sync with upstream

This commit is contained in:
PavelSindler 2017-07-01 19:29:57 +02:00
commit ae0c64248f
14 changed files with 822 additions and 543 deletions

View file

@ -269,10 +269,10 @@ const bool Z_MAX_ENDSTOP_INVERTING = true; // set to true to invert the logic of
#define DISABLE_E false // For all extruders
#define DISABLE_INACTIVE_EXTRUDER true //disable only inactive extruders and keep active extruder enabled
#define INVERT_X_DIR false // for Mendel set to false, for Orca set to true
#define INVERT_X_DIR true // for Mendel set to false, for Orca set to true
#define INVERT_Y_DIR false // for Mendel set to true, for Orca set to false
#define INVERT_Z_DIR false // for Mendel set to false, for Orca set to true
#define INVERT_E0_DIR true // for direct drive extruder v9 set to true, for geared extruder set to false
#define INVERT_Z_DIR true // for Mendel set to false, for Orca set to true
#define INVERT_E0_DIR false // for direct drive extruder v9 set to true, for geared extruder set to false
#define INVERT_E1_DIR false // for direct drive extruder v9 set to true, for geared extruder set to false
#define INVERT_E2_DIR false // for direct drive extruder v9 set to true, for geared extruder set to false
@ -426,8 +426,10 @@ const bool Z_MAX_ENDSTOP_INVERTING = true; // set to true to invert the logic of
// #define EXTRUDER_OFFSET_Y {0.0, 5.00} // (in mm) for each extruder, offset of the hotend on the Y axis
// The speed change that does not require acceleration (i.e. the software might assume it can be done instantaneously)
#define DEFAULT_XJERK 10.0 // (mm/sec)
#define DEFAULT_YJERK 10.0 // (mm/sec)
//#define DEFAULT_XJERK 5.0 // (mm/sec)
//#define DEFAULT_YJERK 5.0 // (mm/sec)
#define DEFAULT_XJERK 2.5 // (mm/sec)
#define DEFAULT_YJERK 2.5 // (mm/sec)
#define DEFAULT_ZJERK 0.2 // (mm/sec)
#define DEFAULT_EJERK 2.5 // (mm/sec)
@ -463,8 +465,8 @@ const bool Z_MAX_ENDSTOP_INVERTING = true; // set to true to invert the logic of
#define SDSUPPORT // Enable SD Card Support in Hardware Console
//#define SDSLOW // Use slower SD transfer mode (not normally needed - uncomment if you're getting volume init error)
#define SD_CHECK_AND_RETRY // Use CRC checks and retries on the SD communication
#define ENCODER_PULSES_PER_STEP 4 // Increase if you have a high resolution encoder
#define ENCODER_STEPS_PER_MENU_ITEM 1 // Set according to ENCODER_PULSES_PER_STEP or your liking
#define ENCODER_PULSES_PER_STEP 2 // Increase if you have a high resolution encoder
#define ENCODER_STEPS_PER_MENU_ITEM 2 // Set according to ENCODER_PULSES_PER_STEP or your liking
//#define ULTIMAKERCONTROLLER //as available from the Ultimaker online store.
//#define ULTIPANEL //the UltiPanel as on Thingiverse
//#define LCD_FEEDBACK_FREQUENCY_HZ 1000 // this is the tone frequency the buzzer plays when on UI feedback. ie Screen Click

View file

@ -1812,7 +1812,7 @@ static float probe_pt(float x, float y, float z_before) {
}
#endif // #ifdef ENABLE_AUTO_BED_LEVELING
/*
void homeaxis(int axis) {
#define HOMEAXIS_DO(LETTER) \
((LETTER##_MIN_PIN > -1 && LETTER##_HOME_DIR==-1) || (LETTER##_MAX_PIN > -1 && LETTER##_HOME_DIR==1))
@ -1823,7 +1823,8 @@ void homeaxis(int axis) {
0) {
int axis_home_dir = home_dir(axis);
#ifdef HAVE_TMC2130_DRIVERS
tmc2130_st_home_enter(axis);
if ((axis == X_AXIS) || (axis == Y_AXIS))
tmc2130_home_enter(axis);
#endif //HAVE_TMC2130_DRIVERS
current_position[axis] = 0;
@ -1841,7 +1842,7 @@ void homeaxis(int axis) {
st_synchronize();
destination[axis] = 2*home_retract_mm(axis) * axis_home_dir;
feedrate = homing_feedrate[axis]/2 ;
// feedrate = homing_feedrate[axis]/2 ;
plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
st_synchronize();
axis_is_at_home(axis);
@ -1851,11 +1852,93 @@ void homeaxis(int axis) {
axis_known_position[axis] = true;
#ifdef HAVE_TMC2130_DRIVERS
tmc2130_st_home_enter(axis);
if ((axis == X_AXIS) || (axis == Y_AXIS))
tmc2130_home_exit();
#endif //HAVE_TMC2130_DRIVERS
}
}
/**/
void homeaxis(int axis) {
#define HOMEAXIS_DO(LETTER) \
((LETTER##_MIN_PIN > -1 && LETTER##_HOME_DIR==-1) || (LETTER##_MAX_PIN > -1 && LETTER##_HOME_DIR==1))
if (axis==X_AXIS ? HOMEAXIS_DO(X) :
axis==Y_AXIS ? HOMEAXIS_DO(Y) :
0) {
int axis_home_dir = home_dir(axis);
#ifdef HAVE_TMC2130_DRIVERS
tmc2130_home_enter(axis);
#endif
current_position[axis] = 0;
plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
destination[axis] = 1.5 * max_length(axis) * axis_home_dir;
feedrate = homing_feedrate[axis];
plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
// sg_homing_delay = 0;
st_synchronize();
current_position[axis] = 0;
plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
destination[axis] = -home_retract_mm(axis) * axis_home_dir;
plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
// sg_homing_delay = 0;
st_synchronize();
destination[axis] = 2*home_retract_mm(axis) * axis_home_dir;
#ifdef HAVE_TMC2130_DRIVERS
if (tmc2130_didLastHomingStall())
feedrate = homing_feedrate[axis];
else
#endif
feedrate = homing_feedrate[axis] / 2;
plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
// sg_homing_delay = 0;
st_synchronize();
axis_is_at_home(axis);
destination[axis] = current_position[axis];
feedrate = 0.0;
endstops_hit_on_purpose();
axis_known_position[axis] = true;
#ifdef HAVE_TMC2130_DRIVERS
tmc2130_home_exit();
#endif
}
else if (axis==Z_AXIS ? HOMEAXIS_DO(Z) :
0) {
int axis_home_dir = home_dir(axis);
current_position[axis] = 0;
plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
destination[axis] = 1.5 * max_length(axis) * axis_home_dir;
feedrate = homing_feedrate[axis];
plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
st_synchronize();
current_position[axis] = 0;
plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
destination[axis] = -home_retract_mm(axis) * axis_home_dir;
plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
st_synchronize();
destination[axis] = 2*home_retract_mm(axis) * axis_home_dir;
feedrate = homing_feedrate[axis]/2 ;
plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
st_synchronize();
axis_is_at_home(axis);
destination[axis] = current_position[axis];
feedrate = 0.0;
endstops_hit_on_purpose();
axis_known_position[axis] = true;
}
}
/**/
void home_xy()
{
set_destination_to_current();
@ -5408,6 +5491,37 @@ case 404: //M404 Enter the nominal filament width (3mm, 1.75mm ) N<3.0> or disp
#endif
}
break;
case 910: // M910 TMC2130 init
{
tmc2130_init();
}
break;
case 911: // M911 Set TMC2130 holding currents
{
if (code_seen('X')) tmc2130_set_current_h(0, code_value());
if (code_seen('Y')) tmc2130_set_current_h(1, code_value());
if (code_seen('Z')) tmc2130_set_current_h(2, code_value());
if (code_seen('E')) tmc2130_set_current_h(3, code_value());
}
break;
case 912: // M912 Set TMC2130 running currents
{
if (code_seen('X')) tmc2130_set_current_r(0, code_value());
if (code_seen('Y')) tmc2130_set_current_r(1, code_value());
if (code_seen('Z')) tmc2130_set_current_r(2, code_value());
if (code_seen('E')) tmc2130_set_current_r(3, code_value());
}
break;
case 913: // M912 Print TMC2130 currents
{
tmc2130_print_currents();
}
break;
case 350: // M350 Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
{
#if defined(X_MS1_PIN) && X_MS1_PIN > -1

View file

@ -3,7 +3,8 @@
#define BOARD_UNKNOWN -1
#define BOARD_EINY_0_1a 300 // EINY 0.1a
#define BOARD_EINY_0_4a 299 // EINY 0.4a
#define BOARD_EINY_0_3a 300 // EINY 0.3a
#define BOARD_RAMBO 301 // Rambo
#define BOARD_RAMBO_MINI_1_3 302 // Rambo-mini 1.3
#define BOARD_RAMBO_MINI_1_0 102 // Rambo-mini 1.0

View file

@ -1,74 +1,74 @@
#include "pat9125.h"
#include "swspi.h"
#ifdef SWSPI_RPI
// #include <bcm2835.h>
#define DELAY(delay) usleep(delay)
#endif //SWSPI_RPI
#ifdef SWSPI_AVR
#include "Arduino.h"
#define DELAY(delay) delayMicroseconds(delay)
#endif //SWSPI_AVR
unsigned char ucPID1 = 0;
unsigned char ucPID2 = 0;
int pat9125_x = 0;
int pat9125_y = 0;
int pat9125_init(unsigned char xres, unsigned char yres)
{
swspi_init();
ucPID1 = pat9125_rd_reg(PAT9125_PID1);
ucPID2 = pat9125_rd_reg(PAT9125_PID2);
if ((ucPID1 != 0x31) || (ucPID2 != 0x91))
{
return 0;
}
pat9125_wr_reg(PAT9125_RES_X, xres);
pat9125_wr_reg(PAT9125_RES_Y, yres);
return 1;
}
int pat9125_update()
{
if ((ucPID1 == 0x31) && (ucPID2 == 0x91))
{
unsigned char ucMotion = pat9125_rd_reg(PAT9125_MOTION);
if (ucMotion & 0x80)
{
int iDX = pat9125_rd_reg(PAT9125_DELTA_XL);
int iDY = pat9125_rd_reg(PAT9125_DELTA_YL);
if (iDX >= 0x80) iDX = iDX - 256;
if (iDY >= 0x80) iDY = iDY - 256;
pat9125_x += iDX;
pat9125_y += iDY;
return 1;
}
}
return 0;
}
unsigned char pat9125_rd_reg(unsigned char addr)
{
swspi_start();
DELAY(100);
swspi_tx(addr & 0x7f);
DELAY(100);
unsigned char data = swspi_rx();
swspi_stop();
DELAY(100);
return data;
}
void pat9125_wr_reg(unsigned char addr, unsigned char data)
{
swspi_start();
DELAY(100);
swspi_tx(addr | 0x80);
DELAY(100);
swspi_tx(data);
swspi_stop();
DELAY(100);
}
#include "pat9125.h"
#include "swspi.h"
#ifdef SWSPI_RPI
// #include <bcm2835.h>
#define DELAY(delay) usleep(delay)
#endif //SWSPI_RPI
#ifdef SWSPI_AVR
#include "Arduino.h"
#define DELAY(delay) delayMicroseconds(delay)
#endif //SWSPI_AVR
unsigned char ucPID1 = 0;
unsigned char ucPID2 = 0;
int pat9125_x = 0;
int pat9125_y = 0;
int pat9125_init(unsigned char xres, unsigned char yres)
{
swspi_init();
ucPID1 = pat9125_rd_reg(PAT9125_PID1);
ucPID2 = pat9125_rd_reg(PAT9125_PID2);
if ((ucPID1 != 0x31) || (ucPID2 != 0x91))
{
return 0;
}
pat9125_wr_reg(PAT9125_RES_X, xres);
pat9125_wr_reg(PAT9125_RES_Y, yres);
return 1;
}
int pat9125_update()
{
if ((ucPID1 == 0x31) && (ucPID2 == 0x91))
{
unsigned char ucMotion = pat9125_rd_reg(PAT9125_MOTION);
if (ucMotion & 0x80)
{
int iDX = pat9125_rd_reg(PAT9125_DELTA_XL);
int iDY = pat9125_rd_reg(PAT9125_DELTA_YL);
if (iDX >= 0x80) iDX = iDX - 256;
if (iDY >= 0x80) iDY = iDY - 256;
pat9125_x += iDX;
pat9125_y += iDY;
return 1;
}
}
return 0;
}
unsigned char pat9125_rd_reg(unsigned char addr)
{
swspi_start();
DELAY(100);
swspi_tx(addr & 0x7f);
DELAY(100);
unsigned char data = swspi_rx();
swspi_stop();
DELAY(100);
return data;
}
void pat9125_wr_reg(unsigned char addr, unsigned char data)
{
swspi_start();
DELAY(100);
swspi_tx(addr | 0x80);
DELAY(100);
swspi_tx(data);
swspi_stop();
DELAY(100);
}

View file

@ -1,38 +1,38 @@
#ifndef PAT9125_H
#define PAT9125_H
//#define PAT9125_RPI
#define PAT9125_AVR
//PAT9125 registers
#define PAT9125_PID1 0x00
#define PAT9125_PID2 0x01
#define PAT9125_MOTION 0x02
#define PAT9125_DELTA_XL 0x03
#define PAT9125_DELTA_YL 0x04
#define PAT9125_MODE 0x05
#define PAT9125_CONFIG 0x06
#define PAT9125_WP 0x09
#define PAT9125_SLEEP1 0x0a
#define PAT9125_SLEEP2 0x0b
#define PAT9125_RES_X 0x0d
#define PAT9125_RES_Y 0x0e
#define PAT9125_DELTA_XYH 0x12
#define PAT9125_SHUTTER 0x14
#define PAT9125_FRAME 0x17
#define PAT9125_ORIENTATION 0x19
extern unsigned char ucPID1;
extern unsigned char ucPID2;
extern int pat9125_x;
extern int pat9125_y;
int pat9125_init(unsigned char xres, unsigned char yres);
int pat9125_update();
unsigned char pat9125_rd_reg(unsigned char addr);
void pat9125_wr_reg(unsigned char addr, unsigned char data);
#endif //PAT9125_H
#ifndef PAT9125_H
#define PAT9125_H
//#define PAT9125_RPI
#define PAT9125_AVR
//PAT9125 registers
#define PAT9125_PID1 0x00
#define PAT9125_PID2 0x01
#define PAT9125_MOTION 0x02
#define PAT9125_DELTA_XL 0x03
#define PAT9125_DELTA_YL 0x04
#define PAT9125_MODE 0x05
#define PAT9125_CONFIG 0x06
#define PAT9125_WP 0x09
#define PAT9125_SLEEP1 0x0a
#define PAT9125_SLEEP2 0x0b
#define PAT9125_RES_X 0x0d
#define PAT9125_RES_Y 0x0e
#define PAT9125_DELTA_XYH 0x12
#define PAT9125_SHUTTER 0x14
#define PAT9125_FRAME 0x17
#define PAT9125_ORIENTATION 0x19
extern unsigned char ucPID1;
extern unsigned char ucPID2;
extern int pat9125_x;
extern int pat9125_y;
int pat9125_init(unsigned char xres, unsigned char yres);
int pat9125_update();
unsigned char pat9125_rd_reg(unsigned char addr);
void pat9125_wr_reg(unsigned char addr, unsigned char data);
#endif //PAT9125_H

View file

@ -316,10 +316,10 @@
#endif
/*****************************************************************
* EINY Rambo Pin Assignments 0.1a
* EINY Rambo Pin Assignments 0.3a
******************************************************************/
#if MOTHERBOARD == 300
#define ELECTRONICS "EINY_01a"
#define ELECTRONICS "EINY_03a"
#define KNOWN_BOARD
#ifndef __AVR_ATmega2560__
#error Oops! Make sure you have 'Arduino Mega 2560 or Rambo' selected from the 'Tools -> Boards' menu.
@ -419,10 +419,115 @@
#endif //NEWPANEL
#endif //ULTRA_LCD
#endif //MOTHERBOARD == 300
/*****************************************************************
* EINY Rambo Pin Assignments 0.4a
******************************************************************/
#if MOTHERBOARD == 299
#define ELECTRONICS "EINY_04a"
#define KNOWN_BOARD
#ifndef __AVR_ATmega2560__
#error Oops! Make sure you have 'Arduino Mega 2560 or Rambo' selected from the 'Tools -> Boards' menu.
#endif
#define LARGE_FLASH true
#define HAVE_TMC2130_DRIVERS
#define X_STEP_PIN 37
#define X_DIR_PIN 49
#define X_MIN_PIN 12
#define X_MAX_PIN 30
#define X_ENABLE_PIN 29
#define X_MS1_PIN -1
#define X_MS2_PIN -1
#define X_TMC2130_CS 41
#define Y_STEP_PIN 36
#define Y_DIR_PIN 48
#define Y_MIN_PIN 11
#define Y_MAX_PIN 24
#define Y_ENABLE_PIN 28
#define Y_MS1_PIN -1
#define Y_MS2_PIN -1
#define Y_TMC2130_CS 39
#define Z_STEP_PIN 35
#define Z_DIR_PIN 47
#define Z_MIN_PIN 10
#define Z_MAX_PIN 23
#define Z_ENABLE_PIN 27
#define Z_MS1_PIN -1
#define Z_MS2_PIN -1
#define Z_TMC2130_CS 67
#define HEATER_BED_PIN 4
#define TEMP_BED_PIN 2
#define HEATER_0_PIN 3
#define TEMP_0_PIN 0
#define HEATER_1_PIN 7
#define TEMP_1_PIN 1
#ifdef BARICUDA
#define HEATER_2_PIN 6
#else
#define HEATER_2_PIN -1
#endif
#define TEMP_2_PIN -1
#define E0_STEP_PIN 34
#define E0_DIR_PIN 43
#define E0_ENABLE_PIN 26
#define E0_MS1_PIN -1
#define E0_MS2_PIN -1
#define E0_TMC2130_CS 66
#define MOTOR_CURRENT_PWM_XY_PIN 46
#define MOTOR_CURRENT_PWM_Z_PIN 45
#define MOTOR_CURRENT_PWM_E_PIN 44
#define SDPOWER -1
#define SDSS 53
#define LED_PIN 13
#define FAN_PIN 6
#define FAN_1_PIN -1
#define PS_ON_PIN -1
#define KILL_PIN -1 // 80 with Smart Controller LCD
#define SUICIDE_PIN -1 // PIN that has to be turned on right after start, to keep power flowing.
#ifdef ULTRA_LCD
#define KILL_PIN 32
#ifdef NEWPANEL
#define BEEPER 84 // Beeper on AUX-4
#define LCD_PINS_RS 82
//#define LCD_PINS_ENABLE 18
//#define LCD_PINS_D4 19
#define LCD_PINS_ENABLE 61
#define LCD_PINS_D4 59
#define LCD_PINS_D5 70
#define LCD_PINS_D6 85
#define LCD_PINS_D7 71
//buttons are directly attached using AUX-2
#define BTN_EN1 72
#define BTN_EN2 14
#define BTN_ENC 9 // the click
#define SDCARDDETECT 15
#define TACH_0 81
#define TACH_1 80
#endif //NEWPANEL
#endif //ULTRA_LCD
#endif //MOTHERBOARD == 300
#ifndef KNOWN_BOARD

View file

@ -83,11 +83,12 @@ static bool old_y_max_endstop=false;
static bool old_z_min_endstop=false;
static bool old_z_max_endstop=false;
#ifdef SG_HOMING
#ifdef SG_HOMING_SW
static bool check_endstops = false;
#else
static bool check_endstops = true;
#endif
static bool check_z_endstop = false;
int8_t SilentMode;
@ -404,7 +405,11 @@ ISR(TIMER1_COMPA_vect)
{
{
#if defined(X_MIN_PIN) && X_MIN_PIN > -1
bool x_min_endstop=(READ(X_MIN_PIN) != X_MIN_ENDSTOP_INVERTING);
#ifndef SG_HOMING_SW
bool x_min_endstop = (READ(X_MIN_PIN) != X_MIN_ENDSTOP_INVERTING);
#else //SG_HOMING_SW
bool x_min_endstop = tmc2130_axis_stalled[X_AXIS];
#endif //SG_HOMING_SW
if(x_min_endstop && old_x_min_endstop && (current_block->steps_x > 0)) {
endstops_trigsteps[X_AXIS] = count_position[X_AXIS];
endstop_x_hit=true;
@ -420,7 +425,11 @@ ISR(TIMER1_COMPA_vect)
{
{
#if defined(X_MAX_PIN) && X_MAX_PIN > -1
bool x_max_endstop=(READ(X_MAX_PIN) != X_MAX_ENDSTOP_INVERTING);
#ifndef SG_HOMING_SW
bool x_max_endstop = (READ(X_MAX_PIN) != X_MAX_ENDSTOP_INVERTING);
#else //SG_HOMING_SW
bool x_max_endstop = tmc2130_axis_stalled[X_AXIS];
#endif //SG_HOMING_SW
if(x_max_endstop && old_x_max_endstop && (current_block->steps_x > 0)){
endstops_trigsteps[X_AXIS] = count_position[X_AXIS];
endstop_x_hit=true;
@ -440,7 +449,11 @@ ISR(TIMER1_COMPA_vect)
CHECK_ENDSTOPS
{
#if defined(Y_MIN_PIN) && Y_MIN_PIN > -1
bool y_min_endstop=(READ(Y_MIN_PIN) != Y_MIN_ENDSTOP_INVERTING);
#ifndef SG_HOMING_SW
bool y_min_endstop=(READ(Y_MIN_PIN) != Y_MIN_ENDSTOP_INVERTING);
#else //SG_HOMING_SW
bool y_min_endstop = tmc2130_axis_stalled[Y_AXIS];
#endif //SG_HOMING_SW
if(y_min_endstop && old_y_min_endstop && (current_block->steps_y > 0)) {
endstops_trigsteps[Y_AXIS] = count_position[Y_AXIS];
endstop_y_hit=true;
@ -454,7 +467,11 @@ ISR(TIMER1_COMPA_vect)
CHECK_ENDSTOPS
{
#if defined(Y_MAX_PIN) && Y_MAX_PIN > -1
bool y_max_endstop=(READ(Y_MAX_PIN) != Y_MAX_ENDSTOP_INVERTING);
#ifndef SG_HOMING_SW
bool y_max_endstop=(READ(Y_MAX_PIN) != Y_MAX_ENDSTOP_INVERTING);
#else //SG_HOMING_SW
bool y_max_endstop = tmc2130_axis_stalled[Y_AXIS];
#endif //SG_HOMING_SW
if(y_max_endstop && old_y_max_endstop && (current_block->steps_y > 0)){
endstops_trigsteps[Y_AXIS] = count_position[Y_AXIS];
endstop_y_hit=true;
@ -865,15 +882,23 @@ void st_init()
// Block until all buffered steps are executed
void st_synchronize()
{
while( blocks_queued()) {
manage_heater();
// Vojtech: Don't disable motors inside the planner!
manage_inactivity(true);
lcd_update();
while(blocks_queued())
{
#ifdef HAVE_TMC2130_DRIVERS
tmc2130_st_synchronize();
manage_heater();
// Vojtech: Don't disable motors inside the planner!
if (!tmc2130_update_sg())
{
manage_inactivity(true);
lcd_update();
}
#else //HAVE_TMC2130_DRIVERS
manage_heater();
// Vojtech: Don't disable motors inside the planner!
manage_inactivity(true);
lcd_update();
#endif //HAVE_TMC2130_DRIVERS
}
}
}
void st_set_position(const long &x, const long &y, const long &z, const long &e)
@ -902,6 +927,13 @@ long st_get_position(uint8_t axis)
return count_pos;
}
void st_get_position_xy(long &x, long &y)
{
CRITICAL_SECTION_START;
x = count_position[X_AXIS];
y = count_position[Y_AXIS];
CRITICAL_SECTION_END;
}
float st_get_position_mm(uint8_t axis)
{

View file

@ -54,6 +54,8 @@ void st_set_e_position(const long &e);
// Get current position in steps
long st_get_position(uint8_t axis);
// Get current x and y position in steps
void st_get_position_xy(long &x, long &y);
// Get current position in mm
float st_get_position_mm(uint8_t axis);

View file

@ -1,107 +1,107 @@
#include "swspi.h"
#ifdef SWSPI_RPI
#include <bcm2835.h>
#define GPIO_INP(gpio) bcm2835_gpio_fsel(gpio, BCM2835_GPIO_FSEL_INPT)
#define GPIO_OUT(gpio) bcm2835_gpio_fsel(gpio, BCM2835_GPIO_FSEL_OUTP)
#define GPIO_SET(gpio) bcm2835_gpio_write(gpio, HIGH)
#define GPIO_CLR(gpio) bcm2835_gpio_write(gpio, LOW)
#define GPIO_GET(gpio) (bcm2835_gpio_lev(gpio) != LOW)
#define DELAY(delay) usleep(delay)
#endif //SWSPI_RPI
#ifdef SWSPI_AVR
#include "Arduino.h"
#define GPIO_INP(gpio) pinMode(gpio, INPUT)
#define GPIO_OUT(gpio) pinMode(gpio, OUTPUT)
#define GPIO_SET(gpio) digitalWrite(gpio, HIGH)
#define GPIO_CLR(gpio) digitalWrite(gpio, LOW)
#define GPIO_GET(gpio) (digitalRead(gpio) != LOW)
#define DELAY(delay) delayMicroseconds(delay)
#endif //SWSPI_AVR
#if (SWSPI_POL != 0)
#define SWSPI_SCK_UP GPIO_CLR(SWSPI_SCK)
#define SWSPI_SCK_DN GPIO_SET(SWSPI_SCK)
#else
#define SWSPI_SCK_UP GPIO_SET(SWSPI_SCK)
#define SWSPI_SCK_DN GPIO_CLR(SWSPI_SCK)
#endif
void swspi_init()
{
GPIO_INP(SWSPI_MISO);
GPIO_OUT(SWSPI_MOSI);
GPIO_OUT(SWSPI_SCK);
GPIO_OUT(SWSPI_CS);
GPIO_CLR(SWSPI_MOSI);
SWSPI_SCK_DN;
GPIO_SET(SWSPI_CS);
}
#if (SWSPI_MOSI == SWSPI_MISO)
void swspi_tx(unsigned char tx)
{
GPIO_OUT(SWSPI_MOSI);
unsigned char i = 0; for (; i < 8; i++)
{
if (tx & 0x80) GPIO_SET(SWSPI_MOSI);
else GPIO_CLR(SWSPI_MOSI);
DELAY(SWSPI_DEL);
SWSPI_SCK_UP;
DELAY(SWSPI_DEL);
SWSPI_SCK_DN;
tx <<= 1;
}
}
unsigned char swspi_rx()
{
GPIO_INP(SWSPI_MISO);
unsigned char rx = 0;
unsigned char i = 0; for (; i < 8; i++)
{
rx <<= 1;
DELAY(SWSPI_DEL);
SWSPI_SCK_UP;
DELAY(SWSPI_DEL);
rx |= GPIO_GET(SWSPI_MISO)?1:0;
SWSPI_SCK_DN;
}
return rx;
}
#else //(SWSPI_MOSI == SWSPI_MISO)
unsigned char swspi_txrx(unsigned char tx)
{
unsigned char rx = 0;
unsigned char i = 0; for (; i < 8; i++)
{
rx <<= 1;
if (tx & 0x80) GPIO_SET(SWSPI_MOSI);
else GPIO_CLR(SWSPI_MOSI);
DELAY(SWSPI_DEL);
SWSPI_SCK_UP;
DELAY(SWSPI_DEL);
rx |= GPIO_GET(SWSPI_MISO)?1:0;
SWSPI_SCK_DN;
tx <<= 1;
}
return rx;
}
#endif //(SWSPI_MOSI == SWSPI_MISO)
void swspi_start()
{
GPIO_CLR(SWSPI_CS);
}
void swspi_stop()
{
GPIO_SET(SWSPI_CS);
}
#include "swspi.h"
#ifdef SWSPI_RPI
#include <bcm2835.h>
#define GPIO_INP(gpio) bcm2835_gpio_fsel(gpio, BCM2835_GPIO_FSEL_INPT)
#define GPIO_OUT(gpio) bcm2835_gpio_fsel(gpio, BCM2835_GPIO_FSEL_OUTP)
#define GPIO_SET(gpio) bcm2835_gpio_write(gpio, HIGH)
#define GPIO_CLR(gpio) bcm2835_gpio_write(gpio, LOW)
#define GPIO_GET(gpio) (bcm2835_gpio_lev(gpio) != LOW)
#define DELAY(delay) usleep(delay)
#endif //SWSPI_RPI
#ifdef SWSPI_AVR
#include "Arduino.h"
#define GPIO_INP(gpio) pinMode(gpio, INPUT)
#define GPIO_OUT(gpio) pinMode(gpio, OUTPUT)
#define GPIO_SET(gpio) digitalWrite(gpio, HIGH)
#define GPIO_CLR(gpio) digitalWrite(gpio, LOW)
#define GPIO_GET(gpio) (digitalRead(gpio) != LOW)
#define DELAY(delay) delayMicroseconds(delay)
#endif //SWSPI_AVR
#if (SWSPI_POL != 0)
#define SWSPI_SCK_UP GPIO_CLR(SWSPI_SCK)
#define SWSPI_SCK_DN GPIO_SET(SWSPI_SCK)
#else
#define SWSPI_SCK_UP GPIO_SET(SWSPI_SCK)
#define SWSPI_SCK_DN GPIO_CLR(SWSPI_SCK)
#endif
void swspi_init()
{
GPIO_INP(SWSPI_MISO);
GPIO_OUT(SWSPI_MOSI);
GPIO_OUT(SWSPI_SCK);
GPIO_OUT(SWSPI_CS);
GPIO_CLR(SWSPI_MOSI);
SWSPI_SCK_DN;
GPIO_SET(SWSPI_CS);
}
#if (SWSPI_MOSI == SWSPI_MISO)
void swspi_tx(unsigned char tx)
{
GPIO_OUT(SWSPI_MOSI);
unsigned char i = 0; for (; i < 8; i++)
{
if (tx & 0x80) GPIO_SET(SWSPI_MOSI);
else GPIO_CLR(SWSPI_MOSI);
DELAY(SWSPI_DEL);
SWSPI_SCK_UP;
DELAY(SWSPI_DEL);
SWSPI_SCK_DN;
tx <<= 1;
}
}
unsigned char swspi_rx()
{
GPIO_INP(SWSPI_MISO);
unsigned char rx = 0;
unsigned char i = 0; for (; i < 8; i++)
{
rx <<= 1;
DELAY(SWSPI_DEL);
SWSPI_SCK_UP;
DELAY(SWSPI_DEL);
rx |= GPIO_GET(SWSPI_MISO)?1:0;
SWSPI_SCK_DN;
}
return rx;
}
#else //(SWSPI_MOSI == SWSPI_MISO)
unsigned char swspi_txrx(unsigned char tx)
{
unsigned char rx = 0;
unsigned char i = 0; for (; i < 8; i++)
{
rx <<= 1;
if (tx & 0x80) GPIO_SET(SWSPI_MOSI);
else GPIO_CLR(SWSPI_MOSI);
DELAY(SWSPI_DEL);
SWSPI_SCK_UP;
DELAY(SWSPI_DEL);
rx |= GPIO_GET(SWSPI_MISO)?1:0;
SWSPI_SCK_DN;
tx <<= 1;
}
return rx;
}
#endif //(SWSPI_MOSI == SWSPI_MISO)
void swspi_start()
{
GPIO_CLR(SWSPI_CS);
}
void swspi_stop()
{
GPIO_SET(SWSPI_CS);
}

View file

@ -1,48 +1,48 @@
#ifndef SWSPI_H
#define SWSPI_H
//#define SWSPI_RPI
#define SWSPI_AVR
#ifdef SWSPI_RPI
//#define SWSPI_MISO 9
#define SWSPI_MISO 10
#define SWSPI_MOSI 10
#define SWSPI_SCK 11
#define SWSPI_CS 7
#endif //SWSPI_RPI
#ifdef SWSPI_AVR
#define SWSPI_MISO 16
#define SWSPI_MOSI 16
#define SWSPI_SCK 17
#define SWSPI_CS 20
#endif //SWSPI_AVR
#define SWSPI_POL 1 //polarity
#define SWSPI_PHA 0 //phase
#define SWSPI_DOR 0 //data order
#define SWSPI_DEL 100 //delay
void swspi_init();
#if (SWSPI_MOSI == SWSPI_MISO)
void swspi_tx(unsigned char tx);
unsigned char swspi_rx();
#else //(SWSPI_MOSI == SWSPI_MISO)
#define swspi_tx swspi_txrx
#define swspi_rx swspi_txrx
unsigned char swspi_txrx(unsigned char tx);
#endif //(SWSPI_MOSI == SWSPI_MISO)
void swspi_start();
void swspi_stop();
#endif //SWSPI_H
#ifndef SWSPI_H
#define SWSPI_H
//#define SWSPI_RPI
#define SWSPI_AVR
#ifdef SWSPI_RPI
//#define SWSPI_MISO 9
#define SWSPI_MISO 10
#define SWSPI_MOSI 10
#define SWSPI_SCK 11
#define SWSPI_CS 7
#endif //SWSPI_RPI
#ifdef SWSPI_AVR
#define SWSPI_MISO 16
#define SWSPI_MOSI 16
#define SWSPI_SCK 17
#define SWSPI_CS 20
#endif //SWSPI_AVR
#define SWSPI_POL 1 //polarity
#define SWSPI_PHA 0 //phase
#define SWSPI_DOR 0 //data order
#define SWSPI_DEL 100 //delay
void swspi_init();
#if (SWSPI_MOSI == SWSPI_MISO)
void swspi_tx(unsigned char tx);
unsigned char swspi_rx();
#else //(SWSPI_MOSI == SWSPI_MISO)
#define swspi_tx swspi_txrx
#define swspi_rx swspi_txrx
unsigned char swspi_txrx(unsigned char tx);
#endif //(SWSPI_MOSI == SWSPI_MISO)
void swspi_start();
void swspi_stop();
#endif //SWSPI_H

View file

@ -207,9 +207,9 @@ void PID_autotune(float temp, int extruder, int ncycles);
void setExtruderAutoFanState(int pin, bool state);
void checkExtruderAutoFans();
void countFanSpeed();
void checkFanSpeed();
void fanSpeedError(unsigned char _fan);
void countFanSpeed();
void checkFanSpeed();
void fanSpeedError(unsigned char _fan);
#endif

View file

@ -5,7 +5,206 @@
#include "tmc2130.h"
#include <SPI.h>
uint32_t tmc2130_read(uint8_t chipselect, uint8_t address)
//externals for debuging
extern float current_position[4];
extern void st_get_position_xy(long &x, long &y);
//chipselect pins
uint8_t tmc2130_cs[4] = { X_TMC2130_CS, Y_TMC2130_CS, Z_TMC2130_CS, E0_TMC2130_CS };
//holding currents
uint8_t tmc2130_current_h[4] = TMC2130_CURRENTS_H;
//running currents
uint8_t tmc2130_current_r[4] = TMC2130_CURRENTS_R;
//axis stalled flags
uint8_t tmc2130_axis_stalled[4] = {0, 0, 0, 0};
//last homing stalled
uint8_t tmc2130_LastHomingStalled = 0;
uint8_t sg_homing_axis = 0xff;
uint8_t sg_homing_delay = 0;
uint32_t tmc2130_read(uint8_t cs, uint8_t address);
void tmc2130_write(uint8_t cs, uint8_t address, uint8_t wval1, uint8_t wval2, uint8_t wval3, uint8_t wval4);
uint8_t tmc2130_read8(uint8_t cs, uint8_t address);
uint32_t tmc2130_readRegister(uint8_t cs, uint8_t address);
uint16_t tmc2130_readSG(uint8_t cs);
uint16_t tmc2130_readTStep(uint8_t cs);
void tmc2130_chopconf(uint8_t cs, bool extrapolate256 = 0, uint16_t microstep_resolution = 16);
void tmc2130_PWMconf(uint8_t cs, uint8_t PWMautoScale = PWM_AUTOSCALE, uint8_t PWMfreq = PWM_FREQ, uint8_t PWMgrad = PWM_GRAD, uint8_t PWMampl = PWM_AMPL);
void tmc2130_PWMthreshold(uint8_t cs);
void tmc2130_disable_motor(uint8_t driver);
void tmc2130_init()
{
MYSERIAL.println("tmc2130_init");
WRITE(X_TMC2130_CS, HIGH);
WRITE(Y_TMC2130_CS, HIGH);
WRITE(Z_TMC2130_CS, HIGH);
WRITE(E0_TMC2130_CS, HIGH);
SET_OUTPUT(X_TMC2130_CS);
SET_OUTPUT(Y_TMC2130_CS);
SET_OUTPUT(Z_TMC2130_CS);
SET_OUTPUT(E0_TMC2130_CS);
SPI.begin();
for (int i = 0; i < 3; i++) //X Y Z axes
{
tmc2130_write(tmc2130_cs[i], 0x00, 0, 0, 0, 0x04); //address=0x0 GCONF - bit 2 activate stealthChop
tmc2130_write(tmc2130_cs[i], 0x10, 0, 15, tmc2130_current_r[i], tmc2130_current_h[i]); //0x10 IHOLD_IRUN
tmc2130_write(tmc2130_cs[i], 0x11, 0, 0, 0, 0);
tmc2130_PWMconf(tmc2130_cs[i]); //address=0x70 PWM_CONF //reset default=0x00050480
//tmc2130_PWMthreshold(tmc2130_cs[i]);
tmc2130_chopconf(tmc2130_cs[i], 1, 16);
}
for (int i = 3; i < 4; i++) //E axis
{
tmc2130_write(tmc2130_cs[i], 0x00, 0, 0, 0, 0x00); //address=0x0 GCONF - bit 2 activate stealthChop
tmc2130_write(tmc2130_cs[i], 0x10, 0, 15, tmc2130_current_r[i], tmc2130_current_h[i]); //0x10 IHOLD_IRUN
tmc2130_write(tmc2130_cs[i], 0x11, 0, 0, 0, 0);
tmc2130_chopconf(tmc2130_cs[i], 1, 16);
}
}
bool tmc2130_update_sg()
{
if ((sg_homing_axis == X_AXIS) || (sg_homing_axis == Y_AXIS))
{
uint8_t cs = tmc2130_cs[sg_homing_axis];
uint16_t tstep = tmc2130_readTStep(cs);
if (tstep < TCOOLTHRS)
{
if(sg_homing_delay < 10) // wait for a few tens microsteps until stallGuard is used //todo: read out microsteps directly, instead of delay counter
sg_homing_delay++;
else
{
uint16_t sg = tmc2130_readSG(cs);
if (sg==0)
{
tmc2130_axis_stalled[sg_homing_axis] = true;
tmc2130_LastHomingStalled = true;
}
else
tmc2130_axis_stalled[sg_homing_axis] = false;
}
}
else
tmc2130_axis_stalled[sg_homing_axis] = false;
return true;
}
else
{
tmc2130_axis_stalled[X_AXIS] = false;
tmc2130_axis_stalled[Y_AXIS] = false;
}
return false;
}
void tmc2130_check_overtemp()
{
const static char TMC_OVERTEMP_MSG[] PROGMEM = "TMC DRIVER OVERTEMP ";
static uint32_t checktime = 0;
//drivers_disabled[0] = 1; //TEST
if( millis() - checktime > 1000 )
{
for(int i = 0; i < 4; i++)
{
uint32_t drv_status = tmc2130_read(tmc2130_cs[i], 0x6F); //0x6F DRV_STATUS
if (drv_status & ((uint32_t)1<<26))
{ // BIT 26 - over temp prewarning ~120C (+-20C)
SERIAL_ERRORRPGM(TMC_OVERTEMP_MSG);
SERIAL_ECHOLN(i);
for(int x = 0; x < 4; x++) tmc2130_disable_motor(x);
kill(TMC_OVERTEMP_MSG);
}
}
checktime = millis();
}
}
void tmc2130_home_enter(uint8_t axis)
{
MYSERIAL.print("tmc2130_home_enter ");
MYSERIAL.println((int)axis);
uint8_t cs = tmc2130_cs[axis];
sg_homing_axis = axis;
sg_homing_delay = 0;
tmc2130_axis_stalled[X_AXIS] = false;
tmc2130_axis_stalled[Y_AXIS] = false;
//Configuration to spreadCycle
//tmc2130_write(cs, 0x0, 0, 0, 0, 0x01);
tmc2130_write(cs, 0x0, 0, 0, 0, 0x00);
tmc2130_write(cs, 0x6D, 0, (axis == X_AXIS)?SG_THRESHOLD_X:SG_THRESHOLD_Y,0,0);
tmc2130_write(cs, 0x14, 0, 0, 0, TCOOLTHRS);
}
void tmc2130_home_exit()
{
MYSERIAL.println("tmc2130_home_exit");
if ((sg_homing_axis == X_AXIS) || (sg_homing_axis == Y_AXIS))
{
// Configuration back to stealthChop
tmc2130_write(tmc2130_cs[sg_homing_axis], 0x0, 0, 0, 0, 0x04);
sg_homing_axis = 0xff;
}
}
extern uint8_t tmc2130_didLastHomingStall()
{
uint8_t ret = tmc2130_LastHomingStalled;
tmc2130_LastHomingStalled = false;
return ret;
}
void tmc2130_set_current_h(uint8_t axis, uint8_t current)
{
MYSERIAL.print("tmc2130_set_current_h ");
MYSERIAL.print((int)axis);
MYSERIAL.print(" ");
MYSERIAL.println((int)current);
if (current > 15) current = 15; //current>15 is unsafe
tmc2130_current_h[axis] = current;
tmc2130_write(tmc2130_cs[axis], 0x10, 0, 15, tmc2130_current_r[axis], tmc2130_current_h[axis]); //0x10 IHOLD_IRUN
}
void tmc2130_set_current_r(uint8_t axis, uint8_t current)
{
MYSERIAL.print("tmc2130_set_current_r ");
MYSERIAL.print((int)axis);
MYSERIAL.print(" ");
MYSERIAL.println((int)current);
if (current > 15) current = 15; //current>15 is unsafe
tmc2130_current_r[axis] = current;
tmc2130_write(tmc2130_cs[axis], 0x10, 0, 15, tmc2130_current_r[axis], tmc2130_current_h[axis]); //0x10 IHOLD_IRUN
}
void tmc2130_print_currents()
{
MYSERIAL.println("tmc2130_print_currents");
MYSERIAL.println("\tH\rR");
MYSERIAL.print("X\t");
MYSERIAL.print((int)tmc2130_current_h[0]);
MYSERIAL.print("\t");
MYSERIAL.println((int)tmc2130_current_r[0]);
MYSERIAL.print("Y\t");
MYSERIAL.print((int)tmc2130_current_h[1]);
MYSERIAL.print("\t");
MYSERIAL.println((int)tmc2130_current_r[1]);
MYSERIAL.print("Z\t");
MYSERIAL.print((int)tmc2130_current_h[2]);
MYSERIAL.print("\t");
MYSERIAL.println((int)tmc2130_current_r[2]);
MYSERIAL.print("E\t");
MYSERIAL.print((int)tmc2130_current_h[3]);
MYSERIAL.print("\t");
MYSERIAL.println((int)tmc2130_current_r[3]);
}
uint32_t tmc2130_read(uint8_t cs, uint8_t address)
{
uint32_t val32;
uint8_t val0;
@ -15,23 +214,23 @@ uint32_t tmc2130_read(uint8_t chipselect, uint8_t address)
uint8_t val4;
//datagram1 - read request (address + dummy write)
SPI.beginTransaction(SPISettings(1000000, MSBFIRST, SPI_MODE3));
digitalWrite(chipselect,LOW);
digitalWrite(cs,LOW);
SPI.transfer(address);
SPI.transfer(0);
SPI.transfer(0);
SPI.transfer(0);
SPI.transfer(0);
digitalWrite(chipselect, HIGH);
digitalWrite(cs, HIGH);
SPI.endTransaction();
//datagram2 - response
SPI.beginTransaction(SPISettings(1000000, MSBFIRST, SPI_MODE3));
digitalWrite(chipselect,LOW);
digitalWrite(cs,LOW);
val0 = SPI.transfer(0);
val1 = SPI.transfer(0);
val2 = SPI.transfer(0);
val3 = SPI.transfer(0);
val4 = SPI.transfer(0);
digitalWrite(chipselect, HIGH);
digitalWrite(cs, HIGH);
SPI.endTransaction();
#ifdef TMC_DBG_READS
MYSERIAL.print("SPIRead 0x");
@ -55,7 +254,7 @@ uint32_t tmc2130_read(uint8_t chipselect, uint8_t address)
return val32;
}
void tmc2130_write(uint8_t chipselect, uint8_t address,uint8_t wval1,uint8_t wval2,uint8_t wval3,uint8_t wval4)
void tmc2130_write(uint8_t cs, uint8_t address,uint8_t wval1,uint8_t wval2,uint8_t wval3,uint8_t wval4)
{
uint32_t val32;
uint8_t val0;
@ -65,23 +264,23 @@ void tmc2130_write(uint8_t chipselect, uint8_t address,uint8_t wval1,uint8_t wva
uint8_t val4;
//datagram1 - write
SPI.beginTransaction(SPISettings(4000000, MSBFIRST, SPI_MODE3));
digitalWrite(chipselect,LOW);
digitalWrite(cs,LOW);
SPI.transfer(address+0x80);
SPI.transfer(wval1);
SPI.transfer(wval2);
SPI.transfer(wval3);
SPI.transfer(wval4);
digitalWrite(chipselect, HIGH);
digitalWrite(cs, HIGH);
SPI.endTransaction();
//datagram2 - response
SPI.beginTransaction(SPISettings(4000000, MSBFIRST, SPI_MODE3));
digitalWrite(chipselect,LOW);
digitalWrite(cs,LOW);
val0 = SPI.transfer(0);
val1 = SPI.transfer(0);
val2 = SPI.transfer(0);
val3 = SPI.transfer(0);
val4 = SPI.transfer(0);
digitalWrite(chipselect, HIGH);
digitalWrite(cs, HIGH);
SPI.endTransaction();
#ifdef TMC_DBG_WRITE
MYSERIAL.print("WriteRead 0x");
@ -102,66 +301,66 @@ void tmc2130_write(uint8_t chipselect, uint8_t address,uint8_t wval1,uint8_t wva
#endif //TMC_DBG_READS
}
uint8_t tmc2130_read8(uint8_t chipselect, uint8_t address)
uint8_t tmc2130_read8(uint8_t cs, uint8_t address)
{
//datagram1 - write
SPI.beginTransaction(SPISettings(4000000, MSBFIRST, SPI_MODE3));
digitalWrite(chipselect,LOW);
digitalWrite(cs,LOW);
SPI.transfer(address);
SPI.transfer(0x00);
SPI.transfer(0x00);
SPI.transfer(0x00);
SPI.transfer(0x00);
digitalWrite(chipselect, HIGH);
digitalWrite(cs, HIGH);
SPI.endTransaction();
uint8_t val0;
//datagram2 - response
SPI.beginTransaction(SPISettings(4000000, MSBFIRST, SPI_MODE3));
digitalWrite(chipselect,LOW);
digitalWrite(cs,LOW);
val0 = SPI.transfer(0);
digitalWrite(chipselect, HIGH);
digitalWrite(cs, HIGH);
SPI.endTransaction();
return val0;
}
uint32_t tmc2130_readRegister(uint8_t chipselect, uint8_t address)
uint32_t tmc2130_readRegister(uint8_t cs, uint8_t address)
{
//datagram1 - write
SPI.beginTransaction(SPISettings(4000000, MSBFIRST, SPI_MODE3));
digitalWrite(chipselect,LOW);
digitalWrite(cs,LOW);
SPI.transfer(address);
SPI.transfer(0x00);
SPI.transfer(0x00);
SPI.transfer(0x00);
SPI.transfer(0x00);
digitalWrite(chipselect, HIGH);
digitalWrite(cs, HIGH);
SPI.endTransaction();
uint32_t val0;
//datagram2 - response
SPI.beginTransaction(SPISettings(4000000, MSBFIRST, SPI_MODE3));
digitalWrite(chipselect,LOW);
digitalWrite(cs,LOW);
SPI.transfer(0); // ignore status bits
val0 = SPI.transfer(0); // MSB
val0 = (val0 << 8) | SPI.transfer(0);
val0 = (val0 << 8) | SPI.transfer(0);
val0 = (val0 << 8) | SPI.transfer(0); //LSB
digitalWrite(chipselect, HIGH);
digitalWrite(cs, HIGH);
SPI.endTransaction();
return val0;
}
uint16_t tmc2130_readSG(uint8_t chipselect)
uint16_t tmc2130_readSG(uint8_t cs)
{
uint8_t address = 0x6F;
uint32_t registerValue = tmc2130_readRegister(chipselect, address);
uint32_t registerValue = tmc2130_readRegister(cs, address);
uint16_t val0 = registerValue & 0x3ff;
return val0;
}
uint16_t tmc2130_readTStep(uint8_t chipselect)
uint16_t tmc2130_readTStep(uint8_t cs)
{
uint8_t address = 0x12;
uint32_t registerValue = tmc2130_readRegister(chipselect, address);
uint32_t registerValue = tmc2130_readRegister(cs, address);
uint16_t val0 = 0;
if(registerValue & 0x000f0000)
val0 = 0xffff;
@ -170,9 +369,9 @@ uint16_t tmc2130_readTStep(uint8_t chipselect)
return val0;
}
void tmc2130_chopconf(uint8_t cs, bool extrapolate256 = 0, uint16_t microstep_resolution = 16)
void tmc2130_chopconf(uint8_t cs, bool extrapolate256, uint16_t microstep_resolution)
{
uint8_t mres=0b0100;
uint8_t mres = 0b0100;
if(microstep_resolution == 256) mres = 0b0000;
if(microstep_resolution == 128) mres = 0b0001;
if(microstep_resolution == 64) mres = 0b0010;
@ -183,182 +382,23 @@ void tmc2130_chopconf(uint8_t cs, bool extrapolate256 = 0, uint16_t microstep_re
if(microstep_resolution == 2) mres = 0b0111;
if(microstep_resolution == 1) mres = 0b1000;
mres |= extrapolate256 << 4; //bit28 intpol
//tmc2130_write(cs,0x6C,mres,0x01,0x00,0xD3);
tmc2130_write(cs,0x6C,mres,0x01,0x00,0xC3);
//tmc2130_write(cs, 0x6C, mres, 0x01, 0x00, 0xD3);
tmc2130_write(cs, 0x6C, mres, 0x01, 0x00, 0xC3);
}
void tmc2130_PWMconf(uint8_t cs, uint8_t PWMautoScale = PWM_AUTOSCALE, uint8_t PWMfreq = PWM_FREQ, uint8_t PWMgrad = PWM_GRAD, uint8_t PWMampl = PWM_AMPL)
void tmc2130_PWMconf(uint8_t cs, uint8_t PWMautoScale, uint8_t PWMfreq, uint8_t PWMgrad, uint8_t PWMampl)
{
tmc2130_write(cs,0x70,0x00,(PWMautoScale+PWMfreq),PWMgrad,PWMampl); // TMC LJ -> For better readability changed to 0x00 and added PWMautoScale and PWMfreq
tmc2130_write(cs, 0x70, 0x00, (PWMautoScale+PWMfreq), PWMgrad, PWMampl); // TMC LJ -> For better readability changed to 0x00 and added PWMautoScale and PWMfreq
}
void tmc2130_PWMthreshold(uint8_t cs)
{
tmc2130_write(cs,0x13,0x00,0x00,0x00,0x00); // TMC LJ -> Adds possibility to swtich from stealthChop to spreadCycle automatically
}
uint8_t st_didLastHomingStall()
{
uint8_t returnValue = sg_lastHomingStalled;
sg_lastHomingStalled = false;
return returnValue;
tmc2130_write(cs, 0x13, 0x00, 0x00, 0x00, 0x00); // TMC LJ -> Adds possibility to swtich from stealthChop to spreadCycle automatically
}
void tmc2130_disable_motor(uint8_t driver)
{
uint8_t cs[4] = { X_TMC2130_CS, Y_TMC2130_CS, Z_TMC2130_CS, E0_TMC2130_CS };
tmc2130_write(cs[driver],0x6C,0,01,0,0);
}
void tmc2130_check_overtemp()
{
const static char TMC_OVERTEMP_MSG[] PROGMEM = "TMC DRIVER OVERTEMP ";
uint8_t cs[4] = { X_TMC2130_CS, Y_TMC2130_CS, Z_TMC2130_CS, E0_TMC2130_CS };
static uint32_t checktime = 0;
//drivers_disabled[0] = 1; //TEST
if( millis() - checktime > 1000 )
{
for(int i=0;i<4;i++)
{
uint32_t drv_status = tmc2130_read(cs[i], 0x6F); //0x6F DRV_STATUS
if (drv_status & ((uint32_t)1<<26))
{ // BIT 26 - over temp prewarning ~120C (+-20C)
SERIAL_ERRORRPGM(TMC_OVERTEMP_MSG);
SERIAL_ECHOLN(i);
for(int x=0; x<4;x++) tmc2130_disable_motor(x);
kill(TMC_OVERTEMP_MSG);
}
}
checktime = millis();
}
}
void tmc2130_init()
{
uint8_t cs[4] = { X_TMC2130_CS, Y_TMC2130_CS, Z_TMC2130_CS, E0_TMC2130_CS };
// uint8_t current[4] = { 31, 31, 31, 31 };
// uint8_t current_h[4] = { 12, 12, 12, 12 };
// uint8_t current_r[4] = { 24, 24, 24, 24 };
// uint8_t current_r[4] = { 32, 32, 32, 32 };
// uint8_t current_h[4] = { 14, 14, 14, 14 };
uint8_t current_h[4] = { 2, 2, 2, 4 };
uint8_t current_r[4] = { 6, 6, 8, 8 };
WRITE(X_TMC2130_CS, HIGH);
WRITE(Y_TMC2130_CS, HIGH);
WRITE(Z_TMC2130_CS, HIGH);
WRITE(E0_TMC2130_CS, HIGH);
SET_OUTPUT(X_TMC2130_CS);
SET_OUTPUT(Y_TMC2130_CS);
SET_OUTPUT(Z_TMC2130_CS);
SET_OUTPUT(E0_TMC2130_CS);
SPI.begin();
/* for(int i=0;i<4;i++)
{
//tmc2130_write(cs[i],0x6C,0b10100,01,00,0xC5);
tmc2130_chopconf(cs[i],1,16);
tmc2130_write(cs[i],0x10,0,15,current_h[i],current_r[i]); //0x10 IHOLD_IRUN
//tmc2130_write(cs[i],0x0,0,0,0,0x05); //address=0x0 GCONF EXT VREF
tmc2130_write(cs[i],0x0,0,0,0,0x05); //address=0x0 GCONF EXT VREF - activate stealthChop
//tmc2130_write(cs[i],0x11,0,0,0,0xA);
// Uncomment lines below to use a different configuration (pwm_autoscale = 0) for XY axes
if(i==0 || i==1)
tmc2130_PWMconf(cs[i],PWM_AUTOSCALE_XY,PWM_FREQ_XY,PWM_GRAD_XY,PWM_AMPL_XY); //address=0x70 PWM_CONF //reset default=0x00050480
else
tmc2130_PWMconf(cs[i]); //address=0x70 PWM_CONF //reset default=0x00050480
tmc2130_PWMthreshold(cs[i]);
}
*/
#ifdef MK3_TEST1
for (int i=0;i<4;i++)
{
tmc2130_write(cs[i],0x0,0,0,0,0x00); //address=0x0 GCONF - bit 2 activate stealthChop
tmc2130_write(cs[i],0x10,0,15,current_r[i],current_h[i]); //0x10 IHOLD_IRUN
tmc2130_chopconf(cs[i],0,16);
}
#else //MK3_TEST1
for (int i=0;i<3;i++)
{
tmc2130_write(cs[i],0x0,0,0,0,0x04); //address=0x0 GCONF - bit 2 activate stealthChop
tmc2130_write(cs[i],0x10,0,15,current_r[i],current_h[i]); //0x10 IHOLD_IRUN
tmc2130_write(cs[i],0x11,0,0,0,0);
tmc2130_PWMconf(cs[i]); //address=0x70 PWM_CONF //reset default=0x00050480
// tmc2130_PWMthreshold(cs[i]);
tmc2130_chopconf(cs[i],1,16);
}
for (int i=3;i<4;i++)
{
tmc2130_write(cs[i],0x0,0,0,0,0x00); //address=0x0 GCONF - bit 2 activate stealthChop
tmc2130_write(cs[i],0x10,0,15,current_r[i],current_h[i]); //0x10 IHOLD_IRUN
tmc2130_write(cs[i],0x11,0,0,0,0);
tmc2130_chopconf(cs[i],1,16);
}
#endif //MK3_TEST1
}
void tmc2130_st_synchronize()
{
uint8_t delay = 0;
if(sg_homing_axis == X_AXIS || sg_homing_axis == Y_AXIS)
{
uint8_t axis;
if(sg_homing_axis == X_AXIS)
axis = X_TMC2130_CS;
else
axis = Y_TMC2130_CS;
uint16_t tstep = tmc2130_readTStep(axis);
// SERIAL_PROTOCOLLN(tstep);
if(tstep < TCOOLTHRS)
{
if(delay < 255) // wait for a few tens microsteps until stallGuard is used //todo: read out microsteps directly, instead of delay counter
delay++;
else
{
uint16_t sg = tmc2130_readSG(axis);
if(sg==0)
{
sg_axis_stalled[sg_homing_axis] = true;
sg_lastHomingStalled = true;
}
else
sg_axis_stalled[sg_homing_axis] = false;
// SERIAL_PROTOCOLLN(sg);
}
}
else
{
sg_axis_stalled[sg_homing_axis] = false;
delay = 0;
}
}
else
{
sg_axis_stalled[X_AXIS] = false;
sg_axis_stalled[Y_AXIS] = false;
}
}
void tmc2130_st_home_enter(uint8_t axis)
{
sg_homing_axis = axis;
// Configuration to spreadCycle
// tmc2130_write((axis == X_AXIS)? X_TMC2130_CS : Y_TMC2130_CS,0x0,0,0,0,0x01);
tmc2130_write((axis == X_AXIS)? X_TMC2130_CS : Y_TMC2130_CS,0x0,0,0,0,0x00);
tmc2130_write((axis == X_AXIS)? X_TMC2130_CS : Y_TMC2130_CS,0x6D,0,(axis == X_AXIS)?SG_THRESHOLD_X:SG_THRESHOLD_Y,0,0);
tmc2130_write((axis == X_AXIS)? X_TMC2130_CS : Y_TMC2130_CS,0x14,0,0,0,TCOOLTHRS);
}
void tmc2130_st_home_exit()
{
if ((sg_homing_axis == X_AXIS) || (sg_homing_axis == X_AXIS))
{
// Configuration back to stealthChop
tmc2130_write((sg_homing_axis == X_AXIS)? X_TMC2130_CS : Y_TMC2130_CS, 0x0, 0, 0, 0, 0x04);
sg_homing_axis = 0xff;
sg_axis_stalled[X_AXIS] = false;
sg_axis_stalled[Y_AXIS] = false;
}
tmc2130_write(tmc2130_cs[driver], 0x6C, 0, 01, 0, 0);
}
#endif //HAVE_TMC2130_DRIVERS

View file

@ -1,26 +1,33 @@
#ifndef TMC2130_H
#define TMC2130_H
static uint8_t sg_homing_axis = 0xFF;
static uint8_t sg_axis_stalled[2] = {0, 0};
static uint8_t sg_lastHomingStalled = false;
//holding and running currents
extern uint8_t tmc2130_current_h[4];
extern uint8_t tmc2130_current_r[4];
//flags for axis stall detection
extern uint8_t tmc2130_axis_stalled[4];
void tmc2130_check_overtemp();
extern uint8_t sg_homing_delay;
void tmc2130_write(uint8_t chipselect, uint8_t address,uint8_t wval1,uint8_t wval2,uint8_t wval3,uint8_t wval4);
uint8_t tmc2130_read8(uint8_t chipselect, uint8_t address);
uint16_t tmc2130_readSG(uint8_t chipselect);
uint16_t tmc2130_readTStep(uint8_t chipselect);
void tmc2130_PWMconf(uint8_t cs, uint8_t PWMgrad, uint8_t PWMampl);
uint8_t st_didLastHomingStall();
//initialize tmc2130
extern void tmc2130_init();
//update stall guard (called from st_synchronize inside the loop)
extern bool tmc2130_update_sg();
//temperature watching (called from )
extern void tmc2130_check_overtemp();
//enter homing (called from homeaxis before homing starts)
extern void tmc2130_home_enter(uint8_t axis);
//exit homing (called from homeaxis after homing ends)
extern void tmc2130_home_exit();
//
extern uint8_t tmc2130_didLastHomingStall();
void tmc2130_st_synchronize();
//set holding current for any axis (G911)
extern void tmc2130_set_current_h(uint8_t axis, uint8_t current);
//set running current for any axis (G912)
extern void tmc2130_set_current_r(uint8_t axis, uint8_t current);
//print currents
extern void tmc2130_print_currents();
void tmc2130_st_home_enter(uint8_t axis);
void tmc2130_st_home_exit();
void tmc2130_init();
#endif TMC2130_H
#endif //TMC2130_H

View file

@ -6,14 +6,14 @@
*------------------------------------*/
// Printer revision
#define FILAMENT_SIZE "1_75mm_MK2"
#define FILAMENT_SIZE "1_75mm_MK3"
#define NOZZLE_TYPE "E3Dv6full"
// Developer flag
#define DEVELOPER
// Printer name
#define CUSTOM_MENDEL_NAME "Prusa i3 MK2"
#define CUSTOM_MENDEL_NAME "Prusa i3 MK3"
// Electronics
#define MOTHERBOARD BOARD_EINY_0_1a
@ -32,7 +32,7 @@
*------------------------------------*/
// Steps per unit {X,Y,Z,E}
#define DEFAULT_AXIS_STEPS_PER_UNIT {100,100,3200/8,161.3}
#define DEFAULT_AXIS_STEPS_PER_UNIT {100,100,3200/8,140}
// Endstop inverting
const bool X_MIN_ENDSTOP_INVERTING = false; // set to true to invert the logic of the endstop.
@ -64,10 +64,10 @@ const bool Z_MIN_ENDSTOP_INVERTING = false; // set to true to invert the logic o
#define NUM_AXIS 4 // The axis order in all axis related arrays is X, Y, Z, E
#define HOMING_FEEDRATE {3000, 3000, 800, 0} // set the homing speeds (mm/min) // 3000 is also valid for stallGuard homing. Valid range: 2200 - 3000
#define DEFAULT_MAX_FEEDRATE {500, 500, 12, 120} // (mm/sec)
#define DEFAULT_MAX_ACCELERATION {300,300,300,10000} // X, Y, Z, E maximum start speed for accelerated moves. E default values are good for Skeinforge 40+, for older versions raise them a lot.
#define DEFAULT_MAX_FEEDRATE {400, 400, 12, 120} // (mm/sec)
#define DEFAULT_MAX_ACCELERATION {2000,2000,500,10000} // X, Y, Z, E maximum start speed for accelerated moves. E default values are good for Skeinforge 40+, for older versions raise them a lot.
#define DEFAULT_ACCELERATION 1500 // X, Y, Z and E max acceleration in mm/s^2 for printing moves
#define DEFAULT_ACCELERATION 1200 // X, Y, Z and E max acceleration in mm/s^2 for printing moves
#define DEFAULT_RETRACT_ACCELERATION 1500 // X, Y, Z and E max acceleration in mm/s^2 for retracts
@ -84,41 +84,17 @@ const bool Z_MIN_ENDSTOP_INVERTING = false; // set to true to invert the logic o
#define PWM_AMPL 0xC8 // 0xFF - Sets PWM amplitude to 200 (max is 255)
#define PWM_AUTOSCALE 0x04 // 0x04 since writing in PWM_CONF (Activates PWM autoscaling)
#define PWM_FREQ 0x01 // 0x01 since writing in PWM_CONF (Sets PWM frequency to 2/683 fCLK)
// Special configuration for XY axes for operation (during standstill, use same settings as for other axes) //todo
#define PWM_GRAD_XY 156 // 0x0F - Sets gradient - (max 15 with PWM autoscale activated)
#define PWM_AMPL_XY 63 // 0xFF - Sets PWM amplitude to 200 (max is 255)
#define PWM_AUTOSCALE_XY 0x00 // 0x04 since writing in PWM_CONF (Activates PWM autoscaling)
#define PWM_FREQ_XY 0x01 // 0x01 since writing in PWM_CONF (Sets PWM frequency to 2/683 fCLK)
#define PWM_THRS 0x00 // TPWM_THRS - Sets the switching speed threshold based on TSTEP from stealthChop to spreadCycle mode
#define SG_HOMING 1
#define SG_THRESHOLD 13
#define TCOOLTHRS 239
#define SG_HOMING_SW 1 // stallguard "software" homing
//#define SG_HOMING_HW 1 // stallguard "hardware" homing
#define SG_THRESHOLD_X 8 // stallguard sensitivity for X axis
#define SG_THRESHOLD_Y 8 // stallguard sensitivity for Y axis
#define TCOOLTHRS 239 // coolstep treshold
#define TMC_DEBUG
// PWM register configuration
#define PWM_GRAD 0x08 // 0x0F - Sets gradient - (max 15 with PWM autoscale activated)
#define PWM_AMPL 0xC8 // 0xFF - Sets PWM amplitude to 200 (max is 255)
#define PWM_AUTOSCALE 0x04 // 0x04 since writing in PWM_CONF (Activates PWM autoscaling)
#define PWM_FREQ 0x01 // 0x01 since writing in PWM_CONF (Sets PWM frequency to 2/683 fCLK)
// Special configuration for XY axes for operation (during standstill, use same settings as for other axes) //todo
#define PWM_GRAD_XY 156 // 0x0F - Sets gradient - (max 15 with PWM autoscale activated)
#define PWM_AMPL_XY 63 // 0xFF - Sets PWM amplitude to 200 (max is 255)
#define PWM_AUTOSCALE_XY 0x00 // 0x04 since writing in PWM_CONF (Activates PWM autoscaling)
#define PWM_FREQ_XY 0x01 // 0x01 since writing in PWM_CONF (Sets PWM frequency to 2/683 fCLK)
#define PWM_THRS 0x00 // TPWM_THRS - Sets the switching speed threshold based on TSTEP from stealthChop to spreadCycle mode
#define SG_HOMING 1
#define SG_THRESHOLD_X 8
#define SG_THRESHOLD_Y 8
#define TCOOLTHRS 239
#define TMC_DEBUG
#define TMC2130_CURRENTS_H {2, 2, 2, 4} // default holding currents for all axes
#define TMC2130_CURRENTS_R {6, 6, 8, 8} // default running currents for all axes
#define TMC2130_DEBUG
//#define TMC_DBG_READS
//#define TMC_DBG_WRITE