PowerPanic

experimental
This commit is contained in:
MRprusa3d 2018-07-20 04:47:33 +02:00
parent fbd586ff87
commit a09d44b869
3 changed files with 157 additions and 170 deletions

View file

@ -181,6 +181,11 @@
#define EEPROM_EXTRUDEMULTIPLY (EEPROM_EXTRUDER_MULTIPLIER_2 - 2) // uint16
//
#define EEPROM_UVLO_TINY_CURRENT_POSITION_Z (EEPROM_EXTRUDEMULTIPLY-4) // float
#define EEPROM_UVLO_TINY_Z_MICROSTEPS (EEPROM_UVLO_TINY_CURRENT_POSITION_Z-2) // uint16
//TMC2130 configuration
#define EEPROM_TMC_AXIS_SIZE //axis configuration block size
#define EEPROM_TMC_X (EEPROM_TMC + 0 * EEPROM_TMC_AXIS_SIZE) //X axis configuration blok

View file

@ -396,6 +396,7 @@ void serialecho_temperatures();
bool check_commands();
void uvlo_();
void uvlo_tiny();
void recover_print(uint8_t automatic);
void setup_uvlo_interrupt();
@ -403,7 +404,8 @@ void setup_uvlo_interrupt();
void setup_fan_interrupt();
#endif
extern void recover_machine_state_after_power_panic();
//extern void recover_machine_state_after_power_panic();
extern void recover_machine_state_after_power_panic(bool bTiny);
extern void restore_print_from_eeprom();
extern void position_menu();
@ -464,8 +466,4 @@ void gcode_M701();
#define UVLO !(PINE & (1<<4))
void proc_commands();
bool mmu_get_reponse();
void mmu_not_responding();
void mmu_load_to_nozzle();
void proc_commands();

View file

@ -484,7 +484,9 @@ static float feedrate = 1500.0, next_feedrate, saved_feedrate;
// Also there is bool axis_relative_modes[] per axis flag.
static bool relative_mode = false;
#ifndef _DISABLE_M42_M226
const int sensitive_pins[] = SENSITIVE_PINS; // Sensitive pin list for M42
#endif //_DISABLE_M42_M226
//static float tt = 0;
//static float bt = 0;
@ -856,7 +858,7 @@ void factory_reset(char level, bool quiet)
eeprom_update_word((uint16_t *)EEPROM_POWER_COUNT_TOT, 0);
fsensor_enable();
fsensor_autoload_set(true);
fautoload_set(true);
WRITE(BEEPER, HIGH);
_delay_ms(100);
@ -1376,6 +1378,7 @@ void setup()
#ifdef TMC2130
uint8_t silentMode = eeprom_read_byte((uint8_t*)EEPROM_SILENT);
if (silentMode == 0xff) silentMode = 0;
// tmc2130_mode = silentMode?TMC2130_MODE_SILENT:TMC2130_MODE_NORMAL;
tmc2130_mode = TMC2130_MODE_NORMAL;
uint8_t crashdet = eeprom_read_byte((uint8_t*)EEPROM_CRASH_DET);
if (crashdet && !farm_mode)
@ -1429,7 +1432,6 @@ void setup()
#ifdef TMC2130
tmc2130_mode = silentMode?TMC2130_MODE_SILENT:TMC2130_MODE_NORMAL;
update_mode_profile();
tmc2130_init();
#endif //TMC2130
@ -1723,7 +1725,11 @@ void setup()
#endif //TMC2130
#ifdef UVLO_SUPPORT
if (eeprom_read_byte((uint8_t*)EEPROM_UVLO) == 1) { //previous print was terminated by UVLO
//-//
MYSERIAL.println(">>> Setup");
MYSERIAL.println(eeprom_read_byte((uint8_t*)EEPROM_UVLO),DEC);
// if (eeprom_read_byte((uint8_t*)EEPROM_UVLO) == 1) { //previous print was terminated by UVLO
if (eeprom_read_byte((uint8_t*)EEPROM_UVLO) != 0) { //previous print was terminated by UVLO
/*
if (lcd_show_fullscreen_message_yes_no_and_wait_P(_T(MSG_RECOVER_PRINT), false)) recover_print();
else {
@ -1749,7 +1755,8 @@ void setup()
#endif
if ( lcd_show_fullscreen_message_yes_no_and_wait_P(_T(MSG_RECOVER_PRINT), false) ) recover_print(0);
else {
eeprom_update_byte((uint8_t*)EEPROM_UVLO, 0);
//-//
// eeprom_update_byte((uint8_t*)EEPROM_UVLO, 0);
lcd_update_enable(true);
lcd_update(2);
lcd_setstatuspgm(_T(WELCOME_MSG));
@ -2598,7 +2605,6 @@ void force_high_power_mode(bool start_high_power_section) {
st_synchronize();
cli();
tmc2130_mode = (start_high_power_section == true) ? TMC2130_MODE_NORMAL : TMC2130_MODE_SILENT;
update_mode_profile();
tmc2130_init();
// We may have missed a stepper timer interrupt due to the time spent in the tmc2130_init() routine.
// Be safe than sorry, reset the stepper timer before re-enabling interrupts.
@ -3107,22 +3113,14 @@ void gcode_M114()
void gcode_M701()
{
printf_P(PSTR("gcode_M701 begin\n"));
#if defined (SNMM) || defined (SNMM_V2)
#ifdef SNMM
extr_adj(snmm_extruder);//loads current extruder
#else
enable_z();
custom_message = true;
custom_message_type = 2;
bool old_watch_runout = fsensor_watch_runout;
fsensor_watch_runout = false;
fsensor_st_sum = 0;
fsensor_yd_sum = 0;
fsensor_er_sum = 0;
fsensor_yd_min = 255;
fsensor_yd_max = 0;
lcd_setstatuspgm(_T(MSG_LOADING_FILAMENT));
current_position[E_AXIS] += 40;
@ -3164,11 +3162,6 @@ void gcode_M701()
custom_message_type = 0;
#endif
fsensor_err_cnt = 0;
fsensor_watch_runout = old_watch_runout;
printf_P(_N("\nFSENSOR st_sum=%lu yd_sum=%lu er_sum=%lu\n"), fsensor_st_sum, fsensor_yd_sum, fsensor_er_sum);
printf_P(_N("\nFSENSOR yd_min=%hhu yd_max=%hhu yd_avg=%hhu\n"), fsensor_yd_min, fsensor_yd_max, fsensor_yd_sum * FSENSOR_CHUNK_LEN / fsensor_st_sum);
printf_P(PSTR("gcode_M701 end\n"));
}
/**
* @brief Get serial number from 32U2 processor
@ -3376,13 +3369,7 @@ void process_commands()
}
else if (code_seen("thx")) {
no_response = false;
}
else if (code_seen("MMURES")) {
fprintf_P(uart2io, PSTR("X0"));
bool response = mmu_get_reponse();
if (!response) mmu_not_responding();
}
else if (code_seen("RESET")) {
} else if (code_seen("RESET")) {
// careful!
if (farm_mode) {
#ifdef WATCHDOG
@ -4779,6 +4766,8 @@ void process_commands()
card.openFile(strchr_pointer + 4,true);
break;
case 24: //M24 - Start SD print
//-//
eeprom_update_byte((uint8_t*)EEPROM_UVLO,0);
if (!card.paused)
failstats_reset_print();
card.startFileprint();
@ -4882,6 +4871,7 @@ void process_commands()
autotempShutdown();
}
break;
#ifndef _DISABLE_M42_M226
case 42: //M42 -Change pin status via gcode
if (code_seen('S'))
{
@ -4909,6 +4899,7 @@ void process_commands()
}
}
break;
#endif //_DISABLE_M42_M226
case 44: // M44: Prusa3D: Reset the bed skew and offset calibration.
// Reset the baby step value and the baby step applied flag.
@ -5774,29 +5765,16 @@ Sigma_Exit:
}
break;
case 201: // M201
for (int8_t i = 0; i < NUM_AXIS; i++)
{
if (code_seen(axis_codes[i]))
{
int val = code_value();
#ifdef TMC2130
if ((i == X_AXIS) || (i == Y_AXIS))
{
int max_val = 0;
if (tmc2130_mode == TMC2130_MODE_NORMAL)
max_val = NORMAL_MAX_ACCEL_XY;
else if (tmc2130_mode == TMC2130_MODE_SILENT)
max_val = SILENT_MAX_ACCEL_XY;
if (val > max_val)
val = max_val;
}
#endif
max_acceleration_units_per_sq_second[i] = val;
}
}
// steps per sq second need to be updated to agree with the units per sq second (as they are what is used in the planner)
reset_acceleration_rates();
break;
for(int8_t i=0; i < NUM_AXIS; i++)
{
if(code_seen(axis_codes[i]))
{
max_acceleration_units_per_sq_second[i] = code_value();
}
}
// steps per sq second need to be updated to agree with the units per sq second (as they are what is used in the planner)
reset_acceleration_rates();
break;
#if 0 // Not used for Sprinter/grbl gen6
case 202: // M202
for(int8_t i=0; i < NUM_AXIS; i++) {
@ -5805,27 +5783,10 @@ Sigma_Exit:
break;
#endif
case 203: // M203 max feedrate mm/sec
for (int8_t i = 0; i < NUM_AXIS; i++)
{
if (code_seen(axis_codes[i]))
{
float val = code_value();
#ifdef TMC2130
if ((i == X_AXIS) || (i == Y_AXIS))
{
float max_val = 0;
if (tmc2130_mode == TMC2130_MODE_NORMAL)
max_val = NORMAL_MAX_FEEDRATE_XY;
else if (tmc2130_mode == TMC2130_MODE_SILENT)
max_val = SILENT_MAX_FEEDRATE_XY;
if (val > max_val)
val = max_val;
}
#endif //TMC2130
max_feedrate[i] = val;
}
}
break;
for(int8_t i=0; i < NUM_AXIS; i++) {
if(code_seen(axis_codes[i])) max_feedrate[i] = code_value();
}
break;
case 204: // M204 acclereration S normal moves T filmanent only moves
{
if(code_seen('S')) acceleration = code_value() ;
@ -5972,6 +5933,7 @@ Sigma_Exit:
}
break;
#ifndef _DISABLE_M42_M226
case 226: // M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
{
if(code_seen('P')){
@ -6023,6 +5985,7 @@ Sigma_Exit:
}
}
break;
#endif //_DISABLE_M42_M226
#if NUM_SERVOS > 0
case 280: // M280 - set servo position absolute. P: servo index, S: angle or microseconds
@ -6265,7 +6228,7 @@ Sigma_Exit:
{
#ifdef PAT9125
bool old_fsensor_enabled = fsensor_enabled;
// fsensor_enabled = false; //temporary solution for unexpected restarting
fsensor_enabled = false; //temporary solution for unexpected restarting
#endif //PAT9125
st_synchronize();
@ -6516,22 +6479,13 @@ Sigma_Exit:
//finish moves
st_synchronize();
lcd_display_message_fullscreen_P(_T(MSG_PULL_OUT_FILAMENT));
//disable extruder steppers so filament can be removed
disable_e0();
disable_e1();
disable_e2();
delay(100);
#ifdef SNMM_V2
fprintf_P(uart2io, PSTR("U0\n"));
// get response
bool response = mmu_get_reponse();
if (!response) mmu_not_responding();
#else
lcd_display_message_fullscreen_P(_T(MSG_PULL_OUT_FILAMENT));
WRITE(BEEPER, HIGH);
@ -6542,7 +6496,6 @@ Sigma_Exit:
counterBeep++;
}
WRITE(BEEPER, LOW);
#endif
KEEPALIVE_STATE(PAUSED_FOR_USER);
lcd_change_fil_state = lcd_show_fullscreen_message_yes_no_and_wait_P(_i("Was filament unload successful?"), false, true);////MSG_UNLOAD_SUCCESSFUL c=20 r=2
@ -6556,14 +6509,15 @@ Sigma_Exit:
KEEPALIVE_STATE(PAUSED_FOR_USER);
#ifdef PAT9125
if (filament_autoload_enabled && (old_fsensor_enabled || !fsensor_watch_runout)) fsensor_autoload_check_start();
if (filament_autoload_enabled && (old_fsensor_enabled || fsensor_M600)) fsensor_autoload_check_start();
#endif //PAT9125
// printf_P(PSTR("M600 PAT9125 filament_autoload_enabled=%d, old_fsensor_enabled=%d, fsensor_M600=%d"), filament_autoload_enabled, old_fsensor_enabled, fsensor_M600);
while(!lcd_clicked())
{
manage_heater();
manage_inactivity(true);
#ifdef PAT9125
if (filament_autoload_enabled && (old_fsensor_enabled || !fsensor_watch_runout) && fsensor_check_autoload())
if (filament_autoload_enabled && (old_fsensor_enabled || fsensor_M600) && fsensor_check_autoload())
{
tone(BEEPER, 1000);
delay_keep_alive(50);
@ -6579,7 +6533,7 @@ Sigma_Exit:
}
#ifdef PAT9125
if (filament_autoload_enabled && (old_fsensor_enabled || !fsensor_watch_runout)) fsensor_autoload_check_stop();
if (filament_autoload_enabled && (old_fsensor_enabled || fsensor_M600)) fsensor_autoload_check_stop();
#endif //PAT9125
//WRITE(BEEPER, LOW);
KEEPALIVE_STATE(IN_HANDLER);
@ -6611,19 +6565,14 @@ Sigma_Exit:
plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder);
target[E_AXIS] += 10;
plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 50, active_extruder);
//Extrude some filament
target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EXFEED, active_extruder);
#else
target[E_AXIS] += FILAMENTCHANGE_FIRSTFEED;
plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EFEED, active_extruder);
//Extrude some filament
target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EXFEED, active_extruder);
#endif // SNMM
//Extrude some filament
target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EXFEED, active_extruder);
//Wait for user to check the state
lcd_change_fil_state = 0;
@ -6729,8 +6678,7 @@ Sigma_Exit:
custom_message_type = 0;
#ifdef PAT9125
/*
// fsensor_enabled = old_fsensor_enabled; //temporary solution for unexpected restarting
fsensor_enabled = old_fsensor_enabled; //temporary solution for unexpected restarting
if (fsensor_M600)
{
@ -6742,11 +6690,10 @@ Sigma_Exit:
cmdqueue_pop_front();
}
KEEPALIVE_STATE(IN_HANDLER);
// fsensor_enable();
fsensor_enable();
fsensor_restore_print_and_continue();
}
fsensor_M600 = false;
*/
#endif //PAT9125
}
@ -6949,7 +6896,6 @@ Sigma_Exit:
case 914: // M914 Set normal mode
{
tmc2130_mode = TMC2130_MODE_NORMAL;
update_mode_profile();
tmc2130_init();
}
break;
@ -6957,7 +6903,6 @@ Sigma_Exit:
case 915: // M915 Set silent mode
{
tmc2130_mode = TMC2130_MODE_SILENT;
update_mode_profile();
tmc2130_init();
}
break;
@ -7049,20 +6994,12 @@ Sigma_Exit:
break;
case 701: //M701: load filament
{
#ifdef SNMM_V2
if (code_seen('E'))
{
snmm_extruder = code_value();
}
#endif
gcode_M701();
}
break;
case 702:
{
#if defined (SNMM) || defined (SNMM_V2)
#ifdef SNMM
if (code_seen('U')) {
extr_unload_used(); //unload all filaments which were used in current print
}
@ -7070,12 +7007,12 @@ Sigma_Exit:
extr_unload(); //unload just current filament
}
else {
extr_unload_all(); //unload all filaments
extr_unload_all(); //unload all filaments
}
#else
#ifdef PAT9125
bool old_fsensor_enabled = fsensor_enabled;
// fsensor_enabled = false;
fsensor_enabled = false;
#endif //PAT9125
custom_message = true;
custom_message_type = 2;
@ -7119,7 +7056,7 @@ Sigma_Exit:
custom_message = false;
custom_message_type = 0;
#ifdef PAT9125
// fsensor_enabled = old_fsensor_enabled;
fsensor_enabled = old_fsensor_enabled;
#endif //PAT9125
#endif
}
@ -7181,15 +7118,16 @@ Sigma_Exit:
break;
}
bool response = mmu_get_reponse();
if (!response) mmu_not_responding();
snmm_extruder = tmp_extruder; //filament change is finished
if (*(strchr_pointer + index) == '?') { // for single material usage with mmu
mmu_load_to_nozzle();
}
// get response
uart2_rx_clr();
while (!uart2_rx_ok())
{
//printf_P(PSTR("waiting..\n"));
delay_keep_alive(100);
}
#endif
#ifdef SNMM
@ -7673,7 +7611,7 @@ static void handleSafetyTimer()
void manage_inactivity(bool ignore_stepper_queue/*=false*/) //default argument set in Marlin.h
{
#ifdef PAT9125
if (fsensor_enabled && filament_autoload_enabled && fsensor_watch_runout && !moves_planned() && !IS_SD_PRINTING && !is_usb_printing && (lcd_commands_type != LCD_COMMAND_V2_CAL))
if (fsensor_enabled && filament_autoload_enabled && !fsensor_M600 && !moves_planned() && !IS_SD_PRINTING && !is_usb_printing && (lcd_commands_type != LCD_COMMAND_V2_CAL))
{
if (fsensor_autoload_enabled)
{
@ -8510,6 +8448,8 @@ void uvlo_()
{
unsigned long time_start = millis();
bool sd_print = card.sdprinting;
//-//
MYSERIAL.println(">>> uvlo()");
// Conserve power as soon as possible.
disable_x();
disable_y();
@ -8666,6 +8606,51 @@ void uvlo_()
};
}
void uvlo_tiny()
{
uint16_t z_microsteps=0;
bool sd_print=card.sdprinting;
MYSERIAL.println(">>> uvloTiny()");
// Conserve power as soon as possible.
disable_x();
disable_y();
disable_e0();
#ifdef TMC2130
tmc2130_set_current_h(Z_AXIS, 20);
tmc2130_set_current_r(Z_AXIS, 20);
#endif //TMC2130
// Read out the current Z motor microstep counter
#ifdef TMC2130
z_microsteps=tmc2130_rd_MSCNT(Z_TMC2130_CS);
#endif //TMC2130
planner_abort_hard();
sei();
plan_buffer_line(
current_position[X_AXIS],
current_position[Y_AXIS],
current_position[Z_AXIS]+UVLO_Z_AXIS_SHIFT+float((1024-z_microsteps+7)>>4)/axis_steps_per_unit[Z_AXIS],
current_position[E_AXIS],
40, active_extruder);
st_synchronize();
disable_z();
// Finaly store the "power outage" flag.
//if(sd_print)
eeprom_update_byte((uint8_t*)EEPROM_UVLO,2);
eeprom_update_word((uint16_t*)(EEPROM_UVLO_TINY_Z_MICROSTEPS),z_microsteps);
eeprom_update_float((float*)(EEPROM_UVLO_TINY_CURRENT_POSITION_Z), current_position[Z_AXIS]);
// Increment power failure counter
eeprom_update_byte((uint8_t*)EEPROM_POWER_COUNT, eeprom_read_byte((uint8_t*)EEPROM_POWER_COUNT) + 1);
eeprom_update_word((uint16_t*)EEPROM_POWER_COUNT_TOT, eeprom_read_word((uint16_t*)EEPROM_POWER_COUNT_TOT) + 1);
}
#endif //UVLO_SUPPORT
#if (defined(FANCHECK) && defined(TACH_1) && (TACH_1 >-1))
@ -8718,7 +8703,20 @@ void setup_uvlo_interrupt() {
ISR(INT4_vect) {
EIMSK &= ~(1 << 4); //disable INT4 interrupt to make sure that this code will be executed just once
SERIAL_ECHOLNPGM("INT4");
if (IS_SD_PRINTING) uvlo_();
//-//
// if (IS_SD_PRINTING) uvlo_();
//if(IS_SD_PRINTING && (!(eeprom_read_byte((uint8_t*)EEPROM_UVLO))) ) uvlo_();
if(IS_SD_PRINTING && (!(eeprom_read_byte((uint8_t*)EEPROM_UVLO))) ) uvlo_();
if(eeprom_read_byte((uint8_t*)EEPROM_UVLO)) uvlo_tiny();
/*
if(IS_SD_PRINTING)
{
MYSERIAL.println(">>> ");
if(!(eeprom_read_byte((uint8_t*)EEPROM_UVLO)))
uvlo_();
else uvlo_tiny();
}
*/
}
void recover_print(uint8_t automatic) {
@ -8727,10 +8725,17 @@ void recover_print(uint8_t automatic) {
lcd_update(2);
lcd_setstatuspgm(_i("Recovering print "));////MSG_RECOVERING_PRINT c=20 r=1
recover_machine_state_after_power_panic(); //recover position, temperatures and extrude_multipliers
//-//
// recover_machine_state_after_power_panic(); //recover position, temperatures and extrude_multipliers
MYSERIAL.println(">>> RecoverPrint");
MYSERIAL.println(eeprom_read_byte((uint8_t*)EEPROM_UVLO),DEC);
bool bTiny=(eeprom_read_byte((uint8_t*)EEPROM_UVLO)==2);
recover_machine_state_after_power_panic(bTiny); //recover position, temperatures and extrude_multipliers
// Lift the print head, so one may remove the excess priming material.
if (current_position[Z_AXIS] < 25)
//-//
//if (current_position[Z_AXIS] < 25)
if(!bTiny&&(current_position[Z_AXIS]<25))
enquecommand_P(PSTR("G1 Z25 F800"));
// Home X and Y axes. Homing just X and Y shall not touch the babystep and the world2machine transformation status.
enquecommand_P(PSTR("G28 X Y"));
@ -8748,7 +8753,10 @@ void recover_print(uint8_t automatic) {
enquecommand_P(PSTR("G1 E" STRINGIFY(-DEFAULT_RETRACTION)" F480"));
// Mark the power panic status as inactive.
eeprom_update_byte((uint8_t*)EEPROM_UVLO, 0);
//-//
MYSERIAL.println("===== before");
// eeprom_update_byte((uint8_t*)EEPROM_UVLO, 0);
MYSERIAL.println("===== after");
/*while ((abs(degHotend(0)- target_temperature[0])>5) || (abs(degBed() -target_temperature_bed)>3)) { //wait for heater and bed to reach target temp
delay_keep_alive(1000);
}*/
@ -8759,9 +8767,10 @@ void recover_print(uint8_t automatic) {
restore_print_from_eeprom();
printf_P(_N("Current pos Z_AXIS:%.3f\nCurrent pos E_AXIS:%.3f\n"), current_position[Z_AXIS], current_position[E_AXIS]);
MYSERIAL.println("===== konec");
}
void recover_machine_state_after_power_panic()
void recover_machine_state_after_power_panic(bool bTiny)
{
char cmd[30];
// 1) Recover the logical cordinates at the time of the power panic.
@ -8770,8 +8779,16 @@ void recover_machine_state_after_power_panic()
current_position[Y_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 4));
// Recover the logical coordinate of the Z axis at the time of the power panic.
// The current position after power panic is moved to the next closest 0th full step.
current_position[Z_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION_Z)) +
//-//
// current_position[Z_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION_Z)) +
// UVLO_Z_AXIS_SHIFT + float((1024 - eeprom_read_word((uint16_t*)(EEPROM_UVLO_Z_MICROSTEPS)) + 7) >> 4) / axis_steps_per_unit[Z_AXIS];
if(bTiny)
current_position[Z_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_TINY_CURRENT_POSITION_Z)) +
UVLO_Z_AXIS_SHIFT + float((1024 - eeprom_read_word((uint16_t*)(EEPROM_UVLO_TINY_Z_MICROSTEPS)) + 7) >> 4) / axis_steps_per_unit[Z_AXIS];
else
current_position[Z_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION_Z)) +
UVLO_Z_AXIS_SHIFT + float((1024 - eeprom_read_word((uint16_t*)(EEPROM_UVLO_Z_MICROSTEPS)) + 7) >> 4) / axis_steps_per_unit[Z_AXIS];
//-//
if (eeprom_read_byte((uint8_t*)EEPROM_UVLO_E_ABS)) {
current_position[E_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION_E));
sprintf_P(cmd, PSTR("G92 E"));
@ -8904,6 +8921,8 @@ void restore_print_from_eeprom() {
// Set a position in the file.
sprintf_P(cmd, PSTR("M26 S%lu"), position);
enquecommand(cmd);
//-//
enquecommand_P(PSTR("G4 S0"));
// Start SD print.
enquecommand_P(PSTR("M24"));
}
@ -9182,39 +9201,4 @@ static void print_time_remaining_init() {
print_percent_done_silent = PRINT_PERCENT_DONE_INIT;
}
bool mmu_get_reponse() {
bool response = true;
LongTimer mmu_get_reponse_timeout;
uart2_rx_clr();
mmu_get_reponse_timeout.start();
while (!uart2_rx_ok())
{
delay_keep_alive(100);
if (mmu_get_reponse_timeout.expired(30 * 1000ul)) { //PINDA cooling from 60 C to 35 C takes about 7 minutes
response = false;
break;
}
}
return response;
}
void mmu_not_responding() {
printf_P(PSTR("MMU not responding"));
}
void mmu_load_to_nozzle() {
bool saved_e_relative_mode = axis_relative_modes[E_AXIS];
if (!saved_e_relative_mode) {
enquecommand_front_P(PSTR("M82")); // set extruder to relative mode
}
enquecommand_front_P((PSTR("G1 E7.2000 F562")));
enquecommand_front_P((PSTR("G1 E14.4000 F871")));
enquecommand_front_P((PSTR("G1 E36.0000 F1393")));
enquecommand_front_P((PSTR("G1 E14.4000 F871")));
if (!saved_e_relative_mode) {
enquecommand_front_P(PSTR("M83")); // set extruder to relative mode
}
}
#define FIL_LOAD_LENGTH 60