TMC2130 tunning, overtemp

This commit is contained in:
Robert Pelnar 2017-07-03 00:11:42 +02:00
parent 8b66258745
commit c4307c7373
4 changed files with 198 additions and 239 deletions

View File

@ -1361,6 +1361,9 @@ void loop()
isPrintPaused ? manage_inactivity(true) : manage_inactivity(false); isPrintPaused ? manage_inactivity(true) : manage_inactivity(false);
checkHitEndstops(); checkHitEndstops();
lcd_update(); lcd_update();
#ifdef HAVE_TMC2130_DRIVERS
tmc2130_check_overtemp();
#endif //HAVE_TMC2130_DRIVERS
} }
void get_command() void get_command()
@ -5762,6 +5765,7 @@ void get_coordinates()
} }
if(code_seen('F')) { if(code_seen('F')) {
next_feedrate = code_value(); next_feedrate = code_value();
// if (next_feedrate > 2500) next_feedrate = 2500;
if(next_feedrate > 0.0) feedrate = next_feedrate; if(next_feedrate > 0.0) feedrate = next_feedrate;
} }
} }

View File

@ -83,7 +83,7 @@ static bool old_y_max_endstop=false;
static bool old_z_min_endstop=false; static bool old_z_min_endstop=false;
static bool old_z_max_endstop=false; static bool old_z_max_endstop=false;
#ifdef SG_HOMING_SW #ifdef TMC2130_SG_HOMING_SW
static bool check_endstops = false; static bool check_endstops = false;
#else #else
static bool check_endstops = true; static bool check_endstops = true;
@ -404,11 +404,11 @@ ISR(TIMER1_COMPA_vect)
{ {
{ {
#if defined(X_MIN_PIN) && X_MIN_PIN > -1 #if defined(X_MIN_PIN) && X_MIN_PIN > -1
#ifndef SG_HOMING_SW #ifndef TMC2130_SG_HOMING_SW
bool x_min_endstop = (READ(X_MIN_PIN) != X_MIN_ENDSTOP_INVERTING); bool x_min_endstop = (READ(X_MIN_PIN) != X_MIN_ENDSTOP_INVERTING);
#else //SG_HOMING_SW #else //TMC2130_SG_HOMING_SW
bool x_min_endstop = tmc2130_axis_stalled[X_AXIS]; bool x_min_endstop = tmc2130_axis_stalled[X_AXIS];
#endif //SG_HOMING_SW #endif //TMC2130_SG_HOMING_SW
if(x_min_endstop && old_x_min_endstop && (current_block->steps_x > 0)) { if(x_min_endstop && old_x_min_endstop && (current_block->steps_x > 0)) {
endstops_trigsteps[X_AXIS] = count_position[X_AXIS]; endstops_trigsteps[X_AXIS] = count_position[X_AXIS];
endstop_x_hit=true; endstop_x_hit=true;
@ -424,11 +424,11 @@ ISR(TIMER1_COMPA_vect)
{ {
{ {
#if defined(X_MAX_PIN) && X_MAX_PIN > -1 #if defined(X_MAX_PIN) && X_MAX_PIN > -1
#ifndef SG_HOMING_SW #ifndef TMC2130_SG_HOMING_SW
bool x_max_endstop = (READ(X_MAX_PIN) != X_MAX_ENDSTOP_INVERTING); bool x_max_endstop = (READ(X_MAX_PIN) != X_MAX_ENDSTOP_INVERTING);
#else //SG_HOMING_SW #else //TMC2130_SG_HOMING_SW
bool x_max_endstop = tmc2130_axis_stalled[X_AXIS]; bool x_max_endstop = tmc2130_axis_stalled[X_AXIS];
#endif //SG_HOMING_SW #endif //TMC2130_SG_HOMING_SW
if(x_max_endstop && old_x_max_endstop && (current_block->steps_x > 0)){ if(x_max_endstop && old_x_max_endstop && (current_block->steps_x > 0)){
endstops_trigsteps[X_AXIS] = count_position[X_AXIS]; endstops_trigsteps[X_AXIS] = count_position[X_AXIS];
endstop_x_hit=true; endstop_x_hit=true;
@ -448,11 +448,11 @@ ISR(TIMER1_COMPA_vect)
CHECK_ENDSTOPS CHECK_ENDSTOPS
{ {
#if defined(Y_MIN_PIN) && Y_MIN_PIN > -1 #if defined(Y_MIN_PIN) && Y_MIN_PIN > -1
#ifndef SG_HOMING_SW #ifndef TMC2130_SG_HOMING_SW
bool y_min_endstop=(READ(Y_MIN_PIN) != Y_MIN_ENDSTOP_INVERTING); bool y_min_endstop=(READ(Y_MIN_PIN) != Y_MIN_ENDSTOP_INVERTING);
#else //SG_HOMING_SW #else //TMC2130_SG_HOMING_SW
bool y_min_endstop = tmc2130_axis_stalled[Y_AXIS]; bool y_min_endstop = tmc2130_axis_stalled[Y_AXIS];
#endif //SG_HOMING_SW #endif //TMC2130_SG_HOMING_SW
if(y_min_endstop && old_y_min_endstop && (current_block->steps_y > 0)) { if(y_min_endstop && old_y_min_endstop && (current_block->steps_y > 0)) {
endstops_trigsteps[Y_AXIS] = count_position[Y_AXIS]; endstops_trigsteps[Y_AXIS] = count_position[Y_AXIS];
endstop_y_hit=true; endstop_y_hit=true;
@ -466,11 +466,11 @@ ISR(TIMER1_COMPA_vect)
CHECK_ENDSTOPS CHECK_ENDSTOPS
{ {
#if defined(Y_MAX_PIN) && Y_MAX_PIN > -1 #if defined(Y_MAX_PIN) && Y_MAX_PIN > -1
#ifndef SG_HOMING_SW #ifndef TMC2130_SG_HOMING_SW
bool y_max_endstop=(READ(Y_MAX_PIN) != Y_MAX_ENDSTOP_INVERTING); bool y_max_endstop=(READ(Y_MAX_PIN) != Y_MAX_ENDSTOP_INVERTING);
#else //SG_HOMING_SW #else //TMC2130_SG_HOMING_SW
bool y_max_endstop = tmc2130_axis_stalled[Y_AXIS]; bool y_max_endstop = tmc2130_axis_stalled[Y_AXIS];
#endif //SG_HOMING_SW #endif //TMC2130_SG_HOMING_SW
if(y_max_endstop && old_y_max_endstop && (current_block->steps_y > 0)){ if(y_max_endstop && old_y_max_endstop && (current_block->steps_y > 0)){
endstops_trigsteps[Y_AXIS] = count_position[Y_AXIS]; endstops_trigsteps[Y_AXIS] = count_position[Y_AXIS];
endstop_y_hit=true; endstop_y_hit=true;

View File

@ -92,21 +92,6 @@ void microstep_readings();
static void check_fans(); static void check_fans();
#ifdef HAVE_TMC2130_DRIVERS
void tmc2130_check_overtemp();
void tmc2130_write(uint8_t chipselect, uint8_t address, uint8_t wval1, uint8_t wval2, uint8_t wval3, uint8_t wval4);
uint8_t tmc2130_read8(uint8_t chipselect, uint8_t address);
uint16_t tmc2130_readSG(uint8_t chipselect);
uint16_t tmc2130_readTStep(uint8_t chipselect);
void tmc2130_PWMconf(uint8_t cs, uint8_t PWMgrad, uint8_t PWMampl);
void st_setSGHoming(uint8_t axis);
void st_resetSGflags();
uint8_t st_didLastHomingStall();
#endif
#ifdef BABYSTEPPING #ifdef BABYSTEPPING
void babystep(const uint8_t axis,const bool direction); // perform a short step with a single stepper motor, outside of any convention void babystep(const uint8_t axis,const bool direction); // perform a short step with a single stepper motor, outside of any convention

View File

@ -23,17 +23,52 @@ uint8_t tmc2130_LastHomingStalled = 0;
uint8_t sg_homing_axis = 0xff; uint8_t sg_homing_axis = 0xff;
uint8_t sg_homing_delay = 0; uint8_t sg_homing_delay = 0;
//TMC2130 registers
#define TMC2130_REG_GCONF 0x00 // 17 bits
#define TMC2130_REG_GSTAT 0x01 // 3 bits
#define TMC2130_REG_IOIN 0x04 // 8+8 bits
#define TMC2130_REG_IHOLD_IRUN 0x10 // 5+5+4 bits
#define TMC2130_REG_TPOWERDOWN 0x11 // 8 bits
#define TMC2130_REG_TSTEP 0x12 // 20 bits
#define TMC2130_REG_TPWMTHRS 0x13 // 20 bits
#define TMC2130_REG_TCOOLTHRS 0x14 // 20 bits
#define TMC2130_REG_THIGH 0x15 // 20 bits
#define TMC2130_REG_XDIRECT 0x2d // 32 bits
#define TMC2130_REG_VDCMIN 0x33 // 23 bits
#define TMC2130_REG_MSLUT0 0x60 // 32 bits
#define TMC2130_REG_MSLUT1 0x61 // 32 bits
#define TMC2130_REG_MSLUT2 0x62 // 32 bits
#define TMC2130_REG_MSLUT3 0x63 // 32 bits
#define TMC2130_REG_MSLUT4 0x64 // 32 bits
#define TMC2130_REG_MSLUT5 0x65 // 32 bits
#define TMC2130_REG_MSLUT6 0x66 // 32 bits
#define TMC2130_REG_MSLUT7 0x67 // 32 bits
#define TMC2130_REG_MSLUTSEL 0x68 // 32 bits
#define TMC2130_REG_MSLUTSTART 0x69 // 8+8 bits
#define TMC2130_REG_MSCNT 0x6a // 10 bits
#define TMC2130_REG_MSCURACT 0x6b // 9+9 bits
#define TMC2130_REG_CHOPCONF 0x6c // 32 bits
#define TMC2130_REG_COOLCONF 0x6d // 25 bits
#define TMC2130_REG_DCCTRL 0x6e // 24 bits
#define TMC2130_REG_DRV_STATUS 0x6f // 32 bits
#define TMC2130_REG_PWMCONF 0x70 // 22 bits
#define TMC2130_REG_PWM_SCALE 0x71 // 8 bits
#define TMC2130_REG_ENCM_CTRL 0x72 // 2 bits
#define TMC2130_REG_LOST_STEPS 0x73 // 20 bits
uint16_t tmc2130_rd_TSTEP(uint8_t cs);
uint16_t tmc2130_rd_DRV_STATUS(uint8_t chipselect);
void tmc2130_wr_CHOPCONF(uint8_t cs, bool extrapolate256 = 0, uint16_t microstep_resolution = 16);
void tmc2130_wr_PWMCONF(uint8_t cs, uint8_t PWMautoScale = TMC2130_PWM_AUTO, uint8_t PWMfreq = TMC2130_PWM_FREQ, uint8_t PWMgrad = TMC2130_PWM_GRAD, uint8_t PWMampl = TMC2130_PWM_AMPL);
void tmc2130_wr_TPWMTHRS(uint8_t cs, uint32_t val32);
void tmc2130_wr_THIGH(uint8_t cs, uint32_t val32);
uint8_t tmc2130_txrx(uint8_t cs, uint8_t addr, uint32_t wval, uint32_t* rval);
uint8_t tmc2130_wr(uint8_t cs, uint8_t addr, uint32_t wval);
uint8_t tmc2130_rd(uint8_t cs, uint8_t addr, uint32_t* rval);
uint32_t tmc2130_read(uint8_t cs, uint8_t address);
void tmc2130_write(uint8_t cs, uint8_t address, uint8_t wval1, uint8_t wval2, uint8_t wval3, uint8_t wval4);
uint8_t tmc2130_read8(uint8_t cs, uint8_t address);
uint32_t tmc2130_readRegister(uint8_t cs, uint8_t address);
uint16_t tmc2130_readSG(uint8_t cs);
uint16_t tmc2130_readTStep(uint8_t cs);
void tmc2130_chopconf(uint8_t cs, bool extrapolate256 = 0, uint16_t microstep_resolution = 16);
void tmc2130_PWMconf(uint8_t cs, uint8_t PWMautoScale = PWM_AUTOSCALE, uint8_t PWMfreq = PWM_FREQ, uint8_t PWMgrad = PWM_GRAD, uint8_t PWMampl = PWM_AMPL);
void tmc2130_PWMthreshold(uint8_t cs);
void tmc2130_disable_motor(uint8_t driver);
void tmc2130_init() void tmc2130_init()
@ -48,21 +83,33 @@ void tmc2130_init()
SET_OUTPUT(Z_TMC2130_CS); SET_OUTPUT(Z_TMC2130_CS);
SET_OUTPUT(E0_TMC2130_CS); SET_OUTPUT(E0_TMC2130_CS);
SPI.begin(); SPI.begin();
for (int i = 0; i < 3; i++) //X Y Z axes for (int i = 0; i < 2; i++) // X Y axes
{ {
tmc2130_write(tmc2130_cs[i], 0x00, 0, 0, 0, 0x04); //address=0x0 GCONF - bit 2 activate stealthChop tmc2130_wr(tmc2130_cs[i], TMC2130_REG_GCONF, 0x00000004); //GCONF - bit 2 activate stealthChop
tmc2130_write(tmc2130_cs[i], 0x10, 0, 15, tmc2130_current_r[i], tmc2130_current_h[i]); //0x10 IHOLD_IRUN tmc2130_wr(tmc2130_cs[i], TMC2130_REG_IHOLD_IRUN, 0x000f0000 | ((tmc2130_current_r[i] & 0x1f) << 8) | (tmc2130_current_h[i] & 0x1f));
tmc2130_write(tmc2130_cs[i], 0x11, 0, 0, 0, 0); tmc2130_wr(tmc2130_cs[i], TMC2130_REG_TPOWERDOWN, 0x00000000);
tmc2130_PWMconf(tmc2130_cs[i]); //address=0x70 PWM_CONF //reset default=0x00050480 // tmc2130_wr_PWMCONF(tmc2130_cs[i], TMC2130_PWM_AUTO_XY, TMC2130_PWM_FREQ_XY, TMC2130_PWM_GRAD_XY, TMC2130_PWM_AMPL_XY); //PWM_CONF //reset default=0x00050480
//tmc2130_PWMthreshold(tmc2130_cs[i]); tmc2130_wr_PWMCONF(tmc2130_cs[i]); //PWM_CONF //reset default=0x00050480
tmc2130_chopconf(tmc2130_cs[i], 1, 16); //tmc2130_wr_TPWMTHRS(tmc2130_cs[i], TMC2130_TPWMTHRS);
//tmc2130_wr_THIGH(tmc2130_cs[i], TMC2130_THIGH);
tmc2130_wr_CHOPCONF(tmc2130_cs[i], 1, 16);
} }
for (int i = 3; i < 4; i++) //E axis for (int i = 2; i < 3; i++) // Z axis
{ {
tmc2130_write(tmc2130_cs[i], 0x00, 0, 0, 0, 0x00); //address=0x0 GCONF - bit 2 activate stealthChop tmc2130_wr(tmc2130_cs[i], TMC2130_REG_GCONF, 0x00000004); //GCONF - bit 2 activate stealthChop
tmc2130_write(tmc2130_cs[i], 0x10, 0, 15, tmc2130_current_r[i], tmc2130_current_h[i]); //0x10 IHOLD_IRUN tmc2130_wr(tmc2130_cs[i], TMC2130_REG_IHOLD_IRUN, 0x000f0000 | ((tmc2130_current_r[i] & 0x1f) << 8) | (tmc2130_current_h[i] & 0x1f));
tmc2130_write(tmc2130_cs[i], 0x11, 0, 0, 0, 0); tmc2130_wr(tmc2130_cs[i], TMC2130_REG_TPOWERDOWN, 0x00000000);
tmc2130_chopconf(tmc2130_cs[i], 1, 16); tmc2130_wr_PWMCONF(tmc2130_cs[i]); //PWM_CONF //reset default=0x00050480
//tmc2130_wr_TPWMTHRS(tmc2130_cs[i], TMC2130_TPWMTHRS);
//tmc2130_wr_THIGH(tmc2130_cs[i], TMC2130_THIGH);
tmc2130_wr_CHOPCONF(tmc2130_cs[i], 1, 16);
}
for (int i = 3; i < 4; i++) // E axis
{
tmc2130_wr(tmc2130_cs[i], TMC2130_REG_GCONF, 0x00000004); //GCONF - bit 2 activate stealthChop
tmc2130_wr(tmc2130_cs[i], TMC2130_REG_IHOLD_IRUN, 0x000f0000 | ((tmc2130_current_r[i] & 0x1f) << 8) | (tmc2130_current_h[i] & 0x1f));
tmc2130_wr(tmc2130_cs[i], TMC2130_REG_TPOWERDOWN, 0x00000000);
tmc2130_wr_CHOPCONF(tmc2130_cs[i], 1, 16);
} }
} }
@ -71,14 +118,14 @@ bool tmc2130_update_sg()
if ((sg_homing_axis == X_AXIS) || (sg_homing_axis == Y_AXIS)) if ((sg_homing_axis == X_AXIS) || (sg_homing_axis == Y_AXIS))
{ {
uint8_t cs = tmc2130_cs[sg_homing_axis]; uint8_t cs = tmc2130_cs[sg_homing_axis];
uint16_t tstep = tmc2130_readTStep(cs); uint16_t tstep = tmc2130_rd_TSTEP(cs);
if (tstep < TCOOLTHRS) if (tstep < TMC2130_TCOOLTHRS)
{ {
if(sg_homing_delay < 10) // wait for a few tens microsteps until stallGuard is used //todo: read out microsteps directly, instead of delay counter if(sg_homing_delay < 10) // wait for a few tens microsteps until stallGuard is used //todo: read out microsteps directly, instead of delay counter
sg_homing_delay++; sg_homing_delay++;
else else
{ {
uint16_t sg = tmc2130_readSG(cs); uint16_t sg = tmc2130_rd_DRV_STATUS(cs) & 0x3ff;
if (sg==0) if (sg==0)
{ {
tmc2130_axis_stalled[sg_homing_axis] = true; tmc2130_axis_stalled[sg_homing_axis] = true;
@ -103,18 +150,21 @@ bool tmc2130_update_sg()
void tmc2130_check_overtemp() void tmc2130_check_overtemp()
{ {
const static char TMC_OVERTEMP_MSG[] PROGMEM = "TMC DRIVER OVERTEMP "; const static char TMC_OVERTEMP_MSG[] PROGMEM = "TMC DRIVER OVERTEMP ";
uint8_t cs[4] = { X_TMC2130_CS, Y_TMC2130_CS, Z_TMC2130_CS, E0_TMC2130_CS };
static uint32_t checktime = 0; static uint32_t checktime = 0;
//drivers_disabled[0] = 1; //TEST //drivers_disabled[0] = 1; //TEST
if( millis() - checktime > 1000 ) if( millis() - checktime > 1000 )
{ {
for(int i = 0; i < 4; i++) for(int i=0;i<4;i++)
{ {
uint32_t drv_status = tmc2130_read(tmc2130_cs[i], 0x6F); //0x6F DRV_STATUS uint32_t drv_status = 0;
tmc2130_rd(cs[i], TMC2130_REG_DRV_STATUS, &drv_status);
if (drv_status & ((uint32_t)1<<26)) if (drv_status & ((uint32_t)1<<26))
{ // BIT 26 - over temp prewarning ~120C (+-20C) { // BIT 26 - over temp prewarning ~120C (+-20C)
SERIAL_ERRORRPGM(TMC_OVERTEMP_MSG); SERIAL_ERRORRPGM(TMC_OVERTEMP_MSG);
SERIAL_ECHOLN(i); SERIAL_ECHOLN(i);
for(int x = 0; x < 4; x++) tmc2130_disable_motor(x); for(int i=0; i < 4; i++)
tmc2130_wr(tmc2130_cs[i], TMC2130_REG_CHOPCONF, 0x00010000);
kill(TMC_OVERTEMP_MSG); kill(TMC_OVERTEMP_MSG);
} }
} }
@ -132,10 +182,9 @@ void tmc2130_home_enter(uint8_t axis)
tmc2130_axis_stalled[X_AXIS] = false; tmc2130_axis_stalled[X_AXIS] = false;
tmc2130_axis_stalled[Y_AXIS] = false; tmc2130_axis_stalled[Y_AXIS] = false;
//Configuration to spreadCycle //Configuration to spreadCycle
//tmc2130_write(cs, 0x0, 0, 0, 0, 0x01); tmc2130_wr(cs, TMC2130_REG_GCONF, 0x00000000);
tmc2130_write(cs, 0x0, 0, 0, 0, 0x00); tmc2130_wr(cs, TMC2130_REG_COOLCONF, ((axis == X_AXIS)?TMC2130_SG_THRS_X:TMC2130_SG_THRS_Y) << 16);
tmc2130_write(cs, 0x6D, 0, (axis == X_AXIS)?SG_THRESHOLD_X:SG_THRESHOLD_Y,0,0); tmc2130_wr(cs, TMC2130_REG_TCOOLTHRS, TMC2130_TCOOLTHRS);
tmc2130_write(cs, 0x14, 0, 0, 0, TCOOLTHRS);
} }
void tmc2130_home_exit() void tmc2130_home_exit()
@ -144,7 +193,7 @@ void tmc2130_home_exit()
if ((sg_homing_axis == X_AXIS) || (sg_homing_axis == Y_AXIS)) if ((sg_homing_axis == X_AXIS) || (sg_homing_axis == Y_AXIS))
{ {
// Configuration back to stealthChop // Configuration back to stealthChop
tmc2130_write(tmc2130_cs[sg_homing_axis], 0x0, 0, 0, 0, 0x04); tmc2130_wr(tmc2130_cs[sg_homing_axis], TMC2130_REG_GCONF, 0x00000004);
sg_homing_axis = 0xff; sg_homing_axis = 0xff;
} }
} }
@ -164,7 +213,7 @@ void tmc2130_set_current_h(uint8_t axis, uint8_t current)
MYSERIAL.println((int)current); MYSERIAL.println((int)current);
if (current > 15) current = 15; //current>15 is unsafe if (current > 15) current = 15; //current>15 is unsafe
tmc2130_current_h[axis] = current; tmc2130_current_h[axis] = current;
tmc2130_write(tmc2130_cs[axis], 0x10, 0, 15, tmc2130_current_r[axis], tmc2130_current_h[axis]); //0x10 IHOLD_IRUN tmc2130_wr(tmc2130_cs[axis], TMC2130_REG_IHOLD_IRUN, 0x000f0000 | ((tmc2130_current_r[axis] & 0x1f) << 8) | (tmc2130_current_h[axis] & 0x1f));
} }
void tmc2130_set_current_r(uint8_t axis, uint8_t current) void tmc2130_set_current_r(uint8_t axis, uint8_t current)
@ -175,203 +224,49 @@ void tmc2130_set_current_r(uint8_t axis, uint8_t current)
MYSERIAL.println((int)current); MYSERIAL.println((int)current);
if (current > 15) current = 15; //current>15 is unsafe if (current > 15) current = 15; //current>15 is unsafe
tmc2130_current_r[axis] = current; tmc2130_current_r[axis] = current;
tmc2130_write(tmc2130_cs[axis], 0x10, 0, 15, tmc2130_current_r[axis], tmc2130_current_h[axis]); //0x10 IHOLD_IRUN tmc2130_wr(tmc2130_cs[axis], TMC2130_REG_IHOLD_IRUN, 0x000f0000 | ((tmc2130_current_r[axis] & 0x1f) << 8) | (tmc2130_current_h[axis] & 0x1f));
} }
void tmc2130_print_currents() void tmc2130_print_currents()
{ {
MYSERIAL.println("tmc2130_print_currents"); MYSERIAL.println("tmc2130_print_currents");
MYSERIAL.println("\tH\rR"); MYSERIAL.println("\tH\rR");
MYSERIAL.print("X\t"); MYSERIAL.print("X\t");
MYSERIAL.print((int)tmc2130_current_h[0]); MYSERIAL.print((int)tmc2130_current_h[0]);
MYSERIAL.print("\t"); MYSERIAL.print("\t");
MYSERIAL.println((int)tmc2130_current_r[0]); MYSERIAL.println((int)tmc2130_current_r[0]);
MYSERIAL.print("Y\t"); MYSERIAL.print("Y\t");
MYSERIAL.print((int)tmc2130_current_h[1]); MYSERIAL.print((int)tmc2130_current_h[1]);
MYSERIAL.print("\t"); MYSERIAL.print("\t");
MYSERIAL.println((int)tmc2130_current_r[1]); MYSERIAL.println((int)tmc2130_current_r[1]);
MYSERIAL.print("Z\t"); MYSERIAL.print("Z\t");
MYSERIAL.print((int)tmc2130_current_h[2]); MYSERIAL.print((int)tmc2130_current_h[2]);
MYSERIAL.print("\t"); MYSERIAL.print("\t");
MYSERIAL.println((int)tmc2130_current_r[2]); MYSERIAL.println((int)tmc2130_current_r[2]);
MYSERIAL.print("E\t"); MYSERIAL.print("E\t");
MYSERIAL.print((int)tmc2130_current_h[3]); MYSERIAL.print((int)tmc2130_current_h[3]);
MYSERIAL.print("\t"); MYSERIAL.print("\t");
MYSERIAL.println((int)tmc2130_current_r[3]); MYSERIAL.println((int)tmc2130_current_r[3]);
} }
uint32_t tmc2130_read(uint8_t cs, uint8_t address) uint16_t tmc2130_rd_TSTEP(uint8_t cs)
{ {
uint32_t val32; uint32_t val32 = 0;
uint8_t val0; tmc2130_rd(cs, TMC2130_REG_TSTEP, &val32);
uint8_t val1; if (val32 & 0x000f0000) return 0xffff;
uint8_t val2; return val32 & 0xffff;
uint8_t val3; }
uint8_t val4;
//datagram1 - read request (address + dummy write) uint16_t tmc2130_rd_DRV_STATUS(uint8_t cs)
SPI.beginTransaction(SPISettings(1000000, MSBFIRST, SPI_MODE3)); {
digitalWrite(cs,LOW); uint32_t val32 = 0;
SPI.transfer(address); tmc2130_rd(cs, TMC2130_REG_DRV_STATUS, &val32);
SPI.transfer(0);
SPI.transfer(0);
SPI.transfer(0);
SPI.transfer(0);
digitalWrite(cs, HIGH);
SPI.endTransaction();
//datagram2 - response
SPI.beginTransaction(SPISettings(1000000, MSBFIRST, SPI_MODE3));
digitalWrite(cs,LOW);
val0 = SPI.transfer(0);
val1 = SPI.transfer(0);
val2 = SPI.transfer(0);
val3 = SPI.transfer(0);
val4 = SPI.transfer(0);
digitalWrite(cs, HIGH);
SPI.endTransaction();
#ifdef TMC_DBG_READS
MYSERIAL.print("SPIRead 0x");
MYSERIAL.print(address,HEX);
MYSERIAL.print(" Status:");
MYSERIAL.print(val0 & 0b00000111,BIN);
MYSERIAL.print(" ");
MYSERIAL.print(val1,BIN);
MYSERIAL.print(" ");
MYSERIAL.print(val2,BIN);
MYSERIAL.print(" ");
MYSERIAL.print(val3,BIN);
MYSERIAL.print(" ");
MYSERIAL.print(val4,BIN);
#endif
val32 = (uint32_t)val1<<24 | (uint32_t)val2<<16 | (uint32_t)val3<<8 | (uint32_t)val4;
#ifdef TMC_DBG_READS
MYSERIAL.print(" 0x");
MYSERIAL.println(val32,HEX);
#endif
return val32; return val32;
} }
void tmc2130_write(uint8_t cs, uint8_t address,uint8_t wval1,uint8_t wval2,uint8_t wval3,uint8_t wval4) void tmc2130_wr_CHOPCONF(uint8_t cs, bool extrapolate256, uint16_t microstep_resolution)
{ {
uint32_t val32; uint8_t mres=0b0100;
uint8_t val0;
uint8_t val1;
uint8_t val2;
uint8_t val3;
uint8_t val4;
//datagram1 - write
SPI.beginTransaction(SPISettings(4000000, MSBFIRST, SPI_MODE3));
digitalWrite(cs,LOW);
SPI.transfer(address+0x80);
SPI.transfer(wval1);
SPI.transfer(wval2);
SPI.transfer(wval3);
SPI.transfer(wval4);
digitalWrite(cs, HIGH);
SPI.endTransaction();
//datagram2 - response
SPI.beginTransaction(SPISettings(4000000, MSBFIRST, SPI_MODE3));
digitalWrite(cs,LOW);
val0 = SPI.transfer(0);
val1 = SPI.transfer(0);
val2 = SPI.transfer(0);
val3 = SPI.transfer(0);
val4 = SPI.transfer(0);
digitalWrite(cs, HIGH);
SPI.endTransaction();
#ifdef TMC_DBG_WRITE
MYSERIAL.print("WriteRead 0x");
MYSERIAL.print(address,HEX);
MYSERIAL.print(" Status:");
MYSERIAL.print(val0 & 0b00000111,BIN);
MYSERIAL.print(" ");
MYSERIAL.print(val1,BIN);
MYSERIAL.print(" ");
MYSERIAL.print(val2,BIN);
MYSERIAL.print(" ");
MYSERIAL.print(val3,BIN);
MYSERIAL.print(" ");
MYSERIAL.print(val4,BIN);
val32 = (uint32_t)val1<<24 | (uint32_t)val2<<16 | (uint32_t)val3<<8 | (uint32_t)val4;
MYSERIAL.print(" 0x");
MYSERIAL.println(val32,HEX);
#endif //TMC_DBG_READS
}
uint8_t tmc2130_read8(uint8_t cs, uint8_t address)
{
//datagram1 - write
SPI.beginTransaction(SPISettings(4000000, MSBFIRST, SPI_MODE3));
digitalWrite(cs,LOW);
SPI.transfer(address);
SPI.transfer(0x00);
SPI.transfer(0x00);
SPI.transfer(0x00);
SPI.transfer(0x00);
digitalWrite(cs, HIGH);
SPI.endTransaction();
uint8_t val0;
//datagram2 - response
SPI.beginTransaction(SPISettings(4000000, MSBFIRST, SPI_MODE3));
digitalWrite(cs,LOW);
val0 = SPI.transfer(0);
digitalWrite(cs, HIGH);
SPI.endTransaction();
return val0;
}
uint32_t tmc2130_readRegister(uint8_t cs, uint8_t address)
{
//datagram1 - write
SPI.beginTransaction(SPISettings(4000000, MSBFIRST, SPI_MODE3));
digitalWrite(cs,LOW);
SPI.transfer(address);
SPI.transfer(0x00);
SPI.transfer(0x00);
SPI.transfer(0x00);
SPI.transfer(0x00);
digitalWrite(cs, HIGH);
SPI.endTransaction();
uint32_t val0;
//datagram2 - response
SPI.beginTransaction(SPISettings(4000000, MSBFIRST, SPI_MODE3));
digitalWrite(cs,LOW);
SPI.transfer(0); // ignore status bits
val0 = SPI.transfer(0); // MSB
val0 = (val0 << 8) | SPI.transfer(0);
val0 = (val0 << 8) | SPI.transfer(0);
val0 = (val0 << 8) | SPI.transfer(0); //LSB
digitalWrite(cs, HIGH);
SPI.endTransaction();
return val0;
}
uint16_t tmc2130_readSG(uint8_t cs)
{
uint8_t address = 0x6F;
uint32_t registerValue = tmc2130_readRegister(cs, address);
uint16_t val0 = registerValue & 0x3ff;
return val0;
}
uint16_t tmc2130_readTStep(uint8_t cs)
{
uint8_t address = 0x12;
uint32_t registerValue = tmc2130_readRegister(cs, address);
uint16_t val0 = 0;
if(registerValue & 0x000f0000)
val0 = 0xffff;
else
val0 = registerValue & 0xffff;
return val0;
}
void tmc2130_chopconf(uint8_t cs, bool extrapolate256, uint16_t microstep_resolution)
{
uint8_t mres = 0b0100;
if(microstep_resolution == 256) mres = 0b0000; if(microstep_resolution == 256) mres = 0b0000;
if(microstep_resolution == 128) mres = 0b0001; if(microstep_resolution == 128) mres = 0b0001;
if(microstep_resolution == 64) mres = 0b0010; if(microstep_resolution == 64) mres = 0b0010;
@ -382,23 +277,98 @@ void tmc2130_chopconf(uint8_t cs, bool extrapolate256, uint16_t microstep_resolu
if(microstep_resolution == 2) mres = 0b0111; if(microstep_resolution == 2) mres = 0b0111;
if(microstep_resolution == 1) mres = 0b1000; if(microstep_resolution == 1) mres = 0b1000;
mres |= extrapolate256 << 4; //bit28 intpol mres |= extrapolate256 << 4; //bit28 intpol
//tmc2130_write(cs, 0x6C, mres, 0x01, 0x00, 0xD3); //tmc2130_write(cs,0x6C,mres,0x01,0x00,0xD3);
tmc2130_write(cs, 0x6C, mres, 0x01, 0x00, 0xC3); // tmc2130_write(cs,0x6C,mres,0x01,0x00,0xC3);
tmc2130_wr(cs,TMC2130_REG_CHOPCONF,((uint32_t)mres << 24) | 0x0100C3);
} }
void tmc2130_PWMconf(uint8_t cs, uint8_t PWMautoScale, uint8_t PWMfreq, uint8_t PWMgrad, uint8_t PWMampl) void tmc2130_wr_PWMCONF(uint8_t cs, uint8_t PWMautoScale, uint8_t PWMfreq, uint8_t PWMgrad, uint8_t PWMampl)
{ {
tmc2130_write(cs, 0x70, 0x00, (PWMautoScale+PWMfreq), PWMgrad, PWMampl); // TMC LJ -> For better readability changed to 0x00 and added PWMautoScale and PWMfreq tmc2130_wr(cs,0x70,((uint32_t)(PWMautoScale+PWMfreq) << 16) | ((uint32_t)PWMgrad << 8) | PWMampl); // TMC LJ -> For better readability changed to 0x00 and added PWMautoScale and PWMfreq
} }
void tmc2130_PWMthreshold(uint8_t cs) void tmc2130_wr_TPWMTHRS(uint8_t cs, uint32_t val32)
{ {
tmc2130_write(cs, 0x13, 0x00, 0x00, 0x00, 0x00); // TMC LJ -> Adds possibility to swtich from stealthChop to spreadCycle automatically tmc2130_wr(cs, TMC2130_REG_TPWMTHRS, val32);
} }
void tmc2130_disable_motor(uint8_t driver) void tmc2130_wr_THIGH(uint8_t cs, uint32_t val32)
{ {
tmc2130_write(tmc2130_cs[driver], 0x6C, 0, 01, 0, 0); tmc2130_wr(cs, TMC2130_REG_THIGH, val32);
}
uint8_t tmc2130_axis_by_cs(uint8_t cs)
{
switch (cs)
{
case X_TMC2130_CS: return 0;
case Y_TMC2130_CS: return 1;
case Z_TMC2130_CS: return 2;
case E0_TMC2130_CS: return 3;
}
return -1;
}
uint8_t tmc2130_wr(uint8_t cs, uint8_t addr, uint32_t wval)
{
uint8_t stat = tmc2130_txrx(cs, addr | 0x80, wval, 0);
#ifdef TMC2130_DEBUG_WR
MYSERIAL.print("tmc2130_wr(");
MYSERIAL.print((unsigned char)tmc2130_axis_by_cs(cs), DEC);
MYSERIAL.print(", 0x");
MYSERIAL.print((unsigned char)addr, HEX);
MYSERIAL.print(", 0x");
MYSERIAL.print((unsigned long)wval, HEX);
MYSERIAL.print(")=0x");
MYSERIAL.println((unsigned char)stat, HEX);
#endif //TMC2130_DEBUG_WR
return stat;
}
uint8_t tmc2130_rd(uint8_t cs, uint8_t addr, uint32_t* rval)
{
uint32_t val32 = 0;
uint8_t stat = tmc2130_txrx(cs, addr, 0x00000000, &val32);
if (rval != 0) *rval = val32;
#ifdef TMC2130_DEBUG_RD
MYSERIAL.print("tmc2130_rd(");
MYSERIAL.print((unsigned char)tmc2130_axis_by_cs(cs), DEC);
MYSERIAL.print(", 0x");
MYSERIAL.print((unsigned char)addr, HEX);
MYSERIAL.print(", 0x");
MYSERIAL.print((unsigned long)val32, HEX);
MYSERIAL.print(")=0x");
MYSERIAL.println((unsigned char)stat, HEX);
#endif //TMC2130_DEBUG_RD
return stat;
}
uint8_t tmc2130_txrx(uint8_t cs, uint8_t addr, uint32_t wval, uint32_t* rval)
{
//datagram1 - request
SPI.beginTransaction(SPISettings(4000000, MSBFIRST, SPI_MODE3));
digitalWrite(cs, LOW);
SPI.transfer(addr); // address
SPI.transfer((wval >> 24) & 0xff); // MSB
SPI.transfer((wval >> 16) & 0xff);
SPI.transfer((wval >> 8) & 0xff);
SPI.transfer(wval & 0xff); // LSB
digitalWrite(cs, HIGH);
SPI.endTransaction();
//datagram2 - response
SPI.beginTransaction(SPISettings(4000000, MSBFIRST, SPI_MODE3));
digitalWrite(cs, LOW);
uint8_t stat = SPI.transfer(0); // status
uint32_t val32 = 0;
val32 = SPI.transfer(0); // MSB
val32 = (val32 << 8) | SPI.transfer(0);
val32 = (val32 << 8) | SPI.transfer(0);
val32 = (val32 << 8) | SPI.transfer(0); // LSB
digitalWrite(cs, HIGH);
SPI.endTransaction();
if (rval != 0) *rval = val32;
return stat;
} }
#endif //HAVE_TMC2130_DRIVERS #endif //HAVE_TMC2130_DRIVERS