Merge pull request #1021 from XPila/MK3-new_lang

MM support and 3.4 RC1 finalization
This commit is contained in:
XPila 2018-08-08 20:26:34 +02:00 committed by GitHub
commit cb379707af
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
6 changed files with 247 additions and 193 deletions

View File

@ -359,11 +359,11 @@ extern bool mmu_print_saved;
//estimated time to end of the print
extern uint8_t print_percent_done_normal;
extern uint16_t print_time_remaining_normal;
extern uint32_t print_time_remaining_normal;
extern uint8_t print_percent_done_silent;
extern uint16_t print_time_remaining_silent;
#define PRINT_TIME_REMAINING_INIT 65535
#define PRINT_PERCENT_DONE_INIT 255
extern uint32_t print_time_remaining_silent;
#define PRINT_TIME_REMAINING_INIT 0xffffffff
#define PRINT_PERCENT_DONE_INIT 0xff
#define PRINTER_ACTIVE (IS_SD_PRINTING || is_usb_printing || isPrintPaused || (custom_message_type == 4) || saved_printing || (lcd_commands_type == LCD_COMMAND_V2_CAL) || card.paused || mmu_print_saved)
extern void calculate_extruder_multipliers();
@ -467,12 +467,8 @@ void gcode_M701();
void proc_commands();
void manage_response(bool move_axes, bool turn_off_nozzle);
bool mmu_get_response(bool timeout);
void mmu_not_responding();
void mmu_load_to_nozzle();
void M600_load_filament();
void mmu_M600_load_filament(bool automatic);
void M600_load_filament_movements();
void M600_wait_for_user();
void M600_check_state();

View File

@ -336,8 +336,8 @@ float pause_lastpos[4];
unsigned long pause_time = 0;
unsigned long start_pause_print = millis();
unsigned long t_fan_rising_edge = millis();
static LongTimer safetyTimer;
static LongTimer crashDetTimer;
LongTimer safetyTimer;
LongTimer crashDetTimer;
//unsigned long load_filament_time;
@ -475,9 +475,9 @@ bool mmu_print_saved = false;
// storing estimated time to end of print counted by slicer
uint8_t print_percent_done_normal = PRINT_PERCENT_DONE_INIT;
uint16_t print_time_remaining_normal = PRINT_TIME_REMAINING_INIT; //estimated remaining print time in minutes
uint32_t print_time_remaining_normal = PRINT_TIME_REMAINING_INIT; //estimated remaining print time in minutes
uint8_t print_percent_done_silent = PRINT_PERCENT_DONE_INIT;
uint16_t print_time_remaining_silent = PRINT_TIME_REMAINING_INIT; //estimated remaining print time in minutes
uint32_t print_time_remaining_silent = PRINT_TIME_REMAINING_INIT; //estimated remaining print time in minutes
//===========================================================================
//=============================Private Variables=============================
@ -508,7 +508,6 @@ unsigned long starttime=0;
unsigned long stoptime=0;
unsigned long _usb_timer = 0;
static uint8_t tmp_extruder;
bool extruder_under_pressure = true;
@ -6336,21 +6335,14 @@ if((eSoundMode==e_SOUND_MODE_LOUD)||(eSoundMode==e_SOUND_MODE_ONCE))
//currently three different materials are needed (default, flex and PVA)
//add storing this information for different load/unload profiles etc. in the future
//firmware does not wait for "ok" from mmu
uint8_t extruder;
uint8_t filament;
if(code_seen('E')) extruder = code_value();
if(code_seen('F')) filament = code_value();
printf_P(PSTR("Extruder: %d; "), extruder);
switch (filament) {
case FILAMENT_FLEX: printf_P(PSTR("Flex\n")); break;
case FILAMENT_PVA: printf_P(PSTR("PVA\n")); break;
default: printf_P(PSTR("Default\n")); break;
if (mmu_enabled)
{
uint8_t extruder;
uint8_t filament;
if(code_seen('E')) extruder = code_value();
if(code_seen('F')) filament = code_value();
mmu_set_filament_type(extruder, filament);
}
printf_P(PSTR("F%d%d\n"), extruder, filament);
mmu_printf_P(PSTR("F%d%d\n"), extruder, filament);
}
break;
@ -8872,7 +8864,8 @@ uint16_t print_time_remaining() {
return print_t;
}
uint8_t print_percent_done() {
uint8_t print_percent_done()
{
//in case that we have information from M73 gcode return percentage counted by slicer, else return percentage counted as byte_printed/filesize
uint8_t percent_done = 0;
if (SilentModeMenu == SILENT_MODE_OFF && print_percent_done_normal <= 100) {
@ -8887,135 +8880,17 @@ uint8_t print_percent_done() {
return percent_done;
}
static void print_time_remaining_init() {
static void print_time_remaining_init()
{
print_time_remaining_normal = PRINT_TIME_REMAINING_INIT;
print_time_remaining_silent = PRINT_TIME_REMAINING_INIT;
print_percent_done_normal = PRINT_PERCENT_DONE_INIT;
print_percent_done_silent = PRINT_PERCENT_DONE_INIT;
}
bool mmu_get_response(bool timeout) {
//waits for "ok" from mmu
//function returns true if "ok" was received
//if timeout is set to true function return false if there is no "ok" received before timeout
bool response = true;
LongTimer mmu_get_reponse_timeout;
KEEPALIVE_STATE(IN_PROCESS);
mmu_get_reponse_timeout.start();
while (mmu_rx_ok() <= 0)
{
delay_keep_alive(100);
if (timeout && mmu_get_reponse_timeout.expired(5 * 60 * 1000ul)) { //5 minutes timeout
response = false;
break;
}
}
return response;
}
void manage_response(bool move_axes, bool turn_off_nozzle) {
bool response = false;
mmu_print_saved = false;
bool lcd_update_was_enabled = false;
float hotend_temp_bckp = degTargetHotend(active_extruder);
float z_position_bckp = current_position[Z_AXIS];
float x_position_bckp = current_position[X_AXIS];
float y_position_bckp = current_position[Y_AXIS];
while(!response) {
response = mmu_get_response(true); //wait for "ok" from mmu
if (!response) { //no "ok" was received in reserved time frame, user will fix the issue on mmu unit
if (!mmu_print_saved) { //first occurence, we are saving current position, park print head in certain position and disable nozzle heater
if (lcd_update_enabled) {
lcd_update_was_enabled = true;
lcd_update_enable(false);
}
st_synchronize();
mmu_print_saved = true;
hotend_temp_bckp = degTargetHotend(active_extruder);
if (move_axes) {
z_position_bckp = current_position[Z_AXIS];
x_position_bckp = current_position[X_AXIS];
y_position_bckp = current_position[Y_AXIS];
//lift z
current_position[Z_AXIS] += Z_PAUSE_LIFT;
if (current_position[Z_AXIS] > Z_MAX_POS) current_position[Z_AXIS] = Z_MAX_POS;
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 15, active_extruder);
st_synchronize();
//Move XY to side
current_position[X_AXIS] = X_PAUSE_POS;
current_position[Y_AXIS] = Y_PAUSE_POS;
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 50, active_extruder);
st_synchronize();
}
if (turn_off_nozzle) {
//set nozzle target temperature to 0
setAllTargetHotends(0);
printf_P(PSTR("MMU not responding\n"));
lcd_show_fullscreen_message_and_wait_P(_i("MMU needs user attention. Please press knob to resume nozzle target temperature."));
setTargetHotend(hotend_temp_bckp, active_extruder);
while ((degTargetHotend(active_extruder) - degHotend(active_extruder)) > 5) {
delay_keep_alive(1000);
lcd_wait_for_heater();
}
}
}
lcd_display_message_fullscreen_P(_i("Check MMU. Fix the issue and then press button on MMU unit."));
}
else if (mmu_print_saved) {
printf_P(PSTR("MMU start responding\n"));
lcd_clear();
lcd_display_message_fullscreen_P(_i("MMU OK. Resuming..."));
if (move_axes) {
current_position[X_AXIS] = x_position_bckp;
current_position[Y_AXIS] = y_position_bckp;
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 50, active_extruder);
st_synchronize();
current_position[Z_AXIS] = z_position_bckp;
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 15, active_extruder);
st_synchronize();
}
else {
delay_keep_alive(1000); //delay just for showing MMU OK message for a while in case that there are no xyz movements
}
}
}
if (lcd_update_was_enabled) lcd_update_enable(true);
}
void mmu_load_to_nozzle() {
st_synchronize();
bool saved_e_relative_mode = axis_relative_modes[E_AXIS];
if (!saved_e_relative_mode) axis_relative_modes[E_AXIS] = true;
current_position[E_AXIS] += 7.2f;
float feedrate = 562;
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate / 60, active_extruder);
st_synchronize();
current_position[E_AXIS] += 14.4f;
feedrate = 871;
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate / 60, active_extruder);
st_synchronize();
current_position[E_AXIS] += 36.0f;
feedrate = 1393;
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate / 60, active_extruder);
st_synchronize();
current_position[E_AXIS] += 14.4f;
feedrate = 871;
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate / 60, active_extruder);
st_synchronize();
if (!saved_e_relative_mode) axis_relative_modes[E_AXIS] = false;
}
void mmu_switch_extruder(uint8_t extruder) {
}
void M600_check_state() {
void M600_check_state()
{
//Wait for user to check the state
lcd_change_fil_state = 0;
@ -9129,40 +9004,6 @@ void M600_wait_for_user() {
WRITE(BEEPER, LOW);
}
void mmu_M600_load_filament(bool automatic)
{
//load filament for mmu v2
bool response = false;
bool yes = false;
if (!automatic) {
yes = lcd_show_fullscreen_message_yes_no_and_wait_P(_i("Do you want to switch extruder?"), false);
if(yes) tmp_extruder = choose_extruder_menu();
else tmp_extruder = mmu_extruder;
}
else {
tmp_extruder = (tmp_extruder+1)%5;
}
lcd_update_enable(false);
lcd_clear();
lcd_set_cursor(0, 1); lcd_puts_P(_T(MSG_LOADING_FILAMENT));
lcd_print(" ");
lcd_print(tmp_extruder + 1);
snmm_filaments_used |= (1 << tmp_extruder); //for stop print
printf_P(PSTR("T code: %d \n"), tmp_extruder);
mmu_printf_P(PSTR("T%d\n"), tmp_extruder);
manage_response(false, true);
mmu_extruder = tmp_extruder; //filament change is finished
mmu_load_to_nozzle();
st_synchronize();
current_position[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2, active_extruder);
}
void M600_load_filament_movements()
{
#ifdef SNMM

View File

@ -755,6 +755,7 @@ void lcd_update_enable(uint8_t enabled)
}
}
extern LongTimer safetyTimer;
void lcd_buttons_update(void)
{
static bool _lock = false;
@ -770,6 +771,7 @@ void lcd_buttons_update(void)
lcd_timeoutToStatus.start();
if (!buttonBlanking.running() || buttonBlanking.expired(BUTTON_BLANKING_TIME)) {
buttonBlanking.start();
safetyTimer.start();
if ((lcd_button_pressed == 0) && (lcd_long_press_active == 0))
{
longPressTimer.start();

View File

@ -10,18 +10,32 @@
extern const char* lcd_display_message_fullscreen_P(const char *msg);
extern void lcd_show_fullscreen_message_and_wait_P(const char *msg);
extern int8_t lcd_show_fullscreen_message_yes_no_and_wait_P(const char *msg, bool allow_timeouting = true, bool default_yes = false);
extern void lcd_return_to_status();
extern void lcd_wait_for_heater();
extern char choose_extruder_menu();
#define MMU_TODELAY 100
#define MMU_TIMEOUT 10
#define MMU_HWRESET
#define MMU_RST_PIN 76
#define MMU_TIMEOUT 100
bool mmu_enabled = false;
uint8_t mmu_extruder = 0;
uint8_t tmp_extruder = 0;
int8_t mmu_finda = -1;
int16_t mmu_version = -1;
int16_t mmu_build = -1;
//clear rx buffer
void mmu_clr_rx_buf(void)
@ -62,6 +76,8 @@ int8_t mmu_rx_start(void)
//initialize mmu_unit
bool mmu_init(void)
{
digitalWrite(MMU_RST_PIN, HIGH);
pinMode(MMU_RST_PIN, OUTPUT); //setup reset pin
uart2_init(); //init uart2
_delay_ms(10); //wait 10ms for sure
if (mmu_reset()) //reset mmu
@ -75,20 +91,27 @@ bool mmu_init(void)
bool mmu_reset(void)
{
#ifdef MMU_HWRESET
digitalWrite(MMU_RST_PIN, LOW);
_delay_us(100);
digitalWrite(MMU_RST_PIN, HIGH);
#else
mmu_puts_P(PSTR("X0\n")); //send command
unsigned char timeout = 10; //timeout = 10x100ms
#endif
unsigned char timeout = MMU_TIMEOUT; //timeout = 10x100ms
while ((mmu_rx_start() <= 0) && (--timeout))
delay_keep_alive(MMU_TIMEOUT);
delay_keep_alive(MMU_TODELAY);
mmu_enabled = timeout?true:false;
mmu_enabled = true;
return mmu_enabled;
}
int8_t mmu_read_finda(void)
{
mmu_puts_P(PSTR("P0\n"));
unsigned char timeout = 10; //10x100ms
unsigned char timeout = MMU_TIMEOUT; //10x100ms
while ((mmu_rx_ok() <= 0) && (--timeout))
delay_keep_alive(MMU_TIMEOUT);
delay_keep_alive(MMU_TODELAY);
mmu_finda = -1;
if (timeout)
fscanf_P(uart2io, PSTR("%hhu"), &mmu_finda);
@ -98,14 +121,182 @@ int8_t mmu_read_finda(void)
int16_t mmu_read_version(void)
{
mmu_puts_P(PSTR("S1\n"));
unsigned char timeout = 10; //10x100ms
unsigned char timeout = MMU_TIMEOUT; //10x100ms
while ((mmu_rx_ok() <= 0) && (--timeout))
delay_keep_alive(MMU_TIMEOUT);
delay_keep_alive(MMU_TODELAY);
if (timeout)
fscanf_P(uart2io, PSTR("%u"), &mmu_version);
return mmu_version;
}
int8_t mmu_set_filament_type(uint8_t extruder, uint8_t filament)
{
printf_P(PSTR("MMU <= 'F%d %d'\n"), extruder, filament);
mmu_printf_P(PSTR("F%d %d\n"), extruder, filament);
unsigned char timeout = MMU_TIMEOUT; //10x100ms
while ((mmu_rx_ok() <= 0) && (--timeout))
delay_keep_alive(MMU_TODELAY);
return timeout?1:0;
}
bool mmu_get_response(bool timeout)
{
printf_P(PSTR("mmu_get_response - begin\n"));
//waits for "ok" from mmu
//function returns true if "ok" was received
//if timeout is set to true function return false if there is no "ok" received before timeout
bool response = true;
LongTimer mmu_get_reponse_timeout;
KEEPALIVE_STATE(IN_PROCESS);
mmu_get_reponse_timeout.start();
while (mmu_rx_ok() <= 0)
{
delay_keep_alive(100);
if (timeout && mmu_get_reponse_timeout.expired(5 * 60 * 1000ul))
{ //5 minutes timeout
response = false;
break;
}
}
printf_P(PSTR("mmu_get_response - end %d\n"), response?1:0);
return response;
}
void manage_response(bool move_axes, bool turn_off_nozzle)
{
bool response = false;
mmu_print_saved = false;
bool lcd_update_was_enabled = false;
float hotend_temp_bckp = degTargetHotend(active_extruder);
float z_position_bckp = current_position[Z_AXIS];
float x_position_bckp = current_position[X_AXIS];
float y_position_bckp = current_position[Y_AXIS];
while(!response)
{
response = mmu_get_response(true); //wait for "ok" from mmu
if (!response) { //no "ok" was received in reserved time frame, user will fix the issue on mmu unit
if (!mmu_print_saved) { //first occurence, we are saving current position, park print head in certain position and disable nozzle heater
if (lcd_update_enabled) {
lcd_update_was_enabled = true;
lcd_update_enable(false);
}
st_synchronize();
mmu_print_saved = true;
hotend_temp_bckp = degTargetHotend(active_extruder);
if (move_axes) {
z_position_bckp = current_position[Z_AXIS];
x_position_bckp = current_position[X_AXIS];
y_position_bckp = current_position[Y_AXIS];
//lift z
current_position[Z_AXIS] += Z_PAUSE_LIFT;
if (current_position[Z_AXIS] > Z_MAX_POS) current_position[Z_AXIS] = Z_MAX_POS;
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 15, active_extruder);
st_synchronize();
//Move XY to side
current_position[X_AXIS] = X_PAUSE_POS;
current_position[Y_AXIS] = Y_PAUSE_POS;
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 50, active_extruder);
st_synchronize();
}
if (turn_off_nozzle) {
//set nozzle target temperature to 0
setAllTargetHotends(0);
printf_P(PSTR("MMU not responding\n"));
lcd_show_fullscreen_message_and_wait_P(_i("MMU needs user attention. Please press knob to resume nozzle target temperature."));
setTargetHotend(hotend_temp_bckp, active_extruder);
while ((degTargetHotend(active_extruder) - degHotend(active_extruder)) > 5) {
delay_keep_alive(1000);
lcd_wait_for_heater();
}
}
}
lcd_display_message_fullscreen_P(_i("Check MMU. Fix the issue and then press button on MMU unit."));
}
else if (mmu_print_saved) {
printf_P(PSTR("MMU start responding\n"));
lcd_clear();
lcd_display_message_fullscreen_P(_i("MMU OK. Resuming..."));
if (move_axes) {
current_position[X_AXIS] = x_position_bckp;
current_position[Y_AXIS] = y_position_bckp;
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 50, active_extruder);
st_synchronize();
current_position[Z_AXIS] = z_position_bckp;
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 15, active_extruder);
st_synchronize();
}
else {
delay_keep_alive(1000); //delay just for showing MMU OK message for a while in case that there are no xyz movements
}
}
}
if (lcd_update_was_enabled) lcd_update_enable(true);
}
void mmu_load_to_nozzle()
{
st_synchronize();
bool saved_e_relative_mode = axis_relative_modes[E_AXIS];
if (!saved_e_relative_mode) axis_relative_modes[E_AXIS] = true;
current_position[E_AXIS] += 7.2f;
float feedrate = 562;
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate / 60, active_extruder);
st_synchronize();
current_position[E_AXIS] += 14.4f;
feedrate = 871;
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate / 60, active_extruder);
st_synchronize();
current_position[E_AXIS] += 36.0f;
feedrate = 1393;
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate / 60, active_extruder);
st_synchronize();
current_position[E_AXIS] += 14.4f;
feedrate = 871;
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate / 60, active_extruder);
st_synchronize();
if (!saved_e_relative_mode) axis_relative_modes[E_AXIS] = false;
}
void mmu_M600_load_filament(bool automatic)
{
//load filament for mmu v2
bool response = false;
bool yes = false;
if (!automatic) {
yes = lcd_show_fullscreen_message_yes_no_and_wait_P(_i("Do you want to switch extruder?"), false);
if(yes) tmp_extruder = choose_extruder_menu();
else tmp_extruder = mmu_extruder;
}
else {
tmp_extruder = (tmp_extruder+1)%5;
}
lcd_update_enable(false);
lcd_clear();
lcd_set_cursor(0, 1); lcd_puts_P(_T(MSG_LOADING_FILAMENT));
lcd_print(" ");
lcd_print(tmp_extruder + 1);
snmm_filaments_used |= (1 << tmp_extruder); //for stop print
printf_P(PSTR("T code: %d \n"), tmp_extruder);
mmu_printf_P(PSTR("T%d\n"), tmp_extruder);
manage_response(false, true);
mmu_extruder = tmp_extruder; //filament change is finished
mmu_load_to_nozzle();
st_synchronize();
current_position[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2, active_extruder);
}
void extr_mov(float shift, float feed_rate)
{ //move extruder no matter what the current heater temperature is
set_extrude_min_temp(.0);

View File

@ -7,6 +7,8 @@ extern bool mmu_enabled;
extern uint8_t mmu_extruder;
extern uint8_t tmp_extruder;
extern int8_t mmu_finda;
extern int16_t mmu_version;
@ -27,6 +29,17 @@ extern int8_t mmu_read_finda(void);
extern int16_t mmu_read_version(void);
extern int8_t mmu_set_filament_type(uint8_t extruder, uint8_t filament);
extern bool mmu_get_response(bool timeout);
extern void manage_response(bool move_axes, bool turn_off_nozzle);
extern void mmu_load_to_nozzle();
extern void mmu_M600_load_filament(bool automatic);
extern void extr_mov(float shift, float feed_rate);
extern void change_extr(int extr);

View File

@ -604,12 +604,13 @@ static void lcd_implementation_status_screen()
//Print Feedrate
lcd_set_cursor(LCD_WIDTH - 8-2, 1);
lcd_puts_P(PSTR(" "));
/*
if (maxlimit_status)
{
maxlimit_status = 0;
lcd_print('!');
}
else
else*/
lcd_print(LCD_STR_FEEDRATE[0]);
lcd_print(itostr3(feedmultiply));
lcd_puts_P(PSTR("% "));
@ -1954,6 +1955,9 @@ static void lcd_menu_extruder_info()
// Display Nozzle fan RPM
fan_speed_RPM[0] = 60*fan_speed[0];
fan_speed_RPM[1] = 60*fan_speed[1];
lcd_timeoutToStatus.stop(); //infinite timeout
lcd_printf_P(_N(
ESC_H(0,0)
"Nozzle FAN: %4d RPM\n"
@ -2001,6 +2005,7 @@ static void lcd_menu_fails_stats_total()
// Filam. runouts 000
// Crash X 000 Y 000
//////////////////////
lcd_timeoutToStatus.stop(); //infinite timeout
uint16_t power = eeprom_read_word((uint16_t*)EEPROM_POWER_COUNT_TOT);
uint16_t filam = eeprom_read_word((uint16_t*)EEPROM_FERROR_COUNT_TOT);
uint16_t crashX = eeprom_read_word((uint16_t*)EEPROM_CRASH_COUNT_X_TOT);
@ -2017,6 +2022,7 @@ static void lcd_menu_fails_stats_print()
// Filam. runouts 000
// Crash X 000 Y 000
//////////////////////
lcd_timeoutToStatus.stop(); //infinite timeout
uint8_t power = eeprom_read_byte((uint8_t*)EEPROM_POWER_COUNT);
uint8_t filam = eeprom_read_byte((uint8_t*)EEPROM_FERROR_COUNT);
uint8_t crashX = eeprom_read_byte((uint8_t*)EEPROM_CRASH_COUNT_X);
@ -2057,6 +2063,7 @@ static void lcd_menu_fails_stats()
*/
static void lcd_menu_fails_stats()
{
lcd_timeoutToStatus.stop(); //infinite timeout
uint8_t filamentLast = eeprom_read_byte((uint8_t*)EEPROM_FERROR_COUNT);
uint16_t filamentTotal = eeprom_read_word((uint16_t*)EEPROM_FERROR_COUNT_TOT);
lcd_printf_P(PSTR(ESC_H(0,0) "Last print failures" ESC_H(1,1) "Filam. runouts %-3d" ESC_H(0,2) "Total failures" ESC_H(1,3) "Filam. runouts %-3d"), filamentLast, filamentTotal);
@ -2065,6 +2072,7 @@ static void lcd_menu_fails_stats()
#else
static void lcd_menu_fails_stats()
{
lcd_timeoutToStatus.stop(); //infinite timeout
MENU_BEGIN();
MENU_ITEM_BACK_P(_T(MSG_MAIN));
MENU_END();
@ -2091,6 +2099,8 @@ static void lcd_menu_debug()
static void lcd_menu_temperatures()
{
lcd_timeoutToStatus.stop(); //infinite timeout
lcd_printf_P(PSTR(ESC_H(1,0) "Nozzle: %d%c" ESC_H(1,1) "Bed: %d%c"), (int)current_temperature[0], '\x01', (int)current_temperature_bed, '\x01');
#ifdef AMBIENT_THERMISTOR
lcd_printf_P(PSTR(ESC_H(1,2) "Ambient: %d%c" ESC_H(1,3) "PINDA: %d%c"), (int)current_temperature_ambient, '\x01', (int)current_temperature_pinda, '\x01');
@ -2108,6 +2118,7 @@ static void lcd_menu_temperatures()
#define VOLT_DIV_REF 5
static void lcd_menu_voltages()
{
lcd_timeoutToStatus.stop(); //infinite timeout
float volt_pwr = VOLT_DIV_REF * ((float)current_voltage_raw_pwr / (1023 * OVERSAMPLENR)) / VOLT_DIV_FAC;
// float volt_bed = VOLT_DIV_REF * ((float)current_voltage_raw_bed / (1023 * OVERSAMPLENR)) / VOLT_DIV_FAC;
// lcd_printf_P(PSTR(ESC_H(1,1)"PWR: %d.%01dV" ESC_H(1,2)"BED: %d.%01dV"), (int)volt_pwr, (int)(10*fabs(volt_pwr - (int)volt_pwr)), (int)volt_bed, (int)(10*fabs(volt_bed - (int)volt_bed)));