_sensor_point3(int verbosity_level)
|
|||
goto canceled;
|
||||
}
|
||||
b = current_position[X_AXIS];
|
||||
if (verbosity_level >= 5) {
|
||||
debug_output_point(PSTR("left" ), a, current_position[Y_AXIS], current_position[Z_AXIS]);
|
||||
debug_output_point(PSTR("right"), b, current_position[Y_AXIS], current_position[Z_AXIS]);
|
||||
}
|
||||
|
||||
// Go to the center.
|
||||
enable_z_endstop(false);
|
||||
|
@ -1410,13 +1530,13 @@ inline bool improve_bed_induction_sensor_point3(int verbosity_level)
|
|||
go_xy(current_position[X_AXIS], current_position[Y_AXIS], homing_feedrate[X_AXIS] / 60.f);
|
||||
}
|
||||
|
||||
return true;
|
||||
return y_too_far ? INDUCTION_SENSOR_POINT_FAR : INDUCTION_SENSOR_POINT_OK;
|
||||
|
||||
canceled:
|
||||
// Go back to the center.
|
||||
enable_z_endstop(false);
|
||||
go_xy(current_position[X_AXIS], current_position[Y_AXIS], homing_feedrate[X_AXIS] / 60.f);
|
||||
return false;
|
||||
return INDUCTION_SENSOR_POINT_FAILED;
|
||||
}
|
||||
|
||||
// Scan the mesh bed induction points one by one by a left-right zig-zag movement,
|
||||
|
@ -1447,29 +1567,15 @@ inline void scan_bed_induction_sensor_point()
|
|||
enable_z_endstop(true);
|
||||
go_xy(x1, y, homing_feedrate[X_AXIS] / 60.f);
|
||||
update_current_position_xyz();
|
||||
if (endstop_z_hit_on_purpose()) {
|
||||
SERIAL_ECHOPGM("Measured left: ");
|
||||
MYSERIAL.print(current_position[X_AXIS], 5);
|
||||
SERIAL_ECHOPGM(", ");
|
||||
MYSERIAL.print(y, 5);
|
||||
SERIAL_ECHOPGM(", ");
|
||||
MYSERIAL.print(current_position[Z_AXIS], 5);
|
||||
SERIAL_ECHOLNPGM("");
|
||||
}
|
||||
if (endstop_z_hit_on_purpose())
|
||||
debug_output_point(PSTR("left" ), current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS]);
|
||||
enable_z_endstop(false);
|
||||
go_xy(x1, y, homing_feedrate[X_AXIS] / 60.f);
|
||||
enable_z_endstop(true);
|
||||
go_xy(x0, y, homing_feedrate[X_AXIS] / 60.f);
|
||||
update_current_position_xyz();
|
||||
if (endstop_z_hit_on_purpose()) {
|
||||
SERIAL_ECHOPGM("Measured right: ");
|
||||
MYSERIAL.print(current_position[X_AXIS], 5);
|
||||
SERIAL_ECHOPGM(", ");
|
||||
MYSERIAL.print(y, 5);
|
||||
SERIAL_ECHOPGM(", ");
|
||||
MYSERIAL.print(current_position[Z_AXIS], 5);
|
||||
SERIAL_ECHOLNPGM("");
|
||||
}
|
||||
if (endstop_z_hit_on_purpose())
|
||||
debug_output_point(PSTR("right"), current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS]);
|
||||
}
|
||||
|
||||
enable_z_endstop(false);
|
||||
|
@ -1480,7 +1586,7 @@ inline void scan_bed_induction_sensor_point()
|
|||
|
||||
#define MESH_BED_CALIBRATION_SHOW_LCD
|
||||
|
||||
bool find_bed_offset_and_skew(int8_t verbosity_level)
|
||||
BedSkewOffsetDetectionResultType find_bed_offset_and_skew(int8_t verbosity_level)
|
||||
{
|
||||
// Don't let the manage_inactivity() function remove power from the motors.
|
||||
refresh_cmd_timeout();
|
||||
|
@ -1533,17 +1639,17 @@ bool find_bed_offset_and_skew(int8_t verbosity_level)
|
|||
if (verbosity_level >= 10)
|
||||
delay_keep_alive(3000);
|
||||
if (! find_bed_induction_sensor_point_xy())
|
||||
return false;
|
||||
return BED_SKEW_OFFSET_DETECTION_FAILED;
|
||||
find_bed_induction_sensor_point_z();
|
||||
#if 1
|
||||
if (k == 0) {
|
||||
// Improve the position of the 1st row sensor points by a zig-zag movement.
|
||||
int8_t i = 4;
|
||||
for (;;) {
|
||||
if (improve_bed_induction_sensor_point3(verbosity_level))
|
||||
if (improve_bed_induction_sensor_point3(verbosity_level) != INDUCTION_SENSOR_POINT_FAILED)
|
||||
break;
|
||||
if (-- i == 0)
|
||||
return false;
|
||||
return BED_SKEW_OFFSET_DETECTION_FAILED;
|
||||
// Try to move the Z axis down a bit to increase a chance of the sensor to trigger.
|
||||
current_position[Z_AXIS] -= 0.025f;
|
||||
enable_endstops(false);
|
||||
|
@ -1552,7 +1658,7 @@ bool find_bed_offset_and_skew(int8_t verbosity_level)
|
|||
}
|
||||
if (i == 0)
|
||||
// not found
|
||||
return false;
|
||||
return BED_SKEW_OFFSET_DETECTION_FAILED;
|
||||
}
|
||||
#endif
|
||||
if (verbosity_level >= 10)
|
||||
|
@ -1587,12 +1693,7 @@ bool find_bed_offset_and_skew(int8_t verbosity_level)
|
|||
}
|
||||
|
||||
calculate_machine_skew_and_offset_LS(pts, 4, bed_ref_points_4, vec_x, vec_y, cntr, verbosity_level);
|
||||
world2machine_rotation_and_skew[0][0] = vec_x[0];
|
||||
world2machine_rotation_and_skew[1][0] = vec_x[1];
|
||||
world2machine_rotation_and_skew[0][1] = vec_y[0];
|
||||
world2machine_rotation_and_skew[1][1] = vec_y[1];
|
||||
world2machine_shift[0] = cntr[0];
|
||||
world2machine_shift[1] = cntr[1];
|
||||
world2machine_update(vec_x, vec_y, cntr);
|
||||
#if 1
|
||||
// Fearlessly store the calibration values into the eeprom.
|
||||
eeprom_update_float((float*)(EEPROM_BED_CALIBRATION_CENTER+0), cntr [0]);
|
||||
|
@ -1621,10 +1722,10 @@ bool find_bed_offset_and_skew(int8_t verbosity_level)
|
|||
}
|
||||
}
|
||||
|
||||
return true;
|
||||
return BED_SKEW_OFFSET_DETECTION_PERFECT;
|
||||
}
|
||||
|
||||
bool improve_bed_offset_and_skew(int8_t method, int8_t verbosity_level)
|
||||
BedSkewOffsetDetectionResultType improve_bed_offset_and_skew(int8_t method, int8_t verbosity_level)
|
||||
{
|
||||
// Don't let the manage_inactivity() function remove power from the motors.
|
||||
refresh_cmd_timeout();
|
||||
|
@ -1657,6 +1758,9 @@ bool improve_bed_offset_and_skew(int8_t method, int8_t verbosity_level)
|
|||
#endif /* MESH_BED_CALIBRATION_SHOW_LCD */
|
||||
|
||||
// Collect a matrix of 9x9 points.
|
||||
bool leftFrontTooFar = false;
|
||||
bool rightFrontTooFar = false;
|
||||
BedSkewOffsetDetectionResultType result = BED_SKEW_OFFSET_DETECTION_PERFECT;
|
||||
for (int8_t mesh_point = 0; mesh_point < 9; ++ mesh_point) {
|
||||
// Don't let the manage_inactivity() function remove power from the motors.
|
||||
refresh_cmd_timeout();
|
||||
|
@ -1715,11 +1819,19 @@ bool improve_bed_offset_and_skew(int8_t method, int8_t verbosity_level)
|
|||
// of the sensor points, the y position cannot be measured
|
||||
// by a cross center method.
|
||||
// Use a zig-zag search for the first row of the points.
|
||||
found = improve_bed_induction_sensor_point3(verbosity_level);
|
||||
InductionSensorPointStatusType status = improve_bed_induction_sensor_point3(verbosity_level);
|
||||
if (status == INDUCTION_SENSOR_POINT_FAILED) {
|
||||
found = false;
|
||||
} else {
|
||||
found = true;
|
||||
if (iter == 7 && INDUCTION_SENSOR_POINT_FAR && mesh_point != 1)
|
||||
// Remember, which side of the bed is shifted too far in the minus y direction.
|
||||
result = (mesh_point == 0) ? BED_SKEW_OFFSET_DETECTION_FRONT_LEFT_FAR : BED_SKEW_OFFSET_DETECTION_FRONT_RIGHT_FAR;
|
||||
}
|
||||
} else {
|
||||
switch (method) {
|
||||
case 0: found = improve_bed_induction_sensor_point(); break;
|
||||
case 1: found = improve_bed_induction_sensor_point2(mesh_point < 3); break;
|
||||
case 1: found = improve_bed_induction_sensor_point2(mesh_point < 3, verbosity_level); break;
|
||||
default: break;
|
||||
}
|
||||
}
|
||||
|
@ -1763,7 +1875,7 @@ bool improve_bed_offset_and_skew(int8_t method, int8_t verbosity_level)
|
|||
enable_endstops(false);
|
||||
enable_z_endstop(false);
|
||||
|
||||
if (verbosity_level >= 10) {
|
||||
if (verbosity_level >= 5) {
|
||||
// Test the positions. Are the positions reproducible?
|
||||
for (int8_t mesh_point = 0; mesh_point < 9; ++ mesh_point) {
|
||||
// Don't let the manage_inactivity() function remove power from the motors.
|
||||
|
@ -1772,29 +1884,25 @@ bool improve_bed_offset_and_skew(int8_t method, int8_t verbosity_level)
|
|||
// Use the coorrected coordinate, which is a result of find_bed_offset_and_skew().
|
||||
current_position[X_AXIS] = pts[mesh_point*2];
|
||||
current_position[Y_AXIS] = pts[mesh_point*2+1];
|
||||
go_to_current(homing_feedrate[X_AXIS]/60);
|
||||
delay_keep_alive(3000);
|
||||
#if 0
|
||||
if (verbosity_level > 20) {
|
||||
SERIAL_ECHOPGM("Final measured bed point ");
|
||||
SERIAL_ECHO(mesh_point);
|
||||
SERIAL_ECHOPGM(": ");
|
||||
MYSERIAL.print(current_position[X_AXIS], 5);
|
||||
SERIAL_ECHOPGM(", ");
|
||||
MYSERIAL.print(current_position[Y_AXIS], 5);
|
||||
SERIAL_ECHOLNPGM("");
|
||||
if (verbosity_level >= 10) {
|
||||
go_to_current(homing_feedrate[X_AXIS]/60);
|
||||
delay_keep_alive(3000);
|
||||
}
|
||||
#endif
|
||||
SERIAL_ECHOPGM("Final measured bed point ");
|
||||
SERIAL_ECHO(mesh_point);
|
||||
SERIAL_ECHOPGM(": ");
|
||||
MYSERIAL.print(current_position[X_AXIS], 5);
|
||||
SERIAL_ECHOPGM(", ");
|
||||
MYSERIAL.print(current_position[Y_AXIS], 5);
|
||||
SERIAL_ECHOLNPGM("");
|
||||
}
|
||||
}
|
||||
|
||||
calculate_machine_skew_and_offset_LS(pts, 9, bed_ref_points, vec_x, vec_y, cntr, verbosity_level);
|
||||
world2machine_rotation_and_skew[0][0] = vec_x[0];
|
||||
world2machine_rotation_and_skew[1][0] = vec_x[1];
|
||||
world2machine_rotation_and_skew[0][1] = vec_y[0];
|
||||
world2machine_rotation_and_skew[1][1] = vec_y[1];
|
||||
world2machine_shift[0] = cntr[0];
|
||||
world2machine_shift[1] = cntr[1];
|
||||
result = calculate_machine_skew_and_offset_LS(pts, 9, bed_ref_points, vec_x, vec_y, cntr, verbosity_level);
|
||||
if (result == BED_SKEW_OFFSET_DETECTION_FAILED)
|
||||
goto canceled;
|
||||
|
||||
world2machine_update(vec_x, vec_y, cntr);
|
||||
#if 1
|
||||
// Fearlessly store the calibration values into the eeprom.
|
||||
eeprom_update_float((float*)(EEPROM_BED_CALIBRATION_CENTER+0), cntr [0]);
|
||||
|
@ -1811,7 +1919,7 @@ bool improve_bed_offset_and_skew(int8_t method, int8_t verbosity_level)
|
|||
enable_endstops(false);
|
||||
enable_z_endstop(false);
|
||||
|
||||
if (verbosity_level >= 10) {
|
||||
if (verbosity_level >= 5) {
|
||||
// Test the positions. Are the positions reproducible? Now the calibration is active in the planner.
|
||||
delay_keep_alive(3000);
|
||||
for (int8_t mesh_point = 0; mesh_point < 9; ++ mesh_point) {
|
||||
|
@ -1821,37 +1929,125 @@ bool improve_bed_offset_and_skew(int8_t method, int8_t verbosity_level)
|
|||
// Use the coorrected coordinate, which is a result of find_bed_offset_and_skew().
|
||||
current_position[X_AXIS] = pgm_read_float(bed_ref_points+mesh_point*2);
|
||||
current_position[Y_AXIS] = pgm_read_float(bed_ref_points+mesh_point*2+1);
|
||||
go_to_current(homing_feedrate[X_AXIS]/60);
|
||||
delay_keep_alive(3000);
|
||||
#if 0
|
||||
if (verbosity_level > 20) {
|
||||
SERIAL_ECHOPGM("Final calculated bed point ");
|
||||
SERIAL_ECHO(mesh_point);
|
||||
SERIAL_ECHOPGM(": ");
|
||||
MYSERIAL.print(st_get_position_mm(X_AXIS), 5);
|
||||
SERIAL_ECHOPGM(", ");
|
||||
MYSERIAL.print(st_get_position_mm(Y_AXIS), 5);
|
||||
SERIAL_ECHOLNPGM("");
|
||||
if (verbosity_level >= 10) {
|
||||
go_to_current(homing_feedrate[X_AXIS]/60);
|
||||
delay_keep_alive(3000);
|
||||
}
|
||||
#endif
|
||||
SERIAL_ECHOPGM("Final calculated bed point ");
|
||||
SERIAL_ECHO(mesh_point);
|
||||
SERIAL_ECHOPGM(": ");
|
||||
MYSERIAL.print(st_get_position_mm(X_AXIS), 5);
|
||||
SERIAL_ECHOPGM(", ");
|
||||
MYSERIAL.print(st_get_position_mm(Y_AXIS), 5);
|
||||
SERIAL_ECHOLNPGM("");
|
||||
}
|
||||
}
|
||||
|
||||
// Sample Z heights for the mesh bed leveling.
|
||||
// In addition, store the results into an eeprom, to be used later for verification of the bed leveling process.
|
||||
{
|
||||
// The first point defines the reference.
|
||||
current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
|
||||
go_to_current(homing_feedrate[Z_AXIS]/60);
|
||||
current_position[X_AXIS] = pgm_read_float(bed_ref_points);
|
||||
current_position[Y_AXIS] = pgm_read_float(bed_ref_points+1);
|
||||
go_to_current(homing_feedrate[X_AXIS]/60);
|
||||
memcpy(destination, current_position, sizeof(destination));
|
||||
enable_endstops(true);
|
||||
homeaxis(Z_AXIS);
|
||||
mbl.set_z(0, 0, current_position[Z_AXIS]);
|
||||
enable_endstops(false);
|
||||
}
|
||||
for (int8_t mesh_point = 1; mesh_point != MESH_MEAS_NUM_X_POINTS * MESH_MEAS_NUM_Y_POINTS; ++ mesh_point) {
|
||||
current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
|
||||
go_to_current(homing_feedrate[Z_AXIS]/60);
|
||||
current_position[X_AXIS] = pgm_read_float(bed_ref_points+2*mesh_point);
|
||||
current_position[Y_AXIS] = pgm_read_float(bed_ref_points+2*mesh_point+1);
|
||||
go_to_current(homing_feedrate[X_AXIS]/60);
|
||||
find_bed_induction_sensor_point_z();
|
||||
// Get cords of measuring point
|
||||
int8_t ix = mesh_point % MESH_MEAS_NUM_X_POINTS;
|
||||
int8_t iy = mesh_point / MESH_MEAS_NUM_X_POINTS;
|
||||
if (iy & 1) ix = (MESH_MEAS_NUM_X_POINTS - 1) - ix; // Zig zag
|
||||
mbl.set_z(ix, iy, current_position[Z_AXIS]);
|
||||
}
|
||||
{
|
||||
// Verify the span of the Z values.
|
||||
float zmin = mbl.z_values[0][0];
|
||||
float zmax = zmax;
|
||||
for (int8_t j = 0; j < 3; ++ j)
|
||||
for (int8_t i = 0; i < 3; ++ i) {
|
||||
zmin = min(zmin, mbl.z_values[j][i]);
|
||||
zmax = min(zmax, mbl.z_values[j][i]);
|
||||
}
|
||||
if (zmax - zmin > 3.f) {
|
||||
// The span of the Z offsets is extreme. Give up.
|
||||
// Homing failed on some of the points.
|
||||
SERIAL_PROTOCOLLNPGM("Exreme span of the Z values!");
|
||||
goto canceled;
|
||||
}
|
||||
}
|
||||
|
||||
// Store the correction values to EEPROM.
|
||||
// Offsets of the Z heiths of the calibration points from the first point.
|
||||
// The offsets are saved as 16bit signed int, scaled to tenths of microns.
|
||||
{
|
||||
uint16_t addr = EEPROM_BED_CALIBRATION_Z_JITTER;
|
||||
for (int8_t j = 0; j < 3; ++ j)
|
||||
for (int8_t i = 0; i < 3; ++ i) {
|
||||
if (i == 0 && j == 0)
|
||||
continue;
|
||||
float dif = mbl.z_values[j][i] - mbl.z_values[0][0];
|
||||
int16_t dif_quantized = int16_t(floor(dif * 100.f + 0.5f));
|
||||
eeprom_update_word((uint16_t*)addr, *reinterpret_cast<uint16_t*>(&dif_quantized));
|
||||
{
|
||||
uint16_t z_offset_u = eeprom_read_word((uint16_t*)addr);
|
||||
float dif2 = *reinterpret_cast<int16_t*>(&z_offset_u) * 0.01;
|
||||
|
||||
SERIAL_ECHOPGM("Bed point ");
|
||||
SERIAL_ECHO(i);
|
||||
SERIAL_ECHOPGM(",");
|
||||
SERIAL_ECHO(j);
|
||||
SERIAL_ECHOPGM(", differences: written ");
|
||||
MYSERIAL.print(dif, 5);
|
||||
SERIAL_ECHOPGM(", read: ");
|
||||
MYSERIAL.print(dif2, 5);
|
||||
SERIAL_ECHOLNPGM("");
|
||||
}
|
||||
addr += 2;
|
||||
}
|
||||
}
|
||||
|
||||
mbl.upsample_3x3();
|
||||
mbl.active = true;
|
||||
|
||||
// Don't let the manage_inactivity() function remove power from the motors.
|
||||
refresh_cmd_timeout();
|
||||
|
||||
// Go home.
|
||||
current_position[Z_AXIS] = Z_MIN_POS;
|
||||
go_to_current(homing_feedrate[Z_AXIS]/60);
|
||||
current_position[X_AXIS] = X_MIN_POS+0.2;
|
||||
current_position[Y_AXIS] = Y_MIN_POS+0.2;
|
||||
go_to_current(homing_feedrate[X_AXIS]/60);
|
||||
|
||||
enable_endstops(endstops_enabled);
|
||||
enable_z_endstop(endstop_z_enabled);
|
||||
return true;
|
||||
// Don't let the manage_inactivity() function remove power from the motors.
|
||||
refresh_cmd_timeout();
|
||||
return result;
|
||||
|
||||
canceled:
|
||||
// Don't let the manage_inactivity() function remove power from the motors.
|
||||
refresh_cmd_timeout();
|
||||
// Print head up.
|
||||
current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
|
||||
go_to_current(homing_feedrate[Z_AXIS]/60);
|
||||
// Store the identity matrix to EEPROM.
|
||||
reset_bed_offset_and_skew();
|
||||
enable_endstops(endstops_enabled);
|
||||
enable_z_endstop(endstop_z_enabled);
|
||||
return false;
|
||||
return BED_SKEW_OFFSET_DETECTION_FAILED;
|
||||
}
|
||||
|
||||
bool scan_bed_induction_points(int8_t verbosity_level)
|
||||
|
|
|
@ -6,10 +6,19 @@
|
|||
// is built properly, the end stops are at the correct positions and the axes are perpendicular.
|
||||
extern const float bed_ref_points[] PROGMEM;
|
||||
|
||||
// Is the world2machine correction activated?
|
||||
enum World2MachineCorrectionMode
|
||||
{
|
||||
WORLD2MACHINE_CORRECTION_NONE = 0,
|
||||
WORLD2MACHINE_CORRECTION_SHIFT = 1,
|
||||
WORLD2MACHINE_CORRECTION_SKEW = 2,
|
||||
};
|
||||
extern uint8_t world2machine_correction_mode;
|
||||
// 2x2 transformation matrix from the world coordinates to the machine coordinates.
|
||||
// Corrects for the rotation and skew of the machine axes.
|
||||
// Used by the planner's plan_buffer_line() and plan_set_position().
|
||||
extern float world2machine_rotation_and_skew[2][2];
|
||||
extern float world2machine_rotation_and_skew_inv[2][2];
|
||||
// Shift of the machine zero point, in the machine coordinates.
|
||||
extern float world2machine_shift[2];
|
||||
|
||||
|
@ -23,13 +32,110 @@ extern void world2machine_initialize();
|
|||
// to current_position[x,y].
|
||||
extern void world2machine_update_current();
|
||||
|
||||
inline void world2machine(const float &x, const float &y, float &out_x, float &out_y)
|
||||
{
|
||||
if (world2machine_correction_mode == WORLD2MACHINE_CORRECTION_NONE) {
|
||||
// No correction.
|
||||
out_x = x;
|
||||
out_y = y;
|
||||
} else {
|
||||
if (world2machine_correction_mode & WORLD2MACHINE_CORRECTION_SKEW) {
|
||||
// Firs the skew & rotation correction.
|
||||
out_x = world2machine_rotation_and_skew[0][0] * x + world2machine_rotation_and_skew[0][1] * y;
|
||||
out_y = world2machine_rotation_and_skew[1][0] * x + world2machine_rotation_and_skew[1][1] * y;
|
||||
}
|
||||
if (world2machine_correction_mode & WORLD2MACHINE_CORRECTION_SHIFT) {
|
||||
// Then add the offset.
|
||||
out_x += world2machine_shift[0];
|
||||
out_y += world2machine_shift[1];
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
extern void find_bed_induction_sensor_point_z();
|
||||
inline void world2machine(float &x, float &y)
|
||||
{
|
||||
if (world2machine_correction_mode == WORLD2MACHINE_CORRECTION_NONE) {
|
||||
// No correction.
|
||||
} else {
|
||||
if (world2machine_correction_mode & WORLD2MACHINE_CORRECTION_SKEW) {
|
||||
// Firs the skew & rotation correction.
|
||||
float out_x = world2machine_rotation_and_skew[0][0] * x + world2machine_rotation_and_skew[0][1] * y;
|
||||
float out_y = world2machine_rotation_and_skew[1][0] * x + world2machine_rotation_and_skew[1][1] * y;
|
||||
x = out_x;
|
||||
y = out_y;
|
||||
}
|
||||
if (world2machine_correction_mode & WORLD2MACHINE_CORRECTION_SHIFT) {
|
||||
// Then add the offset.
|
||||
x += world2machine_shift[0];
|
||||
y += world2machine_shift[1];
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
inline void machine2world(float x, float y, float &out_x, float &out_y)
|
||||
{
|
||||
if (world2machine_correction_mode == WORLD2MACHINE_CORRECTION_NONE) {
|
||||
// No correction.
|
||||
out_x = x;
|
||||
out_y = y;
|
||||
} else {
|
||||
if (world2machine_correction_mode & WORLD2MACHINE_CORRECTION_SHIFT) {
|
||||
// Then add the offset.
|
||||
x -= world2machine_shift[0];
|
||||
y -= world2machine_shift[1];
|
||||
}
|
||||
if (world2machine_correction_mode & WORLD2MACHINE_CORRECTION_SKEW) {
|
||||
// Firs the skew & rotation correction.
|
||||
out_x = world2machine_rotation_and_skew_inv[0][0] * x + world2machine_rotation_and_skew_inv[0][1] * y;
|
||||
out_y = world2machine_rotation_and_skew_inv[1][0] * x + world2machine_rotation_and_skew_inv[1][1] * y;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
inline void machine2world(float &x, float &y)
|
||||
{
|
||||
if (world2machine_correction_mode == WORLD2MACHINE_CORRECTION_NONE) {
|
||||
// No correction.
|
||||
} else {
|
||||
if (world2machine_correction_mode & WORLD2MACHINE_CORRECTION_SHIFT) {
|
||||
// Then add the offset.
|
||||
x -= world2machine_shift[0];
|
||||
y -= world2machine_shift[1];
|
||||
}
|
||||
if (world2machine_correction_mode & WORLD2MACHINE_CORRECTION_SKEW) {
|
||||
// Firs the skew & rotation correction.
|
||||
float out_x = world2machine_rotation_and_skew_inv[0][0] * x + world2machine_rotation_and_skew_inv[0][1] * y;
|
||||
float out_y = world2machine_rotation_and_skew_inv[1][0] * x + world2machine_rotation_and_skew_inv[1][1] * y;
|
||||
x = out_x;
|
||||
y = out_y;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
extern bool find_bed_induction_sensor_point_z(float minimum_z = -10.f);
|
||||
extern bool find_bed_induction_sensor_point_xy();
|
||||
|
||||
extern bool find_bed_offset_and_skew(int8_t verbosity_level);
|
||||
extern bool improve_bed_offset_and_skew(int8_t method, int8_t verbosity_level);
|
||||
// Positive or zero: ok
|
||||
// Negative: failed
|
||||
enum BedSkewOffsetDetectionResultType {
|
||||
// Detection failed, some point was not found.
|
||||
BED_SKEW_OFFSET_DETECTION_FAILED = -1,
|
||||
|
||||
// Detection finished with success.
|
||||
BED_SKEW_OFFSET_DETECTION_PERFECT = 0,
|
||||
BED_SKEW_OFFSET_DETECTION_SKEW_MILD,
|
||||
BED_SKEW_OFFSET_DETECTION_SKEW_EXTREME,
|
||||
// Detection finished with success, but it is recommended to fix the printer mechanically.
|
||||
BED_SKEW_OFFSET_DETECTION_FRONT_LEFT_FAR,
|
||||
BED_SKEW_OFFSET_DETECTION_FRONT_RIGHT_FAR
|
||||
};
|
||||
|
||||
extern BedSkewOffsetDetectionResultType find_bed_offset_and_skew(int8_t verbosity_level);
|
||||
extern BedSkewOffsetDetectionResultType improve_bed_offset_and_skew(int8_t method, int8_t verbosity_level);
|
||||
|
||||
|
||||
extern void reset_bed_offset_and_skew();
|
||||
extern bool is_bed_z_jitter_data_valid();
|
||||
|
||||
// Scan the mesh bed induction points one by one by a left-right zig-zag movement,
|
||||
// write the trigger coordinates to the serial line.
|
||||
|
|
|
@ -567,10 +567,7 @@ void plan_buffer_line(float x, float y, float z, const float &e, float feed_rate
|
|||
SERIAL_ECHOLNPGM("");
|
||||
#endif
|
||||
|
||||
float tmpx = x;
|
||||
float tmpy = y;
|
||||
x = world2machine_rotation_and_skew[0][0] * tmpx + world2machine_rotation_and_skew[0][1] * tmpy + world2machine_shift[0];
|
||||
y = world2machine_rotation_and_skew[1][0] * tmpx + world2machine_rotation_and_skew[1][1] * tmpy + world2machine_shift[1];
|
||||
world2machine(x, y);
|
||||
|
||||
#if 0
|
||||
SERIAL_ECHOPGM("Planner, target position, corrected: ");
|
||||
|
|
|
@ -1316,6 +1316,82 @@ canceled:
|
|||
return false;
|
||||
}
|
||||
|
||||
static inline bool pgm_is_whitespace(const char *c)
|
||||
{
|
||||
return pgm_read_byte(c) == ' ' || pgm_read_byte(c) == '\t' || pgm_read_byte(c) == '\r' || pgm_read_byte(c) == '\n';
|
||||
}
|
||||
|
||||
void lcd_display_message_fullscreen_P(const char *msg)
|
||||
{
|
||||
// Disable update of the screen by the usual lcd_update() routine.
|
||||
lcd_update_enable(false);
|
||||
lcd_implementation_clear();
|
||||
lcd.setCursor(0, 0);
|
||||
for (int8_t row = 0; row < 4; ++ row) {
|
||||
while (pgm_is_whitespace(msg))
|
||||
++ msg;
|
||||
if (pgm_read_byte(msg) == 0)
|
||||
// End of the message.
|
||||
break;
|
||||
lcd.setCursor(0, row);
|
||||
const char *msgend2 = msg + min(strlen_P(msg), 20);
|
||||
const char *msgend = msgend2;
|
||||
if (pgm_read_byte(msgend) != 0 && ! pgm_is_whitespace(msgend)) {
|
||||
// Splitting a word. Find the start of the current word.
|
||||
while (msgend > msg && ! pgm_is_whitespace(msgend - 1))
|
||||
-- msgend;
|
||||
if (msgend == msg)
|
||||
// Found a single long word, which cannot be split. Just cut it.
|
||||
msgend = msgend2;
|
||||
}
|
||||
for (; msg < msgend; ++ msg) {
|
||||
char c = char(pgm_read_byte(msg));
|
||||
if (c == '~')
|
||||
c = ' ';
|
||||
lcd.print(c);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void lcd_bed_calibration_show_result(BedSkewOffsetDetectionResultType result)
|
||||
{
|
||||
const char *msg = NULL;
|
||||
switch (result) {
|
||||
case BED_SKEW_OFFSET_DETECTION_FAILED:
|
||||
default:
|
||||
msg = MSG_BED_SKEW_OFFSET_DETECTION_FAILED;
|
||||
break;
|
||||
case BED_SKEW_OFFSET_DETECTION_PERFECT:
|
||||
msg = MSG_BED_SKEW_OFFSET_DETECTION_PERFECT;
|
||||
break;
|
||||
case BED_SKEW_OFFSET_DETECTION_SKEW_MILD:
|
||||
msg = MSG_BED_SKEW_OFFSET_DETECTION_SKEW_MILD;
|
||||
break;
|
||||
case BED_SKEW_OFFSET_DETECTION_SKEW_EXTREME:
|
||||
msg = MSG_BED_SKEW_OFFSET_DETECTION_SKEW_EXTREME;
|
||||
break;
|
||||
case BED_SKEW_OFFSET_DETECTION_FRONT_LEFT_FAR:
|
||||
msg = MSG_BED_SKEW_OFFSET_DETECTION_FRONT_LEFT_FAR;
|
||||
break;
|
||||
case BED_SKEW_OFFSET_DETECTION_FRONT_RIGHT_FAR:
|
||||
msg = MSG_BED_SKEW_OFFSET_DETECTION_FRONT_RIGHT_FAR;
|
||||
break;
|
||||
}
|
||||
|
||||
lcd_display_message_fullscreen_P(msg);
|
||||
|
||||
// Until confirmed by a button click.
|
||||
for (;;) {
|
||||
delay_keep_alive(50);
|
||||
if (lcd_clicked()) {
|
||||
while (lcd_clicked()) ;
|
||||
delay(10);
|
||||
while (lcd_clicked()) ;
|
||||
break;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
static void lcd_show_end_stops() {
|
||||
lcd.setCursor(0, 0);
|
||||
lcd_printPGM((PSTR("End stops diag")));
|
||||
|
@ -1596,7 +1672,7 @@ static void lcd_settings_menu()
|
|||
if (!isPrintPaused)
|
||||
{
|
||||
MENU_ITEM(submenu, MSG_SELFTEST, lcd_selftest);
|
||||
MENU_ITEM(submenu, PSTR("Show end stops"), menu_show_end_stops);
|
||||
MENU_ITEM(submenu, MSG_SHOW_END_STOPS, menu_show_end_stops);
|
||||
MENU_ITEM(submenu, MSG_CALIBRATE_BED, lcd_mesh_calibration);
|
||||
MENU_ITEM(gcode, MSG_CALIBRATE_BED_RESET, PSTR("M44"));
|
||||
}
|
||||
|
|
|
@ -2,6 +2,7 @@
|
|||
#define ULTRALCD_H
|
||||
|
||||
#include "Marlin.h"
|
||||
#include "mesh_bed_calibration.h"
|
||||
|
||||
#ifdef ULTRA_LCD
|
||||
|
||||
|
@ -37,7 +38,14 @@
|
|||
static void lcd_selftest_error(int _error_no, const char *_error_1, const char *_error_2);
|
||||
static void lcd_menu_statistics();
|
||||
|
||||
extern void lcd_display_message_fullscreen_P(const char *msg);
|
||||
|
||||
// Ask the user to move the Z axis up to the end stoppers and let
|
||||
// the user confirm that it has been done.
|
||||
extern bool lcd_calibrate_z_end_stop_manual();
|
||||
// Show the result of the calibration process on the LCD screen.
|
||||
extern void lcd_bed_calibration_show_result(BedSkewOffsetDetectionResultType result);
|
||||
|
||||
extern void lcd_diag_show_end_stops();
|
||||
|
||||
#ifdef DOGLCD
|
||||
|
|
Loading…
Reference in a new issue