Function for decision if we have valid Z-calibration data in eeprom fixed, mesh bed leveling: possible crash fix, temporaty debug info on serial line.
This commit is contained in:
parent
2f3c5e15ed
commit
a9ce38df71
@ -4438,7 +4438,10 @@ if((eSoundMode==e_SOUND_MODE_LOUD)||(eSoundMode==e_SOUND_MODE_ONCE))
|
|||||||
bool clamped = world2machine_clamp(current_position[X_AXIS], current_position[Y_AXIS]);
|
bool clamped = world2machine_clamp(current_position[X_AXIS], current_position[Y_AXIS]);
|
||||||
clamped ? SERIAL_PROTOCOLPGM("First calibration point clamped.\n") : SERIAL_PROTOCOLPGM("No clamping for first calibration point.\n");
|
clamped ? SERIAL_PROTOCOLPGM("First calibration point clamped.\n") : SERIAL_PROTOCOLPGM("No clamping for first calibration point.\n");
|
||||||
}
|
}
|
||||||
#endif //SUPPORT_VERBOSITY
|
#else //SUPPORT_VERBOSITY
|
||||||
|
world2machine_clamp(current_position[X_AXIS], current_position[Y_AXIS]);
|
||||||
|
#endif //SUPPORT_VERBOSITY
|
||||||
|
|
||||||
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[X_AXIS] / 30, active_extruder);
|
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[X_AXIS] / 30, active_extruder);
|
||||||
// Wait until the move is finished.
|
// Wait until the move is finished.
|
||||||
st_synchronize();
|
st_synchronize();
|
||||||
@ -4475,21 +4478,24 @@ if((eSoundMode==e_SOUND_MODE_LOUD)||(eSoundMode==e_SOUND_MODE_ONCE))
|
|||||||
uint16_t z_offset_u = 0;
|
uint16_t z_offset_u = 0;
|
||||||
if (nMeasPoints == 7) {
|
if (nMeasPoints == 7) {
|
||||||
z_offset_u = eeprom_read_word((uint16_t*)(EEPROM_BED_CALIBRATION_Z_JITTER + 2 * ((ix/3) + iy - 1)));
|
z_offset_u = eeprom_read_word((uint16_t*)(EEPROM_BED_CALIBRATION_Z_JITTER + 2 * ((ix/3) + iy - 1)));
|
||||||
|
printf_P(PSTR("[%d;%d]: Z_offset = %d \n"), ix, iy, z_offset_u);
|
||||||
}
|
}
|
||||||
else {
|
else {
|
||||||
z_offset_u = eeprom_read_word((uint16_t*)(EEPROM_BED_CALIBRATION_Z_JITTER + 2 * (ix + iy * 3 - 1)));
|
z_offset_u = eeprom_read_word((uint16_t*)(EEPROM_BED_CALIBRATION_Z_JITTER + 2 * (ix + iy * 3 - 1)));
|
||||||
|
printf_P(PSTR("[%d;%d]: Z_offset = %d \n"), ix, iy, z_offset_u);
|
||||||
}
|
}
|
||||||
z0 = mbl.z_values[0][0] + *reinterpret_cast<int16_t*>(&z_offset_u) * 0.01;
|
z0 = mbl.z_values[0][0] + *reinterpret_cast<int16_t*>(&z_offset_u) * 0.01;
|
||||||
#ifdef SUPPORT_VERBOSITY
|
//#ifdef SUPPORT_VERBOSITY
|
||||||
if (verbosity_level >= 1) {
|
//if (verbosity_level >= 1) {
|
||||||
printf_P(PSTR("Bed leveling, point: %d, calibration Z stored in eeprom: %d, calibration z: %f \n"), mesh_point, z_offset_u, z0);
|
printf_P(PSTR("Bed leveling, point: %d, calibration Z stored in eeprom: %d, calibration z: %f \n"), mesh_point, z_offset_u, z0);
|
||||||
}
|
//}
|
||||||
#endif // SUPPORT_VERBOSITY
|
//#endif // SUPPORT_VERBOSITY
|
||||||
}
|
}
|
||||||
|
|
||||||
// Move Z up to MESH_HOME_Z_SEARCH.
|
// Move Z up to MESH_HOME_Z_SEARCH.
|
||||||
if((ix == 0) && (iy == 0)) current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
|
if((ix == 0) && (iy == 0)) current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
|
||||||
else current_position[Z_AXIS] += 2.f / nMeasPoints; //use relative movement from Z coordinate where PINDa triggered on previous point. This makes calibration faster.
|
else current_position[Z_AXIS] += 2.f / nMeasPoints; //use relative movement from Z coordinate where PINDa triggered on previous point. This makes calibration faster.
|
||||||
|
float init_z_bckp = current_position[Z_AXIS];
|
||||||
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
|
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
|
||||||
st_synchronize();
|
st_synchronize();
|
||||||
|
|
||||||
@ -4497,43 +4503,48 @@ if((eSoundMode==e_SOUND_MODE_LOUD)||(eSoundMode==e_SOUND_MODE_ONCE))
|
|||||||
current_position[X_AXIS] = BED_X(ix, nMeasPoints);
|
current_position[X_AXIS] = BED_X(ix, nMeasPoints);
|
||||||
current_position[Y_AXIS] = BED_Y(iy, nMeasPoints);
|
current_position[Y_AXIS] = BED_Y(iy, nMeasPoints);
|
||||||
|
|
||||||
//printf_P(PSTR("[%f;%f]\n"), current_position[X_AXIS], current_position[Y_AXIS]);
|
printf_P(PSTR("[%f;%f]\n"), current_position[X_AXIS], current_position[Y_AXIS]);
|
||||||
|
|
||||||
world2machine_clamp(current_position[X_AXIS], current_position[Y_AXIS]);
|
|
||||||
#ifdef SUPPORT_VERBOSITY
|
#ifdef SUPPORT_VERBOSITY
|
||||||
if (verbosity_level >= 1) {
|
if (verbosity_level >= 1) {
|
||||||
|
clamped = world2machine_clamp(current_position[X_AXIS], current_position[Y_AXIS]);
|
||||||
SERIAL_PROTOCOL(mesh_point);
|
SERIAL_PROTOCOL(mesh_point);
|
||||||
clamped ? SERIAL_PROTOCOLPGM(": xy clamped.\n") : SERIAL_PROTOCOLPGM(": no xy clamping\n");
|
clamped ? SERIAL_PROTOCOLPGM(": xy clamped.\n") : SERIAL_PROTOCOLPGM(": no xy clamping\n");
|
||||||
}
|
}
|
||||||
|
#else //SUPPORT_VERBOSITY
|
||||||
|
world2machine_clamp(current_position[X_AXIS], current_position[Y_AXIS]);
|
||||||
#endif // SUPPORT_VERBOSITY
|
#endif // SUPPORT_VERBOSITY
|
||||||
|
|
||||||
|
printf_P(PSTR("after clamping: [%f;%f]\n"), current_position[X_AXIS], current_position[Y_AXIS]);
|
||||||
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], XY_AXIS_FEEDRATE, active_extruder);
|
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], XY_AXIS_FEEDRATE, active_extruder);
|
||||||
st_synchronize();
|
st_synchronize();
|
||||||
|
|
||||||
// Go down until endstop is hit
|
// Go down until endstop is hit
|
||||||
const float Z_CALIBRATION_THRESHOLD = 1.f;
|
const float Z_CALIBRATION_THRESHOLD = 1.f;
|
||||||
if (!find_bed_induction_sensor_point_z((has_z && mesh_point > 0) ? z0 - Z_CALIBRATION_THRESHOLD : -10.f, nProbeRetry)) { //if we have data from z calibration max allowed difference is 1mm for each point, if we dont have data max difference is 10mm from initial point
|
if (!find_bed_induction_sensor_point_z((has_z && mesh_point > 0) ? z0 - Z_CALIBRATION_THRESHOLD : -10.f, nProbeRetry)) { //if we have data from z calibration max allowed difference is 1mm for each point, if we dont have data max difference is 10mm from initial point
|
||||||
printf_P(_T(MSG_BED_LEVELING_FAILED_POINT_LOW));
|
//printf_P(_T(MSG_BED_LEVELING_FAILED_POINT_LOW));
|
||||||
|
printf_P("Point too low 1 \n");
|
||||||
break;
|
break;
|
||||||
}
|
}
|
||||||
if (MESH_HOME_Z_SEARCH - current_position[Z_AXIS] < 0.1f) { //broken cable or initial Z coordinate too low. Go to MESH_HOME_Z_SEARCH and repeat last step (z-probe) again to distinguish between these two cases.
|
if (init_z_bckp - current_position[Z_AXIS] < 0.1f) { //broken cable or initial Z coordinate too low. Go to MESH_HOME_Z_SEARCH and repeat last step (z-probe) again to distinguish between these two cases.
|
||||||
|
printf_P(PSTR("Another attempt! Current Z position: %f\n"), current_position[Z_AXIS]);
|
||||||
current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
|
current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
|
||||||
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
|
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
|
||||||
st_synchronize();
|
st_synchronize();
|
||||||
|
|
||||||
if (!find_bed_induction_sensor_point_z((has_z && mesh_point > 0) ? z0 - Z_CALIBRATION_THRESHOLD : -10.f, nProbeRetry)) { //if we have data from z calibration max allowed difference is 1mm for each point, if we dont have data max difference is 10mm from initial point
|
if (!find_bed_induction_sensor_point_z((has_z && mesh_point > 0) ? z0 - Z_CALIBRATION_THRESHOLD : -10.f, nProbeRetry)) { //if we have data from z calibration max allowed difference is 1mm for each point, if we dont have data max difference is 10mm from initial point
|
||||||
printf_P(_T(MSG_BED_LEVELING_FAILED_POINT_LOW));
|
//printf_P(_T(MSG_BED_LEVELING_FAILED_POINT_LOW));
|
||||||
|
printf_P("Point too low 2 \n");
|
||||||
break;
|
break;
|
||||||
}
|
}
|
||||||
if (MESH_HOME_Z_SEARCH - current_position[Z_AXIS] < 0.1f) {
|
if (MESH_HOME_Z_SEARCH - current_position[Z_AXIS] < 0.1f) {
|
||||||
printf_P(PSTR("Bed leveling failed. Sensor disconnected or cable broken. Waiting for reset.\n"));
|
printf_P(PSTR("Bed leveling failed. Sensor disconnected or cable broken.\n"));
|
||||||
break;
|
break;
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
if (has_z && fabs(z0 - current_position[Z_AXIS]) > Z_CALIBRATION_THRESHOLD) { //if we have data from z calibration, max. allowed difference is 1mm for each point
|
if (has_z && fabs(z0 - current_position[Z_AXIS]) > Z_CALIBRATION_THRESHOLD) { //if we have data from z calibration, max. allowed difference is 1mm for each point
|
||||||
printf_P(PSTR("Bed leveling failed. Sensor triggered too high. Waiting for reset.\n"));
|
printf_P(PSTR("Bed leveling failed. Sensor triggered too high.\n"));
|
||||||
break;
|
break;
|
||||||
}
|
}
|
||||||
#ifdef SUPPORT_VERBOSITY
|
#ifdef SUPPORT_VERBOSITY
|
||||||
|
@ -678,11 +678,13 @@ void reset_bed_offset_and_skew()
|
|||||||
|
|
||||||
bool is_bed_z_jitter_data_valid()
|
bool is_bed_z_jitter_data_valid()
|
||||||
// offsets of the Z heiths of the calibration points from the first point are saved as 16bit signed int, scaled to tenths of microns
|
// offsets of the Z heiths of the calibration points from the first point are saved as 16bit signed int, scaled to tenths of microns
|
||||||
{
|
// if at least one 16bit integer has different value then -1 (0x0FFFF), data are considered valid and function returns true, otherwise it returns false
|
||||||
for (int8_t i = 0; i < 8; ++ i)
|
{
|
||||||
if (eeprom_read_word((uint16_t*)(EEPROM_BED_CALIBRATION_Z_JITTER+i*2)) == 0x0FFFF)
|
bool data_valid = false;
|
||||||
return false;
|
for (int8_t i = 0; i < 8; ++i) {
|
||||||
return true;
|
if (eeprom_read_word((uint16_t*)(EEPROM_BED_CALIBRATION_Z_JITTER + i * 2)) != 0x0FFFF) data_valid = true;
|
||||||
|
}
|
||||||
|
return data_valid;
|
||||||
}
|
}
|
||||||
|
|
||||||
static void world2machine_update(const float vec_x[2], const float vec_y[2], const float cntr[2])
|
static void world2machine_update(const float vec_x[2], const float vec_y[2], const float cntr[2])
|
||||||
@ -946,7 +948,7 @@ inline bool find_bed_induction_sensor_point_z(float minimum_z, uint8_t n_iter, i
|
|||||||
#ifdef TMC2130
|
#ifdef TMC2130
|
||||||
FORCE_HIGH_POWER_START;
|
FORCE_HIGH_POWER_START;
|
||||||
#endif
|
#endif
|
||||||
|
printf_P(PSTR("Min. Z: %f\n"), minimum_z);
|
||||||
#ifdef SUPPORT_VERBOSITY
|
#ifdef SUPPORT_VERBOSITY
|
||||||
if(verbosity_level >= 10) SERIAL_ECHOLNPGM("find bed induction sensor point z");
|
if(verbosity_level >= 10) SERIAL_ECHOLNPGM("find bed induction sensor point z");
|
||||||
#endif // SUPPORT_VERBOSITY
|
#endif // SUPPORT_VERBOSITY
|
||||||
@ -961,9 +963,16 @@ inline bool find_bed_induction_sensor_point_z(float minimum_z, uint8_t n_iter, i
|
|||||||
// we have to let the planner know where we are right now as it is not where we said to go.
|
// we have to let the planner know where we are right now as it is not where we said to go.
|
||||||
update_current_position_z();
|
update_current_position_z();
|
||||||
if (! endstop_z_hit_on_purpose())
|
if (! endstop_z_hit_on_purpose())
|
||||||
goto error;
|
{
|
||||||
|
printf_P(PSTR("endstop not hit 1, current_pos[Z]: %f \n"), current_position[Z_AXIS]);
|
||||||
|
goto error;
|
||||||
|
}
|
||||||
#ifdef TMC2130
|
#ifdef TMC2130
|
||||||
if (READ(Z_TMC2130_DIAG) != 0) goto error; //crash Z detected
|
if (READ(Z_TMC2130_DIAG) != 0)
|
||||||
|
{
|
||||||
|
printf_P(PSTR("crash detected 1, current_pos[Z]: %f \n"), current_position[Z_AXIS]);
|
||||||
|
goto error; //crash Z detected
|
||||||
|
}
|
||||||
#endif //TMC2130
|
#endif //TMC2130
|
||||||
for (uint8_t i = 0; i < n_iter; ++ i)
|
for (uint8_t i = 0; i < n_iter; ++ i)
|
||||||
{
|
{
|
||||||
@ -973,12 +982,13 @@ inline bool find_bed_induction_sensor_point_z(float minimum_z, uint8_t n_iter, i
|
|||||||
go_to_current(homing_feedrate[Z_AXIS]/60);
|
go_to_current(homing_feedrate[Z_AXIS]/60);
|
||||||
// Move back down slowly to find bed.
|
// Move back down slowly to find bed.
|
||||||
current_position[Z_AXIS] = minimum_z;
|
current_position[Z_AXIS] = minimum_z;
|
||||||
|
printf_P(PSTR("init Z = %f, min_z = %f\n"), z_bckp, minimum_z);
|
||||||
go_to_current(homing_feedrate[Z_AXIS]/(4*60));
|
go_to_current(homing_feedrate[Z_AXIS]/(4*60));
|
||||||
// we have to let the planner know where we are right now as it is not where we said to go.
|
// we have to let the planner know where we are right now as it is not where we said to go.
|
||||||
update_current_position_z();
|
update_current_position_z();
|
||||||
//printf_P(PSTR("Zs: %f, Z: %f, delta Z: %f"), z_bckp, current_position[Z_AXIS], (z_bckp - current_position[Z_AXIS]));
|
//printf_P(PSTR("Zs: %f, Z: %f, delta Z: %f"), z_bckp, current_position[Z_AXIS], (z_bckp - current_position[Z_AXIS]));
|
||||||
if (abs(current_position[Z_AXIS] - z_bckp) < 0.025) {
|
if (abs(current_position[Z_AXIS] - z_bckp) < 0.025) {
|
||||||
//printf_P(PSTR("PINDA triggered immediately, move Z higher and repeat measurement\n"));
|
printf_P(PSTR("PINDA triggered immediately, move Z higher and repeat measurement\n"));
|
||||||
current_position[Z_AXIS] += 0.5;
|
current_position[Z_AXIS] += 0.5;
|
||||||
go_to_current(homing_feedrate[Z_AXIS]/60);
|
go_to_current(homing_feedrate[Z_AXIS]/60);
|
||||||
current_position[Z_AXIS] = minimum_z;
|
current_position[Z_AXIS] = minimum_z;
|
||||||
@ -989,10 +999,16 @@ inline bool find_bed_induction_sensor_point_z(float minimum_z, uint8_t n_iter, i
|
|||||||
|
|
||||||
|
|
||||||
|
|
||||||
if (! endstop_z_hit_on_purpose())
|
if (!endstop_z_hit_on_purpose())
|
||||||
goto error;
|
{
|
||||||
|
printf_P(PSTR("i = %d, endstop not hit 2, current_pos[Z]: %f \n"), i, current_position[Z_AXIS]);
|
||||||
|
goto error;
|
||||||
|
}
|
||||||
#ifdef TMC2130
|
#ifdef TMC2130
|
||||||
if (READ(Z_TMC2130_DIAG) != 0) goto error; //crash Z detected
|
if (READ(Z_TMC2130_DIAG) != 0) {
|
||||||
|
printf_P(PSTR("crash detected 2, current_pos[Z]: %f \n"), current_position[Z_AXIS]);
|
||||||
|
goto error; //crash Z detected
|
||||||
|
}
|
||||||
#endif //TMC2130
|
#endif //TMC2130
|
||||||
// SERIAL_ECHOPGM("Bed find_bed_induction_sensor_point_z low, height: ");
|
// SERIAL_ECHOPGM("Bed find_bed_induction_sensor_point_z low, height: ");
|
||||||
// MYSERIAL.print(current_position[Z_AXIS], 5);
|
// MYSERIAL.print(current_position[Z_AXIS], 5);
|
||||||
@ -1000,7 +1016,11 @@ inline bool find_bed_induction_sensor_point_z(float minimum_z, uint8_t n_iter, i
|
|||||||
float dz = i?abs(current_position[Z_AXIS] - (z / i)):0;
|
float dz = i?abs(current_position[Z_AXIS] - (z / i)):0;
|
||||||
z += current_position[Z_AXIS];
|
z += current_position[Z_AXIS];
|
||||||
//printf_P(PSTR("Z[%d] = %d, dz=%d\n"), i, (int)(current_position[Z_AXIS] * 1000), (int)(dz * 1000));
|
//printf_P(PSTR("Z[%d] = %d, dz=%d\n"), i, (int)(current_position[Z_AXIS] * 1000), (int)(dz * 1000));
|
||||||
if (dz > 0.05) goto error;//deviation > 50um
|
if (dz > 0.05) {
|
||||||
|
printf_P(PSTR("big deviation \n"));
|
||||||
|
goto error;//deviation > 50um
|
||||||
|
}
|
||||||
|
printf_P(PSTR("PINDA triggered at %f\n"), current_position[Z_AXIS]);
|
||||||
}
|
}
|
||||||
current_position[Z_AXIS] = z;
|
current_position[Z_AXIS] = z;
|
||||||
if (n_iter > 1)
|
if (n_iter > 1)
|
||||||
|
Loading…
Reference in New Issue
Block a user