Function for decision if we have valid Z-calibration data in eeprom fixed, mesh bed leveling: possible crash fix, temporaty debug info on serial line.

This commit is contained in:
PavelSindler 2019-03-26 17:14:05 +01:00
parent 2f3c5e15ed
commit a9ce38df71
2 changed files with 58 additions and 27 deletions

View File

@ -4438,7 +4438,10 @@ if((eSoundMode==e_SOUND_MODE_LOUD)||(eSoundMode==e_SOUND_MODE_ONCE))
bool clamped = world2machine_clamp(current_position[X_AXIS], current_position[Y_AXIS]); bool clamped = world2machine_clamp(current_position[X_AXIS], current_position[Y_AXIS]);
clamped ? SERIAL_PROTOCOLPGM("First calibration point clamped.\n") : SERIAL_PROTOCOLPGM("No clamping for first calibration point.\n"); clamped ? SERIAL_PROTOCOLPGM("First calibration point clamped.\n") : SERIAL_PROTOCOLPGM("No clamping for first calibration point.\n");
} }
#endif //SUPPORT_VERBOSITY #else //SUPPORT_VERBOSITY
world2machine_clamp(current_position[X_AXIS], current_position[Y_AXIS]);
#endif //SUPPORT_VERBOSITY
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[X_AXIS] / 30, active_extruder); plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[X_AXIS] / 30, active_extruder);
// Wait until the move is finished. // Wait until the move is finished.
st_synchronize(); st_synchronize();
@ -4475,21 +4478,24 @@ if((eSoundMode==e_SOUND_MODE_LOUD)||(eSoundMode==e_SOUND_MODE_ONCE))
uint16_t z_offset_u = 0; uint16_t z_offset_u = 0;
if (nMeasPoints == 7) { if (nMeasPoints == 7) {
z_offset_u = eeprom_read_word((uint16_t*)(EEPROM_BED_CALIBRATION_Z_JITTER + 2 * ((ix/3) + iy - 1))); z_offset_u = eeprom_read_word((uint16_t*)(EEPROM_BED_CALIBRATION_Z_JITTER + 2 * ((ix/3) + iy - 1)));
printf_P(PSTR("[%d;%d]: Z_offset = %d \n"), ix, iy, z_offset_u);
} }
else { else {
z_offset_u = eeprom_read_word((uint16_t*)(EEPROM_BED_CALIBRATION_Z_JITTER + 2 * (ix + iy * 3 - 1))); z_offset_u = eeprom_read_word((uint16_t*)(EEPROM_BED_CALIBRATION_Z_JITTER + 2 * (ix + iy * 3 - 1)));
printf_P(PSTR("[%d;%d]: Z_offset = %d \n"), ix, iy, z_offset_u);
} }
z0 = mbl.z_values[0][0] + *reinterpret_cast<int16_t*>(&z_offset_u) * 0.01; z0 = mbl.z_values[0][0] + *reinterpret_cast<int16_t*>(&z_offset_u) * 0.01;
#ifdef SUPPORT_VERBOSITY //#ifdef SUPPORT_VERBOSITY
if (verbosity_level >= 1) { //if (verbosity_level >= 1) {
printf_P(PSTR("Bed leveling, point: %d, calibration Z stored in eeprom: %d, calibration z: %f \n"), mesh_point, z_offset_u, z0); printf_P(PSTR("Bed leveling, point: %d, calibration Z stored in eeprom: %d, calibration z: %f \n"), mesh_point, z_offset_u, z0);
} //}
#endif // SUPPORT_VERBOSITY //#endif // SUPPORT_VERBOSITY
} }
// Move Z up to MESH_HOME_Z_SEARCH. // Move Z up to MESH_HOME_Z_SEARCH.
if((ix == 0) && (iy == 0)) current_position[Z_AXIS] = MESH_HOME_Z_SEARCH; if((ix == 0) && (iy == 0)) current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
else current_position[Z_AXIS] += 2.f / nMeasPoints; //use relative movement from Z coordinate where PINDa triggered on previous point. This makes calibration faster. else current_position[Z_AXIS] += 2.f / nMeasPoints; //use relative movement from Z coordinate where PINDa triggered on previous point. This makes calibration faster.
float init_z_bckp = current_position[Z_AXIS];
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], Z_LIFT_FEEDRATE, active_extruder); plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
st_synchronize(); st_synchronize();
@ -4497,43 +4503,48 @@ if((eSoundMode==e_SOUND_MODE_LOUD)||(eSoundMode==e_SOUND_MODE_ONCE))
current_position[X_AXIS] = BED_X(ix, nMeasPoints); current_position[X_AXIS] = BED_X(ix, nMeasPoints);
current_position[Y_AXIS] = BED_Y(iy, nMeasPoints); current_position[Y_AXIS] = BED_Y(iy, nMeasPoints);
//printf_P(PSTR("[%f;%f]\n"), current_position[X_AXIS], current_position[Y_AXIS]); printf_P(PSTR("[%f;%f]\n"), current_position[X_AXIS], current_position[Y_AXIS]);
world2machine_clamp(current_position[X_AXIS], current_position[Y_AXIS]);
#ifdef SUPPORT_VERBOSITY #ifdef SUPPORT_VERBOSITY
if (verbosity_level >= 1) { if (verbosity_level >= 1) {
clamped = world2machine_clamp(current_position[X_AXIS], current_position[Y_AXIS]);
SERIAL_PROTOCOL(mesh_point); SERIAL_PROTOCOL(mesh_point);
clamped ? SERIAL_PROTOCOLPGM(": xy clamped.\n") : SERIAL_PROTOCOLPGM(": no xy clamping\n"); clamped ? SERIAL_PROTOCOLPGM(": xy clamped.\n") : SERIAL_PROTOCOLPGM(": no xy clamping\n");
} }
#else //SUPPORT_VERBOSITY
world2machine_clamp(current_position[X_AXIS], current_position[Y_AXIS]);
#endif // SUPPORT_VERBOSITY #endif // SUPPORT_VERBOSITY
printf_P(PSTR("after clamping: [%f;%f]\n"), current_position[X_AXIS], current_position[Y_AXIS]);
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], XY_AXIS_FEEDRATE, active_extruder); plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], XY_AXIS_FEEDRATE, active_extruder);
st_synchronize(); st_synchronize();
// Go down until endstop is hit // Go down until endstop is hit
const float Z_CALIBRATION_THRESHOLD = 1.f; const float Z_CALIBRATION_THRESHOLD = 1.f;
if (!find_bed_induction_sensor_point_z((has_z && mesh_point > 0) ? z0 - Z_CALIBRATION_THRESHOLD : -10.f, nProbeRetry)) { //if we have data from z calibration max allowed difference is 1mm for each point, if we dont have data max difference is 10mm from initial point if (!find_bed_induction_sensor_point_z((has_z && mesh_point > 0) ? z0 - Z_CALIBRATION_THRESHOLD : -10.f, nProbeRetry)) { //if we have data from z calibration max allowed difference is 1mm for each point, if we dont have data max difference is 10mm from initial point
printf_P(_T(MSG_BED_LEVELING_FAILED_POINT_LOW)); //printf_P(_T(MSG_BED_LEVELING_FAILED_POINT_LOW));
printf_P("Point too low 1 \n");
break; break;
} }
if (MESH_HOME_Z_SEARCH - current_position[Z_AXIS] < 0.1f) { //broken cable or initial Z coordinate too low. Go to MESH_HOME_Z_SEARCH and repeat last step (z-probe) again to distinguish between these two cases. if (init_z_bckp - current_position[Z_AXIS] < 0.1f) { //broken cable or initial Z coordinate too low. Go to MESH_HOME_Z_SEARCH and repeat last step (z-probe) again to distinguish between these two cases.
printf_P(PSTR("Another attempt! Current Z position: %f\n"), current_position[Z_AXIS]);
current_position[Z_AXIS] = MESH_HOME_Z_SEARCH; current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], Z_LIFT_FEEDRATE, active_extruder); plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
st_synchronize(); st_synchronize();
if (!find_bed_induction_sensor_point_z((has_z && mesh_point > 0) ? z0 - Z_CALIBRATION_THRESHOLD : -10.f, nProbeRetry)) { //if we have data from z calibration max allowed difference is 1mm for each point, if we dont have data max difference is 10mm from initial point if (!find_bed_induction_sensor_point_z((has_z && mesh_point > 0) ? z0 - Z_CALIBRATION_THRESHOLD : -10.f, nProbeRetry)) { //if we have data from z calibration max allowed difference is 1mm for each point, if we dont have data max difference is 10mm from initial point
printf_P(_T(MSG_BED_LEVELING_FAILED_POINT_LOW)); //printf_P(_T(MSG_BED_LEVELING_FAILED_POINT_LOW));
printf_P("Point too low 2 \n");
break; break;
} }
if (MESH_HOME_Z_SEARCH - current_position[Z_AXIS] < 0.1f) { if (MESH_HOME_Z_SEARCH - current_position[Z_AXIS] < 0.1f) {
printf_P(PSTR("Bed leveling failed. Sensor disconnected or cable broken. Waiting for reset.\n")); printf_P(PSTR("Bed leveling failed. Sensor disconnected or cable broken.\n"));
break; break;
} }
} }
if (has_z && fabs(z0 - current_position[Z_AXIS]) > Z_CALIBRATION_THRESHOLD) { //if we have data from z calibration, max. allowed difference is 1mm for each point if (has_z && fabs(z0 - current_position[Z_AXIS]) > Z_CALIBRATION_THRESHOLD) { //if we have data from z calibration, max. allowed difference is 1mm for each point
printf_P(PSTR("Bed leveling failed. Sensor triggered too high. Waiting for reset.\n")); printf_P(PSTR("Bed leveling failed. Sensor triggered too high.\n"));
break; break;
} }
#ifdef SUPPORT_VERBOSITY #ifdef SUPPORT_VERBOSITY

View File

@ -678,11 +678,13 @@ void reset_bed_offset_and_skew()
bool is_bed_z_jitter_data_valid() bool is_bed_z_jitter_data_valid()
// offsets of the Z heiths of the calibration points from the first point are saved as 16bit signed int, scaled to tenths of microns // offsets of the Z heiths of the calibration points from the first point are saved as 16bit signed int, scaled to tenths of microns
{ // if at least one 16bit integer has different value then -1 (0x0FFFF), data are considered valid and function returns true, otherwise it returns false
for (int8_t i = 0; i < 8; ++ i) {
if (eeprom_read_word((uint16_t*)(EEPROM_BED_CALIBRATION_Z_JITTER+i*2)) == 0x0FFFF) bool data_valid = false;
return false; for (int8_t i = 0; i < 8; ++i) {
return true; if (eeprom_read_word((uint16_t*)(EEPROM_BED_CALIBRATION_Z_JITTER + i * 2)) != 0x0FFFF) data_valid = true;
}
return data_valid;
} }
static void world2machine_update(const float vec_x[2], const float vec_y[2], const float cntr[2]) static void world2machine_update(const float vec_x[2], const float vec_y[2], const float cntr[2])
@ -946,7 +948,7 @@ inline bool find_bed_induction_sensor_point_z(float minimum_z, uint8_t n_iter, i
#ifdef TMC2130 #ifdef TMC2130
FORCE_HIGH_POWER_START; FORCE_HIGH_POWER_START;
#endif #endif
printf_P(PSTR("Min. Z: %f\n"), minimum_z);
#ifdef SUPPORT_VERBOSITY #ifdef SUPPORT_VERBOSITY
if(verbosity_level >= 10) SERIAL_ECHOLNPGM("find bed induction sensor point z"); if(verbosity_level >= 10) SERIAL_ECHOLNPGM("find bed induction sensor point z");
#endif // SUPPORT_VERBOSITY #endif // SUPPORT_VERBOSITY
@ -961,9 +963,16 @@ inline bool find_bed_induction_sensor_point_z(float minimum_z, uint8_t n_iter, i
// we have to let the planner know where we are right now as it is not where we said to go. // we have to let the planner know where we are right now as it is not where we said to go.
update_current_position_z(); update_current_position_z();
if (! endstop_z_hit_on_purpose()) if (! endstop_z_hit_on_purpose())
goto error; {
printf_P(PSTR("endstop not hit 1, current_pos[Z]: %f \n"), current_position[Z_AXIS]);
goto error;
}
#ifdef TMC2130 #ifdef TMC2130
if (READ(Z_TMC2130_DIAG) != 0) goto error; //crash Z detected if (READ(Z_TMC2130_DIAG) != 0)
{
printf_P(PSTR("crash detected 1, current_pos[Z]: %f \n"), current_position[Z_AXIS]);
goto error; //crash Z detected
}
#endif //TMC2130 #endif //TMC2130
for (uint8_t i = 0; i < n_iter; ++ i) for (uint8_t i = 0; i < n_iter; ++ i)
{ {
@ -973,12 +982,13 @@ inline bool find_bed_induction_sensor_point_z(float minimum_z, uint8_t n_iter, i
go_to_current(homing_feedrate[Z_AXIS]/60); go_to_current(homing_feedrate[Z_AXIS]/60);
// Move back down slowly to find bed. // Move back down slowly to find bed.
current_position[Z_AXIS] = minimum_z; current_position[Z_AXIS] = minimum_z;
printf_P(PSTR("init Z = %f, min_z = %f\n"), z_bckp, minimum_z);
go_to_current(homing_feedrate[Z_AXIS]/(4*60)); go_to_current(homing_feedrate[Z_AXIS]/(4*60));
// we have to let the planner know where we are right now as it is not where we said to go. // we have to let the planner know where we are right now as it is not where we said to go.
update_current_position_z(); update_current_position_z();
//printf_P(PSTR("Zs: %f, Z: %f, delta Z: %f"), z_bckp, current_position[Z_AXIS], (z_bckp - current_position[Z_AXIS])); //printf_P(PSTR("Zs: %f, Z: %f, delta Z: %f"), z_bckp, current_position[Z_AXIS], (z_bckp - current_position[Z_AXIS]));
if (abs(current_position[Z_AXIS] - z_bckp) < 0.025) { if (abs(current_position[Z_AXIS] - z_bckp) < 0.025) {
//printf_P(PSTR("PINDA triggered immediately, move Z higher and repeat measurement\n")); printf_P(PSTR("PINDA triggered immediately, move Z higher and repeat measurement\n"));
current_position[Z_AXIS] += 0.5; current_position[Z_AXIS] += 0.5;
go_to_current(homing_feedrate[Z_AXIS]/60); go_to_current(homing_feedrate[Z_AXIS]/60);
current_position[Z_AXIS] = minimum_z; current_position[Z_AXIS] = minimum_z;
@ -989,10 +999,16 @@ inline bool find_bed_induction_sensor_point_z(float minimum_z, uint8_t n_iter, i
if (! endstop_z_hit_on_purpose()) if (!endstop_z_hit_on_purpose())
goto error; {
printf_P(PSTR("i = %d, endstop not hit 2, current_pos[Z]: %f \n"), i, current_position[Z_AXIS]);
goto error;
}
#ifdef TMC2130 #ifdef TMC2130
if (READ(Z_TMC2130_DIAG) != 0) goto error; //crash Z detected if (READ(Z_TMC2130_DIAG) != 0) {
printf_P(PSTR("crash detected 2, current_pos[Z]: %f \n"), current_position[Z_AXIS]);
goto error; //crash Z detected
}
#endif //TMC2130 #endif //TMC2130
// SERIAL_ECHOPGM("Bed find_bed_induction_sensor_point_z low, height: "); // SERIAL_ECHOPGM("Bed find_bed_induction_sensor_point_z low, height: ");
// MYSERIAL.print(current_position[Z_AXIS], 5); // MYSERIAL.print(current_position[Z_AXIS], 5);
@ -1000,7 +1016,11 @@ inline bool find_bed_induction_sensor_point_z(float minimum_z, uint8_t n_iter, i
float dz = i?abs(current_position[Z_AXIS] - (z / i)):0; float dz = i?abs(current_position[Z_AXIS] - (z / i)):0;
z += current_position[Z_AXIS]; z += current_position[Z_AXIS];
//printf_P(PSTR("Z[%d] = %d, dz=%d\n"), i, (int)(current_position[Z_AXIS] * 1000), (int)(dz * 1000)); //printf_P(PSTR("Z[%d] = %d, dz=%d\n"), i, (int)(current_position[Z_AXIS] * 1000), (int)(dz * 1000));
if (dz > 0.05) goto error;//deviation > 50um if (dz > 0.05) {
printf_P(PSTR("big deviation \n"));
goto error;//deviation > 50um
}
printf_P(PSTR("PINDA triggered at %f\n"), current_position[Z_AXIS]);
} }
current_position[Z_AXIS] = z; current_position[Z_AXIS] = z;
if (n_iter > 1) if (n_iter > 1)