Merge remote-tracking branch 'upstream/MK3' into MK3-new_lang

This commit is contained in:
Robert Pelnar 2018-05-20 13:24:52 +02:00
commit a528f8837c
16 changed files with 384 additions and 190 deletions

View file

@ -7,8 +7,8 @@
#define STR(x) STR_HELPER(x)
// Firmware version
#define FW_VERSION "3.2.0-RC2"
#define FW_COMMIT_NR 534
#define FW_VERSION "3.2.1"
#define FW_COMMIT_NR 576
// FW_VERSION_UNKNOWN means this is an unofficial build.
// The firmware should only be checked into github with this symbol.
#define FW_DEV_VERSION FW_VERSION_UNKNOWN

View file

@ -343,7 +343,6 @@ extern unsigned long t_fan_rising_edge;
extern bool mesh_bed_leveling_flag;
extern bool mesh_bed_run_from_menu;
extern float distance_from_min[2];
extern bool sortAlpha;
extern char dir_names[3][9];

View file

@ -324,8 +324,6 @@ unsigned int custom_message_type;
unsigned int custom_message_state;
char snmm_filaments_used = 0;
float distance_from_min[2];
bool fan_state[2];
int fan_edge_counter[2];
int fan_speed[2];
@ -764,7 +762,8 @@ void factory_reset(char level, bool quiet)
calibration_status_store(CALIBRATION_STATUS_Z_CALIBRATION);
eeprom_write_byte((uint8_t*)EEPROM_WIZARD_ACTIVE, 1); //run wizard
farm_no = 0;
farm_mode == false;
//*** MaR::180501_01
farm_mode = false;
eeprom_update_byte((uint8_t*)EEPROM_FARM_MODE, farm_mode);
EEPROM_save_B(EEPROM_FARM_NUMBER, &farm_no);
@ -970,6 +969,7 @@ void setup()
setup_killpin();
setup_powerhold();
//*** MaR::180501_02b
farm_mode = eeprom_read_byte((uint8_t*)EEPROM_FARM_MODE);
EEPROM_read_B(EEPROM_FARM_NUMBER, &farm_no);
if ((farm_mode == 0xFF && farm_no == 0) || ((uint16_t)farm_no == 0xFFFF))
@ -1067,7 +1067,7 @@ void setup()
// tmc2130_mode = silentMode?TMC2130_MODE_SILENT:TMC2130_MODE_NORMAL;
tmc2130_mode = TMC2130_MODE_NORMAL;
uint8_t crashdet = eeprom_read_byte((uint8_t*)EEPROM_CRASH_DET);
if (crashdet)
if (crashdet && !farm_mode)
{
crashdet_enable();
MYSERIAL.println("CrashDetect ENABLED!");
@ -1165,6 +1165,7 @@ void setup()
#if defined(Z_AXIS_ALWAYS_ON)
enable_z();
#endif
//*** MaR::180501_02
farm_mode = eeprom_read_byte((uint8_t*)EEPROM_FARM_MODE);
EEPROM_read_B(EEPROM_FARM_NUMBER, &farm_no);
if ((farm_mode == 0xFF && farm_no == 0) || (farm_no == 0xFFFF)) farm_mode = false; //if farm_mode has not been stored to eeprom yet and farm number is set to zero or EEPROM is fresh, deactivate farm mode
@ -4221,13 +4222,15 @@ void process_commands()
}
break;
case 98: //activate farm mode
case 98: // G98 (activate farm mode)
farm_mode = 1;
PingTime = millis();
eeprom_update_byte((unsigned char *)EEPROM_FARM_MODE, farm_mode);
SilentModeMenu = SILENT_MODE_OFF;
eeprom_update_byte((unsigned char *)EEPROM_SILENT, SilentModeMenu);
break;
case 99: //deactivate farm mode
case 99: // G99 (deactivate farm mode)
farm_mode = 0;
lcd_printer_connected();
eeprom_update_byte((unsigned char *)EEPROM_FARM_MODE, farm_mode);
@ -7127,6 +7130,8 @@ void handle_status_leds(void) {
* @brief Turn off heating after 30 minutes of inactivity
*
* Full screen blocking notification message is shown after heater turning off.
* Paused print is not considered inactivity, as nozzle is cooled anyway and bed cooling would
* damage print.
*/
static void handleSafetyTimer()
{
@ -7134,8 +7139,8 @@ static void handleSafetyTimer()
#error Implemented only for one extruder.
#endif //(EXTRUDERS > 1)
static Timer safetyTimer;
if (IS_SD_PRINTING || is_usb_printing || (custom_message_type == 4) || (lcd_commands_type == LCD_COMMAND_V2_CAL) ||
(!degTargetBed() && !degTargetHotend(0)))
if (IS_SD_PRINTING || is_usb_printing || isPrintPaused || (custom_message_type == 4)
|| (lcd_commands_type == LCD_COMMAND_V2_CAL) || (!degTargetBed() && !degTargetHotend(0)))
{
safetyTimer.stop();
}
@ -7194,11 +7199,6 @@ void manage_inactivity(bool ignore_stepper_queue/*=false*/) //default argument s
fsensor_autoload_check_stop();
#endif //PAT9125
#ifdef SAFETYTIMER
handleSafetyTimer();
#endif //SAFETYTIMER
#ifdef SAFETYTIMER
handleSafetyTimer();
#endif //SAFETYTIMER

View file

@ -1168,6 +1168,11 @@ const char * const MSG_MAX_LANG_TABLE[1] PROGMEM = {
MSG_MAX_EN
};
const char MSG_MEASURED_OFFSET_EN[] PROGMEM = "[0;0] point offset";
const char * const MSG_MEASURED_OFFSET_LANG_TABLE[1] PROGMEM = {
MSG_MEASURED_OFFSET_EN
};
const char MSG_MEASURED_SKEW_EN[] PROGMEM = "Measured skew:";
const char MSG_MEASURED_SKEW_CZ[] PROGMEM = "Merene zkoseni:";
const char * const MSG_MEASURED_SKEW_LANG_TABLE[LANG_NUM] PROGMEM = {

View file

@ -394,6 +394,8 @@ extern const char* const MSG_MARK_FIL_LANG_TABLE[LANG_NUM];
#define MSG_MARK_FIL LANG_TABLE_SELECT(MSG_MARK_FIL_LANG_TABLE)
extern const char* const MSG_MAX_LANG_TABLE[1];
#define MSG_MAX LANG_TABLE_SELECT_EXPLICIT(MSG_MAX_LANG_TABLE, 0)
extern const char* const MSG_MEASURED_OFFSET_LANG_TABLE[1];
#define MSG_MEASURED_OFFSET LANG_TABLE_SELECT_EXPLICIT(MSG_MEASURED_OFFSET_LANG_TABLE, 0)
extern const char* const MSG_MEASURED_SKEW_LANG_TABLE[LANG_NUM];
#define MSG_MEASURED_SKEW LANG_TABLE_SELECT(MSG_MEASURED_SKEW_LANG_TABLE)
extern const char* const MSG_MEASURE_BED_REFERENCE_HEIGHT_LINE1_LANG_TABLE[LANG_NUM];

View file

@ -219,6 +219,7 @@
#define(length=17,lines=1) MSG_SHOW_END_STOPS "Show end stops"
#define MSG_CALIBRATE_BED "Calibrate XYZ"
#define MSG_CALIBRATE_BED_RESET "Reset XYZ calibr."
#define MSG_MEASURED_OFFSET "[0;0] point offset"
#define(length=20,lines=8) MSG_MOVE_CARRIAGE_TO_THE_TOP "Calibrating XYZ. Rotate the knob to move the Z carriage up to the end stoppers. Click when done."
#define(length=20,lines=8) MSG_MOVE_CARRIAGE_TO_THE_TOP_Z "Calibrating Z. Rotate the knob to move the Z carriage up to the end stoppers. Click when done."

View file

@ -57,13 +57,36 @@ const float bed_skew_angle_extreme = (0.25f * M_PI / 180.f);
#ifdef HEATBED_V2
// Positions of the bed reference points in the machine coordinates, referenced to the P.I.N.D.A sensor.
// The points are the following: center front, center right, center rear, center left.
/**
* [0,0] bed print area point X coordinate in bed coordinates ver. 05d/24V
*/
#define BED_PRINT_ZERO_REF_X 2.f
/**
* [0,0] bed print area point Y coordinate in bed coordinates ver. 05d/24V
*/
#define BED_PRINT_ZERO_REF_Y 9.4f
/**
* @brief Positions of the bed reference points in print area coordinates. ver. 05d/24V
*
* Numeral constants are in bed coordinates, subtracting macro defined values converts it to print area coordinates.
*
* The points are the following:
* MK2: center front, center right, center rear, center left.
* MK25 and MK3: front left, front right, rear right, rear left
*/
const float bed_ref_points_4[] PROGMEM = {
13.f - BED_ZERO_REF_X, 10.4f - BED_ZERO_REF_Y,
221.f - BED_ZERO_REF_X, 10.4f - BED_ZERO_REF_Y,
221.f - BED_ZERO_REF_X, 202.4f - BED_ZERO_REF_Y,
13.f - BED_ZERO_REF_X, 202.4f - BED_ZERO_REF_Y
37.f - BED_PRINT_ZERO_REF_X - X_PROBE_OFFSET_FROM_EXTRUDER - SHEET_PRINT_ZERO_REF_X,
18.4f - BED_PRINT_ZERO_REF_Y - Y_PROBE_OFFSET_FROM_EXTRUDER - SHEET_PRINT_ZERO_REF_Y,
245.f - BED_PRINT_ZERO_REF_X - X_PROBE_OFFSET_FROM_EXTRUDER - SHEET_PRINT_ZERO_REF_X,
18.4f - BED_PRINT_ZERO_REF_Y - Y_PROBE_OFFSET_FROM_EXTRUDER - SHEET_PRINT_ZERO_REF_Y,
245.f - BED_PRINT_ZERO_REF_X - X_PROBE_OFFSET_FROM_EXTRUDER - SHEET_PRINT_ZERO_REF_X,
210.4f - BED_PRINT_ZERO_REF_Y - Y_PROBE_OFFSET_FROM_EXTRUDER - SHEET_PRINT_ZERO_REF_Y,
37.f - BED_PRINT_ZERO_REF_X - X_PROBE_OFFSET_FROM_EXTRUDER - SHEET_PRINT_ZERO_REF_X,
210.4f - BED_PRINT_ZERO_REF_Y - Y_PROBE_OFFSET_FROM_EXTRUDER - SHEET_PRINT_ZERO_REF_Y
};
const float bed_ref_points[] PROGMEM = {
@ -732,19 +755,24 @@ void world2machine_reset()
}
/**
* @brief Set calibration matrix to default value
* @brief Get calibration matrix default value
*
* This is used if no valid calibration data can be read from EEPROM.
* @param [out] vec_x axis x vector
* @param [out] vec_y axis y vector
* @param [out] cntr offset vector
*/
static void world2machine_default()
static void world2machine_default(float vec_x[2], float vec_y[2], float cntr[2])
{
vec_x[0] = 1.f;
vec_x[1] = 0.f;
vec_y[0] = 0.f;
vec_y[1] = 1.f;
cntr[0] = 0.f;
#ifdef DEFAULT_Y_OFFSET
const float vx[] = { 1.f, 0.f };
const float vy[] = { 0.f, 1.f };
const float cntr[] = { 0.f, DEFAULT_Y_OFFSET };
world2machine_update(vx, vy, cntr);
cntr[1] = DEFAULT_Y_OFFSET;
#else
world2machine_reset();
cntr[1] = 0.f;
#endif
}
/**
@ -768,93 +796,121 @@ static inline bool vec_undef(const float v[2])
return vx[0] == 0x0FFFFFFFF || vx[1] == 0x0FFFFFFFF;
}
/**
* @brief Read and apply calibration data from EEPROM
* @brief Read calibration data from EEPROM
*
* If no calibration data has been stored in EEPROM or invalid,
* world2machine_default() is used.
*
* If stored calibration data is invalid, EEPROM storage is cleared.
*
* @param [out] vec_x axis x vector
* @param [out] vec_y axis y vector
* @param [out] cntr offset vector
*/
void world2machine_initialize()
void world2machine_read_valid(float vec_x[2], float vec_y[2], float cntr[2])
{
//SERIAL_ECHOLNPGM("world2machine_initialize");
float cntr[2] = {
eeprom_read_float((float*)(EEPROM_BED_CALIBRATION_CENTER+0)),
eeprom_read_float((float*)(EEPROM_BED_CALIBRATION_CENTER+4))
};
float vec_x[2] = {
eeprom_read_float((float*)(EEPROM_BED_CALIBRATION_VEC_X +0)),
eeprom_read_float((float*)(EEPROM_BED_CALIBRATION_VEC_X +4))
};
float vec_y[2] = {
eeprom_read_float((float*)(EEPROM_BED_CALIBRATION_VEC_Y +0)),
eeprom_read_float((float*)(EEPROM_BED_CALIBRATION_VEC_Y +4))
};
vec_x[0] = eeprom_read_float((float*)(EEPROM_BED_CALIBRATION_VEC_X +0));
vec_x[1] = eeprom_read_float((float*)(EEPROM_BED_CALIBRATION_VEC_X +4));
vec_y[0] = eeprom_read_float((float*)(EEPROM_BED_CALIBRATION_VEC_Y +0));
vec_y[1] = eeprom_read_float((float*)(EEPROM_BED_CALIBRATION_VEC_Y +4));
cntr[0] = eeprom_read_float((float*)(EEPROM_BED_CALIBRATION_CENTER+0));
cntr[1] = eeprom_read_float((float*)(EEPROM_BED_CALIBRATION_CENTER+4));
bool reset = false;
if (vec_undef(cntr) || vec_undef(vec_x) || vec_undef(vec_y)) {
// SERIAL_ECHOLNPGM("Undefined bed correction matrix.");
if (vec_undef(cntr) || vec_undef(vec_x) || vec_undef(vec_y))
{
#if 0
SERIAL_ECHOLNPGM("Undefined bed correction matrix.");
#endif
reset = true;
}
else {
else
{
// Length of the vec_x shall be close to unity.
float l = sqrt(vec_x[0] * vec_x[0] + vec_x[1] * vec_x[1]);
if (l < 0.9 || l > 1.1) {
// SERIAL_ECHOLNPGM("X vector length:");
// MYSERIAL.println(l);
// SERIAL_ECHOLNPGM("Invalid bed correction matrix. Length of the X vector out of range.");
if (l < 0.9 || l > 1.1)
{
#if 0
SERIAL_ECHOLNPGM("X vector length:");
MYSERIAL.println(l);
SERIAL_ECHOLNPGM("Invalid bed correction matrix. Length of the X vector out of range.");
#endif
reset = true;
}
// Length of the vec_y shall be close to unity.
l = sqrt(vec_y[0] * vec_y[0] + vec_y[1] * vec_y[1]);
if (l < 0.9 || l > 1.1) {
// SERIAL_ECHOLNPGM("Y vector length:");
// MYSERIAL.println(l);
// SERIAL_ECHOLNPGM("Invalid bed correction matrix. Length of the Y vector out of range.");
if (l < 0.9 || l > 1.1)
{
#if 0
SERIAL_ECHOLNPGM("Y vector length:");
MYSERIAL.println(l);
SERIAL_ECHOLNPGM("Invalid bed correction matrix. Length of the Y vector out of range.");
#endif
reset = true;
}
// Correction of the zero point shall be reasonably small.
l = sqrt(cntr[0] * cntr[0] + cntr[1] * cntr[1]);
if (l > 15.f) {
// SERIAL_ECHOLNPGM("Zero point correction:");
// MYSERIAL.println(l);
// SERIAL_ECHOLNPGM("Invalid bed correction matrix. Shift out of range.");
if (l > 15.f)
{
#if 0
SERIAL_ECHOLNPGM("Zero point correction:");
MYSERIAL.println(l);
SERIAL_ECHOLNPGM("Invalid bed correction matrix. Shift out of range.");
#endif
reset = true;
}
// vec_x and vec_y shall be nearly perpendicular.
l = vec_x[0] * vec_y[0] + vec_x[1] * vec_y[1];
if (fabs(l) > 0.1f) {
// SERIAL_ECHOLNPGM("Invalid bed correction matrix. X/Y axes are far from being perpendicular.");
if (fabs(l) > 0.1f)
{
#if 0
SERIAL_ECHOLNPGM("Invalid bed correction matrix. X/Y axes are far from being perpendicular.");
#endif
reset = true;
}
}
if (reset) {
// SERIAL_ECHOLNPGM("Invalid bed correction matrix. Resetting to identity.");
if (reset)
{
#if 0
SERIAL_ECHOLNPGM("Invalid bed correction matrix. Resetting to identity.");
#endif
reset_bed_offset_and_skew();
world2machine_default();
} else {
world2machine_update(vec_x, vec_y, cntr);
/*
SERIAL_ECHOPGM("world2machine_initialize() loaded: ");
MYSERIAL.print(world2machine_rotation_and_skew[0][0], 5);
SERIAL_ECHOPGM(", ");
MYSERIAL.print(world2machine_rotation_and_skew[0][1], 5);
SERIAL_ECHOPGM(", ");
MYSERIAL.print(world2machine_rotation_and_skew[1][0], 5);
SERIAL_ECHOPGM(", ");
MYSERIAL.print(world2machine_rotation_and_skew[1][1], 5);
SERIAL_ECHOPGM(", offset ");
MYSERIAL.print(world2machine_shift[0], 5);
SERIAL_ECHOPGM(", ");
MYSERIAL.print(world2machine_shift[1], 5);
SERIAL_ECHOLNPGM("");
*/
world2machine_default(vec_x, vec_y, cntr);
}
}
/**
* @brief Read and apply validated calibration data from EEPROM
*/
void world2machine_initialize()
{
#if 0
SERIAL_ECHOLNPGM("world2machine_initialize");
#endif
float vec_x[2];
float vec_y[2];
float cntr[2];
world2machine_read_valid(vec_x, vec_y, cntr);
world2machine_update(vec_x, vec_y, cntr);
#if 0
SERIAL_ECHOPGM("world2machine_initialize() loaded: ");
MYSERIAL.print(world2machine_rotation_and_skew[0][0], 5);
SERIAL_ECHOPGM(", ");
MYSERIAL.print(world2machine_rotation_and_skew[0][1], 5);
SERIAL_ECHOPGM(", ");
MYSERIAL.print(world2machine_rotation_and_skew[1][0], 5);
SERIAL_ECHOPGM(", ");
MYSERIAL.print(world2machine_rotation_and_skew[1][1], 5);
SERIAL_ECHOPGM(", offset ");
MYSERIAL.print(world2machine_shift[0], 5);
SERIAL_ECHOPGM(", ");
MYSERIAL.print(world2machine_shift[1], 5);
SERIAL_ECHOLNPGM("");
#endif
}
/**
* @brief Update current position after switching to corrected coordinates
*
@ -2576,12 +2632,11 @@ BedSkewOffsetDetectionResultType improve_bed_offset_and_skew(int8_t method, int8
// In case of success, update the too_far_mask from the calculated points.
for (uint8_t mesh_point = 0; mesh_point < 2; ++ mesh_point) {
float y = vec_x[1] * pgm_read_float(bed_ref_points_4+mesh_point*2) + vec_y[1] * pgm_read_float(bed_ref_points_4+mesh_point*2+1) + cntr[1];
distance_from_min[mesh_point] = (y - Y_MIN_POS_CALIBRATION_POINT_OUT_OF_REACH);
#ifdef SUPPORT_VERBOSITY
if (verbosity_level >= 20) {
SERIAL_ECHOLNPGM("");
SERIAL_ECHOPGM("Distance from min:");
MYSERIAL.print(distance_from_min[mesh_point]);
MYSERIAL.print(y - Y_MIN_POS_CALIBRATION_POINT_OUT_OF_REACH);
SERIAL_ECHOLNPGM("");
SERIAL_ECHOPGM("y:");
MYSERIAL.print(y);
@ -2960,8 +3015,7 @@ void babystep_reset()
babystepLoadZ = 0;
}
void count_xyz_details() {
float a1, a2;
void count_xyz_details(float (&distanceMin)[2]) {
float cntr[2] = {
eeprom_read_float((float*)(EEPROM_BED_CALIBRATION_CENTER + 0)),
eeprom_read_float((float*)(EEPROM_BED_CALIBRATION_CENTER + 4))
@ -2974,12 +3028,14 @@ void count_xyz_details() {
eeprom_read_float((float*)(EEPROM_BED_CALIBRATION_VEC_Y + 0)),
eeprom_read_float((float*)(EEPROM_BED_CALIBRATION_VEC_Y + 4))
};
#if 0
a2 = -1 * asin(vec_y[0] / MACHINE_AXIS_SCALE_Y);
a1 = asin(vec_x[1] / MACHINE_AXIS_SCALE_X);
//angleDiff = fabs(a2 - a1);
angleDiff = fabs(a2 - a1);
#endif
for (uint8_t mesh_point = 0; mesh_point < 2; ++mesh_point) {
float y = vec_x[1] * pgm_read_float(bed_ref_points_4 + mesh_point * 2) + vec_y[1] * pgm_read_float(bed_ref_points_4 + mesh_point * 2 + 1) + cntr[1];
distance_from_min[mesh_point] = (y - Y_MIN_POS_CALIBRATION_POINT_OUT_OF_REACH);
distanceMin[mesh_point] = (y - Y_MIN_POS_CALIBRATION_POINT_OUT_OF_REACH);
}
}

View file

@ -26,16 +26,10 @@ extern float world2machine_rotation_and_skew_inv[2][2];
// Shift of the machine zero point, in the machine coordinates.
extern float world2machine_shift[2];
// Resets the transformation to identity.
extern void world2machine_reset();
// Resets the transformation to identity and update current_position[X,Y] from the servos.
extern void world2machine_revert_to_uncorrected();
// Loads the transformation from the EEPROM, if available.
extern void world2machine_initialize();
// When switching from absolute to corrected coordinates,
// this will apply an inverse world2machine transformation
// to current_position[x,y].
extern void world2machine_read_valid(float vec_x[2], float vec_y[2], float cntr[2]);
extern void world2machine_update_current();
inline void world2machine(float &x, float &y)
@ -181,7 +175,8 @@ extern void babystep_undo();
// Reset the current babystep counter without moving the axes.
extern void babystep_reset();
extern void count_xyz_details();
extern void count_xyz_details(float (&distanceMin)[2]);
extern bool sample_z();
#endif /* MESH_BED_CALIBRATION_H */

View file

@ -472,11 +472,11 @@ void checkFanSpeed()
fans_check_enabled = (eeprom_read_byte((uint8_t*)EEPROM_FAN_CHECK_ENABLED) > 0);
static unsigned char fan_speed_errors[2] = { 0,0 };
#if (defined(FANCHECK) && defined(TACH_0) && (TACH_0 >-1))
if (fan_speed[0] == 0 && (current_temperature[0] > EXTRUDER_AUTO_FAN_TEMPERATURE)) fan_speed_errors[0]++;
if ((fan_speed[0] == 0) && (current_temperature[0] > EXTRUDER_AUTO_FAN_TEMPERATURE)) fan_speed_errors[0]++;
else fan_speed_errors[0] = 0;
#endif
#if (defined(FANCHECK) && defined(TACH_1) && (TACH_1 >-1))
if ((fan_speed[1] == 0)&& (fanSpeed > MIN_PRINT_FAN_SPEED)) fan_speed_errors[1]++;
if ((fan_speed[1] == 0) && ((blocks_queued() ? block_buffer[block_buffer_tail].fan_speed : fanSpeed) > MIN_PRINT_FAN_SPEED)) fan_speed_errors[1]++;
else fan_speed_errors[1] = 0;
#endif

View file

@ -114,6 +114,11 @@ union MenuData
//Timer timer;
char dummy;
} autoLoadFilamentMenu;
struct _Lcd_moveMenu
{
bool initialized;
bool endstopsEnabledPrevious;
} _lcd_moveMenu;
};
// State of the currently active menu.
@ -192,6 +197,8 @@ unsigned char firstrun = 1;
#include "ultralcd_implementation_hitachi_HD44780.h"
static const char separator[] PROGMEM = "--------------------";
/** forward declarations **/
static const char* lcd_display_message_fullscreen_nonBlocking_P(const char *msg, uint8_t &nlines);
@ -222,6 +229,9 @@ static void prusa_stat_temperatures();
static void prusa_stat_printinfo();
static void lcd_farm_no();
static void lcd_menu_extruder_info();
static void lcd_menu_xyz_y_min();
static void lcd_menu_xyz_skew();
static void lcd_menu_xyz_offset();
#if defined(TMC2130) || defined(PAT9125)
static void lcd_menu_fails_stats();
#endif //TMC2130 or PAT9125
@ -984,7 +994,6 @@ void lcd_commands()
enquecommand_P(PSTR("M190 S" STRINGIFY(PLA_PREHEAT_HPB_TEMP)));
enquecommand_P(PSTR("M109 S" STRINGIFY(PLA_PREHEAT_HOTEND_TEMP)));
enquecommand_P(MSG_M117_V2_CALIBRATION);
enquecommand_P(PSTR("G87")); //sets calibration status
enquecommand_P(PSTR("G28"));
enquecommand_P(PSTR("G92 E0.0"));
lcd_commands_step = 8;
@ -1581,8 +1590,7 @@ static void lcd_menu_extruder_info()
if (lcd_clicked())
{
lcd_quick_feedback();
lcd_return_to_status();
menu_action_back();
}
}
@ -1686,7 +1694,7 @@ static void lcd_menu_debug()
if (lcd_clicked())
{
lcd_quick_feedback();
lcd_return_to_status();
menu_action_back();
}
}
#endif /* DEBUG_BUILD */
@ -1702,8 +1710,7 @@ static void lcd_menu_temperatures()
if (lcd_clicked())
{
lcd_quick_feedback();
lcd_return_to_status();
menu_action_back();
}
}
@ -1720,8 +1727,7 @@ static void lcd_menu_voltages()
fprintf_P(lcdout, PSTR( ESC_H(1,1)"PWR: %d.%01dV"), (int)volt_pwr, (int)(10*fabs(volt_pwr - (int)volt_pwr))) ;
if (lcd_clicked())
{
lcd_quick_feedback();
lcd_return_to_status();
menu_action_back();
}
}
#endif //defined VOLT_BED_PIN || defined VOLT_PWR_PIN
@ -1732,8 +1738,7 @@ static void lcd_menu_belt_status()
fprintf_P(lcdout, PSTR(ESC_H(1,0) "Belt status" ESC_H(2,1) "X %d" ESC_H(2,2) "Y %d" ), eeprom_read_word((uint16_t*)(EEPROM_BELTSTATUS_X)), eeprom_read_word((uint16_t*)(EEPROM_BELTSTATUS_Y)));
if (lcd_clicked())
{
lcd_quick_feedback();
lcd_return_to_status();
menu_action_back();
}
}
#endif //TMC2130
@ -1831,7 +1836,7 @@ static void lcd_support_menu()
}
#ifndef MK1BP
MENU_ITEM(back, PSTR("------------"), 0);
if (!IS_SD_PRINTING && !is_usb_printing && (lcd_commands_type != LCD_COMMAND_V2_CAL)) MENU_ITEM(function, MSG_XYZ_DETAILS, lcd_service_mode_show_result);
MENU_ITEM(submenu, MSG_XYZ_DETAILS, lcd_menu_xyz_y_min);
MENU_ITEM(submenu, MSG_INFO_EXTRUDER, lcd_menu_extruder_info);
#ifdef TMC2130
@ -2157,7 +2162,7 @@ void lcd_menu_statistics()
if (lcd_clicked())
{
lcd_quick_feedback();
lcd_return_to_status();
menu_action_back();
}
}
else
@ -2230,12 +2235,18 @@ void lcd_menu_statistics()
KEEPALIVE_STATE(NOT_BUSY);
lcd_quick_feedback();
lcd_return_to_status();
menu_action_back();
}
}
static void _lcd_move(const char *name, int axis, int min, int max) {
if (!menuData._lcd_moveMenu.initialized)
{
menuData._lcd_moveMenu.endstopsEnabledPrevious = enable_endstops(false);
menuData._lcd_moveMenu.initialized = true;
}
if (encoderPosition != 0) {
refresh_cmd_timeout();
if (! planner_queue_full()) {
@ -2249,8 +2260,8 @@ static void _lcd_move(const char *name, int axis, int min, int max) {
}
}
if (lcdDrawUpdate) lcd_implementation_drawedit(name, ftostr31(current_position[axis]));
if (LCD_CLICKED) menu_action_back(); {
}
if (menuExiting || LCD_CLICKED) (void)enable_endstops(menuData._lcd_moveMenu.endstopsEnabledPrevious);
if (LCD_CLICKED) menu_action_back();
}
@ -2284,63 +2295,92 @@ static void lcd_move_e()
lcd_return_to_status();
}
}
/**
* @brief Show measured Y distance of front calibration points from Y_MIN_POS
*
* If those points are detected too close to edge of reachable area, their confidence is lowered.
* This functionality is applied more often for MK2 printers.
*/
static void lcd_menu_xyz_y_min()
{
lcd.setCursor(0,0);
lcd_printPGM(MSG_Y_DISTANCE_FROM_MIN);
lcd_print_at_PGM(0, 1, separator);
lcd_print_at_PGM(0, 2, MSG_LEFT);
lcd_print_at_PGM(0, 3, MSG_RIGHT);
void lcd_service_mode_show_result() {
float angleDiff;
lcd_set_custom_characters_degree();
count_xyz_details();
angleDiff = eeprom_read_float((float*)(EEPROM_XYZ_CAL_SKEW));
lcd_update_enable(false);
lcd_implementation_clear();
lcd_printPGM(MSG_Y_DISTANCE_FROM_MIN);
lcd_print_at_PGM(0, 1, MSG_LEFT);
lcd_print_at_PGM(0, 2, MSG_RIGHT);
float distanceMin[2];
count_xyz_details(distanceMin);
for (int i = 0; i < 2; i++) {
if(distance_from_min[i] < 200) {
lcd_print_at_PGM(11, i + 1, PSTR(""));
lcd.print(distance_from_min[i]);
lcd_print_at_PGM((distance_from_min[i] < 0) ? 17 : 16, i + 1, PSTR("mm"));
} else lcd_print_at_PGM(11, i + 1, PSTR("N/A"));
}
delay_keep_alive(500);
KEEPALIVE_STATE(PAUSED_FOR_USER);
while (!lcd_clicked()) {
delay_keep_alive(100);
}
delay_keep_alive(500);
lcd_implementation_clear();
lcd_printPGM(MSG_MEASURED_SKEW);
if (angleDiff < 100) {
lcd.setCursor(15, 0);
lcd.print(angleDiff * 180 / M_PI);
lcd.print(LCD_STR_DEGREE);
}else lcd_print_at_PGM(16, 0, PSTR("N/A"));
lcd_print_at_PGM(0, 1, PSTR("--------------------"));
lcd_print_at_PGM(0, 2, MSG_SLIGHT_SKEW);
lcd_print_at_PGM(15, 2, PSTR(""));
lcd.print(bed_skew_angle_mild * 180 / M_PI);
lcd.print(LCD_STR_DEGREE);
lcd_print_at_PGM(0, 3, MSG_SEVERE_SKEW);
lcd_print_at_PGM(15, 3, PSTR(""));
lcd.print(bed_skew_angle_extreme * 180 / M_PI);
lcd.print(LCD_STR_DEGREE);
delay_keep_alive(500);
while (!lcd_clicked()) {
delay_keep_alive(100);
}
KEEPALIVE_STATE(NOT_BUSY);
delay_keep_alive(500);
lcd_set_custom_characters_arrows();
lcd_return_to_status();
lcd_update_enable(true);
lcd_update(2);
for (int i = 0; i < 2; i++) {
if(distanceMin[i] < 200) {
lcd_print_at_PGM(11, i + 2, PSTR(""));
lcd.print(distanceMin[i]);
lcd_print_at_PGM((distanceMin[i] < 0) ? 17 : 16, i + 2, PSTR("mm"));
} else lcd_print_at_PGM(11, i + 2, PSTR("N/A"));
}
if (lcd_clicked())
{
lcd_goto_menu(lcd_menu_xyz_skew);
}
}
/**
* @brief Show measured axis skewness
*/
static void lcd_menu_xyz_skew()
{
float angleDiff;
angleDiff = eeprom_read_float((float*)(EEPROM_XYZ_CAL_SKEW));
lcd.setCursor(0,0);
lcd_printPGM(MSG_MEASURED_SKEW);
if (angleDiff < 100) {
lcd.setCursor(15, 0);
lcd.print(angleDiff * 180 / M_PI);
lcd.print(LCD_STR_DEGREE);
}else lcd_print_at_PGM(16, 0, PSTR("N/A"));
lcd_print_at_PGM(0, 1, separator);
lcd_print_at_PGM(0, 2, MSG_SLIGHT_SKEW);
lcd_print_at_PGM(15, 2, PSTR(""));
lcd.print(bed_skew_angle_mild * 180 / M_PI);
lcd.print(LCD_STR_DEGREE);
lcd_print_at_PGM(0, 3, MSG_SEVERE_SKEW);
lcd_print_at_PGM(15, 3, PSTR(""));
lcd.print(bed_skew_angle_extreme * 180 / M_PI);
lcd.print(LCD_STR_DEGREE);
if (lcd_clicked())
{
lcd_goto_menu(lcd_menu_xyz_offset);
}
}
/**
* @brief Show measured bed offset from expected position
*/
static void lcd_menu_xyz_offset()
{
lcd.setCursor(0,0);
lcd_printPGM(MSG_MEASURED_OFFSET);
lcd_print_at_PGM(0, 1, separator);
lcd_print_at_PGM(0, 2, PSTR("X"));
lcd_print_at_PGM(0, 3, PSTR("Y"));
float vec_x[2];
float vec_y[2];
float cntr[2];
world2machine_read_valid(vec_x, vec_y, cntr);
for (int i = 0; i < 2; i++)
{
lcd_print_at_PGM(11, i + 2, PSTR(""));
lcd.print(cntr[i]);
lcd_print_at_PGM((cntr[i] < 0) ? 17 : 16, i + 2, PSTR("mm"));
}
if (lcd_clicked())
{
menu_action_back();
}
}
// Save a single axis babystep value.
void EEPROM_save_B(int pos, int* value)
@ -2373,7 +2413,17 @@ static void lcd_move_z() {
}
/**
* @brief Adjust first layer offset from bed if axis is Z_AXIS
*
* If menu is left (button pushed or timed out), value is stored to EEPROM and
* if the axis is Z_AXIS, CALIBRATION_STATUS_CALIBRATED is also stored.
* Purpose of this function for other axis then Z is unknown.
*
* @param axis AxisEnum X_AXIS Y_AXIS Z_AXIS
* other value leads to storing Z_AXIS
* @param msg text to be displayed
*/
static void _lcd_babystep(int axis, const char *msg)
{
if (menuData.babyStep.status == 0) {
@ -2420,8 +2470,10 @@ static void _lcd_babystep(int axis, const char *msg)
if (LCD_CLICKED || menuExiting) {
// Only update the EEPROM when leaving the menu.
EEPROM_save_B(
(axis == 0) ? EEPROM_BABYSTEP_X : ((axis == 1) ? EEPROM_BABYSTEP_Y : EEPROM_BABYSTEP_Z),
(axis == X_AXIS) ? EEPROM_BABYSTEP_X : ((axis == Y_AXIS) ? EEPROM_BABYSTEP_Y : EEPROM_BABYSTEP_Z),
&menuData.babyStep.babystepMem[axis]);
if(Z_AXIS == axis) calibration_status_store(CALIBRATION_STATUS_CALIBRATED);
}
if (LCD_CLICKED) menu_action_back();
}
@ -3156,7 +3208,7 @@ static void lcd_show_end_stops() {
static void menu_show_end_stops() {
lcd_show_end_stops();
if (LCD_CLICKED) lcd_goto_menu(lcd_calibration_menu); //doesn't break menuStack
if (LCD_CLICKED) menu_action_back();
}
// Lets the user move the Z carriage up to the end stoppers.
@ -3644,7 +3696,7 @@ static void lcd_crash_mode_set()
}
#endif //TMC2130
static void lcd_set_lang(unsigned char lang) {
lang_selected = lang;
@ -4009,8 +4061,6 @@ void lcd_wizard(int state) {
case 10: //repeat first layer cal.?
wizard_event = lcd_show_multiscreen_message_yes_no_and_wait_P(MSG_WIZARD_REPEAT_V2_CAL, false);
if (wizard_event) {
//reset status and live adjust z value in eeprom
calibration_status_store(CALIBRATION_STATUS_LIVE_ADJUST);
lcd_show_fullscreen_message_and_wait_P(MSG_WIZARD_CLEAN_HEATBED);
state = 9;
}
@ -4133,15 +4183,18 @@ static void lcd_settings_menu()
}
#ifdef TMC2130
//*** MaR::180416_01a
if (SilentModeMenu == SILENT_MODE_NORMAL) MENU_ITEM(function, MSG_STEALTH_MODE_OFF, lcd_silent_mode_set);
else MENU_ITEM(function, MSG_STEALTH_MODE_ON, lcd_silent_mode_set);
if (SilentModeMenu == SILENT_MODE_NORMAL)
if(!farm_mode)
{
if (CrashDetectMenu == 0) MENU_ITEM(function, MSG_CRASHDETECT_OFF, lcd_crash_mode_set);
else MENU_ITEM(function, MSG_CRASHDETECT_ON, lcd_crash_mode_set);
//*** MaR::180416_01a
if (SilentModeMenu == SILENT_MODE_NORMAL) MENU_ITEM(function, MSG_STEALTH_MODE_OFF, lcd_silent_mode_set);
else MENU_ITEM(function, MSG_STEALTH_MODE_ON, lcd_silent_mode_set);
if (SilentModeMenu == SILENT_MODE_NORMAL)
{
if (CrashDetectMenu == 0) MENU_ITEM(function, MSG_CRASHDETECT_OFF, lcd_crash_mode_set);
else MENU_ITEM(function, MSG_CRASHDETECT_ON, lcd_crash_mode_set);
}
else MENU_ITEM(submenu, MSG_CRASHDETECT_NA, lcd_crash_mode_info);
}
else MENU_ITEM(submenu, MSG_CRASHDETECT_NA, lcd_crash_mode_info);
MENU_ITEM_EDIT(wfac, MSG_EXTRUDER_CORRECTION, &tmc2130_wave_fac[E_AXIS], TMC2130_WAVE_FAC1000_MIN-TMC2130_WAVE_FAC1000_STP, TMC2130_WAVE_FAC1000_MAX);
#endif //TMC2130
@ -5859,16 +5912,19 @@ static void lcd_tune_menu()
#endif //DEBUG_DISABLE_FSENSORCHECK
#ifdef TMC2130
if(!farm_mode)
{
//*** MaR::180416_01b
if (SilentModeMenu == SILENT_MODE_NORMAL) MENU_ITEM(function, MSG_STEALTH_MODE_OFF, lcd_silent_mode_set);
else MENU_ITEM(function, MSG_STEALTH_MODE_ON, lcd_silent_mode_set);
if (SilentModeMenu == SILENT_MODE_NORMAL) MENU_ITEM(function, MSG_STEALTH_MODE_OFF, lcd_silent_mode_set);
else MENU_ITEM(function, MSG_STEALTH_MODE_ON, lcd_silent_mode_set);
if (SilentModeMenu == SILENT_MODE_NORMAL)
{
if (CrashDetectMenu == 0) MENU_ITEM(function, MSG_CRASHDETECT_OFF, lcd_crash_mode_set);
else MENU_ITEM(function, MSG_CRASHDETECT_ON, lcd_crash_mode_set);
}
else MENU_ITEM(submenu, MSG_CRASHDETECT_NA, lcd_crash_mode_info);
if (SilentModeMenu == SILENT_MODE_NORMAL)
{
if (CrashDetectMenu == 0) MENU_ITEM(function, MSG_CRASHDETECT_OFF, lcd_crash_mode_set);
else MENU_ITEM(function, MSG_CRASHDETECT_ON, lcd_crash_mode_set);
}
else MENU_ITEM(submenu, MSG_CRASHDETECT_NA, lcd_crash_mode_info);
}
#else //TMC2130
if (!farm_mode) { //dont show in menu if we are in farm mode
switch (SilentModeMenu) {
@ -7147,7 +7203,7 @@ static int lcd_selftest_screen(int _step, int _progress, int _progress_scale, bo
if (_step == 13) lcd_printPGM(PSTR("Calibrating home"));
lcd.setCursor(0, 1);
lcd.print("--------------------");
lcd_printPGM(separator);
if ((_step >= -1) && (_step <= 1))
{
//SERIAL_ECHOLNPGM("Fan test");

View file

@ -296,8 +296,6 @@ void lcd_temp_calibration_set();
void display_loading();
void lcd_service_mode_show_result();
#if !SDSORT_USES_RAM
void lcd_set_degree();
void lcd_set_progress();

View file

@ -75,6 +75,15 @@ const bool Z_MIN_ENDSTOP_INVERTING = false; // set to true to invert the logic o
#define NUM_AXIS 4 // The axis order in all axis related arrays is X, Y, Z, E
#define HOMING_FEEDRATE {3000, 3000, 800, 0} // set the homing speeds (mm/min) // 3000 is also valid for stallGuard homing. Valid range: 2200 - 3000
/**
* [0,0] steel sheet print area point X coordinate in bed print area coordinates
*/
#define SHEET_PRINT_ZERO_REF_X 0.f
/**
* [0,0] steel sheet print area point Y coordinate in bed print area coordinates
*/
#define SHEET_PRINT_ZERO_REF_Y 0.f
#define DEFAULT_MAX_FEEDRATE {200, 200, 12, 120} // (mm/sec) max feedrate (M203)
#define DEFAULT_MAX_ACCELERATION {1000, 1000, 200, 5000} // (mm/sec^2) max acceleration (M201)

View file

@ -75,6 +75,15 @@ const bool Z_MIN_ENDSTOP_INVERTING = false; // set to true to invert the logic o
#define NUM_AXIS 4 // The axis order in all axis related arrays is X, Y, Z, E
#define HOMING_FEEDRATE {3000, 3000, 800, 0} // set the homing speeds (mm/min) // 3000 is also valid for stallGuard homing. Valid range: 2200 - 3000
/**
* [0,0] steel sheet print area point X coordinate in bed print area coordinates
*/
#define SHEET_PRINT_ZERO_REF_X 0.f
/**
* [0,0] steel sheet print area point Y coordinate in bed print area coordinates
*/
#define SHEET_PRINT_ZERO_REF_Y 0.f
#define DEFAULT_MAX_FEEDRATE {200, 200, 12, 120} // (mm/sec) max feedrate (M203)
#define DEFAULT_MAX_ACCELERATION {1000, 1000, 200, 5000} // (mm/sec^2) max acceleration (M201)

View file

@ -76,7 +76,15 @@ const bool Z_MIN_ENDSTOP_INVERTING = false; // set to true to invert the logic o
#define NUM_AXIS 4 // The axis order in all axis related arrays is X, Y, Z, E
#define HOMING_FEEDRATE {3000, 3000, 800, 0} // set the homing speeds (mm/min) // 3000 is also valid for stallGuard homing. Valid range: 2200 - 3000
#define DEFAULT_Y_OFFSET 2.f // Offset of [0;0] point, when the printer is not calibrated
//#define DEFAULT_Y_OFFSET 4.f // Default distance of Y_MIN_POS point from endstop, when the printer is not calibrated.
/**
* [0,0] steel sheet print area point X coordinate in bed print area coordinates
*/
#define SHEET_PRINT_ZERO_REF_X 0.f
/**
* [0,0] steel sheet print area point Y coordinate in bed print area coordinates
*/
#define SHEET_PRINT_ZERO_REF_Y -2.f
#define DEFAULT_MAX_FEEDRATE {200, 200, 12, 120} // (mm/sec) max feedrate (M203)
#define DEFAULT_MAX_ACCELERATION {1000, 1000, 200, 5000} // (mm/sec^2) max acceleration (M201)
@ -408,7 +416,7 @@ const bool Z_MIN_ENDSTOP_INVERTING = false; // set to true to invert the logic o
#define MESH_HOME_Z_SEARCH 5 //Z lift for homing, mesh bed leveling etc.
#define X_PROBE_OFFSET_FROM_EXTRUDER 23 // Z probe to nozzle X offset: -left +right
#define Y_PROBE_OFFSET_FROM_EXTRUDER 3 // Z probe to nozzle Y offset: -front +behind
#define Y_PROBE_OFFSET_FROM_EXTRUDER 5 // Z probe to nozzle Y offset: -front +behind
#define Z_PROBE_OFFSET_FROM_EXTRUDER -0.4 // Z probe to nozzle Z offset: -below (always!)
#endif

View file

@ -4,6 +4,9 @@
`https://www.arduino.cc -> Software->Downloads`
it is strongly recommended to use older version `"1.6.8"`, by which we can assure correct compilation results
_note: in versions `1.7.x` and `1.8.x` there are known some C/C++ compilator disasters, which disallow correct source code compilation (you can obtain `"... internal compiler error: in extract_insn, at ..."` error message, for example); we are not able to affect this situation afraid_
_note: in the case of persistent compilation problems, check the version of the currently used C/C++ compiler (GCC) - should be `4.8.1`; version can be verified by entering the command
`avr-gcc --version`
if you are not sure where the file is placed (depends on how `"Arduino Software IDE"` was installed), you can use the search feature within the file system_
_note: name collision for `"LiquidCrystal"` library known from previous versions is now obsolete (so there is no need to delete or rename original file/-s)_
2. add (`UltiMachine`) `RAMBo` board into the list of Arduino target boards

53
README_cz.md Normal file
View file

@ -0,0 +1,53 @@
# 1. Příprava vývojového prostředí
1. nainstalujte vývojové prostředí `"Arduino Software IDE"` pro operační prostředí, které jste zvyklí používat
`https://www.arduino.cc -> Software->Downloads`
důrazně doporučujeme použít starší verzi `"1.6.8"`, u které jsme schopni garantovat bezproblémový překlad a správné výsledky
_pozn.: ve verzích `1.7.x` a `1.8.x` jsou k datu vydání tohoto dokumentu evidovány chyby v překladači jazyka C/C++, které znemožňují překlad zdrojového kódu (můžete např. obdržet chybové hlášení `"... internal compiler error: in extract_insn, at ..."`); tuto nepříjemnou situaci bohužel nedokážeme nijak ovlivnit_
_pozn.: v případě přetrvávajících potíží s překladem zkontrolujte verzi aktuálně použitého překladače jazyka C/C++ (GCC) - měla by být `4.8.1`; verzi ověříte zadáním příkazu
`avr-gcc --version`
pokud si nejste jisti umístěním souboru (závisí na způsobu, jakým bylo `"Arduino Software IDE"` nainstalováno), použijte funkci vyhledání v rámci systému souborů_
_pozn.: konflikt názvů knihoven / modulů `"LiquidCrystal"` známý v předchozích verzích již není aktuální (původní knihovnu tudíž není nutné mazat ani přejmenovat)_
2. do nabídky podporovaných cílových desek Arduino přidejte desku (`UltiMachine`) `RAMBo`
`File->Preferences->Settings`
do pole `"Additional Boards Manager URLs"`
vložte adresu / text
`"https://raw.githubusercontent.com/ultimachine/ArduinoAddons/master/package_ultimachine_index.json"`
ev. je možno 'ručně upravit' položku
`"boardsmanager.additional.urls=....."`
v souboru `"preferences.txt"` (parametr umožňuje zápis seznamu adres oddělených čárkami)
_pozn.: konkrétní umístění tohoto souboru na Vašem disku lze zjistit následujícím způsobem:
`File->Preferences->Settings` (`"More preferences can be edited in file ..."`)_
následně proveďte
`Tools->Board->BoardsManager`
ze zobrazeného seznamu vyberte položku `"RAMBo"` (pravděpodobně bude označena jako `"RepRap Arduino-compatible Mother Board (RAMBo) by UltiMachine"`
_pozn.: tuto položku zvolte pro všechny varianty desek použitých v tiskárnách `'Prusa i3 MKx'`, tzn. pro `RAMBo-mini x.y` i `EINSy x.y`_
'kliknutím' na položku se zobrazí tlačítko pro instalaci; ve výběrovém seznamu zvolte verzi `"1.0.1"` (poslední známá verze k datu vydání tohoto dokumentu)
_(po provedení instalace je položka označena poznámkou `"INSTALLED"` a lze ji následně použít při výběru cílové desky)_
# 2. Překlad zdrojoveho kódu
do zvoleného adresáře umístěte zdrojové kódy odpovídající modelu Vaší tiskárny získané z repozitáře
`https://github.com/prusa3d/Prusa-Firmware/`
v podadresáři `"Firmware/variants/"` vyberte konfigurační soubor (`.h`) odpovídající modelu Vaší tiskárny, vytvořte kopii s názvem `"Configuration_prusa.h"` (popř. proveďte prosté přejmenování) a překopírujte do adresáře `"Firmware/"`
spusťte vývojové prostředí `"Arduino IDE"`; v adresáři, kam jste umístili zdrojové kódy, vyberte z podadresáře `"Firmware/"` soubor `"Firmware.ino"`
`File->Open`
proveďte požadované úpravy kódu; **veškeré změny ovšem provádíte na svou vlastní odpovědnost!**
jako cílovou desku pro překlad vyberte `"RAMBo"`
`Tools->Board->RAMBo`
_pozn.: nelze použít žádnou z variant `"Arduino Mega …"`, přestože se jedná o shodný MCU_
spusťte překlad
`Sketch->Verify/Compile`
výsledný kód nahrajte do připojené tiskárny
`Sketch->Upload`
přeložený kód můžete také nechat uložit do souboru (v tzv. `HEX`-formátu) `"Firmware.ino.rambo.hex"`:
`Sketch->ExportCompiledBinary`
a do tiskárny ho následně nahrát pomocí programu `"FirmwareUpdater"`
_pozn.: soubor je vytvořen v adresáři `"Firmware/"`_