Merge branch 'MK3_3.9.0' into flashair_display_ip

This commit is contained in:
odaki 2020-04-29 10:19:51 +09:00
commit a1254b3a3c
7 changed files with 128 additions and 68 deletions

View File

@ -16,8 +16,8 @@ extern uint16_t nPrinterType;
extern PGM_P sPrinterName;
// Firmware version
#define FW_VERSION "3.9.0-RC2"
#define FW_COMMIT_NR 3398
#define FW_VERSION "3.9.0-RC3"
#define FW_COMMIT_NR 3401
// FW_VERSION_UNKNOWN means this is an unofficial build.
// The firmware should only be checked into github with this symbol.
#define FW_DEV_VERSION FW_VERSION_UNKNOWN

View File

@ -9448,13 +9448,13 @@ static void handleSafetyTimer()
}
#endif //SAFETYTIMER
#define FS_CHECK_COUNT 15
#define FS_CHECK_COUNT 250
void manage_inactivity(bool ignore_stepper_queue/*=false*/) //default argument set in Marlin.h
{
#ifdef FILAMENT_SENSOR
bool bInhibitFlag;
#ifdef IR_SENSOR_ANALOG
static uint8_t nFSCheckCount=0;
static uint16_t nFSCheckCount=0;
#endif // IR_SENSOR_ANALOG
if (mmu_enabled == false)
@ -9474,25 +9474,53 @@ static uint8_t nFSCheckCount=0;
if (!moves_planned() && !IS_SD_PRINTING && !is_usb_printing && (lcd_commands_type != LcdCommands::Layer1Cal) && ! eeprom_read_byte((uint8_t*)EEPROM_WIZARD_ACTIVE))
{
#ifdef IR_SENSOR_ANALOG
bool bTemp=current_voltage_raw_IR>IRsensor_Hmin_TRESHOLD;
bTemp=bTemp&&current_voltage_raw_IR<IRsensor_Hopen_TRESHOLD;
bTemp=bTemp&&(!CHECK_ALL_HEATERS);
bTemp=bTemp&&(menu_menu==lcd_status_screen);
bTemp=bTemp&&((oFsensorPCB==ClFsensorPCB::_Old)||(oFsensorPCB==ClFsensorPCB::_Undef));
bTemp=bTemp&&fsensor_enabled;
if(bTemp)
{
static uint16_t minVolt = Voltage2Raw(6.F), maxVolt = 0;
// detect min-max, some long term sliding window for filtration may be added
// avoiding floating point operations, thus computing in raw
if( current_voltage_raw_IR > maxVolt )maxVolt = current_voltage_raw_IR;
if( current_voltage_raw_IR < minVolt )minVolt = current_voltage_raw_IR;
#if 0
{ // debug print
static uint16_t lastVolt = ~0U;
if( current_voltage_raw_IR != lastVolt ){
printf_P(PSTR("fs volt=%4.2fV (min=%4.2f max=%4.2f)\n"), Raw2Voltage(current_voltage_raw_IR), Raw2Voltage(minVolt), Raw2Voltage(maxVolt) );
lastVolt = current_voltage_raw_IR;
}
}
#endif
// the trouble is, I can hold the filament in the hole in such a way, that it creates the exact voltage
// to be detected as the new fsensor
// We can either fake it by extending the detection window to a looooong time
// or do some other countermeasures
// what we want to detect:
// if minvolt gets below ~0.6V, it means there is an old fsensor
// if maxvolt gets above 4.6V, it means we either have an old fsensor or broken cables/fsensor
// So I'm waiting for a situation, when minVolt gets to range <0, 0.7> and maxVolt gets into range <4.4, 5>
// If and only if minVolt is in range <0.6, 0.7> and maxVolt is in range <4.4, 4.5>, I'm considering a situation with the new fsensor
// otherwise, I don't care
if( minVolt >= Voltage2Raw(0.3F) && minVolt <= Voltage2Raw(0.5F)
&& maxVolt >= Voltage2Raw(4.2F) && maxVolt <= Voltage2Raw(4.6F)
){
bool bTemp = (!CHECK_ALL_HEATERS);
bTemp = bTemp && (menu_menu==lcd_status_screen);
bTemp = bTemp && ((oFsensorPCB==ClFsensorPCB::_Old)||(oFsensorPCB==ClFsensorPCB::_Undef));
bTemp = bTemp && fsensor_enabled;
if(bTemp){
nFSCheckCount++;
if(nFSCheckCount>FS_CHECK_COUNT)
{
if(nFSCheckCount>FS_CHECK_COUNT){
nFSCheckCount=0; // not necessary
oFsensorPCB=ClFsensorPCB::_Rev04;
eeprom_update_byte((uint8_t*)EEPROM_FSENSOR_PCB,(uint8_t)oFsensorPCB);
printf_IRSensorAnalogBoardChange(true);
lcd_setstatuspgm(_i("FS v0.4 or newer"));
}
}
else nFSCheckCount=0;
} else {
nFSCheckCount=0;
}
}
#endif // IR_SENSOR_ANALOG
if (fsensor_check_autoload())
{

View File

@ -174,39 +174,46 @@ void fsensor_init(void)
{
#ifdef PAT9125
uint8_t pat9125 = pat9125_init();
printf_P(PSTR("PAT9125_init:%hhu\n"), pat9125);
printf_P(PSTR("PAT9125_init:%hhu\n"), pat9125);
#endif //PAT9125
uint8_t fsensor = eeprom_read_byte((uint8_t*)EEPROM_FSENSOR);
uint8_t fsensor_enabled = eeprom_read_byte((uint8_t*)EEPROM_FSENSOR);
fsensor_autoload_enabled=eeprom_read_byte((uint8_t*)EEPROM_FSENS_AUTOLOAD_ENABLED);
fsensor_not_responding = false;
fsensor_not_responding = false;
#ifdef PAT9125
uint8_t oq_meassure_enabled = eeprom_read_byte((uint8_t*)EEPROM_FSENS_OQ_MEASS_ENABLED);
fsensor_oq_meassure_enabled = (oq_meassure_enabled == 1)?true:false;
fsensor_set_axis_steps_per_unit(cs.axis_steps_per_unit[E_AXIS]);
fsensor_set_axis_steps_per_unit(cs.axis_steps_per_unit[E_AXIS]);
if (!pat9125)
{
fsensor = 0; //disable sensor
if (!pat9125){
fsensor_enabled = 0; //disable sensor
fsensor_not_responding = true;
}
#endif //PAT9125
#ifdef IR_SENSOR_ANALOG
bIRsensorStateFlag=false;
oFsensorPCB=(ClFsensorPCB)eeprom_read_byte((uint8_t*)EEPROM_FSENSOR_PCB);
oFsensorActionNA=(ClFsensorActionNA)eeprom_read_byte((uint8_t*)EEPROM_FSENSOR_ACTION_NA);
bIRsensorStateFlag=false;
oFsensorPCB = (ClFsensorPCB)eeprom_read_byte((uint8_t*)EEPROM_FSENSOR_PCB);
oFsensorActionNA = (ClFsensorActionNA)eeprom_read_byte((uint8_t*)EEPROM_FSENSOR_ACTION_NA);
// If the fsensor is not responding even at the start of the printer,
// set this flag accordingly to show N/A in Settings->Filament sensor.
// This is even valid for both fsensor board revisions (0.3 or older and 0.4).
// Must be done after reading what type of fsensor board we have
fsensor_not_responding = ! fsensor_IR_check();
#endif //IR_SENSOR_ANALOG
if (fsensor)
if (fsensor_enabled){
fsensor_enable(false); // (in this case) EEPROM update is not necessary
else
} else {
fsensor_disable(false); // (in this case) EEPROM update is not necessary
}
printf_P(PSTR("FSensor %S"), (fsensor_enabled?PSTR("ENABLED"):PSTR("DISABLED")));
#ifdef IR_SENSOR_ANALOG
printf_P(PSTR(" (sensor board revision: %S)\n"),(oFsensorPCB==ClFsensorPCB::_Rev04) ? MSG_04_OR_NEWER : MSG_03_OR_OLDER);
printf_P(PSTR(" (sensor board revision:%S)\n"), (oFsensorPCB==ClFsensorPCB::_Rev04) ? _T(MSG_04_OR_NEWER) : _T(MSG_03_OR_OLDER));
#else //IR_SENSOR_ANALOG
printf_P(PSTR("\n"));
#endif //IR_SENSOR_ANALOG
if (check_for_ir_sensor()) ir_sensor_detected = true;
if (check_for_ir_sensor()){
ir_sensor_detected = true;
}
}
bool fsensor_enable(bool bUpdateEEPROM)
@ -691,12 +698,16 @@ void fsensor_update(void)
ADCSRB=nMUX2;
ENABLE_TEMPERATURE_INTERRUPT();
// end of sequence for ...
if((oFsensorPCB==ClFsensorPCB::_Rev04)&&((nADC*OVERSAMPLENR)>((int)IRsensor_Hopen_TRESHOLD)))
// Detection of correct function of fsensor v04 - it must NOT read >4.6V
// If it does, it means a disconnected cables or faulty board
if( (oFsensorPCB == ClFsensorPCB::_Rev04) && ( (nADC*OVERSAMPLENR) > IRsensor_Hopen_TRESHOLD ) )
{
fsensor_disable();
fsensor_not_responding = true;
printf_P(PSTR("IR sensor not responding (%d)!\n"),1);
if((ClFsensorActionNA)eeprom_read_byte((uint8_t*)EEPROM_FSENSOR_ACTION_NA)==ClFsensorActionNA::_Pause)
if((ClFsensorActionNA)eeprom_read_byte((uint8_t*)EEPROM_FSENSOR_ACTION_NA)==ClFsensorActionNA::_Pause)
// if we are printing and FS action is set to "Pause", force pause the print
if(oFsensorActionNA==ClFsensorActionNA::_Pause)
lcd_pause_print();
}
@ -720,14 +731,27 @@ void fsensor_update(void)
}
#ifdef IR_SENSOR_ANALOG
bool fsensor_IR_check()
{
uint16_t volt_IR_int;
bool bCheckResult;
/// This is called only upon start of the printer or when switching the fsensor ON in the menu
/// We cannot do temporal window checks here (aka the voltage has been in some range for a period of time)
bool fsensor_IR_check(){
if( IRsensor_Lmax_TRESHOLD <= current_voltage_raw_IR && current_voltage_raw_IR <= IRsensor_Hmin_TRESHOLD ){
// If the voltage is in forbidden range, the fsensor is ok, but the lever is mounted improperly.
// Or the user is so creative so that he can hold a piece of fillament in the hole in such a genius way,
// that the IR fsensor reading is within 1.5 and 3V ... this would have been highly unusual
// and would have been considered more like a sabotage than normal printer operation
printf_P(PSTR("fsensor in forbidden range 1.5-3V - bad lever\n"));
return false;
}
volt_IR_int=current_voltage_raw_IR;
bCheckResult=(volt_IR_int<((int)IRsensor_Lmax_TRESHOLD))||(volt_IR_int>((int)IRsensor_Hmin_TRESHOLD));
bCheckResult=bCheckResult&&(!((oFsensorPCB==ClFsensorPCB::_Rev04)&&(volt_IR_int>((int)IRsensor_Hopen_TRESHOLD))));
return(bCheckResult);
if( oFsensorPCB == ClFsensorPCB::_Rev04 ){
// newer IR sensor cannot normally produce 4.6-5V, this is considered a failure/bad mount
if( IRsensor_Hopen_TRESHOLD <= current_voltage_raw_IR && current_voltage_raw_IR <= IRsensor_VMax_TRESHOLD ){
printf_P(PSTR("fsensor v0.4 in fault range 4.6-5V - unconnected\n"));
return false;
}
}
// otherwise the IR fsensor is considered working correctly
return true;
}
#endif //IR_SENSOR_ANALOG

View File

@ -74,7 +74,7 @@ int current_voltage_raw_bed = 0;
#endif
#ifdef IR_SENSOR_ANALOG
int current_voltage_raw_IR = 0;
uint16_t current_voltage_raw_IR = 0;
#endif //IR_SENSOR_ANALOG
int current_temperature_bed_raw = 0;

View File

@ -79,7 +79,7 @@ extern int current_voltage_raw_bed;
#endif
#ifdef IR_SENSOR_ANALOG
extern int current_voltage_raw_IR;
extern uint16_t current_voltage_raw_IR;
#endif //IR_SENSOR_ANALOG
#if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1

View File

@ -1981,8 +1981,7 @@ static void lcd_menu_voltages()
lcd_home();
lcd_printf_P(PSTR(" PWR: %4.1fV\n" " BED: %4.1fV"), volt_pwr, volt_bed);
#ifdef IR_SENSOR_ANALOG
float volt_IR = VOLT_DIV_REF * ((float)current_voltage_raw_IR / (1023 * OVERSAMPLENR));
lcd_printf_P(PSTR("\n IR : %3.1fV"),volt_IR);
lcd_printf_P(PSTR("\n IR : %3.1fV"), Raw2Voltage(current_voltage_raw_IR));
#endif //IR_SENSOR_ANALOG
menu_back_if_clicked();
}
@ -2169,10 +2168,10 @@ static void lcd_support_menu()
switch(oFsensorPCB)
{
case ClFsensorPCB::_Old:
MENU_ITEM_BACK_P(MSG_03_OR_OLDER);
MENU_ITEM_BACK_P(_T(MSG_03_OR_OLDER));
break;
case ClFsensorPCB::_Rev04:
MENU_ITEM_BACK_P(MSG_04_OR_NEWER);
MENU_ITEM_BACK_P(_T(MSG_04_OR_NEWER));
break;
case ClFsensorPCB::_Undef:
default:
@ -7512,37 +7511,33 @@ void lcd_belttest()
#ifdef IR_SENSOR_ANALOG
// called also from marlin_main.cpp
void printf_IRSensorAnalogBoardChange(bool bPCBrev04){
printf_P(PSTR("Filament sensor board change detected: revision %S\n"), bPCBrev04 ? MSG_04_OR_NEWER : MSG_03_OR_OLDER);
printf_P(PSTR("Filament sensor board change detected: revision%S\n"), bPCBrev04 ? _T(MSG_04_OR_NEWER) : _T(MSG_03_OR_OLDER));
}
static bool lcd_selftest_IRsensor(bool bStandalone)
{
bool bAction;
bool bPCBrev04;
uint16_t volt_IR_int;
float volt_IR;
volt_IR_int=current_voltage_raw_IR;
bPCBrev04=(volt_IR_int<((int)IRsensor_Hopen_TRESHOLD));
volt_IR=VOLT_DIV_REF*((float)volt_IR_int/(1023*OVERSAMPLENR));
printf_P(PSTR("Measured filament sensor high level: %4.2fV\n"),volt_IR);
if(volt_IR_int < ((int)IRsensor_Hmin_TRESHOLD)){
volt_IR_int = current_voltage_raw_IR;
bPCBrev04=(volt_IR_int < IRsensor_Hopen_TRESHOLD);
printf_P(PSTR("Measured filament sensor high level: %4.2fV\n"), Raw2Voltage(volt_IR_int) );
if(volt_IR_int < IRsensor_Hmin_TRESHOLD){
if(!bStandalone)
lcd_selftest_error(TestError::FsensorLevel,"HIGH","");
return(false);
}
lcd_show_fullscreen_message_and_wait_P(_i("Insert the filament (do not load it) into the extruder and then press the knob."));
volt_IR_int=current_voltage_raw_IR;
volt_IR=VOLT_DIV_REF*((float)volt_IR_int/(1023*OVERSAMPLENR));
printf_P(PSTR("Measured filament sensor low level: %4.2fV\n"),volt_IR);
if(volt_IR_int > ((int)IRsensor_Lmax_TRESHOLD)){
volt_IR_int = current_voltage_raw_IR;
printf_P(PSTR("Measured filament sensor low level: %4.2fV\n"), Raw2Voltage(volt_IR_int));
if(volt_IR_int > (IRsensor_Lmax_TRESHOLD)){
if(!bStandalone)
lcd_selftest_error(TestError::FsensorLevel,"LOW","");
return(false);
}
if((bPCBrev04?1:0)!=(uint8_t)oFsensorPCB){ // safer then "(uint8_t)bPCBrev04"
if((bPCBrev04 ? 1 : 0) != (uint8_t)oFsensorPCB){ // safer then "(uint8_t)bPCBrev04"
printf_IRSensorAnalogBoardChange(bPCBrev04);
oFsensorPCB=bPCBrev04?ClFsensorPCB::_Rev04:ClFsensorPCB::_Old;
oFsensorPCB=bPCBrev04 ? ClFsensorPCB::_Rev04 : ClFsensorPCB::_Old;
eeprom_update_byte((uint8_t*)EEPROM_FSENSOR_PCB,(uint8_t)oFsensorPCB);
}
return(true);
@ -7558,10 +7553,14 @@ static void lcd_detect_IRsensor(){
return;
}
bAction = lcd_selftest_IRsensor(true);
if(bAction)
if(bAction){
lcd_show_fullscreen_message_and_wait_P(_i("Sensor verified, remove the filament now."));
else
// the fsensor board has been successfully identified, any previous "not responding" may be cleared now
fsensor_not_responding = false;
} else {
lcd_show_fullscreen_message_and_wait_P(_i("Verification failed, remove the filament and try again."));
// here it is unclear what to to with the fsensor_not_responding flag
}
bMenuFSDetect=false; // de-inhibits some code inside "manage_inactivity()"
}
#endif //IR_SENSOR_ANALOG

View File

@ -259,10 +259,19 @@ void lcd_wizard(WizState state);
#define VOLT_DIV_REF 5
#ifdef IR_SENSOR_ANALOG
#define IRsensor_Hmin_TRESHOLD (3.0*1023*OVERSAMPLENR/VOLT_DIV_REF) // ~3.0V (0.6*Vcc)
#define IRsensor_Lmax_TRESHOLD (1.5*1023*OVERSAMPLENR/VOLT_DIV_REF) // ~1.5V (0.3*Vcc)
#define IRsensor_Hopen_TRESHOLD (4.6*1023*OVERSAMPLENR/VOLT_DIV_REF) // ~4.6V (N.C. @ Ru~20-50k, Rd'=56k, Ru'=10k)
#define IRsensor_Ldiode_TRESHOLD (0.3*1023*OVERSAMPLENR/VOLT_DIV_REF) // ~0.3V
constexpr uint16_t Voltage2Raw(float V){
return ( V * 1023 * OVERSAMPLENR / VOLT_DIV_REF ) + 0.5F;
}
constexpr float Raw2Voltage(uint16_t raw){
return VOLT_DIV_REF*(raw / (1023.F * OVERSAMPLENR) );
}
constexpr uint16_t IRsensor_Hmin_TRESHOLD = Voltage2Raw(3.0F); // ~3.0V (0.6*Vcc), raw value=9821
constexpr uint16_t IRsensor_Lmax_TRESHOLD = Voltage2Raw(1.5F); // ~1.5V (0.3*Vcc), raw value=4910
constexpr uint16_t IRsensor_Hopen_TRESHOLD = Voltage2Raw(4.6F); // ~4.6V (N.C. @ Ru~20-50k, Rd'=56k, Ru'=10k), raw value=15059
constexpr uint16_t IRsensor_Ldiode_TRESHOLD = Voltage2Raw(0.3F); // ~0.3V, raw value=982
constexpr uint16_t IRsensor_VMax_TRESHOLD = Voltage2Raw(5.F); // ~5V, raw value=16368
#endif //IR_SENSOR_ANALOG
#endif //ULTRALCD_H