Merge pull request #58 from XPila/MK3

Powerpanic Z correction improved.
This commit is contained in:
XPila 2017-09-23 20:37:13 +02:00 committed by GitHub
commit d29e16dfb7
2 changed files with 80 additions and 91 deletions

View file

@ -373,7 +373,6 @@ void uvlo_();
void recover_print(); void recover_print();
void setup_uvlo_interrupt(); void setup_uvlo_interrupt();
extern void save_print_to_eeprom();
extern void recover_machine_state_after_power_panic(); extern void recover_machine_state_after_power_panic();
extern void restore_print_from_eeprom(); extern void restore_print_from_eeprom();
extern void position_menu(); extern void position_menu();

View file

@ -6882,53 +6882,98 @@ void serialecho_temperatures() {
SERIAL_PROTOCOLLN(""); SERIAL_PROTOCOLLN("");
} }
extern uint32_t sdpos_atomic;
void uvlo_()
void uvlo_() { {
SERIAL_ECHOLNPGM("UVLO"); // Conserve power as soon as possible.
// Saves the current position of the start of the command queue in the file,
// the mesh bed leveling table and the current Z axis micro steps value into EEPROM.
save_print_to_eeprom();
// feedrate in mm/min
int feedrate_bckp = blocks_queued() ? (block_buffer[block_buffer_tail].nominal_speed * 60.f) : feedrate;
disable_x(); disable_x();
disable_y(); disable_y();
// Indicate that the interrupt has been triggered.
SERIAL_ECHOLNPGM("UVLO");
// Read out the current Z motor microstep counter. This will be later used
// for reaching the zero full step before powering off.
uint16_t z_microsteps = tmc2130_rd_MSCNT(Z_TMC2130_CS);
// Calculate the file position, from which to resume this print.
long sd_position = sdpos_atomic; //atomic sd position of last command added in queue
{
uint16_t sdlen_planner = planner_calc_sd_length(); //length of sd commands in planner
sd_position -= sdlen_planner;
uint16_t sdlen_cmdqueue = cmdqueue_calc_sd_length(); //length of sd commands in cmdqueue
sd_position -= sdlen_cmdqueue;
if (sd_position < 0) sd_position = 0;
}
// Backup the feedrate in mm/min.
int feedrate_bckp = blocks_queued() ? (block_buffer[block_buffer_tail].nominal_speed * 60.f) : feedrate;
// After this call, the planner queue is emptied and the current_position is set to a current logical coordinate. // After this call, the planner queue is emptied and the current_position is set to a current logical coordinate.
// The logical coordinate will likely differ from the machine coordinate if the skew calibration and mesh bed leveling // The logical coordinate will likely differ from the machine coordinate if the skew calibration and mesh bed leveling
// are in action. // are in action.
planner_abort_hard(); planner_abort_hard();
eeprom_update_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 0), current_position[X_AXIS]); // Clean the input command queue.
eeprom_update_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 4), current_position[Y_AXIS]); cmdqueue_reset();
eeprom_update_float((float*)(EEPROM_UVLO_CURRENT_POSITION_Z), current_position[Z_AXIS]); card.sdprinting = false;
EEPROM_save_B(EEPROM_UVLO_FEEDRATE, &feedrate_bckp); // card.closefile();
eeprom_update_byte((uint8_t*)EEPROM_UVLO_TARGET_HOTEND, target_temperature[active_extruder]);
eeprom_update_byte((uint8_t*)EEPROM_UVLO_TARGET_BED, target_temperature_bed); // Enable stepper driver interrupt to move Z axis.
eeprom_update_byte((uint8_t*)EEPROM_UVLO_FAN_SPEED, fanSpeed); // This should be fine as the planner and command queues are empty and the SD card printing is disabled.
// Because the planner_abort_hard() initialized current_position[Z] from the stepper, //FIXME one may want to disable serial lines at this point of time to avoid interfering with the command queue,
// Z baystep is no more applied. Reset it. // though it should not happen that the command queue is touched as the plan_buffer_line always succeed without blocking.
//babystep_reset(); sei();
// Clean the input command queue. plan_buffer_line(
cmdqueue_reset(); current_position[X_AXIS],
card.sdprinting = false; current_position[Y_AXIS],
card.closefile(); current_position[Z_AXIS],
current_position[E_AXIS] - DEFAULT_RETRACTION,
400, active_extruder);
plan_buffer_line(
current_position[X_AXIS],
current_position[Y_AXIS],
current_position[Z_AXIS] + UVLO_Z_AXIS_SHIFT + float((1024 - z_microsteps + 7) >> 4) / axis_steps_per_unit[Z_AXIS],
current_position[E_AXIS] - DEFAULT_RETRACTION,
40, active_extruder);
current_position[E_AXIS] -= DEFAULT_RETRACTION;
sei(); //enable stepper driver interrupt to move Z axis
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400, active_extruder);
st_synchronize();
// Move Z up to the next 0th full step. // Move Z up to the next 0th full step.
current_position[Z_AXIS] += UVLO_Z_AXIS_SHIFT + float((1024 - eeprom_read_word((uint16_t*)(EEPROM_UVLO_Z_MICROSTEPS)) + 8) >> 4) / axis_steps_per_unit[Z_AXIS]; // Write the file position.
eeprom_update_dword((uint32_t*)(EEPROM_FILE_POSITION), sd_position);
// Store the mesh bed leveling offsets. This is 2*9=18 bytes, which takes 18*3.4us=52us in worst case.
for (int8_t mesh_point = 0; mesh_point < 9; ++ mesh_point) {
uint8_t ix = mesh_point % MESH_MEAS_NUM_X_POINTS; // from 0 to MESH_NUM_X_POINTS - 1
uint8_t iy = mesh_point / MESH_MEAS_NUM_X_POINTS;
// Scale the z value to 1u resolution.
int16_t v = mbl.active ? int16_t(floor(mbl.z_values[iy*3][ix*3] * 1000.f + 0.5f)) : 0;
eeprom_update_word((uint16_t*)(EEPROM_UVLO_MESH_BED_LEVELING+2*mesh_point), *reinterpret_cast<uint16_t*>(&v));
}
// Read out the current Z motor microstep counter. This will be later used
// for reaching the zero full step before powering off.
eeprom_update_word((uint16_t*)(EEPROM_UVLO_Z_MICROSTEPS), z_microsteps);
// Store the current position.
eeprom_update_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 0), current_position[X_AXIS]);
eeprom_update_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 4), current_position[Y_AXIS]);
eeprom_update_float((float*)(EEPROM_UVLO_CURRENT_POSITION_Z), current_position[Z_AXIS]);
// Store the current feed rate, temperatures and fan speed.
EEPROM_save_B(EEPROM_UVLO_FEEDRATE, &feedrate_bckp);
eeprom_update_byte((uint8_t*)EEPROM_UVLO_TARGET_HOTEND, target_temperature[active_extruder]);
eeprom_update_byte((uint8_t*)EEPROM_UVLO_TARGET_BED, target_temperature_bed);
eeprom_update_byte((uint8_t*)EEPROM_UVLO_FAN_SPEED, fanSpeed);
// Finaly store the "power outage" flag.
eeprom_update_byte((uint8_t*)EEPROM_UVLO, 1); eeprom_update_byte((uint8_t*)EEPROM_UVLO, 1);
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 40, active_extruder);
st_synchronize();
SERIAL_ECHOPGM("stps");
MYSERIAL.println(tmc2130_rd_MSCNT(Z_TMC2130_CS));
#if 0
// Move the print head to the side of the print until all the power stored in the power supply capacitors is depleted. // Move the print head to the side of the print until all the power stored in the power supply capacitors is depleted.
current_position[X_AXIS] = (current_position[X_AXIS] < 0.5f * (X_MIN_POS + X_MAX_POS)) ? X_MIN_POS : X_MAX_POS; current_position[X_AXIS] = (current_position[X_AXIS] < 0.5f * (X_MIN_POS + X_MAX_POS)) ? X_MIN_POS : X_MAX_POS;
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 500, active_extruder); plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 500, active_extruder);
st_synchronize(); st_synchronize();
// disable_z(); #endif
disable_z();
SERIAL_ECHOLNPGM("UVLO - end"); SERIAL_ECHOLNPGM("UVLO - end");
cli(); cli();
@ -6953,56 +6998,6 @@ ISR(INT4_vect) {
if (IS_SD_PRINTING) uvlo_(); if (IS_SD_PRINTING) uvlo_();
} }
#define POWERPANIC_NEW_SD_POS
extern uint32_t sdpos_atomic;
void save_print_to_eeprom() {
//eeprom_update_word((uint16_t*)(EPROM_UVLO_CMD_QUEUE), bufindw - bufindr );
//BLOCK_BUFFER_SIZE: max. 16 linear moves in planner buffer
#define TYP_GCODE_LENGTH 30 //G1 X117.489 Y22.814 E1.46695 + cr lf
//card.get_sdpos() -> byte currently read from SD card
//bufindw -> position in circular buffer where to write
//bufindr -> position in circular buffer where to read
//bufflen -> number of lines in buffer -> for each line one special character??
//number_of_blocks() returns number of linear movements buffered in planner
#ifdef POWERPANIC_NEW_SD_POS
long sd_position = sdpos_atomic; //atomic sd position of last command added in queue
uint16_t sdlen_planner = planner_calc_sd_length(); //length of sd commands in planner
sd_position -= sdlen_planner;
uint16_t sdlen_cmdqueue = cmdqueue_calc_sd_length(); //length of sd commands in cmdqueue
sd_position -= sdlen_cmdqueue;
#else //POWERPANIC_NEW_SD_POS
long sd_position = card.get_sdpos() - ((bufindw > bufindr) ? (bufindw - bufindr) : sizeof(cmdbuffer) - bufindr + bufindw) - TYP_GCODE_LENGTH* number_of_blocks();
#endif //POWERPANIC_NEW_SD_POS
if (sd_position < 0) sd_position = 0;
/*SERIAL_ECHOPGM("sd position before correction:");
MYSERIAL.println(card.get_sdpos());
SERIAL_ECHOPGM("bufindw:");
MYSERIAL.println(bufindw);
SERIAL_ECHOPGM("bufindr:");
MYSERIAL.println(bufindr);
SERIAL_ECHOPGM("sizeof(cmd_buffer):");
MYSERIAL.println(sizeof(cmdbuffer));
SERIAL_ECHOPGM("sd position after correction:");
MYSERIAL.println(sd_position);*/
eeprom_update_dword((uint32_t*)(EEPROM_FILE_POSITION), sd_position);
// Store the mesh bed leveling offsets. This is 2*9=18 bytes, which takes 18*3.4us=52us in worst case.
for (int8_t mesh_point = 0; mesh_point < 9; ++ mesh_point) {
uint8_t ix = mesh_point % MESH_MEAS_NUM_X_POINTS; // from 0 to MESH_NUM_X_POINTS - 1
uint8_t iy = mesh_point / MESH_MEAS_NUM_X_POINTS;
// Scale the z value to 1u resolution.
int16_t v = mbl.active ? int16_t(floor(mbl.z_values[iy*3][ix*3] * 1000.f + 0.5f)) : 0;
eeprom_update_word((uint16_t*)(EEPROM_UVLO_MESH_BED_LEVELING+2*mesh_point), *reinterpret_cast<uint16_t*>(&v));
}
SERIAL_ECHOPGM("INT4 ");
print_mesh_bed_leveling_table();
// Read out the current Z motor microstep counter. This will be later used
// for reaching the zero full step before powering off.
eeprom_update_word((uint16_t*)(EEPROM_UVLO_Z_MICROSTEPS), tmc2130_rd_MSCNT(Z_TMC2130_CS));
}
void recover_print() { void recover_print() {
char cmd[30]; char cmd[30];
lcd_update_enable(true); lcd_update_enable(true);
@ -7051,7 +7046,7 @@ void recover_machine_state_after_power_panic()
// Recover the logical coordinate of the Z axis at the time of the power panic. // Recover the logical coordinate of the Z axis at the time of the power panic.
// The current position after power panic is moved to the next closest 0th full step. // The current position after power panic is moved to the next closest 0th full step.
current_position[Z_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION_Z)) + current_position[Z_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION_Z)) +
UVLO_Z_AXIS_SHIFT + float((1024 - eeprom_read_word((uint16_t*)(EEPROM_UVLO_Z_MICROSTEPS)) + 8) >> 4) / axis_steps_per_unit[Z_AXIS]; UVLO_Z_AXIS_SHIFT + float((1024 - eeprom_read_word((uint16_t*)(EEPROM_UVLO_Z_MICROSTEPS)) + 7) >> 4) / axis_steps_per_unit[Z_AXIS];
memcpy(destination, current_position, sizeof(destination)); memcpy(destination, current_position, sizeof(destination));
SERIAL_ECHOPGM("recover_machine_state_after_power_panic, initial "); SERIAL_ECHOPGM("recover_machine_state_after_power_panic, initial ");
@ -7357,13 +7352,8 @@ void print_mesh_bed_leveling_table()
SERIAL_ECHOPGM("mesh bed leveling: "); SERIAL_ECHOPGM("mesh bed leveling: ");
for (int8_t y = 0; y < MESH_NUM_Y_POINTS; ++ y) for (int8_t y = 0; y < MESH_NUM_Y_POINTS; ++ y)
for (int8_t x = 0; x < MESH_NUM_Y_POINTS; ++ x) { for (int8_t x = 0; x < MESH_NUM_Y_POINTS; ++ x) {
SERIAL_ECHOPGM("("); MYSERIAL.print(mbl.z_values[y][x], 3);
MYSERIAL.print(st_get_position_mm(X_AXIS), 3); SERIAL_ECHOPGM(" ");
SERIAL_ECHOPGM(", ");
MYSERIAL.print(st_get_position_mm(Y_AXIS), 3);
SERIAL_ECHOPGM(", ");
MYSERIAL.print(st_get_position_mm(Z_AXIS), 3);
SERIAL_ECHOPGM(") ");
} }
SERIAL_ECHOLNPGM(""); SERIAL_ECHOLNPGM("");
} }