Merge pull request #1909 from wavexx/MK3_LA15

Linear Advance 1.5 Returns
This commit is contained in:
DRracer 2020-01-09 11:22:06 +01:00 committed by GitHub
commit b088500eaf
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
19 changed files with 896 additions and 695 deletions

View File

@ -165,8 +165,8 @@ void Config_PrintSettings(uint8_t level)
#endif
if (level >= 10) {
#ifdef LIN_ADVANCE
printf_P(PSTR("%SLinear advance settings:\n M900 K%.2f E/D = %.2f\n"),
echomagic, extruder_advance_k, advance_ed_ratio);
printf_P(PSTR("%SLinear advance settings:%S M900 K%.2f\n"),
echomagic, echomagic, extruder_advance_K);
#endif //LIN_ADVANCE
}
}

View File

@ -268,43 +268,29 @@
#endif
/**
* Implementation of linear pressure control
*
* Assumption: advance = k * (delta velocity)
* K=0 means advance disabled.
* See Marlin documentation for calibration instructions.
*/
* Linear Pressure Control v1.5
*
* Assumption: advance [steps] = k * (delta velocity [steps/s])
* K=0 means advance disabled.
*
* NOTE: K values for LIN_ADVANCE 1.5 differs from earlier versions!
*
* Set K around 0.22 for 3mm PLA Direct Drive with ~6.5cm between the drive gear and heatbreak.
* Larger K values will be needed for flexible filament and greater distances.
* If this algorithm produces a higher speed offset than the extruder can handle (compared to E jerk)
* print acceleration will be reduced during the affected moves to keep within the limit.
*
* See http://marlinfw.org/docs/features/lin_advance.html for full instructions.
* Mention @Sebastianv650 on GitHub to alert the author of any issues.
*/
#define LIN_ADVANCE
#ifdef LIN_ADVANCE
#define LIN_ADVANCE_K 0 //Try around 45 for PLA, around 25 for ABS.
/**
* Some Slicers produce Gcode with randomly jumping extrusion widths occasionally.
* For example within a 0.4mm perimeter it may produce a single segment of 0.05mm width.
* While this is harmless for normal printing (the fluid nature of the filament will
* close this very, very tiny gap), it throws off the LIN_ADVANCE pressure adaption.
*
* For this case LIN_ADVANCE_E_D_RATIO can be used to set the extrusion:distance ratio
* to a fixed value. Note that using a fixed ratio will lead to wrong nozzle pressures
* if the slicer is using variable widths or layer heights within one print!
*
* This option sets the default E:D ratio at startup. Use `M900` to override this value.
*
* Example: `M900 W0.4 H0.2 D1.75`, where:
* - W is the extrusion width in mm
* - H is the layer height in mm
* - D is the filament diameter in mm
*
* Example: `M900 R0.0458` to set the ratio directly.
*
* Set to 0 to auto-detect the ratio based on given Gcode G1 print moves.
*
* Slic3r (including Prusa Slic3r) produces Gcode compatible with the automatic mode.
* Cura (as of this writing) may produce Gcode incompatible with the automatic mode.
*/
#define LIN_ADVANCE_E_D_RATIO 0 // The calculated ratio (or 0) according to the formula W * H / ((D / 2) ^ 2 * PI)
// Example: 0.4 * 0.2 / ((1.75 / 2) ^ 2 * PI) = 0.033260135
#define LIN_ADVANCE_K 0 // Unit: mm compression per 1mm/s extruder speed
//#define LA_NOCOMPAT // Disable Linear Advance 1.0 compatibility
//#define LA_LIVE_K // Allow adjusting K in the Tune menu
//#define LA_DEBUG // If enabled, this will generate debug information output over USB.
//#define LA_DEBUG_LOGIC // @wavexx: setup logic channels for isr debugging
#endif
// Arc interpretation settings:

View File

@ -83,6 +83,9 @@
#include "Dcodes.h"
#include "AutoDeplete.h"
#ifndef LA_NOCOMPAT
#include "la10compat.h"
#endif
#ifdef SWSPI
#include "swspi.h"
@ -357,9 +360,6 @@ unsigned long starttime=0;
unsigned long stoptime=0;
unsigned long _usb_timer = 0;
bool extruder_under_pressure = true;
bool Stopped=false;
#if NUM_SERVOS > 0
@ -384,7 +384,6 @@ static uint16_t saved_feedrate2 = 0; //!< Default feedrate (truncated from float
static int saved_feedmultiply2 = 0;
static uint8_t saved_active_extruder = 0;
static float saved_extruder_temperature = 0.0; //!< Active extruder temperature
static bool saved_extruder_under_pressure = false;
static bool saved_extruder_relative_mode = false;
static int saved_fanSpeed = 0; //!< Print fan speed
//! @}
@ -2062,35 +2061,36 @@ static float probe_pt(float x, float y, float z_before) {
#ifdef LIN_ADVANCE
/**
* M900: Set and/or Get advance K factor and WH/D ratio
* M900: Set and/or Get advance K factor
*
* K<factor> Set advance K factor
* R<ratio> Set ratio directly (overrides WH/D)
* W<width> H<height> D<diam> Set ratio from WH/D
*/
inline void gcode_M900() {
st_synchronize();
const float newK = code_seen('K') ? code_value_float() : -1;
if (newK >= 0) extruder_advance_k = newK;
float newR = code_seen('R') ? code_value_float() : -1;
if (newR < 0) {
const float newD = code_seen('D') ? code_value_float() : -1,
newW = code_seen('W') ? code_value_float() : -1,
newH = code_seen('H') ? code_value_float() : -1;
if (newD >= 0 && newW >= 0 && newH >= 0)
newR = newD ? (newW * newH) / (sq(newD * 0.5) * M_PI) : 0;
float newK = code_seen('K') ? code_value_float() : -2;
#ifdef LA_NOCOMPAT
if (newK >= 0 && newK < 10)
extruder_advance_K = newK;
else
SERIAL_ECHOLNPGM("K out of allowed range!");
#else
if (newK == 0)
extruder_advance_K = 0;
else if (newK == -1)
la10c_reset();
else
{
newK = la10c_value(newK);
if (newK < 0)
SERIAL_ECHOLNPGM("K out of allowed range!");
else
extruder_advance_K = newK;
}
if (newR >= 0) advance_ed_ratio = newR;
#endif
SERIAL_ECHO_START;
SERIAL_ECHOPGM("Advance K=");
SERIAL_ECHOLN(extruder_advance_k);
SERIAL_ECHOPGM(" E/D=");
const float ratio = advance_ed_ratio;
if (ratio) SERIAL_ECHOLN(ratio); else SERIAL_ECHOLNPGM("Auto");
}
SERIAL_ECHOLN(extruder_advance_K);
}
#endif // LIN_ADVANCE
bool check_commands() {
@ -4677,6 +4677,11 @@ if(eSoundMode!=e_SOUND_MODE_SILENT)
case_G80:
{
mesh_bed_leveling_flag = true;
#ifndef LA_NOCOMPAT
// When printing via USB there's no clear boundary between prints. Abuse MBL to indicate
// the beginning of a new print, allowing a new autodetected setting just after G80.
la10c_reset();
#endif
#ifndef PINDA_THERMISTOR
static bool run = false; // thermistor-less PINDA temperature compensation is running
#endif // ndef PINDA_THERMISTOR
@ -5394,6 +5399,9 @@ if(eSoundMode!=e_SOUND_MODE_SILENT)
else
{
failstats_reset_print();
#ifndef LA_NOCOMPAT
la10c_reset();
#endif
card.startFileprint();
starttime=_millis();
}
@ -5487,6 +5495,9 @@ if(eSoundMode!=e_SOUND_MODE_SILENT)
if(code_seen('S'))
if(strchr_pointer<namestartpos) //only if "S" is occuring _before_ the filename
card.setIndex(code_value_long());
#ifndef LA_NOCOMPAT
la10c_reset();
#endif
card.startFileprint();
if(!call_procedure)
starttime=_millis(); //procedure calls count as normal print time.
@ -7895,15 +7906,8 @@ Sigma_Exit:
else
{
#ifdef SNMM
#ifdef LIN_ADVANCE
if (mmu_extruder != tmp_extruder)
clear_current_adv_vars(); //Check if the selected extruder is not the active one and reset LIN_ADVANCE variables if so.
#endif
mmu_extruder = tmp_extruder;
_delay(100);
disable_e0();
@ -9740,12 +9744,17 @@ void uvlo_()
#endif
#endif
eeprom_update_word((uint16_t*)(EEPROM_EXTRUDEMULTIPLY), (uint16_t)extrudemultiply);
// Store the saved target
eeprom_update_float((float*)(EEPROM_UVLO_SAVED_TARGET+0*4), saved_target[X_AXIS]);
eeprom_update_float((float*)(EEPROM_UVLO_SAVED_TARGET+1*4), saved_target[Y_AXIS]);
eeprom_update_float((float*)(EEPROM_UVLO_SAVED_TARGET+2*4), saved_target[Z_AXIS]);
eeprom_update_float((float*)(EEPROM_UVLO_SAVED_TARGET+3*4), saved_target[E_AXIS]);
#ifdef LIN_ADVANCE
eeprom_update_float((float*)(EEPROM_UVLO_LA_K), extruder_advance_K);
#endif
// Finaly store the "power outage" flag.
if(sd_print) eeprom_update_byte((uint8_t*)EEPROM_UVLO, 1);
@ -9999,6 +10008,10 @@ void recover_machine_state_after_power_panic(bool bTiny)
saved_target[Y_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_SAVED_TARGET+1*4));
saved_target[Z_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_SAVED_TARGET+2*4));
saved_target[E_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_SAVED_TARGET+3*4));
#ifdef LIN_ADVANCE
extruder_advance_K = eeprom_read_float((float*)EEPROM_UVLO_LA_K);
#endif
}
void restore_print_from_eeprom() {
@ -10230,8 +10243,6 @@ void stop_and_save_print_to_ram(float z_move, float e_move)
saved_feedmultiply2 = feedmultiply; //save feedmultiply
saved_active_extruder = active_extruder; //save active_extruder
saved_extruder_temperature = degTargetHotend(active_extruder);
saved_extruder_under_pressure = extruder_under_pressure; //extruder under pressure flag - currently unused
saved_extruder_relative_mode = axis_relative_modes[E_AXIS];
saved_fanSpeed = fanSpeed;
cmdqueue_reset(); //empty cmdqueue

View File

@ -212,9 +212,10 @@ static Sheets * const EEPROM_Sheets_base = (Sheets*)(EEPROM_SHEETS_BASE);
#define EEPROM_BACKLIGHT_MODE (EEPROM_BACKLIGHT_LEVEL_LOW-1) // uint8
#define EEPROM_BACKLIGHT_TIMEOUT (EEPROM_BACKLIGHT_MODE-2) // uint16
#define EEPROM_UVLO_LA_K (EEPROM_BACKLIGHT_TIMEOUT-4) // float
//This is supposed to point to last item to allow EEPROM overrun check. Please update when adding new items.
#define EEPROM_LAST_ITEM EEPROM_BACKLIGHT_TIMEOUT
#define EEPROM_LAST_ITEM EEPROM_UVLO_LA_K
// !!!!!
// !!!!! this is end of EEPROM section ... all updates MUST BE inserted before this mark !!!!!
// !!!!!

View File

@ -6,12 +6,9 @@
#include <avr/pgmspace.h>
#include "pat9125.h"
#include "stepper.h"
#include "planner.h"
#include "fastio.h"
#include "io_atmega2560.h"
#include "cmdqueue.h"
#include "ultralcd.h"
#include "ConfigurationStore.h"
#include "mmu.h"
#include "cardreader.h"
@ -261,7 +258,7 @@ void fsensor_autoload_check_start(void)
if (!fsensor_enabled) return;
if (!fsensor_autoload_enabled) return;
if (fsensor_watch_autoload) return;
if (!pat9125_update_y()) //update sensor
if (!pat9125_update()) //update sensor
{
fsensor_disable();
fsensor_not_responding = true;
@ -534,23 +531,11 @@ void fsensor_setup_interrupt(void)
#endif //PAT9125
void fsensor_st_block_begin(block_t* bl)
void fsensor_st_block_chunk(int cnt)
{
if (!fsensor_enabled) return;
if (((fsensor_st_cnt > 0) && (bl->direction_bits & 0x8)) ||
((fsensor_st_cnt < 0) && !(bl->direction_bits & 0x8)))
{
// !!! bit toggling (PINxn <- 1) (for PinChangeInterrupt) does not work for some MCU pins
if (PIN_GET(FSENSOR_INT_PIN)) {PIN_VAL(FSENSOR_INT_PIN, LOW);}
else {PIN_VAL(FSENSOR_INT_PIN, HIGH);}
}
}
void fsensor_st_block_chunk(block_t* bl, int cnt)
{
if (!fsensor_enabled) return;
fsensor_st_cnt += (bl->direction_bits & 0x8)?-cnt:cnt;
if ((fsensor_st_cnt >= fsensor_chunk_len) || (fsensor_st_cnt <= -fsensor_chunk_len))
fsensor_st_cnt += cnt;
if (abs(fsensor_st_cnt) >= fsensor_chunk_len)
{
// !!! bit toggling (PINxn <- 1) (for PinChangeInterrupt) does not work for some MCU pins
if (PIN_GET(FSENSOR_INT_PIN)) {PIN_VAL(FSENSOR_INT_PIN, LOW);}

View File

@ -60,12 +60,15 @@ extern void fsensor_oq_meassure_stop(void);
extern bool fsensor_oq_result(void);
//! @}
#include "planner.h"
//! @name callbacks from stepper
//! @{
extern void fsensor_st_block_begin(block_t* bl);
extern void fsensor_st_block_chunk(block_t* bl, int cnt);
extern void fsensor_st_block_chunk(int cnt);
// There's really nothing to do in block_begin: the stepper ISR likely has
// called us already at the end of the last block, making this integration
// redundant. LA1.5 might not always do that during a coasting move, so attempt
// to drain fsensor_st_cnt anyway at the beginning of the new block.
#define fsensor_st_block_begin(rev) fsensor_st_block_chunk(0)
//! @}

48
Firmware/la10compat.cpp Normal file
View File

@ -0,0 +1,48 @@
#include "la10compat.h"
#include "Marlin.h"
static LA10C_MODE la10c_mode = LA10C_UNKNOWN;
void la10c_mode_change(LA10C_MODE mode)
{
if(mode == la10c_mode) return;
SERIAL_ECHOPGM("LA10C: Linear Advance mode: ");
switch(mode)
{
case LA10C_UNKNOWN: SERIAL_ECHOLNPGM("UNKNOWN"); break;
case LA10C_LA15: SERIAL_ECHOLNPGM("1.5"); break;
case LA10C_LA10: SERIAL_ECHOLNPGM("1.0"); break;
}
la10c_mode = mode;
}
// Approximate a LA10 value to a LA15 equivalent.
static float la10c_convert(float k)
{
float new_K = k * 0.004 - 0.06;
return (new_K < 0? 0: new_K);
}
float la10c_value(float k)
{
if(la10c_mode == LA10C_UNKNOWN)
{
// do not autodetect until a valid value is seen
if(k == 0)
return 0;
else if(k < 0)
return -1;
la10c_mode_change(k < 10? LA10C_LA15: LA10C_LA10);
}
if(la10c_mode == LA10C_LA15)
return (k >= 0 && k < 10? k: -1);
else
return (k >= 0? la10c_convert(k): -1);
}

39
Firmware/la10compat.h Normal file
View File

@ -0,0 +1,39 @@
// la10compat: LA10->LA15 conversion
//
// When the current mode is UNKNOWN autodetection is active and any K<10
// will set the mode to LA15, LA10 is set otherwise. When LA10
// compatbility mode is active the K factor is converted to a LA15
// equivalent (that is, the return value is always a LA15 value).
//
// Once the interpretation mode has been set it is kept until the mode
// is explicitly reset. This is done to handle transparent fallback for
// old firmware revisions in combination with the following gcode
// sequence:
//
// M900 K0.01 ; set LA15 value (interpreted by any firmware)
// M900 K10 ; set LA10 value (ignored by LA15 firmware)
//
// A LA15 firmware without this module will only parse the first
// correctly, rejecting the second. A LA10 FW will parse both, but keep
// the last value. Since the LA15 value, if present, corresponds to the
// truth value, the compatibility stub needs to "lock" onto the first
// seen value for the current print.
//
// The mode needs to be carefully reset for each print in order for
// diffent versions of M900 to be interpreted independently.
#pragma once
enum __attribute__((packed)) LA10C_MODE
{
LA10C_UNKNOWN = 0,
LA10C_LA15 = 1,
LA10C_LA10 = 2
};
// Explicitly set/reset the interpretation mode for la10c_value()
void la10c_mode_change(LA10C_MODE mode);
static inline void la10c_reset() { la10c_mode_change(LA10C_UNKNOWN); }
// Return a LA15 K value according to the supplied value and mode
float la10c_value(float k);

View File

@ -102,7 +102,7 @@ void menu_back(void)
menu_back(1);
}
static void menu_back_no_reset(void)
void menu_back_no_reset(void)
{
if (menu_depth > 0)
{
@ -136,7 +136,7 @@ void menu_submenu(menu_func_t submenu)
}
}
static void menu_submenu_no_reset(menu_func_t submenu)
void menu_submenu_no_reset(menu_func_t submenu)
{
if (menu_depth < MENU_DEPTH_MAX)
{

View File

@ -76,6 +76,7 @@ void menu_start(void);
extern void menu_end(void);
extern void menu_back(void);
extern void menu_back_no_reset(void);
extern void menu_back(uint8_t nLevel);
extern void menu_back_if_clicked(void);
@ -83,6 +84,7 @@ extern void menu_back_if_clicked(void);
extern void menu_back_if_clicked_fb(void);
extern void menu_submenu(menu_func_t submenu);
extern void menu_submenu_no_reset(menu_func_t submenu);
extern uint8_t menu_item_ret(void);
@ -131,7 +133,6 @@ extern const char menu_fmt_int3[];
extern const char menu_fmt_float31[];
extern const char menu_fmt_float13[];
extern void menu_draw_float31(const char* str, float val);
extern void menu_draw_float13(const char* str, float val);

View File

@ -168,3 +168,6 @@ const char MSG_OCTOPRINT_CANCEL[] PROGMEM_N1 = "// action:cancel"; ////
const char MSG_FANCHECK_EXTRUDER[] PROGMEM_N1 = "Err: EXTR. FAN ERROR"; ////c=20
const char MSG_FANCHECK_PRINT[] PROGMEM_N1 = "Err: PRINT FAN ERROR"; ////c=20
const char MSG_M112_KILL[] PROGMEM_N1 = "M112 called. Emergency Stop."; ////c=20
#ifdef LA_LIVE_K
const char MSG_ADVANCE_K[] PROGMEM_N1 = "Advance K:"; ////c=13
#endif

View File

@ -169,6 +169,7 @@ extern const char MSG_OCTOPRINT_CANCEL[];
extern const char MSG_FANCHECK_EXTRUDER[];
extern const char MSG_FANCHECK_PRINT[];
extern const char MSG_M112_KILL[];
extern const char MSG_ADVANCE_K[];
#if defined(__cplusplus)
}

View File

@ -126,9 +126,8 @@ float extrude_min_temp=EXTRUDE_MINTEMP;
#endif
#ifdef LIN_ADVANCE
float extruder_advance_k = LIN_ADVANCE_K,
advance_ed_ratio = LIN_ADVANCE_E_D_RATIO,
position_float[NUM_AXIS] = { 0 };
float extruder_advance_K = LIN_ADVANCE_K;
float position_float[NUM_AXIS];
#endif
// Returns the index of the next block in the ring buffer
@ -262,6 +261,13 @@ void calculate_trapezoid_for_block(block_t *block, float entry_speed, float exit
}
}
#ifdef LIN_ADVANCE
uint16_t final_adv_steps = 0;
if (block->use_advance_lead) {
final_adv_steps = exit_speed * block->adv_comp;
}
#endif
CRITICAL_SECTION_START; // Fill variables used by the stepper in a critical section
// This block locks the interrupts globally for 4.38 us,
// which corresponds to a maximum repeat frequency of 228.57 kHz.
@ -272,6 +278,9 @@ void calculate_trapezoid_for_block(block_t *block, float entry_speed, float exit
block->decelerate_after = accelerate_steps+plateau_steps;
block->initial_rate = initial_rate;
block->final_rate = final_rate;
#ifdef LIN_ADVANCE
block->final_adv_steps = final_adv_steps;
#endif
}
CRITICAL_SECTION_END;
}
@ -424,9 +433,9 @@ void plan_init() {
block_buffer_head = 0;
block_buffer_tail = 0;
memset(position, 0, sizeof(position)); // clear position
#ifdef LIN_ADVANCE
memset(position_float, 0, sizeof(position)); // clear position
#endif
#ifdef LIN_ADVANCE
memset(position_float, 0, sizeof(position_float)); // clear position
#endif
previous_speed[0] = 0.0;
previous_speed[1] = 0.0;
previous_speed[2] = 0.0;
@ -639,7 +648,9 @@ void planner_abort_hard()
// Apply inverse world correction matrix.
machine2world(current_position[X_AXIS], current_position[Y_AXIS]);
memcpy(destination, current_position, sizeof(destination));
#ifdef LIN_ADVANCE
memcpy(position_float, current_position, sizeof(position_float));
#endif
// Resets planner junction speeds. Assumes start from rest.
previous_nominal_speed = 0.0;
previous_speed[0] = 0.0;
@ -775,21 +786,15 @@ void plan_buffer_line(float x, float y, float z, const float &e, float feed_rate
#endif // ENABLE_MESH_BED_LEVELING
target[E_AXIS] = lround(e*cs.axis_steps_per_unit[E_AXIS]);
#ifdef LIN_ADVANCE
const float mm_D_float = sqrt(sq(x - position_float[X_AXIS]) + sq(y - position_float[Y_AXIS]));
float de_float = e - position_float[E_AXIS];
#endif
#ifdef PREVENT_DANGEROUS_EXTRUDE
if(target[E_AXIS]!=position[E_AXIS])
{
if(degHotend(active_extruder)<extrude_min_temp)
{
position[E_AXIS]=target[E_AXIS]; //behave as if the move really took place, but ignore E part
#ifdef LIN_ADVANCE
#ifdef LIN_ADVANCE
position_float[E_AXIS] = e;
de_float = 0;
#endif
#endif
SERIAL_ECHO_START;
SERIAL_ECHOLNRPGM(_n(" cold extrusion prevented"));////MSG_ERR_COLD_EXTRUDE_STOP
}
@ -798,10 +803,9 @@ void plan_buffer_line(float x, float y, float z, const float &e, float feed_rate
if(labs(target[E_AXIS]-position[E_AXIS])>cs.axis_steps_per_unit[E_AXIS]*EXTRUDE_MAXLENGTH)
{
position[E_AXIS]=target[E_AXIS]; //behave as if the move really took place, but ignore E part
#ifdef LIN_ADVANCE
position_float[E_AXIS] = e;
de_float = 0;
#endif
#ifdef LIN_ADVANCE
position_float[E_AXIS] = e;
#endif
SERIAL_ECHO_START;
SERIAL_ECHOLNRPGM(_n(" too long extrusion prevented"));////MSG_ERR_LONG_EXTRUDE_STOP
}
@ -1012,6 +1016,9 @@ Having the real displacement of the head, we can calculate the total movement le
block->nominal_rate *= speed_factor;
}
#ifdef LIN_ADVANCE
float e_D_ratio = 0;
#endif
// Compute and limit the acceleration rate for the trapezoid generator.
// block->step_event_count ... event count of the fastest axis
// block->millimeters ... Euclidian length of the XYZ movement or the E length, if no XYZ movement.
@ -1019,10 +1026,51 @@ Having the real displacement of the head, we can calculate the total movement le
if(block->steps_x.wide == 0 && block->steps_y.wide == 0 && block->steps_z.wide == 0)
{
block->acceleration_st = ceil(cs.retract_acceleration * steps_per_mm); // convert to: acceleration steps/sec^2
#ifdef LIN_ADVANCE
block->use_advance_lead = false;
#endif
}
else
{
block->acceleration_st = ceil(cs.acceleration * steps_per_mm); // convert to: acceleration steps/sec^2
#ifdef LIN_ADVANCE
/**
* Use LIN_ADVANCE within this block if all these are true:
*
* block->steps_e : This is a print move, because we checked for X, Y, Z steps before.
* extruder_advance_K : There is an advance factor set.
* delta_mm[E_AXIS] > 0 : Extruder is running forward (e.g., for "Wipe while retracting" (Slic3r) or "Combing" (Cura) moves)
* |delta_mm[Z_AXIS]| < 0.5 : Z is only moved for leveling (_not_ for priming)
*/
block->use_advance_lead = block->steps_e.wide
&& extruder_advance_K
&& delta_mm[E_AXIS] > 0
&& abs(delta_mm[Z_AXIS]) < 0.5;
if (block->use_advance_lead) {
e_D_ratio = (e - position_float[E_AXIS]) /
sqrt(sq(x - position_float[X_AXIS])
+ sq(y - position_float[Y_AXIS])
+ sq(z - position_float[Z_AXIS]));
// Check for unusual high e_D ratio to detect if a retract move was combined with the last
// print move due to min. steps per segment. Never execute this with advance! This assumes
// no one will use a retract length of 0mm < retr_length < ~0.2mm and no one will print
// 100mm wide lines using 3mm filament or 35mm wide lines using 1.75mm filament.
if (e_D_ratio > 3.0)
block->use_advance_lead = false;
else {
const uint32_t max_accel_steps_per_s2 = cs.max_jerk[E_AXIS] / (extruder_advance_K * e_D_ratio) * steps_per_mm;
if (block->acceleration_st > max_accel_steps_per_s2) {
block->acceleration_st = max_accel_steps_per_s2;
#ifdef LA_DEBUG
SERIAL_ECHOLNPGM("LA: Block acceleration limited due to max E-jerk");
#endif
}
}
}
#endif
// Limit acceleration per axis
//FIXME Vojtech: One shall rather limit a projection of the acceleration vector instead of using the limit.
if(((float)block->acceleration_st * (float)block->steps_x.wide / (float)block->step_event_count.wide) > axis_steps_per_sqr_second[X_AXIS])
@ -1055,6 +1103,40 @@ Having the real displacement of the head, we can calculate the total movement le
block->acceleration_rate = (long)((float)block->acceleration_st * (16777216.0 / (F_CPU / 8.0)));
#ifdef LIN_ADVANCE
if (block->use_advance_lead) {
// the nominal speed doesn't change past this point: calculate the compression ratio for the
// segment and the required advance steps
block->adv_comp = extruder_advance_K * e_D_ratio * cs.axis_steps_per_unit[E_AXIS];
block->max_adv_steps = block->nominal_speed * block->adv_comp;
// to save more space we avoid another copy of calc_timer and go through slow division, but we
// still need to replicate the *exact* same step grouping policy (see below)
float advance_speed = (extruder_advance_K * e_D_ratio * block->acceleration * cs.axis_steps_per_unit[E_AXIS]);
if (advance_speed > MAX_STEP_FREQUENCY) advance_speed = MAX_STEP_FREQUENCY;
block->advance_rate = (F_CPU / 8.0) / advance_speed;
if (block->advance_rate > 20000) {
block->advance_rate = (block->advance_rate >> 2)&0x3fff;
block->advance_step_loops = 4;
}
else if (block->advance_rate > 10000) {
block->advance_rate = (block->advance_rate >> 1)&0x7fff;
block->advance_step_loops = 2;
}
else
block->advance_step_loops = 1;
#ifdef LA_DEBUG
if (block->advance_step_loops > 2)
// @wavexx: we should really check for the difference between step_loops and
// advance_step_loops instead. A difference of more than 1 will lead
// to uneven speed and *should* be adjusted here by furthermore
// reducing the speed.
SERIAL_ECHOLNPGM("LA: More than 2 steps per eISR loop executed.");
#endif
}
#endif
// Start with a safe speed.
// Safe speed is the speed, from which the machine may halt to stop immediately.
float safe_speed = block->nominal_speed;
@ -1171,37 +1253,6 @@ Having the real displacement of the head, we can calculate the total movement le
previous_nominal_speed = block->nominal_speed;
previous_safe_speed = safe_speed;
#ifdef LIN_ADVANCE
//
// Use LIN_ADVANCE for blocks if all these are true:
//
// esteps : We have E steps todo (a printing move)
//
// block->steps[X_AXIS] || block->steps[Y_AXIS] : We have a movement in XY direction (i.e., not retract / prime).
//
// extruder_advance_k : There is an advance factor set.
//
// block->steps[E_AXIS] != block->step_event_count : A problem occurs if the move before a retract is too small.
// In that case, the retract and move will be executed together.
// This leads to too many advance steps due to a huge e_acceleration.
// The math is good, but we must avoid retract moves with advance!
// de_float > 0.0 : Extruder is running forward (e.g., for "Wipe while retracting" (Slic3r) or "Combing" (Cura) moves)
//
block->use_advance_lead = block->steps_e.wide
&& (block->steps_x.wide || block->steps_y.wide)
&& extruder_advance_k
&& (uint32_t)block->steps_e.wide != block->step_event_count.wide
&& de_float > 0.0;
if (block->use_advance_lead)
block->abs_adv_steps_multiplier8 = lround(
extruder_advance_k
* ((advance_ed_ratio < 0.000001) ? de_float / mm_D_float : advance_ed_ratio) // Use the fixed ratio, if set
* (block->nominal_speed / (float)block->nominal_rate)
* cs.axis_steps_per_unit[E_AXIS] * 256.0
);
#endif
// Precalculate the division, so when all the trapezoids in the planner queue get recalculated, the division is not repeated.
block->speed_factor = block->nominal_rate / block->nominal_speed;
calculate_trapezoid_for_block(block, block->entry_speed, safe_speed);
@ -1215,12 +1266,12 @@ Having the real displacement of the head, we can calculate the total movement le
// Update position
memcpy(position, target, sizeof(target)); // position[] = target[]
#ifdef LIN_ADVANCE
#ifdef LIN_ADVANCE
position_float[X_AXIS] = x;
position_float[Y_AXIS] = y;
position_float[Z_AXIS] = z;
position_float[E_AXIS] = e;
#endif
#endif
// Recalculate the trapezoids to maximize speed at the segment transitions while respecting
// the machine limits (maximum acceleration and maximum jerk).
@ -1283,12 +1334,12 @@ void plan_set_position(float x, float y, float z, const float &e)
position[Z_AXIS] = lround(z*cs.axis_steps_per_unit[Z_AXIS]);
#endif // ENABLE_MESH_BED_LEVELING
position[E_AXIS] = lround(e*cs.axis_steps_per_unit[E_AXIS]);
#ifdef LIN_ADVANCE
#ifdef LIN_ADVANCE
position_float[X_AXIS] = x;
position_float[Y_AXIS] = y;
position_float[Z_AXIS] = z;
position_float[E_AXIS] = e;
#endif
#endif
st_set_position(position[X_AXIS], position[Y_AXIS], position[Z_AXIS], position[E_AXIS]);
previous_nominal_speed = 0.0; // Resets planner junction speeds. Assumes start from rest.
previous_speed[0] = 0.0;
@ -1300,11 +1351,11 @@ void plan_set_position(float x, float y, float z, const float &e)
// Only useful in the bed leveling routine, when the mesh bed leveling is off.
void plan_set_z_position(const float &z)
{
#ifdef LIN_ADVANCE
position_float[Z_AXIS] = z;
#endif
position[Z_AXIS] = lround(z*cs.axis_steps_per_unit[Z_AXIS]);
st_set_position(position[X_AXIS], position[Y_AXIS], position[Z_AXIS], position[E_AXIS]);
#ifdef LIN_ADVANCE
position_float[Z_AXIS] = z;
#endif
position[Z_AXIS] = lround(z*cs.axis_steps_per_unit[Z_AXIS]);
st_set_position(position[X_AXIS], position[Y_AXIS], position[Z_AXIS], position[E_AXIS]);
}
void plan_set_e_position(const float &e)

View File

@ -112,8 +112,12 @@ typedef struct {
float speed_factor;
#ifdef LIN_ADVANCE
bool use_advance_lead;
unsigned long abs_adv_steps_multiplier8; // Factorised by 2^8 to avoid float
bool use_advance_lead; // Whether the current block uses LA
uint16_t advance_rate, // Step-rate for extruder speed
max_adv_steps, // max. advance steps to get cruising speed pressure (not always nominal_speed!)
final_adv_steps; // advance steps due to exit speed
uint8_t advance_step_loops; // Number of stepper ticks for each advance isr
float adv_comp; // Precomputed E compression factor
#endif
// Save/recovery state data
@ -123,7 +127,7 @@ typedef struct {
} block_t;
#ifdef LIN_ADVANCE
extern float extruder_advance_k, advance_ed_ratio;
extern float extruder_advance_K; // Linear-advance K factor
#endif
#ifdef ENABLE_AUTO_BED_LEVELING

View File

@ -0,0 +1,147 @@
#include "speed_lookuptable.h"
#if F_CPU == 16000000
const uint16_t speed_lookuptable_fast[256][2] PROGMEM = {\
{ 62500, 55556}, { 6944, 3268}, { 3676, 1176}, { 2500, 607}, { 1893, 369}, { 1524, 249}, { 1275, 179}, { 1096, 135},
{ 961, 105}, { 856, 85}, { 771, 69}, { 702, 58}, { 644, 49}, { 595, 42}, { 553, 37}, { 516, 32},
{ 484, 28}, { 456, 25}, { 431, 23}, { 408, 20}, { 388, 19}, { 369, 16}, { 353, 16}, { 337, 14},
{ 323, 13}, { 310, 11}, { 299, 11}, { 288, 11}, { 277, 9}, { 268, 9}, { 259, 8}, { 251, 8},
{ 243, 8}, { 235, 7}, { 228, 6}, { 222, 6}, { 216, 6}, { 210, 6}, { 204, 5}, { 199, 5},
{ 194, 5}, { 189, 4}, { 185, 4}, { 181, 4}, { 177, 4}, { 173, 4}, { 169, 4}, { 165, 3},
{ 162, 3}, { 159, 4}, { 155, 3}, { 152, 3}, { 149, 2}, { 147, 3}, { 144, 3}, { 141, 2},
{ 139, 3}, { 136, 2}, { 134, 2}, { 132, 3}, { 129, 2}, { 127, 2}, { 125, 2}, { 123, 2},
{ 121, 2}, { 119, 1}, { 118, 2}, { 116, 2}, { 114, 1}, { 113, 2}, { 111, 2}, { 109, 1},
{ 108, 2}, { 106, 1}, { 105, 2}, { 103, 1}, { 102, 1}, { 101, 1}, { 100, 2}, { 98, 1},
{ 97, 1}, { 96, 1}, { 95, 2}, { 93, 1}, { 92, 1}, { 91, 1}, { 90, 1}, { 89, 1},
{ 88, 1}, { 87, 1}, { 86, 1}, { 85, 1}, { 84, 1}, { 83, 0}, { 83, 1}, { 82, 1},
{ 81, 1}, { 80, 1}, { 79, 1}, { 78, 0}, { 78, 1}, { 77, 1}, { 76, 1}, { 75, 0},
{ 75, 1}, { 74, 1}, { 73, 1}, { 72, 0}, { 72, 1}, { 71, 1}, { 70, 0}, { 70, 1},
{ 69, 0}, { 69, 1}, { 68, 1}, { 67, 0}, { 67, 1}, { 66, 0}, { 66, 1}, { 65, 0},
{ 65, 1}, { 64, 1}, { 63, 0}, { 63, 1}, { 62, 0}, { 62, 1}, { 61, 0}, { 61, 1},
{ 60, 0}, { 60, 0}, { 60, 1}, { 59, 0}, { 59, 1}, { 58, 0}, { 58, 1}, { 57, 0},
{ 57, 1}, { 56, 0}, { 56, 0}, { 56, 1}, { 55, 0}, { 55, 1}, { 54, 0}, { 54, 0},
{ 54, 1}, { 53, 0}, { 53, 0}, { 53, 1}, { 52, 0}, { 52, 0}, { 52, 1}, { 51, 0},
{ 51, 0}, { 51, 1}, { 50, 0}, { 50, 0}, { 50, 1}, { 49, 0}, { 49, 0}, { 49, 1},
{ 48, 0}, { 48, 0}, { 48, 1}, { 47, 0}, { 47, 0}, { 47, 0}, { 47, 1}, { 46, 0},
{ 46, 0}, { 46, 1}, { 45, 0}, { 45, 0}, { 45, 0}, { 45, 1}, { 44, 0}, { 44, 0},
{ 44, 0}, { 44, 1}, { 43, 0}, { 43, 0}, { 43, 0}, { 43, 1}, { 42, 0}, { 42, 0},
{ 42, 0}, { 42, 1}, { 41, 0}, { 41, 0}, { 41, 0}, { 41, 0}, { 41, 1}, { 40, 0},
{ 40, 0}, { 40, 0}, { 40, 0}, { 40, 1}, { 39, 0}, { 39, 0}, { 39, 0}, { 39, 0},
{ 39, 1}, { 38, 0}, { 38, 0}, { 38, 0}, { 38, 0}, { 38, 1}, { 37, 0}, { 37, 0},
{ 37, 0}, { 37, 0}, { 37, 0}, { 37, 1}, { 36, 0}, { 36, 0}, { 36, 0}, { 36, 0},
{ 36, 1}, { 35, 0}, { 35, 0}, { 35, 0}, { 35, 0}, { 35, 0}, { 35, 0}, { 35, 1},
{ 34, 0}, { 34, 0}, { 34, 0}, { 34, 0}, { 34, 0}, { 34, 1}, { 33, 0}, { 33, 0},
{ 33, 0}, { 33, 0}, { 33, 0}, { 33, 0}, { 33, 1}, { 32, 0}, { 32, 0}, { 32, 0},
{ 32, 0}, { 32, 0}, { 32, 0}, { 32, 0}, { 32, 1}, { 31, 0}, { 31, 0}, { 31, 0},
{ 31, 0}, { 31, 0}, { 31, 0}, { 31, 1}, { 30, 0}, { 30, 0}, { 30, 0}, { 30, 0}
};
const uint16_t speed_lookuptable_slow[256][2] PROGMEM = {\
{ 62500, 12500}, { 50000, 8334}, { 41666, 5952}, { 35714, 4464}, { 31250, 3473}, { 27777, 2777}, { 25000, 2273}, { 22727, 1894},
{ 20833, 1603}, { 19230, 1373}, { 17857, 1191}, { 16666, 1041}, { 15625, 920}, { 14705, 817}, { 13888, 731}, { 13157, 657},
{ 12500, 596}, { 11904, 541}, { 11363, 494}, { 10869, 453}, { 10416, 416}, { 10000, 385}, { 9615, 356}, { 9259, 331},
{ 8928, 308}, { 8620, 287}, { 8333, 269}, { 8064, 252}, { 7812, 237}, { 7575, 223}, { 7352, 210}, { 7142, 198},
{ 6944, 188}, { 6756, 178}, { 6578, 168}, { 6410, 160}, { 6250, 153}, { 6097, 145}, { 5952, 139}, { 5813, 132},
{ 5681, 126}, { 5555, 121}, { 5434, 115}, { 5319, 111}, { 5208, 106}, { 5102, 102}, { 5000, 99}, { 4901, 94},
{ 4807, 91}, { 4716, 87}, { 4629, 84}, { 4545, 81}, { 4464, 79}, { 4385, 75}, { 4310, 73}, { 4237, 71},
{ 4166, 68}, { 4098, 66}, { 4032, 64}, { 3968, 62}, { 3906, 60}, { 3846, 59}, { 3787, 56}, { 3731, 55},
{ 3676, 53}, { 3623, 52}, { 3571, 50}, { 3521, 49}, { 3472, 48}, { 3424, 46}, { 3378, 45}, { 3333, 44},
{ 3289, 43}, { 3246, 41}, { 3205, 41}, { 3164, 39}, { 3125, 39}, { 3086, 38}, { 3048, 36}, { 3012, 36},
{ 2976, 35}, { 2941, 35}, { 2906, 33}, { 2873, 33}, { 2840, 32}, { 2808, 31}, { 2777, 30}, { 2747, 30},
{ 2717, 29}, { 2688, 29}, { 2659, 28}, { 2631, 27}, { 2604, 27}, { 2577, 26}, { 2551, 26}, { 2525, 25},
{ 2500, 25}, { 2475, 25}, { 2450, 23}, { 2427, 24}, { 2403, 23}, { 2380, 22}, { 2358, 22}, { 2336, 22},
{ 2314, 21}, { 2293, 21}, { 2272, 20}, { 2252, 20}, { 2232, 20}, { 2212, 20}, { 2192, 19}, { 2173, 18},
{ 2155, 19}, { 2136, 18}, { 2118, 18}, { 2100, 17}, { 2083, 17}, { 2066, 17}, { 2049, 17}, { 2032, 16},
{ 2016, 16}, { 2000, 16}, { 1984, 16}, { 1968, 15}, { 1953, 16}, { 1937, 14}, { 1923, 15}, { 1908, 15},
{ 1893, 14}, { 1879, 14}, { 1865, 14}, { 1851, 13}, { 1838, 14}, { 1824, 13}, { 1811, 13}, { 1798, 13},
{ 1785, 12}, { 1773, 13}, { 1760, 12}, { 1748, 12}, { 1736, 12}, { 1724, 12}, { 1712, 12}, { 1700, 11},
{ 1689, 12}, { 1677, 11}, { 1666, 11}, { 1655, 11}, { 1644, 11}, { 1633, 10}, { 1623, 11}, { 1612, 10},
{ 1602, 10}, { 1592, 10}, { 1582, 10}, { 1572, 10}, { 1562, 10}, { 1552, 9}, { 1543, 10}, { 1533, 9},
{ 1524, 9}, { 1515, 9}, { 1506, 9}, { 1497, 9}, { 1488, 9}, { 1479, 9}, { 1470, 9}, { 1461, 8},
{ 1453, 8}, { 1445, 9}, { 1436, 8}, { 1428, 8}, { 1420, 8}, { 1412, 8}, { 1404, 8}, { 1396, 8},
{ 1388, 7}, { 1381, 8}, { 1373, 7}, { 1366, 8}, { 1358, 7}, { 1351, 7}, { 1344, 8}, { 1336, 7},
{ 1329, 7}, { 1322, 7}, { 1315, 7}, { 1308, 6}, { 1302, 7}, { 1295, 7}, { 1288, 6}, { 1282, 7},
{ 1275, 6}, { 1269, 7}, { 1262, 6}, { 1256, 6}, { 1250, 7}, { 1243, 6}, { 1237, 6}, { 1231, 6},
{ 1225, 6}, { 1219, 6}, { 1213, 6}, { 1207, 6}, { 1201, 5}, { 1196, 6}, { 1190, 6}, { 1184, 5},
{ 1179, 6}, { 1173, 5}, { 1168, 6}, { 1162, 5}, { 1157, 5}, { 1152, 6}, { 1146, 5}, { 1141, 5},
{ 1136, 5}, { 1131, 5}, { 1126, 5}, { 1121, 5}, { 1116, 5}, { 1111, 5}, { 1106, 5}, { 1101, 5},
{ 1096, 5}, { 1091, 5}, { 1086, 4}, { 1082, 5}, { 1077, 5}, { 1072, 4}, { 1068, 5}, { 1063, 4},
{ 1059, 5}, { 1054, 4}, { 1050, 4}, { 1046, 5}, { 1041, 4}, { 1037, 4}, { 1033, 5}, { 1028, 4},
{ 1024, 4}, { 1020, 4}, { 1016, 4}, { 1012, 4}, { 1008, 4}, { 1004, 4}, { 1000, 4}, { 996, 4},
{ 992, 4}, { 988, 4}, { 984, 4}, { 980, 4}, { 976, 4}, { 972, 4}, { 968, 3}, { 965, 3}
};
#elif F_CPU == 20000000
const uint16_t speed_lookuptable_fast[256][2] PROGMEM = {
{62500, 54055}, {8445, 3917}, {4528, 1434}, {3094, 745}, {2349, 456}, {1893, 307}, {1586, 222}, {1364, 167},
{1197, 131}, {1066, 105}, {961, 86}, {875, 72}, {803, 61}, {742, 53}, {689, 45}, {644, 40},
{604, 35}, {569, 32}, {537, 28}, {509, 25}, {484, 23}, {461, 21}, {440, 19}, {421, 17},
{404, 16}, {388, 15}, {373, 14}, {359, 13}, {346, 12}, {334, 11}, {323, 10}, {313, 10},
{303, 9}, {294, 9}, {285, 8}, {277, 7}, {270, 8}, {262, 7}, {255, 6}, {249, 6},
{243, 6}, {237, 6}, {231, 5}, {226, 5}, {221, 5}, {216, 5}, {211, 4}, {207, 5},
{202, 4}, {198, 4}, {194, 4}, {190, 3}, {187, 4}, {183, 3}, {180, 3}, {177, 4},
{173, 3}, {170, 3}, {167, 2}, {165, 3}, {162, 3}, {159, 2}, {157, 3}, {154, 2},
{152, 3}, {149, 2}, {147, 2}, {145, 2}, {143, 2}, {141, 2}, {139, 2}, {137, 2},
{135, 2}, {133, 2}, {131, 2}, {129, 1}, {128, 2}, {126, 2}, {124, 1}, {123, 2},
{121, 1}, {120, 2}, {118, 1}, {117, 1}, {116, 2}, {114, 1}, {113, 1}, {112, 2},
{110, 1}, {109, 1}, {108, 1}, {107, 2}, {105, 1}, {104, 1}, {103, 1}, {102, 1},
{101, 1}, {100, 1}, {99, 1}, {98, 1}, {97, 1}, {96, 1}, {95, 1}, {94, 1},
{93, 1}, {92, 1}, {91, 0}, {91, 1}, {90, 1}, {89, 1}, {88, 1}, {87, 0},
{87, 1}, {86, 1}, {85, 1}, {84, 0}, {84, 1}, {83, 1}, {82, 1}, {81, 0},
{81, 1}, {80, 1}, {79, 0}, {79, 1}, {78, 0}, {78, 1}, {77, 1}, {76, 0},
{76, 1}, {75, 0}, {75, 1}, {74, 1}, {73, 0}, {73, 1}, {72, 0}, {72, 1},
{71, 0}, {71, 1}, {70, 0}, {70, 1}, {69, 0}, {69, 1}, {68, 0}, {68, 1},
{67, 0}, {67, 1}, {66, 0}, {66, 1}, {65, 0}, {65, 0}, {65, 1}, {64, 0},
{64, 1}, {63, 0}, {63, 1}, {62, 0}, {62, 0}, {62, 1}, {61, 0}, {61, 1},
{60, 0}, {60, 0}, {60, 1}, {59, 0}, {59, 0}, {59, 1}, {58, 0}, {58, 0},
{58, 1}, {57, 0}, {57, 0}, {57, 1}, {56, 0}, {56, 0}, {56, 1}, {55, 0},
{55, 0}, {55, 1}, {54, 0}, {54, 0}, {54, 1}, {53, 0}, {53, 0}, {53, 0},
{53, 1}, {52, 0}, {52, 0}, {52, 1}, {51, 0}, {51, 0}, {51, 0}, {51, 1},
{50, 0}, {50, 0}, {50, 0}, {50, 1}, {49, 0}, {49, 0}, {49, 0}, {49, 1},
{48, 0}, {48, 0}, {48, 0}, {48, 1}, {47, 0}, {47, 0}, {47, 0}, {47, 1},
{46, 0}, {46, 0}, {46, 0}, {46, 0}, {46, 1}, {45, 0}, {45, 0}, {45, 0},
{45, 1}, {44, 0}, {44, 0}, {44, 0}, {44, 0}, {44, 1}, {43, 0}, {43, 0},
{43, 0}, {43, 0}, {43, 1}, {42, 0}, {42, 0}, {42, 0}, {42, 0}, {42, 0},
{42, 1}, {41, 0}, {41, 0}, {41, 0}, {41, 0}, {41, 0}, {41, 1}, {40, 0},
{40, 0}, {40, 0}, {40, 0}, {40, 1}, {39, 0}, {39, 0}, {39, 0}, {39, 0},
{39, 0}, {39, 0}, {39, 1}, {38, 0}, {38, 0}, {38, 0}, {38, 0}, {38, 0},
};
const uint16_t speed_lookuptable_slow[256][2] PROGMEM = {
{62500, 10417}, {52083, 7441}, {44642, 5580}, {39062, 4340}, {34722, 3472}, {31250, 2841}, {28409, 2368}, {26041, 2003},
{24038, 1717}, {22321, 1488}, {20833, 1302}, {19531, 1149}, {18382, 1021}, {17361, 914}, {16447, 822}, {15625, 745},
{14880, 676}, {14204, 618}, {13586, 566}, {13020, 520}, {12500, 481}, {12019, 445}, {11574, 414}, {11160, 385},
{10775, 359}, {10416, 336}, {10080, 315}, {9765, 296}, {9469, 278}, {9191, 263}, {8928, 248}, {8680, 235},
{8445, 222}, {8223, 211}, {8012, 200}, {7812, 191}, {7621, 181}, {7440, 173}, {7267, 165}, {7102, 158},
{6944, 151}, {6793, 145}, {6648, 138}, {6510, 133}, {6377, 127}, {6250, 123}, {6127, 118}, {6009, 113},
{5896, 109}, {5787, 106}, {5681, 101}, {5580, 98}, {5482, 95}, {5387, 91}, {5296, 88}, {5208, 86},
{5122, 82}, {5040, 80}, {4960, 78}, {4882, 75}, {4807, 73}, {4734, 70}, {4664, 69}, {4595, 67},
{4528, 64}, {4464, 63}, {4401, 61}, {4340, 60}, {4280, 58}, {4222, 56}, {4166, 55}, {4111, 53},
{4058, 52}, {4006, 51}, {3955, 49}, {3906, 48}, {3858, 48}, {3810, 45}, {3765, 45}, {3720, 44},
{3676, 43}, {3633, 42}, {3591, 40}, {3551, 40}, {3511, 39}, {3472, 38}, {3434, 38}, {3396, 36},
{3360, 36}, {3324, 35}, {3289, 34}, {3255, 34}, {3221, 33}, {3188, 32}, {3156, 31}, {3125, 31},
{3094, 31}, {3063, 30}, {3033, 29}, {3004, 28}, {2976, 28}, {2948, 28}, {2920, 27}, {2893, 27},
{2866, 26}, {2840, 25}, {2815, 25}, {2790, 25}, {2765, 24}, {2741, 24}, {2717, 24}, {2693, 23},
{2670, 22}, {2648, 22}, {2626, 22}, {2604, 22}, {2582, 21}, {2561, 21}, {2540, 20}, {2520, 20},
{2500, 20}, {2480, 20}, {2460, 19}, {2441, 19}, {2422, 19}, {2403, 18}, {2385, 18}, {2367, 18},
{2349, 17}, {2332, 18}, {2314, 17}, {2297, 16}, {2281, 17}, {2264, 16}, {2248, 16}, {2232, 16},
{2216, 16}, {2200, 15}, {2185, 15}, {2170, 15}, {2155, 15}, {2140, 15}, {2125, 14}, {2111, 14},
{2097, 14}, {2083, 14}, {2069, 14}, {2055, 13}, {2042, 13}, {2029, 13}, {2016, 13}, {2003, 13},
{1990, 13}, {1977, 12}, {1965, 12}, {1953, 13}, {1940, 11}, {1929, 12}, {1917, 12}, {1905, 12},
{1893, 11}, {1882, 11}, {1871, 11}, {1860, 11}, {1849, 11}, {1838, 11}, {1827, 11}, {1816, 10},
{1806, 11}, {1795, 10}, {1785, 10}, {1775, 10}, {1765, 10}, {1755, 10}, {1745, 9}, {1736, 10},
{1726, 9}, {1717, 10}, {1707, 9}, {1698, 9}, {1689, 9}, {1680, 9}, {1671, 9}, {1662, 9},
{1653, 9}, {1644, 8}, {1636, 9}, {1627, 8}, {1619, 9}, {1610, 8}, {1602, 8}, {1594, 8},
{1586, 8}, {1578, 8}, {1570, 8}, {1562, 8}, {1554, 7}, {1547, 8}, {1539, 8}, {1531, 7},
{1524, 8}, {1516, 7}, {1509, 7}, {1502, 7}, {1495, 7}, {1488, 7}, {1481, 7}, {1474, 7},
{1467, 7}, {1460, 7}, {1453, 7}, {1446, 6}, {1440, 7}, {1433, 7}, {1426, 6}, {1420, 6},
{1414, 7}, {1407, 6}, {1401, 6}, {1395, 7}, {1388, 6}, {1382, 6}, {1376, 6}, {1370, 6},
{1364, 6}, {1358, 6}, {1352, 6}, {1346, 5}, {1341, 6}, {1335, 6}, {1329, 5}, {1324, 6},
{1318, 5}, {1313, 6}, {1307, 5}, {1302, 6}, {1296, 5}, {1291, 5}, {1286, 6}, {1280, 5},
{1275, 5}, {1270, 5}, {1265, 5}, {1260, 5}, {1255, 5}, {1250, 5}, {1245, 5}, {1240, 5},
{1235, 5}, {1230, 5}, {1225, 5}, {1220, 5}, {1215, 4}, {1211, 5}, {1206, 5}, {1201, 5},
};
#endif

View File

@ -3,150 +3,123 @@
#include "Marlin.h"
#if F_CPU == 16000000
extern const uint16_t speed_lookuptable_fast[256][2] PROGMEM;
extern const uint16_t speed_lookuptable_slow[256][2] PROGMEM;
const uint16_t speed_lookuptable_fast[256][2] PROGMEM = {\
{ 62500, 55556}, { 6944, 3268}, { 3676, 1176}, { 2500, 607}, { 1893, 369}, { 1524, 249}, { 1275, 179}, { 1096, 135},
{ 961, 105}, { 856, 85}, { 771, 69}, { 702, 58}, { 644, 49}, { 595, 42}, { 553, 37}, { 516, 32},
{ 484, 28}, { 456, 25}, { 431, 23}, { 408, 20}, { 388, 19}, { 369, 16}, { 353, 16}, { 337, 14},
{ 323, 13}, { 310, 11}, { 299, 11}, { 288, 11}, { 277, 9}, { 268, 9}, { 259, 8}, { 251, 8},
{ 243, 8}, { 235, 7}, { 228, 6}, { 222, 6}, { 216, 6}, { 210, 6}, { 204, 5}, { 199, 5},
{ 194, 5}, { 189, 4}, { 185, 4}, { 181, 4}, { 177, 4}, { 173, 4}, { 169, 4}, { 165, 3},
{ 162, 3}, { 159, 4}, { 155, 3}, { 152, 3}, { 149, 2}, { 147, 3}, { 144, 3}, { 141, 2},
{ 139, 3}, { 136, 2}, { 134, 2}, { 132, 3}, { 129, 2}, { 127, 2}, { 125, 2}, { 123, 2},
{ 121, 2}, { 119, 1}, { 118, 2}, { 116, 2}, { 114, 1}, { 113, 2}, { 111, 2}, { 109, 1},
{ 108, 2}, { 106, 1}, { 105, 2}, { 103, 1}, { 102, 1}, { 101, 1}, { 100, 2}, { 98, 1},
{ 97, 1}, { 96, 1}, { 95, 2}, { 93, 1}, { 92, 1}, { 91, 1}, { 90, 1}, { 89, 1},
{ 88, 1}, { 87, 1}, { 86, 1}, { 85, 1}, { 84, 1}, { 83, 0}, { 83, 1}, { 82, 1},
{ 81, 1}, { 80, 1}, { 79, 1}, { 78, 0}, { 78, 1}, { 77, 1}, { 76, 1}, { 75, 0},
{ 75, 1}, { 74, 1}, { 73, 1}, { 72, 0}, { 72, 1}, { 71, 1}, { 70, 0}, { 70, 1},
{ 69, 0}, { 69, 1}, { 68, 1}, { 67, 0}, { 67, 1}, { 66, 0}, { 66, 1}, { 65, 0},
{ 65, 1}, { 64, 1}, { 63, 0}, { 63, 1}, { 62, 0}, { 62, 1}, { 61, 0}, { 61, 1},
{ 60, 0}, { 60, 0}, { 60, 1}, { 59, 0}, { 59, 1}, { 58, 0}, { 58, 1}, { 57, 0},
{ 57, 1}, { 56, 0}, { 56, 0}, { 56, 1}, { 55, 0}, { 55, 1}, { 54, 0}, { 54, 0},
{ 54, 1}, { 53, 0}, { 53, 0}, { 53, 1}, { 52, 0}, { 52, 0}, { 52, 1}, { 51, 0},
{ 51, 0}, { 51, 1}, { 50, 0}, { 50, 0}, { 50, 1}, { 49, 0}, { 49, 0}, { 49, 1},
{ 48, 0}, { 48, 0}, { 48, 1}, { 47, 0}, { 47, 0}, { 47, 0}, { 47, 1}, { 46, 0},
{ 46, 0}, { 46, 1}, { 45, 0}, { 45, 0}, { 45, 0}, { 45, 1}, { 44, 0}, { 44, 0},
{ 44, 0}, { 44, 1}, { 43, 0}, { 43, 0}, { 43, 0}, { 43, 1}, { 42, 0}, { 42, 0},
{ 42, 0}, { 42, 1}, { 41, 0}, { 41, 0}, { 41, 0}, { 41, 0}, { 41, 1}, { 40, 0},
{ 40, 0}, { 40, 0}, { 40, 0}, { 40, 1}, { 39, 0}, { 39, 0}, { 39, 0}, { 39, 0},
{ 39, 1}, { 38, 0}, { 38, 0}, { 38, 0}, { 38, 0}, { 38, 1}, { 37, 0}, { 37, 0},
{ 37, 0}, { 37, 0}, { 37, 0}, { 37, 1}, { 36, 0}, { 36, 0}, { 36, 0}, { 36, 0},
{ 36, 1}, { 35, 0}, { 35, 0}, { 35, 0}, { 35, 0}, { 35, 0}, { 35, 0}, { 35, 1},
{ 34, 0}, { 34, 0}, { 34, 0}, { 34, 0}, { 34, 0}, { 34, 1}, { 33, 0}, { 33, 0},
{ 33, 0}, { 33, 0}, { 33, 0}, { 33, 0}, { 33, 1}, { 32, 0}, { 32, 0}, { 32, 0},
{ 32, 0}, { 32, 0}, { 32, 0}, { 32, 0}, { 32, 1}, { 31, 0}, { 31, 0}, { 31, 0},
{ 31, 0}, { 31, 0}, { 31, 0}, { 31, 1}, { 30, 0}, { 30, 0}, { 30, 0}, { 30, 0}
};
#ifndef _NO_ASM
const uint16_t speed_lookuptable_slow[256][2] PROGMEM = {\
{ 62500, 12500}, { 50000, 8334}, { 41666, 5952}, { 35714, 4464}, { 31250, 3473}, { 27777, 2777}, { 25000, 2273}, { 22727, 1894},
{ 20833, 1603}, { 19230, 1373}, { 17857, 1191}, { 16666, 1041}, { 15625, 920}, { 14705, 817}, { 13888, 731}, { 13157, 657},
{ 12500, 596}, { 11904, 541}, { 11363, 494}, { 10869, 453}, { 10416, 416}, { 10000, 385}, { 9615, 356}, { 9259, 331},
{ 8928, 308}, { 8620, 287}, { 8333, 269}, { 8064, 252}, { 7812, 237}, { 7575, 223}, { 7352, 210}, { 7142, 198},
{ 6944, 188}, { 6756, 178}, { 6578, 168}, { 6410, 160}, { 6250, 153}, { 6097, 145}, { 5952, 139}, { 5813, 132},
{ 5681, 126}, { 5555, 121}, { 5434, 115}, { 5319, 111}, { 5208, 106}, { 5102, 102}, { 5000, 99}, { 4901, 94},
{ 4807, 91}, { 4716, 87}, { 4629, 84}, { 4545, 81}, { 4464, 79}, { 4385, 75}, { 4310, 73}, { 4237, 71},
{ 4166, 68}, { 4098, 66}, { 4032, 64}, { 3968, 62}, { 3906, 60}, { 3846, 59}, { 3787, 56}, { 3731, 55},
{ 3676, 53}, { 3623, 52}, { 3571, 50}, { 3521, 49}, { 3472, 48}, { 3424, 46}, { 3378, 45}, { 3333, 44},
{ 3289, 43}, { 3246, 41}, { 3205, 41}, { 3164, 39}, { 3125, 39}, { 3086, 38}, { 3048, 36}, { 3012, 36},
{ 2976, 35}, { 2941, 35}, { 2906, 33}, { 2873, 33}, { 2840, 32}, { 2808, 31}, { 2777, 30}, { 2747, 30},
{ 2717, 29}, { 2688, 29}, { 2659, 28}, { 2631, 27}, { 2604, 27}, { 2577, 26}, { 2551, 26}, { 2525, 25},
{ 2500, 25}, { 2475, 25}, { 2450, 23}, { 2427, 24}, { 2403, 23}, { 2380, 22}, { 2358, 22}, { 2336, 22},
{ 2314, 21}, { 2293, 21}, { 2272, 20}, { 2252, 20}, { 2232, 20}, { 2212, 20}, { 2192, 19}, { 2173, 18},
{ 2155, 19}, { 2136, 18}, { 2118, 18}, { 2100, 17}, { 2083, 17}, { 2066, 17}, { 2049, 17}, { 2032, 16},
{ 2016, 16}, { 2000, 16}, { 1984, 16}, { 1968, 15}, { 1953, 16}, { 1937, 14}, { 1923, 15}, { 1908, 15},
{ 1893, 14}, { 1879, 14}, { 1865, 14}, { 1851, 13}, { 1838, 14}, { 1824, 13}, { 1811, 13}, { 1798, 13},
{ 1785, 12}, { 1773, 13}, { 1760, 12}, { 1748, 12}, { 1736, 12}, { 1724, 12}, { 1712, 12}, { 1700, 11},
{ 1689, 12}, { 1677, 11}, { 1666, 11}, { 1655, 11}, { 1644, 11}, { 1633, 10}, { 1623, 11}, { 1612, 10},
{ 1602, 10}, { 1592, 10}, { 1582, 10}, { 1572, 10}, { 1562, 10}, { 1552, 9}, { 1543, 10}, { 1533, 9},
{ 1524, 9}, { 1515, 9}, { 1506, 9}, { 1497, 9}, { 1488, 9}, { 1479, 9}, { 1470, 9}, { 1461, 8},
{ 1453, 8}, { 1445, 9}, { 1436, 8}, { 1428, 8}, { 1420, 8}, { 1412, 8}, { 1404, 8}, { 1396, 8},
{ 1388, 7}, { 1381, 8}, { 1373, 7}, { 1366, 8}, { 1358, 7}, { 1351, 7}, { 1344, 8}, { 1336, 7},
{ 1329, 7}, { 1322, 7}, { 1315, 7}, { 1308, 6}, { 1302, 7}, { 1295, 7}, { 1288, 6}, { 1282, 7},
{ 1275, 6}, { 1269, 7}, { 1262, 6}, { 1256, 6}, { 1250, 7}, { 1243, 6}, { 1237, 6}, { 1231, 6},
{ 1225, 6}, { 1219, 6}, { 1213, 6}, { 1207, 6}, { 1201, 5}, { 1196, 6}, { 1190, 6}, { 1184, 5},
{ 1179, 6}, { 1173, 5}, { 1168, 6}, { 1162, 5}, { 1157, 5}, { 1152, 6}, { 1146, 5}, { 1141, 5},
{ 1136, 5}, { 1131, 5}, { 1126, 5}, { 1121, 5}, { 1116, 5}, { 1111, 5}, { 1106, 5}, { 1101, 5},
{ 1096, 5}, { 1091, 5}, { 1086, 4}, { 1082, 5}, { 1077, 5}, { 1072, 4}, { 1068, 5}, { 1063, 4},
{ 1059, 5}, { 1054, 4}, { 1050, 4}, { 1046, 5}, { 1041, 4}, { 1037, 4}, { 1033, 5}, { 1028, 4},
{ 1024, 4}, { 1020, 4}, { 1016, 4}, { 1012, 4}, { 1008, 4}, { 1004, 4}, { 1000, 4}, { 996, 4},
{ 992, 4}, { 988, 4}, { 984, 4}, { 980, 4}, { 976, 4}, { 972, 4}, { 968, 3}, { 965, 3}
};
// intRes = intIn1 * intIn2 >> 16
// uses:
// r26 to store 0
// r27 to store the byte 1 of the 24 bit result
#define MultiU16X8toH16(intRes, charIn1, intIn2) \
asm volatile ( \
"clr r26 \n\t" \
"mul %A1, %B2 \n\t" \
"movw %A0, r0 \n\t" \
"mul %A1, %A2 \n\t" \
"add %A0, r1 \n\t" \
"adc %B0, r26 \n\t" \
"lsr r0 \n\t" \
"adc %A0, r26 \n\t" \
"adc %B0, r26 \n\t" \
"clr r1 \n\t" \
: \
"=&r" (intRes) \
: \
"d" (charIn1), \
"d" (intIn2) \
: \
"r26" \
)
#elif F_CPU == 20000000
// intRes = longIn1 * longIn2 >> 24
// uses:
// r26 to store 0
// r27 to store the byte 1 of the 48bit result
#define MultiU24X24toH16(intRes, longIn1, longIn2) \
asm volatile ( \
"clr r26 \n\t" \
"mul %A1, %B2 \n\t" \
"mov r27, r1 \n\t" \
"mul %B1, %C2 \n\t" \
"movw %A0, r0 \n\t" \
"mul %C1, %C2 \n\t" \
"add %B0, r0 \n\t" \
"mul %C1, %B2 \n\t" \
"add %A0, r0 \n\t" \
"adc %B0, r1 \n\t" \
"mul %A1, %C2 \n\t" \
"add r27, r0 \n\t" \
"adc %A0, r1 \n\t" \
"adc %B0, r26 \n\t" \
"mul %B1, %B2 \n\t" \
"add r27, r0 \n\t" \
"adc %A0, r1 \n\t" \
"adc %B0, r26 \n\t" \
"mul %C1, %A2 \n\t" \
"add r27, r0 \n\t" \
"adc %A0, r1 \n\t" \
"adc %B0, r26 \n\t" \
"mul %B1, %A2 \n\t" \
"add r27, r1 \n\t" \
"adc %A0, r26 \n\t" \
"adc %B0, r26 \n\t" \
"lsr r27 \n\t" \
"adc %A0, r26 \n\t" \
"adc %B0, r26 \n\t" \
"clr r1 \n\t" \
: \
"=&r" (intRes) \
: \
"d" (longIn1), \
"d" (longIn2) \
: \
"r26" , "r27" \
)
const uint16_t speed_lookuptable_fast[256][2] PROGMEM = {
{62500, 54055}, {8445, 3917}, {4528, 1434}, {3094, 745}, {2349, 456}, {1893, 307}, {1586, 222}, {1364, 167},
{1197, 131}, {1066, 105}, {961, 86}, {875, 72}, {803, 61}, {742, 53}, {689, 45}, {644, 40},
{604, 35}, {569, 32}, {537, 28}, {509, 25}, {484, 23}, {461, 21}, {440, 19}, {421, 17},
{404, 16}, {388, 15}, {373, 14}, {359, 13}, {346, 12}, {334, 11}, {323, 10}, {313, 10},
{303, 9}, {294, 9}, {285, 8}, {277, 7}, {270, 8}, {262, 7}, {255, 6}, {249, 6},
{243, 6}, {237, 6}, {231, 5}, {226, 5}, {221, 5}, {216, 5}, {211, 4}, {207, 5},
{202, 4}, {198, 4}, {194, 4}, {190, 3}, {187, 4}, {183, 3}, {180, 3}, {177, 4},
{173, 3}, {170, 3}, {167, 2}, {165, 3}, {162, 3}, {159, 2}, {157, 3}, {154, 2},
{152, 3}, {149, 2}, {147, 2}, {145, 2}, {143, 2}, {141, 2}, {139, 2}, {137, 2},
{135, 2}, {133, 2}, {131, 2}, {129, 1}, {128, 2}, {126, 2}, {124, 1}, {123, 2},
{121, 1}, {120, 2}, {118, 1}, {117, 1}, {116, 2}, {114, 1}, {113, 1}, {112, 2},
{110, 1}, {109, 1}, {108, 1}, {107, 2}, {105, 1}, {104, 1}, {103, 1}, {102, 1},
{101, 1}, {100, 1}, {99, 1}, {98, 1}, {97, 1}, {96, 1}, {95, 1}, {94, 1},
{93, 1}, {92, 1}, {91, 0}, {91, 1}, {90, 1}, {89, 1}, {88, 1}, {87, 0},
{87, 1}, {86, 1}, {85, 1}, {84, 0}, {84, 1}, {83, 1}, {82, 1}, {81, 0},
{81, 1}, {80, 1}, {79, 0}, {79, 1}, {78, 0}, {78, 1}, {77, 1}, {76, 0},
{76, 1}, {75, 0}, {75, 1}, {74, 1}, {73, 0}, {73, 1}, {72, 0}, {72, 1},
{71, 0}, {71, 1}, {70, 0}, {70, 1}, {69, 0}, {69, 1}, {68, 0}, {68, 1},
{67, 0}, {67, 1}, {66, 0}, {66, 1}, {65, 0}, {65, 0}, {65, 1}, {64, 0},
{64, 1}, {63, 0}, {63, 1}, {62, 0}, {62, 0}, {62, 1}, {61, 0}, {61, 1},
{60, 0}, {60, 0}, {60, 1}, {59, 0}, {59, 0}, {59, 1}, {58, 0}, {58, 0},
{58, 1}, {57, 0}, {57, 0}, {57, 1}, {56, 0}, {56, 0}, {56, 1}, {55, 0},
{55, 0}, {55, 1}, {54, 0}, {54, 0}, {54, 1}, {53, 0}, {53, 0}, {53, 0},
{53, 1}, {52, 0}, {52, 0}, {52, 1}, {51, 0}, {51, 0}, {51, 0}, {51, 1},
{50, 0}, {50, 0}, {50, 0}, {50, 1}, {49, 0}, {49, 0}, {49, 0}, {49, 1},
{48, 0}, {48, 0}, {48, 0}, {48, 1}, {47, 0}, {47, 0}, {47, 0}, {47, 1},
{46, 0}, {46, 0}, {46, 0}, {46, 0}, {46, 1}, {45, 0}, {45, 0}, {45, 0},
{45, 1}, {44, 0}, {44, 0}, {44, 0}, {44, 0}, {44, 1}, {43, 0}, {43, 0},
{43, 0}, {43, 0}, {43, 1}, {42, 0}, {42, 0}, {42, 0}, {42, 0}, {42, 0},
{42, 1}, {41, 0}, {41, 0}, {41, 0}, {41, 0}, {41, 0}, {41, 1}, {40, 0},
{40, 0}, {40, 0}, {40, 0}, {40, 1}, {39, 0}, {39, 0}, {39, 0}, {39, 0},
{39, 0}, {39, 0}, {39, 1}, {38, 0}, {38, 0}, {38, 0}, {38, 0}, {38, 0},
};
#else //_NO_ASM
const uint16_t speed_lookuptable_slow[256][2] PROGMEM = {
{62500, 10417}, {52083, 7441}, {44642, 5580}, {39062, 4340}, {34722, 3472}, {31250, 2841}, {28409, 2368}, {26041, 2003},
{24038, 1717}, {22321, 1488}, {20833, 1302}, {19531, 1149}, {18382, 1021}, {17361, 914}, {16447, 822}, {15625, 745},
{14880, 676}, {14204, 618}, {13586, 566}, {13020, 520}, {12500, 481}, {12019, 445}, {11574, 414}, {11160, 385},
{10775, 359}, {10416, 336}, {10080, 315}, {9765, 296}, {9469, 278}, {9191, 263}, {8928, 248}, {8680, 235},
{8445, 222}, {8223, 211}, {8012, 200}, {7812, 191}, {7621, 181}, {7440, 173}, {7267, 165}, {7102, 158},
{6944, 151}, {6793, 145}, {6648, 138}, {6510, 133}, {6377, 127}, {6250, 123}, {6127, 118}, {6009, 113},
{5896, 109}, {5787, 106}, {5681, 101}, {5580, 98}, {5482, 95}, {5387, 91}, {5296, 88}, {5208, 86},
{5122, 82}, {5040, 80}, {4960, 78}, {4882, 75}, {4807, 73}, {4734, 70}, {4664, 69}, {4595, 67},
{4528, 64}, {4464, 63}, {4401, 61}, {4340, 60}, {4280, 58}, {4222, 56}, {4166, 55}, {4111, 53},
{4058, 52}, {4006, 51}, {3955, 49}, {3906, 48}, {3858, 48}, {3810, 45}, {3765, 45}, {3720, 44},
{3676, 43}, {3633, 42}, {3591, 40}, {3551, 40}, {3511, 39}, {3472, 38}, {3434, 38}, {3396, 36},
{3360, 36}, {3324, 35}, {3289, 34}, {3255, 34}, {3221, 33}, {3188, 32}, {3156, 31}, {3125, 31},
{3094, 31}, {3063, 30}, {3033, 29}, {3004, 28}, {2976, 28}, {2948, 28}, {2920, 27}, {2893, 27},
{2866, 26}, {2840, 25}, {2815, 25}, {2790, 25}, {2765, 24}, {2741, 24}, {2717, 24}, {2693, 23},
{2670, 22}, {2648, 22}, {2626, 22}, {2604, 22}, {2582, 21}, {2561, 21}, {2540, 20}, {2520, 20},
{2500, 20}, {2480, 20}, {2460, 19}, {2441, 19}, {2422, 19}, {2403, 18}, {2385, 18}, {2367, 18},
{2349, 17}, {2332, 18}, {2314, 17}, {2297, 16}, {2281, 17}, {2264, 16}, {2248, 16}, {2232, 16},
{2216, 16}, {2200, 15}, {2185, 15}, {2170, 15}, {2155, 15}, {2140, 15}, {2125, 14}, {2111, 14},
{2097, 14}, {2083, 14}, {2069, 14}, {2055, 13}, {2042, 13}, {2029, 13}, {2016, 13}, {2003, 13},
{1990, 13}, {1977, 12}, {1965, 12}, {1953, 13}, {1940, 11}, {1929, 12}, {1917, 12}, {1905, 12},
{1893, 11}, {1882, 11}, {1871, 11}, {1860, 11}, {1849, 11}, {1838, 11}, {1827, 11}, {1816, 10},
{1806, 11}, {1795, 10}, {1785, 10}, {1775, 10}, {1765, 10}, {1755, 10}, {1745, 9}, {1736, 10},
{1726, 9}, {1717, 10}, {1707, 9}, {1698, 9}, {1689, 9}, {1680, 9}, {1671, 9}, {1662, 9},
{1653, 9}, {1644, 8}, {1636, 9}, {1627, 8}, {1619, 9}, {1610, 8}, {1602, 8}, {1594, 8},
{1586, 8}, {1578, 8}, {1570, 8}, {1562, 8}, {1554, 7}, {1547, 8}, {1539, 8}, {1531, 7},
{1524, 8}, {1516, 7}, {1509, 7}, {1502, 7}, {1495, 7}, {1488, 7}, {1481, 7}, {1474, 7},
{1467, 7}, {1460, 7}, {1453, 7}, {1446, 6}, {1440, 7}, {1433, 7}, {1426, 6}, {1420, 6},
{1414, 7}, {1407, 6}, {1401, 6}, {1395, 7}, {1388, 6}, {1382, 6}, {1376, 6}, {1370, 6},
{1364, 6}, {1358, 6}, {1352, 6}, {1346, 5}, {1341, 6}, {1335, 6}, {1329, 5}, {1324, 6},
{1318, 5}, {1313, 6}, {1307, 5}, {1302, 6}, {1296, 5}, {1291, 5}, {1286, 6}, {1280, 5},
{1275, 5}, {1270, 5}, {1265, 5}, {1260, 5}, {1255, 5}, {1250, 5}, {1245, 5}, {1240, 5},
{1235, 5}, {1230, 5}, {1225, 5}, {1220, 5}, {1215, 4}, {1211, 5}, {1206, 5}, {1201, 5},
};
#endif
// NOTE: currently not implemented
void MultiU16X8toH16(unsigned short& intRes, unsigned char& charIn1, unsigned short& intIn2);
void MultiU24X24toH16(uint16_t& intRes, int32_t& longIn1, long& longIn2);
#endif //_NO_ASM
FORCE_INLINE unsigned short calc_timer(uint16_t step_rate, uint8_t& step_loops) {
unsigned short timer;
if(step_rate > MAX_STEP_FREQUENCY) step_rate = MAX_STEP_FREQUENCY;
if(step_rate > 20000) { // If steprate > 20kHz >> step 4 times
step_rate = (step_rate >> 2)&0x3fff;
step_loops = 4;
}
else if(step_rate > 10000) { // If steprate > 10kHz >> step 2 times
step_rate = (step_rate >> 1)&0x7fff;
step_loops = 2;
}
else {
step_loops = 1;
}
if(step_rate < (F_CPU/500000)) step_rate = (F_CPU/500000);
step_rate -= (F_CPU/500000); // Correct for minimal speed
if(step_rate >= (8*256)){ // higher step rate
unsigned short table_address = (unsigned short)&speed_lookuptable_fast[(unsigned char)(step_rate>>8)][0];
unsigned char tmp_step_rate = (step_rate & 0x00ff);
unsigned short gain = (unsigned short)pgm_read_word_near(table_address+2);
MultiU16X8toH16(timer, tmp_step_rate, gain);
timer = (unsigned short)pgm_read_word_near(table_address) - timer;
}
else { // lower step rates
unsigned short table_address = (unsigned short)&speed_lookuptable_slow[0][0];
table_address += ((step_rate)>>1) & 0xfffc;
timer = (unsigned short)pgm_read_word_near(table_address);
timer -= (((unsigned short)pgm_read_word_near(table_address+2) * (unsigned char)(step_rate & 0x0007))>>3);
}
if(timer < 100) { timer = 100; }//(20kHz this should never happen)////MSG_STEPPER_TOO_HIGH c=0 r=0
return timer;
}
#endif

View File

@ -113,23 +113,30 @@ volatile long count_position[NUM_AXIS] = { 0, 0, 0, 0};
volatile signed char count_direction[NUM_AXIS] = { 1, 1, 1, 1};
#ifdef LIN_ADVANCE
void advance_isr_scheduler();
void advance_isr();
static uint16_t nextMainISR = 0;
static const uint16_t ADV_NEVER = 0xFFFF;
static const uint8_t ADV_INIT = 0b01;
static const uint8_t ADV_DECELERATE = 0b10;
static uint16_t nextMainISR;
static uint16_t nextAdvanceISR;
static uint16_t main_Rate;
static uint16_t eISR_Rate;
static uint16_t eISR_Err;
// Extrusion steps to be executed by the stepper.
// If set to non zero, the timer ISR routine will tick the Linear Advance extruder ticks first.
// If e_steps is zero, then the timer ISR routine will perform the usual DDA step.
static volatile int16_t e_steps = 0;
// How many extruder steps shall be ticked at a single ISR invocation?
static uint8_t estep_loops;
// The current speed of the extruder, scaled by the linear advance constant, so it has the same measure
// as current_adv_steps.
static int current_estep_rate;
// The current pretension of filament expressed in extruder micro steps.
static int current_adv_steps;
static uint16_t current_adv_steps;
static uint16_t final_adv_steps;
static uint16_t max_adv_steps;
static uint32_t LA_decelerate_after;
#define _NEXT_ISR(T) nextMainISR = T
static int8_t e_steps;
static uint8_t e_step_loops;
static int8_t LA_phase;
#define _NEXT_ISR(T) main_Rate = nextMainISR = T
#else
#define _NEXT_ISR(T) OCR1A = T
#endif
@ -143,92 +150,6 @@ extern uint16_t stepper_timer_overflow_last;
//=============================functions ============================
//===========================================================================
#ifndef _NO_ASM
// intRes = intIn1 * intIn2 >> 16
// uses:
// r26 to store 0
// r27 to store the byte 1 of the 24 bit result
#define MultiU16X8toH16(intRes, charIn1, intIn2) \
asm volatile ( \
"clr r26 \n\t" \
"mul %A1, %B2 \n\t" \
"movw %A0, r0 \n\t" \
"mul %A1, %A2 \n\t" \
"add %A0, r1 \n\t" \
"adc %B0, r26 \n\t" \
"lsr r0 \n\t" \
"adc %A0, r26 \n\t" \
"adc %B0, r26 \n\t" \
"clr r1 \n\t" \
: \
"=&r" (intRes) \
: \
"d" (charIn1), \
"d" (intIn2) \
: \
"r26" \
)
// intRes = longIn1 * longIn2 >> 24
// uses:
// r26 to store 0
// r27 to store the byte 1 of the 48bit result
#define MultiU24X24toH16(intRes, longIn1, longIn2) \
asm volatile ( \
"clr r26 \n\t" \
"mul %A1, %B2 \n\t" \
"mov r27, r1 \n\t" \
"mul %B1, %C2 \n\t" \
"movw %A0, r0 \n\t" \
"mul %C1, %C2 \n\t" \
"add %B0, r0 \n\t" \
"mul %C1, %B2 \n\t" \
"add %A0, r0 \n\t" \
"adc %B0, r1 \n\t" \
"mul %A1, %C2 \n\t" \
"add r27, r0 \n\t" \
"adc %A0, r1 \n\t" \
"adc %B0, r26 \n\t" \
"mul %B1, %B2 \n\t" \
"add r27, r0 \n\t" \
"adc %A0, r1 \n\t" \
"adc %B0, r26 \n\t" \
"mul %C1, %A2 \n\t" \
"add r27, r0 \n\t" \
"adc %A0, r1 \n\t" \
"adc %B0, r26 \n\t" \
"mul %B1, %A2 \n\t" \
"add r27, r1 \n\t" \
"adc %A0, r26 \n\t" \
"adc %B0, r26 \n\t" \
"lsr r27 \n\t" \
"adc %A0, r26 \n\t" \
"adc %B0, r26 \n\t" \
"clr r1 \n\t" \
: \
"=&r" (intRes) \
: \
"d" (longIn1), \
"d" (longIn2) \
: \
"r26" , "r27" \
)
#else //_NO_ASM
void MultiU16X8toH16(unsigned short& intRes, unsigned char& charIn1, unsigned short& intIn2)
{
}
void MultiU24X24toH16(uint16_t& intRes, int32_t& longIn1, long& longIn2)
{
}
#endif //_NO_ASM
// Some useful constants
void checkHitEndstops()
{
if( endstop_x_hit || endstop_y_hit || endstop_z_hit) {
@ -316,42 +237,6 @@ void invert_z_endstop(bool endstop_invert)
// step_events_completed reaches block->decelerate_after after which it decelerates until the trapezoid generator is reset.
// The slope of acceleration is calculated with the leib ramp alghorithm.
FORCE_INLINE unsigned short calc_timer(uint16_t step_rate) {
unsigned short timer;
if(step_rate > MAX_STEP_FREQUENCY) step_rate = MAX_STEP_FREQUENCY;
if(step_rate > 20000) { // If steprate > 20kHz >> step 4 times
step_rate = (step_rate >> 2)&0x3fff;
step_loops = 4;
}
else if(step_rate > 10000) { // If steprate > 10kHz >> step 2 times
step_rate = (step_rate >> 1)&0x7fff;
step_loops = 2;
}
else {
step_loops = 1;
}
// step_loops = 1;
if(step_rate < (F_CPU/500000)) step_rate = (F_CPU/500000);
step_rate -= (F_CPU/500000); // Correct for minimal speed
if(step_rate >= (8*256)){ // higher step rate
unsigned short table_address = (unsigned short)&speed_lookuptable_fast[(unsigned char)(step_rate>>8)][0];
unsigned char tmp_step_rate = (step_rate & 0x00ff);
unsigned short gain = (unsigned short)pgm_read_word_near(table_address+2);
MultiU16X8toH16(timer, tmp_step_rate, gain);
timer = (unsigned short)pgm_read_word_near(table_address) - timer;
}
else { // lower step rates
unsigned short table_address = (unsigned short)&speed_lookuptable_slow[0][0];
table_address += ((step_rate)>>1) & 0xfffc;
timer = (unsigned short)pgm_read_word_near(table_address);
timer -= (((unsigned short)pgm_read_word_near(table_address+2) * (unsigned char)(step_rate & 0x0007))>>3);
}
if(timer < 100) { timer = 100; MYSERIAL.print(_N("Steprate too high: ")); MYSERIAL.println(step_rate); }//(20kHz this should never happen)////MSG_STEPPER_TOO_HIGH
return timer;
}
// "The Stepper Driver Interrupt" - This timer interrupt is the workhorse.
// It pops blocks from the block_buffer and executes them by pulsing the stepper pins appropriately.
ISR(TIMER1_COMPA_vect) {
@ -361,53 +246,10 @@ ISR(TIMER1_COMPA_vect) {
#endif //DEBUG_STACK_MONITOR
#ifdef LIN_ADVANCE
// If there are any e_steps planned, tick them.
bool run_main_isr = false;
if (e_steps) {
//WRITE_NC(LOGIC_ANALYZER_CH7, true);
uint8_t cnt = 0;
for (uint8_t i = estep_loops; e_steps && i --;) {
WRITE_NC(E0_STEP_PIN, !INVERT_E_STEP_PIN);
-- e_steps;
cnt++;
WRITE_NC(E0_STEP_PIN, INVERT_E_STEP_PIN);
}
#ifdef FILAMENT_SENSOR
if (READ(E0_DIR_PIN) == INVERT_E0_DIR)
{
if (count_direction[E_AXIS] == 1)
fsensor_counter -= cnt;
else
fsensor_counter += cnt;
}
else
{
if (count_direction[E_AXIS] == 1)
fsensor_counter += cnt;
else
fsensor_counter -= cnt;
}
#endif //FILAMENT_SENSOR
if (e_steps) {
// Plan another Linear Advance tick.
OCR1A = eISR_Rate;
nextMainISR -= eISR_Rate;
} else if (! (nextMainISR & 0x8000) || nextMainISR < 16) {
// The timer did not overflow and it is big enough, so it makes sense to plan it.
OCR1A = nextMainISR;
} else {
// The timer has overflown, or it is too small. Run the main ISR just after the Linear Advance routine
// in the current interrupt tick.
run_main_isr = true;
//FIXME pick the serial line.
}
//WRITE_NC(LOGIC_ANALYZER_CH7, false);
} else
run_main_isr = true;
if (run_main_isr)
#endif
advance_isr_scheduler();
#else
isr();
#endif
// Don't run the ISR faster than possible
// Is there a 8us time left before the next interrupt triggers?
@ -493,10 +335,6 @@ FORCE_INLINE void stepper_next_block()
}
#endif
#ifdef FILAMENT_SENSOR
fsensor_counter = 0;
fsensor_st_block_begin(current_block);
#endif //FILAMENT_SENSOR
// The busy flag is set by the plan_get_current_block() call.
// current_block->busy = true;
// Initializes the trapezoid generator from the current block. Called whenever a new
@ -507,10 +345,22 @@ FORCE_INLINE void stepper_next_block()
// state is reached.
step_loops_nominal = 0;
acc_step_rate = uint16_t(current_block->initial_rate);
acceleration_time = calc_timer(acc_step_rate);
acceleration_time = calc_timer(acc_step_rate, step_loops);
#ifdef LIN_ADVANCE
current_estep_rate = ((unsigned long)acc_step_rate * current_block->abs_adv_steps_multiplier8) >> 17;
#endif /* LIN_ADVANCE */
if (current_block->use_advance_lead) {
LA_decelerate_after = current_block->decelerate_after;
final_adv_steps = current_block->final_adv_steps;
max_adv_steps = current_block->max_adv_steps;
e_step_loops = current_block->advance_step_loops;
} else {
e_steps = 0;
e_step_loops = 1;
current_adv_steps = 0;
}
nextAdvanceISR = ADV_NEVER;
LA_phase = -1;
#endif
if (current_block->flag & BLOCK_FLAG_DDA_LOWRES) {
counter_x.lo = -(current_block->step_event_count.lo >> 1);
@ -567,9 +417,24 @@ FORCE_INLINE void stepper_next_block()
#endif /* LIN_ADVANCE */
count_direction[E_AXIS] = 1;
}
#ifdef FILAMENT_SENSOR
fsensor_counter = 0;
fsensor_st_block_begin(count_direction[E_AXIS] < 0);
#endif //FILAMENT_SENSOR
}
else {
OCR1A = 2000; // 1kHz.
_NEXT_ISR(2000); // 1kHz.
#ifdef LIN_ADVANCE
// reset LA state when there's no block
nextAdvanceISR = ADV_NEVER;
e_steps = 0;
// incrementally lose pressure to give a chance for
// a new LA block to be scheduled and recover
if(current_adv_steps)
--current_adv_steps;
#endif
}
//WRITE_NC(LOGIC_ANALYZER_CH2, false);
}
@ -779,10 +644,10 @@ FORCE_INLINE void stepper_tick_lowres()
counter_e.lo -= current_block->step_event_count.lo;
count_position[E_AXIS] += count_direction[E_AXIS];
#ifdef LIN_ADVANCE
++ e_steps;
e_steps += count_direction[E_AXIS];
#else
#ifdef FILAMENT_SENSOR
++ fsensor_counter;
fsensor_counter += count_direction[E_AXIS];
#endif //FILAMENT_SENSOR
WRITE(E0_STEP_PIN, INVERT_E_STEP_PIN);
#endif
@ -841,11 +706,11 @@ FORCE_INLINE void stepper_tick_highres()
counter_e.wide -= current_block->step_event_count.wide;
count_position[E_AXIS]+=count_direction[E_AXIS];
#ifdef LIN_ADVANCE
++ e_steps;
e_steps += count_direction[E_AXIS];
#else
#ifdef FILAMENT_SENSOR
++ fsensor_counter;
#endif //FILAMENT_SENSOR
#ifdef FILAMENT_SENSOR
fsensor_counter += count_direction[E_AXIS];
#endif //FILAMENT_SENSOR
WRITE(E0_STEP_PIN, INVERT_E_STEP_PIN);
#endif
}
@ -854,8 +719,53 @@ FORCE_INLINE void stepper_tick_highres()
}
}
// 50us delay
#define LIN_ADV_FIRST_TICK_DELAY 100
#ifdef LIN_ADVANCE
// @wavexx: fast uint16_t division for small dividends<5
// q/3 based on "Hacker's delight" formula
FORCE_INLINE uint16_t fastdiv(uint16_t q, uint8_t d)
{
if(d != 3) return q >> (d / 2);
else return ((uint32_t)0xAAAB * q) >> 17;
}
FORCE_INLINE void advance_spread(uint16_t timer)
{
if(eISR_Err > timer)
{
// advance-step skipped
eISR_Err -= timer;
eISR_Rate = timer;
nextAdvanceISR = timer;
return;
}
// at least one step
uint8_t ticks = 1;
uint32_t block = current_block->advance_rate;
uint16_t max_t = timer - eISR_Err;
while (block < max_t)
{
++ticks;
block += current_block->advance_rate;
}
if (block > timer)
eISR_Err += block - timer;
else
eISR_Err -= timer - block;
if (ticks <= 4)
eISR_Rate = fastdiv(timer, ticks);
else
{
// >4 ticks are still possible on slow moves
eISR_Rate = timer / ticks;
}
nextAdvanceISR = eISR_Rate / 2;
}
#endif
FORCE_INLINE void isr() {
//WRITE_NC(LOGIC_ANALYZER_CH0, true);
@ -868,81 +778,18 @@ FORCE_INLINE void isr() {
if (current_block != NULL)
{
stepper_check_endstops();
#ifdef LIN_ADVANCE
e_steps = 0;
#endif /* LIN_ADVANCE */
if (current_block->flag & BLOCK_FLAG_DDA_LOWRES)
stepper_tick_lowres();
else
stepper_tick_highres();
#ifdef LIN_ADVANCE
if (out_bits&(1<<E_AXIS))
// Move in negative direction.
e_steps = - e_steps;
if (current_block->use_advance_lead) {
//int esteps_inc = 0;
//esteps_inc = current_estep_rate - current_adv_steps;
//e_steps += esteps_inc;
e_steps += current_estep_rate - current_adv_steps;
#if 0
if (abs(esteps_inc) > 4) {
LOGIC_ANALYZER_SERIAL_TX_WRITE(esteps_inc);
if (esteps_inc < -511 || esteps_inc > 511)
LOGIC_ANALYZER_SERIAL_TX_WRITE(esteps_inc >> 9);
}
#endif
current_adv_steps = current_estep_rate;
}
// If we have esteps to execute, step some of them now.
if (e_steps) {
//WRITE_NC(LOGIC_ANALYZER_CH7, true);
// Set the step direction.
bool neg = e_steps < 0;
{
bool dir =
#ifdef SNMM
(neg == (mmu_extruder & 1))
#else
neg
#endif
? INVERT_E0_DIR : !INVERT_E0_DIR; //If we have SNMM, reverse every second extruder.
WRITE_NC(E0_DIR_PIN, dir);
if (neg)
// Flip the e_steps counter to be always positive.
e_steps = - e_steps;
}
// Tick min(step_loops, abs(e_steps)).
estep_loops = (e_steps & 0x0ff00) ? 4 : e_steps;
if (step_loops < estep_loops)
estep_loops = step_loops;
#ifdef FILAMENT_SENSOR
if (READ(E0_DIR_PIN) == INVERT_E0_DIR)
{
if (count_direction[E_AXIS] == 1)
fsensor_counter -= estep_loops;
else
fsensor_counter += estep_loops;
}
else
{
if (count_direction[E_AXIS] == 1)
fsensor_counter += estep_loops;
else
fsensor_counter -= estep_loops;
}
#endif //FILAMENT_SENSOR
do {
WRITE_NC(E0_STEP_PIN, !INVERT_E_STEP_PIN);
-- e_steps;
WRITE_NC(E0_STEP_PIN, INVERT_E_STEP_PIN);
} while (-- estep_loops != 0);
//WRITE_NC(LOGIC_ANALYZER_CH7, false);
MSerial.checkRx(); // Check for serial chars.
}
if (e_steps) WRITE_NC(E0_DIR_PIN, e_steps < 0? INVERT_E0_DIR: !INVERT_E0_DIR);
uint8_t la_state = 0;
#endif
// Calculare new timer value
// Calculate new timer value
// 13.38-14.63us for steady state,
// 25.12us for acceleration / deceleration.
{
@ -955,14 +802,15 @@ FORCE_INLINE void isr() {
if(acc_step_rate > uint16_t(current_block->nominal_rate))
acc_step_rate = current_block->nominal_rate;
// step_rate to timer interval
uint16_t timer = calc_timer(acc_step_rate);
uint16_t timer = calc_timer(acc_step_rate, step_loops);
_NEXT_ISR(timer);
acceleration_time += timer;
#ifdef LIN_ADVANCE
if (current_block->use_advance_lead)
// int32_t = (uint16_t * uint32_t) >> 17
current_estep_rate = ((uint32_t)acc_step_rate * current_block->abs_adv_steps_multiplier8) >> 17;
#endif
#ifdef LIN_ADVANCE
if (current_block->use_advance_lead) {
if (step_events_completed.wide <= (unsigned long int)step_loops)
la_state = ADV_INIT;
}
#endif
}
else if (step_events_completed.wide > (unsigned long int)current_block->decelerate_after) {
uint16_t step_rate;
@ -973,24 +821,23 @@ FORCE_INLINE void isr() {
step_rate = uint16_t(current_block->final_rate);
}
// Step_rate to timer interval.
uint16_t timer = calc_timer(step_rate);
uint16_t timer = calc_timer(step_rate, step_loops);
_NEXT_ISR(timer);
deceleration_time += timer;
#ifdef LIN_ADVANCE
if (current_block->use_advance_lead)
current_estep_rate = ((uint32_t)step_rate * current_block->abs_adv_steps_multiplier8) >> 17;
#endif
#ifdef LIN_ADVANCE
if (current_block->use_advance_lead) {
la_state = ADV_DECELERATE;
if (step_events_completed.wide <= (unsigned long int)current_block->decelerate_after + step_loops)
la_state |= ADV_INIT;
}
#endif
}
else {
if (! step_loops_nominal) {
// Calculation of the steady state timer rate has been delayed to the 1st tick of the steady state to lower
// the initial interrupt blocking.
OCR1A_nominal = calc_timer(uint16_t(current_block->nominal_rate));
OCR1A_nominal = calc_timer(uint16_t(current_block->nominal_rate), step_loops);
step_loops_nominal = step_loops;
#ifdef LIN_ADVANCE
if (current_block->use_advance_lead)
current_estep_rate = (current_block->nominal_rate * current_block->abs_adv_steps_multiplier8) >> 17;
#endif
}
_NEXT_ISR(OCR1A_nominal);
}
@ -998,110 +845,40 @@ FORCE_INLINE void isr() {
}
#ifdef LIN_ADVANCE
if (e_steps && current_block->use_advance_lead) {
//WRITE_NC(LOGIC_ANALYZER_CH7, true);
MSerial.checkRx(); // Check for serial chars.
// Some of the E steps were not ticked yet. Plan additional interrupts.
uint16_t now = TCNT1;
// Plan the first linear advance interrupt after 50us from now.
uint16_t to_go = nextMainISR - now - LIN_ADV_FIRST_TICK_DELAY;
eISR_Rate = 0;
if ((to_go & 0x8000) == 0) {
// The to_go number is not negative.
// Count the number of 7812,5 ticks, that fit into to_go 2MHz ticks.
uint8_t ticks = to_go >> 8;
if (ticks == 1) {
// Avoid running the following loop for a very short interval.
estep_loops = 255;
eISR_Rate = 1;
} else if ((e_steps & 0x0ff00) == 0) {
// e_steps <= 0x0ff
if (uint8_t(e_steps) <= ticks) {
// Spread the e_steps along the whole go_to interval.
eISR_Rate = to_go / uint8_t(e_steps);
estep_loops = 1;
} else if (ticks != 0) {
// At least one tick fits into the to_go interval. Calculate the e-step grouping.
uint8_t e = uint8_t(e_steps) >> 1;
estep_loops = 2;
while (e > ticks) {
e >>= 1;
estep_loops <<= 1;
// avoid multiple instances or function calls to advance_spread
if (la_state & ADV_INIT) eISR_Err = current_block->advance_rate / 4;
if (la_state & ADV_INIT || nextAdvanceISR != ADV_NEVER) {
advance_spread(main_Rate);
if (la_state & ADV_DECELERATE) {
if (step_loops == e_step_loops)
LA_phase = (eISR_Rate > main_Rate);
else {
// avoid overflow through division. warning: we need to _guarantee_ step_loops
// and e_step_loops are <= 4 due to fastdiv's limit
LA_phase = (fastdiv(eISR_Rate, step_loops) > fastdiv(main_Rate, e_step_loops));
}
// Now the estep_loops contains the number of loops of power of 2, that will be sufficient
// to squeeze enough of Linear Advance ticks until nextMainISR.
// Calculate the tick rate.
eISR_Rate = to_go / ticks;
}
} else {
// This is an exterme case with too many e_steps inserted by the linear advance.
// At least one tick fits into the to_go interval. Calculate the e-step grouping.
estep_loops = 2;
uint16_t e = e_steps >> 1;
while (e & 0x0ff00) {
e >>= 1;
estep_loops <<= 1;
}
while (uint8_t(e) > ticks) {
e >>= 1;
estep_loops <<= 1;
}
// Now the estep_loops contains the number of loops of power of 2, that will be sufficient
// to squeeze enough of Linear Advance ticks until nextMainISR.
// Calculate the tick rate.
eISR_Rate = to_go / ticks;
}
}
if (eISR_Rate == 0) {
// There is not enough time to fit even a single additional tick.
// Tick all the extruder ticks now.
MSerial.checkRx(); // Check for serial chars.
#ifdef FILAMENT_SENSOR
if (READ(E0_DIR_PIN) == INVERT_E0_DIR)
{
if (count_direction[E_AXIS] == 1)
fsensor_counter -= e_steps;
else
fsensor_counter += e_steps;
}
else
{
if (count_direction[E_AXIS] == 1)
fsensor_counter += e_steps;
else
fsensor_counter -= e_steps;
}
#endif //FILAMENT_SENSOR
do {
WRITE_NC(E0_STEP_PIN, !INVERT_E_STEP_PIN);
-- e_steps;
WRITE_NC(E0_STEP_PIN, INVERT_E_STEP_PIN);
} while (e_steps);
OCR1A = nextMainISR;
} else {
// Tick the 1st Linear Advance interrupt after 50us from now.
nextMainISR -= LIN_ADV_FIRST_TICK_DELAY;
OCR1A = now + LIN_ADV_FIRST_TICK_DELAY;
}
//WRITE_NC(LOGIC_ANALYZER_CH7, false);
} else
OCR1A = nextMainISR;
}
// Check for serial chars. This executes roughtly inbetween 50-60% of the total runtime of the
// entire isr, making this spot a much better choice than checking during esteps
MSerial.checkRx();
#endif
// If current block is finished, reset pointer
if (step_events_completed.wide >= current_block->step_event_count.wide) {
#ifdef FILAMENT_SENSOR
fsensor_st_block_chunk(current_block, fsensor_counter);
#if !defined(LIN_ADVANCE) && defined(FILAMENT_SENSOR)
fsensor_st_block_chunk(fsensor_counter);
fsensor_counter = 0;
#endif //FILAMENT_SENSOR
current_block = NULL;
plan_discard_current_block();
}
#ifdef FILAMENT_SENSOR
else if ((fsensor_counter >= fsensor_chunk_len))
#if !defined(LIN_ADVANCE) && defined(FILAMENT_SENSOR)
else if ((abs(fsensor_counter) >= fsensor_chunk_len))
{
fsensor_st_block_chunk(current_block, fsensor_counter);
fsensor_st_block_chunk(fsensor_counter);
fsensor_counter = 0;
}
#endif //FILAMENT_SENSOR
@ -1115,12 +892,105 @@ FORCE_INLINE void isr() {
}
#ifdef LIN_ADVANCE
// Timer interrupt for E. e_steps is set in the main routine.
void clear_current_adv_vars() {
e_steps = 0; //Should be already 0 at an filament change event, but just to be sure..
current_adv_steps = 0;
FORCE_INLINE void advance_isr() {
if (step_events_completed.wide > LA_decelerate_after && current_adv_steps > final_adv_steps) {
// decompression
e_steps -= e_step_loops;
if (e_steps) WRITE_NC(E0_DIR_PIN, e_steps < 0? INVERT_E0_DIR: !INVERT_E0_DIR);
if(current_adv_steps > e_step_loops)
current_adv_steps -= e_step_loops;
else
current_adv_steps = 0;
nextAdvanceISR = eISR_Rate;
}
else if (step_events_completed.wide < LA_decelerate_after && current_adv_steps < max_adv_steps) {
// compression
e_steps += e_step_loops;
if (e_steps) WRITE_NC(E0_DIR_PIN, e_steps < 0? INVERT_E0_DIR: !INVERT_E0_DIR);
current_adv_steps += e_step_loops;
nextAdvanceISR = eISR_Rate;
}
else {
// advance steps completed
nextAdvanceISR = ADV_NEVER;
LA_phase = -1;
e_step_loops = 1;
}
}
FORCE_INLINE void advance_isr_scheduler() {
// Integrate the final timer value, accounting for scheduling adjustments
if(nextAdvanceISR && nextAdvanceISR != ADV_NEVER)
{
if(nextAdvanceISR > OCR1A)
nextAdvanceISR -= OCR1A;
else
nextAdvanceISR = 0;
}
if(nextMainISR > OCR1A)
nextMainISR -= OCR1A;
else
nextMainISR = 0;
// Run main stepping ISR if flagged
if (!nextMainISR)
{
#ifdef LA_DEBUG_LOGIC
WRITE_NC(LOGIC_ANALYZER_CH0, true);
#endif
isr();
#ifdef LA_DEBUG_LOGIC
WRITE_NC(LOGIC_ANALYZER_CH0, false);
#endif
}
// Run the next advance isr if triggered
bool eisr = !nextAdvanceISR;
if (eisr)
{
#ifdef LA_DEBUG_LOGIC
WRITE_NC(LOGIC_ANALYZER_CH1, true);
#endif
advance_isr();
#ifdef LA_DEBUG_LOGIC
WRITE_NC(LOGIC_ANALYZER_CH1, false);
#endif
}
// Tick E steps if any
if (e_steps && (LA_phase < 0 || LA_phase == eisr)) {
uint8_t max_ticks = (eisr? e_step_loops: step_loops);
max_ticks = min(abs(e_steps), max_ticks);
bool rev = (e_steps < 0);
do
{
WRITE_NC(E0_STEP_PIN, !INVERT_E_STEP_PIN);
e_steps += (rev? 1: -1);
WRITE_NC(E0_STEP_PIN, INVERT_E_STEP_PIN);
#ifdef FILAMENT_SENSOR
fsensor_counter += (rev? -1: 1);
#endif
}
while(--max_ticks);
#ifdef FILAMENT_SENSOR
if (abs(fsensor_counter) >= fsensor_chunk_len)
{
fsensor_st_block_chunk(fsensor_counter);
fsensor_counter = 0;
}
#endif
}
// Schedule the next closest tick, ignoring advance if scheduled too
// soon in order to avoid skewing the regular stepper acceleration
if (nextAdvanceISR != ADV_NEVER && (nextAdvanceISR + TCNT1 + 40) < nextMainISR)
OCR1A = nextAdvanceISR;
else
OCR1A = nextMainISR;
}
#endif // LIN_ADVANCE
void st_init()
@ -1347,18 +1217,49 @@ void st_init()
// Plan the first interrupt after 8ms from now.
OCR1A = 0x4000;
TCNT1 = 0;
ENABLE_STEPPER_DRIVER_INTERRUPT();
#ifdef LIN_ADVANCE
e_steps = 0;
current_adv_steps = 0;
#ifdef LA_DEBUG_LOGIC
LOGIC_ANALYZER_CH0_ENABLE;
LOGIC_ANALYZER_CH1_ENABLE;
WRITE_NC(LOGIC_ANALYZER_CH0, false);
WRITE_NC(LOGIC_ANALYZER_CH1, false);
#endif
// Initialize state for the linear advance scheduler
nextMainISR = 0;
nextAdvanceISR = ADV_NEVER;
main_Rate = ADV_NEVER;
e_steps = 0;
e_step_loops = 1;
LA_phase = -1;
current_adv_steps = 0;
#endif
enable_endstops(true); // Start with endstops active. After homing they can be disabled
ENABLE_STEPPER_DRIVER_INTERRUPT();
sei();
}
void st_reset_timer()
{
// Clear a possible pending interrupt on OCR1A overflow.
TIFR1 |= 1 << OCF1A;
// Reset the counter.
TCNT1 = 0;
// Wake up after 1ms from now.
OCR1A = 2000;
#ifdef LIN_ADVANCE
nextMainISR = 0;
if(nextAdvanceISR && nextAdvanceISR != ADV_NEVER)
nextAdvanceISR = 0;
#endif
}
// Block until all buffered steps are executed
void st_synchronize()
{
@ -1443,6 +1344,10 @@ void quickStop()
DISABLE_STEPPER_DRIVER_INTERRUPT();
while (blocks_queued()) plan_discard_current_block();
current_block = NULL;
#ifdef LIN_ADVANCE
nextAdvanceISR = ADV_NEVER;
current_adv_steps = 0;
#endif
st_reset_timer();
ENABLE_STEPPER_DRIVER_INTERRUPT();
}

View File

@ -37,12 +37,6 @@ void st_init();
void isr();
#ifdef LIN_ADVANCE
void advance_isr();
void advance_isr_scheduler();
void clear_current_adv_vars(); //Used to reset the built up pretension and remaining esteps on filament change.
#endif
// Block until all buffered steps are executed
void st_synchronize();
@ -62,15 +56,7 @@ float st_get_position_mm(uint8_t axis);
// Call this function just before re-enabling the stepper driver interrupt and the global interrupts
// to avoid a stepper timer overflow.
FORCE_INLINE void st_reset_timer()
{
// Clear a possible pending interrupt on OCR1A overflow.
TIFR1 |= 1 << OCF1A;
// Reset the counter.
TCNT1 = 0;
// Wake up after 1ms from now.
OCR1A = 2000;
}
void st_reset_timer();
void checkHitEndstops(); //call from somewhere to create an serial error message with the locations the endstops where hit, in case they were triggered
bool endstops_hit_on_purpose(); //avoid creation of the message, i.e. after homing and before a routine call of checkHitEndstops();

View File

@ -7085,6 +7085,60 @@ static void lcd_colorprint_change() {
lcd_draw_update = 3;
}
#ifdef LA_LIVE_K
// @wavexx: looks like there's no generic float editing function in menu.cpp so we
// redefine our custom handling functions to mimick other tunables
const char menu_fmt_float13off[] PROGMEM = "%c%-13.13S%6.6S";
static void lcd_advance_draw_K(char chr, float val)
{
if (val <= 0)
lcd_printf_P(menu_fmt_float13off, chr, MSG_ADVANCE_K, _T(MSG_OFF));
else
lcd_printf_P(menu_fmt_float13, chr, MSG_ADVANCE_K, val);
}
static void lcd_advance_edit_K(void)
{
if (lcd_draw_update)
{
if (lcd_encoder < 0) lcd_encoder = 0;
if (lcd_encoder > 999) lcd_encoder = 999;
lcd_set_cursor(0, 1);
lcd_advance_draw_K(' ', 0.01 * lcd_encoder);
}
if (LCD_CLICKED)
{
extruder_advance_K = 0.01 * lcd_encoder;
menu_back_no_reset();
}
}
static uint8_t lcd_advance_K()
{
if (menu_item == menu_line)
{
if (lcd_draw_update)
{
lcd_set_cursor(0, menu_row);
lcd_advance_draw_K((lcd_encoder == menu_item)?'>':' ', extruder_advance_K);
}
if (menu_clicked && (lcd_encoder == menu_item))
{
menu_submenu_no_reset(lcd_advance_edit_K);
lcd_encoder = 100. * extruder_advance_K;
return menu_item_ret();
}
}
menu_item++;
return 0;
}
#define MENU_ITEM_EDIT_advance_K() do { if (lcd_advance_K()) return; } while (0)
#endif
static void lcd_tune_menu()
{
typedef struct
@ -7123,8 +7177,11 @@ static void lcd_tune_menu()
MENU_ITEM_EDIT_int3_P(_T(MSG_FAN_SPEED), &fanSpeed, 0, 255);//5
MENU_ITEM_EDIT_int3_P(_i("Flow"), &extrudemultiply, 10, 999);//6////MSG_FLOW
#ifdef LA_LIVE_K
MENU_ITEM_EDIT_advance_K();//7
#endif
#ifdef FILAMENTCHANGEENABLE
MENU_ITEM_FUNCTION_P(_T(MSG_FILAMENTCHANGE), lcd_colorprint_change);//7
MENU_ITEM_FUNCTION_P(_T(MSG_FILAMENTCHANGE), lcd_colorprint_change);//8
#endif
#ifdef FILAMENT_SENSOR