Switch original LA implementation with LA1.5

This discards several Prusa optimizations for LA1.0.
We'll re-implement those later if needed.

Debugging is turned on.
This commit is contained in:
Yuri D'Elia 2019-05-04 21:02:33 +02:00
parent bf0c60dd45
commit cbf1a85ec3
4 changed files with 140 additions and 232 deletions

View File

@ -292,6 +292,8 @@
* Mention @Sebastianv650 on GitHub to alert the author of any issues. * Mention @Sebastianv650 on GitHub to alert the author of any issues.
*/ */
#define LIN_ADVANCE #define LIN_ADVANCE
#define LA_DEBUG
#define DEBUG_STEPPER_TIMER_MISSED
#ifdef LIN_ADVANCE #ifdef LIN_ADVANCE
#define LIN_ADVANCE_K 0 // Unit: mm compression per 1mm/s extruder speed #define LIN_ADVANCE_K 0 // Unit: mm compression per 1mm/s extruder speed

View File

@ -112,10 +112,10 @@ typedef struct {
float speed_factor; float speed_factor;
#ifdef LIN_ADVANCE #ifdef LIN_ADVANCE
bool use_advance_lead; bool use_advance_lead; // Whether the current block uses LA
uint16_t advance_speed, // Timer value for extruder speed offset uint16_t advance_speed, // Step-rate for extruder speed
max_adv_steps, // max. advance steps to get cruising speed pressure (not always nominal_speed!) max_adv_steps, // max. advance steps to get cruising speed pressure (not always nominal_speed!)
final_adv_steps; // advance steps due to exit speed final_adv_steps; // advance steps due to exit speed
float e_D_ratio; float e_D_ratio;
#endif #endif
@ -123,7 +123,7 @@ typedef struct {
} block_t; } block_t;
#ifdef LIN_ADVANCE #ifdef LIN_ADVANCE
extern float extruder_advance_K; extern float extruder_advance_K; // Linear-advance K factor
#endif #endif
#ifdef ENABLE_AUTO_BED_LEVELING #ifdef ENABLE_AUTO_BED_LEVELING

View File

@ -113,21 +113,24 @@ volatile long count_position[NUM_AXIS] = { 0, 0, 0, 0};
volatile signed char count_direction[NUM_AXIS] = { 1, 1, 1, 1}; volatile signed char count_direction[NUM_AXIS] = { 1, 1, 1, 1};
#ifdef LIN_ADVANCE #ifdef LIN_ADVANCE
void advance_isr_scheduler();
void advance_isr();
static const uint16_t ADV_NEVER = 0xFFFF;
static uint16_t nextMainISR = 0; static uint16_t nextMainISR = 0;
static uint16_t eISR_Rate; static uint16_t nextAdvanceISR = ADV_NEVER;
// Extrusion steps to be executed by the stepper. static uint16_t eISR_Rate = ADV_NEVER;
// If set to non zero, the timer ISR routine will tick the Linear Advance extruder ticks first.
// If e_steps is zero, then the timer ISR routine will perform the usual DDA step. static bool use_advance_lead;
static volatile int16_t e_steps = 0;
// How many extruder steps shall be ticked at a single ISR invocation? static uint16_t current_adv_steps;
static uint8_t estep_loops; static uint16_t final_adv_steps;
// The current speed of the extruder, scaled by the linear advance constant, so it has the same measure static uint16_t max_adv_steps;
// as current_adv_steps. static uint32_t LA_decelerate_after;
static int current_estep_rate;
// The current pretension of filament expressed in extruder micro steps. static volatile int8_t e_steps;
static int current_adv_steps;
#define _NEXT_ISR(T) nextMainISR = T #define _NEXT_ISR(T) nextMainISR = T
#else #else
@ -353,29 +356,6 @@ FORCE_INLINE unsigned short calc_timer(uint16_t step_rate) {
} }
#ifndef FILAMENT_SENSOR
#define fsensor_step(cnt)
#else
FORCE_INLINE void fsensor_step(uint8_t cnt)
{
if (READ(E0_DIR_PIN) == INVERT_E0_DIR)
{
if (count_direction[E_AXIS] == 1)
fsensor_counter -= cnt;
else
fsensor_counter += cnt;
}
else
{
if (count_direction[E_AXIS] == 1)
fsensor_counter += cnt;
else
fsensor_counter -= cnt;
}
}
#endif
// "The Stepper Driver Interrupt" - This timer interrupt is the workhorse. // "The Stepper Driver Interrupt" - This timer interrupt is the workhorse.
// It pops blocks from the block_buffer and executes them by pulsing the stepper pins appropriately. // It pops blocks from the block_buffer and executes them by pulsing the stepper pins appropriately.
ISR(TIMER1_COMPA_vect) { ISR(TIMER1_COMPA_vect) {
@ -385,38 +365,10 @@ ISR(TIMER1_COMPA_vect) {
#endif //DEBUG_STACK_MONITOR #endif //DEBUG_STACK_MONITOR
#ifdef LIN_ADVANCE #ifdef LIN_ADVANCE
// If there are any e_steps planned, tick them. advance_isr_scheduler();
bool run_main_isr = false; #else
if (e_steps) {
//WRITE_NC(LOGIC_ANALYZER_CH7, true);
uint8_t cnt = 0;
for (uint8_t i = estep_loops; e_steps && i --;) {
WRITE_NC(E0_STEP_PIN, !INVERT_E_STEP_PIN);
-- e_steps;
cnt++;
WRITE_NC(E0_STEP_PIN, INVERT_E_STEP_PIN);
}
fsensor_step(cnt);
if (e_steps) {
// Plan another Linear Advance tick.
OCR1A = eISR_Rate;
nextMainISR -= eISR_Rate;
} else if (! (nextMainISR & 0x8000) || nextMainISR < 16) {
// The timer did not overflow and it is big enough, so it makes sense to plan it.
OCR1A = nextMainISR;
} else {
// The timer has overflown, or it is too small. Run the main ISR just after the Linear Advance routine
// in the current interrupt tick.
run_main_isr = true;
//FIXME pick the serial line.
}
//WRITE_NC(LOGIC_ANALYZER_CH7, false);
} else
run_main_isr = true;
if (run_main_isr)
#endif
isr(); isr();
#endif
// Don't run the ISR faster than possible // Don't run the ISR faster than possible
// Is there a 8us time left before the next interrupt triggers? // Is there a 8us time left before the next interrupt triggers?
@ -517,9 +469,14 @@ FORCE_INLINE void stepper_next_block()
step_loops_nominal = 0; step_loops_nominal = 0;
acc_step_rate = uint16_t(current_block->initial_rate); acc_step_rate = uint16_t(current_block->initial_rate);
acceleration_time = calc_timer(acc_step_rate); acceleration_time = calc_timer(acc_step_rate);
#ifdef LIN_ADVANCE #ifdef LIN_ADVANCE
current_estep_rate = ((unsigned long)acc_step_rate * current_block->abs_adv_steps_multiplier8) >> 17; if ((use_advance_lead = current_block->use_advance_lead)) {
#endif /* LIN_ADVANCE */ LA_decelerate_after = current_block->decelerate_after;
final_adv_steps = current_block->final_adv_steps;
max_adv_steps = current_block->max_adv_steps;
}
#endif
if (current_block->flag & BLOCK_FLAG_DDA_LOWRES) { if (current_block->flag & BLOCK_FLAG_DDA_LOWRES) {
counter_x.lo = -(current_block->step_event_count.lo >> 1); counter_x.lo = -(current_block->step_event_count.lo >> 1);
@ -788,7 +745,7 @@ FORCE_INLINE void stepper_tick_lowres()
counter_e.lo -= current_block->step_event_count.lo; counter_e.lo -= current_block->step_event_count.lo;
count_position[E_AXIS] += count_direction[E_AXIS]; count_position[E_AXIS] += count_direction[E_AXIS];
#ifdef LIN_ADVANCE #ifdef LIN_ADVANCE
++ e_steps; e_steps += count_direction[E_AXIS];
#else #else
#ifdef FILAMENT_SENSOR #ifdef FILAMENT_SENSOR
++ fsensor_counter; ++ fsensor_counter;
@ -850,11 +807,11 @@ FORCE_INLINE void stepper_tick_highres()
counter_e.wide -= current_block->step_event_count.wide; counter_e.wide -= current_block->step_event_count.wide;
count_position[E_AXIS]+=count_direction[E_AXIS]; count_position[E_AXIS]+=count_direction[E_AXIS];
#ifdef LIN_ADVANCE #ifdef LIN_ADVANCE
++ e_steps; e_steps += count_direction[E_AXIS];
#else #else
#ifdef FILAMENT_SENSOR #ifdef FILAMENT_SENSOR
++ fsensor_counter; ++ fsensor_counter;
#endif //FILAMENT_SENSOR #endif //FILAMENT_SENSOR
WRITE(E0_STEP_PIN, INVERT_E_STEP_PIN); WRITE(E0_STEP_PIN, INVERT_E_STEP_PIN);
#endif #endif
} }
@ -863,9 +820,6 @@ FORCE_INLINE void stepper_tick_highres()
} }
} }
// 50us delay
#define LIN_ADV_FIRST_TICK_DELAY 100
FORCE_INLINE void isr() { FORCE_INLINE void isr() {
//WRITE_NC(LOGIC_ANALYZER_CH0, true); //WRITE_NC(LOGIC_ANALYZER_CH0, true);
@ -877,65 +831,11 @@ FORCE_INLINE void isr() {
if (current_block != NULL) if (current_block != NULL)
{ {
stepper_check_endstops(); stepper_check_endstops();
#ifdef LIN_ADVANCE
e_steps = 0;
#endif /* LIN_ADVANCE */
if (current_block->flag & BLOCK_FLAG_DDA_LOWRES) if (current_block->flag & BLOCK_FLAG_DDA_LOWRES)
stepper_tick_lowres(); stepper_tick_lowres();
else else
stepper_tick_highres(); stepper_tick_highres();
#ifdef LIN_ADVANCE
if (out_bits&(1<<E_AXIS))
// Move in negative direction.
e_steps = - e_steps;
if (current_block->use_advance_lead) {
//int esteps_inc = 0;
//esteps_inc = current_estep_rate - current_adv_steps;
//e_steps += esteps_inc;
e_steps += current_estep_rate - current_adv_steps;
#if 0
if (abs(esteps_inc) > 4) {
LOGIC_ANALYZER_SERIAL_TX_WRITE(esteps_inc);
if (esteps_inc < -511 || esteps_inc > 511)
LOGIC_ANALYZER_SERIAL_TX_WRITE(esteps_inc >> 9);
}
#endif
current_adv_steps = current_estep_rate;
}
// If we have esteps to execute, step some of them now.
if (e_steps) {
//WRITE_NC(LOGIC_ANALYZER_CH7, true);
// Set the step direction.
bool neg = e_steps < 0;
{
bool dir =
#ifdef SNMM
(neg == (mmu_extruder & 1))
#else
neg
#endif
? INVERT_E0_DIR : !INVERT_E0_DIR; //If we have SNMM, reverse every second extruder.
WRITE_NC(E0_DIR_PIN, dir);
if (neg)
// Flip the e_steps counter to be always positive.
e_steps = - e_steps;
}
// Tick min(step_loops, abs(e_steps)).
estep_loops = (e_steps & 0x0ff00) ? 4 : e_steps;
if (step_loops < estep_loops)
estep_loops = step_loops;
fsensor_step(estep_loops);
do {
WRITE_NC(E0_STEP_PIN, !INVERT_E_STEP_PIN);
-- e_steps;
WRITE_NC(E0_STEP_PIN, INVERT_E_STEP_PIN);
} while (-- estep_loops != 0);
//WRITE_NC(LOGIC_ANALYZER_CH7, false);
MSerial.checkRx(); // Check for serial chars.
}
#endif
// Calculare new timer value // Calculare new timer value
// 13.38-14.63us for steady state, // 13.38-14.63us for steady state,
// 25.12us for acceleration / deceleration. // 25.12us for acceleration / deceleration.
@ -952,11 +852,18 @@ FORCE_INLINE void isr() {
uint16_t timer = calc_timer(acc_step_rate); uint16_t timer = calc_timer(acc_step_rate);
_NEXT_ISR(timer); _NEXT_ISR(timer);
acceleration_time += timer; acceleration_time += timer;
#ifdef LIN_ADVANCE #ifdef LIN_ADVANCE
if (current_block->use_advance_lead) if (current_block->use_advance_lead) {
// int32_t = (uint16_t * uint32_t) >> 17 if (step_events_completed.wide == (unsigned long int)step_loops || (e_steps && eISR_Rate != current_block->advance_speed)) {
current_estep_rate = ((uint32_t)acc_step_rate * current_block->abs_adv_steps_multiplier8) >> 17; nextAdvanceISR = 0; // Wake up eISR on first acceleration loop and fire ISR if final adv_rate is reached
#endif eISR_Rate = current_block->advance_speed;
}
}
else {
eISR_Rate = ADV_NEVER;
if (e_steps) nextAdvanceISR = 0;
}
#endif
} }
else if (step_events_completed.wide > (unsigned long int)current_block->decelerate_after) { else if (step_events_completed.wide > (unsigned long int)current_block->decelerate_after) {
uint16_t step_rate; uint16_t step_rate;
@ -970,103 +877,35 @@ FORCE_INLINE void isr() {
uint16_t timer = calc_timer(step_rate); uint16_t timer = calc_timer(step_rate);
_NEXT_ISR(timer); _NEXT_ISR(timer);
deceleration_time += timer; deceleration_time += timer;
#ifdef LIN_ADVANCE #ifdef LIN_ADVANCE
if (current_block->use_advance_lead) if (current_block->use_advance_lead) {
current_estep_rate = ((uint32_t)step_rate * current_block->abs_adv_steps_multiplier8) >> 17; if (step_events_completed.wide <= (unsigned long int)current_block->decelerate_after + step_loops || (e_steps && eISR_Rate != current_block->advance_speed)) {
#endif nextAdvanceISR = 0; // Wake up eISR on first deceleration loop
eISR_Rate = current_block->advance_speed;
}
}
else {
eISR_Rate = ADV_NEVER;
if (e_steps) nextAdvanceISR = 0;
}
#endif
} }
else { else {
#ifdef LIN_ADVANCE
// If we have esteps to execute, fire the next advance_isr "now"
if (e_steps && eISR_Rate != current_block->advance_speed) nextAdvanceISR = 0;
#endif
if (! step_loops_nominal) { if (! step_loops_nominal) {
// Calculation of the steady state timer rate has been delayed to the 1st tick of the steady state to lower // Calculation of the steady state timer rate has been delayed to the 1st tick of the steady state to lower
// the initial interrupt blocking. // the initial interrupt blocking.
OCR1A_nominal = calc_timer(uint16_t(current_block->nominal_rate)); OCR1A_nominal = calc_timer(uint16_t(current_block->nominal_rate));
step_loops_nominal = step_loops; step_loops_nominal = step_loops;
#ifdef LIN_ADVANCE
if (current_block->use_advance_lead)
current_estep_rate = (current_block->nominal_rate * current_block->abs_adv_steps_multiplier8) >> 17;
#endif
} }
_NEXT_ISR(OCR1A_nominal); _NEXT_ISR(OCR1A_nominal);
} }
//WRITE_NC(LOGIC_ANALYZER_CH1, false); //WRITE_NC(LOGIC_ANALYZER_CH1, false);
} }
#ifdef LIN_ADVANCE
if (e_steps && current_block->use_advance_lead) {
//WRITE_NC(LOGIC_ANALYZER_CH7, true);
MSerial.checkRx(); // Check for serial chars.
// Some of the E steps were not ticked yet. Plan additional interrupts.
uint16_t now = TCNT1;
// Plan the first linear advance interrupt after 50us from now.
uint16_t to_go = nextMainISR - now - LIN_ADV_FIRST_TICK_DELAY;
eISR_Rate = 0;
if ((to_go & 0x8000) == 0) {
// The to_go number is not negative.
// Count the number of 7812,5 ticks, that fit into to_go 2MHz ticks.
uint8_t ticks = to_go >> 8;
if (ticks == 1) {
// Avoid running the following loop for a very short interval.
estep_loops = 255;
eISR_Rate = 1;
} else if ((e_steps & 0x0ff00) == 0) {
// e_steps <= 0x0ff
if (uint8_t(e_steps) <= ticks) {
// Spread the e_steps along the whole go_to interval.
eISR_Rate = to_go / uint8_t(e_steps);
estep_loops = 1;
} else if (ticks != 0) {
// At least one tick fits into the to_go interval. Calculate the e-step grouping.
uint8_t e = uint8_t(e_steps) >> 1;
estep_loops = 2;
while (e > ticks) {
e >>= 1;
estep_loops <<= 1;
}
// Now the estep_loops contains the number of loops of power of 2, that will be sufficient
// to squeeze enough of Linear Advance ticks until nextMainISR.
// Calculate the tick rate.
eISR_Rate = to_go / ticks;
}
} else {
// This is an exterme case with too many e_steps inserted by the linear advance.
// At least one tick fits into the to_go interval. Calculate the e-step grouping.
estep_loops = 2;
uint16_t e = e_steps >> 1;
while (e & 0x0ff00) {
e >>= 1;
estep_loops <<= 1;
}
while (uint8_t(e) > ticks) {
e >>= 1;
estep_loops <<= 1;
}
// Now the estep_loops contains the number of loops of power of 2, that will be sufficient
// to squeeze enough of Linear Advance ticks until nextMainISR.
// Calculate the tick rate.
eISR_Rate = to_go / ticks;
}
}
if (eISR_Rate == 0) {
// There is not enough time to fit even a single additional tick.
// Tick all the extruder ticks now.
MSerial.checkRx(); // Check for serial chars.
fsensor_step(e_steps);
do {
WRITE_NC(E0_STEP_PIN, !INVERT_E_STEP_PIN);
-- e_steps;
WRITE_NC(E0_STEP_PIN, INVERT_E_STEP_PIN);
} while (e_steps);
OCR1A = nextMainISR;
} else {
// Tick the 1st Linear Advance interrupt after 50us from now.
nextMainISR -= LIN_ADV_FIRST_TICK_DELAY;
OCR1A = now + LIN_ADV_FIRST_TICK_DELAY;
}
//WRITE_NC(LOGIC_ANALYZER_CH7, false);
} else
OCR1A = nextMainISR;
#endif
// If current block is finished, reset pointer // If current block is finished, reset pointer
if (step_events_completed.wide >= current_block->step_event_count.wide) { if (step_events_completed.wide >= current_block->step_event_count.wide) {
#ifdef FILAMENT_SENSOR #ifdef FILAMENT_SENSOR
@ -1094,10 +933,80 @@ FORCE_INLINE void isr() {
} }
#ifdef LIN_ADVANCE #ifdef LIN_ADVANCE
// Timer interrupt for E. e_steps is set in the main routine.
FORCE_INLINE void advance_isr() {
if (use_advance_lead) {
if (step_events_completed.wide > LA_decelerate_after && current_adv_steps > final_adv_steps) {
e_steps--;
current_adv_steps--;
nextAdvanceISR = eISR_Rate;
}
else if (step_events_completed.wide < LA_decelerate_after && current_adv_steps < max_adv_steps) {
e_steps++;
current_adv_steps++;
nextAdvanceISR = eISR_Rate;
}
else {
nextAdvanceISR = ADV_NEVER;
eISR_Rate = ADV_NEVER;
}
}
else
nextAdvanceISR = ADV_NEVER;
if (e_steps) {
MSerial.checkRx(); // Check for serial chars.
bool dir =
#ifdef SNMM
((e_steps < 0) == (snmm_extruder & 1))
#else
(e_steps < 0)
#endif
? INVERT_E0_DIR : !INVERT_E0_DIR; //If we have SNMM, reverse every second extruder.
WRITE(E0_DIR_PIN, dir);
if(e_steps < 0) e_steps = -e_steps;
fsensor_counter += e_steps;
while (e_steps) {
WRITE_NC(E0_STEP_PIN, !INVERT_E_STEP_PIN);
--e_steps;
WRITE_NC(E0_STEP_PIN, INVERT_E_STEP_PIN);
}
}
}
FORCE_INLINE void advance_isr_scheduler() {
// Run main stepping ISR if flagged
if (!nextMainISR) isr();
// Run Advance stepping ISR if flagged
if (!nextAdvanceISR) advance_isr();
// Is the next advance ISR scheduled before the next main ISR?
if (nextAdvanceISR <= nextMainISR) {
// Set up the next interrupt
OCR1A = nextAdvanceISR;
// New interval for the next main ISR
if (nextMainISR) nextMainISR -= nextAdvanceISR;
// Will call Stepper::advance_isr on the next interrupt
nextAdvanceISR = 0;
}
else {
// The next main ISR comes first
OCR1A = nextMainISR;
// New interval for the next advance ISR, if any
if (nextAdvanceISR && nextAdvanceISR != ADV_NEVER)
nextAdvanceISR -= nextMainISR;
// Will call Stepper::isr on the next interrupt
nextMainISR = 0;
}
}
void clear_current_adv_vars() { void clear_current_adv_vars() {
e_steps = 0; //Should be already 0 at an filament change event, but just to be sure.. e_steps = 0;
current_adv_steps = 0; current_adv_steps = 0;
} }
#endif // LIN_ADVANCE #endif // LIN_ADVANCE
@ -1326,8 +1235,7 @@ void st_init()
ENABLE_STEPPER_DRIVER_INTERRUPT(); ENABLE_STEPPER_DRIVER_INTERRUPT();
#ifdef LIN_ADVANCE #ifdef LIN_ADVANCE
e_steps = 0; clear_current_adv_vars();
current_adv_steps = 0;
#endif #endif
enable_endstops(true); // Start with endstops active. After homing they can be disabled enable_endstops(true); // Start with endstops active. After homing they can be disabled

View File

@ -38,9 +38,7 @@ void st_init();
void isr(); void isr();
#ifdef LIN_ADVANCE #ifdef LIN_ADVANCE
void advance_isr(); void clear_current_adv_vars(); // Used to reset the built up pretension and remaining esteps on filament change.
void advance_isr_scheduler();
void clear_current_adv_vars(); //Used to reset the built up pretension and remaining esteps on filament change.
#endif #endif
// Block until all buffered steps are executed // Block until all buffered steps are executed