Merge remote-tracking branch 'prusa3d/MK3' into MK3_dev

This commit is contained in:
Marek Bel 2018-08-13 19:38:55 +02:00
parent f25cad4ba5
commit ac62117d6b
16 changed files with 547 additions and 500 deletions

View file

@ -7,8 +7,8 @@
#define STR(x) STR_HELPER(x) #define STR(x) STR_HELPER(x)
// Firmware version // Firmware version
#define FW_VERSION "3.3.1" #define FW_VERSION "3.4.0-RC1"
#define FW_COMMIT_NR 845 #define FW_COMMIT_NR 1170
// FW_VERSION_UNKNOWN means this is an unofficial build. // FW_VERSION_UNKNOWN means this is an unofficial build.
// The firmware should only be checked into github with this symbol. // The firmware should only be checked into github with this symbol.
#define FW_DEV_VERSION FW_VERSION_UNKNOWN #define FW_DEV_VERSION FW_VERSION_UNKNOWN

View file

@ -360,11 +360,11 @@ extern bool mmu_print_saved;
//estimated time to end of the print //estimated time to end of the print
extern uint8_t print_percent_done_normal; extern uint8_t print_percent_done_normal;
extern uint16_t print_time_remaining_normal; extern uint32_t print_time_remaining_normal;
extern uint8_t print_percent_done_silent; extern uint8_t print_percent_done_silent;
extern uint16_t print_time_remaining_silent; extern uint32_t print_time_remaining_silent;
#define PRINT_TIME_REMAINING_INIT 65535 #define PRINT_TIME_REMAINING_INIT 0xffffffff
#define PRINT_PERCENT_DONE_INIT 255 #define PRINT_PERCENT_DONE_INIT 0xff
#define PRINTER_ACTIVE (IS_SD_PRINTING || is_usb_printing || isPrintPaused || (custom_message_type == 4) || saved_printing || (lcd_commands_type == LCD_COMMAND_V2_CAL) || card.paused || mmu_print_saved) #define PRINTER_ACTIVE (IS_SD_PRINTING || is_usb_printing || isPrintPaused || (custom_message_type == 4) || saved_printing || (lcd_commands_type == LCD_COMMAND_V2_CAL) || card.paused || mmu_print_saved)
extern void calculate_extruder_multipliers(); extern void calculate_extruder_multipliers();
@ -468,12 +468,8 @@ void gcode_M701();
void proc_commands(); void proc_commands();
void manage_response(bool move_axes, bool turn_off_nozzle);
bool mmu_get_response(bool timeout);
void mmu_not_responding();
void mmu_load_to_nozzle();
void M600_load_filament(); void M600_load_filament();
void mmu_M600_load_filament(bool automatic);
void M600_load_filament_movements(); void M600_load_filament_movements();
void M600_wait_for_user(); void M600_wait_for_user();
void M600_check_state(); void M600_check_state();

View file

@ -337,8 +337,8 @@ float pause_lastpos[4];
unsigned long pause_time = 0; unsigned long pause_time = 0;
unsigned long start_pause_print = millis(); unsigned long start_pause_print = millis();
unsigned long t_fan_rising_edge = millis(); unsigned long t_fan_rising_edge = millis();
static LongTimer safetyTimer; LongTimer safetyTimer;
static LongTimer crashDetTimer; LongTimer crashDetTimer;
//unsigned long load_filament_time; //unsigned long load_filament_time;
@ -476,9 +476,9 @@ bool mmu_print_saved = false;
// storing estimated time to end of print counted by slicer // storing estimated time to end of print counted by slicer
uint8_t print_percent_done_normal = PRINT_PERCENT_DONE_INIT; uint8_t print_percent_done_normal = PRINT_PERCENT_DONE_INIT;
uint16_t print_time_remaining_normal = PRINT_TIME_REMAINING_INIT; //estimated remaining print time in minutes uint32_t print_time_remaining_normal = PRINT_TIME_REMAINING_INIT; //estimated remaining print time in minutes
uint8_t print_percent_done_silent = PRINT_PERCENT_DONE_INIT; uint8_t print_percent_done_silent = PRINT_PERCENT_DONE_INIT;
uint16_t print_time_remaining_silent = PRINT_TIME_REMAINING_INIT; //estimated remaining print time in minutes uint32_t print_time_remaining_silent = PRINT_TIME_REMAINING_INIT; //estimated remaining print time in minutes
//=========================================================================== //===========================================================================
//=============================Private Variables============================= //=============================Private Variables=============================
@ -509,7 +509,6 @@ unsigned long starttime=0;
unsigned long stoptime=0; unsigned long stoptime=0;
unsigned long _usb_timer = 0; unsigned long _usb_timer = 0;
static uint8_t tmp_extruder;
bool extruder_under_pressure = true; bool extruder_under_pressure = true;
@ -973,42 +972,9 @@ if((eSoundMode==e_SOUND_MODE_LOUD)||(eSoundMode==e_SOUND_MODE_ONCE))
case 2: _delay_ms(0); break; case 2: _delay_ms(0); break;
case 3: _delay_ms(0); break; case 3: _delay_ms(0); break;
} }
// _delay_ms(100);
/*
#ifdef MESH_BED_LEVELING
_delay_ms(2000);
if (!READ(BTN_ENC))
{
WRITE(BEEPER, HIGH);
_delay_ms(100);
WRITE(BEEPER, LOW);
_delay_ms(200);
WRITE(BEEPER, HIGH);
_delay_ms(100);
WRITE(BEEPER, LOW);
int _z = 0;
calibration_status_store(CALIBRATION_STATUS_CALIBRATED);
EEPROM_save_B(EEPROM_BABYSTEP_X, &_z);
EEPROM_save_B(EEPROM_BABYSTEP_Y, &_z);
EEPROM_save_B(EEPROM_BABYSTEP_Z, &_z);
}
else
{
WRITE(BEEPER, HIGH);
_delay_ms(100);
WRITE(BEEPER, LOW);
}
#endif // mesh */
} }
} }
else
{
//_delay_ms(1000); // wait 1sec to display the splash screen // what's this and why do we need it?? - andre
}
KEEPALIVE_STATE(IN_HANDLER); KEEPALIVE_STATE(IN_HANDLER);
} }
@ -1158,6 +1124,8 @@ void list_sec_lang_from_external_flash()
// are initialized by the main() routine provided by the Arduino framework. // are initialized by the main() routine provided by the Arduino framework.
void setup() void setup()
{ {
mmu_init();
ultralcd_init(); ultralcd_init();
spi_init(); spi_init();
@ -1778,11 +1746,6 @@ void setup()
wdt_enable(WDTO_4S); wdt_enable(WDTO_4S);
#endif //WATCHDOG #endif //WATCHDOG
puts_P(_N("Checking MMU unit..."));
if (mmu_init())
printf_P(_N("MMU ENABLED, finda=%hhd, version=%d\n"), mmu_finda, mmu_version);
else
puts_P(_N("MMU DISABLED"));
} }
@ -2016,7 +1979,7 @@ void loop()
} }
} }
#endif //TMC2130 #endif //TMC2130
mmu_loop();
} }
#define DEFINE_PGM_READ_ANY(type, reader) \ #define DEFINE_PGM_READ_ANY(type, reader) \
@ -3476,14 +3439,6 @@ void process_commands()
{ {
mmu_reset(); mmu_reset();
} }
else if (code_seen("MMUFIN"))
{
mmu_read_finda();
}
else if (code_seen("MMUVER"))
{
mmu_read_version();
}
else if (code_seen("RESET")) { else if (code_seen("RESET")) {
// careful! // careful!
if (farm_mode) { if (farm_mode) {
@ -6333,21 +6288,14 @@ if((eSoundMode==e_SOUND_MODE_LOUD)||(eSoundMode==e_SOUND_MODE_ONCE))
//currently three different materials are needed (default, flex and PVA) //currently three different materials are needed (default, flex and PVA)
//add storing this information for different load/unload profiles etc. in the future //add storing this information for different load/unload profiles etc. in the future
//firmware does not wait for "ok" from mmu //firmware does not wait for "ok" from mmu
if (mmu_enabled)
{
uint8_t extruder = 255; uint8_t extruder = 255;
uint8_t filament = FILAMENT_UNDEFINED; uint8_t filament = FILAMENT_UNDEFINED;
if(code_seen('E')) extruder = code_value(); if(code_seen('E')) extruder = code_value();
if(code_seen('F')) filament = code_value(); if(code_seen('F')) filament = code_value();
mmu_set_filament_type(extruder, filament);
printf_P(PSTR("Extruder: %d; "), extruder);
switch (filament) {
case FILAMENT_FLEX: printf_P(PSTR("Flex\n")); break;
case FILAMENT_PVA: printf_P(PSTR("PVA\n")); break;
default: printf_P(PSTR("Default\n")); break;
} }
printf_P(PSTR("F%d%d\n"), extruder, filament);
mmu_printf_P(PSTR("F%d%d\n"), extruder, filament);
} }
break; break;
@ -7748,7 +7696,8 @@ void wait_for_heater(long codenum) {
} }
} }
void check_babystep() { void check_babystep()
{
int babystep_z; int babystep_z;
EEPROM_read_B(EEPROM_BABYSTEP_Z, &babystep_z); EEPROM_read_B(EEPROM_BABYSTEP_Z, &babystep_z);
if ((babystep_z < Z_BABYSTEP_MIN) || (babystep_z > Z_BABYSTEP_MAX)) { if ((babystep_z < Z_BABYSTEP_MIN) || (babystep_z > Z_BABYSTEP_MAX)) {
@ -8869,7 +8818,8 @@ uint16_t print_time_remaining() {
return print_t; return print_t;
} }
uint8_t print_percent_done() { uint8_t print_percent_done()
{
//in case that we have information from M73 gcode return percentage counted by slicer, else return percentage counted as byte_printed/filesize //in case that we have information from M73 gcode return percentage counted by slicer, else return percentage counted as byte_printed/filesize
uint8_t percent_done = 0; uint8_t percent_done = 0;
if (SilentModeMenu == SILENT_MODE_OFF && print_percent_done_normal <= 100) { if (SilentModeMenu == SILENT_MODE_OFF && print_percent_done_normal <= 100) {
@ -8884,131 +8834,16 @@ uint8_t print_percent_done() {
return percent_done; return percent_done;
} }
static void print_time_remaining_init() { static void print_time_remaining_init()
{
print_time_remaining_normal = PRINT_TIME_REMAINING_INIT; print_time_remaining_normal = PRINT_TIME_REMAINING_INIT;
print_time_remaining_silent = PRINT_TIME_REMAINING_INIT; print_time_remaining_silent = PRINT_TIME_REMAINING_INIT;
print_percent_done_normal = PRINT_PERCENT_DONE_INIT; print_percent_done_normal = PRINT_PERCENT_DONE_INIT;
print_percent_done_silent = PRINT_PERCENT_DONE_INIT; print_percent_done_silent = PRINT_PERCENT_DONE_INIT;
} }
bool mmu_get_response(bool timeout) { void M600_check_state()
//waits for "ok" from mmu {
//function returns true if "ok" was received
//if timeout is set to true function return false if there is no "ok" received before timeout
bool response = true;
LongTimer mmu_get_reponse_timeout;
KEEPALIVE_STATE(IN_PROCESS);
mmu_get_reponse_timeout.start();
while (mmu_rx_ok() <= 0)
{
delay_keep_alive(100);
if (timeout && mmu_get_reponse_timeout.expired(5 * 60 * 1000ul)) { //5 minutes timeout
response = false;
break;
}
}
return response;
}
void manage_response(bool move_axes, bool turn_off_nozzle) {
bool response = false;
mmu_print_saved = false;
bool lcd_update_was_enabled = false;
float hotend_temp_bckp = degTargetHotend(active_extruder);
float z_position_bckp = current_position[Z_AXIS];
float x_position_bckp = current_position[X_AXIS];
float y_position_bckp = current_position[Y_AXIS];
while(!response) {
response = mmu_get_response(true); //wait for "ok" from mmu
if (!response) { //no "ok" was received in reserved time frame, user will fix the issue on mmu unit
if (!mmu_print_saved) { //first occurence, we are saving current position, park print head in certain position and disable nozzle heater
if (lcd_update_enabled) {
lcd_update_was_enabled = true;
lcd_update_enable(false);
}
st_synchronize();
mmu_print_saved = true;
hotend_temp_bckp = degTargetHotend(active_extruder);
if (move_axes) {
z_position_bckp = current_position[Z_AXIS];
x_position_bckp = current_position[X_AXIS];
y_position_bckp = current_position[Y_AXIS];
//lift z
current_position[Z_AXIS] += Z_PAUSE_LIFT;
if (current_position[Z_AXIS] > Z_MAX_POS) current_position[Z_AXIS] = Z_MAX_POS;
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 15, active_extruder);
st_synchronize();
//Move XY to side
current_position[X_AXIS] = X_PAUSE_POS;
current_position[Y_AXIS] = Y_PAUSE_POS;
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 50, active_extruder);
st_synchronize();
}
if (turn_off_nozzle) {
//set nozzle target temperature to 0
setAllTargetHotends(0);
printf_P(PSTR("MMU not responding\n"));
lcd_show_fullscreen_message_and_wait_P(_i("MMU needs user attention. Please press knob to resume nozzle target temperature."));
setTargetHotend(hotend_temp_bckp, active_extruder);
while ((degTargetHotend(active_extruder) - degHotend(active_extruder)) > 5) {
delay_keep_alive(1000);
lcd_wait_for_heater();
}
}
}
lcd_display_message_fullscreen_P(_i("Check MMU. Fix the issue and then press button on MMU unit."));
}
else if (mmu_print_saved) {
printf_P(PSTR("MMU start responding\n"));
lcd_clear();
lcd_display_message_fullscreen_P(_i("MMU OK. Resuming..."));
if (move_axes) {
current_position[X_AXIS] = x_position_bckp;
current_position[Y_AXIS] = y_position_bckp;
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 50, active_extruder);
st_synchronize();
current_position[Z_AXIS] = z_position_bckp;
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 15, active_extruder);
st_synchronize();
}
else {
delay_keep_alive(1000); //delay just for showing MMU OK message for a while in case that there are no xyz movements
}
}
}
if (lcd_update_was_enabled) lcd_update_enable(true);
}
void mmu_load_to_nozzle() {
st_synchronize();
bool saved_e_relative_mode = axis_relative_modes[E_AXIS];
if (!saved_e_relative_mode) axis_relative_modes[E_AXIS] = true;
current_position[E_AXIS] += 7.2f;
float feedrate = 562;
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate / 60, active_extruder);
st_synchronize();
current_position[E_AXIS] += 14.4f;
feedrate = 871;
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate / 60, active_extruder);
st_synchronize();
current_position[E_AXIS] += 36.0f;
feedrate = 1393;
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate / 60, active_extruder);
st_synchronize();
current_position[E_AXIS] += 14.4f;
feedrate = 871;
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate / 60, active_extruder);
st_synchronize();
if (!saved_e_relative_mode) axis_relative_modes[E_AXIS] = false;
}
void M600_check_state() {
//Wait for user to check the state //Wait for user to check the state
lcd_change_fil_state = 0; lcd_change_fil_state = 0;
@ -9120,37 +8955,6 @@ void M600_wait_for_user() {
WRITE(BEEPER, LOW); WRITE(BEEPER, LOW);
} }
void mmu_M600_load_filament(bool automatic)
{
//load filament for mmu v2
bool yes = false;
if (!automatic)
{
yes = lcd_show_fullscreen_message_yes_no_and_wait_P(_i("Do you want to switch extruder?"), false);
if (yes) tmp_extruder = choose_extruder_menu();
else tmp_extruder = mmu_extruder;
}
else
{
tmp_extruder = (tmp_extruder+1)%5;
}
lcd_update_enable(false);
lcd_clear();
lcd_set_cursor(0, 1); lcd_puts_P(_T(MSG_LOADING_FILAMENT));
lcd_print(" ");
lcd_print(tmp_extruder + 1);
snmm_filaments_used |= (1 << tmp_extruder); //for stop print
printf_P(PSTR("T code: %d \n"), tmp_extruder);
mmu_printf_P(PSTR("T%d\n"), tmp_extruder);
manage_response(false, true);
mmu_extruder = tmp_extruder; //filament change is finished
mmu_load_to_nozzle();
st_synchronize();
current_position[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2, active_extruder);
}
void M600_load_filament_movements() void M600_load_filament_movements()
{ {
#ifdef SNMM #ifdef SNMM

View file

@ -10,7 +10,7 @@
* @brief construct Timer * @brief construct Timer
* *
* It is guaranteed, that construction is equivalent with zeroing all members. * It is guaranteed, that construction is equivalent with zeroing all members.
* This property can be exploited in MenuData union. * This property can be exploited in menu_data.
*/ */
template<typename T> template<typename T>
Timer<T>::Timer() : m_isRunning(false), m_started() Timer<T>::Timer() : m_isRunning(false), m_started()

View file

@ -754,6 +754,7 @@ void lcd_update_enable(uint8_t enabled)
} }
} }
extern LongTimer safetyTimer;
void lcd_buttons_update(void) void lcd_buttons_update(void)
{ {
static bool _lock = false; static bool _lock = false;
@ -769,6 +770,7 @@ void lcd_buttons_update(void)
lcd_timeoutToStatus.start(); lcd_timeoutToStatus.start();
if (!buttonBlanking.running() || buttonBlanking.expired(BUTTON_BLANKING_TIME)) { if (!buttonBlanking.running() || buttonBlanking.expired(BUTTON_BLANKING_TIME)) {
buttonBlanking.start(); buttonBlanking.start();
safetyTimer.start();
if ((lcd_button_pressed == 0) && (lcd_long_press_active == 0)) if ((lcd_button_pressed == 0) && (lcd_long_press_active == 0))
{ {
longPressTimer.start(); longPressTimer.start();

View file

@ -116,7 +116,7 @@ uint8_t menu_item_ret(void)
} }
/* /*
int menu_item_printf_P(char type_char, const char* format, ...) int menu_draw_item_printf_P(char type_char, const char* format, ...)
{ {
va_list args; va_list args;
va_start(args, format); va_start(args, format);
@ -134,12 +134,14 @@ int menu_item_printf_P(char type_char, const char* format, ...)
return ret; return ret;
} }
*/ */
int menu_draw_item_puts_P(char type_char, const char* str) int menu_draw_item_puts_P(char type_char, const char* str)
{ {
lcd_set_cursor(0, menu_row); lcd_set_cursor(0, menu_row);
int cnt = lcd_printf_P(PSTR("%c%-18S%c"), (lcd_encoder == menu_item)?'>':' ', str, type_char); int cnt = lcd_printf_P(PSTR("%c%-18S%c"), (lcd_encoder == menu_item)?'>':' ', str, type_char);
return cnt; return cnt;
} }
/* /*
int menu_draw_item_puts_P_int16(char type_char, const char* str, int16_t val, ) int menu_draw_item_puts_P_int16(char type_char, const char* str, int16_t val, )
{ {
@ -148,6 +150,7 @@ int menu_draw_item_puts_P_int16(char type_char, const char* str, int16_t val, )
return cnt; return cnt;
} }
*/ */
void menu_item_dummy(void) void menu_item_dummy(void)
{ {
menu_item++; menu_item++;
@ -270,25 +273,35 @@ void menu_draw_float13(char chr, const char* str, float val)
lcd_printf_P(menu_fmt_float13, chr, str, spaces, val); lcd_printf_P(menu_fmt_float13, chr, str, spaces, val);
} }
#define _menu_data menuData.edit_menu typedef struct
{
//Variables used when editing values.
const char* editLabel;
void* editValue;
int32_t minEditValue;
int32_t maxEditValue;
} menu_data_edit_t;
void _menu_edit_int3(void) void _menu_edit_int3(void)
{ {
menu_data_edit_t* _md = (menu_data_edit_t*)&(menu_data[0]);
if (lcd_draw_update) if (lcd_draw_update)
{ {
if (lcd_encoder < _menu_data.minEditValue) lcd_encoder = _menu_data.minEditValue; if (lcd_encoder < _md->minEditValue) lcd_encoder = _md->minEditValue;
if (lcd_encoder > _menu_data.maxEditValue) lcd_encoder = _menu_data.maxEditValue; if (lcd_encoder > _md->maxEditValue) lcd_encoder = _md->maxEditValue;
lcd_set_cursor(0, 1); lcd_set_cursor(0, 1);
menu_draw_int3(' ', _menu_data.editLabel, (int)lcd_encoder); menu_draw_int3(' ', _md->editLabel, (int)lcd_encoder);
} }
if (LCD_CLICKED) if (LCD_CLICKED)
{ {
*((int*)(_menu_data.editValue)) = (int)lcd_encoder; *((int*)(_md->editValue)) = (int)lcd_encoder;
menu_back(); menu_back();
} }
} }
uint8_t menu_item_edit_int3(const char* str, int16_t* pval, int16_t min_val, int16_t max_val) uint8_t menu_item_edit_int3(const char* str, int16_t* pval, int16_t min_val, int16_t max_val)
{ {
menu_data_edit_t* _md = (menu_data_edit_t*)&(menu_data[0]);
if (menu_item == menu_line) if (menu_item == menu_line)
{ {
if (lcd_draw_update) if (lcd_draw_update)
@ -299,10 +312,10 @@ uint8_t menu_item_edit_int3(const char* str, int16_t* pval, int16_t min_val, int
if (menu_clicked && (lcd_encoder == menu_item)) if (menu_clicked && (lcd_encoder == menu_item))
{ {
menu_submenu(_menu_edit_int3); menu_submenu(_menu_edit_int3);
_menu_data.editLabel = str; _md->editLabel = str;
_menu_data.editValue = pval; _md->editValue = pval;
_menu_data.minEditValue = min_val; _md->minEditValue = min_val;
_menu_data.maxEditValue = max_val; _md->maxEditValue = max_val;
lcd_encoder = *pval; lcd_encoder = *pval;
return menu_item_ret(); return menu_item_ret();
} }

View file

@ -16,15 +16,6 @@ typedef struct
uint8_t position; uint8_t position;
} menu_record_t; } menu_record_t;
typedef struct
{
//Variables used when editing values.
const char* editLabel;
void* editValue;
int32_t minEditValue;
int32_t maxEditValue;
} menu_data_edit_t;
extern menu_record_t menu_stack[MENU_DEPTH_MAX]; extern menu_record_t menu_stack[MENU_DEPTH_MAX];
extern uint8_t menu_data[MENU_DATA_SIZE]; extern uint8_t menu_data[MENU_DATA_SIZE];
@ -63,7 +54,7 @@ extern void menu_submenu(menu_func_t submenu);
extern uint8_t menu_item_ret(void); extern uint8_t menu_item_ret(void);
//int menu_item_printf_P(char type_char, const char* format, ...); //extern int menu_draw_item_printf_P(char type_char, const char* format, ...);
extern int menu_draw_item_puts_P(char type_char, const char* str); extern int menu_draw_item_puts_P(char type_char, const char* str);

View file

@ -2995,13 +2995,14 @@ static int babystepLoadZ = 0;
void babystep_load() void babystep_load()
{ {
babystepLoadZ = 0;
// Apply Z height correction aka baby stepping before mesh bed leveling gets activated. // Apply Z height correction aka baby stepping before mesh bed leveling gets activated.
if(calibration_status() < CALIBRATION_STATUS_LIVE_ADJUST) if (calibration_status() < CALIBRATION_STATUS_LIVE_ADJUST)
{ {
check_babystep(); //checking if babystep is in allowed range, otherwise setting babystep to 0 check_babystep(); //checking if babystep is in allowed range, otherwise setting babystep to 0
// End of G80: Apply the baby stepping value. // End of G80: Apply the baby stepping value.
EEPROM_read_B(EEPROM_BABYSTEP_Z,&babystepLoadZ); EEPROM_read_B(EEPROM_BABYSTEP_Z, &babystepLoadZ);
#if 0 #if 0
SERIAL_ECHO("Z baby step: "); SERIAL_ECHO("Z baby step: ");

View file

@ -176,6 +176,7 @@ extern void babystep_undo();
// Reset the current babystep counter without moving the axes. // Reset the current babystep counter without moving the axes.
extern void babystep_reset(); extern void babystep_reset();
extern void count_xyz_details(float (&distanceMin)[2]); extern void count_xyz_details(float (&distanceMin)[2]);
extern bool sample_z(); extern bool sample_z();

View file

@ -10,18 +10,34 @@
extern const char* lcd_display_message_fullscreen_P(const char *msg); extern const char* lcd_display_message_fullscreen_P(const char *msg);
extern void lcd_show_fullscreen_message_and_wait_P(const char *msg);
extern int8_t lcd_show_fullscreen_message_yes_no_and_wait_P(const char *msg, bool allow_timeouting = true, bool default_yes = false);
extern void lcd_return_to_status(); extern void lcd_return_to_status();
extern void lcd_wait_for_heater();
extern char choose_extruder_menu();
#define MMU_TODELAY 100
#define MMU_TIMEOUT 10
#define MMU_HWRESET
#define MMU_RST_PIN 76
#define MMU_TIMEOUT 100
bool mmu_enabled = false; bool mmu_enabled = false;
int8_t mmu_state = 0;
uint8_t mmu_extruder = 0; uint8_t mmu_extruder = 0;
uint8_t tmp_extruder = 0;
int8_t mmu_finda = -1; int8_t mmu_finda = -1;
int16_t mmu_version = -1; int16_t mmu_version = -1;
int16_t mmu_buildnr = -1;
//clear rx buffer //clear rx buffer
void mmu_clr_rx_buf(void) void mmu_clr_rx_buf(void)
@ -59,53 +75,249 @@ int8_t mmu_rx_start(void)
return uart2_rx_str_P(PSTR("start\n")); return uart2_rx_str_P(PSTR("start\n"));
} }
//initialize mmu_unit //initialize mmu2 unit - first part - should be done at begining of startup process
bool mmu_init(void) void mmu_init(void)
{ {
digitalWrite(MMU_RST_PIN, HIGH);
pinMode(MMU_RST_PIN, OUTPUT); //setup reset pin
uart2_init(); //init uart2 uart2_init(); //init uart2
_delay_ms(10); //wait 10ms for sure _delay_ms(10); //wait 10ms for sure
if (mmu_reset()) //reset mmu mmu_reset(); //reset mmu (HW or SW), do not wait for response
mmu_state = -1;
}
//mmu main loop - state machine processing
void mmu_loop(void)
{
// printf_P(PSTR("MMU loop, state=%d\n"), mmu_state);
switch (mmu_state)
{ {
mmu_read_finda(); case 0:
mmu_read_version(); return;
return true; case -1:
if (mmu_rx_start() > 0)
{
puts_P(PSTR("MMU => 'start'"));
puts_P(PSTR("MMU <= 'S1'"));
mmu_puts_P(PSTR("S1\n")); //send 'read version' request
mmu_state = -2;
}
else if (millis() > 30000) //30sec after reset disable mmu
{
puts_P(PSTR("MMU not responding - DISABLED"));
mmu_state = 0;
}
return;
case -2:
if (mmu_rx_ok() > 0)
{
fscanf_P(uart2io, PSTR("%u"), &mmu_version); //scan version from buffer
printf_P(PSTR("MMU => '%dok'\n"), mmu_version);
puts_P(PSTR("MMU <= 'S2'"));
mmu_puts_P(PSTR("S2\n")); //send 'read buildnr' request
mmu_state = -3;
}
return;
case -3:
if (mmu_rx_ok() > 0)
{
fscanf_P(uart2io, PSTR("%u"), &mmu_buildnr); //scan buildnr from buffer
printf_P(PSTR("MMU => '%dok'\n"), mmu_buildnr);
puts_P(PSTR("MMU <= 'P0'"));
mmu_puts_P(PSTR("P0\n")); //send 'read finda' request
mmu_state = -4;
}
return;
case -4:
if (mmu_rx_ok() > 0)
{
fscanf_P(uart2io, PSTR("%hhu"), &mmu_finda); //scan finda from buffer
printf_P(PSTR("MMU => '%dok'\n"), mmu_finda);
puts_P(PSTR("MMU - ENABLED"));
mmu_enabled = true;
mmu_state = 1;
}
return;
} }
return false;
} }
bool mmu_reset(void) void mmu_reset(void)
{ {
mmu_puts_P(PSTR("X0\n")); //send command #ifdef MMU_HWRESET //HW - pulse reset pin
unsigned char timeout = 10; //timeout = 10x100ms digitalWrite(MMU_RST_PIN, LOW);
while ((mmu_rx_start() <= 0) && (--timeout)) _delay_us(100);
delay_keep_alive(MMU_TIMEOUT); digitalWrite(MMU_RST_PIN, HIGH);
mmu_enabled = timeout?true:false; #else //SW - send X0 command
return mmu_enabled; mmu_puts_P(PSTR("X0\n"));
#endif
} }
int8_t mmu_read_finda(void) int8_t mmu_set_filament_type(uint8_t extruder, uint8_t filament)
{ {
mmu_puts_P(PSTR("P0\n")); printf_P(PSTR("MMU <= 'F%d %d'\n"), extruder, filament);
unsigned char timeout = 10; //10x100ms mmu_printf_P(PSTR("F%d %d\n"), extruder, filament);
unsigned char timeout = MMU_TIMEOUT; //10x100ms
while ((mmu_rx_ok() <= 0) && (--timeout)) while ((mmu_rx_ok() <= 0) && (--timeout))
delay_keep_alive(MMU_TIMEOUT); delay_keep_alive(MMU_TODELAY);
mmu_finda = -1; return timeout?1:0;
if (timeout)
fscanf_P(uart2io, PSTR("%hhu"), &mmu_finda);
return mmu_finda;
} }
int16_t mmu_read_version(void) bool mmu_get_response(bool timeout)
{ {
mmu_puts_P(PSTR("S1\n")); printf_P(PSTR("mmu_get_response - begin\n"));
unsigned char timeout = 10; //10x100ms //waits for "ok" from mmu
while ((mmu_rx_ok() <= 0) && (--timeout)) //function returns true if "ok" was received
delay_keep_alive(MMU_TIMEOUT); //if timeout is set to true function return false if there is no "ok" received before timeout
if (timeout) bool response = true;
fscanf_P(uart2io, PSTR("%u"), &mmu_version); LongTimer mmu_get_reponse_timeout;
return mmu_version; KEEPALIVE_STATE(IN_PROCESS);
mmu_get_reponse_timeout.start();
while (mmu_rx_ok() <= 0)
{
delay_keep_alive(100);
if (timeout && mmu_get_reponse_timeout.expired(5 * 60 * 1000ul))
{ //5 minutes timeout
response = false;
break;
}
}
printf_P(PSTR("mmu_get_response - end %d\n"), response?1:0);
return response;
} }
void manage_response(bool move_axes, bool turn_off_nozzle)
{
bool response = false;
mmu_print_saved = false;
bool lcd_update_was_enabled = false;
float hotend_temp_bckp = degTargetHotend(active_extruder);
float z_position_bckp = current_position[Z_AXIS];
float x_position_bckp = current_position[X_AXIS];
float y_position_bckp = current_position[Y_AXIS];
while(!response)
{
response = mmu_get_response(true); //wait for "ok" from mmu
if (!response) { //no "ok" was received in reserved time frame, user will fix the issue on mmu unit
if (!mmu_print_saved) { //first occurence, we are saving current position, park print head in certain position and disable nozzle heater
if (lcd_update_enabled) {
lcd_update_was_enabled = true;
lcd_update_enable(false);
}
st_synchronize();
mmu_print_saved = true;
hotend_temp_bckp = degTargetHotend(active_extruder);
if (move_axes) {
z_position_bckp = current_position[Z_AXIS];
x_position_bckp = current_position[X_AXIS];
y_position_bckp = current_position[Y_AXIS];
//lift z
current_position[Z_AXIS] += Z_PAUSE_LIFT;
if (current_position[Z_AXIS] > Z_MAX_POS) current_position[Z_AXIS] = Z_MAX_POS;
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 15, active_extruder);
st_synchronize();
//Move XY to side
current_position[X_AXIS] = X_PAUSE_POS;
current_position[Y_AXIS] = Y_PAUSE_POS;
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 50, active_extruder);
st_synchronize();
}
if (turn_off_nozzle) {
//set nozzle target temperature to 0
setAllTargetHotends(0);
printf_P(PSTR("MMU not responding\n"));
lcd_show_fullscreen_message_and_wait_P(_i("MMU needs user attention. Please press knob to resume nozzle target temperature."));
setTargetHotend(hotend_temp_bckp, active_extruder);
while ((degTargetHotend(active_extruder) - degHotend(active_extruder)) > 5) {
delay_keep_alive(1000);
lcd_wait_for_heater();
}
}
}
lcd_display_message_fullscreen_P(_i("Check MMU. Fix the issue and then press button on MMU unit."));
}
else if (mmu_print_saved) {
printf_P(PSTR("MMU start responding\n"));
lcd_clear();
lcd_display_message_fullscreen_P(_i("MMU OK. Resuming..."));
if (move_axes) {
current_position[X_AXIS] = x_position_bckp;
current_position[Y_AXIS] = y_position_bckp;
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 50, active_extruder);
st_synchronize();
current_position[Z_AXIS] = z_position_bckp;
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 15, active_extruder);
st_synchronize();
}
else {
delay_keep_alive(1000); //delay just for showing MMU OK message for a while in case that there are no xyz movements
}
}
}
if (lcd_update_was_enabled) lcd_update_enable(true);
}
void mmu_load_to_nozzle()
{
st_synchronize();
bool saved_e_relative_mode = axis_relative_modes[E_AXIS];
if (!saved_e_relative_mode) axis_relative_modes[E_AXIS] = true;
current_position[E_AXIS] += 7.2f;
float feedrate = 562;
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate / 60, active_extruder);
st_synchronize();
current_position[E_AXIS] += 14.4f;
feedrate = 871;
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate / 60, active_extruder);
st_synchronize();
current_position[E_AXIS] += 36.0f;
feedrate = 1393;
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate / 60, active_extruder);
st_synchronize();
current_position[E_AXIS] += 14.4f;
feedrate = 871;
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate / 60, active_extruder);
st_synchronize();
if (!saved_e_relative_mode) axis_relative_modes[E_AXIS] = false;
}
void mmu_M600_load_filament(bool automatic)
{
//load filament for mmu v2
bool yes = false;
if (!automatic) {
yes = lcd_show_fullscreen_message_yes_no_and_wait_P(_i("Do you want to switch extruder?"), false);
if(yes) tmp_extruder = choose_extruder_menu();
else tmp_extruder = mmu_extruder;
}
else {
tmp_extruder = (tmp_extruder+1)%5;
}
lcd_update_enable(false);
lcd_clear();
lcd_set_cursor(0, 1); lcd_puts_P(_T(MSG_LOADING_FILAMENT));
lcd_print(" ");
lcd_print(tmp_extruder + 1);
snmm_filaments_used |= (1 << tmp_extruder); //for stop print
printf_P(PSTR("T code: %d \n"), tmp_extruder);
mmu_printf_P(PSTR("T%d\n"), tmp_extruder);
manage_response(false, true);
mmu_extruder = tmp_extruder; //filament change is finished
mmu_load_to_nozzle();
st_synchronize();
current_position[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2, active_extruder);
}
void extr_mov(float shift, float feed_rate) void extr_mov(float shift, float feed_rate)
{ //move extruder no matter what the current heater temperature is { //move extruder no matter what the current heater temperature is
set_extrude_min_temp(.0); set_extrude_min_temp(.0);

View file

@ -5,11 +5,16 @@
extern bool mmu_enabled; extern bool mmu_enabled;
extern int8_t mmu_state;
extern uint8_t mmu_extruder; extern uint8_t mmu_extruder;
extern uint8_t tmp_extruder;
extern int8_t mmu_finda; extern int8_t mmu_finda;
extern int16_t mmu_version; extern int16_t mmu_version;
extern int16_t mmu_buildnr;
extern int mmu_puts_P(const char* str); extern int mmu_puts_P(const char* str);
@ -19,13 +24,23 @@ extern int mmu_printf_P(const char* format, ...);
extern int8_t mmu_rx_ok(void); extern int8_t mmu_rx_ok(void);
extern bool mmu_init(void); extern void mmu_init(void);
extern bool mmu_reset(void); extern void mmu_loop(void);
extern int8_t mmu_read_finda(void);
extern int16_t mmu_read_version(void); extern void mmu_reset(void);
extern int8_t mmu_set_filament_type(uint8_t extruder, uint8_t filament);
extern bool mmu_get_response(bool timeout);
extern void manage_response(bool move_axes, bool turn_off_nozzle);
extern void mmu_load_to_nozzle();
extern void mmu_M600_load_filament(bool automatic);
extern void extr_mov(float shift, float feed_rate); extern void extr_mov(float shift, float feed_rate);

View file

@ -77,7 +77,8 @@ bool tmc2130_sg_change = false;
bool skip_debug_msg = false; bool skip_debug_msg = false;
#define DBG(args...) printf_P(args) #define DBG(args...)
//printf_P(args)
#ifndef _n #ifndef _n
#define _n PSTR #define _n PSTR
#endif //_n #endif //_n
@ -150,7 +151,7 @@ uint16_t __tcoolthrs(uint8_t axis)
void tmc2130_init() void tmc2130_init()
{ {
DBG(_n("tmc2130_init(), mode=%S\n"), tmc2130_mode?_n("STEALTH"):_n("NORMAL")); // DBG(_n("tmc2130_init(), mode=%S\n"), tmc2130_mode?_n("STEALTH"):_n("NORMAL"));
WRITE(X_TMC2130_CS, HIGH); WRITE(X_TMC2130_CS, HIGH);
WRITE(Y_TMC2130_CS, HIGH); WRITE(Y_TMC2130_CS, HIGH);
WRITE(Z_TMC2130_CS, HIGH); WRITE(Z_TMC2130_CS, HIGH);
@ -442,8 +443,8 @@ void tmc2130_setup_chopper(uint8_t axis, uint8_t mres, uint8_t current_h, uint8_
// toff = TMC2130_TOFF_E; // toff = 3-5 // toff = TMC2130_TOFF_E; // toff = 3-5
// rndtf = 1; // rndtf = 1;
} }
DBG(_n("tmc2130_setup_chopper(axis=%hhd, mres=%hhd, curh=%hhd, curr=%hhd\n"), axis, mres, current_h, current_r); // DBG(_n("tmc2130_setup_chopper(axis=%hhd, mres=%hhd, curh=%hhd, curr=%hhd\n"), axis, mres, current_h, current_r);
DBG(_n(" toff=%hhd, hstr=%hhd, hend=%hhd, tbl=%hhd\n"), toff, hstrt, hend, tbl); // DBG(_n(" toff=%hhd, hstr=%hhd, hend=%hhd, tbl=%hhd\n"), toff, hstrt, hend, tbl);
if (current_r <= 31) if (current_r <= 31)
{ {
tmc2130_wr_CHOPCONF(axis, toff, hstrt, hend, fd3, 0, rndtf, chm, tbl, 1, 0, 0, 0, mres, intpol, 0, 0); tmc2130_wr_CHOPCONF(axis, toff, hstrt, hend, fd3, 0, rndtf, chm, tbl, 1, 0, 0, 0, mres, intpol, 0, 0);
@ -458,31 +459,31 @@ void tmc2130_setup_chopper(uint8_t axis, uint8_t mres, uint8_t current_h, uint8_
void tmc2130_set_current_h(uint8_t axis, uint8_t current) void tmc2130_set_current_h(uint8_t axis, uint8_t current)
{ {
DBG(_n("tmc2130_set_current_h(axis=%d, current=%d\n"), axis, current); // DBG(_n("tmc2130_set_current_h(axis=%d, current=%d\n"), axis, current);
tmc2130_current_h[axis] = current; tmc2130_current_h[axis] = current;
tmc2130_setup_chopper(axis, tmc2130_mres[axis], tmc2130_current_h[axis], tmc2130_current_r[axis]); tmc2130_setup_chopper(axis, tmc2130_mres[axis], tmc2130_current_h[axis], tmc2130_current_r[axis]);
} }
void tmc2130_set_current_r(uint8_t axis, uint8_t current) void tmc2130_set_current_r(uint8_t axis, uint8_t current)
{ {
DBG(_n("tmc2130_set_current_r(axis=%d, current=%d\n"), axis, current); // DBG(_n("tmc2130_set_current_r(axis=%d, current=%d\n"), axis, current);
tmc2130_current_r[axis] = current; tmc2130_current_r[axis] = current;
tmc2130_setup_chopper(axis, tmc2130_mres[axis], tmc2130_current_h[axis], tmc2130_current_r[axis]); tmc2130_setup_chopper(axis, tmc2130_mres[axis], tmc2130_current_h[axis], tmc2130_current_r[axis]);
} }
void tmc2130_print_currents() void tmc2130_print_currents()
{ {
DBG(_n("tmc2130_print_currents()\n\tH\tR\nX\t%d\t%d\nY\t%d\t%d\nZ\t%d\t%d\nE\t%d\t%d\n"), // DBG(_n("tmc2130_print_currents()\n\tH\tR\nX\t%d\t%d\nY\t%d\t%d\nZ\t%d\t%d\nE\t%d\t%d\n"),
tmc2130_current_h[0], tmc2130_current_r[0], // tmc2130_current_h[0], tmc2130_current_r[0],
tmc2130_current_h[1], tmc2130_current_r[1], // tmc2130_current_h[1], tmc2130_current_r[1],
tmc2130_current_h[2], tmc2130_current_r[2], // tmc2130_current_h[2], tmc2130_current_r[2],
tmc2130_current_h[3], tmc2130_current_r[3] // tmc2130_current_h[3], tmc2130_current_r[3]
); // );
} }
void tmc2130_set_pwm_ampl(uint8_t axis, uint8_t pwm_ampl) void tmc2130_set_pwm_ampl(uint8_t axis, uint8_t pwm_ampl)
{ {
DBG(_n("tmc2130_set_pwm_ampl(axis=%hhd, pwm_ampl=%hhd\n"), axis, pwm_ampl); // DBG(_n("tmc2130_set_pwm_ampl(axis=%hhd, pwm_ampl=%hhd\n"), axis, pwm_ampl);
tmc2130_pwm_ampl[axis] = pwm_ampl; tmc2130_pwm_ampl[axis] = pwm_ampl;
if (((axis == 0) || (axis == 1)) && (tmc2130_mode == TMC2130_MODE_SILENT)) if (((axis == 0) || (axis == 1)) && (tmc2130_mode == TMC2130_MODE_SILENT))
tmc2130_wr_PWMCONF(axis, tmc2130_pwm_ampl[axis], tmc2130_pwm_grad[axis], tmc2130_pwm_freq[axis], tmc2130_pwm_auto[axis], 0, 0); tmc2130_wr_PWMCONF(axis, tmc2130_pwm_ampl[axis], tmc2130_pwm_grad[axis], tmc2130_pwm_freq[axis], tmc2130_pwm_auto[axis], 0, 0);
@ -490,7 +491,7 @@ void tmc2130_set_pwm_ampl(uint8_t axis, uint8_t pwm_ampl)
void tmc2130_set_pwm_grad(uint8_t axis, uint8_t pwm_grad) void tmc2130_set_pwm_grad(uint8_t axis, uint8_t pwm_grad)
{ {
DBG(_n("tmc2130_set_pwm_grad(axis=%hhd, pwm_grad=%hhd\n"), axis, pwm_grad); // DBG(_n("tmc2130_set_pwm_grad(axis=%hhd, pwm_grad=%hhd\n"), axis, pwm_grad);
tmc2130_pwm_grad[axis] = pwm_grad; tmc2130_pwm_grad[axis] = pwm_grad;
if (((axis == 0) || (axis == 1)) && (tmc2130_mode == TMC2130_MODE_SILENT)) if (((axis == 0) || (axis == 1)) && (tmc2130_mode == TMC2130_MODE_SILENT))
tmc2130_wr_PWMCONF(axis, tmc2130_pwm_ampl[axis], tmc2130_pwm_grad[axis], tmc2130_pwm_freq[axis], tmc2130_pwm_auto[axis], 0, 0); tmc2130_wr_PWMCONF(axis, tmc2130_pwm_ampl[axis], tmc2130_pwm_grad[axis], tmc2130_pwm_freq[axis], tmc2130_pwm_auto[axis], 0, 0);
@ -853,12 +854,12 @@ void tmc2130_set_wave(uint8_t axis, uint8_t amp, uint8_t fac1000)
{ {
// TMC2130 wave compression algorithm // TMC2130 wave compression algorithm
// optimized for minimal memory requirements // optimized for minimal memory requirements
printf_P(PSTR("tmc2130_set_wave %hhd %hhd\n"), axis, fac1000); // printf_P(PSTR("tmc2130_set_wave %hhd %hhd\n"), axis, fac1000);
if (fac1000 < TMC2130_WAVE_FAC1000_MIN) fac1000 = 0; if (fac1000 < TMC2130_WAVE_FAC1000_MIN) fac1000 = 0;
if (fac1000 > TMC2130_WAVE_FAC1000_MAX) fac1000 = TMC2130_WAVE_FAC1000_MAX; if (fac1000 > TMC2130_WAVE_FAC1000_MAX) fac1000 = TMC2130_WAVE_FAC1000_MAX;
float fac = 0; float fac = 0;
if (fac1000) fac = ((float)((uint16_t)fac1000 + 1000) / 1000); //correction factor if (fac1000) fac = ((float)((uint16_t)fac1000 + 1000) / 1000); //correction factor
printf_P(PSTR(" factor: %s\n"), ftostr43(fac)); // printf_P(PSTR(" factor: %s\n"), ftostr43(fac));
uint8_t vA = 0; //value of currentA uint8_t vA = 0; //value of currentA
uint8_t va = 0; //previous vA uint8_t va = 0; //previous vA
int8_t d0 = 0; //delta0 int8_t d0 = 0; //delta0

View file

@ -34,6 +34,8 @@ int uart2_getchar(FILE *stream __attribute__((unused)))
//uart init (io + FILE stream) //uart init (io + FILE stream)
void uart2_init(void) void uart2_init(void)
{ {
DDRH &= ~0x01;
PORTH |= 0x01;
rbuf_ini(uart2_ibuf, sizeof(uart2_ibuf) - 4); rbuf_ini(uart2_ibuf, sizeof(uart2_ibuf) - 4);
UCSR2A |= (1 << U2X2); // baudrate multiplier UCSR2A |= (1 << U2X2); // baudrate multiplier
UBRR2L = UART_BAUD_SELECT(UART2_BAUD, F_CPU); // select baudrate UBRR2L = UART_BAUD_SELECT(UART2_BAUD, F_CPU); // select baudrate

View file

@ -44,12 +44,6 @@ char longFilenameOLD[LONG_FILENAME_LENGTH];
static void lcd_sd_updir(); static void lcd_sd_updir();
// State of the currently active menu.
// C Union manages sharing of the static memory by all the menus.
union MenuData menuData;
int8_t ReInitLCD = 0; int8_t ReInitLCD = 0;
@ -116,11 +110,14 @@ static void lcd_tune_menu();
//static void lcd_move_menu(); //static void lcd_move_menu();
static void lcd_settings_menu(); static void lcd_settings_menu();
static void lcd_calibration_menu(); static void lcd_calibration_menu();
static void lcd_control_temperature_menu();
#ifdef LINEARITY_CORRECTION #ifdef LINEARITY_CORRECTION
static void lcd_settings_menu_back(); static void lcd_settings_menu_back();
#endif //LINEARITY_CORRECTION #endif //LINEARITY_CORRECTION
static void lcd_control_temperature_menu();
static void lcd_control_temperature_preheat_pla_settings_menu();
static void lcd_control_temperature_preheat_abs_settings_menu();
static void lcd_control_motion_menu();
static void lcd_control_volumetric_menu();
static void prusa_stat_printerstatus(int _status); static void prusa_stat_printerstatus(int _status);
static void prusa_stat_farm_number(); static void prusa_stat_farm_number();
static void prusa_stat_temperatures(); static void prusa_stat_temperatures();
@ -225,9 +222,7 @@ bool wait_for_unclick;
const char STR_SEPARATOR[] PROGMEM = "------------";
@ -608,12 +603,13 @@ static void lcd_implementation_status_screen()
//Print Feedrate //Print Feedrate
lcd_set_cursor(LCD_WIDTH - 8-2, 1); lcd_set_cursor(LCD_WIDTH - 8-2, 1);
lcd_puts_P(PSTR(" ")); lcd_puts_P(PSTR(" "));
/*
if (maxlimit_status) if (maxlimit_status)
{ {
maxlimit_status = 0; maxlimit_status = 0;
lcd_print('!'); lcd_print('!');
} }
else else*/
lcd_print(LCD_STR_FEEDRATE[0]); lcd_print(LCD_STR_FEEDRATE[0]);
lcd_print(itostr3(feedmultiply)); lcd_print(itostr3(feedmultiply));
lcd_puts_P(PSTR("% ")); lcd_puts_P(PSTR("% "));
@ -1958,6 +1954,9 @@ static void lcd_menu_extruder_info()
// Display Nozzle fan RPM // Display Nozzle fan RPM
fan_speed_RPM[0] = 60*fan_speed[0]; fan_speed_RPM[0] = 60*fan_speed[0];
fan_speed_RPM[1] = 60*fan_speed[1]; fan_speed_RPM[1] = 60*fan_speed[1];
lcd_timeoutToStatus.stop(); //infinite timeout
lcd_printf_P(_N( lcd_printf_P(_N(
ESC_H(0,0) ESC_H(0,0)
"Nozzle FAN: %4d RPM\n" "Nozzle FAN: %4d RPM\n"
@ -2005,6 +2004,7 @@ static void lcd_menu_fails_stats_total()
// Filam. runouts 000 // Filam. runouts 000
// Crash X 000 Y 000 // Crash X 000 Y 000
////////////////////// //////////////////////
lcd_timeoutToStatus.stop(); //infinite timeout
uint16_t power = eeprom_read_word((uint16_t*)EEPROM_POWER_COUNT_TOT); uint16_t power = eeprom_read_word((uint16_t*)EEPROM_POWER_COUNT_TOT);
uint16_t filam = eeprom_read_word((uint16_t*)EEPROM_FERROR_COUNT_TOT); uint16_t filam = eeprom_read_word((uint16_t*)EEPROM_FERROR_COUNT_TOT);
uint16_t crashX = eeprom_read_word((uint16_t*)EEPROM_CRASH_COUNT_X_TOT); uint16_t crashX = eeprom_read_word((uint16_t*)EEPROM_CRASH_COUNT_X_TOT);
@ -2021,6 +2021,7 @@ static void lcd_menu_fails_stats_print()
// Filam. runouts 000 // Filam. runouts 000
// Crash X 000 Y 000 // Crash X 000 Y 000
////////////////////// //////////////////////
lcd_timeoutToStatus.stop(); //infinite timeout
uint8_t power = eeprom_read_byte((uint8_t*)EEPROM_POWER_COUNT); uint8_t power = eeprom_read_byte((uint8_t*)EEPROM_POWER_COUNT);
uint8_t filam = eeprom_read_byte((uint8_t*)EEPROM_FERROR_COUNT); uint8_t filam = eeprom_read_byte((uint8_t*)EEPROM_FERROR_COUNT);
uint8_t crashX = eeprom_read_byte((uint8_t*)EEPROM_CRASH_COUNT_X); uint8_t crashX = eeprom_read_byte((uint8_t*)EEPROM_CRASH_COUNT_X);
@ -2061,6 +2062,7 @@ static void lcd_menu_fails_stats()
*/ */
static void lcd_menu_fails_stats() static void lcd_menu_fails_stats()
{ {
lcd_timeoutToStatus.stop(); //infinite timeout
uint8_t filamentLast = eeprom_read_byte((uint8_t*)EEPROM_FERROR_COUNT); uint8_t filamentLast = eeprom_read_byte((uint8_t*)EEPROM_FERROR_COUNT);
uint16_t filamentTotal = eeprom_read_word((uint16_t*)EEPROM_FERROR_COUNT_TOT); uint16_t filamentTotal = eeprom_read_word((uint16_t*)EEPROM_FERROR_COUNT_TOT);
lcd_printf_P(PSTR(ESC_H(0,0) "Last print failures" ESC_H(1,1) "Filam. runouts %-3d" ESC_H(0,2) "Total failures" ESC_H(1,3) "Filam. runouts %-3d"), filamentLast, filamentTotal); lcd_printf_P(PSTR(ESC_H(0,0) "Last print failures" ESC_H(1,1) "Filam. runouts %-3d" ESC_H(0,2) "Total failures" ESC_H(1,3) "Filam. runouts %-3d"), filamentLast, filamentTotal);
@ -2069,6 +2071,7 @@ static void lcd_menu_fails_stats()
#else #else
static void lcd_menu_fails_stats() static void lcd_menu_fails_stats()
{ {
lcd_timeoutToStatus.stop(); //infinite timeout
MENU_BEGIN(); MENU_BEGIN();
MENU_ITEM_BACK_P(_T(MSG_MAIN)); MENU_ITEM_BACK_P(_T(MSG_MAIN));
MENU_END(); MENU_END();
@ -2095,6 +2098,8 @@ static void lcd_menu_debug()
static void lcd_menu_temperatures() static void lcd_menu_temperatures()
{ {
lcd_timeoutToStatus.stop(); //infinite timeout
lcd_printf_P(PSTR(ESC_H(1,0) "Nozzle: %d%c" ESC_H(1,1) "Bed: %d%c"), (int)current_temperature[0], '\x01', (int)current_temperature_bed, '\x01'); lcd_printf_P(PSTR(ESC_H(1,0) "Nozzle: %d%c" ESC_H(1,1) "Bed: %d%c"), (int)current_temperature[0], '\x01', (int)current_temperature_bed, '\x01');
#ifdef AMBIENT_THERMISTOR #ifdef AMBIENT_THERMISTOR
lcd_printf_P(PSTR(ESC_H(1,2) "Ambient: %d%c" ESC_H(1,3) "PINDA: %d%c"), (int)current_temperature_ambient, '\x01', (int)current_temperature_pinda, '\x01'); lcd_printf_P(PSTR(ESC_H(1,2) "Ambient: %d%c" ESC_H(1,3) "PINDA: %d%c"), (int)current_temperature_ambient, '\x01', (int)current_temperature_pinda, '\x01');
@ -2112,6 +2117,7 @@ static void lcd_menu_temperatures()
#define VOLT_DIV_REF 5 #define VOLT_DIV_REF 5
static void lcd_menu_voltages() static void lcd_menu_voltages()
{ {
lcd_timeoutToStatus.stop(); //infinite timeout
float volt_pwr = VOLT_DIV_REF * ((float)current_voltage_raw_pwr / (1023 * OVERSAMPLENR)) / VOLT_DIV_FAC; float volt_pwr = VOLT_DIV_REF * ((float)current_voltage_raw_pwr / (1023 * OVERSAMPLENR)) / VOLT_DIV_FAC;
// float volt_bed = VOLT_DIV_REF * ((float)current_voltage_raw_bed / (1023 * OVERSAMPLENR)) / VOLT_DIV_FAC; // float volt_bed = VOLT_DIV_REF * ((float)current_voltage_raw_bed / (1023 * OVERSAMPLENR)) / VOLT_DIV_FAC;
// lcd_printf_P(PSTR(ESC_H(1,1)"PWR: %d.%01dV" ESC_H(1,2)"BED: %d.%01dV"), (int)volt_pwr, (int)(10*fabs(volt_pwr - (int)volt_pwr)), (int)volt_bed, (int)(10*fabs(volt_bed - (int)volt_bed))); // lcd_printf_P(PSTR(ESC_H(1,1)"PWR: %d.%01dV" ESC_H(1,2)"BED: %d.%01dV"), (int)volt_pwr, (int)(10*fabs(volt_pwr - (int)volt_pwr)), (int)volt_bed, (int)(10*fabs(volt_bed - (int)volt_bed)));
@ -2170,21 +2176,34 @@ static void lcd_preheat_menu()
static void lcd_support_menu() static void lcd_support_menu()
{ {
if (menuData.supportMenu.status == 0 || lcd_draw_update == 2) { typedef struct
{ // 22bytes total
int8_t status; // 1byte
bool is_flash_air; // 1byte
uint8_t ip[4]; // 4bytes
char ip_str[3*4+3+1]; // 16bytes
} _menu_data_t;
#if (22 > MENU_DATA_SIZE)
#error "check MENU_DATA_SIZE definition!"
#endif
_menu_data_t* _md = (_menu_data_t*)&(menu_data[0]);
if (_md->status == 0 || lcd_draw_update == 2)
{
// Menu was entered or SD card status has changed (plugged in or removed). // Menu was entered or SD card status has changed (plugged in or removed).
// Initialize its status. // Initialize its status.
menuData.supportMenu.status = 1; _md->status = 1;
menuData.supportMenu.is_flash_air = card.ToshibaFlashAir_isEnabled() && card.ToshibaFlashAir_GetIP(menuData.supportMenu.ip); _md->is_flash_air = card.ToshibaFlashAir_isEnabled() && card.ToshibaFlashAir_GetIP(_md->ip);
if (menuData.supportMenu.is_flash_air) if (_md->is_flash_air)
sprintf_P(menuData.supportMenu.ip_str, PSTR("%d.%d.%d.%d"), sprintf_P(_md->ip_str, PSTR("%d.%d.%d.%d"),
menuData.supportMenu.ip[0], menuData.supportMenu.ip[1], _md->ip[0], _md->ip[1],
menuData.supportMenu.ip[2], menuData.supportMenu.ip[3]); _md->ip[2], _md->ip[3]);
} else if (menuData.supportMenu.is_flash_air && } else if (_md->is_flash_air &&
menuData.supportMenu.ip[0] == 0 && menuData.supportMenu.ip[1] == 0 && _md->ip[0] == 0 && _md->ip[1] == 0 &&
menuData.supportMenu.ip[2] == 0 && menuData.supportMenu.ip[3] == 0 && _md->ip[2] == 0 && _md->ip[3] == 0 &&
++ menuData.supportMenu.status == 16) { ++ _md->status == 16)
{
// Waiting for the FlashAir card to get an IP address from a router. Force an update. // Waiting for the FlashAir card to get an IP address from a router. Force an update.
menuData.supportMenu.status = 0; _md->status = 0;
} }
MENU_BEGIN(); MENU_BEGIN();
@ -2207,22 +2226,41 @@ static void lcd_support_menu()
MENU_ITEM_BACK_P(_i("prusa3d.com"));////MSG_PRUSA3D c=0 r=0 MENU_ITEM_BACK_P(_i("prusa3d.com"));////MSG_PRUSA3D c=0 r=0
MENU_ITEM_BACK_P(_i("forum.prusa3d.com"));////MSG_PRUSA3D_FORUM c=0 r=0 MENU_ITEM_BACK_P(_i("forum.prusa3d.com"));////MSG_PRUSA3D_FORUM c=0 r=0
MENU_ITEM_BACK_P(_i("howto.prusa3d.com"));////MSG_PRUSA3D_HOWTO c=0 r=0 MENU_ITEM_BACK_P(_i("howto.prusa3d.com"));////MSG_PRUSA3D_HOWTO c=0 r=0
MENU_ITEM_BACK_P(PSTR("------------")); MENU_ITEM_BACK_P(STR_SEPARATOR);
MENU_ITEM_BACK_P(PSTR(FILAMENT_SIZE)); MENU_ITEM_BACK_P(PSTR(FILAMENT_SIZE));
MENU_ITEM_BACK_P(PSTR(ELECTRONICS)); MENU_ITEM_BACK_P(PSTR(ELECTRONICS));
MENU_ITEM_BACK_P(PSTR(NOZZLE_TYPE)); MENU_ITEM_BACK_P(PSTR(NOZZLE_TYPE));
MENU_ITEM_BACK_P(PSTR("------------")); MENU_ITEM_BACK_P(STR_SEPARATOR);
MENU_ITEM_BACK_P(_i("Date:"));////MSG_DATE c=17 r=1 MENU_ITEM_BACK_P(_i("Date:"));////MSG_DATE c=17 r=1
MENU_ITEM_BACK_P(PSTR(__DATE__)); MENU_ITEM_BACK_P(PSTR(__DATE__));
// Show the FlashAir IP address, if the card is available. MENU_ITEM_BACK_P(STR_SEPARATOR);
if (menuData.supportMenu.is_flash_air) { if (mmu_enabled)
MENU_ITEM_BACK_P(PSTR("------------")); {
MENU_ITEM_BACK_P(PSTR("FlashAir IP Addr:")); MENU_ITEM_BACK_P(PSTR("MMU2 connected"));
///! MENU_ITEM(back_RAM, menuData.supportMenu.ip_str, 0); MENU_ITEM_BACK_P(PSTR(" FW:"));
if (((menu_item - 1) == menu_line) && lcd_draw_update)
{
lcd_set_cursor(6, menu_row);
if ((mmu_version > 0) && (mmu_buildnr > 0))
lcd_printf_P(PSTR("%d.%d.%d-%d"), mmu_version/100, mmu_version%100/10, mmu_version%10, mmu_buildnr);
else
lcd_puts_P(PSTR("unknown"));
} }
}
else
MENU_ITEM_BACK_P(PSTR("MMU2 N/A"));
// Show the FlashAir IP address, if the card is available.
if (_md->is_flash_air) {
MENU_ITEM_BACK_P(STR_SEPARATOR);
MENU_ITEM_BACK_P(PSTR("FlashAir IP Addr:"));
///! MENU_ITEM(back_RAM, _md->ip_str, 0);
}
#ifndef MK1BP #ifndef MK1BP
MENU_ITEM_BACK_P(PSTR("------------")); MENU_ITEM_BACK_P(STR_SEPARATOR);
MENU_ITEM_SUBMENU_P(_i("XYZ cal. details"), lcd_menu_xyz_y_min);////MSG_XYZ_DETAILS c=19 r=1 MENU_ITEM_SUBMENU_P(_i("XYZ cal. details"), lcd_menu_xyz_y_min);////MSG_XYZ_DETAILS c=19 r=1
MENU_ITEM_SUBMENU_P(_i("Extruder info"), lcd_menu_extruder_info);////MSG_INFO_EXTRUDER c=15 r=1 MENU_ITEM_SUBMENU_P(_i("Extruder info"), lcd_menu_extruder_info);////MSG_INFO_EXTRUDER c=15 r=1
@ -2476,7 +2514,7 @@ static void lcd_menu_AutoLoadFilament()
} }
else else
{ {
ShortTimer* ptimer = (ShortTimer*)&(menuData.autoLoadFilamentMenu.dummy); ShortTimer* ptimer = (ShortTimer*)&(menu_data[0]);
if (!ptimer->running()) ptimer->start(); if (!ptimer->running()) ptimer->start();
lcd_set_cursor(0, 0); lcd_set_cursor(0, 0);
lcd_puts_P(_T(MSG_ERROR)); lcd_puts_P(_T(MSG_ERROR));
@ -2586,10 +2624,19 @@ void lcd_menu_statistics()
static void _lcd_move(const char *name, int axis, int min, int max) static void _lcd_move(const char *name, int axis, int min, int max)
{ {
if (!menuData._lcd_moveMenu.initialized) typedef struct
{ // 2bytes total
bool initialized; // 1byte
bool endstopsEnabledPrevious; // 1byte
} _menu_data_t;
#if (2 > MENU_DATA_SIZE)
#error "check MENU_DATA_SIZE definition!"
#endif
_menu_data_t* _md = (_menu_data_t*)&(menu_data[0]);
if (!_md->initialized)
{ {
menuData._lcd_moveMenu.endstopsEnabledPrevious = enable_endstops(false); _md->endstopsEnabledPrevious = enable_endstops(false);
menuData._lcd_moveMenu.initialized = true; _md->initialized = true;
} }
if (lcd_encoder != 0) if (lcd_encoder != 0)
{ {
@ -2610,7 +2657,7 @@ static void _lcd_move(const char *name, int axis, int min, int max)
lcd_set_cursor(0, 1); lcd_set_cursor(0, 1);
menu_draw_float31(' ', name, current_position[axis]); menu_draw_float31(' ', name, current_position[axis]);
} }
if (menuExiting || LCD_CLICKED) (void)enable_endstops(menuData._lcd_moveMenu.endstopsEnabledPrevious); if (menuExiting || LCD_CLICKED) (void)enable_endstops(_md->endstopsEnabledPrevious);
if (LCD_CLICKED) menu_back(); if (LCD_CLICKED) menu_back();
} }
@ -2782,23 +2829,37 @@ static void lcd_move_z() {
*/ */
static void _lcd_babystep(int axis, const char *msg) static void _lcd_babystep(int axis, const char *msg)
{ {
if (menuData.babyStep.status == 0) typedef struct
{ // 19bytes total
int8_t status; // 1byte
int babystepMem[3]; // 6bytes
float babystepMemMM[3]; // 12bytes
} _menu_data_t;
#if (19 > MENU_DATA_SIZE)
#error "check MENU_DATA_SIZE definition!"
#endif
_menu_data_t* _md = (_menu_data_t*)&(menu_data[0]);
if (_md->status == 0)
{ {
// Menu was entered. // Menu was entered.
// Initialize its status. // Initialize its status.
menuData.babyStep.status = 1; _md->status = 1;
check_babystep(); check_babystep();
EEPROM_read_B(EEPROM_BABYSTEP_X, &menuData.babyStep.babystepMem[0]); EEPROM_read_B(EEPROM_BABYSTEP_X, &_md->babystepMem[0]);
EEPROM_read_B(EEPROM_BABYSTEP_Y, &menuData.babyStep.babystepMem[1]); EEPROM_read_B(EEPROM_BABYSTEP_Y, &_md->babystepMem[1]);
EEPROM_read_B(EEPROM_BABYSTEP_Z, &menuData.babyStep.babystepMem[2]); EEPROM_read_B(EEPROM_BABYSTEP_Z, &_md->babystepMem[2]);
menuData.babyStep.babystepMemMM[0] = menuData.babyStep.babystepMem[0]/axis_steps_per_unit[X_AXIS]; // same logic as in babystep_load
menuData.babyStep.babystepMemMM[1] = menuData.babyStep.babystepMem[1]/axis_steps_per_unit[Y_AXIS]; if (calibration_status() >= CALIBRATION_STATUS_LIVE_ADJUST)
menuData.babyStep.babystepMemMM[2] = menuData.babyStep.babystepMem[2]/axis_steps_per_unit[Z_AXIS]; _md->babystepMem[2] = 0;
_md->babystepMemMM[0] = _md->babystepMem[0]/axis_steps_per_unit[X_AXIS];
_md->babystepMemMM[1] = _md->babystepMem[1]/axis_steps_per_unit[Y_AXIS];
_md->babystepMemMM[2] = _md->babystepMem[2]/axis_steps_per_unit[Z_AXIS];
lcd_draw_update = 1; lcd_draw_update = 1;
//SERIAL_ECHO("Z baby step: "); //SERIAL_ECHO("Z baby step: ");
//SERIAL_ECHO(menuData.babyStep.babystepMem[2]); //SERIAL_ECHO(_md->babystepMem[2]);
// Wait 90 seconds before closing the live adjust dialog. // Wait 90 seconds before closing the live adjust dialog.
lcd_timeoutToStatus.start(); lcd_timeoutToStatus.start();
} }
@ -2806,11 +2867,11 @@ static void _lcd_babystep(int axis, const char *msg)
if (lcd_encoder != 0) if (lcd_encoder != 0)
{ {
if (homing_flag) lcd_encoder = 0; if (homing_flag) lcd_encoder = 0;
menuData.babyStep.babystepMem[axis] += (int)lcd_encoder; _md->babystepMem[axis] += (int)lcd_encoder;
if (axis == 2) if (axis == 2)
{ {
if (menuData.babyStep.babystepMem[axis] < Z_BABYSTEP_MIN) menuData.babyStep.babystepMem[axis] = Z_BABYSTEP_MIN; //-3999 -> -9.99 mm if (_md->babystepMem[axis] < Z_BABYSTEP_MIN) _md->babystepMem[axis] = Z_BABYSTEP_MIN; //-3999 -> -9.99 mm
else if (menuData.babyStep.babystepMem[axis] > Z_BABYSTEP_MAX) menuData.babyStep.babystepMem[axis] = Z_BABYSTEP_MAX; //0 else if (_md->babystepMem[axis] > Z_BABYSTEP_MAX) _md->babystepMem[axis] = Z_BABYSTEP_MAX; //0
else else
{ {
CRITICAL_SECTION_START CRITICAL_SECTION_START
@ -2818,7 +2879,7 @@ static void _lcd_babystep(int axis, const char *msg)
CRITICAL_SECTION_END CRITICAL_SECTION_END
} }
} }
menuData.babyStep.babystepMemMM[axis] = menuData.babyStep.babystepMem[axis]/axis_steps_per_unit[axis]; _md->babystepMemMM[axis] = _md->babystepMem[axis]/axis_steps_per_unit[axis];
delay(50); delay(50);
lcd_encoder = 0; lcd_encoder = 0;
lcd_draw_update = 1; lcd_draw_update = 1;
@ -2826,14 +2887,14 @@ static void _lcd_babystep(int axis, const char *msg)
if (lcd_draw_update) if (lcd_draw_update)
{ {
lcd_set_cursor(0, 1); lcd_set_cursor(0, 1);
menu_draw_float13(' ', msg, menuData.babyStep.babystepMemMM[axis]); menu_draw_float13(' ', msg, _md->babystepMemMM[axis]);
} }
if (LCD_CLICKED || menuExiting) if (LCD_CLICKED || menuExiting)
{ {
// Only update the EEPROM when leaving the menu. // Only update the EEPROM when leaving the menu.
EEPROM_save_B( EEPROM_save_B(
(axis == X_AXIS) ? EEPROM_BABYSTEP_X : ((axis == Y_AXIS) ? EEPROM_BABYSTEP_Y : EEPROM_BABYSTEP_Z), (axis == X_AXIS) ? EEPROM_BABYSTEP_X : ((axis == Y_AXIS) ? EEPROM_BABYSTEP_Y : EEPROM_BABYSTEP_Z),
&menuData.babyStep.babystepMem[axis]); &_md->babystepMem[axis]);
if(Z_AXIS == axis) calibration_status_store(CALIBRATION_STATUS_CALIBRATED); if(Z_AXIS == axis) calibration_status_store(CALIBRATION_STATUS_CALIBRATED);
} }
if (LCD_CLICKED) menu_back(); if (LCD_CLICKED) menu_back();
@ -2845,6 +2906,22 @@ static void lcd_babystep_z() {
static void lcd_adjust_bed(); static void lcd_adjust_bed();
typedef struct
{ // 13bytes total
int8_t status; // 1byte
int8_t left; // 1byte
int8_t right; // 1byte
int8_t front; // 1byte
int8_t rear; // 1byte
int left2; // 2byte
int right2; // 2byte
int front2; // 2byte
int rear2; // 2byte
} _menu_data_adjust_bed_t;
#if (13 > MENU_DATA_SIZE)
#error "check MENU_DATA_SIZE definition!"
#endif
static void lcd_adjust_bed_reset() static void lcd_adjust_bed_reset()
{ {
eeprom_update_byte((unsigned char*)EEPROM_BED_CORRECTION_VALID, 1); eeprom_update_byte((unsigned char*)EEPROM_BED_CORRECTION_VALID, 1);
@ -2852,65 +2929,71 @@ static void lcd_adjust_bed_reset()
eeprom_update_byte((unsigned char*)EEPROM_BED_CORRECTION_RIGHT, 0); eeprom_update_byte((unsigned char*)EEPROM_BED_CORRECTION_RIGHT, 0);
eeprom_update_byte((unsigned char*)EEPROM_BED_CORRECTION_FRONT, 0); eeprom_update_byte((unsigned char*)EEPROM_BED_CORRECTION_FRONT, 0);
eeprom_update_byte((unsigned char*)EEPROM_BED_CORRECTION_REAR , 0); eeprom_update_byte((unsigned char*)EEPROM_BED_CORRECTION_REAR , 0);
menuData.adjustBed.status = 0; _menu_data_adjust_bed_t* _md = (_menu_data_adjust_bed_t*)&(menu_data[0]);
_md->status = 0;
} }
void adjust_bed_reset() { void adjust_bed_reset()
{
_menu_data_adjust_bed_t* _md = (_menu_data_adjust_bed_t*)&(menu_data[0]);
eeprom_update_byte((unsigned char*)EEPROM_BED_CORRECTION_VALID, 1); eeprom_update_byte((unsigned char*)EEPROM_BED_CORRECTION_VALID, 1);
eeprom_update_byte((unsigned char*)EEPROM_BED_CORRECTION_LEFT, 0); eeprom_update_byte((unsigned char*)EEPROM_BED_CORRECTION_LEFT, 0);
eeprom_update_byte((unsigned char*)EEPROM_BED_CORRECTION_RIGHT, 0); eeprom_update_byte((unsigned char*)EEPROM_BED_CORRECTION_RIGHT, 0);
eeprom_update_byte((unsigned char*)EEPROM_BED_CORRECTION_FRONT, 0); eeprom_update_byte((unsigned char*)EEPROM_BED_CORRECTION_FRONT, 0);
eeprom_update_byte((unsigned char*)EEPROM_BED_CORRECTION_REAR, 0); eeprom_update_byte((unsigned char*)EEPROM_BED_CORRECTION_REAR, 0);
menuData.adjustBed.left = menuData.adjustBed.left2 = 0; _md->left = _md->left2 = 0;
menuData.adjustBed.right = menuData.adjustBed.right2 = 0; _md->right = _md->right2 = 0;
menuData.adjustBed.front = menuData.adjustBed.front2 = 0; _md->front = _md->front2 = 0;
menuData.adjustBed.rear = menuData.adjustBed.rear2 = 0; _md->rear = _md->rear2 = 0;
} }
#define BED_ADJUSTMENT_UM_MAX 50 #define BED_ADJUSTMENT_UM_MAX 50
static void lcd_adjust_bed() static void lcd_adjust_bed()
{ {
if (menuData.adjustBed.status == 0) { _menu_data_adjust_bed_t* _md = (_menu_data_adjust_bed_t*)&(menu_data[0]);
if (_md->status == 0)
{
// Menu was entered. // Menu was entered.
// Initialize its status. // Initialize its status.
menuData.adjustBed.status = 1; _md->status = 1;
bool valid = false; bool valid = false;
menuData.adjustBed.left = menuData.adjustBed.left2 = eeprom_read_int8((unsigned char*)EEPROM_BED_CORRECTION_LEFT); _md->left = _md->left2 = eeprom_read_int8((unsigned char*)EEPROM_BED_CORRECTION_LEFT);
menuData.adjustBed.right = menuData.adjustBed.right2 = eeprom_read_int8((unsigned char*)EEPROM_BED_CORRECTION_RIGHT); _md->right = _md->right2 = eeprom_read_int8((unsigned char*)EEPROM_BED_CORRECTION_RIGHT);
menuData.adjustBed.front = menuData.adjustBed.front2 = eeprom_read_int8((unsigned char*)EEPROM_BED_CORRECTION_FRONT); _md->front = _md->front2 = eeprom_read_int8((unsigned char*)EEPROM_BED_CORRECTION_FRONT);
menuData.adjustBed.rear = menuData.adjustBed.rear2 = eeprom_read_int8((unsigned char*)EEPROM_BED_CORRECTION_REAR); _md->rear = _md->rear2 = eeprom_read_int8((unsigned char*)EEPROM_BED_CORRECTION_REAR);
if (eeprom_read_byte((unsigned char*)EEPROM_BED_CORRECTION_VALID) == 1 && if (eeprom_read_byte((unsigned char*)EEPROM_BED_CORRECTION_VALID) == 1 &&
menuData.adjustBed.left >= -BED_ADJUSTMENT_UM_MAX && menuData.adjustBed.left <= BED_ADJUSTMENT_UM_MAX && _md->left >= -BED_ADJUSTMENT_UM_MAX && _md->left <= BED_ADJUSTMENT_UM_MAX &&
menuData.adjustBed.right >= -BED_ADJUSTMENT_UM_MAX && menuData.adjustBed.right <= BED_ADJUSTMENT_UM_MAX && _md->right >= -BED_ADJUSTMENT_UM_MAX && _md->right <= BED_ADJUSTMENT_UM_MAX &&
menuData.adjustBed.front >= -BED_ADJUSTMENT_UM_MAX && menuData.adjustBed.front <= BED_ADJUSTMENT_UM_MAX && _md->front >= -BED_ADJUSTMENT_UM_MAX && _md->front <= BED_ADJUSTMENT_UM_MAX &&
menuData.adjustBed.rear >= -BED_ADJUSTMENT_UM_MAX && menuData.adjustBed.rear <= BED_ADJUSTMENT_UM_MAX) _md->rear >= -BED_ADJUSTMENT_UM_MAX && _md->rear <= BED_ADJUSTMENT_UM_MAX)
valid = true; valid = true;
if (! valid) { if (! valid) {
// Reset the values: simulate an edit. // Reset the values: simulate an edit.
menuData.adjustBed.left2 = 0; _md->left2 = 0;
menuData.adjustBed.right2 = 0; _md->right2 = 0;
menuData.adjustBed.front2 = 0; _md->front2 = 0;
menuData.adjustBed.rear2 = 0; _md->rear2 = 0;
} }
lcd_draw_update = 1; lcd_draw_update = 1;
eeprom_update_byte((unsigned char*)EEPROM_BED_CORRECTION_VALID, 1); eeprom_update_byte((unsigned char*)EEPROM_BED_CORRECTION_VALID, 1);
} }
if (menuData.adjustBed.left != menuData.adjustBed.left2) if (_md->left != _md->left2)
eeprom_update_int8((unsigned char*)EEPROM_BED_CORRECTION_LEFT, menuData.adjustBed.left = menuData.adjustBed.left2); eeprom_update_int8((unsigned char*)EEPROM_BED_CORRECTION_LEFT, _md->left = _md->left2);
if (menuData.adjustBed.right != menuData.adjustBed.right2) if (_md->right != _md->right2)
eeprom_update_int8((unsigned char*)EEPROM_BED_CORRECTION_RIGHT, menuData.adjustBed.right = menuData.adjustBed.right2); eeprom_update_int8((unsigned char*)EEPROM_BED_CORRECTION_RIGHT, _md->right = _md->right2);
if (menuData.adjustBed.front != menuData.adjustBed.front2) if (_md->front != _md->front2)
eeprom_update_int8((unsigned char*)EEPROM_BED_CORRECTION_FRONT, menuData.adjustBed.front = menuData.adjustBed.front2); eeprom_update_int8((unsigned char*)EEPROM_BED_CORRECTION_FRONT, _md->front = _md->front2);
if (menuData.adjustBed.rear != menuData.adjustBed.rear2) if (_md->rear != _md->rear2)
eeprom_update_int8((unsigned char*)EEPROM_BED_CORRECTION_REAR, menuData.adjustBed.rear = menuData.adjustBed.rear2); eeprom_update_int8((unsigned char*)EEPROM_BED_CORRECTION_REAR, _md->rear = _md->rear2);
MENU_BEGIN(); MENU_BEGIN();
MENU_ITEM_BACK_P(_T(MSG_SETTINGS)); MENU_ITEM_BACK_P(_T(MSG_SETTINGS));
MENU_ITEM_EDIT_int3_P(_i("Left side [um]"), &menuData.adjustBed.left2, -BED_ADJUSTMENT_UM_MAX, BED_ADJUSTMENT_UM_MAX);////MSG_BED_CORRECTION_LEFT c=14 r=1 MENU_ITEM_EDIT_int3_P(_i("Left side [um]"), &_md->left2, -BED_ADJUSTMENT_UM_MAX, BED_ADJUSTMENT_UM_MAX);////MSG_BED_CORRECTION_LEFT c=14 r=1
MENU_ITEM_EDIT_int3_P(_i("Right side[um]"), &menuData.adjustBed.right2, -BED_ADJUSTMENT_UM_MAX, BED_ADJUSTMENT_UM_MAX);////MSG_BED_CORRECTION_RIGHT c=14 r=1 MENU_ITEM_EDIT_int3_P(_i("Right side[um]"), &_md->right2, -BED_ADJUSTMENT_UM_MAX, BED_ADJUSTMENT_UM_MAX);////MSG_BED_CORRECTION_RIGHT c=14 r=1
MENU_ITEM_EDIT_int3_P(_i("Front side[um]"), &menuData.adjustBed.front2, -BED_ADJUSTMENT_UM_MAX, BED_ADJUSTMENT_UM_MAX);////MSG_BED_CORRECTION_FRONT c=14 r=1 MENU_ITEM_EDIT_int3_P(_i("Front side[um]"), &_md->front2, -BED_ADJUSTMENT_UM_MAX, BED_ADJUSTMENT_UM_MAX);////MSG_BED_CORRECTION_FRONT c=14 r=1
MENU_ITEM_EDIT_int3_P(_i("Rear side [um]"), &menuData.adjustBed.rear2, -BED_ADJUSTMENT_UM_MAX, BED_ADJUSTMENT_UM_MAX);////MSG_BED_CORRECTION_REAR c=14 r=1 MENU_ITEM_EDIT_int3_P(_i("Rear side [um]"), &_md->rear2, -BED_ADJUSTMENT_UM_MAX, BED_ADJUSTMENT_UM_MAX);////MSG_BED_CORRECTION_REAR c=14 r=1
MENU_ITEM_FUNCTION_P(_i("Reset"), lcd_adjust_bed_reset);////MSG_BED_CORRECTION_RESET c=0 r=0 MENU_ITEM_FUNCTION_P(_i("Reset"), lcd_adjust_bed_reset);////MSG_BED_CORRECTION_RESET c=0 r=0
MENU_END(); MENU_END();
} }
@ -2933,7 +3016,7 @@ void pid_extruder() {
} }
} }
/*
void lcd_adjust_z() { void lcd_adjust_z() {
int enc_dif = 0; int enc_dif = 0;
int cursor_pos = 1; int cursor_pos = 1;
@ -3016,7 +3099,7 @@ void lcd_adjust_z() {
lcd_clear(); lcd_clear();
lcd_return_to_status(); lcd_return_to_status();
} }*/
bool lcd_wait_for_pinda(float temp) { bool lcd_wait_for_pinda(float temp) {
lcd_set_custom_characters_degree(); lcd_set_custom_characters_degree();
@ -4717,7 +4800,6 @@ static void lcd_settings_menu_back()
} }
#endif //LINEARITY_CORRECTION #endif //LINEARITY_CORRECTION
static void lcd_calibration_menu() static void lcd_calibration_menu()
{ {
MENU_BEGIN(); MENU_BEGIN();
@ -5672,13 +5754,28 @@ static void lcd_colorprint_change() {
static void lcd_tune_menu() static void lcd_tune_menu()
{ {
if (menuData.tuneMenu.status == 0) { typedef struct
{ // 3bytes total
// To recognize, whether the menu has been just initialized.
int8_t status; // 1byte
// Backup of extrudemultiply, to recognize, that the value has been changed and
// it needs to be applied.
int16_t extrudemultiply; // 2byte
} _menu_data_t;
#if (3 > MENU_DATA_SIZE)
#error "check MENU_DATA_SIZE definition!"
#endif
_menu_data_t* _md = (_menu_data_t*)&(menu_data[0]);
if (_md->status == 0)
{
// Menu was entered. Mark the menu as entered and save the current extrudemultiply value. // Menu was entered. Mark the menu as entered and save the current extrudemultiply value.
menuData.tuneMenu.status = 1; _md->status = 1;
menuData.tuneMenu.extrudemultiply = extrudemultiply; _md->extrudemultiply = extrudemultiply;
} else if (menuData.tuneMenu.extrudemultiply != extrudemultiply) { }
else if (_md->extrudemultiply != extrudemultiply)
{
// extrudemultiply has been changed from the child menu. Apply the new value. // extrudemultiply has been changed from the child menu. Apply the new value.
menuData.tuneMenu.extrudemultiply = extrudemultiply; _md->extrudemultiply = extrudemultiply;
calculate_extruder_multipliers(); calculate_extruder_multipliers();
} }

View file

@ -14,92 +14,6 @@ extern void menu_lcd_longpress_func(void);
extern void menu_lcd_charsetup_func(void); extern void menu_lcd_charsetup_func(void);
extern void menu_lcd_lcdupdate_func(void); extern void menu_lcd_lcdupdate_func(void);
struct EditMenuParentState
{
//prevMenu and prevEncoderPosition are used to store the previous menu location when editing settings.
menu_func_t prevMenu;
uint16_t prevEncoderPosition;
//Variables used when editing values.
const char* editLabel;
void* editValue;
int32_t minEditValue, maxEditValue;
// menu_func_t callbackFunc;
};
union MenuData
{
struct BabyStep
{
// 29B total
int8_t status;
int babystepMem[3];
float babystepMemMM[3];
} babyStep;
struct SupportMenu
{
// 6B+16B=22B total
int8_t status;
bool is_flash_air;
uint8_t ip[4];
char ip_str[3*4+3+1];
} supportMenu;
struct AdjustBed
{
// 6+13+16=35B
// editMenuParentState is used when an edit menu is entered, so it knows
// the return menu and encoder state.
struct EditMenuParentState editMenuParentState;
int8_t status;
int8_t left;
int8_t right;
int8_t front;
int8_t rear;
int left2;
int right2;
int front2;
int rear2;
} adjustBed;
struct TuneMenu
{
// editMenuParentState is used when an edit menu is entered, so it knows
// the return menu and encoder state.
struct EditMenuParentState editMenuParentState;
// To recognize, whether the menu has been just initialized.
int8_t status;
// Backup of extrudemultiply, to recognize, that the value has been changed and
// it needs to be applied.
int16_t extrudemultiply;
} tuneMenu;
// editMenuParentState is used when an edit menu is entered, so it knows
// the return menu and encoder state.
struct EditMenuParentState editMenuParentState;
struct AutoLoadFilamentMenu
{
//ShortTimer timer;
char dummy;
} autoLoadFilamentMenu;
struct _Lcd_moveMenu
{
bool initialized;
bool endstopsEnabledPrevious;
} _lcd_moveMenu;
struct sdcard_menu_t
{
uint8_t viewState;
} sdcard_menu;
menu_data_edit_t edit_menu;
};
// State of the currently active menu.
// C Union manages sharing of the static memory by all the menus.
extern union MenuData menuData;
// Call with a false parameter to suppress the LCD update from various places like the planner or the temp control. // Call with a false parameter to suppress the LCD update from various places like the planner or the temp control.
void ultralcd_init(); void ultralcd_init();
void lcd_setstatus(const char* message); void lcd_setstatus(const char* message);
@ -226,8 +140,6 @@ void lcd_temp_cal_show_result(bool result);
bool lcd_wait_for_pinda(float temp); bool lcd_wait_for_pinda(float temp);
union MenuData;
void bowden_menu(); void bowden_menu();
char reset_menu(); char reset_menu();
char choose_extruder_menu(); char choose_extruder_menu();

View file

@ -686,17 +686,17 @@ uint8_t xyzcal_xycoords2point(int16_t x, int16_t y)
//MK3 //MK3
#if ((MOTHERBOARD == BOARD_EINSY_1_0a)) #if ((MOTHERBOARD == BOARD_EINSY_1_0a))
const int16_t PROGMEM xyzcal_point_xcoords[4] = {1200, 22000, 22000, 1200}; const int16_t xyzcal_point_xcoords[4] PROGMEM = {1200, 22000, 22000, 1200};
const int16_t PROGMEM xyzcal_point_ycoords[4] = {600, 600, 19800, 19800}; const int16_t xyzcal_point_ycoords[4] PROGMEM = {600, 600, 19800, 19800};
#endif //((MOTHERBOARD == BOARD_EINSY_1_0a)) #endif //((MOTHERBOARD == BOARD_EINSY_1_0a))
//MK2.5 //MK2.5
#if ((MOTHERBOARD == BOARD_RAMBO_MINI_1_0) || (MOTHERBOARD == BOARD_RAMBO_MINI_1_3)) #if ((MOTHERBOARD == BOARD_RAMBO_MINI_1_0) || (MOTHERBOARD == BOARD_RAMBO_MINI_1_3))
const int16_t PROGMEM xyzcal_point_xcoords[4] = {1200, 22000, 22000, 1200}; const int16_t xyzcal_point_xcoords[4] PROGMEM = {1200, 22000, 22000, 1200};
const int16_t PROGMEM xyzcal_point_ycoords[4] = {700, 700, 19800, 19800}; const int16_t xyzcal_point_ycoords[4] PROGMEM = {700, 700, 19800, 19800};
#endif //((MOTHERBOARD == BOARD_RAMBO_MINI_1_0) || (MOTHERBOARD == BOARD_RAMBO_MINI_1_3)) #endif //((MOTHERBOARD == BOARD_RAMBO_MINI_1_0) || (MOTHERBOARD == BOARD_RAMBO_MINI_1_3))
const uint16_t PROGMEM xyzcal_point_pattern[12] = {0x000, 0x0f0, 0x1f8, 0x3fc, 0x7fe, 0x7fe, 0x7fe, 0x7fe, 0x3fc, 0x1f8, 0x0f0, 0x000}; const uint16_t xyzcal_point_pattern[12] PROGMEM = {0x000, 0x0f0, 0x1f8, 0x3fc, 0x7fe, 0x7fe, 0x7fe, 0x7fe, 0x3fc, 0x1f8, 0x0f0, 0x000};
bool xyzcal_searchZ(void) bool xyzcal_searchZ(void)
{ {
@ -747,7 +747,7 @@ bool xyzcal_scan_and_process(void)
uint16_t* pattern = (uint16_t*)(histo + 2*16); uint16_t* pattern = (uint16_t*)(histo + 2*16);
for (uint8_t i = 0; i < 12; i++) for (uint8_t i = 0; i < 12; i++)
{ {
pattern[i] = pgm_read_word_far((uint16_t*)(xyzcal_point_pattern + i)); pattern[i] = pgm_read_word((uint16_t*)(xyzcal_point_pattern + i));
// DBG(_n(" pattern[%d]=%d\n"), i, pattern[i]); // DBG(_n(" pattern[%d]=%d\n"), i, pattern[i]);
} }
uint8_t c = 0; uint8_t c = 0;
@ -777,8 +777,8 @@ bool xyzcal_find_bed_induction_sensor_point_xy(void)
int16_t y = _Y; int16_t y = _Y;
int16_t z = _Z; int16_t z = _Z;
uint8_t point = xyzcal_xycoords2point(x, y); uint8_t point = xyzcal_xycoords2point(x, y);
x = pgm_read_word_far((uint16_t*)(xyzcal_point_xcoords + point)); x = pgm_read_word((uint16_t*)(xyzcal_point_xcoords + point));
y = pgm_read_word_far((uint16_t*)(xyzcal_point_ycoords + point)); y = pgm_read_word((uint16_t*)(xyzcal_point_ycoords + point));
DBG(_n("point=%d x=%d y=%d z=%d\n"), point, x, y, z); DBG(_n("point=%d x=%d y=%d z=%d\n"), point, x, y, z);
xyzcal_meassure_enter(); xyzcal_meassure_enter();
xyzcal_lineXYZ_to(x, y, z, 200, 0); xyzcal_lineXYZ_to(x, y, z, 200, 0);