Initial version. XYZ cal works, but bed ref. points coordinates must be checked.
This commit is contained in:
parent
5100ead22e
commit
c4d7b801b9
@ -77,6 +77,8 @@
|
||||
// Power loss errors
|
||||
#define EEPROM_POWER_COUNT (EEPROM_UVLO_MESH_BED_LEVELING-17)
|
||||
|
||||
#define EEPROM_XYZ_CAL_SKEW (EEPROM_POWER_COUNT - 4) //float for skew backup
|
||||
|
||||
// Currently running firmware, each digit stored as uint16_t.
|
||||
// The flavor differentiates a dev, alpha, beta, release candidate or a release version.
|
||||
#define EEPROM_FIRMWARE_VERSION_END (FW_PRUSA3D_MAGIC_LEN+8)
|
||||
|
@ -338,8 +338,7 @@ extern unsigned long start_pause_print;
|
||||
extern bool mesh_bed_leveling_flag;
|
||||
extern bool mesh_bed_run_from_menu;
|
||||
|
||||
extern float distance_from_min[3];
|
||||
extern float angleDiff;
|
||||
extern float distance_from_min[2];
|
||||
|
||||
extern void calculate_volumetric_multipliers();
|
||||
|
||||
|
@ -310,8 +310,7 @@ unsigned int custom_message_type;
|
||||
unsigned int custom_message_state;
|
||||
char snmm_filaments_used = 0;
|
||||
|
||||
float distance_from_min[3];
|
||||
float angleDiff;
|
||||
float distance_from_min[2];
|
||||
|
||||
bool fan_state[2];
|
||||
int fan_edge_counter[2];
|
||||
@ -1450,7 +1449,7 @@ inline void gcode_M900() {
|
||||
#ifdef TMC2130
|
||||
bool calibrate_z_auto()
|
||||
{
|
||||
lcd_display_message_fullscreen_P(MSG_CALIBRATE_Z_AUTO);
|
||||
//lcd_display_message_fullscreen_P(MSG_CALIBRATE_Z_AUTO);
|
||||
bool endstops_enabled = enable_endstops(true);
|
||||
int axis_up_dir = -home_dir(Z_AXIS);
|
||||
tmc2130_home_enter(Z_AXIS_MASK);
|
||||
@ -6891,6 +6890,7 @@ extern uint32_t sdpos_atomic;
|
||||
|
||||
void uvlo_()
|
||||
{
|
||||
unsigned long time_start = millis();
|
||||
// Conserve power as soon as possible.
|
||||
disable_x();
|
||||
disable_y();
|
||||
@ -6986,6 +6986,7 @@ void uvlo_()
|
||||
eeprom_update_byte((uint8_t*)EEPROM_POWER_COUNT, power_count);
|
||||
|
||||
SERIAL_ECHOLNPGM("UVLO - end");
|
||||
MYSERIAL.println(millis() - time_start);
|
||||
cli();
|
||||
while(1);
|
||||
}
|
||||
|
@ -219,7 +219,7 @@
|
||||
#define MSG_FIND_BED_OFFSET_AND_SKEW_LINE1 "Hledam kalibracni bod podlozky"
|
||||
#define MSG_FIND_BED_OFFSET_AND_SKEW_LINE2 " z 4"
|
||||
#define MSG_IMPROVE_BED_OFFSET_AND_SKEW_LINE1 "Zlepsuji presnost kalibracniho bodu"
|
||||
#define MSG_IMPROVE_BED_OFFSET_AND_SKEW_LINE2 " z 9"
|
||||
#define MSG_IMPROVE_BED_OFFSET_AND_SKEW_LINE2 " z 4"
|
||||
#define MSG_MEASURE_BED_REFERENCE_HEIGHT_LINE1 "Merim referencni vysku kalibracniho bodu"
|
||||
#define MSG_MEASURE_BED_REFERENCE_HEIGHT_LINE2 " z 9"
|
||||
#define MSG_FIND_BED_OFFSET_AND_SKEW_ITERATION "Iterace "
|
||||
|
@ -206,7 +206,7 @@
|
||||
+#define(length = 60) MSG_FIND_BED_OFFSET_AND_SKEW_LINE1 "Suchen Bed Kalibrierpunkt"
|
||||
+ #define(length = 14) MSG_FIND_BED_OFFSET_AND_SKEW_LINE2 " von 4"
|
||||
+ #define(length = 60) MSG_IMPROVE_BED_OFFSET_AND_SKEW_LINE1 "Verbesserung Bed Kalibrierpunkt"
|
||||
+ #define(length = 14) MSG_IMPROVE_BED_OFFSET_AND_SKEW_LINE2 " von 9"
|
||||
+ #define(length = 14) MSG_IMPROVE_BED_OFFSET_AND_SKEW_LINE2 " von 4"
|
||||
+ #define(length = 60) MSG_MEASURE_BED_REFERENCE_HEIGHT_LINE1 "Messen der Referenzhoehe des Kalibrierpunktes"
|
||||
+ #define(length = 14) MSG_MEASURE_BED_REFERENCE_HEIGHT_LINE2 " von 9"
|
||||
#define MSG_FIND_BED_OFFSET_AND_SKEW_ITERATION "Iteration "
|
||||
|
@ -218,7 +218,7 @@
|
||||
#define(length=60) MSG_FIND_BED_OFFSET_AND_SKEW_LINE1 "Searching bed calibration point"
|
||||
#define(length=14) MSG_FIND_BED_OFFSET_AND_SKEW_LINE2 " of 4"
|
||||
#define(length=60) MSG_IMPROVE_BED_OFFSET_AND_SKEW_LINE1 "Improving bed calibration point"
|
||||
#define(length=14) MSG_IMPROVE_BED_OFFSET_AND_SKEW_LINE2 " of 9"
|
||||
#define(length=14) MSG_IMPROVE_BED_OFFSET_AND_SKEW_LINE2 " of 4"
|
||||
#define(length=60) MSG_MEASURE_BED_REFERENCE_HEIGHT_LINE1 "Measuring reference height of calibration point"
|
||||
#define(length=14) MSG_MEASURE_BED_REFERENCE_HEIGHT_LINE2 " of 9"
|
||||
#define(length=20) MSG_FIND_BED_OFFSET_AND_SKEW_ITERATION "Iteration "
|
||||
|
@ -202,7 +202,7 @@
|
||||
#define MSG_FIND_BED_OFFSET_AND_SKEW_LINE1 "Buscando cama punto de calibracion"
|
||||
#define MSG_FIND_BED_OFFSET_AND_SKEW_LINE2 " de 4"
|
||||
#define MSG_IMPROVE_BED_OFFSET_AND_SKEW_LINE1 "Mejorando cama punto de calibracion"
|
||||
#define MSG_IMPROVE_BED_OFFSET_AND_SKEW_LINE2 " de 9"
|
||||
#define MSG_IMPROVE_BED_OFFSET_AND_SKEW_LINE2 " de 4"
|
||||
#define MSG_MEASURE_BED_REFERENCE_HEIGHT_LINE1 "Medir la altura del punto de la calibracion"
|
||||
#define MSG_MEASURE_BED_REFERENCE_HEIGHT_LINE2 " de 9"
|
||||
|
||||
|
@ -193,7 +193,7 @@
|
||||
#define MSG_FIND_BED_OFFSET_AND_SKEW_LINE1 "Ricerca del letto punto di calibraz."
|
||||
#define MSG_FIND_BED_OFFSET_AND_SKEW_LINE2 " su 4"
|
||||
#define MSG_IMPROVE_BED_OFFSET_AND_SKEW_LINE1 "Perfezion. il letto punto di calibraz."
|
||||
#define MSG_IMPROVE_BED_OFFSET_AND_SKEW_LINE2 " su 9"
|
||||
#define MSG_IMPROVE_BED_OFFSET_AND_SKEW_LINE2 " su 4"
|
||||
#define MSG_MEASURE_BED_REFERENCE_HEIGHT_LINE1 "Misurare l'altezza di riferimento del punto di calibrazione"
|
||||
#define MSG_MEASURE_BED_REFERENCE_HEIGHT_LINE2 " su 9"
|
||||
#define MSG_FIND_BED_OFFSET_AND_SKEW_ITERATION "Reiterazione "
|
||||
|
@ -208,7 +208,7 @@
|
||||
#define MSG_FIND_BED_OFFSET_AND_SKEW_LINE1 "Szukam punktu kalibracyjnego podkladki"
|
||||
#define MSG_FIND_BED_OFFSET_AND_SKEW_LINE2 " z 4"
|
||||
#define MSG_IMPROVE_BED_OFFSET_AND_SKEW_LINE1 "Poprawiam precyzyjnosc punktu kalibracyjnego"
|
||||
#define MSG_IMPROVE_BED_OFFSET_AND_SKEW_LINE2 " z 9"
|
||||
#define MSG_IMPROVE_BED_OFFSET_AND_SKEW_LINE2 " z 4"
|
||||
#define MSG_MEASURE_BED_REFERENCE_HEIGHT_LINE1 "Okreslam wysokosc odniesienia punktu kalibracyjnego"
|
||||
#define MSG_MEASURE_BED_REFERENCE_HEIGHT_LINE2 " z 9"
|
||||
#define MSG_FIND_BED_OFFSET_AND_SKEW_ITERATION "Iteracja "
|
||||
|
@ -56,10 +56,15 @@ const float bed_skew_angle_extreme = (0.25f * M_PI / 180.f);
|
||||
// Positions of the bed reference points in the machine coordinates, referenced to the P.I.N.D.A sensor.
|
||||
// The points are the following: center front, center right, center rear, center left.
|
||||
const float bed_ref_points_4[] PROGMEM = {
|
||||
115.f - BED_ZERO_REF_X, 8.4f - BED_ZERO_REF_Y,
|
||||
216.f - BED_ZERO_REF_X, 104.4f - BED_ZERO_REF_Y,
|
||||
115.f - BED_ZERO_REF_X, 200.4f - BED_ZERO_REF_Y,
|
||||
13.f - BED_ZERO_REF_X, 104.4f - BED_ZERO_REF_Y
|
||||
//115.f - BED_ZERO_REF_X, 8.4f - BED_ZERO_REF_Y,
|
||||
//216.f - BED_ZERO_REF_X, 104.4f - BED_ZERO_REF_Y,
|
||||
//115.f - BED_ZERO_REF_X, 200.4f - BED_ZERO_REF_Y,
|
||||
//13.f - BED_ZERO_REF_X, 104.4f - BED_ZERO_REF_Y
|
||||
|
||||
13.f - BED_ZERO_REF_X, 8.4f - BED_ZERO_REF_Y,
|
||||
221.f - BED_ZERO_REF_X, 8.4f - BED_ZERO_REF_Y,
|
||||
221.f - BED_ZERO_REF_X, 200.4f - BED_ZERO_REF_Y,
|
||||
13.f - BED_ZERO_REF_X, 200.4f - BED_ZERO_REF_Y
|
||||
};
|
||||
|
||||
const float bed_ref_points[] PROGMEM = {
|
||||
@ -104,10 +109,9 @@ const float bed_ref_points[] PROGMEM = {
|
||||
|
||||
static inline float sqr(float x) { return x * x; }
|
||||
|
||||
static inline bool point_on_1st_row(const uint8_t i, const uint8_t npts)
|
||||
static inline bool point_on_1st_row(const uint8_t i)
|
||||
{
|
||||
if (npts == 4) return (i == 0);
|
||||
else return (i < 3);
|
||||
return (i < 2);
|
||||
}
|
||||
|
||||
// Weight of a point coordinate in a least squares optimization.
|
||||
@ -117,7 +121,7 @@ static inline bool point_on_1st_row(const uint8_t i, const uint8_t npts)
|
||||
static inline float point_weight_x(const uint8_t i, const uint8_t npts, const float &y)
|
||||
{
|
||||
float w = 1.f;
|
||||
if (point_on_1st_row(i, npts)) {
|
||||
if (point_on_1st_row(i)) {
|
||||
if (y >= Y_MIN_POS_CALIBRATION_POINT_ACCURATE) {
|
||||
w = WEIGHT_FIRST_ROW_X_HIGH;
|
||||
} else if (y < Y_MIN_POS_CALIBRATION_POINT_OUT_OF_REACH) {
|
||||
@ -139,7 +143,7 @@ static inline float point_weight_x(const uint8_t i, const uint8_t npts, const fl
|
||||
static inline float point_weight_y(const uint8_t i, const uint8_t npts, const float &y)
|
||||
{
|
||||
float w = 1.f;
|
||||
if (point_on_1st_row(i, npts)) {
|
||||
if (point_on_1st_row(i)) {
|
||||
if (y >= Y_MIN_POS_CALIBRATION_POINT_ACCURATE) {
|
||||
w = WEIGHT_FIRST_ROW_Y_HIGH;
|
||||
} else if (y < Y_MIN_POS_CALIBRATION_POINT_OUT_OF_REACH) {
|
||||
@ -172,6 +176,7 @@ BedSkewOffsetDetectionResultType calculate_machine_skew_and_offset_LS(
|
||||
int8_t verbosity_level
|
||||
)
|
||||
{
|
||||
float angleDiff;
|
||||
if (verbosity_level >= 10) {
|
||||
SERIAL_ECHOLNPGM("calculate machine skew and offset LS");
|
||||
|
||||
@ -346,6 +351,7 @@ BedSkewOffsetDetectionResultType calculate_machine_skew_and_offset_LS(
|
||||
BedSkewOffsetDetectionResultType result = BED_SKEW_OFFSET_DETECTION_PERFECT;
|
||||
{
|
||||
angleDiff = fabs(a2 - a1);
|
||||
eeprom_update_float((float*)(EEPROM_XYZ_CAL_SKEW), angleDiff); //storing xyz cal. skew to be able to show in support menu later
|
||||
if (angleDiff > bed_skew_angle_mild)
|
||||
result = (angleDiff > bed_skew_angle_extreme) ?
|
||||
BED_SKEW_OFFSET_DETECTION_SKEW_EXTREME :
|
||||
@ -400,7 +406,7 @@ BedSkewOffsetDetectionResultType calculate_machine_skew_and_offset_LS(
|
||||
SERIAL_ECHOLNPGM(":");
|
||||
}
|
||||
|
||||
if (point_on_1st_row(i, npts)) {
|
||||
if (point_on_1st_row(i)) {
|
||||
if(verbosity_level >= 20) SERIAL_ECHOPGM("Point on first row");
|
||||
float w = point_weight_y(i, npts, measured_pts[2 * i + 1]);
|
||||
if (sqrt(errX) > BED_CALIBRATION_POINT_OFFSET_MAX_1ST_ROW_X ||
|
||||
@ -1779,7 +1785,7 @@ BedSkewOffsetDetectionResultType find_bed_offset_and_skew(int8_t verbosity_level
|
||||
return BED_SKEW_OFFSET_DETECTION_POINT_NOT_FOUND;
|
||||
#if 1
|
||||
|
||||
if (k == 0) {
|
||||
if (k == 0 || k == 1) {
|
||||
// Improve the position of the 1st row sensor points by a zig-zag movement.
|
||||
find_bed_induction_sensor_point_z();
|
||||
int8_t i = 4;
|
||||
@ -1966,7 +1972,7 @@ BedSkewOffsetDetectionResultType improve_bed_offset_and_skew(int8_t method, int8
|
||||
|
||||
// Collect a matrix of 9x9 points.
|
||||
BedSkewOffsetDetectionResultType result = BED_SKEW_OFFSET_DETECTION_PERFECT;
|
||||
for (int8_t mesh_point = 0; mesh_point < 9; ++ mesh_point) {
|
||||
for (int8_t mesh_point = 0; mesh_point < 4; ++ mesh_point) {
|
||||
// Don't let the manage_inactivity() function remove power from the motors.
|
||||
refresh_cmd_timeout();
|
||||
// Print the decrasing ID of the measurement point.
|
||||
@ -1993,8 +1999,8 @@ BedSkewOffsetDetectionResultType improve_bed_offset_and_skew(int8_t method, int8
|
||||
}
|
||||
// Go to the measurement point.
|
||||
// Use the coorrected coordinate, which is a result of find_bed_offset_and_skew().
|
||||
current_position[X_AXIS] = vec_x[0] * pgm_read_float(bed_ref_points+mesh_point*2) + vec_y[0] * pgm_read_float(bed_ref_points+mesh_point*2+1) + cntr[0];
|
||||
current_position[Y_AXIS] = vec_x[1] * pgm_read_float(bed_ref_points+mesh_point*2) + vec_y[1] * pgm_read_float(bed_ref_points+mesh_point*2+1) + cntr[1];
|
||||
current_position[X_AXIS] = vec_x[0] * pgm_read_float(bed_ref_points_4+mesh_point*2) + vec_y[0] * pgm_read_float(bed_ref_points_4+mesh_point*2+1) + cntr[0];
|
||||
current_position[Y_AXIS] = vec_x[1] * pgm_read_float(bed_ref_points_4+mesh_point*2) + vec_y[1] * pgm_read_float(bed_ref_points_4+mesh_point*2+1) + cntr[1];
|
||||
// The calibration points are very close to the min Y.
|
||||
if (current_position[Y_AXIS] < Y_MIN_POS_FOR_BED_CALIBRATION){
|
||||
current_position[Y_AXIS] = Y_MIN_POS_FOR_BED_CALIBRATION;
|
||||
@ -2027,7 +2033,7 @@ BedSkewOffsetDetectionResultType improve_bed_offset_and_skew(int8_t method, int8
|
||||
SERIAL_ECHOLNPGM("");
|
||||
}
|
||||
bool found = false;
|
||||
if (mesh_point < 3) {
|
||||
if (mesh_point < 2) {
|
||||
// Because the sensor cannot move in front of the first row
|
||||
// of the sensor points, the y position cannot be measured
|
||||
// by a cross center method.
|
||||
@ -2036,7 +2042,7 @@ BedSkewOffsetDetectionResultType improve_bed_offset_and_skew(int8_t method, int8
|
||||
} else {
|
||||
switch (method) {
|
||||
case 0: found = improve_bed_induction_sensor_point(); break;
|
||||
case 1: found = improve_bed_induction_sensor_point2(mesh_point < 3, verbosity_level); break;
|
||||
case 1: found = improve_bed_induction_sensor_point2(mesh_point < 2, verbosity_level); break;
|
||||
default: break;
|
||||
}
|
||||
}
|
||||
@ -2077,7 +2083,7 @@ BedSkewOffsetDetectionResultType improve_bed_offset_and_skew(int8_t method, int8
|
||||
refresh_cmd_timeout();
|
||||
|
||||
// Average the last 4 measurements.
|
||||
for (int8_t i = 0; i < 18; ++ i)
|
||||
for (int8_t i = 0; i < 8; ++ i)
|
||||
pts[i] *= (1.f/4.f);
|
||||
|
||||
enable_endstops(false);
|
||||
@ -2086,7 +2092,7 @@ BedSkewOffsetDetectionResultType improve_bed_offset_and_skew(int8_t method, int8
|
||||
if (verbosity_level >= 5) {
|
||||
// Test the positions. Are the positions reproducible?
|
||||
current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
|
||||
for (int8_t mesh_point = 0; mesh_point < 9; ++ mesh_point) {
|
||||
for (int8_t mesh_point = 0; mesh_point < 4; ++ mesh_point) {
|
||||
// Don't let the manage_inactivity() function remove power from the motors.
|
||||
refresh_cmd_timeout();
|
||||
// Go to the measurement point.
|
||||
@ -2109,17 +2115,17 @@ BedSkewOffsetDetectionResultType improve_bed_offset_and_skew(int8_t method, int8
|
||||
|
||||
{
|
||||
// First fill in the too_far_mask from the measured points.
|
||||
for (uint8_t mesh_point = 0; mesh_point < 3; ++ mesh_point)
|
||||
for (uint8_t mesh_point = 0; mesh_point < 2; ++ mesh_point)
|
||||
if (pts[mesh_point * 2 + 1] < Y_MIN_POS_CALIBRATION_POINT_OUT_OF_REACH)
|
||||
too_far_mask |= 1 << mesh_point;
|
||||
result = calculate_machine_skew_and_offset_LS(pts, 9, bed_ref_points, vec_x, vec_y, cntr, verbosity_level);
|
||||
result = calculate_machine_skew_and_offset_LS(pts, 4, bed_ref_points_4, vec_x, vec_y, cntr, verbosity_level);
|
||||
if (result < 0) {
|
||||
SERIAL_ECHOLNPGM("Calculation of the machine skew and offset failed.");
|
||||
goto canceled;
|
||||
}
|
||||
// In case of success, update the too_far_mask from the calculated points.
|
||||
for (uint8_t mesh_point = 0; mesh_point < 3; ++ mesh_point) {
|
||||
float y = vec_x[1] * pgm_read_float(bed_ref_points+mesh_point*2) + vec_y[1] * pgm_read_float(bed_ref_points+mesh_point*2+1) + cntr[1];
|
||||
for (uint8_t mesh_point = 0; mesh_point < 2; ++ mesh_point) {
|
||||
float y = vec_x[1] * pgm_read_float(bed_ref_points_4+mesh_point*2) + vec_y[1] * pgm_read_float(bed_ref_points_4+mesh_point*2+1) + cntr[1];
|
||||
distance_from_min[mesh_point] = (y - Y_MIN_POS_CALIBRATION_POINT_OUT_OF_REACH);
|
||||
if (verbosity_level >= 20) {
|
||||
SERIAL_ECHOLNPGM("");
|
||||
@ -2156,13 +2162,13 @@ BedSkewOffsetDetectionResultType improve_bed_offset_and_skew(int8_t method, int8
|
||||
// Test the positions. Are the positions reproducible? Now the calibration is active in the planner.
|
||||
delay_keep_alive(3000);
|
||||
current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
|
||||
for (int8_t mesh_point = 0; mesh_point < 9; ++ mesh_point) {
|
||||
for (int8_t mesh_point = 0; mesh_point < 4; ++ mesh_point) {
|
||||
// Don't let the manage_inactivity() function remove power from the motors.
|
||||
refresh_cmd_timeout();
|
||||
// Go to the measurement point.
|
||||
// Use the coorrected coordinate, which is a result of find_bed_offset_and_skew().
|
||||
current_position[X_AXIS] = pgm_read_float(bed_ref_points+mesh_point*2);
|
||||
current_position[Y_AXIS] = pgm_read_float(bed_ref_points+mesh_point*2+1);
|
||||
current_position[X_AXIS] = pgm_read_float(bed_ref_points_4+mesh_point*2);
|
||||
current_position[Y_AXIS] = pgm_read_float(bed_ref_points_4+mesh_point*2+1);
|
||||
if (verbosity_level >= 10) {
|
||||
go_to_current(homing_feedrate[X_AXIS]/60);
|
||||
delay_keep_alive(3000);
|
||||
@ -2483,9 +2489,9 @@ void count_xyz_details() {
|
||||
};
|
||||
a2 = -1 * asin(vec_y[0] / MACHINE_AXIS_SCALE_Y);
|
||||
a1 = asin(vec_x[1] / MACHINE_AXIS_SCALE_X);
|
||||
angleDiff = fabs(a2 - a1);
|
||||
for (uint8_t mesh_point = 0; mesh_point < 3; ++mesh_point) {
|
||||
float y = vec_x[1] * pgm_read_float(bed_ref_points + mesh_point * 2) + vec_y[1] * pgm_read_float(bed_ref_points + mesh_point * 2 + 1) + cntr[1];
|
||||
//angleDiff = fabs(a2 - a1);
|
||||
for (uint8_t mesh_point = 0; mesh_point < 2; ++mesh_point) {
|
||||
float y = vec_x[1] * pgm_read_float(bed_ref_points_4 + mesh_point * 2) + vec_y[1] * pgm_read_float(bed_ref_points_4 + mesh_point * 2 + 1) + cntr[1];
|
||||
distance_from_min[mesh_point] = (y - Y_MIN_POS_CALIBRATION_POINT_OUT_OF_REACH);
|
||||
}
|
||||
}
|
||||
|
@ -1536,15 +1536,16 @@ static void lcd_move_e()
|
||||
}
|
||||
|
||||
void lcd_service_mode_show_result() {
|
||||
float angleDiff;
|
||||
lcd_set_custom_characters_degree();
|
||||
count_xyz_details();
|
||||
angleDiff = eeprom_read_float((float*)(EEPROM_XYZ_CAL_SKEW));
|
||||
lcd_update_enable(false);
|
||||
lcd_implementation_clear();
|
||||
lcd_printPGM(PSTR("Y distance from min:"));
|
||||
lcd_print_at_PGM(0, 1, PSTR("Left:"));
|
||||
lcd_print_at_PGM(0, 2, PSTR("Center:"));
|
||||
lcd_print_at_PGM(0, 3, PSTR("Right:"));
|
||||
for (int i = 0; i < 3; i++) {
|
||||
for (int i = 0; i < 2; i++) {
|
||||
if(distance_from_min[i] < 200) {
|
||||
lcd_print_at_PGM(8, i + 1, PSTR(""));
|
||||
lcd.print(distance_from_min[i]);
|
||||
@ -2818,11 +2819,11 @@ static void lcd_settings_menu()
|
||||
MENU_ITEM(gcode, MSG_DISABLE_STEPPERS, PSTR("M84"));
|
||||
}
|
||||
|
||||
if (FSensorStateMenu == 0) {
|
||||
/*if (FSensorStateMenu == 0) {
|
||||
MENU_ITEM(function, MSG_FSENSOR_OFF, lcd_fsensor_state_set);
|
||||
} else {
|
||||
MENU_ITEM(function, MSG_FSENSOR_ON, lcd_fsensor_state_set);
|
||||
}
|
||||
}*/
|
||||
|
||||
if (SilentModeMenu == 0) {
|
||||
MENU_ITEM(function, MSG_SILENT_MODE_OFF, lcd_silent_mode_set);
|
||||
|
Loading…
Reference in New Issue
Block a user