tmc2130 optimalization, accurate homing and microstep linearity correction

dcode D12 removed (no longer needed)
homeaxis optimized + xy home calibration support
new eeprom variables
new lcd menu edit types (byte3, mres, wfac), new menu "Experimental"
currents adjusted
This commit is contained in:
Robert Pelnar 2018-02-15 04:17:58 +01:00
parent a58767271b
commit 79caf3d9c6
11 changed files with 1029 additions and 228 deletions

View file

@ -133,6 +133,45 @@
#define EEPROM_POWER_COUNT_TOT (EEPROM_FERROR_COUNT_TOT - 2) // uint16 #define EEPROM_POWER_COUNT_TOT (EEPROM_FERROR_COUNT_TOT - 2) // uint16
////////////////////////////////////////
// TMC2130 Accurate sensorless homing
// X-axis home origin (stepper phase in microsteps, 0..63 for 16ustep resolution)
#define EEPROM_TMC2130_HOME_X_ORIGIN (EEPROM_POWER_COUNT_TOT - 1) // uint8
// X-axis home bsteps (number of microsteps backward)
#define EEPROM_TMC2130_HOME_X_BSTEPS (EEPROM_TMC2130_HOME_X_ORIGIN - 1) // uint8
// X-axis home fsteps (number of microsteps forward)
#define EEPROM_TMC2130_HOME_X_FSTEPS (EEPROM_TMC2130_HOME_X_BSTEPS - 1) // uint8
// Y-axis home origin (stepper phase in microsteps, 0..63 for 16ustep resolution)
#define EEPROM_TMC2130_HOME_Y_ORIGIN (EEPROM_TMC2130_HOME_X_FSTEPS - 1) // uint8
// X-axis home bsteps (number of microsteps backward)
#define EEPROM_TMC2130_HOME_Y_BSTEPS (EEPROM_TMC2130_HOME_Y_ORIGIN - 1) // uint8
// X-axis home fsteps (number of microsteps forward)
#define EEPROM_TMC2130_HOME_Y_FSTEPS (EEPROM_TMC2130_HOME_Y_BSTEPS - 1) // uint8
// Accurate homing enabled
#define EEPROM_TMC2130_HOME_ENABLED (EEPROM_TMC2130_HOME_Y_FSTEPS - 1) // uint8
////////////////////////////////////////
// TMC2130 uStep linearity correction
// Linearity correction factor (XYZE) encoded as uint8 (0=>1, 1=>1.001, 254=>1.254, 255=>clear eeprom/disabled)
#define EEPROM_TMC2130_WAVE_X_FAC (EEPROM_TMC2130_HOME_ENABLED - 1) // uint8
#define EEPROM_TMC2130_WAVE_Y_FAC (EEPROM_TMC2130_WAVE_X_FAC - 1) // uint8
#define EEPROM_TMC2130_WAVE_Z_FAC (EEPROM_TMC2130_WAVE_Y_FAC - 1) // uint8
#define EEPROM_TMC2130_WAVE_E_FAC (EEPROM_TMC2130_WAVE_Z_FAC - 1) // uint8
////////////////////////////////////////
// TMC2130 uStep resolution
// microstep resolution (XYZE): usteps = (256 >> mres)
#define EEPROM_TMC2130_X_MRES (EEPROM_TMC2130_WAVE_E_FAC - 1) // uint8
#define EEPROM_TMC2130_Y_MRES (EEPROM_TMC2130_X_MRES - 1) // uint8
#define EEPROM_TMC2130_Z_MRES (EEPROM_TMC2130_Y_MRES - 1) // uint8
#define EEPROM_TMC2130_E_MRES (EEPROM_TMC2130_Z_MRES - 1) // uint8
//TMC2130 configuration //TMC2130 configuration
#define EEPROM_TMC_AXIS_SIZE //axis configuration block size #define EEPROM_TMC_AXIS_SIZE //axis configuration block size
#define EEPROM_TMC_X (EEPROM_TMC + 0 * EEPROM_TMC_AXIS_SIZE) //X axis configuration blok #define EEPROM_TMC_X (EEPROM_TMC + 0 * EEPROM_TMC_AXIS_SIZE) //X axis configuration blok

View file

@ -203,8 +203,8 @@ const bool Z_MIN_ENDSTOP_INVERTING = false; // set to true to invert the logic o
#define TMC2130_SG_THRS_E 3 // stallguard sensitivity for E axis #define TMC2130_SG_THRS_E 3 // stallguard sensitivity for E axis
//new settings is possible for vsense = 1, running current value > 31 set vsense to zero and shift both currents by 1 bit right (Z axis only) //new settings is possible for vsense = 1, running current value > 31 set vsense to zero and shift both currents by 1 bit right (Z axis only)
#define TMC2130_CURRENTS_H {13, 20, 25, 35} // default holding currents for all axes #define TMC2130_CURRENTS_H {16, 20, 28, 36} // default holding currents for all axes
#define TMC2130_CURRENTS_R {13, 20, 25, 35} // default running currents for all axes #define TMC2130_CURRENTS_R {16, 20, 28, 36} // default running currents for all axes
#define TMC2130_UNLOAD_CURRENT_R 12 // lowe current for M600 to protect filament sensor #define TMC2130_UNLOAD_CURRENT_R 12 // lowe current for M600 to protect filament sensor
//#define TMC2130_DEBUG //#define TMC2130_DEBUG

View file

@ -446,14 +446,6 @@ void dcode_10()
calibration_status_store(CALIBRATION_STATUS_LIVE_ADJUST); calibration_status_store(CALIBRATION_STATUS_LIVE_ADJUST);
} }
void dcode_12()
{//Reset Filament error, Power loss and crash counter ( Do it before every print and you can get stats for the print )
LOG("D12 - Reset failstat counters\n");
eeprom_update_byte((uint8_t*)EEPROM_CRASH_COUNT_X, 0x00);
eeprom_update_byte((uint8_t*)EEPROM_FERROR_COUNT, 0x00);
eeprom_update_byte((uint8_t*)EEPROM_POWER_COUNT, 0x00);
}
#include "tmc2130.h" #include "tmc2130.h"
#include "Marlin.h" #include "Marlin.h"
#include "planner.h" #include "planner.h"
@ -461,28 +453,85 @@ extern void st_synchronize();
void dcode_2130() void dcode_2130()
{ {
// printf("test");
printf_P(PSTR("D2130 - TMC2130\n")); printf_P(PSTR("D2130 - TMC2130\n"));
uint8_t axis = 0xff; uint8_t axis = 0xff;
if (code_seen('X')) switch (strchr_pointer[1+4])
axis = X_AXIS; {
else if (code_seen('Y')) case 'X': axis = X_AXIS; break;
axis = Y_AXIS; case 'Y': axis = Y_AXIS; break;
case 'Z': axis = Z_AXIS; break;
case 'E': axis = E_AXIS; break;
}
if (axis != 0xff) if (axis != 0xff)
{ {
homeaxis(axis); char ch_axis = strchr_pointer[1+4];
tmc2130_sg_meassure_start(axis); if (strchr_pointer[1+5] == '0') { tmc2130_set_pwr(axis, 0); }
memcpy(destination, current_position, sizeof(destination)); else if (strchr_pointer[1+5] == '1') { tmc2130_set_pwr(axis, 1); }
destination[axis] = 200; else if (strchr_pointer[1+5] == '+')
plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], homing_feedrate[X_AXIS]/60, active_extruder); {
st_synchronize(); if (strchr_pointer[1+6] == 0)
memcpy(destination, current_position, sizeof(destination)); {
destination[axis] = 0; tmc2130_set_dir(axis, 0);
plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], homing_feedrate[X_AXIS]/60, active_extruder); tmc2130_do_step(axis);
st_synchronize(); }
uint16_t sg = tmc2130_sg_meassure_stop(); else
tmc2130_sg_meassure = 0xff; {
printf_P(PSTR("Meassure avg = %d\n"), sg); uint8_t steps = atoi(strchr_pointer + 1 + 6);
tmc2130_do_steps(axis, steps, 0, 1000);
}
}
else if (strchr_pointer[1+5] == '-')
{
if (strchr_pointer[1+6] == 0)
{
tmc2130_set_dir(axis, 1);
tmc2130_do_step(axis);
}
else
{
uint8_t steps = atoi(strchr_pointer + 1 + 6);
tmc2130_do_steps(axis, steps, 1, 1000);
}
}
else if (strchr_pointer[1+5] == '?')
{
if (strcmp(strchr_pointer + 7, "step") == 0) printf_P(PSTR("%c step=%d\n"), ch_axis, tmc2130_rd_MSCNT(axis) >> tmc2130_mres[axis]);
else if (strcmp(strchr_pointer + 7, "mscnt") == 0) printf_P(PSTR("%c MSCNT=%d\n"), ch_axis, tmc2130_rd_MSCNT(axis));
else if (strcmp(strchr_pointer + 7, "mscuract") == 0)
{
uint32_t val = tmc2130_rd_MSCURACT(axis);
int curA = (val & 0xff);
int curB = ((val >> 16) & 0xff);
if ((val << 7) & 0x8000) curA -= 256;
if ((val >> 9) & 0x8000) curB -= 256;
printf_P(PSTR("%c MSCURACT=0x%08lx A=%d B=%d\n"), ch_axis, val, curA, curB);
}
else if (strcmp(strchr_pointer + 7, "wave") == 0)
{
tmc2130_get_wave(axis, 0, stdout);
}
}
else if (strchr_pointer[1+5] == '!')
{
if (strncmp(strchr_pointer + 7, "step", 4) == 0)
{
uint8_t step = atoi(strchr_pointer + 11);
uint16_t res = tmc2130_get_res(axis);
tmc2130_goto_step(axis, step & (4*res - 1), 2, 1000, res);
}
else if (strncmp(strchr_pointer + 7, "wave", 4) == 0)
{
uint8_t fac200 = atoi(strchr_pointer + 11) & 0xfe;
if (fac200 < TMC2130_WAVE_FAC200_MIN) fac200 = 0;
if (fac200 > TMC2130_WAVE_FAC200_MAX) fac200 = TMC2130_WAVE_FAC200_MAX;
tmc2130_set_wave(axis, fac200);
tmc2130_wave_fac[axis] = fac200;
}
}
else if (strchr_pointer[1+5] == '@')
{
tmc2130_home_calibrate(axis);
}
} }
} }

View file

@ -15,7 +15,6 @@ extern void dcode_8(); //D8 - Read/Write PINDA
extern void dcode_9(); //D9 - Read/Write ADC (Write=enable simulated, Read=disable simulated) extern void dcode_9(); //D9 - Read/Write ADC (Write=enable simulated, Read=disable simulated)
extern void dcode_10(); //D10 - XYZ calibration = OK extern void dcode_10(); //D10 - XYZ calibration = OK
extern void dcode_12(); //D12 - Reset failstat counters
extern void dcode_2130(); //D2130 - TMC2130 extern void dcode_2130(); //D2130 - TMC2130
extern void dcode_9125(); //D9125 - PAT9125 extern void dcode_9125(); //D9125 - PAT9125

View file

@ -276,7 +276,7 @@ extern float max_pos[3];
extern bool axis_known_position[3]; extern bool axis_known_position[3];
extern float zprobe_zoffset; extern float zprobe_zoffset;
extern int fanSpeed; extern int fanSpeed;
extern void homeaxis(int axis); extern void homeaxis(int axis, uint8_t cnt = 1, uint8_t* pstep = 0);
#ifdef FAN_SOFT_PWM #ifdef FAN_SOFT_PWM

View file

@ -1031,6 +1031,7 @@ void setup()
#ifdef TMC2130 #ifdef TMC2130
uint8_t silentMode = eeprom_read_byte((uint8_t*)EEPROM_SILENT); uint8_t silentMode = eeprom_read_byte((uint8_t*)EEPROM_SILENT);
if (silentMode == 0xff) silentMode = 0;
tmc2130_mode = silentMode?TMC2130_MODE_SILENT:TMC2130_MODE_NORMAL; tmc2130_mode = silentMode?TMC2130_MODE_SILENT:TMC2130_MODE_NORMAL;
uint8_t crashdet = eeprom_read_byte((uint8_t*)EEPROM_CRASH_DET); uint8_t crashdet = eeprom_read_byte((uint8_t*)EEPROM_CRASH_DET);
if (crashdet) if (crashdet)
@ -1044,6 +1045,28 @@ void setup()
MYSERIAL.println("CrashDetect DISABLED"); MYSERIAL.println("CrashDetect DISABLED");
} }
tmc2130_wave_fac[X_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_WAVE_X_FAC);
tmc2130_wave_fac[Y_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_WAVE_Y_FAC);
tmc2130_wave_fac[Z_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_WAVE_Z_FAC);
tmc2130_wave_fac[E_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_WAVE_E_FAC);
if (tmc2130_wave_fac[X_AXIS] == 0xff) tmc2130_wave_fac[X_AXIS] = 0;
if (tmc2130_wave_fac[Y_AXIS] == 0xff) tmc2130_wave_fac[Y_AXIS] = 0;
if (tmc2130_wave_fac[Z_AXIS] == 0xff) tmc2130_wave_fac[Z_AXIS] = 0;
if (tmc2130_wave_fac[E_AXIS] == 0xff) tmc2130_wave_fac[E_AXIS] = 0;
tmc2130_mres[X_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_X_MRES);
tmc2130_mres[Y_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_Y_MRES);
tmc2130_mres[Z_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_Z_MRES);
tmc2130_mres[E_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_E_MRES);
if (tmc2130_mres[X_AXIS] == 0xff) tmc2130_mres[X_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_XY);
if (tmc2130_mres[Y_AXIS] == 0xff) tmc2130_mres[Y_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_XY);
if (tmc2130_mres[Z_AXIS] == 0xff) tmc2130_mres[Z_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_Z);
if (tmc2130_mres[E_AXIS] == 0xff) tmc2130_mres[E_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_E);
eeprom_update_byte((uint8_t*)EEPROM_TMC2130_X_MRES, tmc2130_mres[X_AXIS]);
eeprom_update_byte((uint8_t*)EEPROM_TMC2130_Y_MRES, tmc2130_mres[Y_AXIS]);
eeprom_update_byte((uint8_t*)EEPROM_TMC2130_Z_MRES, tmc2130_mres[Z_AXIS]);
eeprom_update_byte((uint8_t*)EEPROM_TMC2130_E_MRES, tmc2130_mres[E_AXIS]);
#endif //TMC2130 #endif //TMC2130
st_init(); // Initialize stepper, this enables interrupts! st_init(); // Initialize stepper, this enables interrupts!
@ -1071,19 +1094,19 @@ void setup()
setup_homepin(); setup_homepin();
if (1) { if (1) {
/// SERIAL_ECHOPGM("initial zsteps on power up: "); MYSERIAL.println(tmc2130_rd_MSCNT(Z_TMC2130_CS)); /// SERIAL_ECHOPGM("initial zsteps on power up: "); MYSERIAL.println(tmc2130_rd_MSCNT(Z_AXIS));
// try to run to zero phase before powering the Z motor. // try to run to zero phase before powering the Z motor.
// Move in negative direction // Move in negative direction
WRITE(Z_DIR_PIN,INVERT_Z_DIR); WRITE(Z_DIR_PIN,INVERT_Z_DIR);
// Round the current micro-micro steps to micro steps. // Round the current micro-micro steps to micro steps.
for (uint16_t phase = (tmc2130_rd_MSCNT(Z_TMC2130_CS) + 8) >> 4; phase > 0; -- phase) { for (uint16_t phase = (tmc2130_rd_MSCNT(Z_AXIS) + 8) >> 4; phase > 0; -- phase) {
// Until the phase counter is reset to zero. // Until the phase counter is reset to zero.
WRITE(Z_STEP_PIN, !INVERT_Z_STEP_PIN); WRITE(Z_STEP_PIN, !INVERT_Z_STEP_PIN);
delay(2); delay(2);
WRITE(Z_STEP_PIN, INVERT_Z_STEP_PIN); WRITE(Z_STEP_PIN, INVERT_Z_STEP_PIN);
delay(2); delay(2);
} }
// SERIAL_ECHOPGM("initial zsteps after reset: "); MYSERIAL.println(tmc2130_rd_MSCNT(Z_TMC2130_CS)); // SERIAL_ECHOPGM("initial zsteps after reset: "); MYSERIAL.println(tmc2130_rd_MSCNT(Z_AXIS));
} }
#if defined(Z_AXIS_ALWAYS_ON) #if defined(Z_AXIS_ALWAYS_ON)
@ -1217,6 +1240,23 @@ void setup()
// so the next time the firmware gets updated, it will know from which version it has been updated. // so the next time the firmware gets updated, it will know from which version it has been updated.
update_current_firmware_version_to_eeprom(); update_current_firmware_version_to_eeprom();
tmc2130_home_origin[X_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_X_ORIGIN);
tmc2130_home_bsteps[X_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_X_BSTEPS);
tmc2130_home_fsteps[X_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_X_FSTEPS);
if (tmc2130_home_origin[X_AXIS] == 0xff) tmc2130_home_origin[X_AXIS] = 0;
if (tmc2130_home_bsteps[X_AXIS] == 0xff) tmc2130_home_bsteps[X_AXIS] = 48;
if (tmc2130_home_fsteps[X_AXIS] == 0xff) tmc2130_home_fsteps[X_AXIS] = 48;
tmc2130_home_origin[Y_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_Y_ORIGIN);
tmc2130_home_bsteps[Y_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_Y_BSTEPS);
tmc2130_home_fsteps[Y_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_Y_FSTEPS);
if (tmc2130_home_origin[Y_AXIS] == 0xff) tmc2130_home_origin[Y_AXIS] = 0;
if (tmc2130_home_bsteps[Y_AXIS] == 0xff) tmc2130_home_bsteps[Y_AXIS] = 48;
if (tmc2130_home_fsteps[Y_AXIS] == 0xff) tmc2130_home_fsteps[Y_AXIS] = 48;
tmc2130_home_enabled = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_ENABLED);
if (tmc2130_home_enabled == 0xff) tmc2130_home_enabled = 0;
if (eeprom_read_byte((uint8_t*)EEPROM_UVLO) == 1) { //previous print was terminated by UVLO if (eeprom_read_byte((uint8_t*)EEPROM_UVLO) == 1) { //previous print was terminated by UVLO
/* /*
if (lcd_show_fullscreen_message_yes_no_and_wait_P(MSG_RECOVER_PRINT, false)) recover_print(); if (lcd_show_fullscreen_message_yes_no_and_wait_P(MSG_RECOVER_PRINT, false)) recover_print();
@ -1785,9 +1825,9 @@ bool calibrate_z_auto()
} }
#endif //TMC2130 #endif //TMC2130
void homeaxis(int axis) void homeaxis(int axis, uint8_t cnt, uint8_t* pstep)
{ {
bool endstops_enabled = enable_endstops(true); //RP: endstops should be allways enabled durring homming bool endstops_enabled = enable_endstops(true); //RP: endstops should be allways enabled durring homing
#define HOMEAXIS_DO(LETTER) \ #define HOMEAXIS_DO(LETTER) \
((LETTER##_MIN_PIN > -1 && LETTER##_HOME_DIR==-1) || (LETTER##_MAX_PIN > -1 && LETTER##_HOME_DIR==1)) ((LETTER##_MIN_PIN > -1 && LETTER##_HOME_DIR==-1) || (LETTER##_MAX_PIN > -1 && LETTER##_HOME_DIR==1))
if ((axis==X_AXIS)?HOMEAXIS_DO(X):(axis==Y_AXIS)?HOMEAXIS_DO(Y):0) if ((axis==X_AXIS)?HOMEAXIS_DO(X):(axis==Y_AXIS)?HOMEAXIS_DO(Y):0)
@ -1797,7 +1837,8 @@ void homeaxis(int axis)
#ifdef TMC2130 #ifdef TMC2130
tmc2130_home_enter(X_AXIS_MASK << axis); tmc2130_home_enter(X_AXIS_MASK << axis);
#endif #endif //TMC2130
// Move right a bit, so that the print head does not touch the left end position, // Move right a bit, so that the print head does not touch the left end position,
// and the following left movement has a chance to achieve the required velocity // and the following left movement has a chance to achieve the required velocity
@ -1821,6 +1862,8 @@ void homeaxis(int axis)
destination[axis] = - 1.1 * max_length(axis); destination[axis] = - 1.1 * max_length(axis);
plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder); plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
st_synchronize(); st_synchronize();
for (uint8_t i = 0; i < cnt; i++)
{
// Move right from the collision to a known distance from the left end stop with the collision detection disabled. // Move right from the collision to a known distance from the left end stop with the collision detection disabled.
endstops_hit_on_purpose(); endstops_hit_on_purpose();
enable_endstops(false); enable_endstops(false);
@ -1832,30 +1875,50 @@ void homeaxis(int axis)
endstops_hit_on_purpose(); endstops_hit_on_purpose();
// Now move left up to the collision, this time with a repeatable velocity. // Now move left up to the collision, this time with a repeatable velocity.
enable_endstops(true); enable_endstops(true);
destination[axis] = - 15.f; destination[axis] = - 11.f;
#ifdef TMC2130
feedrate = homing_feedrate[axis];
#else //TMC2130
feedrate = homing_feedrate[axis] / 2; feedrate = homing_feedrate[axis] / 2;
#endif //TMC2130
plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder); plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
st_synchronize(); st_synchronize();
#ifdef TMC2130
uint16_t mscnt = tmc2130_rd_MSCNT(axis);
if (pstep) pstep[i] = mscnt >> 4;
printf_P(PSTR("%3d step=%2d mscnt=%4d\n"), i, mscnt >> 4, mscnt);
#endif //TMC2130
}
endstops_hit_on_purpose();
enable_endstops(false);
#ifdef TMC2130
uint8_t orig = tmc2130_home_origin[axis];
uint8_t back = tmc2130_home_bsteps[axis];
if (tmc2130_home_enabled && (orig <= 63))
{
tmc2130_goto_step(axis, orig, 2, 1000, tmc2130_get_res(axis));
if (back > 0)
tmc2130_do_steps(axis, back, 1, 1000);
}
else
tmc2130_do_steps(axis, 8, 2, 1000);
tmc2130_home_exit();
#endif //TMC2130
axis_is_at_home(axis); axis_is_at_home(axis);
axis_known_position[axis] = true; axis_known_position[axis] = true;
// Move from minimum
#ifdef TMC2130 #ifdef TMC2130
tmc2130_home_exit(); float dist = 0.01f * tmc2130_home_fsteps[axis];
#endif #else //TMC2130
// Move the X carriage away from the collision. float dist = 0.01f * 64;
// If this is not done, the X cariage will jump from the collision at the instant the Trinamic driver reduces power on idle. #endif //TMC2130
endstops_hit_on_purpose(); current_position[axis] -= dist;
enable_endstops(false);
{
// Two full periods (4 full steps).
float gap = 0.32f * 2.f;
current_position[axis] -= gap;
plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]); plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
current_position[axis] += gap; current_position[axis] += dist;
}
destination[axis] = current_position[axis]; destination[axis] = current_position[axis];
plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], 0.3f*feedrate/60, active_extruder); plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], 0.5f*feedrate/60, active_extruder);
st_synchronize(); st_synchronize();
feedrate = 0.0; feedrate = 0.0;
@ -2698,6 +2761,8 @@ void process_commands()
bool home_x = code_seen(axis_codes[X_AXIS]); bool home_x = code_seen(axis_codes[X_AXIS]);
bool home_y = code_seen(axis_codes[Y_AXIS]); bool home_y = code_seen(axis_codes[Y_AXIS]);
bool home_z = code_seen(axis_codes[Z_AXIS]); bool home_z = code_seen(axis_codes[Z_AXIS]);
// calibrate?
bool calib = code_seen('C');
// Either all X,Y,Z codes are present, or none of them. // Either all X,Y,Z codes are present, or none of them.
bool home_all_axes = home_x == home_y && home_x == home_z; bool home_all_axes = home_x == home_y && home_x == home_z;
if (home_all_axes) if (home_all_axes)
@ -2782,10 +2847,20 @@ void process_commands()
if(home_x) if(home_x)
{
if (!calib)
homeaxis(X_AXIS); homeaxis(X_AXIS);
else
tmc2130_home_calibrate(X_AXIS);
}
if(home_y) if(home_y)
{
if (!calib)
homeaxis(Y_AXIS); homeaxis(Y_AXIS);
else
tmc2130_home_calibrate(Y_AXIS);
}
if(code_seen(axis_codes[X_AXIS]) && code_value_long() != 0) if(code_seen(axis_codes[X_AXIS]) && code_value_long() != 0)
current_position[X_AXIS]=code_value()+add_homing[X_AXIS]; current_position[X_AXIS]=code_value()+add_homing[X_AXIS];
@ -6370,9 +6445,6 @@ case 404: //M404 Enter the nominal filament width (3mm, 1.75mm ) N<3.0> or disp
case 10: // D10 - XYZ calibration = OK case 10: // D10 - XYZ calibration = OK
dcode_10(); break; dcode_10(); break;
case 12: //D12 - Reset failstat counters
dcode_12(); break;
case 2130: // D9125 - TMC2130 case 2130: // D9125 - TMC2130
dcode_2130(); break; dcode_2130(); break;
case 9125: // D9125 - PAT9125 case 9125: // D9125 - PAT9125
@ -7483,7 +7555,7 @@ void uvlo_()
// Read out the current Z motor microstep counter. This will be later used // Read out the current Z motor microstep counter. This will be later used
// for reaching the zero full step before powering off. // for reaching the zero full step before powering off.
uint16_t z_microsteps = tmc2130_rd_MSCNT(Z_TMC2130_CS); uint16_t z_microsteps = tmc2130_rd_MSCNT(Z_AXIS);
// Calculate the file position, from which to resume this print. // Calculate the file position, from which to resume this print.
long sd_position = sdpos_atomic; //atomic sd position of last command added in queue long sd_position = sdpos_atomic; //atomic sd position of last command added in queue
@ -7575,7 +7647,7 @@ void uvlo_()
st_synchronize(); st_synchronize();
SERIAL_ECHOPGM("stps"); SERIAL_ECHOPGM("stps");
MYSERIAL.println(tmc2130_rd_MSCNT(Z_TMC2130_CS)); MYSERIAL.println(tmc2130_rd_MSCNT(Z_AXIS));
disable_z(); disable_z();

View file

@ -360,6 +360,15 @@ static void _drawmenu_setting_edit_generic(uint8_t row, const char* pstr, char p
#define lcd_implementation_drawmenu_setting_edit_generic(row, pstr, pre_char, data) _drawmenu_setting_edit_generic(row, pstr, pre_char, data, false) #define lcd_implementation_drawmenu_setting_edit_generic(row, pstr, pre_char, data) _drawmenu_setting_edit_generic(row, pstr, pre_char, data, false)
#define lcd_implementation_drawmenu_setting_edit_generic_P(row, pstr, pre_char, data) _drawmenu_setting_edit_generic(row, pstr, pre_char, data, true) #define lcd_implementation_drawmenu_setting_edit_generic_P(row, pstr, pre_char, data) _drawmenu_setting_edit_generic(row, pstr, pre_char, data, true)
extern char *wfac_to_str5(const uint8_t &x);
extern char *mres_to_str3(const uint8_t &x);
#define lcd_implementation_drawmenu_setting_edit_wfac_selected(row, pstr, pstr2, data, minValue, maxValue) lcd_implementation_drawmenu_setting_edit_generic(row, pstr, '>', wfac_to_str5(*(data)))
#define lcd_implementation_drawmenu_setting_edit_wfac(row, pstr, pstr2, data, minValue, maxValue) lcd_implementation_drawmenu_setting_edit_generic(row, pstr, ' ', wfac_to_str5(*(data)))
#define lcd_implementation_drawmenu_setting_edit_mres_selected(row, pstr, pstr2, data, minValue, maxValue) lcd_implementation_drawmenu_setting_edit_generic(row, pstr, '>', mres_to_str3(*(data)))
#define lcd_implementation_drawmenu_setting_edit_mres(row, pstr, pstr2, data, minValue, maxValue) lcd_implementation_drawmenu_setting_edit_generic(row, pstr, ' ', mres_to_str3(*(data)))
#define lcd_implementation_drawmenu_setting_edit_byte3_selected(row, pstr, pstr2, data, minValue, maxValue) lcd_implementation_drawmenu_setting_edit_generic(row, pstr, '>', itostr3((uint8_t)*(data)))
#define lcd_implementation_drawmenu_setting_edit_byte3(row, pstr, pstr2, data, minValue, maxValue) lcd_implementation_drawmenu_setting_edit_generic(row, pstr, ' ', itostr3((uint8_t)*(data)))
#define lcd_implementation_drawmenu_setting_edit_int3_selected(row, pstr, pstr2, data, minValue, maxValue) lcd_implementation_drawmenu_setting_edit_generic(row, pstr, '>', itostr3(*(data))) #define lcd_implementation_drawmenu_setting_edit_int3_selected(row, pstr, pstr2, data, minValue, maxValue) lcd_implementation_drawmenu_setting_edit_generic(row, pstr, '>', itostr3(*(data)))
#define lcd_implementation_drawmenu_setting_edit_int3(row, pstr, pstr2, data, minValue, maxValue) lcd_implementation_drawmenu_setting_edit_generic(row, pstr, ' ', itostr3(*(data))) #define lcd_implementation_drawmenu_setting_edit_int3(row, pstr, pstr2, data, minValue, maxValue) lcd_implementation_drawmenu_setting_edit_generic(row, pstr, ' ', itostr3(*(data)))
#define lcd_implementation_drawmenu_setting_edit_float3_selected(row, pstr, pstr2, data, minValue, maxValue) lcd_implementation_drawmenu_setting_edit_generic(row, pstr, '>', ftostr3(*(data))) #define lcd_implementation_drawmenu_setting_edit_float3_selected(row, pstr, pstr2, data, minValue, maxValue) lcd_implementation_drawmenu_setting_edit_generic(row, pstr, '>', ftostr3(*(data)))

View file

@ -20,8 +20,6 @@ extern long st_get_position(uint8_t axis);
extern void crashdet_stop_and_save_print(); extern void crashdet_stop_and_save_print();
extern void crashdet_stop_and_save_print2(); extern void crashdet_stop_and_save_print2();
//chipselect pins
uint8_t tmc2130_cs[4] = { X_TMC2130_CS, Y_TMC2130_CS, Z_TMC2130_CS, E0_TMC2130_CS };
//mode //mode
uint8_t tmc2130_mode = TMC2130_MODE_NORMAL; uint8_t tmc2130_mode = TMC2130_MODE_NORMAL;
//holding currents //holding currents
@ -30,7 +28,7 @@ uint8_t tmc2130_current_h[4] = TMC2130_CURRENTS_H;
uint8_t tmc2130_current_r[4] = TMC2130_CURRENTS_R; uint8_t tmc2130_current_r[4] = TMC2130_CURRENTS_R;
//running currents for homing //running currents for homing
uint8_t tmc2130_current_r_home[4] = {10, 10, 20, 10}; uint8_t tmc2130_current_r_home[4] = {8, 10, 20, 18};
//pwm_ampl //pwm_ampl
@ -55,6 +53,12 @@ uint8_t tmc2130_sg_meassure = 0xff;
uint16_t tmc2130_sg_meassure_cnt = 0; uint16_t tmc2130_sg_meassure_cnt = 0;
uint32_t tmc2130_sg_meassure_val = 0; uint32_t tmc2130_sg_meassure_val = 0;
uint8_t tmc2130_home_enabled = 0;
uint8_t tmc2130_home_origin[2] = {0, 0};
uint8_t tmc2130_home_bsteps[2] = {48, 48};
uint8_t tmc2130_home_fsteps[2] = {48, 48};
uint8_t tmc2130_wave_fac[4] = {0, 0, 0, 0};
bool tmc2130_sg_stop_on_crash = true; bool tmc2130_sg_stop_on_crash = true;
uint8_t tmc2130_sg_diag_mask = 0x00; uint8_t tmc2130_sg_diag_mask = 0x00;
@ -104,21 +108,19 @@ bool skip_debug_msg = false;
#define TMC2130_REG_LOST_STEPS 0x73 // 20 bits #define TMC2130_REG_LOST_STEPS 0x73 // 20 bits
uint16_t tmc2130_rd_TSTEP(uint8_t cs); uint16_t tmc2130_rd_TSTEP(uint8_t axis);
uint16_t tmc2130_rd_MSCNT(uint8_t cs); uint16_t tmc2130_rd_MSCNT(uint8_t axis);
uint16_t tmc2130_rd_DRV_STATUS(uint8_t cs); uint32_t tmc2130_rd_MSCURACT(uint8_t axis);
void tmc2130_wr_CHOPCONF(uint8_t cs, uint8_t toff = 3, uint8_t hstrt = 4, uint8_t hend = 1, uint8_t fd3 = 0, uint8_t disfdcc = 0, uint8_t rndtf = 0, uint8_t chm = 0, uint8_t tbl = 2, uint8_t vsense = 0, uint8_t vhighfs = 0, uint8_t vhighchm = 0, uint8_t sync = 0, uint8_t mres = 0b0100, uint8_t intpol = 1, uint8_t dedge = 0, uint8_t diss2g = 0); void tmc2130_wr_CHOPCONF(uint8_t axis, uint8_t toff = 3, uint8_t hstrt = 4, uint8_t hend = 1, uint8_t fd3 = 0, uint8_t disfdcc = 0, uint8_t rndtf = 0, uint8_t chm = 0, uint8_t tbl = 2, uint8_t vsense = 0, uint8_t vhighfs = 0, uint8_t vhighchm = 0, uint8_t sync = 0, uint8_t mres = 0b0100, uint8_t intpol = 1, uint8_t dedge = 0, uint8_t diss2g = 0);
void tmc2130_wr_PWMCONF(uint8_t cs, uint8_t pwm_ampl, uint8_t pwm_grad, uint8_t pwm_freq, uint8_t pwm_auto, uint8_t pwm_symm, uint8_t freewheel); void tmc2130_wr_PWMCONF(uint8_t axis, uint8_t pwm_ampl, uint8_t pwm_grad, uint8_t pwm_freq, uint8_t pwm_auto, uint8_t pwm_symm, uint8_t freewheel);
void tmc2130_wr_TPWMTHRS(uint8_t cs, uint32_t val32); void tmc2130_wr_TPWMTHRS(uint8_t axis, uint32_t val32);
void tmc2130_wr_THIGH(uint8_t cs, uint32_t val32); void tmc2130_wr_THIGH(uint8_t axis, uint32_t val32);
uint8_t tmc2130_axis_by_cs(uint8_t cs);
uint8_t tmc2130_calc_mres(uint16_t microstep_resolution);
uint8_t tmc2130_wr(uint8_t cs, uint8_t addr, uint32_t wval); uint8_t tmc2130_wr(uint8_t axis, uint8_t addr, uint32_t wval);
uint8_t tmc2130_rd(uint8_t cs, uint8_t addr, uint32_t* rval); uint8_t tmc2130_rd(uint8_t axis, uint8_t addr, uint32_t* rval);
uint8_t tmc2130_txrx(uint8_t cs, uint8_t addr, uint32_t wval, uint32_t* rval); uint8_t tmc2130_txrx(uint8_t axis, uint8_t addr, uint32_t wval, uint32_t* rval);
void tmc2130_setup_chopper(uint8_t axis, uint8_t mres, uint8_t current_h, uint8_t current_r); void tmc2130_setup_chopper(uint8_t axis, uint8_t mres, uint8_t current_h, uint8_t current_r);
@ -128,10 +130,10 @@ void tmc2130_setup_chopper(uint8_t axis, uint8_t mres, uint8_t current_h, uint8_
void tmc2130_init() void tmc2130_init()
{ {
DBG(_n("tmc2130_init(), mode=%S\n"), tmc2130_mode?_n("STEALTH"):_n("NORMAL")); DBG(_n("tmc2130_init(), mode=%S\n"), tmc2130_mode?_n("STEALTH"):_n("NORMAL"));
tmc2130_mres[0] = tmc2130_calc_mres(TMC2130_USTEPS_XY); /* tmc2130_mres[X_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_XY);
tmc2130_mres[1] = tmc2130_calc_mres(TMC2130_USTEPS_XY); tmc2130_mres[Y_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_XY);
tmc2130_mres[2] = tmc2130_calc_mres(TMC2130_USTEPS_Z); tmc2130_mres[Z_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_Z);
tmc2130_mres[3] = tmc2130_calc_mres(TMC2130_USTEPS_E); tmc2130_mres[E_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_E);*/
WRITE(X_TMC2130_CS, HIGH); WRITE(X_TMC2130_CS, HIGH);
WRITE(Y_TMC2130_CS, HIGH); WRITE(Y_TMC2130_CS, HIGH);
WRITE(Z_TMC2130_CS, HIGH); WRITE(Z_TMC2130_CS, HIGH);
@ -147,65 +149,33 @@ void tmc2130_init()
SPI.begin(); SPI.begin();
for (int axis = 0; axis < 2; axis++) // X Y axes for (int axis = 0; axis < 2; axis++) // X Y axes
{ {
/* if (tmc2130_current_r[axis] <= 31)
{
tmc2130_wr_CHOPCONF(tmc2130_cs[axis], 3, 5, 1, 0, 0, 0, 0, 2, 1, 0, 0, 0, mres, TMC2130_INTPOL_XY, 0, 0);
tmc2130_wr(tmc2130_cs[axis], TMC2130_REG_IHOLD_IRUN, 0x000f0000 | ((tmc2130_current_r[axis] & 0x1f) << 8) | (tmc2130_current_h[axis] & 0x1f));
}
else
{
tmc2130_wr_CHOPCONF(tmc2130_cs[axis], 3, 5, 1, 0, 0, 0, 0, 2, 0, 0, 0, 0, mres, TMC2130_INTPOL_XY, 0, 0);
tmc2130_wr(tmc2130_cs[axis], TMC2130_REG_IHOLD_IRUN, 0x000f0000 | (((tmc2130_current_r[axis] >> 1) & 0x1f) << 8) | ((tmc2130_current_h[axis] >> 1) & 0x1f));
}*/
tmc2130_setup_chopper(axis, tmc2130_mres[axis], tmc2130_current_h[axis], tmc2130_current_r[axis]); tmc2130_setup_chopper(axis, tmc2130_mres[axis], tmc2130_current_h[axis], tmc2130_current_r[axis]);
tmc2130_wr(axis, TMC2130_REG_TPOWERDOWN, 0x00000000);
// tmc2130_wr_CHOPCONF(tmc2130_cs[axis], 3, 5, 1, 0, 0, 0, 0, 2, 1, 0, 0, 0, mres, TMC2130_INTPOL_XY, 0, 0); tmc2130_wr(axis, TMC2130_REG_COOLCONF, (((uint32_t)tmc2130_sg_thr[axis]) << 16));
// tmc2130_wr(tmc2130_cs[axis], TMC2130_REG_IHOLD_IRUN, 0x000f0000 | ((tmc2130_current_r[axis] & 0x1f) << 8) | (tmc2130_current_h[axis] & 0x1f)); tmc2130_wr(axis, TMC2130_REG_TCOOLTHRS, (tmc2130_mode == TMC2130_MODE_SILENT)?0:((axis==X_AXIS)?TMC2130_TCOOLTHRS_X:TMC2130_TCOOLTHRS_Y));
tmc2130_wr(tmc2130_cs[axis], TMC2130_REG_TPOWERDOWN, 0x00000000); tmc2130_wr(axis, TMC2130_REG_GCONF, (tmc2130_mode == TMC2130_MODE_SILENT)?TMC2130_GCONF_SILENT:TMC2130_GCONF_SGSENS);
// tmc2130_wr(tmc2130_cs[axis], TMC2130_REG_COOLCONF, (((uint32_t)tmc2130_sg_thr[axis]) << 16) | ((uint32_t)1 << 24)); tmc2130_wr_PWMCONF(axis, tmc2130_pwm_ampl[axis], tmc2130_pwm_grad[axis], tmc2130_pwm_freq[axis], tmc2130_pwm_auto[axis], 0, 0);
tmc2130_wr(tmc2130_cs[axis], TMC2130_REG_COOLCONF, (((uint32_t)tmc2130_sg_thr[axis]) << 16)); tmc2130_wr_TPWMTHRS(axis, TMC2130_TPWMTHRS);
tmc2130_wr(tmc2130_cs[axis], TMC2130_REG_TCOOLTHRS, (tmc2130_mode == TMC2130_MODE_SILENT)?0:((axis==X_AXIS)?TMC2130_TCOOLTHRS_X:TMC2130_TCOOLTHRS_Y)); //tmc2130_wr_THIGH(axis, TMC2130_THIGH);
tmc2130_wr(tmc2130_cs[axis], TMC2130_REG_GCONF, (tmc2130_mode == TMC2130_MODE_SILENT)?TMC2130_GCONF_SILENT:TMC2130_GCONF_SGSENS);
tmc2130_wr_PWMCONF(tmc2130_cs[axis], tmc2130_pwm_ampl[axis], tmc2130_pwm_grad[axis], tmc2130_pwm_freq[axis], tmc2130_pwm_auto[axis], 0, 0);
tmc2130_wr_TPWMTHRS(tmc2130_cs[axis], TMC2130_TPWMTHRS);
//tmc2130_wr_THIGH(tmc2130_cs[axis], TMC2130_THIGH);
} }
for (int axis = 2; axis < 3; axis++) // Z axis for (int axis = 2; axis < 3; axis++) // Z axis
{ {
// uint8_t mres = tmc2130_mres(TMC2130_USTEPS_Z);
/* if (tmc2130_current_r[axis] <= 31)
{
tmc2130_wr_CHOPCONF(tmc2130_cs[axis], 3, 5, 1, 0, 0, 0, 0, 2, 1, 0, 0, 0, mres, TMC2130_INTPOL_Z, 0, 0);
tmc2130_wr(tmc2130_cs[axis], TMC2130_REG_IHOLD_IRUN, 0x000f0000 | ((tmc2130_current_r[axis] & 0x1f) << 8) | (tmc2130_current_h[axis] & 0x1f));
}
else
{
tmc2130_wr_CHOPCONF(tmc2130_cs[axis], 3, 5, 1, 0, 0, 0, 0, 2, 0, 0, 0, 0, mres, TMC2130_INTPOL_Z, 0, 0);
tmc2130_wr(tmc2130_cs[axis], TMC2130_REG_IHOLD_IRUN, 0x000f0000 | (((tmc2130_current_r[axis] >> 1) & 0x1f) << 8) | ((tmc2130_current_h[axis] >> 1) & 0x1f));
}*/
tmc2130_setup_chopper(axis, tmc2130_mres[axis], tmc2130_current_h[axis], tmc2130_current_r[axis]); tmc2130_setup_chopper(axis, tmc2130_mres[axis], tmc2130_current_h[axis], tmc2130_current_r[axis]);
tmc2130_wr(axis, TMC2130_REG_TPOWERDOWN, 0x00000000);
tmc2130_wr(tmc2130_cs[axis], TMC2130_REG_TPOWERDOWN, 0x00000000); tmc2130_wr(axis, TMC2130_REG_GCONF, TMC2130_GCONF_SGSENS);
tmc2130_wr(tmc2130_cs[axis], TMC2130_REG_GCONF, TMC2130_GCONF_SGSENS);
} }
for (int axis = 3; axis < 4; axis++) // E axis for (int axis = 3; axis < 4; axis++) // E axis
{ {
// uint8_t mres = tmc2130_mres(TMC2130_USTEPS_E);
tmc2130_setup_chopper(axis, tmc2130_mres[axis], tmc2130_current_h[axis], tmc2130_current_r[axis]); tmc2130_setup_chopper(axis, tmc2130_mres[axis], tmc2130_current_h[axis], tmc2130_current_r[axis]);
tmc2130_wr(axis, TMC2130_REG_TPOWERDOWN, 0x00000000);
// tmc2130_wr_CHOPCONF(tmc2130_cs[axis], 3, 5, 1, 0, 0, 0, 0, 2, 1, 0, 0, 0, mres, TMC2130_INTPOL_E, 0, 0);
// tmc2130_wr(tmc2130_cs[axis], TMC2130_REG_IHOLD_IRUN, 0x000f0000 | ((tmc2130_current_r[axis] & 0x1f) << 8) | (tmc2130_current_h[axis] & 0x1f));
tmc2130_wr(tmc2130_cs[axis], TMC2130_REG_TPOWERDOWN, 0x00000000);
#ifndef TMC2130_STEALTH_E #ifndef TMC2130_STEALTH_E
tmc2130_wr(tmc2130_cs[axis], TMC2130_REG_GCONF, TMC2130_GCONF_SGSENS); tmc2130_wr(axis, TMC2130_REG_GCONF, TMC2130_GCONF_SGSENS);
#else //TMC2130_STEALTH_E #else //TMC2130_STEALTH_E
tmc2130_wr(tmc2130_cs[axis], TMC2130_REG_COOLCONF, (((uint32_t)tmc2130_sg_thr[axis]) << 16)); tmc2130_wr(axis, TMC2130_REG_COOLCONF, (((uint32_t)tmc2130_sg_thr[axis]) << 16));
tmc2130_wr(tmc2130_cs[axis], TMC2130_REG_TCOOLTHRS, 0); tmc2130_wr(axis, TMC2130_REG_TCOOLTHRS, 0);
tmc2130_wr(tmc2130_cs[axis], TMC2130_REG_GCONF, TMC2130_GCONF_SILENT); tmc2130_wr(axis, TMC2130_REG_GCONF, TMC2130_GCONF_SILENT);
tmc2130_wr_PWMCONF(tmc2130_cs[axis], tmc2130_pwm_ampl[axis], tmc2130_pwm_grad[axis], tmc2130_pwm_freq[axis], tmc2130_pwm_auto[axis], 0, 0); tmc2130_wr_PWMCONF(axis, tmc2130_pwm_ampl[axis], tmc2130_pwm_grad[axis], tmc2130_pwm_freq[axis], tmc2130_pwm_auto[axis], 0, 0);
tmc2130_wr_TPWMTHRS(tmc2130_cs[axis], TMC2130_TPWMTHRS); tmc2130_wr_TPWMTHRS(axis, TMC2130_TPWMTHRS);
#endif //TMC2130_STEALTH_E #endif //TMC2130_STEALTH_E
} }
@ -217,6 +187,11 @@ void tmc2130_init()
tmc2130_sg_cnt[1] = 0; tmc2130_sg_cnt[1] = 0;
tmc2130_sg_cnt[2] = 0; tmc2130_sg_cnt[2] = 0;
tmc2130_sg_cnt[3] = 0; tmc2130_sg_cnt[3] = 0;
tmc2130_set_wave(X_AXIS, tmc2130_wave_fac[X_AXIS]);
tmc2130_set_wave(Y_AXIS, tmc2130_wave_fac[Y_AXIS]);
tmc2130_set_wave(Z_AXIS, tmc2130_wave_fac[Z_AXIS]);
tmc2130_set_wave(E_AXIS, tmc2130_wave_fac[E_AXIS]);
} }
uint8_t tmc2130_sample_diag() uint8_t tmc2130_sample_diag()
@ -279,11 +254,10 @@ bool tmc2130_update_sg()
{ {
if (tmc2130_sg_meassure <= E_AXIS) if (tmc2130_sg_meassure <= E_AXIS)
{ {
uint8_t cs = tmc2130_cs[tmc2130_sg_meassure]; uint32_t val32 = 0;
uint16_t sg = tmc2130_rd_DRV_STATUS(cs) & 0x3ff; tmc2130_rd(tmc2130_sg_meassure, TMC2130_REG_DRV_STATUS, &val32);
tmc2130_sg_meassure_val += sg; tmc2130_sg_meassure_val += (val32 & 0x3ff);
tmc2130_sg_meassure_cnt++; tmc2130_sg_meassure_cnt++;
// printf_P(PSTR("tmc2130_update_sg - meassure - sg=%d\n"), sg);
return true; return true;
} }
return false; return false;
@ -296,18 +270,17 @@ void tmc2130_home_enter(uint8_t axes_mask)
for (uint8_t axis = X_AXIS; axis <= Z_AXIS; axis++) //X Y and Z axes for (uint8_t axis = X_AXIS; axis <= Z_AXIS; axis++) //X Y and Z axes
{ {
uint8_t mask = (X_AXIS_MASK << axis); uint8_t mask = (X_AXIS_MASK << axis);
uint8_t cs = tmc2130_cs[axis];
if (axes_mask & mask) if (axes_mask & mask)
{ {
sg_homing_axes_mask |= mask; sg_homing_axes_mask |= mask;
//Configuration to spreadCycle //Configuration to spreadCycle
tmc2130_wr(cs, TMC2130_REG_GCONF, TMC2130_GCONF_NORMAL); tmc2130_wr(axis, TMC2130_REG_GCONF, TMC2130_GCONF_NORMAL);
tmc2130_wr(cs, TMC2130_REG_COOLCONF, (((uint32_t)tmc2130_sg_thr_home[axis]) << 16)); tmc2130_wr(axis, TMC2130_REG_COOLCONF, (((uint32_t)tmc2130_sg_thr_home[axis]) << 16));
// tmc2130_wr(cs, TMC2130_REG_COOLCONF, (((uint32_t)tmc2130_sg_thr[axis]) << 16) | ((uint32_t)1 << 24)); // tmc2130_wr(axis, TMC2130_REG_COOLCONF, (((uint32_t)tmc2130_sg_thr[axis]) << 16) | ((uint32_t)1 << 24));
tmc2130_wr(cs, TMC2130_REG_TCOOLTHRS, (axis==X_AXIS)?TMC2130_TCOOLTHRS_X:TMC2130_TCOOLTHRS_Y); tmc2130_wr(axis, TMC2130_REG_TCOOLTHRS, (axis==X_AXIS)?TMC2130_TCOOLTHRS_X:TMC2130_TCOOLTHRS_Y);
tmc2130_setup_chopper(axis, tmc2130_mres[axis], tmc2130_current_h[axis], tmc2130_current_r_home[axis]); tmc2130_setup_chopper(axis, tmc2130_mres[axis], tmc2130_current_h[axis], tmc2130_current_r_home[axis]);
if (mask & (X_AXIS_MASK | Y_AXIS_MASK | Z_AXIS_MASK)) if (mask & (X_AXIS_MASK | Y_AXIS_MASK | Z_AXIS_MASK))
tmc2130_wr(cs, TMC2130_REG_GCONF, TMC2130_GCONF_SGSENS); //stallguard output DIAG1, DIAG1 = pushpull tmc2130_wr(axis, TMC2130_REG_GCONF, TMC2130_GCONF_SGSENS); //stallguard output DIAG1, DIAG1 = pushpull
} }
} }
#endif //TMC2130_SG_HOMING #endif //TMC2130_SG_HOMING
@ -326,18 +299,18 @@ void tmc2130_home_exit()
{ {
if (tmc2130_mode == TMC2130_MODE_SILENT) if (tmc2130_mode == TMC2130_MODE_SILENT)
{ {
tmc2130_wr(tmc2130_cs[axis], TMC2130_REG_GCONF, TMC2130_GCONF_SILENT); // Configuration back to stealthChop tmc2130_wr(axis, TMC2130_REG_GCONF, TMC2130_GCONF_SILENT); // Configuration back to stealthChop
tmc2130_wr(tmc2130_cs[axis], TMC2130_REG_TCOOLTHRS, 0); tmc2130_wr(axis, TMC2130_REG_TCOOLTHRS, 0);
// tmc2130_wr_PWMCONF(tmc2130_cs[i], tmc2130_pwm_ampl[i], tmc2130_pwm_grad[i], tmc2130_pwm_freq[i], tmc2130_pwm_auto[i], 0, 0); // tmc2130_wr_PWMCONF(i, tmc2130_pwm_ampl[i], tmc2130_pwm_grad[i], tmc2130_pwm_freq[i], tmc2130_pwm_auto[i], 0, 0);
} }
else else
{ {
// tmc2130_wr(tmc2130_cs[axis], TMC2130_REG_GCONF, TMC2130_GCONF_NORMAL); // tmc2130_wr(axis, TMC2130_REG_GCONF, TMC2130_GCONF_NORMAL);
tmc2130_setup_chopper(axis, tmc2130_mres[axis], tmc2130_current_h[axis], tmc2130_current_r[axis]); tmc2130_setup_chopper(axis, tmc2130_mres[axis], tmc2130_current_h[axis], tmc2130_current_r[axis]);
// tmc2130_wr(tmc2130_cs[axis], TMC2130_REG_COOLCONF, (((uint32_t)tmc2130_sg_thr[axis]) << 16) | ((uint32_t)1 << 24)); // tmc2130_wr(axis, TMC2130_REG_COOLCONF, (((uint32_t)tmc2130_sg_thr[axis]) << 16) | ((uint32_t)1 << 24));
tmc2130_wr(tmc2130_cs[axis], TMC2130_REG_COOLCONF, (((uint32_t)tmc2130_sg_thr[axis]) << 16)); tmc2130_wr(axis, TMC2130_REG_COOLCONF, (((uint32_t)tmc2130_sg_thr[axis]) << 16));
tmc2130_wr(tmc2130_cs[axis], TMC2130_REG_TCOOLTHRS, (tmc2130_mode == TMC2130_MODE_SILENT)?0:((axis==X_AXIS)?TMC2130_TCOOLTHRS_X:TMC2130_TCOOLTHRS_Y)); tmc2130_wr(axis, TMC2130_REG_TCOOLTHRS, (tmc2130_mode == TMC2130_MODE_SILENT)?0:((axis==X_AXIS)?TMC2130_TCOOLTHRS_X:TMC2130_TCOOLTHRS_Y));
tmc2130_wr(tmc2130_cs[axis], TMC2130_REG_GCONF, TMC2130_GCONF_SGSENS); tmc2130_wr(axis, TMC2130_REG_GCONF, TMC2130_GCONF_SGSENS);
} }
} }
} }
@ -369,8 +342,8 @@ bool tmc2130_wait_standstill_xy(int timeout)
{ {
uint32_t drv_status_x = 0; uint32_t drv_status_x = 0;
uint32_t drv_status_y = 0; uint32_t drv_status_y = 0;
tmc2130_rd(tmc2130_cs[X_AXIS], TMC2130_REG_DRV_STATUS, &drv_status_x); tmc2130_rd(X_AXIS, TMC2130_REG_DRV_STATUS, &drv_status_x);
tmc2130_rd(tmc2130_cs[Y_AXIS], TMC2130_REG_DRV_STATUS, &drv_status_y); tmc2130_rd(Y_AXIS, TMC2130_REG_DRV_STATUS, &drv_status_y);
// DBG(_n("\tdrv_status_x=0x%08x drv_status_x=0x%08x\n"), drv_status_x, drv_status_y); // DBG(_n("\tdrv_status_x=0x%08x drv_status_x=0x%08x\n"), drv_status_x, drv_status_y);
standstill = (drv_status_x & 0x80000000) && (drv_status_y & 0x80000000); standstill = (drv_status_x & 0x80000000) && (drv_status_y & 0x80000000);
tmc2130_check_overtemp(); tmc2130_check_overtemp();
@ -390,13 +363,13 @@ void tmc2130_check_overtemp()
{ {
uint32_t drv_status = 0; uint32_t drv_status = 0;
skip_debug_msg = true; skip_debug_msg = true;
tmc2130_rd(tmc2130_cs[i], TMC2130_REG_DRV_STATUS, &drv_status); tmc2130_rd(i, TMC2130_REG_DRV_STATUS, &drv_status);
if (drv_status & ((uint32_t)1 << 26)) if (drv_status & ((uint32_t)1 << 26))
{ // BIT 26 - over temp prewarning ~120C (+-20C) { // BIT 26 - over temp prewarning ~120C (+-20C)
SERIAL_ERRORRPGM(TMC_OVERTEMP_MSG); SERIAL_ERRORRPGM(TMC_OVERTEMP_MSG);
SERIAL_ECHOLN(i); SERIAL_ECHOLN(i);
for (int j = 0; j < 4; j++) for (int j = 0; j < 4; j++)
tmc2130_wr(tmc2130_cs[j], TMC2130_REG_CHOPCONF, 0x00010000); tmc2130_wr(j, TMC2130_REG_CHOPCONF, 0x00010000);
kill(TMC_OVERTEMP_MSG); kill(TMC_OVERTEMP_MSG);
} }
@ -420,7 +393,6 @@ void tmc2130_check_overtemp()
void tmc2130_setup_chopper(uint8_t axis, uint8_t mres, uint8_t current_h, uint8_t current_r) void tmc2130_setup_chopper(uint8_t axis, uint8_t mres, uint8_t current_h, uint8_t current_r)
{ {
uint8_t cs = tmc2130_cs[axis];
uint8_t intpol = 1; uint8_t intpol = 1;
uint8_t toff = TMC2130_TOFF_XYZ; // toff = 3 (fchop = 27.778kHz) uint8_t toff = TMC2130_TOFF_XYZ; // toff = 3 (fchop = 27.778kHz)
uint8_t hstrt = 5; //initial 4, modified to 5 uint8_t hstrt = 5; //initial 4, modified to 5
@ -443,13 +415,13 @@ void tmc2130_setup_chopper(uint8_t axis, uint8_t mres, uint8_t current_h, uint8_
} }
if (current_r <= 31) if (current_r <= 31)
{ {
tmc2130_wr_CHOPCONF(cs, toff, hstrt, hend, fd3, 0, rndtf, chm, tbl, 1, 0, 0, 0, mres, intpol, 0, 0); tmc2130_wr_CHOPCONF(axis, toff, hstrt, hend, fd3, 0, rndtf, chm, tbl, 1, 0, 0, 0, mres, intpol, 0, 0);
tmc2130_wr(cs, TMC2130_REG_IHOLD_IRUN, 0x000f0000 | ((current_r & 0x1f) << 8) | (current_h & 0x1f)); tmc2130_wr(axis, TMC2130_REG_IHOLD_IRUN, 0x000f0000 | ((current_r & 0x1f) << 8) | (current_h & 0x1f));
} }
else else
{ {
tmc2130_wr_CHOPCONF(cs, toff, hstrt, hend, fd3, 0, 0, 0, tbl, 0, 0, 0, 0, mres, intpol, 0, 0); tmc2130_wr_CHOPCONF(axis, toff, hstrt, hend, fd3, 0, 0, 0, tbl, 0, 0, 0, 0, mres, intpol, 0, 0);
tmc2130_wr(cs, TMC2130_REG_IHOLD_IRUN, 0x000f0000 | (((current_r >> 1) & 0x1f) << 8) | ((current_h >> 1) & 0x1f)); tmc2130_wr(axis, TMC2130_REG_IHOLD_IRUN, 0x000f0000 | (((current_r >> 1) & 0x1f) << 8) | ((current_h >> 1) & 0x1f));
} }
} }
@ -485,7 +457,7 @@ void tmc2130_set_pwm_ampl(uint8_t axis, uint8_t pwm_ampl)
MYSERIAL.println((int)pwm_ampl); MYSERIAL.println((int)pwm_ampl);
tmc2130_pwm_ampl[axis] = pwm_ampl; tmc2130_pwm_ampl[axis] = pwm_ampl;
if (((axis == 0) || (axis == 1)) && (tmc2130_mode == TMC2130_MODE_SILENT)) if (((axis == 0) || (axis == 1)) && (tmc2130_mode == TMC2130_MODE_SILENT))
tmc2130_wr_PWMCONF(tmc2130_cs[axis], tmc2130_pwm_ampl[axis], tmc2130_pwm_grad[axis], tmc2130_pwm_freq[axis], tmc2130_pwm_auto[axis], 0, 0); tmc2130_wr_PWMCONF(axis, tmc2130_pwm_ampl[axis], tmc2130_pwm_grad[axis], tmc2130_pwm_freq[axis], tmc2130_pwm_auto[axis], 0, 0);
} }
void tmc2130_set_pwm_grad(uint8_t axis, uint8_t pwm_grad) void tmc2130_set_pwm_grad(uint8_t axis, uint8_t pwm_grad)
@ -496,32 +468,58 @@ void tmc2130_set_pwm_grad(uint8_t axis, uint8_t pwm_grad)
MYSERIAL.println((int)pwm_grad); MYSERIAL.println((int)pwm_grad);
tmc2130_pwm_grad[axis] = pwm_grad; tmc2130_pwm_grad[axis] = pwm_grad;
if (((axis == 0) || (axis == 1)) && (tmc2130_mode == TMC2130_MODE_SILENT)) if (((axis == 0) || (axis == 1)) && (tmc2130_mode == TMC2130_MODE_SILENT))
tmc2130_wr_PWMCONF(tmc2130_cs[axis], tmc2130_pwm_ampl[axis], tmc2130_pwm_grad[axis], tmc2130_pwm_freq[axis], tmc2130_pwm_auto[axis], 0, 0); tmc2130_wr_PWMCONF(axis, tmc2130_pwm_ampl[axis], tmc2130_pwm_grad[axis], tmc2130_pwm_freq[axis], tmc2130_pwm_auto[axis], 0, 0);
} }
uint16_t tmc2130_rd_TSTEP(uint8_t cs) uint16_t tmc2130_rd_TSTEP(uint8_t axis)
{ {
uint32_t val32 = 0; uint32_t val32 = 0;
tmc2130_rd(cs, TMC2130_REG_TSTEP, &val32); tmc2130_rd(axis, TMC2130_REG_TSTEP, &val32);
if (val32 & 0x000f0000) return 0xffff; if (val32 & 0x000f0000) return 0xffff;
return val32 & 0xffff; return val32 & 0xffff;
} }
uint16_t tmc2130_rd_MSCNT(uint8_t cs) uint16_t tmc2130_rd_MSCNT(uint8_t axis)
{ {
uint32_t val32 = 0; uint32_t val32 = 0;
tmc2130_rd(cs, TMC2130_REG_MSCNT, &val32); tmc2130_rd(axis, TMC2130_REG_MSCNT, &val32);
return val32 & 0x3ff; return val32 & 0x3ff;
} }
uint16_t tmc2130_rd_DRV_STATUS(uint8_t cs) uint32_t tmc2130_rd_MSCURACT(uint8_t axis)
{ {
uint32_t val32 = 0; uint32_t val32 = 0;
tmc2130_rd(cs, TMC2130_REG_DRV_STATUS, &val32); tmc2130_rd(axis, TMC2130_REG_MSCURACT, &val32);
return val32; return val32;
} }
void tmc2130_wr_CHOPCONF(uint8_t cs, uint8_t toff, uint8_t hstrt, uint8_t hend, uint8_t fd3, uint8_t disfdcc, uint8_t rndtf, uint8_t chm, uint8_t tbl, uint8_t vsense, uint8_t vhighfs, uint8_t vhighchm, uint8_t sync, uint8_t mres, uint8_t intpol, uint8_t dedge, uint8_t diss2g) void tmc2130_wr_MSLUTSTART(uint8_t axis, uint8_t start_sin, uint8_t start_sin90)
{
uint32_t val = 0;
val |= (uint32_t)start_sin;
val |= ((uint32_t)start_sin90) << 16;
tmc2130_wr(axis, TMC2130_REG_MSLUTSTART, val);
}
void tmc2130_wr_MSLUTSEL(uint8_t axis, uint8_t x1, uint8_t x2, uint8_t x3, uint8_t w0, uint8_t w1, uint8_t w2, uint8_t w3)
{
uint32_t val = 0;
val |= ((uint32_t)w0);
val |= ((uint32_t)w1) << 2;
val |= ((uint32_t)w2) << 4;
val |= ((uint32_t)w3) << 6;
val |= ((uint32_t)x1) << 8;
val |= ((uint32_t)x2) << 16;
val |= ((uint32_t)x3) << 24;
tmc2130_wr(axis, TMC2130_REG_MSLUTSEL, val);
}
void tmc2130_wr_MSLUT(uint8_t axis, uint8_t i, uint32_t val)
{
tmc2130_wr(axis, TMC2130_REG_MSLUT0 + (i & 7), val);
}
void tmc2130_wr_CHOPCONF(uint8_t axis, uint8_t toff, uint8_t hstrt, uint8_t hend, uint8_t fd3, uint8_t disfdcc, uint8_t rndtf, uint8_t chm, uint8_t tbl, uint8_t vsense, uint8_t vhighfs, uint8_t vhighchm, uint8_t sync, uint8_t mres, uint8_t intpol, uint8_t dedge, uint8_t diss2g)
{ {
uint32_t val = 0; uint32_t val = 0;
val |= (uint32_t)(toff & 15); val |= (uint32_t)(toff & 15);
@ -540,11 +538,11 @@ void tmc2130_wr_CHOPCONF(uint8_t cs, uint8_t toff, uint8_t hstrt, uint8_t hend,
val |= (uint32_t)(intpol & 1) << 28; val |= (uint32_t)(intpol & 1) << 28;
val |= (uint32_t)(dedge & 1) << 29; val |= (uint32_t)(dedge & 1) << 29;
val |= (uint32_t)(diss2g & 1) << 30; val |= (uint32_t)(diss2g & 1) << 30;
tmc2130_wr(cs, TMC2130_REG_CHOPCONF, val); tmc2130_wr(axis, TMC2130_REG_CHOPCONF, val);
} }
//void tmc2130_wr_PWMCONF(uint8_t cs, uint8_t PWMautoScale, uint8_t PWMfreq, uint8_t PWMgrad, uint8_t PWMampl) //void tmc2130_wr_PWMCONF(uint8_t axis, uint8_t PWMautoScale, uint8_t PWMfreq, uint8_t PWMgrad, uint8_t PWMampl)
void tmc2130_wr_PWMCONF(uint8_t cs, uint8_t pwm_ampl, uint8_t pwm_grad, uint8_t pwm_freq, uint8_t pwm_auto, uint8_t pwm_symm, uint8_t freewheel) void tmc2130_wr_PWMCONF(uint8_t axis, uint8_t pwm_ampl, uint8_t pwm_grad, uint8_t pwm_freq, uint8_t pwm_auto, uint8_t pwm_symm, uint8_t freewheel)
{ {
uint32_t val = 0; uint32_t val = 0;
val |= (uint32_t)(pwm_ampl & 255); val |= (uint32_t)(pwm_ampl & 255);
@ -553,54 +551,32 @@ void tmc2130_wr_PWMCONF(uint8_t cs, uint8_t pwm_ampl, uint8_t pwm_grad, uint8_t
val |= (uint32_t)(pwm_auto & 1) << 18; val |= (uint32_t)(pwm_auto & 1) << 18;
val |= (uint32_t)(pwm_symm & 1) << 19; val |= (uint32_t)(pwm_symm & 1) << 19;
val |= (uint32_t)(freewheel & 3) << 20; val |= (uint32_t)(freewheel & 3) << 20;
tmc2130_wr(cs, TMC2130_REG_PWMCONF, val); tmc2130_wr(axis, TMC2130_REG_PWMCONF, val);
// tmc2130_wr(cs, TMC2130_REG_PWMCONF, ((uint32_t)(PWMautoScale+PWMfreq) << 16) | ((uint32_t)PWMgrad << 8) | PWMampl); // TMC LJ -> For better readability changed to 0x00 and added PWMautoScale and PWMfreq // tmc2130_wr(axis, TMC2130_REG_PWMCONF, ((uint32_t)(PWMautoScale+PWMfreq) << 16) | ((uint32_t)PWMgrad << 8) | PWMampl); // TMC LJ -> For better readability changed to 0x00 and added PWMautoScale and PWMfreq
} }
void tmc2130_wr_TPWMTHRS(uint8_t cs, uint32_t val32) void tmc2130_wr_TPWMTHRS(uint8_t axis, uint32_t val32)
{ {
tmc2130_wr(cs, TMC2130_REG_TPWMTHRS, val32); tmc2130_wr(axis, TMC2130_REG_TPWMTHRS, val32);
} }
void tmc2130_wr_THIGH(uint8_t cs, uint32_t val32) void tmc2130_wr_THIGH(uint8_t axis, uint32_t val32)
{ {
tmc2130_wr(cs, TMC2130_REG_THIGH, val32); tmc2130_wr(axis, TMC2130_REG_THIGH, val32);
} }
#if defined(TMC2130_DEBUG_RD) || defined(TMC2130_DEBUG_WR) uint8_t tmc2130_usteps2mres(uint16_t usteps)
uint8_t tmc2130_axis_by_cs(uint8_t cs)
{ {
switch (cs) uint8_t mres = 8; while (mres && (usteps >>= 1)) mres--;
{ return mres;
case X_TMC2130_CS: return 0;
case Y_TMC2130_CS: return 1;
case Z_TMC2130_CS: return 2;
case E0_TMC2130_CS: return 3;
}
return -1;
}
#endif //TMC2130_DEBUG
uint8_t tmc2130_calc_mres(uint16_t microstep_resolution)
{
if (microstep_resolution == 256) return 0b0000;
if (microstep_resolution == 128) return 0b0001;
if (microstep_resolution == 64) return 0b0010;
if (microstep_resolution == 32) return 0b0011;
if (microstep_resolution == 16) return 0b0100;
if (microstep_resolution == 8) return 0b0101;
if (microstep_resolution == 4) return 0b0110;
if (microstep_resolution == 2) return 0b0111;
if (microstep_resolution == 1) return 0b1000;
return 0;
} }
uint8_t tmc2130_wr(uint8_t cs, uint8_t addr, uint32_t wval) uint8_t tmc2130_wr(uint8_t axis, uint8_t addr, uint32_t wval)
{ {
uint8_t stat = tmc2130_txrx(cs, addr | 0x80, wval, 0); uint8_t stat = tmc2130_txrx(axis, addr | 0x80, wval, 0);
#ifdef TMC2130_DEBUG_WR #ifdef TMC2130_DEBUG_WR
MYSERIAL.print("tmc2130_wr("); MYSERIAL.print("tmc2130_wr(");
MYSERIAL.print((unsigned char)tmc2130_axis_by_cs(cs), DEC); MYSERIAL.print((unsigned char)axis, DEC);
MYSERIAL.print(", 0x"); MYSERIAL.print(", 0x");
MYSERIAL.print((unsigned char)addr, HEX); MYSERIAL.print((unsigned char)addr, HEX);
MYSERIAL.print(", 0x"); MYSERIAL.print(", 0x");
@ -611,16 +587,16 @@ uint8_t tmc2130_wr(uint8_t cs, uint8_t addr, uint32_t wval)
return stat; return stat;
} }
uint8_t tmc2130_rd(uint8_t cs, uint8_t addr, uint32_t* rval) uint8_t tmc2130_rd(uint8_t axis, uint8_t addr, uint32_t* rval)
{ {
uint32_t val32 = 0; uint32_t val32 = 0;
uint8_t stat = tmc2130_txrx(cs, addr, 0x00000000, &val32); uint8_t stat = tmc2130_txrx(axis, addr, 0x00000000, &val32);
if (rval != 0) *rval = val32; if (rval != 0) *rval = val32;
#ifdef TMC2130_DEBUG_RD #ifdef TMC2130_DEBUG_RD
if (!skip_debug_msg) if (!skip_debug_msg)
{ {
MYSERIAL.print("tmc2130_rd("); MYSERIAL.print("tmc2130_rd(");
MYSERIAL.print((unsigned char)tmc2130_axis_by_cs(cs), DEC); MYSERIAL.print((unsigned char)axis, DEC);
MYSERIAL.print(", 0x"); MYSERIAL.print(", 0x");
MYSERIAL.print((unsigned char)addr, HEX); MYSERIAL.print((unsigned char)addr, HEX);
MYSERIAL.print(", 0x"); MYSERIAL.print(", 0x");
@ -633,28 +609,50 @@ uint8_t tmc2130_rd(uint8_t cs, uint8_t addr, uint32_t* rval)
return stat; return stat;
} }
uint8_t tmc2130_txrx(uint8_t cs, uint8_t addr, uint32_t wval, uint32_t* rval) inline void tmc2130_cs_low(uint8_t axis)
{
switch (axis)
{
case X_AXIS: WRITE(X_TMC2130_CS, LOW); break;
case Y_AXIS: WRITE(Y_TMC2130_CS, LOW); break;
case Z_AXIS: WRITE(Z_TMC2130_CS, LOW); break;
case E_AXIS: WRITE(E0_TMC2130_CS, LOW); break;
}
}
inline void tmc2130_cs_high(uint8_t axis)
{
switch (axis)
{
case X_AXIS: WRITE(X_TMC2130_CS, HIGH); break;
case Y_AXIS: WRITE(Y_TMC2130_CS, HIGH); break;
case Z_AXIS: WRITE(Z_TMC2130_CS, HIGH); break;
case E_AXIS: WRITE(E0_TMC2130_CS, HIGH); break;
}
}
uint8_t tmc2130_txrx(uint8_t axis, uint8_t addr, uint32_t wval, uint32_t* rval)
{ {
//datagram1 - request //datagram1 - request
SPI.beginTransaction(SPISettings(4000000, MSBFIRST, SPI_MODE3)); SPI.beginTransaction(SPISettings(4000000, MSBFIRST, SPI_MODE3));
digitalWrite(cs, LOW); tmc2130_cs_low(axis);
SPI.transfer(addr); // address SPI.transfer(addr); // address
SPI.transfer((wval >> 24) & 0xff); // MSB SPI.transfer((wval >> 24) & 0xff); // MSB
SPI.transfer((wval >> 16) & 0xff); SPI.transfer((wval >> 16) & 0xff);
SPI.transfer((wval >> 8) & 0xff); SPI.transfer((wval >> 8) & 0xff);
SPI.transfer(wval & 0xff); // LSB SPI.transfer(wval & 0xff); // LSB
digitalWrite(cs, HIGH); tmc2130_cs_high(axis);
SPI.endTransaction(); SPI.endTransaction();
//datagram2 - response //datagram2 - response
SPI.beginTransaction(SPISettings(4000000, MSBFIRST, SPI_MODE3)); SPI.beginTransaction(SPISettings(4000000, MSBFIRST, SPI_MODE3));
digitalWrite(cs, LOW); tmc2130_cs_low(axis);
uint8_t stat = SPI.transfer(0); // status uint8_t stat = SPI.transfer(0); // status
uint32_t val32 = 0; uint32_t val32 = 0;
val32 = SPI.transfer(0); // MSB val32 = SPI.transfer(0); // MSB
val32 = (val32 << 8) | SPI.transfer(0); val32 = (val32 << 8) | SPI.transfer(0);
val32 = (val32 << 8) | SPI.transfer(0); val32 = (val32 << 8) | SPI.transfer(0);
val32 = (val32 << 8) | SPI.transfer(0); // LSB val32 = (val32 << 8) | SPI.transfer(0); // LSB
digitalWrite(cs, HIGH); tmc2130_cs_high(axis);
SPI.endTransaction(); SPI.endTransaction();
if (rval != 0) *rval = val32; if (rval != 0) *rval = val32;
return stat; return stat;
@ -669,5 +667,357 @@ void tmc2130_eeprom_save_config()
} }
#define _GET_PWR_X (READ(X_ENABLE_PIN) == X_ENABLE_ON)
#define _GET_PWR_Y (READ(Y_ENABLE_PIN) == Y_ENABLE_ON)
#define _GET_PWR_Z (READ(Z_ENABLE_PIN) == Z_ENABLE_ON)
#define _GET_PWR_E (READ(E0_ENABLE_PIN) == E_ENABLE_ON)
#define _SET_PWR_X(ena) { WRITE(X_ENABLE_PIN, ena?X_ENABLE_ON:!X_ENABLE_ON); asm("nop"); }
#define _SET_PWR_Y(ena) { WRITE(Y_ENABLE_PIN, ena?Y_ENABLE_ON:!Y_ENABLE_ON); asm("nop"); }
#define _SET_PWR_Z(ena) { WRITE(Z_ENABLE_PIN, ena?Z_ENABLE_ON:!Z_ENABLE_ON); asm("nop"); }
#define _SET_PWR_E(ena) { WRITE(E0_ENABLE_PIN, ena?E_ENABLE_ON:!E_ENABLE_ON); asm("nop"); }
#define _GET_DIR_X (READ(X_DIR_PIN) == INVERT_X_DIR)
#define _GET_DIR_Y (READ(Y_DIR_PIN) == INVERT_Y_DIR)
#define _GET_DIR_Z (READ(Z_DIR_PIN) == INVERT_Z_DIR)
#define _GET_DIR_E (READ(E0_DIR_PIN) == INVERT_E0_DIR)
#define _SET_DIR_X(dir) { WRITE(X_DIR_PIN, dir?INVERT_X_DIR:!INVERT_X_DIR); asm("nop"); }
#define _SET_DIR_Y(dir) { WRITE(Y_DIR_PIN, dir?INVERT_Y_DIR:!INVERT_Y_DIR); asm("nop"); }
#define _SET_DIR_Z(dir) { WRITE(Z_DIR_PIN, dir?INVERT_Z_DIR:!INVERT_Z_DIR); asm("nop"); }
#define _SET_DIR_E(dir) { WRITE(E0_DIR_PIN, dir?INVERT_E0_DIR:!INVERT_E0_DIR); asm("nop"); }
#define _DO_STEP_X { WRITE(X_STEP_PIN, !INVERT_X_STEP_PIN); asm("nop"); WRITE(X_STEP_PIN, INVERT_X_STEP_PIN); asm("nop"); }
#define _DO_STEP_Y { WRITE(Y_STEP_PIN, !INVERT_Y_STEP_PIN); asm("nop"); WRITE(Y_STEP_PIN, INVERT_Y_STEP_PIN); asm("nop"); }
#define _DO_STEP_Z { WRITE(Z_STEP_PIN, !INVERT_Z_STEP_PIN); asm("nop"); WRITE(Z_STEP_PIN, INVERT_Z_STEP_PIN); asm("nop"); }
#define _DO_STEP_E { WRITE(E0_STEP_PIN, !INVERT_E_STEP_PIN); asm("nop"); WRITE(E0_STEP_PIN, INVERT_E_STEP_PIN); asm("nop"); }
uint16_t tmc2130_get_res(uint8_t axis)
{
return tmc2130_mres2usteps(tmc2130_mres[axis]);
}
uint8_t tmc2130_get_pwr(uint8_t axis)
{
switch (axis)
{
case X_AXIS: return _GET_PWR_X;
case Y_AXIS: return _GET_PWR_Y;
case Z_AXIS: return _GET_PWR_Z;
case E_AXIS: return _GET_PWR_E;
}
return 0;
}
void tmc2130_set_pwr(uint8_t axis, uint8_t pwr)
{
switch (axis)
{
case X_AXIS: _SET_PWR_X(pwr); break;
case Y_AXIS: _SET_PWR_Y(pwr); break;
case Z_AXIS: _SET_PWR_Z(pwr); break;
case E_AXIS: _SET_PWR_E(pwr); break;
}
}
uint8_t tmc2130_get_inv(uint8_t axis)
{
switch (axis)
{
case X_AXIS: return INVERT_X_DIR;
case Y_AXIS: return INVERT_Y_DIR;
case Z_AXIS: return INVERT_Z_DIR;
case E_AXIS: return INVERT_E0_DIR;
}
return 0;
}
uint8_t tmc2130_get_dir(uint8_t axis)
{
switch (axis)
{
case X_AXIS: return _GET_DIR_X;
case Y_AXIS: return _GET_DIR_Y;
case Z_AXIS: return _GET_DIR_Z;
case E_AXIS: return _GET_DIR_E;
}
return 0;
}
void tmc2130_set_dir(uint8_t axis, uint8_t dir)
{
switch (axis)
{
case X_AXIS: _SET_DIR_X(dir); break;
case Y_AXIS: _SET_DIR_Y(dir); break;
case Z_AXIS: _SET_DIR_Z(dir); break;
case E_AXIS: _SET_DIR_E(dir); break;
}
}
void tmc2130_do_step(uint8_t axis)
{
switch (axis)
{
case X_AXIS: _DO_STEP_X; break;
case Y_AXIS: _DO_STEP_Y; break;
case Z_AXIS: _DO_STEP_Z; break;
case E_AXIS: _DO_STEP_E; break;
}
}
void tmc2130_do_steps(uint8_t axis, uint16_t steps, uint8_t dir, uint16_t delay_us)
{
tmc2130_set_dir(axis, dir);
delayMicroseconds(100);
while (steps--)
{
tmc2130_do_step(axis);
delayMicroseconds(delay_us);
}
}
void tmc2130_goto_step(uint8_t axis, uint8_t step, uint8_t dir, uint16_t delay_us, uint16_t microstep_resolution)
{
printf_P(PSTR("tmc2130_goto_step %d %d %d %d \n"), axis, step, dir, delay_us, microstep_resolution);
uint8_t shift; for (shift = 0; shift < 8; shift++) if (microstep_resolution == (256 >> shift)) break;
uint16_t cnt = 4 * (1 << (8 - shift));
uint16_t mscnt = tmc2130_rd_MSCNT(axis);
if (dir == 2)
{
dir = tmc2130_get_inv(axis)?0:1;
int steps = (int)step - (int)(mscnt >> shift);
if (steps < 0)
{
dir ^= 1;
steps = -steps;
}
if (steps > (cnt / 2))
{
dir ^= 1;
steps = cnt - steps;
}
cnt = steps;
}
tmc2130_set_dir(axis, dir);
delayMicroseconds(100);
mscnt = tmc2130_rd_MSCNT(axis);
while ((cnt--) && ((mscnt >> shift) != step))
{
tmc2130_do_step(axis);
delayMicroseconds(delay_us);
mscnt = tmc2130_rd_MSCNT(axis);
}
}
void tmc2130_get_wave(uint8_t axis, uint8_t* data, FILE* stream)
{
uint8_t pwr = tmc2130_get_pwr(axis);
tmc2130_set_pwr(axis, 0);
tmc2130_setup_chopper(axis, tmc2130_usteps2mres(256), tmc2130_current_h[axis], tmc2130_current_r[axis]);
tmc2130_goto_step(axis, 0, 2, 100, 256);
tmc2130_set_dir(axis, tmc2130_get_inv(axis)?0:1);
for (int i = 0; i <= 255; i++)
{
uint32_t val = tmc2130_rd_MSCURACT(axis);
uint16_t mscnt = tmc2130_rd_MSCNT(axis);
int curA = (val & 0xff) | ((val << 7) & 0x8000);
if (stream)
{
if (mscnt == i)
fprintf_P(stream, PSTR("%d\t%d\n"), i, curA);
else //TODO - remove this check
fprintf_P(stream, PSTR("!! (i=%d MSCNT=%d)\n"), i, mscnt);
}
if (data) *(data++) = curA;
tmc2130_do_step(axis);
delayMicroseconds(100);
}
tmc2130_setup_chopper(axis, tmc2130_mres[axis], tmc2130_current_h[axis], tmc2130_current_r[axis]);
}
void tmc2130_set_wave(uint8_t axis, uint8_t fac200)
{
// printf_P(PSTR("tmc2130_set_wave %d %d\n"), axis, fac200);
if (fac200 < TMC2130_WAVE_FAC200_MIN) fac200 = 0;
if (fac200 > TMC2130_WAVE_FAC200_MAX) fac200 = TMC2130_WAVE_FAC200_MAX;
// printf_P(PSTR(" tmc2130_set_wave %d %d\n"), axis, fac200);
switch (fac200)
{
case 0: //default TMC wave 247/0
tmc2130_wr_MSLUTSTART(axis, 0, 247);
tmc2130_wr_MSLUT(axis, 0, 0xaaaab556);
tmc2130_wr_MSLUT(axis, 1, 0x4a9554aa);
tmc2130_wr_MSLUT(axis, 2, 0x24492929);
tmc2130_wr_MSLUT(axis, 3, 0x10104222);
tmc2130_wr_MSLUT(axis, 4, 0xf8000000);
tmc2130_wr_MSLUT(axis, 5, 0xb5bb777d);
tmc2130_wr_MSLUT(axis, 6, 0x49295556);
tmc2130_wr_MSLUT(axis, 7, 0x00404222);
tmc2130_wr_MSLUTSEL(axis, 2, 154, 255, 1, 2, 1, 1);
break;
/* case 215: //calculated wave 247/1.075
tmc2130_wr_MSLUTSTART(axis, 0, 247);
tmc2130_wr_MSLUT(axis, 0, 0x4a52491e);
tmc2130_wr_MSLUT(axis, 1, 0xa54a54a9);
tmc2130_wr_MSLUT(axis, 2, 0x49249494);
tmc2130_wr_MSLUT(axis, 3, 0x10421122);
tmc2130_wr_MSLUT(axis, 4, 0x00000008);
tmc2130_wr_MSLUT(axis, 5, 0x6ddbdefc);
tmc2130_wr_MSLUT(axis, 6, 0x94a555ad);
tmc2130_wr_MSLUT(axis, 7, 0x00408444);
tmc2130_wr_MSLUTSEL(axis, 4, 161, 255, 1, 2, 1, 1);
break;*/
case 216: //calculated wave 247/1.080
tmc2130_wr_MSLUTSTART(axis, 0, 247);
tmc2130_wr_MSLUT(axis, 0, 0x9494911e);
tmc2130_wr_MSLUT(axis, 1, 0x4a94a94a);
tmc2130_wr_MSLUT(axis, 2, 0x92492929);
tmc2130_wr_MSLUT(axis, 3, 0x41044444);
tmc2130_wr_MSLUT(axis, 4, 0x00000040);
tmc2130_wr_MSLUT(axis, 5, 0xaedddf7f);
tmc2130_wr_MSLUT(axis, 6, 0x94a956ad);
tmc2130_wr_MSLUT(axis, 7, 0x00808448);
tmc2130_wr_MSLUTSEL(axis, 4, 159, 255, 1, 2, 1, 1);
break;
case 218: //calculated wave 247/1.090
tmc2130_wr_MSLUTSTART(axis, 0, 247);
tmc2130_wr_MSLUT(axis, 0, 0x4a49223e);
tmc2130_wr_MSLUT(axis, 1, 0x4a52a529);
tmc2130_wr_MSLUT(axis, 2, 0x49252529);
tmc2130_wr_MSLUT(axis, 3, 0x08422224);
tmc2130_wr_MSLUT(axis, 4, 0xfc008004);
tmc2130_wr_MSLUT(axis, 5, 0xb6eef7df);
tmc2130_wr_MSLUT(axis, 6, 0xa4aaaab5);
tmc2130_wr_MSLUT(axis, 7, 0x00808448);
tmc2130_wr_MSLUTSEL(axis, 5, 153, 255, 1, 2, 1, 1);
break;
case 220: //calculated wave 247/1.100
tmc2130_wr_MSLUTSTART(axis, 0, 247);
tmc2130_wr_MSLUT(axis, 0, 0xa492487e);
tmc2130_wr_MSLUT(axis, 1, 0x294a52a4);
tmc2130_wr_MSLUT(axis, 2, 0x492494a5);
tmc2130_wr_MSLUT(axis, 3, 0x82110912);
tmc2130_wr_MSLUT(axis, 4, 0x00000080);
tmc2130_wr_MSLUT(axis, 5, 0xdb777df8);
tmc2130_wr_MSLUT(axis, 6, 0x252aaad6);
tmc2130_wr_MSLUT(axis, 7, 0x00808449);
tmc2130_wr_MSLUTSEL(axis, 6, 162, 255, 1, 2, 1, 1);
break;
case 222: //calculated wave 247/1.110
tmc2130_wr_MSLUTSTART(axis, 0, 247);
tmc2130_wr_MSLUT(axis, 0, 0x524910fe);
tmc2130_wr_MSLUT(axis, 1, 0xa5294a52);
tmc2130_wr_MSLUT(axis, 2, 0x24929294);
tmc2130_wr_MSLUT(axis, 3, 0x20844489);
tmc2130_wr_MSLUT(axis, 4, 0xc0004008);
tmc2130_wr_MSLUT(axis, 5, 0xdbbbdf7f);
tmc2130_wr_MSLUT(axis, 6, 0x252aab5a);
tmc2130_wr_MSLUT(axis, 7, 0x00808449);
tmc2130_wr_MSLUTSEL(axis, 7, 157, 255, 1, 2, 1, 1);
break;
case 224: //calculated wave 247/1.120
tmc2130_wr_MSLUTSTART(axis, 0, 247);
tmc2130_wr_MSLUT(axis, 0, 0x292223fe);
tmc2130_wr_MSLUT(axis, 1, 0x94a52949);
tmc2130_wr_MSLUT(axis, 2, 0x92524a52);
tmc2130_wr_MSLUT(axis, 3, 0x04222244);
tmc2130_wr_MSLUT(axis, 4, 0x00000101);
tmc2130_wr_MSLUT(axis, 5, 0x6dddefe0);
tmc2130_wr_MSLUT(axis, 6, 0x254aad5b);
tmc2130_wr_MSLUT(axis, 7, 0x00810889);
tmc2130_wr_MSLUTSEL(axis, 9, 164, 255, 1, 2, 1, 1);
break;
/* case 230: //calculated wave 247/1.150
tmc2130_wr_MSLUTSTART(axis, 0, 247);
tmc2130_wr_MSLUT(axis, 0, 0x24444076);
tmc2130_wr_MSLUT(axis, 1, 0x29294949);
tmc2130_wr_MSLUT(axis, 2, 0x24a494a5);
tmc2130_wr_MSLUT(axis, 3, 0x84222449);
tmc2130_wr_MSLUT(axis, 4, 0x00004020);
tmc2130_wr_MSLUT(axis, 5, 0xdbbbefe0);
tmc2130_wr_MSLUT(axis, 6, 0x495556b5);
tmc2130_wr_MSLUT(axis, 7, 0x00810889);
tmc2130_wr_MSLUTSEL(axis, 6, 164, 255, 1, 2, 1, 1);
break;*/
}
}
void bubblesort_uint8(uint8_t* data, uint8_t size, uint8_t* data2)
{
uint8_t changed = 1;
while (changed)
{
changed = 0;
for (uint8_t i = 0; i < (size - 1); i++)
if (data[i] > data[i+1])
{
uint8_t register d = data[i];
data[i] = data[i+1];
data[i+1] = d;
if (data2)
{
d = data2[i];
data2[i] = data2[i+1];
data2[i+1] = d;
}
changed = 1;
}
}
}
uint8_t clusterize_uint8(uint8_t* data, uint8_t size, uint8_t* ccnt, uint8_t* cval, uint8_t tol)
{
uint8_t cnt = 1;
uint16_t sum = data[0];
uint8_t cl = 0;
for (uint8_t i = 1; i < size; i++)
{
uint8_t d = data[i];
uint8_t val = sum / cnt;
uint8_t dif = 0;
if (val > d) dif = val - d;
else dif = d - val;
if (dif <= tol)
{
cnt += 1;
sum += d;
}
else
{
if (ccnt) ccnt[cl] = cnt;
if (cval) cval[cl] = val;
cnt = 1;
sum = d;
cl += 1;
}
}
if (ccnt) ccnt[cl] = cnt;
if (cval) cval[cl] = sum / cnt;
return ++cl;
}
void tmc2130_home_calibrate(uint8_t axis)
{
uint8_t step[16];
uint8_t cnt[16];
uint8_t val[16];
homeaxis(axis, 16, step);
bubblesort_uint8(step, 16, 0);
printf_P(PSTR("sorted samples:\n"));
for (uint8_t i = 0; i < 16; i++)
printf_P(PSTR(" i=%2d step=%2d\n"), i, step[i]);
uint8_t cl = clusterize_uint8(step, 16, cnt, val, 1);
printf_P(PSTR("clusters:\n"));
for (uint8_t i = 0; i < cl; i++)
printf_P(PSTR(" i=%2d cnt=%2d val=%2d\n"), i, cnt[i], val[i]);
bubblesort_uint8(cnt, cl, val);
tmc2130_home_origin[axis] = val[cl-1];
printf_P(PSTR("result value: %d\n"), tmc2130_home_origin[axis]);
if (axis == X_AXIS) eeprom_update_byte((uint8_t*)EEPROM_TMC2130_HOME_X_ORIGIN, tmc2130_home_origin[X_AXIS]);
else if (axis == Y_AXIS) eeprom_update_byte((uint8_t*)EEPROM_TMC2130_HOME_Y_ORIGIN, tmc2130_home_origin[Y_AXIS]);
}
#endif //TMC2130 #endif //TMC2130

View file

@ -1,15 +1,16 @@
#ifndef TMC2130_H #ifndef TMC2130_H
#define TMC2130_H #define TMC2130_H
extern uint8_t tmc2130_cs[4];
//mode //mode
extern uint8_t tmc2130_mode; extern uint8_t tmc2130_mode;
//holding and running currents //holding and running currents
extern uint8_t tmc2130_current_h[4]; extern uint8_t tmc2130_current_h[4];
extern uint8_t tmc2130_current_r[4]; extern uint8_t tmc2130_current_r[4];
//flags for axis stall detection //microstep resolution (0 means 256usteps, 8 means 1ustep
extern uint8_t tmc2130_mres[4];
//flags for axis stall detection
extern uint8_t tmc2130_sg_thr[4]; extern uint8_t tmc2130_sg_thr[4];
extern bool tmc2130_sg_stop_on_crash; extern bool tmc2130_sg_stop_on_crash;
@ -22,6 +23,18 @@ extern uint32_t tmc2130_sg_meassure_val;
#define TMC2130_MODE_NORMAL 0 #define TMC2130_MODE_NORMAL 0
#define TMC2130_MODE_SILENT 1 #define TMC2130_MODE_SILENT 1
#define TMC2130_WAVE_FAC200_MIN 216
#define TMC2130_WAVE_FAC200_MAX 224
#define TMC2130_WAVE_FAC200_STP 2
extern uint8_t tmc2130_home_enabled;
extern uint8_t tmc2130_home_origin[2];
extern uint8_t tmc2130_home_bsteps[2];
extern uint8_t tmc2130_home_fsteps[2];
extern uint8_t tmc2130_wave_fac[4];
//initialize tmc2130 //initialize tmc2130
extern void tmc2130_init(); extern void tmc2130_init();
//check diag pins (called from stepper isr) //check diag pins (called from stepper isr)
@ -54,7 +67,11 @@ extern void tmc2130_set_pwm_ampl(uint8_t axis, uint8_t pwm_ampl);
extern void tmc2130_set_pwm_grad(uint8_t axis, uint8_t pwm_ampl); extern void tmc2130_set_pwm_grad(uint8_t axis, uint8_t pwm_ampl);
extern uint16_t tmc2130_rd_MSCNT(uint8_t cs); extern uint16_t tmc2130_rd_MSCNT(uint8_t axis);
extern uint32_t tmc2130_rd_MSCURACT(uint8_t axis);
extern uint8_t tmc2130_usteps2mres(uint16_t usteps);
#define tmc2130_mres2usteps(mres) ((uint16_t)256 >> mres)
extern bool tmc2130_wait_standstill_xy(int timeout); extern bool tmc2130_wait_standstill_xy(int timeout);
@ -89,4 +106,18 @@ struct
} tmc2130_axis_config; } tmc2130_axis_config;
#pragma pack(pop) #pragma pack(pop)
extern uint16_t tmc2130_get_res(uint8_t axis);
extern uint8_t tmc2130_get_pwr(uint8_t axis);
extern void tmc2130_set_pwr(uint8_t axis, uint8_t pwr);
extern uint8_t tmc2130_get_inv(uint8_t axis);
extern uint8_t tmc2130_get_dir(uint8_t axis);
extern void tmc2130_set_dir(uint8_t axis, uint8_t dir);
extern void tmc2130_do_step(uint8_t axis);
extern void tmc2130_do_steps(uint8_t axis, uint16_t steps, uint8_t dir, uint16_t delay_us);
extern void tmc2130_goto_step(uint8_t axis, uint8_t step, uint8_t dir, uint16_t delay_us, uint16_t microstep_resolution);
extern void tmc2130_get_wave(uint8_t axis, uint8_t* data, FILE* stream);
extern void tmc2130_set_wave(uint8_t axis, uint8_t fac200);
extern void tmc2130_home_calibrate(uint8_t axis);
#endif //TMC2130_H #endif //TMC2130_H

View file

@ -228,6 +228,9 @@ static void menu_action_setlang(unsigned char lang);
static void menu_action_sdfile(const char* filename, char* longFilename); static void menu_action_sdfile(const char* filename, char* longFilename);
static void menu_action_sddirectory(const char* filename, char* longFilename); static void menu_action_sddirectory(const char* filename, char* longFilename);
static void menu_action_setting_edit_bool(const char* pstr, bool* ptr); static void menu_action_setting_edit_bool(const char* pstr, bool* ptr);
static void menu_action_setting_edit_wfac(const char* pstr, uint8_t* ptr, uint8_t minValue, uint8_t maxValue);
static void menu_action_setting_edit_mres(const char* pstr, uint8_t* ptr, uint8_t minValue, uint8_t maxValue);
static void menu_action_setting_edit_byte3(const char* pstr, uint8_t* ptr, uint8_t minValue, uint8_t maxValue);
static void menu_action_setting_edit_int3(const char* pstr, int* ptr, int minValue, int maxValue); static void menu_action_setting_edit_int3(const char* pstr, int* ptr, int minValue, int maxValue);
static void menu_action_setting_edit_float3(const char* pstr, float* ptr, float minValue, float maxValue); static void menu_action_setting_edit_float3(const char* pstr, float* ptr, float minValue, float maxValue);
static void menu_action_setting_edit_float32(const char* pstr, float* ptr, float minValue, float maxValue); static void menu_action_setting_edit_float32(const char* pstr, float* ptr, float minValue, float maxValue);
@ -3946,6 +3949,219 @@ static void lcd_selftest_()
lcd_selftest(); lcd_selftest();
} }
static void lcd_experimantal_menu();
static void lcd_homing_accuracy_menu();
static void lcd_accurate_home_set()
{
tmc2130_home_enabled = tmc2130_home_enabled?0:1;
eeprom_update_byte((uint8_t*)EEPROM_TMC2130_HOME_ENABLED, tmc2130_home_enabled);
}
static void lcd_homing_accuracy_menu_advanced_reset()
{
tmc2130_home_bsteps[X_AXIS] = 48;
tmc2130_home_fsteps[X_AXIS] = 48;
tmc2130_home_bsteps[Y_AXIS] = 48;
tmc2130_home_fsteps[Y_AXIS] = 48;
}
static void lcd_homing_accuracy_menu_advanced_save()
{
eeprom_update_byte((uint8_t*)EEPROM_TMC2130_HOME_X_ORIGIN, tmc2130_home_origin[X_AXIS]);
eeprom_update_byte((uint8_t*)EEPROM_TMC2130_HOME_X_BSTEPS, tmc2130_home_bsteps[X_AXIS]);
eeprom_update_byte((uint8_t*)EEPROM_TMC2130_HOME_X_FSTEPS, tmc2130_home_fsteps[X_AXIS]);
eeprom_update_byte((uint8_t*)EEPROM_TMC2130_HOME_Y_ORIGIN, tmc2130_home_origin[Y_AXIS]);
eeprom_update_byte((uint8_t*)EEPROM_TMC2130_HOME_Y_BSTEPS, tmc2130_home_bsteps[Y_AXIS]);
eeprom_update_byte((uint8_t*)EEPROM_TMC2130_HOME_Y_FSTEPS, tmc2130_home_fsteps[Y_AXIS]);
}
static void lcd_homing_accuracy_menu_advanced_back()
{
lcd_homing_accuracy_menu_advanced_save();
currentMenu = lcd_homing_accuracy_menu;
lcd_homing_accuracy_menu();
}
static void lcd_homing_accuracy_menu_advanced()
{
lcd_timeoutToStatus = millis() + LCD_TIMEOUT_TO_STATUS;
START_MENU();
MENU_ITEM(back, PSTR("Homing accuracy"), lcd_homing_accuracy_menu_advanced_back);
MENU_ITEM(function, PSTR("Reset def. steps"), lcd_homing_accuracy_menu_advanced_reset);
MENU_ITEM_EDIT(byte3, PSTR("X-origin"), &tmc2130_home_origin[X_AXIS], 0, 63);
MENU_ITEM_EDIT(byte3, PSTR("Y-origin"), &tmc2130_home_origin[Y_AXIS], 0, 63);
MENU_ITEM_EDIT(byte3, PSTR("X-bsteps"), &tmc2130_home_bsteps[X_AXIS], 0, 128);
MENU_ITEM_EDIT(byte3, PSTR("Y-bsteps"), &tmc2130_home_bsteps[Y_AXIS], 0, 128);
MENU_ITEM_EDIT(byte3, PSTR("X-fsteps"), &tmc2130_home_fsteps[X_AXIS], 0, 128);
MENU_ITEM_EDIT(byte3, PSTR("Y-fsteps"), &tmc2130_home_fsteps[Y_AXIS], 0, 128);
END_MENU();
}
static void lcd_homing_accuracy_menu()
{
START_MENU();
MENU_ITEM(back, PSTR("Experimental"), lcd_experimantal_menu);
MENU_ITEM(function, tmc2130_home_enabled?PSTR("Accur. homing On"):PSTR("Accur. homing Off"), lcd_accurate_home_set);
MENU_ITEM(gcode, PSTR("Calibrate X"), PSTR("G28XC"));
MENU_ITEM(gcode, PSTR("Calibrate Y"), PSTR("G28YC"));
MENU_ITEM(submenu, PSTR("Advanced"), lcd_homing_accuracy_menu_advanced);
END_MENU();
}
static void lcd_ustep_resolution_menu_save()
{
eeprom_update_byte((uint8_t*)EEPROM_TMC2130_X_MRES, tmc2130_mres[X_AXIS]);
eeprom_update_byte((uint8_t*)EEPROM_TMC2130_Y_MRES, tmc2130_mres[Y_AXIS]);
eeprom_update_byte((uint8_t*)EEPROM_TMC2130_Z_MRES, tmc2130_mres[Z_AXIS]);
eeprom_update_byte((uint8_t*)EEPROM_TMC2130_E_MRES, tmc2130_mres[E_AXIS]);
}
static void lcd_ustep_resolution_menu_back()
{
float tmp1[]=DEFAULT_AXIS_STEPS_PER_UNIT;
bool changed = false;
if (tmc2130_mres[X_AXIS] != eeprom_read_byte((uint8_t*)EEPROM_TMC2130_X_MRES))
{
axis_steps_per_unit[X_AXIS] = tmp1[X_AXIS] * tmc2130_mres2usteps(tmc2130_mres[X_AXIS]) / TMC2130_USTEPS_XY;
changed = true;
}
if (tmc2130_mres[Y_AXIS] != eeprom_read_byte((uint8_t*)EEPROM_TMC2130_Y_MRES))
{
axis_steps_per_unit[Y_AXIS] = tmp1[Y_AXIS] * tmc2130_mres2usteps(tmc2130_mres[Y_AXIS]) / TMC2130_USTEPS_XY;
changed = true;
}
if (tmc2130_mres[Z_AXIS] != eeprom_read_byte((uint8_t*)EEPROM_TMC2130_Z_MRES))
{
axis_steps_per_unit[Z_AXIS] = tmp1[Z_AXIS] * tmc2130_mres2usteps(tmc2130_mres[Z_AXIS]) / TMC2130_USTEPS_Z;
changed = true;
}
if (tmc2130_mres[E_AXIS] != eeprom_read_byte((uint8_t*)EEPROM_TMC2130_E_MRES))
{
axis_steps_per_unit[E_AXIS] = tmp1[E_AXIS] * tmc2130_mres2usteps(tmc2130_mres[E_AXIS]) / TMC2130_USTEPS_E;
changed = true;
}
if (changed)
{
lcd_ustep_resolution_menu_save();
Config_StoreSettings(EEPROM_OFFSET);
tmc2130_init();
}
currentMenu = lcd_experimantal_menu;
lcd_experimantal_menu();
}
static void lcd_ustep_resolution_reset_def_xyze()
{
tmc2130_mres[X_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_XY);
tmc2130_mres[Y_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_XY);
tmc2130_mres[Z_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_Z);
tmc2130_mres[E_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_E);
float tmp1[]=DEFAULT_AXIS_STEPS_PER_UNIT;
axis_steps_per_unit[X_AXIS] = tmp1[X_AXIS];
axis_steps_per_unit[Y_AXIS] = tmp1[Y_AXIS];
axis_steps_per_unit[Z_AXIS] = tmp1[Z_AXIS];
axis_steps_per_unit[E_AXIS] = tmp1[E_AXIS];
}
static void lcd_ustep_resolution_menu()
{
lcd_timeoutToStatus = millis() + LCD_TIMEOUT_TO_STATUS;
START_MENU();
MENU_ITEM(back, PSTR("Experimental"), lcd_ustep_resolution_menu_back);
MENU_ITEM(function, PSTR("Reset defaults"), lcd_ustep_resolution_reset_def_xyze);
MENU_ITEM_EDIT(mres, PSTR("X-resolution"), &tmc2130_mres[X_AXIS], 4, 4);
MENU_ITEM_EDIT(mres, PSTR("Y-resolution"), &tmc2130_mres[Y_AXIS], 4, 4);
MENU_ITEM_EDIT(mres, PSTR("Z-resolution"), &tmc2130_mres[Z_AXIS], 4, 4);
MENU_ITEM_EDIT(mres, PSTR("E-resolution"), &tmc2130_mres[E_AXIS], 2, 5);
END_MENU();
}
static void lcd_ustep_linearity_menu_save()
{
eeprom_update_byte((uint8_t*)EEPROM_TMC2130_WAVE_X_FAC, tmc2130_wave_fac[X_AXIS]);
eeprom_update_byte((uint8_t*)EEPROM_TMC2130_WAVE_Y_FAC, tmc2130_wave_fac[Y_AXIS]);
eeprom_update_byte((uint8_t*)EEPROM_TMC2130_WAVE_Z_FAC, tmc2130_wave_fac[Z_AXIS]);
eeprom_update_byte((uint8_t*)EEPROM_TMC2130_WAVE_E_FAC, tmc2130_wave_fac[E_AXIS]);
}
static void lcd_ustep_linearity_menu_back()
{
bool changed = false;
if (tmc2130_wave_fac[X_AXIS] < TMC2130_WAVE_FAC200_MIN) tmc2130_wave_fac[X_AXIS] = 0;
if (tmc2130_wave_fac[Y_AXIS] < TMC2130_WAVE_FAC200_MIN) tmc2130_wave_fac[Y_AXIS] = 0;
if (tmc2130_wave_fac[Z_AXIS] < TMC2130_WAVE_FAC200_MIN) tmc2130_wave_fac[Z_AXIS] = 0;
if (tmc2130_wave_fac[E_AXIS] < TMC2130_WAVE_FAC200_MIN) tmc2130_wave_fac[E_AXIS] = 0;
changed |= (eeprom_read_byte((uint8_t*)EEPROM_TMC2130_WAVE_X_FAC) != tmc2130_wave_fac[X_AXIS]);
changed |= (eeprom_read_byte((uint8_t*)EEPROM_TMC2130_WAVE_Y_FAC) != tmc2130_wave_fac[Y_AXIS]);
changed |= (eeprom_read_byte((uint8_t*)EEPROM_TMC2130_WAVE_Z_FAC) != tmc2130_wave_fac[Z_AXIS]);
changed |= (eeprom_read_byte((uint8_t*)EEPROM_TMC2130_WAVE_E_FAC) != tmc2130_wave_fac[E_AXIS]);
lcd_ustep_linearity_menu_save();
if (changed) tmc2130_init();
currentMenu = lcd_experimantal_menu;
lcd_experimantal_menu();
}
static void lcd_ustep_linearity_menu_recomended()
{
tmc2130_wave_fac[X_AXIS] = 220;
tmc2130_wave_fac[Y_AXIS] = 220;
tmc2130_wave_fac[Z_AXIS] = 220;
tmc2130_wave_fac[E_AXIS] = 220;
}
static void lcd_ustep_linearity_menu_reset()
{
tmc2130_wave_fac[X_AXIS] = 0;
tmc2130_wave_fac[Y_AXIS] = 0;
tmc2130_wave_fac[Z_AXIS] = 0;
tmc2130_wave_fac[E_AXIS] = 0;
}
static void lcd_ustep_linearity_menu()
{
lcd_timeoutToStatus = millis() + LCD_TIMEOUT_TO_STATUS;
START_MENU();
MENU_ITEM(back, PSTR("Experimental"), lcd_ustep_linearity_menu_back);
MENU_ITEM(function, PSTR("Reset correction"), lcd_ustep_linearity_menu_reset);
MENU_ITEM(function, PSTR("Recomended config"), lcd_ustep_linearity_menu_recomended);
MENU_ITEM_EDIT(wfac, PSTR("X-correction"), &tmc2130_wave_fac[X_AXIS], TMC2130_WAVE_FAC200_MIN-TMC2130_WAVE_FAC200_STP, TMC2130_WAVE_FAC200_MAX);
MENU_ITEM_EDIT(wfac, PSTR("Y-correction"), &tmc2130_wave_fac[Y_AXIS], TMC2130_WAVE_FAC200_MIN-TMC2130_WAVE_FAC200_STP, TMC2130_WAVE_FAC200_MAX);
MENU_ITEM_EDIT(wfac, PSTR("Z-correction"), &tmc2130_wave_fac[Z_AXIS], TMC2130_WAVE_FAC200_MIN-TMC2130_WAVE_FAC200_STP, TMC2130_WAVE_FAC200_MAX);
MENU_ITEM_EDIT(wfac, PSTR("E-correction"), &tmc2130_wave_fac[E_AXIS], TMC2130_WAVE_FAC200_MIN-TMC2130_WAVE_FAC200_STP, TMC2130_WAVE_FAC200_MAX);
END_MENU();
}
static void lcd_experimantal_menu_save_all()
{
eeprom_update_byte((uint8_t*)EEPROM_TMC2130_HOME_ENABLED, tmc2130_home_enabled);
lcd_ustep_resolution_menu_save();
lcd_ustep_linearity_menu_save();
Config_StoreSettings(EEPROM_OFFSET);
}
static void lcd_experimantal_menu_disable_all()
{
tmc2130_home_enabled = 0;
lcd_ustep_resolution_reset_def_xyze();
lcd_ustep_linearity_menu_reset();
lcd_experimantal_menu_save_all();
tmc2130_init();
}
static void lcd_experimantal_menu()
{
START_MENU();
MENU_ITEM(back, MSG_MAIN, lcd_main_menu);
MENU_ITEM(function, PSTR("All Xfeatures off"), lcd_experimantal_menu_disable_all);
MENU_ITEM(submenu, PSTR("Homing accuracy"), lcd_homing_accuracy_menu);
MENU_ITEM(submenu, PSTR("uStep resolution"), lcd_ustep_resolution_menu);
MENU_ITEM(submenu, PSTR("uStep linearity"), lcd_ustep_linearity_menu);
END_MENU();
}
static void lcd_calibration_menu() static void lcd_calibration_menu()
{ {
START_MENU(); START_MENU();
@ -5155,6 +5371,7 @@ static void lcd_main_menu()
#endif #endif
MENU_ITEM(submenu, MSG_SETTINGS, lcd_settings_menu); MENU_ITEM(submenu, MSG_SETTINGS, lcd_settings_menu);
if(!isPrintPaused) MENU_ITEM(submenu, MSG_MENU_CALIBRATION, lcd_calibration_menu); if(!isPrintPaused) MENU_ITEM(submenu, MSG_MENU_CALIBRATION, lcd_calibration_menu);
MENU_ITEM(submenu, PSTR("Experimantal"), lcd_experimantal_menu);
} }
if (!is_usb_printing && (lcd_commands_type != LCD_COMMAND_V2_CAL)) if (!is_usb_printing && (lcd_commands_type != LCD_COMMAND_V2_CAL))
@ -5578,6 +5795,30 @@ void lcd_sdcard_menu()
} }
*/ */
// Convert tmc2130 mres to string
char *mres_to_str3(const uint8_t &x)
{
return itostr3(256 >> x);
}
extern char conv[8];
// Convert tmc2130 wfac to string
char *wfac_to_str5(const uint8_t &x)
{
if (x>=TMC2130_WAVE_FAC200_MIN) return ftostr43(((float)(x & 0xfe))/200);
conv[0] = ' ';
conv[1] = ' ';
conv[2] = 'O';
conv[3] = 'f';
conv[4] = 'f';
conv[5] = 0;
return conv;
}
menu_edit_type(uint8_t, wfac, wfac_to_str5, 1)
menu_edit_type(uint8_t, mres, mres_to_str3, 1)
menu_edit_type(uint8_t, byte3, itostr3, 1)
menu_edit_type(int, int3, itostr3, 1) menu_edit_type(int, int3, itostr3, 1)
menu_edit_type(float, float3, ftostr3, 1) menu_edit_type(float, float3, ftostr3, 1)
menu_edit_type(float, float32, ftostr32, 100) menu_edit_type(float, float32, ftostr32, 100)

View file

@ -1144,6 +1144,17 @@ static void lcd_implementation_drawmenu_setting_edit_generic_P(uint8_t row, cons
lcd.print(' '); lcd.print(' ');
lcd_printPGM(data); lcd_printPGM(data);
} }
extern char *wfac_to_str5(const uint8_t &x);
extern char *mres_to_str3(const uint8_t &x);
#define lcd_implementation_drawmenu_setting_edit_wfac_selected(row, pstr, pstr2, data, minValue, maxValue) lcd_implementation_drawmenu_setting_edit_generic(row, pstr, '>', wfac_to_str5(*(data)))
#define lcd_implementation_drawmenu_setting_edit_wfac(row, pstr, pstr2, data, minValue, maxValue) lcd_implementation_drawmenu_setting_edit_generic(row, pstr, ' ', wfac_to_str5(*(data)))
#define lcd_implementation_drawmenu_setting_edit_mres_selected(row, pstr, pstr2, data, minValue, maxValue) lcd_implementation_drawmenu_setting_edit_generic(row, pstr, '>', mres_to_str3(*(data)))
#define lcd_implementation_drawmenu_setting_edit_mres(row, pstr, pstr2, data, minValue, maxValue) lcd_implementation_drawmenu_setting_edit_generic(row, pstr, ' ', mres_to_str3(*(data)))
#define lcd_implementation_drawmenu_setting_edit_byte3_selected(row, pstr, pstr2, data, minValue, maxValue) lcd_implementation_drawmenu_setting_edit_generic(row, pstr, '>', itostr3((uint8_t)*(data)))
#define lcd_implementation_drawmenu_setting_edit_byte3(row, pstr, pstr2, data, minValue, maxValue) lcd_implementation_drawmenu_setting_edit_generic(row, pstr, ' ', itostr3((uint8_t)*(data)))
#define lcd_implementation_drawmenu_setting_edit_int3_selected(row, pstr, pstr2, data, minValue, maxValue) lcd_implementation_drawmenu_setting_edit_generic(row, pstr, '>', itostr3(*(data))) #define lcd_implementation_drawmenu_setting_edit_int3_selected(row, pstr, pstr2, data, minValue, maxValue) lcd_implementation_drawmenu_setting_edit_generic(row, pstr, '>', itostr3(*(data)))
#define lcd_implementation_drawmenu_setting_edit_int3(row, pstr, pstr2, data, minValue, maxValue) lcd_implementation_drawmenu_setting_edit_generic(row, pstr, ' ', itostr3(*(data))) #define lcd_implementation_drawmenu_setting_edit_int3(row, pstr, pstr2, data, minValue, maxValue) lcd_implementation_drawmenu_setting_edit_generic(row, pstr, ' ', itostr3(*(data)))
#define lcd_implementation_drawmenu_setting_edit_float3_selected(row, pstr, pstr2, data, minValue, maxValue) lcd_implementation_drawmenu_setting_edit_generic(row, pstr, '>', ftostr3(*(data))) #define lcd_implementation_drawmenu_setting_edit_float3_selected(row, pstr, pstr2, data, minValue, maxValue) lcd_implementation_drawmenu_setting_edit_generic(row, pstr, '>', ftostr3(*(data)))