Split the stepper ISR routine into multiple inline functions,
added an optimized DDA routine for moves with less than 32767 ticks.
This commit is contained in:
parent
30b06488ca
commit
7a972fd9b0
@ -839,9 +839,7 @@ block->steps_y.wide = labs((target[X_AXIS]-position[X_AXIS]) - (target[Y_AXIS]-p
|
||||
if(block->steps_x.wide != 0) enable_x();
|
||||
if(block->steps_y.wide != 0) enable_y();
|
||||
#endif
|
||||
#ifndef Z_LATE_ENABLE
|
||||
if(block->steps_z.wide != 0) enable_z();
|
||||
#endif
|
||||
|
||||
// Enable extruder(s)
|
||||
if(block->steps_e.wide != 0)
|
||||
@ -1234,6 +1232,9 @@ Having the real displacement of the head, we can calculate the total movement le
|
||||
block->speed_factor = block->nominal_rate / block->nominal_speed;
|
||||
calculate_trapezoid_for_block(block, block->entry_speed, safe_speed);
|
||||
|
||||
if (block->step_event_count.wide <= 32767)
|
||||
block->flag |= BLOCK_FLAG_DDA_LOWRES;
|
||||
|
||||
// Move the buffer head. From now the block may be picked up by the stepper interrupt controller.
|
||||
block_buffer_head = next_buffer_head;
|
||||
|
||||
|
@ -50,7 +50,7 @@ union dda_isteps_t
|
||||
{
|
||||
int32_t wide;
|
||||
struct {
|
||||
uint16_t lo;
|
||||
int16_t lo;
|
||||
int16_t hi;
|
||||
};
|
||||
};
|
||||
@ -94,7 +94,7 @@ typedef struct {
|
||||
float acceleration;
|
||||
|
||||
// Bit flags defined by the BlockFlag enum.
|
||||
bool flag;
|
||||
uint8_t flag;
|
||||
|
||||
// Settings for the trapezoid generator (runs inside an interrupt handler).
|
||||
// Changing the following values in the planner needs to be synchronized with the interrupt handler by disabling the interrupts.
|
||||
|
@ -135,8 +135,6 @@ extern bool stepper_timer_overflow_state;
|
||||
//=============================functions ============================
|
||||
//===========================================================================
|
||||
|
||||
#define CHECK_ENDSTOPS if(check_endstops)
|
||||
|
||||
#ifndef _NO_ASM
|
||||
|
||||
// intRes = intIn1 * intIn2 >> 16
|
||||
@ -320,7 +318,7 @@ void step_wait(){
|
||||
}
|
||||
|
||||
|
||||
FORCE_INLINE unsigned short calc_timer(unsigned short step_rate) {
|
||||
FORCE_INLINE unsigned short calc_timer(uint16_t step_rate) {
|
||||
unsigned short timer;
|
||||
if(step_rate > MAX_STEP_FREQUENCY) step_rate = MAX_STEP_FREQUENCY;
|
||||
|
||||
@ -361,10 +359,10 @@ FORCE_INLINE unsigned short calc_timer(unsigned short step_rate) {
|
||||
FORCE_INLINE void trapezoid_generator_reset() {
|
||||
deceleration_time = 0;
|
||||
// step_rate to timer interval
|
||||
OCR1A_nominal = calc_timer(current_block->nominal_rate);
|
||||
OCR1A_nominal = calc_timer(uint16_t(current_block->nominal_rate));
|
||||
// make a note of the number of step loops required at nominal speed
|
||||
step_loops_nominal = step_loops;
|
||||
acc_step_rate = current_block->initial_rate;
|
||||
acc_step_rate = uint16_t(current_block->initial_rate);
|
||||
acceleration_time = calc_timer(acc_step_rate);
|
||||
_NEXT_ISR(acceleration_time);
|
||||
|
||||
@ -374,7 +372,6 @@ FORCE_INLINE void trapezoid_generator_reset() {
|
||||
final_estep_rate = (current_block->nominal_rate * current_block->abs_adv_steps_multiplier8) >> 17;
|
||||
}
|
||||
#endif
|
||||
|
||||
}
|
||||
|
||||
// "The Stepper Driver Interrupt" - This timer interrupt is the workhorse.
|
||||
@ -391,157 +388,144 @@ ISR(TIMER1_COMPA_vect) {
|
||||
#endif
|
||||
}
|
||||
|
||||
void isr() {
|
||||
//if (UVLO) uvlo();
|
||||
// If there is no current block, attempt to pop one from the buffer
|
||||
if (current_block == NULL) {
|
||||
// Anything in the buffer?
|
||||
current_block = plan_get_current_block();
|
||||
if (current_block != NULL) {
|
||||
FORCE_INLINE void stepper_next_block()
|
||||
{
|
||||
// Anything in the buffer?
|
||||
current_block = plan_get_current_block();
|
||||
if (current_block != NULL) {
|
||||
#ifdef PAT9125
|
||||
fsensor_counter = 0;
|
||||
fsensor_st_block_begin(current_block);
|
||||
fsensor_counter = 0;
|
||||
fsensor_st_block_begin(current_block);
|
||||
#endif //PAT9125
|
||||
// The busy flag is set by the plan_get_current_block() call.
|
||||
// current_block->busy = true;
|
||||
trapezoid_generator_reset();
|
||||
// The busy flag is set by the plan_get_current_block() call.
|
||||
// current_block->busy = true;
|
||||
trapezoid_generator_reset();
|
||||
if (current_block->flag & BLOCK_FLAG_DDA_LOWRES) {
|
||||
counter_x.lo = -(current_block->step_event_count.lo >> 1);
|
||||
counter_y.lo = counter_x.lo;
|
||||
counter_z.lo = counter_x.lo;
|
||||
counter_e.lo = counter_x.lo;
|
||||
} else {
|
||||
counter_x.wide = -(current_block->step_event_count.wide >> 1);
|
||||
counter_y.wide = counter_x.wide;
|
||||
counter_z.wide = counter_x.wide;
|
||||
counter_e.wide = counter_x.wide;
|
||||
step_events_completed.wide = 0;
|
||||
|
||||
#ifdef Z_LATE_ENABLE
|
||||
if(current_block->steps_z.wide > 0) {
|
||||
enable_z();
|
||||
_NEXT_ISR(2000); //1ms wait
|
||||
return;
|
||||
}
|
||||
#endif
|
||||
}
|
||||
else {
|
||||
_NEXT_ISR(2000); // 1kHz.
|
||||
}
|
||||
}
|
||||
|
||||
LastStepMask = 0;
|
||||
|
||||
if (current_block != NULL) {
|
||||
// Set directions TO DO This should be done once during init of trapezoid. Endstops -> interrupt
|
||||
step_events_completed.wide = 0;
|
||||
// Set directions.
|
||||
out_bits = current_block->direction_bits;
|
||||
|
||||
|
||||
// Set the direction bits (X_AXIS=A_AXIS and Y_AXIS=B_AXIS for COREXY)
|
||||
if((out_bits & (1<<X_AXIS))!=0){
|
||||
WRITE_NC(X_DIR_PIN, INVERT_X_DIR);
|
||||
WRITE_NC(X_DIR_PIN, INVERT_X_DIR);
|
||||
count_direction[X_AXIS]=-1;
|
||||
}
|
||||
else{
|
||||
WRITE_NC(X_DIR_PIN, !INVERT_X_DIR);
|
||||
} else {
|
||||
WRITE_NC(X_DIR_PIN, !INVERT_X_DIR);
|
||||
count_direction[X_AXIS]=1;
|
||||
}
|
||||
if((out_bits & (1<<Y_AXIS))!=0){
|
||||
WRITE_NC(Y_DIR_PIN, INVERT_Y_DIR);
|
||||
|
||||
#ifdef Y_DUAL_STEPPER_DRIVERS
|
||||
WRITE_NC(Y2_DIR_PIN, !(INVERT_Y_DIR == INVERT_Y2_VS_Y_DIR));
|
||||
#endif
|
||||
|
||||
count_direction[Y_AXIS]=-1;
|
||||
}
|
||||
else{
|
||||
} else {
|
||||
WRITE_NC(Y_DIR_PIN, !INVERT_Y_DIR);
|
||||
|
||||
#ifdef Y_DUAL_STEPPER_DRIVERS
|
||||
WRITE_NC(Y2_DIR_PIN, (INVERT_Y_DIR == INVERT_Y2_VS_Y_DIR));
|
||||
#endif
|
||||
|
||||
count_direction[Y_AXIS]=1;
|
||||
}
|
||||
|
||||
// Set direction en check limit switches
|
||||
#ifndef COREXY
|
||||
if ((out_bits & (1<<X_AXIS)) != 0) { // stepping along -X axis
|
||||
#else
|
||||
if ((((out_bits & (1<<X_AXIS)) != 0)&&(out_bits & (1<<Y_AXIS)) != 0)) { //-X occurs for -A and -B
|
||||
#endif
|
||||
CHECK_ENDSTOPS
|
||||
{
|
||||
{
|
||||
#if ( (defined(X_MIN_PIN) && (X_MIN_PIN > -1)) || defined(TMC2130_SG_HOMING) ) && !defined(DEBUG_DISABLE_XMINLIMIT)
|
||||
|
||||
#ifdef TMC2130_SG_HOMING
|
||||
// Stall guard homing turned on
|
||||
x_min_endstop = (READ(X_TMC2130_DIAG) != 0);
|
||||
#else
|
||||
// Normal homing
|
||||
x_min_endstop = (READ(X_MIN_PIN) != X_MIN_ENDSTOP_INVERTING);
|
||||
#endif
|
||||
if(x_min_endstop && old_x_min_endstop && (current_block->steps_x.wide > 0)) {
|
||||
endstops_trigsteps[X_AXIS] = count_position[X_AXIS];
|
||||
endstop_x_hit=true;
|
||||
step_events_completed.wide = current_block->step_event_count.wide;
|
||||
}
|
||||
old_x_min_endstop = x_min_endstop;
|
||||
#endif
|
||||
}
|
||||
}
|
||||
if ((out_bits & (1<<Z_AXIS)) != 0) { // -direction
|
||||
WRITE_NC(Z_DIR_PIN,INVERT_Z_DIR);
|
||||
count_direction[Z_AXIS]=-1;
|
||||
} else { // +direction
|
||||
WRITE_NC(Z_DIR_PIN,!INVERT_Z_DIR);
|
||||
count_direction[Z_AXIS]=1;
|
||||
}
|
||||
else { // +direction
|
||||
CHECK_ENDSTOPS
|
||||
{
|
||||
{
|
||||
#if ( (defined(X_MAX_PIN) && (X_MAX_PIN > -1)) || defined(TMC2130_SG_HOMING) ) && !defined(DEBUG_DISABLE_XMAXLIMIT)
|
||||
|
||||
#ifdef TMC2130_SG_HOMING
|
||||
// Stall guard homing turned on
|
||||
x_max_endstop = (READ(X_TMC2130_DIAG) != 0);
|
||||
#else
|
||||
// Normal homing
|
||||
x_max_endstop = (READ(X_MAX_PIN) != X_MAX_ENDSTOP_INVERTING);
|
||||
#endif
|
||||
if(x_max_endstop && old_x_max_endstop && (current_block->steps_x.wide > 0)){
|
||||
endstops_trigsteps[X_AXIS] = count_position[X_AXIS];
|
||||
endstop_x_hit=true;
|
||||
step_events_completed.wide = current_block->step_event_count.wide;
|
||||
}
|
||||
old_x_max_endstop = x_max_endstop;
|
||||
#endif
|
||||
}
|
||||
}
|
||||
#ifndef LIN_ADVANCE
|
||||
if ((out_bits & (1 << E_AXIS)) != 0) { // -direction
|
||||
WRITE(E0_DIR_PIN,
|
||||
#ifdef SNMM
|
||||
(snmm_extruder == 0 || snmm_extruder == 2) ? !INVERT_E0_DIR :
|
||||
#endif // SNMM
|
||||
INVERT_E0_DIR);
|
||||
count_direction[E_AXIS] = -1;
|
||||
} else { // +direction
|
||||
WRITE(E0_DIR_PIN,
|
||||
#ifdef SNMM
|
||||
(snmm_extruder == 0 || snmm_extruder == 2) ? INVERT_E0_DIR :
|
||||
#endif // SNMM
|
||||
!INVERT_E0_DIR);
|
||||
count_direction[E_AXIS] = 1;
|
||||
}
|
||||
#endif /* LIN_ADVANCE */
|
||||
}
|
||||
else {
|
||||
_NEXT_ISR(2000); // 1kHz.
|
||||
}
|
||||
}
|
||||
|
||||
// Check limit switches.
|
||||
FORCE_INLINE void stepper_check_endstops()
|
||||
{
|
||||
if(check_endstops)
|
||||
{
|
||||
#ifndef COREXY
|
||||
if ((out_bits & (1<<Y_AXIS)) != 0) { // -direction
|
||||
if ((out_bits & (1<<X_AXIS)) != 0) // stepping along -X axis
|
||||
#else
|
||||
if ((((out_bits & (1<<X_AXIS)) != 0)&&(out_bits & (1<<Y_AXIS)) == 0)) { // -Y occurs for -A and +B
|
||||
if ((((out_bits & (1<<X_AXIS)) != 0)&&(out_bits & (1<<Y_AXIS)) != 0)) //-X occurs for -A and -B
|
||||
#endif
|
||||
CHECK_ENDSTOPS
|
||||
{
|
||||
|
||||
#if ( (defined(Y_MIN_PIN) && (Y_MIN_PIN > -1)) || defined(TMC2130_SG_HOMING) ) && !defined(DEBUG_DISABLE_YMINLIMIT)
|
||||
|
||||
{
|
||||
#if ( (defined(X_MIN_PIN) && (X_MIN_PIN > -1)) || defined(TMC2130_SG_HOMING) ) && !defined(DEBUG_DISABLE_XMINLIMIT)
|
||||
#ifdef TMC2130_SG_HOMING
|
||||
// Stall guard homing turned on
|
||||
x_min_endstop = (READ(X_TMC2130_DIAG) != 0);
|
||||
#else
|
||||
// Normal homing
|
||||
x_min_endstop = (READ(X_MIN_PIN) != X_MIN_ENDSTOP_INVERTING);
|
||||
#endif
|
||||
if(x_min_endstop && old_x_min_endstop && (current_block->steps_x.wide > 0)) {
|
||||
endstops_trigsteps[X_AXIS] = count_position[X_AXIS];
|
||||
endstop_x_hit=true;
|
||||
step_events_completed.wide = current_block->step_event_count.wide;
|
||||
}
|
||||
old_x_min_endstop = x_min_endstop;
|
||||
#endif
|
||||
} else { // +direction
|
||||
#if ( (defined(X_MAX_PIN) && (X_MAX_PIN > -1)) || defined(TMC2130_SG_HOMING) ) && !defined(DEBUG_DISABLE_XMAXLIMIT)
|
||||
#ifdef TMC2130_SG_HOMING
|
||||
// Stall guard homing turned on
|
||||
y_min_endstop = (READ(Y_TMC2130_DIAG) != 0);
|
||||
x_max_endstop = (READ(X_TMC2130_DIAG) != 0);
|
||||
#else
|
||||
// Normal homing
|
||||
y_min_endstop = (READ(Y_MIN_PIN) != Y_MIN_ENDSTOP_INVERTING);
|
||||
x_max_endstop = (READ(X_MAX_PIN) != X_MAX_ENDSTOP_INVERTING);
|
||||
#endif
|
||||
if(y_min_endstop && old_y_min_endstop && (current_block->steps_y.wide > 0)) {
|
||||
endstops_trigsteps[Y_AXIS] = count_position[Y_AXIS];
|
||||
endstop_y_hit=true;
|
||||
step_events_completed.wide = current_block->step_event_count.wide;
|
||||
}
|
||||
old_y_min_endstop = y_min_endstop;
|
||||
#endif
|
||||
}
|
||||
if(x_max_endstop && old_x_max_endstop && (current_block->steps_x.wide > 0)){
|
||||
endstops_trigsteps[X_AXIS] = count_position[X_AXIS];
|
||||
endstop_x_hit=true;
|
||||
step_events_completed.wide = current_block->step_event_count.wide;
|
||||
}
|
||||
old_x_max_endstop = x_max_endstop;
|
||||
#endif
|
||||
}
|
||||
else { // +direction
|
||||
CHECK_ENDSTOPS
|
||||
{
|
||||
#if ( (defined(Y_MAX_PIN) && (Y_MAX_PIN > -1)) || defined(TMC2130_SG_HOMING) ) && !defined(DEBUG_DISABLE_YMAXLIMIT)
|
||||
|
||||
|
||||
#ifndef COREXY
|
||||
if ((out_bits & (1<<Y_AXIS)) != 0) // -direction
|
||||
#else
|
||||
if ((((out_bits & (1<<X_AXIS)) != 0)&&(out_bits & (1<<Y_AXIS)) == 0)) // -Y occurs for -A and +B
|
||||
#endif
|
||||
{
|
||||
#if ( (defined(Y_MIN_PIN) && (Y_MIN_PIN > -1)) || defined(TMC2130_SG_HOMING) ) && !defined(DEBUG_DISABLE_YMINLIMIT)
|
||||
#ifdef TMC2130_SG_HOMING
|
||||
// Stall guard homing turned on
|
||||
y_min_endstop = (READ(Y_TMC2130_DIAG) != 0);
|
||||
#else
|
||||
// Normal homing
|
||||
y_min_endstop = (READ(Y_MIN_PIN) != Y_MIN_ENDSTOP_INVERTING);
|
||||
#endif
|
||||
if(y_min_endstop && old_y_min_endstop && (current_block->steps_y.wide > 0)) {
|
||||
endstops_trigsteps[Y_AXIS] = count_position[Y_AXIS];
|
||||
endstop_y_hit=true;
|
||||
step_events_completed.wide = current_block->step_event_count.wide;
|
||||
}
|
||||
old_y_min_endstop = y_min_endstop;
|
||||
#endif
|
||||
} else { // +direction
|
||||
#if ( (defined(Y_MAX_PIN) && (Y_MAX_PIN > -1)) || defined(TMC2130_SG_HOMING) ) && !defined(DEBUG_DISABLE_YMAXLIMIT)
|
||||
#ifdef TMC2130_SG_HOMING
|
||||
// Stall guard homing turned on
|
||||
y_max_endstop = (READ(Y_TMC2130_DIAG) != 0);
|
||||
@ -549,195 +533,226 @@ void isr() {
|
||||
// Normal homing
|
||||
y_max_endstop = (READ(Y_MAX_PIN) != Y_MAX_ENDSTOP_INVERTING);
|
||||
#endif
|
||||
if(y_max_endstop && old_y_max_endstop && (current_block->steps_y.wide > 0)){
|
||||
endstops_trigsteps[Y_AXIS] = count_position[Y_AXIS];
|
||||
endstop_y_hit=true;
|
||||
step_events_completed.wide = current_block->step_event_count.wide;
|
||||
}
|
||||
old_y_max_endstop = y_max_endstop;
|
||||
#endif
|
||||
}
|
||||
}
|
||||
|
||||
if ((out_bits & (1<<Z_AXIS)) != 0) { // -direction
|
||||
WRITE_NC(Z_DIR_PIN,INVERT_Z_DIR);
|
||||
|
||||
#ifdef Z_DUAL_STEPPER_DRIVERS
|
||||
WRITE_NC(Z2_DIR_PIN,INVERT_Z_DIR);
|
||||
if(y_max_endstop && old_y_max_endstop && (current_block->steps_y.wide > 0)){
|
||||
endstops_trigsteps[Y_AXIS] = count_position[Y_AXIS];
|
||||
endstop_y_hit=true;
|
||||
step_events_completed.wide = current_block->step_event_count.wide;
|
||||
}
|
||||
old_y_max_endstop = y_max_endstop;
|
||||
#endif
|
||||
|
||||
count_direction[Z_AXIS]=-1;
|
||||
if(check_endstops && ! check_z_endstop)
|
||||
{
|
||||
#if defined(Z_MIN_PIN) && (Z_MIN_PIN > -1) && !defined(DEBUG_DISABLE_ZMINLIMIT)
|
||||
#ifdef TMC2130_SG_HOMING
|
||||
// Stall guard homing turned on
|
||||
z_min_endstop = (READ(Z_MIN_PIN) != Z_MIN_ENDSTOP_INVERTING) || (READ(Z_TMC2130_DIAG) != 0);
|
||||
#else
|
||||
z_min_endstop = (READ(Z_MIN_PIN) != Z_MIN_ENDSTOP_INVERTING);
|
||||
#endif //TMC2130_SG_HOMING
|
||||
if(z_min_endstop && old_z_min_endstop && (current_block->steps_z.wide > 0)) {
|
||||
endstops_trigsteps[Z_AXIS] = count_position[Z_AXIS];
|
||||
endstop_z_hit=true;
|
||||
step_events_completed.wide = current_block->step_event_count.wide;
|
||||
}
|
||||
old_z_min_endstop = z_min_endstop;
|
||||
#endif
|
||||
}
|
||||
}
|
||||
else { // +direction
|
||||
WRITE_NC(Z_DIR_PIN,!INVERT_Z_DIR);
|
||||
|
||||
#ifdef Z_DUAL_STEPPER_DRIVERS
|
||||
WRITE_NC(Z2_DIR_PIN,!INVERT_Z_DIR);
|
||||
#endif
|
||||
|
||||
count_direction[Z_AXIS]=1;
|
||||
CHECK_ENDSTOPS
|
||||
{
|
||||
#if defined(Z_MAX_PIN) && (Z_MAX_PIN > -1) && !defined(DEBUG_DISABLE_ZMAXLIMIT)
|
||||
#ifdef TMC2130_SG_HOMING
|
||||
// Stall guard homing turned on
|
||||
z_max_endstop = (READ(Z_TMC2130_DIAG) != 0);
|
||||
#else
|
||||
z_max_endstop = (READ(Z_MAX_PIN) != Z_MAX_ENDSTOP_INVERTING);
|
||||
#endif //TMC2130_SG_HOMING
|
||||
if(z_max_endstop && old_z_max_endstop && (current_block->steps_z.wide > 0)) {
|
||||
endstops_trigsteps[Z_AXIS] = count_position[Z_AXIS];
|
||||
endstop_z_hit=true;
|
||||
step_events_completed.wide = current_block->step_event_count.wide;
|
||||
}
|
||||
old_z_max_endstop = z_max_endstop;
|
||||
#endif
|
||||
}
|
||||
}
|
||||
|
||||
// Supporting stopping on a trigger of the Z-stop induction sensor, not only for the Z-minus movements.
|
||||
#if defined(Z_MIN_PIN) && (Z_MIN_PIN > -1) && !defined(DEBUG_DISABLE_ZMINLIMIT)
|
||||
if(check_z_endstop) {
|
||||
// Check the Z min end-stop no matter what.
|
||||
// Good for searching for the center of an induction target.
|
||||
#ifdef TMC2130_SG_HOMING
|
||||
// Stall guard homing turned on
|
||||
z_min_endstop = (READ(Z_MIN_PIN) != Z_MIN_ENDSTOP_INVERTING) || (READ(Z_TMC2130_DIAG) != 0);
|
||||
#else
|
||||
z_min_endstop = (READ(Z_MIN_PIN) != Z_MIN_ENDSTOP_INVERTING);
|
||||
#endif //TMC2130_SG_HOMING
|
||||
if(z_min_endstop && old_z_min_endstop) {
|
||||
if ((out_bits & (1<<Z_AXIS)) != 0) // -direction
|
||||
{
|
||||
#if defined(Z_MIN_PIN) && (Z_MIN_PIN > -1) && !defined(DEBUG_DISABLE_ZMINLIMIT)
|
||||
if (check_z_endstop) {
|
||||
#ifdef TMC2130_SG_HOMING
|
||||
// Stall guard homing turned on
|
||||
z_min_endstop = (READ(Z_MIN_PIN) != Z_MIN_ENDSTOP_INVERTING) || (READ(Z_TMC2130_DIAG) != 0);
|
||||
#else
|
||||
z_min_endstop = (READ(Z_MIN_PIN) != Z_MIN_ENDSTOP_INVERTING);
|
||||
#endif //TMC2130_SG_HOMING
|
||||
if(z_min_endstop && old_z_min_endstop && (current_block->steps_z.wide > 0)) {
|
||||
endstops_trigsteps[Z_AXIS] = count_position[Z_AXIS];
|
||||
endstop_z_hit=true;
|
||||
step_events_completed.wide = current_block->step_event_count.wide;
|
||||
}
|
||||
old_z_min_endstop = z_min_endstop;
|
||||
}
|
||||
#endif
|
||||
|
||||
if ((out_bits & (1 << E_AXIS)) != 0)
|
||||
{ // -direction
|
||||
//AKU
|
||||
WRITE(E0_DIR_PIN,
|
||||
#ifdef SNMM
|
||||
(snmm_extruder == 0 || snmm_extruder == 2) ? !INVERT_E0_DIR :
|
||||
#endif // SNMM
|
||||
INVERT_E0_DIR);
|
||||
count_direction[E_AXIS] = -1;
|
||||
}
|
||||
else
|
||||
{ // +direction
|
||||
WRITE(E0_DIR_PIN,
|
||||
#ifdef SNMM
|
||||
(snmm_extruder == 0 || snmm_extruder == 2) ? INVERT_E0_DIR :
|
||||
#endif // SNMM
|
||||
!INVERT_E0_DIR);
|
||||
count_direction[E_AXIS] = 1;
|
||||
}
|
||||
|
||||
for(uint8_t i=0; i < step_loops; i++) { // Take multiple steps per interrupt (For high speed moves)
|
||||
#ifndef AT90USB
|
||||
MSerial.checkRx(); // Check for serial chars.
|
||||
#endif //RP - returned, because missing characters
|
||||
|
||||
#ifdef LIN_ADVANCE
|
||||
counter_e.wide += current_block->steps_e.wide;
|
||||
if (counter_e.wide > 0) {
|
||||
counter_e.wide -= current_block->step_event_count.wide;
|
||||
count_position[E_AXIS] += count_direction[E_AXIS];
|
||||
((out_bits&(1<<E_AXIS))!=0) ? --e_steps : ++e_steps;
|
||||
}
|
||||
#endif
|
||||
|
||||
counter_x.wide += current_block->steps_x.wide;
|
||||
if (counter_x.wide > 0) {
|
||||
WRITE_NC(X_STEP_PIN, !INVERT_X_STEP_PIN);
|
||||
LastStepMask |= X_AXIS_MASK;
|
||||
#ifdef DEBUG_XSTEP_DUP_PIN
|
||||
WRITE_NC(DEBUG_XSTEP_DUP_PIN,!INVERT_X_STEP_PIN);
|
||||
#endif //DEBUG_XSTEP_DUP_PIN
|
||||
counter_x.wide -= current_block->step_event_count.wide;
|
||||
count_position[X_AXIS]+=count_direction[X_AXIS];
|
||||
WRITE_NC(X_STEP_PIN, INVERT_X_STEP_PIN);
|
||||
#ifdef DEBUG_XSTEP_DUP_PIN
|
||||
WRITE_NC(DEBUG_XSTEP_DUP_PIN,INVERT_X_STEP_PIN);
|
||||
#endif //DEBUG_XSTEP_DUP_PIN
|
||||
}
|
||||
|
||||
counter_y.wide += current_block->steps_y.wide;
|
||||
if (counter_y.wide > 0) {
|
||||
WRITE_NC(Y_STEP_PIN, !INVERT_Y_STEP_PIN);
|
||||
LastStepMask |= Y_AXIS_MASK;
|
||||
#ifdef DEBUG_YSTEP_DUP_PIN
|
||||
WRITE_NC(DEBUG_YSTEP_DUP_PIN,!INVERT_Y_STEP_PIN);
|
||||
#endif //DEBUG_YSTEP_DUP_PIN
|
||||
|
||||
#ifdef Y_DUAL_STEPPER_DRIVERS
|
||||
WRITE_NC(Y2_STEP_PIN, !INVERT_Y_STEP_PIN);
|
||||
#endif
|
||||
|
||||
counter_y.wide -= current_block->step_event_count.wide;
|
||||
count_position[Y_AXIS]+=count_direction[Y_AXIS];
|
||||
WRITE_NC(Y_STEP_PIN, INVERT_Y_STEP_PIN);
|
||||
#ifdef DEBUG_YSTEP_DUP_PIN
|
||||
WRITE_NC(DEBUG_YSTEP_DUP_PIN,INVERT_Y_STEP_PIN);
|
||||
#endif //DEBUG_YSTEP_DUP_PIN
|
||||
|
||||
#ifdef Y_DUAL_STEPPER_DRIVERS
|
||||
WRITE_NC(Y2_STEP_PIN, INVERT_Y_STEP_PIN);
|
||||
#endif
|
||||
}
|
||||
|
||||
counter_z.wide += current_block->steps_z.wide;
|
||||
if (counter_z.wide > 0) {
|
||||
WRITE_NC(Z_STEP_PIN, !INVERT_Z_STEP_PIN);
|
||||
LastStepMask |= Z_AXIS_MASK;
|
||||
#ifdef Z_DUAL_STEPPER_DRIVERS
|
||||
WRITE_NC(Z2_STEP_PIN, !INVERT_Z_STEP_PIN);
|
||||
#endif
|
||||
|
||||
counter_z.wide -= current_block->step_event_count.wide;
|
||||
count_position[Z_AXIS]+=count_direction[Z_AXIS];
|
||||
WRITE_NC(Z_STEP_PIN, INVERT_Z_STEP_PIN);
|
||||
|
||||
#ifdef Z_DUAL_STEPPER_DRIVERS
|
||||
WRITE_NC(Z2_STEP_PIN, INVERT_Z_STEP_PIN);
|
||||
#endif
|
||||
}
|
||||
|
||||
#ifndef LIN_ADVANCE
|
||||
counter_e.wide += current_block->steps_e.wide;
|
||||
if (counter_e.wide > 0) {
|
||||
WRITE(E0_STEP_PIN, !INVERT_E_STEP_PIN);
|
||||
counter_e.wide -= current_block->step_event_count.wide;
|
||||
count_position[E_AXIS]+=count_direction[E_AXIS];
|
||||
WRITE(E0_STEP_PIN, INVERT_E_STEP_PIN);
|
||||
#ifdef PAT9125
|
||||
fsensor_counter++;
|
||||
#endif //PAT9125
|
||||
#endif
|
||||
} else { // +direction
|
||||
#if defined(Z_MAX_PIN) && (Z_MAX_PIN > -1) && !defined(DEBUG_DISABLE_ZMAXLIMIT)
|
||||
#ifdef TMC2130_SG_HOMING
|
||||
// Stall guard homing turned on
|
||||
z_max_endstop = (READ(Z_TMC2130_DIAG) != 0);
|
||||
#else
|
||||
z_max_endstop = (READ(Z_MAX_PIN) != Z_MAX_ENDSTOP_INVERTING);
|
||||
#endif //TMC2130_SG_HOMING
|
||||
if(z_max_endstop && old_z_max_endstop && (current_block->steps_z.wide > 0)) {
|
||||
endstops_trigsteps[Z_AXIS] = count_position[Z_AXIS];
|
||||
endstop_z_hit=true;
|
||||
step_events_completed.wide = current_block->step_event_count.wide;
|
||||
}
|
||||
#endif
|
||||
|
||||
++ step_events_completed.wide;
|
||||
if(step_events_completed.wide >= current_block->step_event_count.wide) break;
|
||||
old_z_max_endstop = z_max_endstop;
|
||||
#endif
|
||||
}
|
||||
}
|
||||
|
||||
// Supporting stopping on a trigger of the Z-stop induction sensor, not only for the Z-minus movements.
|
||||
#if defined(Z_MIN_PIN) && (Z_MIN_PIN > -1) && !defined(DEBUG_DISABLE_ZMINLIMIT)
|
||||
if (check_z_endstop) {
|
||||
// Check the Z min end-stop no matter what.
|
||||
// Good for searching for the center of an induction target.
|
||||
#ifdef TMC2130_SG_HOMING
|
||||
// Stall guard homing turned on
|
||||
z_min_endstop = (READ(Z_MIN_PIN) != Z_MIN_ENDSTOP_INVERTING) || (READ(Z_TMC2130_DIAG) != 0);
|
||||
#else
|
||||
z_min_endstop = (READ(Z_MIN_PIN) != Z_MIN_ENDSTOP_INVERTING);
|
||||
#endif //TMC2130_SG_HOMING
|
||||
if(z_min_endstop && old_z_min_endstop) {
|
||||
endstops_trigsteps[Z_AXIS] = count_position[Z_AXIS];
|
||||
endstop_z_hit=true;
|
||||
step_events_completed.wide = current_block->step_event_count.wide;
|
||||
}
|
||||
old_z_min_endstop = z_min_endstop;
|
||||
}
|
||||
#endif
|
||||
}
|
||||
|
||||
FORCE_INLINE void stepper_tick_lowres()
|
||||
{
|
||||
for (uint8_t i=0; i < step_loops; ++ i) { // Take multiple steps per interrupt (For high speed moves)
|
||||
MSerial.checkRx(); // Check for serial chars.
|
||||
#ifdef LIN_ADVANCE
|
||||
counter_e.lo += current_block->steps_e.lo;
|
||||
if (counter_e.lo > 0) {
|
||||
counter_e.lo -= current_block->step_event_count.lo;
|
||||
count_position[E_AXIS] += count_direction[E_AXIS];
|
||||
((out_bits&(1<<E_AXIS))!=0) ? --e_steps : ++e_steps;
|
||||
}
|
||||
#endif
|
||||
// Step in X axis
|
||||
counter_x.lo += current_block->steps_x.lo;
|
||||
if (counter_x.lo > 0) {
|
||||
WRITE_NC(X_STEP_PIN, !INVERT_X_STEP_PIN);
|
||||
LastStepMask |= X_AXIS_MASK;
|
||||
#ifdef DEBUG_XSTEP_DUP_PIN
|
||||
WRITE_NC(DEBUG_XSTEP_DUP_PIN,!INVERT_X_STEP_PIN);
|
||||
#endif //DEBUG_XSTEP_DUP_PIN
|
||||
counter_x.lo -= current_block->step_event_count.lo;
|
||||
count_position[X_AXIS]+=count_direction[X_AXIS];
|
||||
WRITE_NC(X_STEP_PIN, INVERT_X_STEP_PIN);
|
||||
#ifdef DEBUG_XSTEP_DUP_PIN
|
||||
WRITE_NC(DEBUG_XSTEP_DUP_PIN,INVERT_X_STEP_PIN);
|
||||
#endif //DEBUG_XSTEP_DUP_PIN
|
||||
}
|
||||
// Step in Y axis
|
||||
counter_y.lo += current_block->steps_y.lo;
|
||||
if (counter_y.lo > 0) {
|
||||
WRITE_NC(Y_STEP_PIN, !INVERT_Y_STEP_PIN);
|
||||
LastStepMask |= Y_AXIS_MASK;
|
||||
#ifdef DEBUG_YSTEP_DUP_PIN
|
||||
WRITE_NC(DEBUG_YSTEP_DUP_PIN,!INVERT_Y_STEP_PIN);
|
||||
#endif //DEBUG_YSTEP_DUP_PIN
|
||||
counter_y.lo -= current_block->step_event_count.lo;
|
||||
count_position[Y_AXIS]+=count_direction[Y_AXIS];
|
||||
WRITE_NC(Y_STEP_PIN, INVERT_Y_STEP_PIN);
|
||||
#ifdef DEBUG_YSTEP_DUP_PIN
|
||||
WRITE_NC(DEBUG_YSTEP_DUP_PIN,INVERT_Y_STEP_PIN);
|
||||
#endif //DEBUG_YSTEP_DUP_PIN
|
||||
}
|
||||
// Step in Z axis
|
||||
counter_z.lo += current_block->steps_z.lo;
|
||||
if (counter_z.lo > 0) {
|
||||
WRITE_NC(Z_STEP_PIN, !INVERT_Z_STEP_PIN);
|
||||
LastStepMask |= Z_AXIS_MASK;
|
||||
counter_z.lo -= current_block->step_event_count.lo;
|
||||
count_position[Z_AXIS]+=count_direction[Z_AXIS];
|
||||
WRITE_NC(Z_STEP_PIN, INVERT_Z_STEP_PIN);
|
||||
}
|
||||
#ifndef LIN_ADVANCE
|
||||
// Step in E axis
|
||||
counter_e.lo += current_block->steps_e.lo;
|
||||
if (counter_e.lo > 0) {
|
||||
WRITE(E0_STEP_PIN, !INVERT_E_STEP_PIN);
|
||||
counter_e.lo -= current_block->step_event_count.lo;
|
||||
count_position[E_AXIS]+=count_direction[E_AXIS];
|
||||
WRITE(E0_STEP_PIN, INVERT_E_STEP_PIN);
|
||||
#ifdef PAT9125
|
||||
++ fsensor_counter;
|
||||
#endif //PAT9125
|
||||
}
|
||||
#endif
|
||||
if(++ step_events_completed.lo >= current_block->step_event_count.lo)
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
FORCE_INLINE void stepper_tick_highres()
|
||||
{
|
||||
for (uint8_t i=0; i < step_loops; ++ i) { // Take multiple steps per interrupt (For high speed moves)
|
||||
MSerial.checkRx(); // Check for serial chars.
|
||||
#ifdef LIN_ADVANCE
|
||||
counter_e.wide += current_block->steps_e.wide;
|
||||
if (counter_e.wide > 0) {
|
||||
counter_e.wide -= current_block->step_event_count.wide;
|
||||
count_position[E_AXIS] += count_direction[E_AXIS];
|
||||
((out_bits&(1<<E_AXIS))!=0) ? --e_steps : ++e_steps;
|
||||
}
|
||||
#endif
|
||||
// Step in X axis
|
||||
counter_x.wide += current_block->steps_x.wide;
|
||||
if (counter_x.wide > 0) {
|
||||
WRITE_NC(X_STEP_PIN, !INVERT_X_STEP_PIN);
|
||||
LastStepMask |= X_AXIS_MASK;
|
||||
#ifdef DEBUG_XSTEP_DUP_PIN
|
||||
WRITE_NC(DEBUG_XSTEP_DUP_PIN,!INVERT_X_STEP_PIN);
|
||||
#endif //DEBUG_XSTEP_DUP_PIN
|
||||
counter_x.wide -= current_block->step_event_count.wide;
|
||||
count_position[X_AXIS]+=count_direction[X_AXIS];
|
||||
WRITE_NC(X_STEP_PIN, INVERT_X_STEP_PIN);
|
||||
#ifdef DEBUG_XSTEP_DUP_PIN
|
||||
WRITE_NC(DEBUG_XSTEP_DUP_PIN,INVERT_X_STEP_PIN);
|
||||
#endif //DEBUG_XSTEP_DUP_PIN
|
||||
}
|
||||
// Step in Y axis
|
||||
counter_y.wide += current_block->steps_y.wide;
|
||||
if (counter_y.wide > 0) {
|
||||
WRITE_NC(Y_STEP_PIN, !INVERT_Y_STEP_PIN);
|
||||
LastStepMask |= Y_AXIS_MASK;
|
||||
#ifdef DEBUG_YSTEP_DUP_PIN
|
||||
WRITE_NC(DEBUG_YSTEP_DUP_PIN,!INVERT_Y_STEP_PIN);
|
||||
#endif //DEBUG_YSTEP_DUP_PIN
|
||||
counter_y.wide -= current_block->step_event_count.wide;
|
||||
count_position[Y_AXIS]+=count_direction[Y_AXIS];
|
||||
WRITE_NC(Y_STEP_PIN, INVERT_Y_STEP_PIN);
|
||||
#ifdef DEBUG_YSTEP_DUP_PIN
|
||||
WRITE_NC(DEBUG_YSTEP_DUP_PIN,INVERT_Y_STEP_PIN);
|
||||
#endif //DEBUG_YSTEP_DUP_PIN
|
||||
}
|
||||
// Step in Z axis
|
||||
counter_z.wide += current_block->steps_z.wide;
|
||||
if (counter_z.wide > 0) {
|
||||
WRITE_NC(Z_STEP_PIN, !INVERT_Z_STEP_PIN);
|
||||
LastStepMask |= Z_AXIS_MASK;
|
||||
counter_z.wide -= current_block->step_event_count.wide;
|
||||
count_position[Z_AXIS]+=count_direction[Z_AXIS];
|
||||
WRITE_NC(Z_STEP_PIN, INVERT_Z_STEP_PIN);
|
||||
}
|
||||
#ifndef LIN_ADVANCE
|
||||
// Step in E axis
|
||||
counter_e.wide += current_block->steps_e.wide;
|
||||
if (counter_e.wide > 0) {
|
||||
WRITE(E0_STEP_PIN, !INVERT_E_STEP_PIN);
|
||||
counter_e.wide -= current_block->step_event_count.wide;
|
||||
count_position[E_AXIS]+=count_direction[E_AXIS];
|
||||
WRITE(E0_STEP_PIN, INVERT_E_STEP_PIN);
|
||||
#ifdef PAT9125
|
||||
++ fsensor_counter;
|
||||
#endif //PAT9125
|
||||
}
|
||||
#endif
|
||||
if(++ step_events_completed.wide >= current_block->step_event_count.wide)
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
void isr() {
|
||||
//if (UVLO) uvlo();
|
||||
// If there is no current block, attempt to pop one from the buffer
|
||||
if (current_block == NULL)
|
||||
stepper_next_block();
|
||||
|
||||
LastStepMask = 0;
|
||||
|
||||
if (current_block != NULL)
|
||||
{
|
||||
stepper_check_endstops();
|
||||
if (current_block->flag & BLOCK_FLAG_DDA_LOWRES)
|
||||
stepper_tick_lowres();
|
||||
else
|
||||
stepper_tick_highres();
|
||||
|
||||
#ifdef LIN_ADVANCE
|
||||
if (current_block->use_advance_lead) {
|
||||
const int delta_adv_steps = current_estep_rate - current_adv_steps;
|
||||
@ -754,10 +769,10 @@ void isr() {
|
||||
if (step_events_completed.wide <= (unsigned long int)current_block->accelerate_until) {
|
||||
// v = t * a -> acc_step_rate = acceleration_time * current_block->acceleration_rate
|
||||
MultiU24X24toH16(acc_step_rate, acceleration_time, current_block->acceleration_rate);
|
||||
acc_step_rate += current_block->initial_rate;
|
||||
acc_step_rate += uint16_t(current_block->initial_rate);
|
||||
|
||||
// upper limit
|
||||
if(acc_step_rate > current_block->nominal_rate)
|
||||
if(acc_step_rate > uint16_t(current_block->nominal_rate))
|
||||
acc_step_rate = current_block->nominal_rate;
|
||||
|
||||
// step_rate to timer interval
|
||||
@ -776,15 +791,15 @@ void isr() {
|
||||
MultiU24X24toH16(step_rate, deceleration_time, current_block->acceleration_rate);
|
||||
|
||||
if(step_rate > acc_step_rate) { // Check step_rate stays positive
|
||||
step_rate = current_block->final_rate;
|
||||
step_rate = uint16_t(current_block->final_rate);
|
||||
}
|
||||
else {
|
||||
step_rate = acc_step_rate - step_rate; // Decelerate from aceleration end point.
|
||||
}
|
||||
|
||||
// lower limit
|
||||
if(step_rate < current_block->final_rate)
|
||||
step_rate = current_block->final_rate;
|
||||
if(step_rate < uint16_t(current_block->final_rate))
|
||||
step_rate = uint16_t(current_block->final_rate);
|
||||
|
||||
// step_rate to timer interval
|
||||
timer = calc_timer(step_rate);
|
||||
@ -830,9 +845,11 @@ void isr() {
|
||||
}
|
||||
#endif //PAT9125
|
||||
}
|
||||
|
||||
#ifdef TMC2130
|
||||
tmc2130_st_isr(LastStepMask);
|
||||
#endif //TMC2130
|
||||
|
||||
#ifdef DEBUG_STEPPER_TIMER_MISSED
|
||||
// Verify whether the next planned timer interrupt has not been missed already.
|
||||
// This debugging test takes < 1.125us
|
||||
|
Loading…
Reference in New Issue
Block a user