Merge branch 'MK3' into MK3

This commit is contained in:
MRprusa3d 2018-04-25 19:15:36 +00:00 committed by GitHub
commit 7e462b3224
No known key found for this signature in database
GPG key ID: 4AEE18F83AFDEB23
21 changed files with 434 additions and 758 deletions

View file

@ -7,8 +7,8 @@
#define STR(x) STR_HELPER(x)
// Firmware version
#define FW_VERSION "3.2.0-alpha"
#define FW_COMMIT_NR 370
#define FW_VERSION "3.2.0-RC2"
#define FW_COMMIT_NR 461
// FW_VERSION_UNKNOWN means this is an unofficial build.
// The firmware should only be checked into github with this symbol.
#define FW_DEV_VERSION FW_VERSION_UNKNOWN
@ -132,10 +132,6 @@
// Power loss errors (total)
#define EEPROM_POWER_COUNT_TOT (EEPROM_FERROR_COUNT_TOT - 2) // uint16
#define EEPROM_PRINTER_TYPE (EEPROM_POWER_COUNT_TOT - 2) // uint16
#define EEPROM_BOARD_TYPE (EEPROM_PRINTER_TYPE - 2) // uint16
////////////////////////////////////////
// TMC2130 Accurate sensorless homing
@ -174,6 +170,8 @@
#define EEPROM_TMC2130_Z_MRES (EEPROM_TMC2130_Y_MRES - 1) // uint8
#define EEPROM_TMC2130_E_MRES (EEPROM_TMC2130_Z_MRES - 1) // uint8
#define EEPROM_PRINTER_TYPE (EEPROM_TMC2130_E_MRES - 2) // uint16
#define EEPROM_BOARD_TYPE (EEPROM_PRINTER_TYPE - 2) // uint16
//TMC2130 configuration
#define EEPROM_TMC_AXIS_SIZE //axis configuration block size

View file

@ -1,616 +0,0 @@
#ifndef CONFIGURATION_PRUSA_H
#define CONFIGURATION_PRUSA_H
/*------------------------------------
GENERAL SETTINGS
*------------------------------------*/
// Printer revision
#define PRINTER_TYPE PRINTER_MK3
#define FILAMENT_SIZE "1_75mm_MK3"
#define NOZZLE_TYPE "E3Dv6full"
// Developer flag
#define DEVELOPER
// Printer name
#define CUSTOM_MENDEL_NAME "Prusa i3 MK3"
// Electronics
#define MOTHERBOARD BOARD_EINSY_1_0a
#define STEEL_SHEET
#define HAS_SECOND_SERIAL_PORT
// Uncomment the below for the E3D PT100 temperature sensor (with or without PT100 Amplifier)
//#define E3D_PT100_EXTRUDER_WITH_AMP
//#define E3D_PT100_EXTRUDER_NO_AMP
//#define E3D_PT100_BED_WITH_AMP
//#define E3D_PT100_BED_NO_AMP
/*------------------------------------
AXIS SETTINGS
*------------------------------------*/
// Steps per unit {X,Y,Z,E}
//#define DEFAULT_AXIS_STEPS_PER_UNIT {100,100,3200/8,140}
#define DEFAULT_AXIS_STEPS_PER_UNIT {100,100,3200/8,280}
//#define DEFAULT_AXIS_STEPS_PER_UNIT {100,100,3200/8,560}
// Endstop inverting
const bool X_MIN_ENDSTOP_INVERTING = false; // set to true to invert the logic of the endstop.
const bool Y_MIN_ENDSTOP_INVERTING = false; // set to true to invert the logic of the endstop.
const bool Z_MIN_ENDSTOP_INVERTING = false; // set to true to invert the logic of the endstop.
// Direction inverting
#define INVERT_X_DIR true // for Mendel set to false, for Orca set to true
#define INVERT_Y_DIR false // for Mendel set to true, for Orca set to false
#define INVERT_Z_DIR true // for Mendel set to false, for Orca set to true
#define INVERT_E0_DIR false // for direct drive extruder v9 set to true, for geared extruder set to false
#define INVERT_E1_DIR false // for direct drive extruder v9 set to true, for geared extruder set to false
#define INVERT_E2_DIR false // for direct drive extruder v9 set to true, for geared extruder set to false
// Home position
#define MANUAL_X_HOME_POS 0
#define MANUAL_Y_HOME_POS -2.2
#define MANUAL_Z_HOME_POS 0.2
// Travel limits after homing
#define X_MAX_POS 255
#define X_MIN_POS 0
#define Y_MAX_POS 210
#define Y_MIN_POS -4 //orig -4
#define Z_MAX_POS 210
#define Z_MIN_POS 0.15
// Canceled home position
#define X_CANCEL_POS 50
#define Y_CANCEL_POS 190
//Pause print position
#define X_PAUSE_POS 50
#define Y_PAUSE_POS 190
#define Z_PAUSE_LIFT 20
#define NUM_AXIS 4 // The axis order in all axis related arrays is X, Y, Z, E
#define HOMING_FEEDRATE {3000, 3000, 800, 0} // set the homing speeds (mm/min) // 3000 is also valid for stallGuard homing. Valid range: 2200 - 3000
#define DEFAULT_MAX_FEEDRATE {200, 200, 12, 120} // (mm/sec) max feedrate (M203)
#define DEFAULT_MAX_ACCELERATION {1000, 1000, 200, 5000} // (mm/sec^2) max acceleration (M201)
#define DEFAULT_ACCELERATION 1250 // X, Y, Z and E max acceleration in mm/s^2 for printing moves (M204S)
#define DEFAULT_RETRACT_ACCELERATION 1250 // X, Y, Z and E max acceleration in mm/s^2 for retracts (M204T)
#define MANUAL_FEEDRATE {2700, 2700, 1000, 100} // set the speeds for manual moves (mm/min)
//Silent mode limits
#define SILENT_MAX_ACCEL 960 // max axxeleration in silent mode in mm/s^2
#define SILENT_MAX_ACCEL_ST (100*SILENT_MAX_ACCEL) // max accel in steps/s^2
#define SILENT_MAX_FEEDRATE 172 //max feedrate in mm/s, because mode switched to normal for homming , this value limits also homing, it should be greater (172mm/s=9600mm/min>2700mm/min)
//Normal mode limits
#define NORMAL_MAX_ACCEL 2500 // Y-axis max axxeleration in normal mode in mm/s^2
#define NORMAL_MAX_ACCEL_ST (100*NORMAL_MAX_ACCEL) // max accel in steps/s^2
#define NORMAL_MAX_FEEDRATE 200 //max feedrate in mm/s, because mode switched to normal for homming , this value limits also homing, it should be greater (172mm/s=9600mm/min>2700mm/min)
//#define SIMPLE_ACCEL_LIMIT //new limitation method for normal/silent
//number of bytes from end of the file to start check
#define END_FILE_SECTION 10000
#define Z_AXIS_ALWAYS_ON 1
// Automatic recovery after crash is detected
#define AUTOMATIC_RECOVERY_AFTER_CRASH
// New XYZ calibration
#define NEW_XYZCAL
// Do not use Arduino SPI
#define NEW_SPI
// Watchdog support
#define WATCHDOG
// Power panic
#define UVLO_SUPPORT
// Fan check
#define FANCHECK
// Safety timer
#define SAFETYTIMER
// Filament sensor
#define PAT9125
// Disable some commands
#define _DISABLE_M42_M226
// Minimum ambient temperature limit to start triggering MINTEMP errors [C]
// this value is litlebit higher that real limit, because ambient termistor is on the board and is temperated from it,
// temperature inside the case is around 31C for ambient temperature 25C, when the printer is powered on long time and idle
// the real limit is 15C (same as MINTEMP limit), this is because 15C is end of scale for both used thermistors (bed, heater)
#define MINTEMP_MINAMBIENT 25
#define MINTEMP_MINAMBIENT_RAW 978
//#define DEBUG_BUILD
#ifdef DEBUG_BUILD
//#define _NO_ASM
#define DEBUG_DCODES //D codes
#define DEBUG_STACK_MONITOR //Stack monitor in stepper ISR
//#define DEBUG_FSENSOR_LOG //Reports fsensor status to serial
//#define DEBUG_CRASHDET_COUNTERS //Display crash-detection counters on LCD
//#define DEBUG_RESUME_PRINT //Resume/save print debug enable
//#define DEBUG_UVLO_AUTOMATIC_RECOVER // Power panic automatic recovery debug output
//#define DEBUG_DISABLE_XMINLIMIT //x min limit ignored
//#define DEBUG_DISABLE_XMAXLIMIT //x max limit ignored
//#define DEBUG_DISABLE_YMINLIMIT //y min limit ignored
//#define DEBUG_DISABLE_YMAXLIMIT //y max limit ignored
//#define DEBUG_DISABLE_ZMINLIMIT //z min limit ignored
//#define DEBUG_DISABLE_ZMAXLIMIT //z max limit ignored
#define DEBUG_DISABLE_STARTMSGS //no startup messages
//#define DEBUG_DISABLE_MINTEMP //mintemp error ignored
//#define DEBUG_DISABLE_SWLIMITS //sw limits ignored
//#define DEBUG_DISABLE_LCD_STATUS_LINE //empty four lcd line
//#define DEBUG_DISABLE_PREVENT_EXTRUDER //cold extrusion and long extrusion allowed
//#define DEBUG_DISABLE_PRUSA_STATISTICS //disable prusa_statistics() mesages
//#define DEBUG_DISABLE_FORCE_SELFTEST //disable force selftest
//#define DEBUG_XSTEP_DUP_PIN 21 //duplicate x-step output to pin 21 (SCL on P3)
//#define DEBUG_YSTEP_DUP_PIN 21 //duplicate y-step output to pin 21 (SCL on P3)
//#define DEBUG_BLINK_ACTIVE
//#define DEBUG_DISABLE_FANCHECK //disable fan check (no ISR INT7, check disabled)
//#define DEBUG_DISABLE_FSENSORCHECK //disable fsensor check (no ISR INT7, check disabled)
#define DEBUG_DUMP_TO_2ND_SERIAL //dump received characters to 2nd serial line
#define DEBUG_STEPPER_TIMER_MISSED // Stop on stepper timer overflow, beep and display a message.
#define PLANNER_DIAGNOSTICS // Show the planner queue status on printer display.
#endif /* DEBUG_BUILD */
//#define EXPERIMENTAL_FEATURES
#define TMC2130_LINEARITY_CORRECTION
//#define TMC2130_VARIABLE_RESOLUTION
/*------------------------------------
TMC2130 default settings
*------------------------------------*/
#define TMC2130_FCLK 12000000 // fclk = 12MHz
#define TMC2130_USTEPS_XY 16 // microstep resolution for XY axes
#define TMC2130_USTEPS_Z 16 // microstep resolution for Z axis
#define TMC2130_USTEPS_E 32 // microstep resolution for E axis
#define TMC2130_INTPOL_XY 1 // extrapolate 256 for XY axes
#define TMC2130_INTPOL_Z 1 // extrapolate 256 for Z axis
#define TMC2130_INTPOL_E 1 // extrapolate 256 for E axis
#define TMC2130_PWM_GRAD_X 2 // PWMCONF
#define TMC2130_PWM_AMPL_X 230 // PWMCONF
#define TMC2130_PWM_AUTO_X 1 // PWMCONF
#define TMC2130_PWM_FREQ_X 2 // PWMCONF
#define TMC2130_PWM_GRAD_Y 2 // PWMCONF
#define TMC2130_PWM_AMPL_Y 235 // PWMCONF
#define TMC2130_PWM_AUTO_Y 1 // PWMCONF
#define TMC2130_PWM_FREQ_Y 2 // PWMCONF
#define TMC2130_PWM_GRAD_E 2 // PWMCONF
#define TMC2130_PWM_AMPL_E 235 // PWMCONF
#define TMC2130_PWM_AUTO_E 1 // PWMCONF
#define TMC2130_PWM_FREQ_E 2 // PWMCONF
#define TMC2130_PWM_GRAD_Z 4 // PWMCONF
#define TMC2130_PWM_AMPL_Z 200 // PWMCONF
#define TMC2130_PWM_AUTO_Z 1 // PWMCONF
#define TMC2130_PWM_FREQ_Z 2 // PWMCONF
#define TMC2130_PWM_GRAD_E 4 // PWMCONF
#define TMC2130_PWM_AMPL_E 240 // PWMCONF
#define TMC2130_PWM_AUTO_E 1 // PWMCONF
#define TMC2130_PWM_FREQ_E 2 // PWMCONF
#define TMC2130_TOFF_XYZ 3 // CHOPCONF // fchop = 27.778kHz
#define TMC2130_TOFF_E 3 // CHOPCONF // fchop = 27.778kHz
//#define TMC2130_TOFF_E 4 // CHOPCONF // fchop = 21.429kHz
//#define TMC2130_TOFF_E 5 // CHOPCONF // fchop = 17.442kHz
//#define TMC2130_STEALTH_E // Extruder stealthChop mode
//#define TMC2130_CNSTOFF_E // Extruder constant-off-time mode (similar to MK2)
//#define TMC2130_PWM_DIV 683 // PWM frequency divider (1024, 683, 512, 410)
#define TMC2130_PWM_DIV 512 // PWM frequency divider (1024, 683, 512, 410)
#define TMC2130_PWM_CLK (2 * TMC2130_FCLK / TMC2130_PWM_DIV) // PWM frequency (23.4kHz, 35.1kHz, 46.9kHz, 58.5kHz for 12MHz fclk)
#define TMC2130_TPWMTHRS 0 // TPWMTHRS - Sets the switching speed threshold based on TSTEP from stealthChop to spreadCycle mode
#define TMC2130_THIGH 0 // THIGH - unused
//#define TMC2130_TCOOLTHRS_X 450 // TCOOLTHRS - coolstep treshold
//#define TMC2130_TCOOLTHRS_Y 450 // TCOOLTHRS - coolstep treshold
#define TMC2130_TCOOLTHRS_X 430 // TCOOLTHRS - coolstep treshold
#define TMC2130_TCOOLTHRS_Y 430 // TCOOLTHRS - coolstep treshold
#define TMC2130_TCOOLTHRS_Z 500 // TCOOLTHRS - coolstep treshold
#define TMC2130_TCOOLTHRS_E 500 // TCOOLTHRS - coolstep treshold
#define TMC2130_SG_HOMING 1 // stallguard homing
#define TMC2130_SG_THRS_X 3 // stallguard sensitivity for X axis
#define TMC2130_SG_THRS_Y 3 // stallguard sensitivity for Y axis
#define TMC2130_SG_THRS_Z 3 // stallguard sensitivity for Z axis
#define TMC2130_SG_THRS_E 3 // stallguard sensitivity for E axis
//new settings is possible for vsense = 1, running current value > 31 set vsense to zero and shift both currents by 1 bit right (Z axis only)
#define TMC2130_CURRENTS_H {16, 20, 28, 36} // default holding currents for all axes
#define TMC2130_CURRENTS_R {16, 20, 28, 36} // default running currents for all axes
#define TMC2130_UNLOAD_CURRENT_R 12 // lowe current for M600 to protect filament sensor
#define TMC2130_STEALTH_Z
//#define TMC2130_DEBUG
//#define TMC2130_DEBUG_WR
//#define TMC2130_DEBUG_RD
/*------------------------------------
EXTRUDER SETTINGS
*------------------------------------*/
// Mintemps
#define HEATER_0_MINTEMP 15
#define HEATER_1_MINTEMP 5
#define HEATER_2_MINTEMP 5
#define BED_MINTEMP 15
// Maxtemps
#if defined(E3D_PT100_EXTRUDER_WITH_AMP) || defined(E3D_PT100_EXTRUDER_NO_AMP)
#define HEATER_0_MAXTEMP 410
#else
#define HEATER_0_MAXTEMP 305
#endif
#define HEATER_1_MAXTEMP 305
#define HEATER_2_MAXTEMP 305
#define BED_MAXTEMP 125
#if defined(E3D_PT100_EXTRUDER_WITH_AMP) || defined(E3D_PT100_EXTRUDER_NO_AMP)
// Define PID constants for extruder with PT100
#define DEFAULT_Kp 21.70
#define DEFAULT_Ki 1.60
#define DEFAULT_Kd 73.76
#else
// Define PID constants for extruder
//#define DEFAULT_Kp 40.925
//#define DEFAULT_Ki 4.875
//#define DEFAULT_Kd 86.085
#define DEFAULT_Kp 16.13
#define DEFAULT_Ki 1.1625
#define DEFAULT_Kd 56.23
#endif
// Extrude mintemp
#define EXTRUDE_MINTEMP 190
// Extruder cooling fans
#define EXTRUDER_0_AUTO_FAN_PIN 8
#define EXTRUDER_1_AUTO_FAN_PIN -1
#define EXTRUDER_2_AUTO_FAN_PIN -1
#define EXTRUDER_AUTO_FAN_TEMPERATURE 50
#define EXTRUDER_AUTO_FAN_SPEED 255 // == full speed
/*------------------------------------
LOAD/UNLOAD FILAMENT SETTINGS
*------------------------------------*/
// Load filament commands
#define LOAD_FILAMENT_0 "M83"
#define LOAD_FILAMENT_1 "G1 E70 F400"
#define LOAD_FILAMENT_2 "G1 E40 F100"
// Unload filament commands
#define UNLOAD_FILAMENT_0 "M83"
#define UNLOAD_FILAMENT_1 "G1 E-80 F7000"
/*------------------------------------
CHANGE FILAMENT SETTINGS
*------------------------------------*/
// Filament change configuration
#define FILAMENTCHANGEENABLE
#ifdef FILAMENTCHANGEENABLE
#define FILAMENTCHANGE_XPOS 211
#define FILAMENTCHANGE_YPOS 0
#define FILAMENTCHANGE_ZADD 2
#define FILAMENTCHANGE_FIRSTRETRACT -2
#define FILAMENTCHANGE_FINALRETRACT -80
#define FILAMENTCHANGE_FIRSTFEED 70
#define FILAMENTCHANGE_FINALFEED 50
#define FILAMENTCHANGE_RECFEED 5
#define FILAMENTCHANGE_XYFEED 50
#define FILAMENTCHANGE_EFEED 20
//#define FILAMENTCHANGE_RFEED 400
#define FILAMENTCHANGE_RFEED 7000 / 60
#define FILAMENTCHANGE_EXFEED 2
#define FILAMENTCHANGE_ZFEED 15
#endif
/*------------------------------------
ADDITIONAL FEATURES SETTINGS
*------------------------------------*/
// Define Prusa filament runout sensor
//#define FILAMENT_RUNOUT_SUPPORT
#ifdef FILAMENT_RUNOUT_SUPPORT
#define FILAMENT_RUNOUT_SENSOR 1
#endif
// temperature runaway
#define TEMP_RUNAWAY_BED_HYSTERESIS 5
#define TEMP_RUNAWAY_BED_TIMEOUT 360
#define TEMP_RUNAWAY_EXTRUDER_HYSTERESIS 15
#define TEMP_RUNAWAY_EXTRUDER_TIMEOUT 45
/*------------------------------------
MOTOR CURRENT SETTINGS
*------------------------------------*/
// Motor Current setting for BIG RAMBo
#define DIGIPOT_MOTOR_CURRENT {135,135,135,135,135} // Values 0-255 (RAMBO 135 = ~0.75A, 185 = ~1A)
#define DIGIPOT_MOTOR_CURRENT_LOUD {135,135,135,135,135}
// Motor Current settings for RAMBo mini PWM value = MotorCurrentSetting * 255 / range
#if MOTHERBOARD == 200 || MOTHERBOARD == 203
#define MOTOR_CURRENT_PWM_RANGE 2000
#define DEFAULT_PWM_MOTOR_CURRENT {400, 750, 750} // {XY,Z,E}
#define DEFAULT_PWM_MOTOR_CURRENT_LOUD {400, 750, 750} // {XY,Z,E}
#endif
/*------------------------------------
PAT9125 SETTINGS
*------------------------------------*/
#define PAT9125_XRES 0
#define PAT9125_YRES 255
/*------------------------------------
BED SETTINGS
*------------------------------------*/
// Define Mesh Bed Leveling system to enable it
#define MESH_BED_LEVELING
#ifdef MESH_BED_LEVELING
#define MBL_Z_STEP 0.01
// Mesh definitions
#define MESH_MIN_X 35
#define MESH_MAX_X 238
#define MESH_MIN_Y 6
#define MESH_MAX_Y 202
// Mesh upsample definition
#define MESH_NUM_X_POINTS 7
#define MESH_NUM_Y_POINTS 7
// Mesh measure definition
#define MESH_MEAS_NUM_X_POINTS 3
#define MESH_MEAS_NUM_Y_POINTS 3
#define MESH_HOME_Z_CALIB 0.2
#define MESH_HOME_Z_SEARCH 5 //Z lift for homing, mesh bed leveling etc.
#define X_PROBE_OFFSET_FROM_EXTRUDER 23 // Z probe to nozzle X offset: -left +right
#define Y_PROBE_OFFSET_FROM_EXTRUDER 5 // Z probe to nozzle Y offset: -front +behind
#define Z_PROBE_OFFSET_FROM_EXTRUDER -0.4 // Z probe to nozzle Z offset: -below (always!)
#endif
// Bed Temperature Control
// Select PID or bang-bang with PIDTEMPBED. If bang-bang, BED_LIMIT_SWITCHING will enable hysteresis
//
// Uncomment this to enable PID on the bed. It uses the same frequency PWM as the extruder.
// If your PID_dT above is the default, and correct for your hardware/configuration, that means 7.689Hz,
// which is fine for driving a square wave into a resistive load and does not significantly impact you FET heating.
// This also works fine on a Fotek SSR-10DA Solid State Relay into a 250W heater.
// If your configuration is significantly different than this and you don't understand the issues involved, you probably
// shouldn't use bed PID until someone else verifies your hardware works.
// If this is enabled, find your own PID constants below.
#define PIDTEMPBED
//
//#define BED_LIMIT_SWITCHING
// This sets the max power delivered to the bed, and replaces the HEATER_BED_DUTY_CYCLE_DIVIDER option.
// all forms of bed control obey this (PID, bang-bang, bang-bang with hysteresis)
// setting this to anything other than 255 enables a form of PWM to the bed just like HEATER_BED_DUTY_CYCLE_DIVIDER did,
// so you shouldn't use it unless you are OK with PWM on your bed. (see the comment on enabling PIDTEMPBED)
#define MAX_BED_POWER 255 // limits duty cycle to bed; 255=full current
// Bed temperature compensation settings
#define BED_OFFSET 10
#define BED_OFFSET_START 40
#define BED_OFFSET_CENTER 50
#ifdef PIDTEMPBED
//120v 250W silicone heater into 4mm borosilicate (MendelMax 1.5+)
//from FOPDT model - kp=.39 Tp=405 Tdead=66, Tc set to 79.2, aggressive factor of .15 (vs .1, 1, 10)
#if defined(E3D_PT100_BED_WITH_AMP) || defined(E3D_PT100_BED_NO_AMP)
// Define PID constants for extruder with PT100
#define DEFAULT_bedKp 21.70
#define DEFAULT_bedKi 1.60
#define DEFAULT_bedKd 73.76
#else
#define DEFAULT_bedKp 126.13
#define DEFAULT_bedKi 4.30
#define DEFAULT_bedKd 924.76
#endif
//120v 250W silicone heater into 4mm borosilicate (MendelMax 1.5+)
//from pidautotune
// #define DEFAULT_bedKp 97.1
// #define DEFAULT_bedKi 1.41
// #define DEFAULT_bedKd 1675.16
// FIND YOUR OWN: "M303 E-1 C8 S90" to run autotune on the bed at 90 degreesC for 8 cycles.
#endif // PIDTEMPBED
/*-----------------------------------
PREHEAT SETTINGS
*------------------------------------*/
#define FARM_PREHEAT_HOTEND_TEMP 250
#define FARM_PREHEAT_HPB_TEMP 40
#define FARM_PREHEAT_FAN_SPEED 0
#define PLA_PREHEAT_HOTEND_TEMP 215
#define PLA_PREHEAT_HPB_TEMP 60
#define PLA_PREHEAT_FAN_SPEED 0
#define ABS_PREHEAT_HOTEND_TEMP 255
#define ABS_PREHEAT_HPB_TEMP 100
#define ABS_PREHEAT_FAN_SPEED 0
#define HIPS_PREHEAT_HOTEND_TEMP 220
#define HIPS_PREHEAT_HPB_TEMP 100
#define HIPS_PREHEAT_FAN_SPEED 0
#define PP_PREHEAT_HOTEND_TEMP 254
#define PP_PREHEAT_HPB_TEMP 100
#define PP_PREHEAT_FAN_SPEED 0
#define PET_PREHEAT_HOTEND_TEMP 230
#define PET_PREHEAT_HPB_TEMP 85
#define PET_PREHEAT_FAN_SPEED 0
#define FLEX_PREHEAT_HOTEND_TEMP 240
#define FLEX_PREHEAT_HPB_TEMP 50
#define FLEX_PREHEAT_FAN_SPEED 0
/*------------------------------------
THERMISTORS SETTINGS
*------------------------------------*/
//
//--NORMAL IS 4.7kohm PULLUP!-- 1kohm pullup can be used on hotend sensor, using correct resistor and table
//
//// Temperature sensor settings:
// -2 is thermocouple with MAX6675 (only for sensor 0)
// -1 is thermocouple with AD595
// 0 is not used
// 1 is 100k thermistor - best choice for EPCOS 100k (4.7k pullup)
// 2 is 200k thermistor - ATC Semitec 204GT-2 (4.7k pullup)
// 3 is Mendel-parts thermistor (4.7k pullup)
// 4 is 10k thermistor !! do not use it for a hotend. It gives bad resolution at high temp. !!
// 5 is 100K thermistor - ATC Semitec 104GT-2 (Used in ParCan & J-Head) (4.7k pullup)
// 6 is 100k EPCOS - Not as accurate as table 1 (created using a fluke thermocouple) (4.7k pullup)
// 7 is 100k Honeywell thermistor 135-104LAG-J01 (4.7k pullup)
// 71 is 100k Honeywell thermistor 135-104LAF-J01 (4.7k pullup)
// 8 is 100k 0603 SMD Vishay NTCS0603E3104FXT (4.7k pullup)
// 9 is 100k GE Sensing AL03006-58.2K-97-G1 (4.7k pullup)
// 10 is 100k RS thermistor 198-961 (4.7k pullup)
// 11 is 100k beta 3950 1% thermistor (4.7k pullup)
// 12 is 100k 0603 SMD Vishay NTCS0603E3104FXT (4.7k pullup) (calibrated for Makibox hot bed)
// 13 is 100k Hisens 3950 1% up to 300°C for hotend "Simple ONE " & "Hotend "All In ONE"
// 20 is the PT100 circuit found in the Ultimainboard V2.x
// 60 is 100k Maker's Tool Works Kapton Bed Thermistor beta=3950
//
// 1k ohm pullup tables - This is not normal, you would have to have changed out your 4.7k for 1k
// (but gives greater accuracy and more stable PID)
// 51 is 100k thermistor - EPCOS (1k pullup)
// 52 is 200k thermistor - ATC Semitec 204GT-2 (1k pullup)
// 55 is 100k thermistor - ATC Semitec 104GT-2 (Used in ParCan & J-Head) (1k pullup)
//
// 1047 is Pt1000 with 4k7 pullup
// 1010 is Pt1000 with 1k pullup (non standard)
// 147 is Pt100 with 4k7 pullup
// 148 is E3D Pt100 with 4k7 pullup and no PT100 Amplifier on a MiniRambo 1.3a
// 247 is Pt100 with 4k7 pullup and PT100 Amplifier
// 110 is Pt100 with 1k pullup (non standard)
#if defined(E3D_PT100_EXTRUDER_WITH_AMP)
#define TEMP_SENSOR_0 247
#elif defined(E3D_PT100_EXTRUDER_NO_AMP)
#define TEMP_SENSOR_0 148
#else
#define TEMP_SENSOR_0 5
#endif
#define TEMP_SENSOR_1 0
#define TEMP_SENSOR_2 0
#if defined(E3D_PT100_BED_WITH_AMP)
#define TEMP_SENSOR_BED 247
#elif defined(E3D_PT100_BED_NO_AMP)
#define TEMP_SENSOR_BED 148
#else
#define TEMP_SENSOR_BED 1
#endif
#define TEMP_SENSOR_PINDA 1
#define TEMP_SENSOR_AMBIENT 2000
#define STACK_GUARD_TEST_VALUE 0xA2A2
#define MAX_BED_TEMP_CALIBRATION 50
#define MAX_HOTEND_TEMP_CALIBRATION 50
#define MAX_E_STEPS_PER_UNIT 250
#define MIN_E_STEPS_PER_UNIT 100
#define Z_BABYSTEP_MIN -3999
#define Z_BABYSTEP_MAX 0
#define PINDA_PREHEAT_X 20
#define PINDA_PREHEAT_Y 60
#define PINDA_PREHEAT_Z 0.15
/*
#define PINDA_PREHEAT_X 70
#define PINDA_PREHEAT_Y -3
#define PINDA_PREHEAT_Z 1*/
#define PINDA_HEAT_T 120 //time in s
#define PINDA_MIN_T 50
#define PINDA_STEP_T 10
#define PINDA_MAX_T 100
#define PING_TIME 60 //time in s
#define PING_TIME_LONG 600 //10 min; used when length of commands buffer > 0 to avoid false triggering when dealing with long gcodes
#define PING_ALLERT_PERIOD 60 //time in s
#define NC_TIME 10 //time in s for periodic important status messages sending which needs reponse from monitoring
#define NC_BUTTON_LONG_PRESS 15 //time in s
#define LONG_PRESS_TIME 1000 //time in ms for button long press
#define BUTTON_BLANKING_TIME 200 //time in ms for blanking after button release
#define DEFAULT_PID_TEMP 210
#define MIN_PRINT_FAN_SPEED 75
#ifdef SNMM
#define DEFAULT_RETRACTION 4 //used for PINDA temp calibration and pause print
#else
#define DEFAULT_RETRACTION 1 //used for PINDA temp calibration and pause print
#endif
// How much shall the print head be lifted on power panic?
// Ideally the Z axis will reach a zero phase of the stepper driver on power outage. To simplify this,
// UVLO_Z_AXIS_SHIFT shall be an integer multiply of the stepper driver cycle, that is 4x full step.
// For example, the Prusa i3 MK2 with 16 microsteps per full step has Z stepping of 400 microsteps per mm.
// At 400 microsteps per mm, a full step lifts the Z axis by 0.04mm, and a stepper driver cycle is 0.16mm.
// The following example, 12 * (4 * 16 / 400) = 12 * 0.16mm = 1.92mm.
//#define UVLO_Z_AXIS_SHIFT 1.92
#define UVLO_Z_AXIS_SHIFT 0.64
// If power panic occured, and the current temperature is higher then target temperature before interrupt minus this offset, print will be recovered automatically.
#define AUTOMATIC_UVLO_BED_TEMP_OFFSET 5
#define HEATBED_V2
#define M600_TIMEOUT 600 //seconds
//#define SUPPORT_VERBOSITY
#endif //__CONFIGURATION_PRUSA_H

View file

@ -1336,7 +1336,8 @@ void setup()
}
if (eeprom_read_byte((uint8_t*)EEPROM_WIZARD_ACTIVE) == 0) { //dont show calibration status messages if wizard is currently active
if (calibration_status() == CALIBRATION_STATUS_ASSEMBLED ||
calibration_status() == CALIBRATION_STATUS_UNKNOWN) {
calibration_status() == CALIBRATION_STATUS_UNKNOWN ||
calibration_status() == CALIBRATION_STATUS_XYZ_CALIBRATION) {
// Reset the babystepping values, so the printer will not move the Z axis up when the babystepping is enabled.
eeprom_update_word((uint16_t*)EEPROM_BABYSTEP_Z, 0);
// Show the message.
@ -1357,13 +1358,13 @@ void setup()
}
}
#ifndef DEBUG_DISABLE_FORCE_SELFTEST
if (force_selftest_if_fw_version() && calibration_status() < CALIBRATION_STATUS_ASSEMBLED ) {
#if !defined (DEBUG_DISABLE_FORCE_SELFTEST) && defined (TMC2130)
if (force_selftest_if_fw_version() && calibration_status() < CALIBRATION_STATUS_ASSEMBLED) {
lcd_show_fullscreen_message_and_wait_P(MSG_FORCE_SELFTEST);
update_current_firmware_version_to_eeprom();
lcd_selftest();
}
#endif //DEBUG_DISABLE_FORCE_SELFTEST
#endif //TMC2130 && !DEBUG_DISABLE_FORCE_SELFTEST
KEEPALIVE_STATE(IN_PROCESS);
#endif //DEBUG_DISABLE_STARTMSGS
@ -2074,6 +2075,9 @@ void homeaxis(int axis, uint8_t cnt, uint8_t* pstep)
feedrate = homing_feedrate[axis];
plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
st_synchronize();
#ifdef TMC2130
if ((tmc2130_mode == TMC2130_MODE_NORMAL) && (READ(Z_TMC2130_DIAG) != 0)) return; //Z crash
#endif //TMC2130
current_position[axis] = 0;
plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
destination[axis] = -home_retract_mm(axis) * axis_home_dir;
@ -2083,6 +2087,9 @@ void homeaxis(int axis, uint8_t cnt, uint8_t* pstep)
feedrate = homing_feedrate[axis]/2 ;
plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
st_synchronize();
#ifdef TMC2130
if ((tmc2130_mode == TMC2130_MODE_NORMAL) && (READ(Z_TMC2130_DIAG) != 0)) return; //Z crash
#endif //TMC2130
axis_is_at_home(axis);
destination[axis] = current_position[axis];
feedrate = 0.0;
@ -3099,7 +3106,7 @@ void process_commands()
}
// 1st mesh bed leveling measurement point, corrected.
world2machine_initialize();
world2machine(pgm_read_float(bed_ref_points), pgm_read_float(bed_ref_points+1), destination[X_AXIS], destination[Y_AXIS]);
world2machine(pgm_read_float(bed_ref_points_4), pgm_read_float(bed_ref_points_4+1), destination[X_AXIS], destination[Y_AXIS]);
world2machine_reset();
if (destination[Y_AXIS] < Y_MIN_POS)
destination[Y_AXIS] = Y_MIN_POS;
@ -3107,7 +3114,18 @@ void process_commands()
feedrate = homing_feedrate[Z_AXIS]/10;
current_position[Z_AXIS] = 0;
enable_endstops(false);
#ifdef DEBUG_BUILD
SERIAL_ECHOLNPGM("plan_set_position()");
MYSERIAL.println(current_position[X_AXIS]);MYSERIAL.println(current_position[Y_AXIS]);
MYSERIAL.println(current_position[Z_AXIS]);MYSERIAL.println(current_position[E_AXIS]);
#endif
plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
#ifdef DEBUG_BUILD
SERIAL_ECHOLNPGM("plan_buffer_line()");
MYSERIAL.println(destination[X_AXIS]);MYSERIAL.println(destination[Y_AXIS]);
MYSERIAL.println(destination[Z_AXIS]);MYSERIAL.println(destination[E_AXIS]);
MYSERIAL.println(feedrate);MYSERIAL.println(active_extruder);
#endif
plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
st_synchronize();
current_position[X_AXIS] = destination[X_AXIS];
@ -3451,13 +3469,32 @@ void process_commands()
}
lcd_show_fullscreen_message_and_wait_P(MSG_TEMP_CAL_WARNING);
bool result = lcd_show_fullscreen_message_yes_no_and_wait_P(MSG_STEEL_SHEET_CHECK, false, false);
if (result)
{
current_position[Z_AXIS] = 50;
current_position[Y_AXIS] = 190;
current_position[Y_AXIS] += 180;
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
st_synchronize();
lcd_show_fullscreen_message_and_wait_P(MSG_REMOVE_STEEL_SHEET);
current_position[Y_AXIS] -= 180;
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
st_synchronize();
feedrate = homing_feedrate[Z_AXIS] / 10;
enable_endstops(true);
endstops_hit_on_purpose();
homeaxis(Z_AXIS);
plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
enable_endstops(false);
}
if ((current_temperature_pinda > 35) && (farm_mode == false)) {
//waiting for PIDNA probe to cool down in case that we are not in farm mode
current_position[Z_AXIS] = 100;
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
if (lcd_wait_for_pinda(35) == false) { //waiting for PINDA probe to cool, if this takes more then time expected, temp. cal. fails
lcd_temp_cal_show_result(false);
break;
}
}
lcd_update_enable(true);
KEEPALIVE_STATE(NOT_BUSY); //no need to print busy messages as we print current temperatures periodicaly
@ -3500,7 +3537,9 @@ void process_commands()
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
st_synchronize();
find_bed_induction_sensor_point_z(-1.f);
bool find_z_result = find_bed_induction_sensor_point_z(-1.f);
if(find_z_result == false) lcd_temp_cal_show_result(find_z_result);
zero_z = current_position[Z_AXIS];
//current_position[Z_AXIS]
@ -3549,7 +3588,9 @@ void process_commands()
current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 1);
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
st_synchronize();
find_bed_induction_sensor_point_z(-1.f);
find_z_result = find_bed_induction_sensor_point_z(-1.f);
if (find_z_result == false) lcd_temp_cal_show_result(find_z_result);
z_shift = (int)((current_position[Z_AXIS] - zero_z)*axis_steps_per_unit[Z_AXIS]);
SERIAL_ECHOLNPGM("");
@ -3562,25 +3603,8 @@ void process_commands()
EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i * 2, &z_shift);
}
custom_message_type = 0;
custom_message = false;
lcd_temp_cal_show_result(true);
eeprom_update_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 1);
SERIAL_ECHOLNPGM("Temperature calibration done. Continue with pressing the knob.");
disable_x();
disable_y();
disable_z();
disable_e0();
disable_e1();
disable_e2();
setTargetBed(0); //set bed target temperature back to 0
// setTargetHotend(0,0); //set hotend target temperature back to 0
lcd_show_fullscreen_message_and_wait_P(MSG_TEMP_CALIBRATION_DONE);
temp_cal_active = true;
eeprom_update_byte((unsigned char *)EEPROM_TEMP_CAL_ACTIVE, 1);
lcd_update_enable(true);
lcd_update(2);
break;
}
#endif //PINDA_THERMISTOR
@ -3764,6 +3788,15 @@ void process_commands()
#endif //MK1BP
case_G80:
{
#ifdef TMC2130
//previously enqueued "G28 W0" failed (crash Z)
if (axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && !axis_known_position[Z_AXIS] && (READ(Z_TMC2130_DIAG) != 0))
{
kill(MSG_BED_LEVELING_FAILED_POINT_LOW);
break;
}
#endif //TMC2130
mesh_bed_leveling_flag = true;
int8_t verbosity_level = 0;
static bool run = false;

View file

@ -9,7 +9,7 @@
* @param menu
* @param position selected position in menu being pushed
*/
void MenuStack::push(menuFunc_t menu, uint8_t position)
void MenuStack::push(menuFunc_t menu, int8_t position)
{
if (m_index >= max_depth) return;
m_stack[m_index].menu = menu;

View file

@ -19,10 +19,10 @@ public:
struct Record
{
menuFunc_t menu;
uint8_t position;
int8_t position;
};
MenuStack():m_stack(),m_index(0) {}
void push(menuFunc_t menu, uint8_t position);
void push(menuFunc_t menu, int8_t position);
Record pop();
void reset(){m_index = 0;}
private:

View file

@ -6,6 +6,12 @@
#include "Timer.h"
#include "Arduino.h"
/**
* @brief construct Timer
*
* It is guaranteed, that construction is equivalent with zeroing all members.
* This property can be exploited in MenuData union.
*/
Timer::Timer() : m_isRunning(false), m_started()
{
}

View file

@ -63,7 +63,7 @@ bool fsensor_enable()
{
// puts_P(PSTR("fsensor_enable\n"));
int pat9125 = pat9125_init();
// printf_P(PSTR("PAT9125_init:%d\n"), pat9125);
printf_P(PSTR("PAT9125_init:%d\n"), pat9125);
if (pat9125)
fsensor_not_responding = false;
else
@ -74,6 +74,7 @@ bool fsensor_enable()
fsensor_err_cnt = 0;
eeprom_update_byte((uint8_t*)EEPROM_FSENSOR, fsensor_enabled?0x01:0x00);
FSensorStateMenu = fsensor_enabled?1:0;
// printf_P(PSTR("fsensor_enable - end %d\n"), fsensor_enabled?1:0);
return fsensor_enabled;
}
@ -108,7 +109,14 @@ void fsensor_setup_interrupt()
void fsensor_autoload_check_start(void)
{
// puts_P(PSTR("fsensor_autoload_check_start\n"));
pat9125_update_y(); //update sensor
if (!pat9125_update_y()) //update sensor
{
puts_P(PSTR("pat9125 not responding (3).\n"));
fsensor_disable();
fsensor_not_responding = true;
fsensor_autoload_enabled = false;
return;
}
fsensor_autoload_y = pat9125_y; //save current y value
fsensor_autoload_c = 0; //reset number of changes counter
fsensor_autoload_sum = 0;
@ -130,7 +138,13 @@ bool fsensor_check_autoload(void)
uint8_t fsensor_autoload_c_old = fsensor_autoload_c;
if ((millis() - fsensor_autoload_last_millis) < 25) return false;
fsensor_autoload_last_millis = millis();
pat9125_update_y(); //update sensor
if (!pat9125_update_y())
{
puts_P(PSTR("pat9125 not responding (2).\n"));
fsensor_disable();
fsensor_not_responding = true;
return false; //update sensor
}
int16_t dy = fsensor_autoload_y - pat9125_y;
if (dy) //? y value is different
{
@ -170,9 +184,9 @@ ISR(PCINT2_vect)
*digitalPinToPCMSK(fsensor_int_pin) |= bit(digitalPinToPCMSKbit(fsensor_int_pin));*/
if (!pat9125_update_y())
{
#ifdef DEBUG_FSENSOR_LOG
puts_P(PSTR("pat9125 not responding.\n"));
#endif //DEBUG_FSENSOR_LOG
//#ifdef DEBUG_FSENSOR_LOG
puts_P(PSTR("pat9125 not responding (1).\n"));
//#endif //DEBUG_FSENSOR_LOG
fsensor_disable();
fsensor_not_responding = true;
}

View file

@ -2197,8 +2197,8 @@ const char * const MSG_TEMP_CALIBRATION_LANG_TABLE[LANG_NUM] PROGMEM = {
MSG_TEMP_CALIBRATION_CZ
};
const char MSG_TEMP_CALIBRATION_DONE_EN[] PROGMEM = "Temperature calibration is finished. Click to continue.";
const char MSG_TEMP_CALIBRATION_DONE_CZ[] PROGMEM = "Teplotni kalibrace dokoncena. Pokracujte stiskem tlacitka.";
const char MSG_TEMP_CALIBRATION_DONE_EN[] PROGMEM = "Temperature calibration is finished and active. Temp. calibration can be disabled in menu Settings->Temp. cal.";
const char MSG_TEMP_CALIBRATION_DONE_CZ[] PROGMEM = "Teplotni kalibrace dokoncena a je nyni aktivni. Teplotni kalibraci je mozno deaktivovat v menu Nastaveni->Tepl. kal.";
const char * const MSG_TEMP_CALIBRATION_DONE_LANG_TABLE[LANG_NUM] PROGMEM = {
MSG_TEMP_CALIBRATION_DONE_EN,
MSG_TEMP_CALIBRATION_DONE_CZ
@ -2218,6 +2218,13 @@ const char * const MSG_TEMP_CALIBRATION_ON_LANG_TABLE[LANG_NUM] PROGMEM = {
MSG_TEMP_CALIBRATION_ON_CZ
};
const char MSG_TEMP_CAL_FAILED_EN[] PROGMEM = "Temperature calibration failed";
const char MSG_TEMP_CAL_FAILED_CZ[] PROGMEM = "Teplotni kalibrace selhala";
const char * const MSG_TEMP_CAL_FAILED_LANG_TABLE[LANG_NUM] PROGMEM = {
MSG_TEMP_CAL_FAILED_EN,
MSG_TEMP_CAL_FAILED_CZ
};
const char MSG_TEMP_CAL_WARNING_EN[] PROGMEM = "Stable ambient temperature 21-26C is needed a rigid stand is required.";
const char * const MSG_TEMP_CAL_WARNING_LANG_TABLE[1] PROGMEM = {
MSG_TEMP_CAL_WARNING_EN
@ -2354,6 +2361,13 @@ const char * const MSG_WAITING_TEMP_LANG_TABLE[LANG_NUM] PROGMEM = {
MSG_WAITING_TEMP_CZ
};
const char MSG_WAITING_TEMP_PINDA_EN[] PROGMEM = "Waiting for PINDA probe cooling";
const char MSG_WAITING_TEMP_PINDA_CZ[] PROGMEM = "Cekani na zchladnuti PINDA";
const char * const MSG_WAITING_TEMP_PINDA_LANG_TABLE[LANG_NUM] PROGMEM = {
MSG_WAITING_TEMP_PINDA_EN,
MSG_WAITING_TEMP_PINDA_CZ
};
const char MSG_WATCH_EN[] PROGMEM = "Info screen";
const char MSG_WATCH_CZ[] PROGMEM = "Informace";
const char * const MSG_WATCH_LANG_TABLE[LANG_NUM] PROGMEM = {

View file

@ -726,6 +726,8 @@ extern const char* const MSG_TEMP_CALIBRATION_OFF_LANG_TABLE[LANG_NUM];
#define MSG_TEMP_CALIBRATION_OFF LANG_TABLE_SELECT(MSG_TEMP_CALIBRATION_OFF_LANG_TABLE)
extern const char* const MSG_TEMP_CALIBRATION_ON_LANG_TABLE[LANG_NUM];
#define MSG_TEMP_CALIBRATION_ON LANG_TABLE_SELECT(MSG_TEMP_CALIBRATION_ON_LANG_TABLE)
extern const char* const MSG_TEMP_CAL_FAILED_LANG_TABLE[LANG_NUM];
#define MSG_TEMP_CAL_FAILED LANG_TABLE_SELECT(MSG_TEMP_CAL_FAILED_LANG_TABLE)
extern const char* const MSG_TEMP_CAL_WARNING_LANG_TABLE[1];
#define MSG_TEMP_CAL_WARNING LANG_TABLE_SELECT_EXPLICIT(MSG_TEMP_CAL_WARNING_LANG_TABLE, 0)
extern const char* const MSG_TOSHIBA_FLASH_AIR_COMPATIBILITY_OFF_LANG_TABLE[1];
@ -770,6 +772,8 @@ extern const char* const MSG_VTRAV_MIN_LANG_TABLE[1];
#define MSG_VTRAV_MIN LANG_TABLE_SELECT_EXPLICIT(MSG_VTRAV_MIN_LANG_TABLE, 0)
extern const char* const MSG_WAITING_TEMP_LANG_TABLE[LANG_NUM];
#define MSG_WAITING_TEMP LANG_TABLE_SELECT(MSG_WAITING_TEMP_LANG_TABLE)
extern const char* const MSG_WAITING_TEMP_PINDA_LANG_TABLE[LANG_NUM];
#define MSG_WAITING_TEMP_PINDA LANG_TABLE_SELECT(MSG_WAITING_TEMP_PINDA_LANG_TABLE)
extern const char* const MSG_WATCH_LANG_TABLE[LANG_NUM];
#define MSG_WATCH LANG_TABLE_SELECT(MSG_WATCH_LANG_TABLE)
extern const char* const MSG_WATCHDOG_RESET_LANG_TABLE[1];

View file

@ -303,7 +303,7 @@
#define MSG_PINDA_NOT_CALIBRATED "Tiskarna nebyla teplotne zkalibrovana"
#define MSG_PINDA_PREHEAT "Nahrivani PINDA"
#define MSG_TEMP_CALIBRATION "Tepl. kal. "
#define MSG_TEMP_CALIBRATION_DONE "Teplotni kalibrace dokoncena. Pokracujte stiskem tlacitka."
#define MSG_TEMP_CALIBRATION_DONE "Teplotni kalibrace dokoncena a je nyni aktivni. Teplotni kalibraci je mozno deaktivovat v menu Nastaveni->Tepl. kal."
#define MSG_TEMP_CALIBRATION_ON "Tepl. kal. [zap]"
#define MSG_TEMP_CALIBRATION_OFF "Tepl. kal. [vyp]"
#define MSG_PREPARE_FILAMENT "Pripravte filament"
@ -414,3 +414,5 @@
#define MSG_CHANGED_MOTHERBOARD "Varovani: doslo ke zmene typu motherboardu."
#define MSG_CHANGED_PRINTER "Varovani: doslo ke zmene typu tiskarny."
#define MSG_CHANGED_BOTH "Varovani: doslo ke zmene typu tiskarny a motherboardu."
#define MSG_WAITING_TEMP_PINDA "Cekani na zchladnuti PINDA"
#define MSG_TEMP_CAL_FAILED "Teplotni kalibrace selhala"

View file

@ -303,7 +303,7 @@
#define(length=20, lines=4) MSG_PINDA_NOT_CALIBRATED "Temperature calibration has not been run yet"
#define(length=20, lines=1) MSG_PINDA_PREHEAT "PINDA Heating"
#define(length=20, lines=1) MSG_TEMP_CALIBRATION "Temp. cal. "
#define(length=20, lines=4) MSG_TEMP_CALIBRATION_DONE "Temperature calibration is finished. Click to continue."
#define(length=20, lines=12) MSG_TEMP_CALIBRATION_DONE "Temperature calibration is finished and active. Temp. calibration can be disabled in menu Settings->Temp. cal."
#define(length=20, lines=1) MSG_TEMP_CALIBRATION_ON "Temp. cal. [on]"
#define(length=20, lines=1) MSG_TEMP_CALIBRATION_OFF "Temp. cal. [off]"
#define(length=20, lines=1) MSG_PREPARE_FILAMENT "Prepare new filament"
@ -422,3 +422,5 @@
#define(length=20, lines=4) MSG_CHANGED_MOTHERBOARD "Warning: motherboard type changed."
#define(length=20, lines=4) MSG_CHANGED_PRINTER "Warning: printer type changed."
#define(length=20, lines=4) MSG_CHANGED_BOTH "Warning: both printer type and motherboard type changed."
#define(length=20, lines=3) MSG_WAITING_TEMP_PINDA "Waiting for PINDA probe cooling"
#define(length=20, lines=8) MSG_TEMP_CAL_FAILED "Temperature calibration failed"

View file

@ -7,6 +7,10 @@
#include "stepper.h"
#include "ultralcd.h"
#ifdef TMC2130
#include "tmc2130.h"
#endif //TMC2130
uint8_t world2machine_correction_mode;
float world2machine_rotation_and_skew[2][2];
float world2machine_rotation_and_skew_inv[2][2];
@ -20,7 +24,7 @@ float world2machine_shift[2];
#define WEIGHT_FIRST_ROW_Y_LOW (0.0f)
#define BED_ZERO_REF_X (- 22.f + X_PROBE_OFFSET_FROM_EXTRUDER) // -22 + 23 = 1
#define BED_ZERO_REF_Y (- 0.6f + Y_PROBE_OFFSET_FROM_EXTRUDER) // -0.6 + 5 = 4.4
#define BED_ZERO_REF_Y (- 0.6f + Y_PROBE_OFFSET_FROM_EXTRUDER + 4.f) // -0.6 + 5 + 4 = 8.4
// Scaling of the real machine axes against the programmed dimensions in the firmware.
// The correction is tiny, here around 0.5mm on 250mm length.
@ -56,10 +60,10 @@ const float bed_skew_angle_extreme = (0.25f * M_PI / 180.f);
// Positions of the bed reference points in the machine coordinates, referenced to the P.I.N.D.A sensor.
// The points are the following: center front, center right, center rear, center left.
const float bed_ref_points_4[] PROGMEM = {
13.f - BED_ZERO_REF_X, 10.4f - 4.f - BED_ZERO_REF_Y,
221.f - BED_ZERO_REF_X, 10.4f - 4.f - BED_ZERO_REF_Y,
221.f - BED_ZERO_REF_X, 202.4f - 4.f - BED_ZERO_REF_Y,
13.f - BED_ZERO_REF_X, 202.4f - 4.f - BED_ZERO_REF_Y
13.f - BED_ZERO_REF_X, 10.4f - BED_ZERO_REF_Y,
221.f - BED_ZERO_REF_X, 10.4f - BED_ZERO_REF_Y,
221.f - BED_ZERO_REF_X, 202.4f - BED_ZERO_REF_Y,
13.f - BED_ZERO_REF_X, 202.4f - BED_ZERO_REF_Y
};
const float bed_ref_points[] PROGMEM = {
@ -159,22 +163,29 @@ static inline float point_weight_y(const uint8_t i, const uint8_t npts, const fl
}
return w;
}
// Non-Linear Least Squares fitting of the bed to the measured induction points
// using the Gauss-Newton method.
// This method will maintain a unity length of the machine axes,
// which is the correct approach if the sensor points are not measured precisely.
/**
* @brief Calculate machine skew and offset
*
* Non-Linear Least Squares fitting of the bed to the measured induction points
* using the Gauss-Newton method.
* This method will maintain a unity length of the machine axes,
* which is the correct approach if the sensor points are not measured precisely.
* @param measured_pts Matrix of 2D points (maximum 18 floats)
* @param npts Number of points (maximum 9)
* @param true_pts
* @param [out] vec_x Resulting correction matrix. X axis vector
* @param [out] vec_y Resulting correction matrix. Y axis vector
* @param [out] cntr Resulting correction matrix. [0;0] pont offset
* @param verbosity_level
* @return BedSkewOffsetDetectionResultType
*/
BedSkewOffsetDetectionResultType calculate_machine_skew_and_offset_LS(
// Matrix of maximum 9 2D points (18 floats)
const float *measured_pts,
uint8_t npts,
const float *true_pts,
// Resulting correction matrix.
float *vec_x,
float *vec_y,
float *cntr,
// Temporary values, 49-18-(2*3)=25 floats
// , float *temp
int8_t verbosity_level
)
{
@ -649,6 +660,9 @@ BedSkewOffsetDetectionResultType calculate_machine_skew_and_offset_LS(
return result;
}
/**
* @brief Erase calibration data stored in EEPROM
*/
void reset_bed_offset_and_skew()
{
eeprom_update_dword((uint32_t*)(EEPROM_BED_CALIBRATION_CENTER+0), 0x0FFFFFFFF);
@ -703,6 +717,12 @@ static void world2machine_update(const float vec_x[2], const float vec_y[2], con
}
}
/**
* @brief Set calibration matrix to identity
*
* In contrast with world2machine_revert_to_uncorrected(), it doesn't wait for finishing moves
* nor updates the current position with the absolute values.
*/
void world2machine_reset()
{
const float vx[] = { 1.f, 0.f };
@ -711,15 +731,31 @@ void world2machine_reset()
world2machine_update(vx, vy, cntr);
}
/**
* @brief Set calibration matrix to default value
*
* This is used if no valid calibration data can be read from EEPROM.
*/
static void world2machine_default()
{
#ifdef DEFAULT_Y_OFFSET
const float vx[] = { 1.f, 0.f };
const float vy[] = { 0.f, 1.f };
const float cntr[] = { 0.f, DEFAULT_Y_OFFSET };
world2machine_update(vx, vy, cntr);
#else
world2machine_reset();
#endif
}
/**
* @brief Set calibration matrix to identity and update current position with absolute position
*
* Wait for the motors to stop and then update the current position with the absolute values.
*/
void world2machine_revert_to_uncorrected()
{
if (world2machine_correction_mode != WORLD2MACHINE_CORRECTION_NONE) {
// Reset the machine correction matrix.
const float vx[] = { 1.f, 0.f };
const float vy[] = { 0.f, 1.f };
const float cntr[] = { 0.f, 0.f };
world2machine_update(vx, vy, cntr);
// Wait for the motors to stop and update the current position with the absolute values.
world2machine_reset();
st_synchronize();
current_position[X_AXIS] = st_get_position_mm(X_AXIS);
current_position[Y_AXIS] = st_get_position_mm(Y_AXIS);
@ -732,6 +768,15 @@ static inline bool vec_undef(const float v[2])
return vx[0] == 0x0FFFFFFFF || vx[1] == 0x0FFFFFFFF;
}
/**
* @brief Read and apply calibration data from EEPROM
*
* If no calibration data has been stored in EEPROM or invalid,
* world2machine_default() is used.
*
* If stored calibration data is invalid, EEPROM storage is cleared.
*
*/
void world2machine_initialize()
{
//SERIAL_ECHOLNPGM("world2machine_initialize");
@ -789,7 +834,7 @@ void world2machine_initialize()
if (reset) {
// SERIAL_ECHOLNPGM("Invalid bed correction matrix. Resetting to identity.");
reset_bed_offset_and_skew();
world2machine_reset();
world2machine_default();
} else {
world2machine_update(vec_x, vec_y, cntr);
/*
@ -810,10 +855,14 @@ void world2machine_initialize()
}
}
// When switching from absolute to corrected coordinates,
// this will get the absolute coordinates from the servos,
// applies the inverse world2machine transformation
// and stores the result into current_position[x,y].
/**
* @brief Update current position after switching to corrected coordinates
*
* When switching from absolute to corrected coordinates,
* this will get the absolute coordinates from the servos,
* applies the inverse world2machine transformation
* and stores the result into current_position[x,y].
*/
void world2machine_update_current()
{
float x = current_position[X_AXIS] - world2machine_shift[0];
@ -872,8 +921,11 @@ inline bool find_bed_induction_sensor_point_z(float minimum_z, uint8_t n_iter, i
update_current_position_z();
if (! endstop_z_hit_on_purpose())
goto error;
for (uint8_t i = 0; i < n_iter; ++ i) {
#ifdef TMC2130
if ((tmc2130_mode == TMC2130_MODE_NORMAL) && (READ(Z_TMC2130_DIAG) != 0)) goto error; //crash Z detected
#endif //TMC2130
for (uint8_t i = 0; i < n_iter; ++ i)
{
// Move up the retract distance.
current_position[Z_AXIS] += .5f;
go_to_current(homing_feedrate[Z_AXIS]/60);
@ -884,10 +936,16 @@ inline bool find_bed_induction_sensor_point_z(float minimum_z, uint8_t n_iter, i
update_current_position_z();
if (! endstop_z_hit_on_purpose())
goto error;
#ifdef TMC2130
if ((tmc2130_mode == TMC2130_MODE_NORMAL) && (READ(Z_TMC2130_DIAG) != 0)) goto error; //crash Z detected
#endif //TMC2130
// SERIAL_ECHOPGM("Bed find_bed_induction_sensor_point_z low, height: ");
// MYSERIAL.print(current_position[Z_AXIS], 5);
// SERIAL_ECHOLNPGM("");
float dz = i?abs(current_position[Z_AXIS] - (z / i)):0;
z += current_position[Z_AXIS];
// printf_P(PSTR(" Z[%d] = %d, dz=%d\n"), i, (int)(current_position[Z_AXIS] * 1000), (int)(dz * 1000));
if (dz > 0.05) goto error;//deviation > 50um
}
current_position[Z_AXIS] = z;
if (n_iter > 1)
@ -2675,8 +2733,21 @@ bool sample_mesh_and_store_reference()
memcpy(destination, current_position, sizeof(destination));
enable_endstops(true);
homeaxis(Z_AXIS);
#ifdef TMC2130
if (!axis_known_position[Z_AXIS] && (READ(Z_TMC2130_DIAG) != 0)) //Z crash
{
kill(MSG_BED_LEVELING_FAILED_POINT_LOW);
return false;
}
#endif //TMC2130
enable_endstops(false);
find_bed_induction_sensor_point_z();
if (!find_bed_induction_sensor_point_z()) //Z crash or deviation > 50um
{
kill(MSG_BED_LEVELING_FAILED_POINT_LOW);
return false;
}
mbl.set_z(0, 0, current_position[Z_AXIS]);
}
for (int8_t mesh_point = 1; mesh_point != MESH_MEAS_NUM_X_POINTS * MESH_MEAS_NUM_Y_POINTS; ++ mesh_point) {
@ -2694,7 +2765,11 @@ bool sample_mesh_and_store_reference()
lcd_implementation_print_at(0, next_line, mesh_point+1);
lcd_printPGM(MSG_MEASURE_BED_REFERENCE_HEIGHT_LINE2);
#endif /* MESH_BED_CALIBRATION_SHOW_LCD */
find_bed_induction_sensor_point_z();
if (!find_bed_induction_sensor_point_z()) //Z crash or deviation > 50um
{
kill(MSG_BED_LEVELING_FAILED_POINT_LOW);
return false;
}
// Get cords of measuring point
int8_t ix = mesh_point % MESH_MEAS_NUM_X_POINTS;
int8_t iy = mesh_point / MESH_MEAS_NUM_X_POINTS;

View file

@ -5,6 +5,7 @@
// The world coordinates match the machine coordinates only in case, when the machine
// is built properly, the end stops are at the correct positions and the axes are perpendicular.
extern const float bed_ref_points[] PROGMEM;
extern const float bed_ref_points_4[] PROGMEM;
extern const float bed_skew_angle_mild;
extern const float bed_skew_angle_extreme;
@ -37,26 +38,6 @@ extern void world2machine_initialize();
// to current_position[x,y].
extern void world2machine_update_current();
inline void world2machine(const float &x, const float &y, float &out_x, float &out_y)
{
if (world2machine_correction_mode == WORLD2MACHINE_CORRECTION_NONE) {
// No correction.
out_x = x;
out_y = y;
} else {
if (world2machine_correction_mode & WORLD2MACHINE_CORRECTION_SKEW) {
// Firs the skew & rotation correction.
out_x = world2machine_rotation_and_skew[0][0] * x + world2machine_rotation_and_skew[0][1] * y;
out_y = world2machine_rotation_and_skew[1][0] * x + world2machine_rotation_and_skew[1][1] * y;
}
if (world2machine_correction_mode & WORLD2MACHINE_CORRECTION_SHIFT) {
// Then add the offset.
out_x += world2machine_shift[0];
out_y += world2machine_shift[1];
}
}
}
inline void world2machine(float &x, float &y)
{
if (world2machine_correction_mode == WORLD2MACHINE_CORRECTION_NONE) {
@ -77,6 +58,13 @@ inline void world2machine(float &x, float &y)
}
}
inline void world2machine(const float &x, const float &y, float &out_x, float &out_y)
{
out_x = x;
out_y = y;
world2machine(out_x, out_y);
}
inline void machine2world(float x, float y, float &out_x, float &out_y)
{
if (world2machine_correction_mode == WORLD2MACHINE_CORRECTION_NONE) {
@ -147,17 +135,22 @@ extern bool find_bed_induction_sensor_point_z(float minimum_z = -10.f, uint8_t n
extern bool find_bed_induction_sensor_point_xy(int verbosity_level = 0);
extern void go_home_with_z_lift();
// Positive or zero: ok
// Negative: failed
/**
* @brief Bed skew and offest detection result
*
* Positive or zero: ok
* Negative: failed
*/
enum BedSkewOffsetDetectionResultType {
// Detection failed, some point was not found.
BED_SKEW_OFFSET_DETECTION_POINT_NOT_FOUND = -1,
BED_SKEW_OFFSET_DETECTION_FITTING_FAILED = -2,
BED_SKEW_OFFSET_DETECTION_POINT_NOT_FOUND = -1, //!< Point not found.
BED_SKEW_OFFSET_DETECTION_FITTING_FAILED = -2, //!< Fitting failed
// Detection finished with success.
BED_SKEW_OFFSET_DETECTION_PERFECT = 0,
BED_SKEW_OFFSET_DETECTION_SKEW_MILD = 1,
BED_SKEW_OFFSET_DETECTION_SKEW_EXTREME = 2
BED_SKEW_OFFSET_DETECTION_PERFECT = 0, //!< Perfect.
BED_SKEW_OFFSET_DETECTION_SKEW_MILD = 1, //!< Mildly skewed.
BED_SKEW_OFFSET_DETECTION_SKEW_EXTREME = 2 //!< Extremely skewed.
};
extern BedSkewOffsetDetectionResultType find_bed_offset_and_skew(int8_t verbosity_level, uint8_t &too_far_mask);

View file

@ -92,7 +92,10 @@ int pat9125_init()
// pat9125_PID2 = 0x91;
if ((pat9125_PID1 != 0x31) || (pat9125_PID2 != 0x91))
{
return 0;
pat9125_PID1 = pat9125_rd_reg(PAT9125_PID1);
pat9125_PID2 = pat9125_rd_reg(PAT9125_PID2);
if ((pat9125_PID1 != 0x31) || (pat9125_PID2 != 0x91))
return 0;
}
// Switch to bank0, not allowed to perform OTS_RegWriteRead.
pat9125_wr_reg(PAT9125_BANK_SELECTION, 0);
@ -132,6 +135,9 @@ int pat9125_init()
pat9125_wr_reg(PAT9125_BANK_SELECTION, 0x00);
// Enable write protect.
pat9125_wr_reg(PAT9125_WP, 0x00);
pat9125_PID1 = pat9125_rd_reg(PAT9125_PID1);
pat9125_PID2 = pat9125_rd_reg(PAT9125_PID2);
return 1;
}
@ -142,11 +148,13 @@ int pat9125_update()
unsigned char ucMotion = pat9125_rd_reg(PAT9125_MOTION);
pat9125_b = pat9125_rd_reg(PAT9125_FRAME);
pat9125_s = pat9125_rd_reg(PAT9125_SHUTTER);
if (pat9125_PID1 == 0xff) return 0;
if (ucMotion & 0x80)
{
unsigned char ucXL = pat9125_rd_reg(PAT9125_DELTA_XL);
unsigned char ucYL = pat9125_rd_reg(PAT9125_DELTA_YL);
unsigned char ucXYH = pat9125_rd_reg(PAT9125_DELTA_XYH);
if (pat9125_PID1 == 0xff) return 0;
int iDX = ucXL | ((ucXYH << 4) & 0xf00);
int iDY = ucYL | ((ucXYH << 8) & 0xf00);
if (iDX & 0x800) iDX -= 4096;
@ -164,10 +172,12 @@ int pat9125_update_y()
if ((pat9125_PID1 == 0x31) && (pat9125_PID2 == 0x91))
{
unsigned char ucMotion = pat9125_rd_reg(PAT9125_MOTION);
if (pat9125_PID1 == 0xff) return 0;
if (ucMotion & 0x80)
{
unsigned char ucYL = pat9125_rd_reg(PAT9125_DELTA_YL);
unsigned char ucXYH = pat9125_rd_reg(PAT9125_DELTA_XYH);
if (pat9125_PID1 == 0xff) return 0;
int iDY = ucYL | ((ucXYH << 8) & 0xf00);
if (iDY & 0x800) iDY -= 4096;
pat9125_y -= iDY; //negative number, because direction switching does not work
@ -179,6 +189,7 @@ int pat9125_update_y()
unsigned char pat9125_rd_reg(unsigned char addr)
{
// printf_P(PSTR("pat9125_rd_reg 0x%hhx "), addr);
unsigned char data = 0;
#ifdef PAT9125_SWSPI
swspi_start();
@ -188,6 +199,14 @@ unsigned char pat9125_rd_reg(unsigned char addr)
#endif //PAT9125_SWSPI
#ifdef PAT9125_SWI2C
int iret = swi2c_readByte_A8(PAT9125_I2C_ADDR, addr, &data);
if (!iret) //NO ACK error
{
pat9125_PID1 = 0xff;
pat9125_PID2 = 0xff;
// printf_P(PSTR("ERR\n"));
return 0;
}
// printf_P(PSTR("0x%hhx OK\n"), data);
#endif //PAT9125_SWI2C
#ifdef PAT9125_HWI2C
Wire.beginTransmission(PAT9125_I2C_ADDR);
@ -202,6 +221,7 @@ unsigned char pat9125_rd_reg(unsigned char addr)
void pat9125_wr_reg(unsigned char addr, unsigned char data)
{
// printf_P(PSTR("pat9125_wr_reg 0x%hhx 0x%hhx "), addr, data);
#ifdef PAT9125_SWSPI
swspi_start();
swspi_tx(addr | 0x80);
@ -210,6 +230,15 @@ void pat9125_wr_reg(unsigned char addr, unsigned char data)
#endif //PAT9125_SWSPI
#ifdef PAT9125_SWI2C
int iret = swi2c_writeByte_A8(PAT9125_I2C_ADDR, addr, &data);
if (!iret) //NO ACK error
{
pat9125_PID1 = 0xff;
pat9125_PID2 = 0xff;
// printf_P(PSTR("ERR\n"));
return;
}
// printf_P(PSTR("OK\n"));
#endif //PAT9125_SWI2C
#ifdef PAT9125_HWI2C
Wire.beginTransmission(PAT9125_I2C_ADDR);

View file

@ -985,7 +985,7 @@ static void updateTemperaturesFromRawValues()
}
#ifdef PINDA_THERMISTOR
current_temperature_pinda = analog2tempPINDA(current_temperature_raw_pinda);
current_temperature_pinda = analog2tempBed(current_temperature_raw_pinda);
#endif
#ifdef AMBIENT_THERMISTOR

View file

@ -9,6 +9,7 @@
#include "stepper.h"
#include "ConfigurationStore.h"
#include <string.h>
#include "Timer.h"
#include "util.h"
#include "mesh_bed_leveling.h"
@ -107,6 +108,11 @@ union MenuData
// editMenuParentState is used when an edit menu is entered, so it knows
// the return menu and encoder state.
struct EditMenuParentState editMenuParentState;
struct AutoLoadFilamentMenu
{
Timer timer;
} autoLoadFilamentMenu;
};
// State of the currently active menu.
@ -187,6 +193,7 @@ unsigned char firstrun = 1;
/** forward declarations **/
static const char* lcd_display_message_fullscreen_nonBlocking_P(const char *msg, uint8_t &nlines);
// void copy_and_scalePID_i();
// void copy_and_scalePID_d();
@ -1595,8 +1602,7 @@ static void lcd_menu_fails_stats_total()
if (lcd_clicked())
{
lcd_quick_feedback();
//lcd_return_to_status();
lcd_goto_menu(lcd_menu_fails_stats, 4);
menu_action_back();
}
}
@ -1616,8 +1622,7 @@ static void lcd_menu_fails_stats_print()
if (lcd_clicked())
{
lcd_quick_feedback();
//lcd_return_to_status();
lcd_goto_menu(lcd_menu_fails_stats, 2);
menu_action_back();
}
}
/**
@ -1752,10 +1757,10 @@ static void lcd_preheat_menu()
MENU_ITEM(back, MSG_MAIN, 0);
if (farm_mode) {
MENU_ITEM(function, PSTR("farm - " STRINGIFY(FARM_PREHEAT_HOTEND_TEMP) "/" STRINGIFY(FARM_PREHEAT_HPB_TEMP)), lcd_preheat_farm);
MENU_ITEM(function, PSTR("nozzle - " STRINGIFY(FARM_PREHEAT_HOTEND_TEMP) "/0"), lcd_preheat_farm_nozzle);
MENU_ITEM(function, PSTR("farm - " STRINGIFY(FARM_PREHEAT_HOTEND_TEMP) "/" STRINGIFY(FARM_PREHEAT_HPB_TEMP)), lcd_preheat_farm);
MENU_ITEM(function, PSTR("nozzle - " STRINGIFY(FARM_PREHEAT_HOTEND_TEMP) "/0"), lcd_preheat_farm_nozzle);
MENU_ITEM(function, MSG_COOLDOWN, lcd_cooldown);
MENU_ITEM(function, PSTR("ABS - " STRINGIFY(ABS_PREHEAT_HOTEND_TEMP) "/" STRINGIFY(ABS_PREHEAT_HPB_TEMP)), lcd_preheat_abs);
MENU_ITEM(function, PSTR("ABS - " STRINGIFY(ABS_PREHEAT_HOTEND_TEMP) "/" STRINGIFY(ABS_PREHEAT_HPB_TEMP)), lcd_preheat_abs);
} else {
MENU_ITEM(function, PSTR("PLA - " STRINGIFY(PLA_PREHEAT_HOTEND_TEMP) "/" STRINGIFY(PLA_PREHEAT_HPB_TEMP)), lcd_preheat_pla);
MENU_ITEM(function, PSTR("PET - " STRINGIFY(PET_PREHEAT_HOTEND_TEMP) "/" STRINGIFY(PET_PREHEAT_HPB_TEMP)), lcd_preheat_pet);
@ -1834,9 +1839,9 @@ static void lcd_support_menu()
MENU_ITEM(submenu, MSG_MENU_TEMPERATURES, lcd_menu_temperatures);
#if defined (VOLT_BED_PIN) || defined (VOLT_BED_PIN)
#if defined (VOLT_BED_PIN) || defined (VOLT_PWR_PIN)
MENU_ITEM(submenu, MSG_MENU_VOLTAGES, lcd_menu_voltages);
#endif //defined VOLT_BED_PIN || defined VOLT_BED_PIN
#endif //defined VOLT_BED_PIN || defined VOLT_PWR_PIN
#ifdef DEBUG_BUILD
MENU_ITEM(submenu, PSTR("Debug"), lcd_menu_debug);
@ -1877,7 +1882,7 @@ void lcd_unLoadFilament()
lcd_implementation_clear();
}
lcd_return_to_status();
menu_action_back();
}
void lcd_change_filament() {
@ -2070,39 +2075,50 @@ void lcd_alright() {
}
void lcd_LoadFilament()
{
if (degHotend0() > EXTRUDE_MINTEMP)
{
#ifdef PAT9125
if (filament_autoload_enabled && fsensor_enabled)
{
lcd_show_fullscreen_message_and_wait_P(MSG_AUTOLOADING_ENABLED);
return;
}
static void lcd_menu_AutoLoadFilament()
{
if (degHotend0() > EXTRUDE_MINTEMP)
{
uint8_t nlines;
lcd_display_message_fullscreen_nonBlocking_P(MSG_AUTOLOADING_ENABLED,nlines);
}
else
{
if (!menuData.autoLoadFilamentMenu.timer.running()) menuData.autoLoadFilamentMenu.timer.start();
lcd.setCursor(0, 0);
lcd_printPGM(MSG_ERROR);
lcd.setCursor(0, 2);
lcd_printPGM(MSG_PREHEAT_NOZZLE);
if (menuData.autoLoadFilamentMenu.timer.expired(2000ul)) menu_action_back();
}
if (lcd_clicked()) menu_action_back();
}
#endif //PAT9125
custom_message = true;
loading_flag = true;
enquecommand_P(PSTR("M701")); //load filament
SERIAL_ECHOLN("Loading filament");
static void lcd_LoadFilament()
{
if (degHotend0() > EXTRUDE_MINTEMP)
{
custom_message = true;
loading_flag = true;
enquecommand_P(PSTR("M701")); //load filament
SERIAL_ECHOLN("Loading filament");
lcd_return_to_status();
}
else
else
{
lcd_implementation_clear();
lcd.setCursor(0, 0);
lcd_printPGM(MSG_ERROR);
lcd.setCursor(0, 2);
lcd_printPGM(MSG_PREHEAT_NOZZLE);
lcd_printPGM(MSG_PREHEAT_NOZZLE);
delay(2000);
lcd_implementation_clear();
}
lcd_return_to_status();
}
void lcd_menu_statistics()
{
@ -2602,6 +2618,35 @@ void lcd_adjust_z() {
}
bool lcd_wait_for_pinda(float temp) {
lcd_set_custom_characters_degree();
setTargetHotend(0, 0);
setTargetBed(0);
Timer pinda_timeout;
pinda_timeout.start();
bool target_temp_reached = true;
while (current_temperature_pinda > temp){
lcd_display_message_fullscreen_P(MSG_WAITING_TEMP_PINDA);
lcd.setCursor(0, 4);
lcd.print(LCD_STR_THERMOMETER[0]);
lcd.print(ftostr3(current_temperature_pinda));
lcd.print("/");
lcd.print(ftostr3(temp));
lcd.print(LCD_STR_DEGREE);
delay_keep_alive(1000);
serialecho_temperatures();
if (pinda_timeout.expired(8 * 60 * 1000ul)) { //PINDA cooling from 60 C to 35 C takes about 7 minutes
target_temp_reached = false;
break;
}
}
lcd_set_custom_characters_arrows();
lcd_update_enable(true);
return(target_temp_reached);
}
void lcd_wait_for_heater() {
lcd_display_message_fullscreen_P(MSG_WIZARD_HEATING);
@ -2749,11 +2794,16 @@ static inline bool pgm_is_interpunction(const char *c_addr)
return c == '.' || c == ',' || c == ':'|| c == ';' || c == '?' || c == '!' || c == '/';
}
const char* lcd_display_message_fullscreen_P(const char *msg, uint8_t &nlines)
/**
* @brief show full screen message
*
* This function is non-blocking
* @param msg message to be displayed from PROGMEM
* @param nlines
* @return rest of the text (to be displayed on next page)
*/
static const char* lcd_display_message_fullscreen_nonBlocking_P(const char *msg, uint8_t &nlines)
{
// Disable update of the screen by the usual lcd_update() routine.
lcd_update_enable(false);
lcd_implementation_clear();
lcd.setCursor(0, 0);
const char *msgend = msg;
uint8_t row = 0;
@ -2806,6 +2856,21 @@ const char* lcd_display_message_fullscreen_P(const char *msg, uint8_t &nlines)
return multi_screen ? msgend : NULL;
}
const char* lcd_display_message_fullscreen_P(const char *msg, uint8_t &nlines)
{
// Disable update of the screen by the usual lcd_update() routine.
lcd_update_enable(false);
lcd_implementation_clear();
return lcd_display_message_fullscreen_nonBlocking_P(msg, nlines);
}
/**
* @brief show full screen message and wait
*
* This function is blocking.
* @param msg message to be displayed from PROGMEM
*/
void lcd_show_fullscreen_message_and_wait_P(const char *msg)
{
const char *msg_next = lcd_display_message_fullscreen_P(msg);
@ -3046,6 +3111,36 @@ void lcd_bed_calibration_show_result(BedSkewOffsetDetectionResultType result, ui
}
}
void lcd_temp_cal_show_result(bool result) {
custom_message_type = 0;
custom_message = false;
disable_x();
disable_y();
disable_z();
disable_e0();
disable_e1();
disable_e2();
setTargetBed(0); //set bed target temperature back to 0
if (result == true) {
eeprom_update_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 1);
SERIAL_ECHOLNPGM("Temperature calibration done. Continue with pressing the knob.");
lcd_show_fullscreen_message_and_wait_P(MSG_TEMP_CALIBRATION_DONE);
temp_cal_active = true;
eeprom_update_byte((unsigned char *)EEPROM_TEMP_CAL_ACTIVE, 1);
}
else {
eeprom_update_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 0);
SERIAL_ECHOLNPGM("Temperature calibration failed. Continue with pressing the knob.");
lcd_show_fullscreen_message_and_wait_P(MSG_TEMP_CAL_FAILED);
temp_cal_active = false;
eeprom_update_byte((unsigned char *)EEPROM_TEMP_CAL_ACTIVE, 0);
}
lcd_update_enable(true);
lcd_update(2);
}
static void lcd_show_end_stops() {
lcd.setCursor(0, 0);
lcd_printPGM((PSTR("End stops diag")));
@ -5617,11 +5712,11 @@ static void lcd_main_menu()
#ifndef SNMM
#ifdef PAT9125
if ( ((filament_autoload_enabled == true) && (fsensor_enabled == true)))
MENU_ITEM(function, MSG_AUTOLOAD_FILAMENT, lcd_LoadFilament);
MENU_ITEM(submenu, MSG_AUTOLOAD_FILAMENT, lcd_menu_AutoLoadFilament);
else
#endif //PAT9125
MENU_ITEM(function, MSG_LOAD_FILAMENT, lcd_LoadFilament);
MENU_ITEM(function, MSG_UNLOAD_FILAMENT, lcd_unLoadFilament);
MENU_ITEM(submenu, MSG_UNLOAD_FILAMENT, lcd_unLoadFilament);
#endif
#ifdef SNMM
MENU_ITEM(submenu, MSG_LOAD_FILAMENT, fil_load_menu);
@ -6164,6 +6259,11 @@ bool lcd_selftest()
_result = lcd_selftest_fan_dialog(0);
#else //defined(TACH_0)
_result = lcd_selftest_manual_fan_check(0, false);
if (!_result)
{
const char *_err;
lcd_selftest_error(7, _err, _err); //extruder fan not spinning
}
#endif //defined(TACH_0)
@ -6174,6 +6274,12 @@ bool lcd_selftest()
_result = lcd_selftest_fan_dialog(1);
#else //defined(TACH_1)
_result = lcd_selftest_manual_fan_check(1, false);
if (!_result)
{
const char *_err;
lcd_selftest_error(6, _err, _err); //print fan not spinning
}
#endif //defined(TACH_1)
}
@ -6881,6 +6987,8 @@ static bool lcd_selftest_manual_fan_check(int _fan, bool check_opposite)
int8_t enc_dif = 0;
KEEPALIVE_STATE(PAUSED_FOR_USER);
button_pressed = false;
do
{
switch (_fan)

View file

@ -280,6 +280,10 @@ void lcd_wait_for_cool_down();
void adjust_bed_reset();
void lcd_extr_cal_reset();
void lcd_temp_cal_show_result(bool result);
bool lcd_wait_for_pinda(float temp);
union MenuData;
void bowden_menu();

View file

@ -194,7 +194,7 @@ extern volatile uint16_t buttons; //an extended version of the last checked but
LCD_CLASS lcd(LCD_I2C_ADDRESS, LCD_WIDTH, LCD_HEIGHT);
// 2 wire Non-latching LCD SR from:
// https://bitbucket.org/fmalpartida/new-LiquidCrystal_Prusa/wiki/schematics#!shiftregister-connection
// https://bitbucket.org/fmalpartida/new-LiquidCrystal/wiki/schematics#!shiftregister-connection
#elif defined(SR_LCD_2W_NL)
extern "C" void __cxa_pure_virtual() { while (1); }

View file

@ -260,6 +260,10 @@ bool force_selftest_if_fw_version()
else if (ver_with_calibration[i] < ver_eeprom[i])
break;
}
//force selftest also in case that version used before flashing new firmware was 3.2.0-RC1
if ((ver_eeprom[0] == 3) && (ver_eeprom[1] == 2) && (ver_eeprom[2] == 0) && (ver_eeprom[3] == 3)) force_selftest = true;
return force_selftest;
}

View file

@ -76,6 +76,8 @@ const bool Z_MIN_ENDSTOP_INVERTING = false; // set to true to invert the logic o
#define NUM_AXIS 4 // The axis order in all axis related arrays is X, Y, Z, E
#define HOMING_FEEDRATE {3000, 3000, 800, 0} // set the homing speeds (mm/min) // 3000 is also valid for stallGuard homing. Valid range: 2200 - 3000
#define DEFAULT_Y_OFFSET 4.f // Offset of [0;0] point, when the printer is not calibrated
#define DEFAULT_MAX_FEEDRATE {200, 200, 12, 120} // (mm/sec) max feedrate (M203)
#define DEFAULT_MAX_ACCELERATION {1000, 1000, 200, 5000} // (mm/sec^2) max acceleration (M201)
@ -242,8 +244,8 @@ const bool Z_MIN_ENDSTOP_INVERTING = false; // set to true to invert the logic o
#define TMC2130_SG_THRS_E 3 // stallguard sensitivity for E axis
//new settings is possible for vsense = 1, running current value > 31 set vsense to zero and shift both currents by 1 bit right (Z axis only)
#define TMC2130_CURRENTS_H {16, 20, 28, 36} // default holding currents for all axes
#define TMC2130_CURRENTS_R {16, 20, 28, 36} // default running currents for all axes
#define TMC2130_CURRENTS_H {16, 20, 35, 26} // default holding currents for all axes
#define TMC2130_CURRENTS_R {16, 20, 35, 26} // default running currents for all axes
#define TMC2130_UNLOAD_CURRENT_R 12 // lowe current for M600 to protect filament sensor
#define TMC2130_STEALTH_Z

View file

@ -384,8 +384,12 @@ void xyzcal_adjust_pixels(uint8_t* pixels, uint16_t* histo)
for (l = 14; l > 8; l--)
if (histo[l] >= 10)
break;
uint8_t pix_min = (max_l << 4) / 2;
uint8_t pix_min = 0;
uint8_t pix_max = l << 4;
if (histo[0] < (32*32 - 144))
{
pix_min = (max_l << 4) / 2;
}
uint8_t pix_dif = pix_max - pix_min;
DBG(_n(" min=%d max=%d dif=%d\n"), pix_min, pix_max, pix_dif);
for (int16_t i = 0; i < 32*32; i++)