temp calibration initial version
This commit is contained in:
parent
590cc8f3e8
commit
c441b4acdb
@ -34,6 +34,8 @@
|
||||
|
||||
#define EEPROM_FARM_MODE (EEPROM_BED_CALIBRATION_Z_JITTER-4)
|
||||
|
||||
#define EEPROM_PROBE_TEMP_SHIFT (EEPROM_FARM_MODE - 2*5) //5 x int for storing pinda probe temp shift relative to 50 C; unit: motor steps
|
||||
|
||||
// Correction of the bed leveling, in micrometers.
|
||||
// Maximum 50 micrometers allowed.
|
||||
// Bed correction is valid if set to 1. If set to zero or 255, the successive 4 bytes are invalid.
|
||||
|
@ -326,4 +326,6 @@ void d_setup();
|
||||
float d_ReadData();
|
||||
void bed_analysis(float x_dimension, float y_dimension, int x_points_num, int y_points_num, float shift_x, float shift_y);
|
||||
|
||||
#endif
|
||||
#endif
|
||||
float temp_comp_interpolation(float temperature);
|
||||
void temp_compensation_apply();
|
@ -2767,6 +2767,87 @@ void process_commands()
|
||||
*
|
||||
*/
|
||||
|
||||
case 76: //PINDA probe temperature compensation
|
||||
{
|
||||
setTargetBed(PINDA_MIN_T);
|
||||
float zero_z;
|
||||
int z_shift = 0; //unit: steps
|
||||
int t_c; // temperature
|
||||
|
||||
if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS])) {
|
||||
// We don't know where we are! HOME!
|
||||
// Push the commands to the front of the message queue in the reverse order!
|
||||
// There shall be always enough space reserved for these commands.
|
||||
repeatcommand_front(); // repeat G76 with all its parameters
|
||||
enquecommand_front_P((PSTR("G28 W0")));
|
||||
break;
|
||||
}
|
||||
current_position[X_AXIS] = PINDA_PREHEAT_X;
|
||||
current_position[Y_AXIS] = PINDA_PREHEAT_Y;
|
||||
current_position[Z_AXIS] = 0;
|
||||
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
|
||||
st_synchronize();
|
||||
|
||||
while (degBed() < PINDA_MIN_T) delay_keep_alive(1000);
|
||||
|
||||
//enquecommand_P(PSTR("M190 S50"));
|
||||
|
||||
delay_keep_alive(PINDA_HEAT_T * 1000);
|
||||
|
||||
current_position[Z_AXIS] = 5;
|
||||
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
|
||||
|
||||
current_position[X_AXIS] = pgm_read_float(bed_ref_points);
|
||||
current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 1);
|
||||
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
|
||||
st_synchronize();
|
||||
|
||||
find_bed_induction_sensor_point_z(-1.f);
|
||||
zero_z = current_position[Z_AXIS];
|
||||
|
||||
//current_position[Z_AXIS]
|
||||
SERIAL_ECHOLNPGM("");
|
||||
SERIAL_ECHOPGM("ZERO: ");
|
||||
MYSERIAL.print(current_position[Z_AXIS]);
|
||||
SERIAL_ECHOLNPGM("");
|
||||
|
||||
for (int i = 0; i<5; i++) {
|
||||
|
||||
t_c = 60 + i * 10;
|
||||
|
||||
setTargetBed(t_c);
|
||||
current_position[X_AXIS] = PINDA_PREHEAT_X;
|
||||
current_position[Y_AXIS] = PINDA_PREHEAT_Y;
|
||||
current_position[Z_AXIS] = 0;
|
||||
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
|
||||
st_synchronize();
|
||||
while (degBed() < t_c) delay_keep_alive(1000);
|
||||
delay_keep_alive(PINDA_HEAT_T * 1000);
|
||||
current_position[Z_AXIS] = 5;
|
||||
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
|
||||
current_position[X_AXIS] = pgm_read_float(bed_ref_points);
|
||||
current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 1);
|
||||
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
|
||||
st_synchronize();
|
||||
find_bed_induction_sensor_point_z(-1.f);
|
||||
z_shift = (int)((current_position[Z_AXIS] - zero_z)*axis_steps_per_unit[Z_AXIS]);
|
||||
|
||||
SERIAL_ECHOLNPGM("");
|
||||
SERIAL_ECHOPGM("Temperature: ");
|
||||
MYSERIAL.print(t_c);
|
||||
SERIAL_ECHOPGM(" Z shift (mm):");
|
||||
MYSERIAL.print(current_position[Z_AXIS] - zero_z);
|
||||
SERIAL_ECHOLNPGM("");
|
||||
|
||||
EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i*2, &z_shift);
|
||||
|
||||
|
||||
}
|
||||
setTargetBed(0); //set bed target temperature back to 0
|
||||
|
||||
}
|
||||
break;
|
||||
|
||||
#ifdef DIS
|
||||
case 77:
|
||||
{
|
||||
@ -2908,6 +2989,9 @@ void process_commands()
|
||||
}
|
||||
clean_up_after_endstop_move();
|
||||
|
||||
|
||||
temp_compensation_apply(); //apply PINDA temperature compensation
|
||||
|
||||
// Apply Z height correction aka baby stepping before mesh bed leveing gets activated.
|
||||
babystep_apply();
|
||||
|
||||
@ -6063,4 +6147,97 @@ void bed_analysis(float x_dimension, float y_dimension, int x_points_num, int y_
|
||||
|
||||
}
|
||||
|
||||
void temp_compensation_apply() {
|
||||
int i_add;
|
||||
int compensation_value;
|
||||
int z_shift = 0;
|
||||
float z_shift_mm;
|
||||
|
||||
current_position[X_AXIS] = PINDA_PREHEAT_X;
|
||||
current_position[Y_AXIS] = PINDA_PREHEAT_Y;
|
||||
current_position[Z_AXIS] = 0;
|
||||
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
|
||||
st_synchronize();
|
||||
|
||||
while (fabs(degBed() - target_temperature_bed) > 3) delay_keep_alive(1000);
|
||||
|
||||
delay_keep_alive(PINDA_HEAT_T * 1000);
|
||||
|
||||
if (target_temperature_bed % 10 == 0 && target_temperature_bed >= 60 && target_temperature_bed <= 100) {
|
||||
i_add = (target_temperature_bed - 60) / 10;
|
||||
EEPROM_read_B(EEPROM_PROBE_TEMP_SHIFT + i_add * 2, &z_shift);
|
||||
z_shift_mm = z_shift / axis_steps_per_unit[Z_AXIS];
|
||||
}
|
||||
else {
|
||||
//interpolation
|
||||
z_shift_mm = temp_comp_interpolation(target_temperature_bed) / axis_steps_per_unit[Z_AXIS];
|
||||
}
|
||||
SERIAL_PROTOCOLPGM("\n");
|
||||
SERIAL_PROTOCOLPGM("Z shift applied:");
|
||||
MYSERIAL.print(z_shift_mm);
|
||||
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS] - z_shift_mm, current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
|
||||
st_synchronize();
|
||||
plan_set_z_position(current_position[Z_AXIS]);
|
||||
}
|
||||
|
||||
float temp_comp_interpolation(float temperature) {
|
||||
//cubic spline interpolation
|
||||
|
||||
int i;
|
||||
int shift[6];
|
||||
float shift_f[6];
|
||||
float temp_C[6];
|
||||
|
||||
shift[0] = 0; //shift for 50 C is 0
|
||||
|
||||
int n, j, k;
|
||||
float h[10], a, b, c, d, sum, s[10] = { 0 }, x[10], F[10], f[10], p, m[10][10] = { 0 }, temp;
|
||||
|
||||
|
||||
for (i = 0; i < 6; i++) {
|
||||
EEPROM_read_B(EEPROM_PROBE_TEMP_SHIFT + i * 2, &shift[i + 1]); //read shift in steps from EEPROM
|
||||
temp_C[i] = 50 + i * 10; //temperature in C
|
||||
shift_f[i] = (float)shift[i];
|
||||
|
||||
}
|
||||
for (i = 5; i > 0; i--) {
|
||||
F[i] = (shift_f[i] - shift_f[i - 1]) / (temp_C[i] - temp_C[i - 1]);
|
||||
h[i - 1] = temp_C[i] - temp_C[i - 1];
|
||||
}
|
||||
|
||||
//*********** formation of h, s , f matrix **************//
|
||||
for (i = 1; i<5; i++) {
|
||||
m[i][i] = 2 * (h[i - 1] + h[i]);
|
||||
if (i != 1) {
|
||||
m[i][i - 1] = h[i - 1];
|
||||
m[i - 1][i] = h[i - 1];
|
||||
}
|
||||
m[i][5] = 6 * (F[i + 1] - F[i]);
|
||||
}
|
||||
//*********** forward elimination **************//
|
||||
for (i = 1; i<4; i++) {
|
||||
temp = (m[i + 1][i] / m[i][i]);
|
||||
for (j = 1; j <= 5; j++)
|
||||
m[i + 1][j] -= temp*m[i][j];
|
||||
}
|
||||
//*********** backward substitution *********//
|
||||
for (i = 4; i>0; i--) {
|
||||
sum = 0;
|
||||
for (j = i; j <= 4; j++)
|
||||
sum += m[i][j] * s[j];
|
||||
s[i] = (m[i][n - 1] - sum) / m[i][i];
|
||||
}
|
||||
|
||||
for (i = 0; i<5; i++)
|
||||
if (temp_C[i] <= temperature&&temperature <= temp_C[i + 1]) {
|
||||
a = (s[i + 1] - s[i]) / (6 * h[i]);
|
||||
b = s[i] / 2;
|
||||
c = (shift[i + 1] - shift[i]) / h[i] - (2 * h[i] * s[i] + s[i + 1] * h[i]) / 6;
|
||||
d = shift[i];
|
||||
sum = a*pow((p - temp_C[i]), 3) + b*pow((p - temp_C[i]), 2) + c*(p - temp_C[i]) + d;
|
||||
}
|
||||
return(sum);
|
||||
}
|
||||
|
||||
|
||||
#endif
|
Loading…
Reference in New Issue
Block a user