commit
8ff38493f0
@ -9,7 +9,7 @@
|
|||||||
|
|
||||||
// Firmware version
|
// Firmware version
|
||||||
#define FW_VERSION "3.1.1-RC4"
|
#define FW_VERSION "3.1.1-RC4"
|
||||||
#define FW_COMMIT_NR 145
|
#define FW_COMMIT_NR 146
|
||||||
#define FW_DEV_VERSION FW_VERSION_RC
|
#define FW_DEV_VERSION FW_VERSION_RC
|
||||||
#define FW_VERSION_FULL FW_VERSION "-" STR(FW_COMMIT_NR)
|
#define FW_VERSION_FULL FW_VERSION "-" STR(FW_COMMIT_NR)
|
||||||
|
|
||||||
|
@ -311,6 +311,8 @@ void Config_RetrieveSettings(uint16_t offset, uint8_t level)
|
|||||||
EEPROM_READ_VAR(i,max_jerk[Y_AXIS]);
|
EEPROM_READ_VAR(i,max_jerk[Y_AXIS]);
|
||||||
EEPROM_READ_VAR(i,max_jerk[Z_AXIS]);
|
EEPROM_READ_VAR(i,max_jerk[Z_AXIS]);
|
||||||
EEPROM_READ_VAR(i,max_jerk[E_AXIS]);
|
EEPROM_READ_VAR(i,max_jerk[E_AXIS]);
|
||||||
|
if (max_jerk[X_AXIS] > DEFAULT_XJERK) max_jerk[X_AXIS] = DEFAULT_XJERK;
|
||||||
|
if (max_jerk[Y_AXIS] > DEFAULT_YJERK) max_jerk[Y_AXIS] = DEFAULT_YJERK;
|
||||||
EEPROM_READ_VAR(i,add_homing);
|
EEPROM_READ_VAR(i,add_homing);
|
||||||
#ifndef ULTIPANEL
|
#ifndef ULTIPANEL
|
||||||
int plaPreheatHotendTemp, plaPreheatHPBTemp, plaPreheatFanSpeed;
|
int plaPreheatHotendTemp, plaPreheatHPBTemp, plaPreheatFanSpeed;
|
||||||
|
@ -75,12 +75,17 @@ const bool Z_MIN_ENDSTOP_INVERTING = false; // set to true to invert the logic o
|
|||||||
#define MANUAL_FEEDRATE {2700, 2700, 1000, 100} // set the speeds for manual moves (mm/min)
|
#define MANUAL_FEEDRATE {2700, 2700, 1000, 100} // set the speeds for manual moves (mm/min)
|
||||||
|
|
||||||
//Silent mode limits
|
//Silent mode limits
|
||||||
#define SILENT_MAX_ACCEL_X 960 // X-axis max acceleration in silent mode in mm/s^2
|
#define SILENT_MAX_ACCEL 960 // max axxeleration in silent mode in mm/s^2
|
||||||
#define SILENT_MAX_ACCEL_Y 960 // Y-axis max axxeleration in silent mode in mm/s^2
|
#define SILENT_MAX_ACCEL_ST (100*SILENT_MAX_ACCEL) // max accel in steps/s^2
|
||||||
#define SILENT_MAX_ACCEL_X_ST (100*SILENT_MAX_ACCEL_X) // X max accel in steps/s^2
|
|
||||||
#define SILENT_MAX_ACCEL_Y_ST (100*SILENT_MAX_ACCEL_Y) // Y max accel in steps/s^2
|
|
||||||
#define SILENT_MAX_FEEDRATE 172 //max feedrate in mm/s, because mode switched to normal for homming , this value limits also homing, it should be greater (172mm/s=9600mm/min>2700mm/min)
|
#define SILENT_MAX_FEEDRATE 172 //max feedrate in mm/s, because mode switched to normal for homming , this value limits also homing, it should be greater (172mm/s=9600mm/min>2700mm/min)
|
||||||
|
|
||||||
|
//Normal mode limits
|
||||||
|
#define NORMAL_MAX_ACCEL 2500 // Y-axis max axxeleration in normal mode in mm/s^2
|
||||||
|
#define NORMAL_MAX_ACCEL_ST (100*NORMAL_MAX_ACCEL) // max accel in steps/s^2
|
||||||
|
#define NORMAL_MAX_FEEDRATE 200 //max feedrate in mm/s, because mode switched to normal for homming , this value limits also homing, it should be greater (172mm/s=9600mm/min>2700mm/min)
|
||||||
|
|
||||||
|
//#define SIMPLE_ACCEL_LIMIT //new limitation method for normal/silent
|
||||||
|
|
||||||
//number of bytes from end of the file to start check
|
//number of bytes from end of the file to start check
|
||||||
#define END_FILE_SECTION 10000
|
#define END_FILE_SECTION 10000
|
||||||
|
|
||||||
@ -96,8 +101,8 @@ const bool Z_MIN_ENDSTOP_INVERTING = false; // set to true to invert the logic o
|
|||||||
// this value is litlebit higher that real limit, because ambient termistor is on the board and is temperated from it,
|
// this value is litlebit higher that real limit, because ambient termistor is on the board and is temperated from it,
|
||||||
// temperature inside the case is around 31C for ambient temperature 25C, when the printer is powered on long time and idle
|
// temperature inside the case is around 31C for ambient temperature 25C, when the printer is powered on long time and idle
|
||||||
// the real limit is 15C (same as MINTEMP limit), this is because 15C is end of scale for both used thermistors (bed, heater)
|
// the real limit is 15C (same as MINTEMP limit), this is because 15C is end of scale for both used thermistors (bed, heater)
|
||||||
#define MINTEMP_MINAMBIENT 18
|
#define MINTEMP_MINAMBIENT 25
|
||||||
#define MINTEMP_MINAMBIENT_RAW 991
|
#define MINTEMP_MINAMBIENT_RAW 978
|
||||||
|
|
||||||
|
|
||||||
//DEBUG
|
//DEBUG
|
||||||
|
@ -4941,6 +4941,8 @@ Sigma_Exit:
|
|||||||
if(code_seen('Y')) max_jerk[Y_AXIS] = code_value();
|
if(code_seen('Y')) max_jerk[Y_AXIS] = code_value();
|
||||||
if(code_seen('Z')) max_jerk[Z_AXIS] = code_value();
|
if(code_seen('Z')) max_jerk[Z_AXIS] = code_value();
|
||||||
if(code_seen('E')) max_jerk[E_AXIS] = code_value();
|
if(code_seen('E')) max_jerk[E_AXIS] = code_value();
|
||||||
|
if (max_jerk[X_AXIS] > DEFAULT_XJERK) max_jerk[X_AXIS] = DEFAULT_XJERK;
|
||||||
|
if (max_jerk[Y_AXIS] > DEFAULT_YJERK) max_jerk[Y_AXIS] = DEFAULT_YJERK;
|
||||||
}
|
}
|
||||||
break;
|
break;
|
||||||
case 206: // M206 additional homing offset
|
case 206: // M206 additional homing offset
|
||||||
|
@ -153,11 +153,12 @@ bool fsensor_check_autoload(void)
|
|||||||
|
|
||||||
ISR(PCINT2_vect)
|
ISR(PCINT2_vect)
|
||||||
{
|
{
|
||||||
// return;
|
|
||||||
if (!((fsensor_int_pin_old ^ PINK) & FSENSOR_INT_PIN_MSK)) return;
|
if (!((fsensor_int_pin_old ^ PINK) & FSENSOR_INT_PIN_MSK)) return;
|
||||||
|
static bool _lock = false;
|
||||||
|
if (_lock) return;
|
||||||
|
_lock = true;
|
||||||
// puts("PCINT2\n");
|
// puts("PCINT2\n");
|
||||||
// return;
|
// return;
|
||||||
|
|
||||||
int st_cnt = fsensor_st_cnt;
|
int st_cnt = fsensor_st_cnt;
|
||||||
fsensor_st_cnt = 0;
|
fsensor_st_cnt = 0;
|
||||||
sei();
|
sei();
|
||||||
@ -218,6 +219,7 @@ ISR(PCINT2_vect)
|
|||||||
}
|
}
|
||||||
}
|
}
|
||||||
pat9125_y = 0;
|
pat9125_y = 0;
|
||||||
|
_lock = true;
|
||||||
return;
|
return;
|
||||||
}
|
}
|
||||||
|
|
||||||
|
@ -1003,8 +1003,19 @@ Having the real displacement of the head, we can calculate the total movement le
|
|||||||
current_speed[i] = delta_mm[i] * inverse_second;
|
current_speed[i] = delta_mm[i] * inverse_second;
|
||||||
#ifdef TMC2130
|
#ifdef TMC2130
|
||||||
float max_fr = max_feedrate[i];
|
float max_fr = max_feedrate[i];
|
||||||
if ((tmc2130_mode == TMC2130_MODE_SILENT) && (i < 2))
|
if (i < 2) // X, Y
|
||||||
|
{
|
||||||
|
if (tmc2130_mode == TMC2130_MODE_SILENT)
|
||||||
|
{
|
||||||
|
if (max_fr > SILENT_MAX_FEEDRATE)
|
||||||
max_fr = SILENT_MAX_FEEDRATE;
|
max_fr = SILENT_MAX_FEEDRATE;
|
||||||
|
}
|
||||||
|
else
|
||||||
|
{
|
||||||
|
if (max_fr > NORMAL_MAX_FEEDRATE)
|
||||||
|
max_fr = NORMAL_MAX_FEEDRATE;
|
||||||
|
}
|
||||||
|
}
|
||||||
if(fabs(current_speed[i]) > max_fr)
|
if(fabs(current_speed[i]) > max_fr)
|
||||||
speed_factor = min(speed_factor, max_fr / fabs(current_speed[i]));
|
speed_factor = min(speed_factor, max_fr / fabs(current_speed[i]));
|
||||||
#else //TMC2130
|
#else //TMC2130
|
||||||
@ -1036,21 +1047,41 @@ Having the real displacement of the head, we can calculate the total movement le
|
|||||||
{
|
{
|
||||||
block->acceleration_st = ceil(acceleration * steps_per_mm); // convert to: acceleration steps/sec^2
|
block->acceleration_st = ceil(acceleration * steps_per_mm); // convert to: acceleration steps/sec^2
|
||||||
#ifdef TMC2130
|
#ifdef TMC2130
|
||||||
|
#ifdef SIMPLE_ACCEL_LIMIT // in some cases can be acceleration limited inproperly
|
||||||
if (tmc2130_mode == TMC2130_MODE_SILENT)
|
if (tmc2130_mode == TMC2130_MODE_SILENT)
|
||||||
{
|
{
|
||||||
if(((float)block->acceleration_st * (float)block->steps_x / (float)block->step_event_count) > SILENT_MAX_ACCEL_X_ST)
|
if (block->steps_x || block->steps_y)
|
||||||
block->acceleration_st = SILENT_MAX_ACCEL_X_ST;
|
if (block->acceleration_st > SILENT_MAX_ACCEL_ST) block->acceleration_st = SILENT_MAX_ACCEL_ST;
|
||||||
if(((float)block->acceleration_st * (float)block->steps_y / (float)block->step_event_count) > SILENT_MAX_ACCEL_Y_ST)
|
}
|
||||||
block->acceleration_st = SILENT_MAX_ACCEL_Y_ST;
|
else
|
||||||
|
{
|
||||||
|
if (block->steps_x || block->steps_y)
|
||||||
|
if (block->acceleration_st > NORMAL_MAX_ACCEL_ST) block->acceleration_st = NORMAL_MAX_ACCEL_ST;
|
||||||
|
}
|
||||||
|
if (block->steps_x && (block->acceleration_st > axis_steps_per_sqr_second[X_AXIS])) block->acceleration_st = axis_steps_per_sqr_second[X_AXIS];
|
||||||
|
if (block->steps_y && (block->acceleration_st > axis_steps_per_sqr_second[Y_AXIS])) block->acceleration_st = axis_steps_per_sqr_second[Y_AXIS];
|
||||||
|
if (block->steps_z && (block->acceleration_st > axis_steps_per_sqr_second[Z_AXIS])) block->acceleration_st = axis_steps_per_sqr_second[Z_AXIS];
|
||||||
|
if (block->steps_e && (block->acceleration_st > axis_steps_per_sqr_second[E_AXIS])) block->acceleration_st = axis_steps_per_sqr_second[E_AXIS];
|
||||||
|
#else // SIMPLE_ACCEL_LIMIT
|
||||||
|
if (tmc2130_mode == TMC2130_MODE_SILENT)
|
||||||
|
{
|
||||||
|
if ((block->steps_x > block->step_event_count / 2) || (block->steps_y > block->step_event_count / 2))
|
||||||
|
if (block->acceleration_st > SILENT_MAX_ACCEL_ST) block->acceleration_st = SILENT_MAX_ACCEL_ST;
|
||||||
|
}
|
||||||
|
else
|
||||||
|
{
|
||||||
|
if ((block->steps_x > block->step_event_count / 2) || (block->steps_y > block->step_event_count / 2))
|
||||||
|
if (block->acceleration_st > NORMAL_MAX_ACCEL_ST) block->acceleration_st = NORMAL_MAX_ACCEL_ST;
|
||||||
}
|
}
|
||||||
if(((float)block->acceleration_st * (float)block->steps_x / (float)block->step_event_count) > axis_steps_per_sqr_second[X_AXIS])
|
if(((float)block->acceleration_st * (float)block->steps_x / (float)block->step_event_count) > axis_steps_per_sqr_second[X_AXIS])
|
||||||
block->acceleration_st = axis_steps_per_sqr_second[X_AXIS];
|
block->acceleration_st = axis_steps_per_sqr_second[X_AXIS];
|
||||||
if(((float)block->acceleration_st * (float)block->steps_y / (float)block->step_event_count) > axis_steps_per_sqr_second[Y_AXIS])
|
if(((float)block->acceleration_st * (float)block->steps_y / (float)block->step_event_count) > axis_steps_per_sqr_second[Y_AXIS])
|
||||||
block->acceleration_st = axis_steps_per_sqr_second[Y_AXIS];
|
block->acceleration_st = axis_steps_per_sqr_second[Y_AXIS];
|
||||||
if(((float)block->acceleration_st * (float)block->steps_e / (float)block->step_event_count) > axis_steps_per_sqr_second[E_AXIS])
|
|
||||||
block->acceleration_st = axis_steps_per_sqr_second[E_AXIS];
|
|
||||||
if(((float)block->acceleration_st * (float)block->steps_z / (float)block->step_event_count ) > axis_steps_per_sqr_second[Z_AXIS])
|
if(((float)block->acceleration_st * (float)block->steps_z / (float)block->step_event_count ) > axis_steps_per_sqr_second[Z_AXIS])
|
||||||
block->acceleration_st = axis_steps_per_sqr_second[Z_AXIS];
|
block->acceleration_st = axis_steps_per_sqr_second[Z_AXIS];
|
||||||
|
if(((float)block->acceleration_st * (float)block->steps_e / (float)block->step_event_count) > axis_steps_per_sqr_second[E_AXIS])
|
||||||
|
block->acceleration_st = axis_steps_per_sqr_second[E_AXIS];
|
||||||
|
#endif // SIMPLE_ACCEL_LIMIT
|
||||||
#else //TMC2130
|
#else //TMC2130
|
||||||
// Limit acceleration per axis
|
// Limit acceleration per axis
|
||||||
//FIXME Vojtech: One shall rather limit a projection of the acceleration vector instead of using the limit.
|
//FIXME Vojtech: One shall rather limit a projection of the acceleration vector instead of using the limit.
|
||||||
|
Loading…
Reference in New Issue
Block a user