diff --git a/Firmware/Marlin_main.cpp b/Firmware/Marlin_main.cpp
index f6109918..30980c57 100644
--- a/Firmware/Marlin_main.cpp
+++ b/Firmware/Marlin_main.cpp
@@ -1,7411 +1,7411 @@
-/* -*- c++ -*- */
-
-/*
- Reprap firmware based on Sprinter and grbl.
- Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
-
- This program is free software: you can redistribute it and/or modify
- it under the terms of the GNU General Public License as published by
- the Free Software Foundation, either version 3 of the License, or
- (at your option) any later version.
-
- This program is distributed in the hope that it will be useful,
- but WITHOUT ANY WARRANTY; without even the implied warranty of
- MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
- GNU General Public License for more details.
-
- You should have received a copy of the GNU General Public License
- along with this program. If not, see .
- */
-
-/*
- This firmware is a mashup between Sprinter and grbl.
- (https://github.com/kliment/Sprinter)
- (https://github.com/simen/grbl/tree)
-
- It has preliminary support for Matthew Roberts advance algorithm
- http://reprap.org/pipermail/reprap-dev/2011-May/003323.html
- */
-
-#include "Marlin.h"
-
-#ifdef ENABLE_AUTO_BED_LEVELING
-#include "vector_3.h"
- #ifdef AUTO_BED_LEVELING_GRID
- #include "qr_solve.h"
- #endif
-#endif // ENABLE_AUTO_BED_LEVELING
-
-#ifdef MESH_BED_LEVELING
- #include "mesh_bed_leveling.h"
- #include "mesh_bed_calibration.h"
-#endif
-
-#include "ultralcd.h"
-#include "Configuration_prusa.h"
-#include "planner.h"
-#include "stepper.h"
-#include "temperature.h"
-#include "motion_control.h"
-#include "cardreader.h"
-#include "watchdog.h"
-#include "ConfigurationStore.h"
-#include "language.h"
-#include "pins_arduino.h"
-#include "math.h"
-#include "util.h"
-
-#include
-
-#include "Dcodes.h"
-
-
-#ifdef SWSPI
-#include "swspi.h"
-#endif //SWSPI
-
-#ifdef SWI2C
-#include "swi2c.h"
-#endif //SWI2C
-
-#ifdef PAT9125
-#include "pat9125.h"
-#include "fsensor.h"
-#endif //PAT9125
-
-#ifdef TMC2130
-#include "tmc2130.h"
-#endif //TMC2130
-
-
-#ifdef BLINKM
-#include "BlinkM.h"
-#include "Wire.h"
-#endif
-
-#ifdef ULTRALCD
-#include "ultralcd.h"
-#endif
-
-#if NUM_SERVOS > 0
-#include "Servo.h"
-#endif
-
-#if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
-#include
-#endif
-
-#define VERSION_STRING "1.0.2"
-
-
-#include "ultralcd.h"
-
-#include "cmdqueue.h"
-
-// Macros for bit masks
-#define BIT(b) (1<<(b))
-#define TEST(n,b) (((n)&BIT(b))!=0)
-#define SET_BIT(n,b,value) (n) ^= ((-value)^(n)) & (BIT(b))
-
-//Macro for print fan speed
-#define FAN_PULSE_WIDTH_LIMIT ((fanSpeed > 100) ? 3 : 4) //time in ms
-
-// look here for descriptions of G-codes: http://linuxcnc.org/handbook/gcode/g-code.html
-// http://objects.reprap.org/wiki/Mendel_User_Manual:_RepRapGCodes
-
-//Implemented Codes
-//-------------------
-
-// PRUSA CODES
-// P F - Returns FW versions
-// P R - Returns revision of printer
-
-// G0 -> G1
-// G1 - Coordinated Movement X Y Z E
-// G2 - CW ARC
-// G3 - CCW ARC
-// G4 - Dwell S or P
-// G10 - retract filament according to settings of M207
-// G11 - retract recover filament according to settings of M208
-// G28 - Home all Axis
-// G29 - Detailed Z-Probe, probes the bed at 3 or more points. Will fail if you haven't homed yet.
-// G30 - Single Z Probe, probes bed at current XY location.
-// G31 - Dock sled (Z_PROBE_SLED only)
-// G32 - Undock sled (Z_PROBE_SLED only)
-// G80 - Automatic mesh bed leveling
-// G81 - Print bed profile
-// G90 - Use Absolute Coordinates
-// G91 - Use Relative Coordinates
-// G92 - Set current position to coordinates given
-
-// M Codes
-// M0 - Unconditional stop - Wait for user to press a button on the LCD (Only if ULTRA_LCD is enabled)
-// M1 - Same as M0
-// M17 - Enable/Power all stepper motors
-// M18 - Disable all stepper motors; same as M84
-// M20 - List SD card
-// M21 - Init SD card
-// M22 - Release SD card
-// M23 - Select SD file (M23 filename.g)
-// M24 - Start/resume SD print
-// M25 - Pause SD print
-// M26 - Set SD position in bytes (M26 S12345)
-// M27 - Report SD print status
-// M28 - Start SD write (M28 filename.g)
-// M29 - Stop SD write
-// M30 - Delete file from SD (M30 filename.g)
-// M31 - Output time since last M109 or SD card start to serial
-// M32 - Select file and start SD print (Can be used _while_ printing from SD card files):
-// syntax "M32 /path/filename#", or "M32 S !filename#"
-// Call gcode file : "M32 P !filename#" and return to caller file after finishing (similar to #include).
-// The '#' is necessary when calling from within sd files, as it stops buffer prereading
-// M42 - Change pin status via gcode Use M42 Px Sy to set pin x to value y, when omitting Px the onboard led will be used.
-// M80 - Turn on Power Supply
-// M81 - Turn off Power Supply
-// M82 - Set E codes absolute (default)
-// M83 - Set E codes relative while in Absolute Coordinates (G90) mode
-// M84 - Disable steppers until next move,
-// or use S to specify an inactivity timeout, after which the steppers will be disabled. S0 to disable the timeout.
-// M85 - Set inactivity shutdown timer with parameter S. To disable set zero (default)
-// M92 - Set axis_steps_per_unit - same syntax as G92
-// M104 - Set extruder target temp
-// M105 - Read current temp
-// M106 - Fan on
-// M107 - Fan off
-// M109 - Sxxx Wait for extruder current temp to reach target temp. Waits only when heating
-// Rxxx Wait for extruder current temp to reach target temp. Waits when heating and cooling
-// IF AUTOTEMP is enabled, S B F. Exit autotemp by any M109 without F
-// M112 - Emergency stop
-// M114 - Output current position to serial port
-// M115 - Capabilities string
-// M117 - display message
-// M119 - Output Endstop status to serial port
-// M126 - Solenoid Air Valve Open (BariCUDA support by jmil)
-// M127 - Solenoid Air Valve Closed (BariCUDA vent to atmospheric pressure by jmil)
-// M128 - EtoP Open (BariCUDA EtoP = electricity to air pressure transducer by jmil)
-// M129 - EtoP Closed (BariCUDA EtoP = electricity to air pressure transducer by jmil)
-// M140 - Set bed target temp
-// M150 - Set BlinkM Color Output R: Red<0-255> U(!): Green<0-255> B: Blue<0-255> over i2c, G for green does not work.
-// M190 - Sxxx Wait for bed current temp to reach target temp. Waits only when heating
-// Rxxx Wait for bed current temp to reach target temp. Waits when heating and cooling
-// M200 D- set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
-// M201 - Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
-// M202 - Set max acceleration in units/s^2 for travel moves (M202 X1000 Y1000) Unused in Marlin!!
-// M203 - Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in mm/sec
-// M204 - Set default acceleration: S normal moves T filament only moves (M204 S3000 T7000) in mm/sec^2 also sets minimum segment time in ms (B20000) to prevent buffer under-runs and M20 minimum feedrate
-// M205 - advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk, E=maximum E jerk
-// M206 - set additional homing offset
-// M207 - set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop], stays in mm regardless of M200 setting
-// M208 - set recover=unretract length S[positive mm surplus to the M207 S*] F[feedrate mm/sec]
-// M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
-// M218 - set hotend offset (in mm): T X Y
-// M220 S- set speed factor override percentage
-// M221 S- set extrude factor override percentage
-// M226 P S- Wait until the specified pin reaches the state required
-// M240 - Trigger a camera to take a photograph
-// M250 - Set LCD contrast C (value 0..63)
-// M280 - set servo position absolute. P: servo index, S: angle or microseconds
-// M300 - Play beep sound S P
-// M301 - Set PID parameters P I and D
-// M302 - Allow cold extrudes, or set the minimum extrude S.
-// M303 - PID relay autotune S sets the target temperature. (default target temperature = 150C)
-// M304 - Set bed PID parameters P I and D
-// M400 - Finish all moves
-// M401 - Lower z-probe if present
-// M402 - Raise z-probe if present
-// M404 - N Enter the nominal filament width (3mm, 1.75mm ) or will display nominal filament width without parameters
-// M405 - Turn on Filament Sensor extrusion control. Optional D to set delay in centimeters between sensor and extruder
-// M406 - Turn off Filament Sensor extrusion control
-// M407 - Displays measured filament diameter
-// M500 - stores parameters in EEPROM
-// M501 - reads parameters from EEPROM (if you need reset them after you changed them temporarily).
-// M502 - reverts to the default "factory settings". You still need to store them in EEPROM afterwards if you want to.
-// M503 - print the current settings (from memory not from EEPROM)
-// M509 - force language selection on next restart
-// M540 - Use S[0|1] to enable or disable the stop SD card print on endstop hit (requires ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
-// M600 - Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
-// M605 - Set dual x-carriage movement mode: S [ X R ]
-// M900 - Set LIN_ADVANCE options, if enabled. See Configuration_adv.h for details.
-// M907 - Set digital trimpot motor current using axis codes.
-// M908 - Control digital trimpot directly.
-// M350 - Set microstepping mode.
-// M351 - Toggle MS1 MS2 pins directly.
-
-// M928 - Start SD logging (M928 filename.g) - ended by M29
-// M999 - Restart after being stopped by error
-
-//Stepper Movement Variables
-
-//===========================================================================
-//=============================imported variables============================
-//===========================================================================
-
-
-//===========================================================================
-//=============================public variables=============================
-//===========================================================================
-#ifdef SDSUPPORT
-CardReader card;
-#endif
-
-unsigned long PingTime = millis();
-union Data
-{
-byte b[2];
-int value;
-};
-
-float homing_feedrate[] = HOMING_FEEDRATE;
-// Currently only the extruder axis may be switched to a relative mode.
-// Other axes are always absolute or relative based on the common relative_mode flag.
-bool axis_relative_modes[] = AXIS_RELATIVE_MODES;
-int feedmultiply=100; //100->1 200->2
-int saved_feedmultiply;
-int extrudemultiply=100; //100->1 200->2
-int extruder_multiply[EXTRUDERS] = {100
- #if EXTRUDERS > 1
- , 100
- #if EXTRUDERS > 2
- , 100
- #endif
- #endif
-};
-
-int bowden_length[4];
-
-bool is_usb_printing = false;
-bool homing_flag = false;
-
-bool temp_cal_active = false;
-
-unsigned long kicktime = millis()+100000;
-
-unsigned int usb_printing_counter;
-
-int lcd_change_fil_state = 0;
-
-int feedmultiplyBckp = 100;
-float HotendTempBckp = 0;
-int fanSpeedBckp = 0;
-float pause_lastpos[4];
-unsigned long pause_time = 0;
-unsigned long start_pause_print = millis();
-unsigned long t_fan_rising_edge = millis();
-
-unsigned long load_filament_time;
-
-bool mesh_bed_leveling_flag = false;
-bool mesh_bed_run_from_menu = false;
-
-unsigned char lang_selected = 0;
-int8_t FarmMode = 0;
-
-bool prusa_sd_card_upload = false;
-
-unsigned int status_number = 0;
-
-unsigned long total_filament_used;
-unsigned int heating_status;
-unsigned int heating_status_counter;
-bool custom_message;
-bool loading_flag = false;
-unsigned int custom_message_type;
-unsigned int custom_message_state;
-char snmm_filaments_used = 0;
-
-float distance_from_min[3];
-float angleDiff;
-
-bool fan_state[2];
-int fan_edge_counter[2];
-int fan_speed[2];
-
-
-bool volumetric_enabled = false;
-float filament_size[EXTRUDERS] = { DEFAULT_NOMINAL_FILAMENT_DIA
- #if EXTRUDERS > 1
- , DEFAULT_NOMINAL_FILAMENT_DIA
- #if EXTRUDERS > 2
- , DEFAULT_NOMINAL_FILAMENT_DIA
- #endif
- #endif
-};
-float volumetric_multiplier[EXTRUDERS] = {1.0
- #if EXTRUDERS > 1
- , 1.0
- #if EXTRUDERS > 2
- , 1.0
- #endif
- #endif
-};
-float current_position[NUM_AXIS] = { 0.0, 0.0, 0.0, 0.0 };
-float add_homing[3]={0,0,0};
-
-float min_pos[3] = { X_MIN_POS, Y_MIN_POS, Z_MIN_POS };
-float max_pos[3] = { X_MAX_POS, Y_MAX_POS, Z_MAX_POS };
-bool axis_known_position[3] = {false, false, false};
-float zprobe_zoffset;
-
-// Extruder offset
-#if EXTRUDERS > 1
- #define NUM_EXTRUDER_OFFSETS 2 // only in XY plane
-float extruder_offset[NUM_EXTRUDER_OFFSETS][EXTRUDERS] = {
-#if defined(EXTRUDER_OFFSET_X) && defined(EXTRUDER_OFFSET_Y)
- EXTRUDER_OFFSET_X, EXTRUDER_OFFSET_Y
-#endif
-};
-#endif
-
-uint8_t active_extruder = 0;
-int fanSpeed=0;
-
-#ifdef FWRETRACT
- bool autoretract_enabled=false;
- bool retracted[EXTRUDERS]={false
- #if EXTRUDERS > 1
- , false
- #if EXTRUDERS > 2
- , false
- #endif
- #endif
- };
- bool retracted_swap[EXTRUDERS]={false
- #if EXTRUDERS > 1
- , false
- #if EXTRUDERS > 2
- , false
- #endif
- #endif
- };
-
- float retract_length = RETRACT_LENGTH;
- float retract_length_swap = RETRACT_LENGTH_SWAP;
- float retract_feedrate = RETRACT_FEEDRATE;
- float retract_zlift = RETRACT_ZLIFT;
- float retract_recover_length = RETRACT_RECOVER_LENGTH;
- float retract_recover_length_swap = RETRACT_RECOVER_LENGTH_SWAP;
- float retract_recover_feedrate = RETRACT_RECOVER_FEEDRATE;
-#endif
-
-#ifdef ULTIPANEL
- #ifdef PS_DEFAULT_OFF
- bool powersupply = false;
- #else
- bool powersupply = true;
- #endif
-#endif
-
-bool cancel_heatup = false ;
-
-#ifdef FILAMENT_SENSOR
- //Variables for Filament Sensor input
- float filament_width_nominal=DEFAULT_NOMINAL_FILAMENT_DIA; //Set nominal filament width, can be changed with M404
- bool filament_sensor=false; //M405 turns on filament_sensor control, M406 turns it off
- float filament_width_meas=DEFAULT_MEASURED_FILAMENT_DIA; //Stores the measured filament diameter
- signed char measurement_delay[MAX_MEASUREMENT_DELAY+1]; //ring buffer to delay measurement store extruder factor after subtracting 100
- int delay_index1=0; //index into ring buffer
- int delay_index2=-1; //index into ring buffer - set to -1 on startup to indicate ring buffer needs to be initialized
- float delay_dist=0; //delay distance counter
- int meas_delay_cm = MEASUREMENT_DELAY_CM; //distance delay setting
-#endif
-
-const char errormagic[] PROGMEM = "Error:";
-const char echomagic[] PROGMEM = "echo:";
-
-//===========================================================================
-//=============================Private Variables=============================
-//===========================================================================
-const char axis_codes[NUM_AXIS] = {'X', 'Y', 'Z', 'E'};
-float destination[NUM_AXIS] = { 0.0, 0.0, 0.0, 0.0};
-
-static float delta[3] = {0.0, 0.0, 0.0};
-
-// For tracing an arc
-static float offset[3] = {0.0, 0.0, 0.0};
-static float feedrate = 1500.0, next_feedrate, saved_feedrate;
-
-// Determines Absolute or Relative Coordinates.
-// Also there is bool axis_relative_modes[] per axis flag.
-static bool relative_mode = false;
-
-const int sensitive_pins[] = SENSITIVE_PINS; // Sensitive pin list for M42
-
-//static float tt = 0;
-//static float bt = 0;
-
-//Inactivity shutdown variables
-static unsigned long previous_millis_cmd = 0;
-unsigned long max_inactive_time = 0;
-static unsigned long stepper_inactive_time = DEFAULT_STEPPER_DEACTIVE_TIME*1000l;
-
-unsigned long starttime=0;
-unsigned long stoptime=0;
-unsigned long _usb_timer = 0;
-
-static uint8_t tmp_extruder;
-
-bool extruder_under_pressure = true;
-
-
-bool Stopped=false;
-
-#if NUM_SERVOS > 0
- Servo servos[NUM_SERVOS];
-#endif
-
-bool CooldownNoWait = true;
-bool target_direction;
-
-//Insert variables if CHDK is defined
-#ifdef CHDK
-unsigned long chdkHigh = 0;
-boolean chdkActive = false;
-#endif
-
-//===========================================================================
-//=============================Routines======================================
-//===========================================================================
-
-void get_arc_coordinates();
-bool setTargetedHotend(int code);
-
-void serial_echopair_P(const char *s_P, float v)
- { serialprintPGM(s_P); SERIAL_ECHO(v); }
-void serial_echopair_P(const char *s_P, double v)
- { serialprintPGM(s_P); SERIAL_ECHO(v); }
-void serial_echopair_P(const char *s_P, unsigned long v)
- { serialprintPGM(s_P); SERIAL_ECHO(v); }
-
-#ifdef SDSUPPORT
- #include "SdFatUtil.h"
- int freeMemory() { return SdFatUtil::FreeRam(); }
-#else
- extern "C" {
- extern unsigned int __bss_end;
- extern unsigned int __heap_start;
- extern void *__brkval;
-
- int freeMemory() {
- int free_memory;
-
- if ((int)__brkval == 0)
- free_memory = ((int)&free_memory) - ((int)&__bss_end);
- else
- free_memory = ((int)&free_memory) - ((int)__brkval);
-
- return free_memory;
- }
- }
-#endif //!SDSUPPORT
-
-void setup_killpin()
-{
- #if defined(KILL_PIN) && KILL_PIN > -1
- SET_INPUT(KILL_PIN);
- WRITE(KILL_PIN,HIGH);
- #endif
-}
-
-// Set home pin
-void setup_homepin(void)
-{
-#if defined(HOME_PIN) && HOME_PIN > -1
- SET_INPUT(HOME_PIN);
- WRITE(HOME_PIN,HIGH);
-#endif
-}
-
-void setup_photpin()
-{
- #if defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1
- SET_OUTPUT(PHOTOGRAPH_PIN);
- WRITE(PHOTOGRAPH_PIN, LOW);
- #endif
-}
-
-void setup_powerhold()
-{
- #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
- SET_OUTPUT(SUICIDE_PIN);
- WRITE(SUICIDE_PIN, HIGH);
- #endif
- #if defined(PS_ON_PIN) && PS_ON_PIN > -1
- SET_OUTPUT(PS_ON_PIN);
- #if defined(PS_DEFAULT_OFF)
- WRITE(PS_ON_PIN, PS_ON_ASLEEP);
- #else
- WRITE(PS_ON_PIN, PS_ON_AWAKE);
- #endif
- #endif
-}
-
-void suicide()
-{
- #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
- SET_OUTPUT(SUICIDE_PIN);
- WRITE(SUICIDE_PIN, LOW);
- #endif
-}
-
-void servo_init()
-{
- #if (NUM_SERVOS >= 1) && defined(SERVO0_PIN) && (SERVO0_PIN > -1)
- servos[0].attach(SERVO0_PIN);
- #endif
- #if (NUM_SERVOS >= 2) && defined(SERVO1_PIN) && (SERVO1_PIN > -1)
- servos[1].attach(SERVO1_PIN);
- #endif
- #if (NUM_SERVOS >= 3) && defined(SERVO2_PIN) && (SERVO2_PIN > -1)
- servos[2].attach(SERVO2_PIN);
- #endif
- #if (NUM_SERVOS >= 4) && defined(SERVO3_PIN) && (SERVO3_PIN > -1)
- servos[3].attach(SERVO3_PIN);
- #endif
- #if (NUM_SERVOS >= 5)
- #error "TODO: enter initalisation code for more servos"
- #endif
-}
-
-static void lcd_language_menu();
-
-void stop_and_save_print_to_ram(float z_move, float e_move);
-void restore_print_from_ram_and_continue(float e_move);
-
-extern int8_t CrashDetectMenu;
-
-
-void crashdet_enable()
-{
- MYSERIAL.println("crashdet_enable");
- tmc2130_sg_stop_on_crash = true;
- eeprom_update_byte((uint8_t*)EEPROM_CRASH_DET, 0xFF);
- CrashDetectMenu = 1;
-
-}
-
-void crashdet_disable()
-{
- MYSERIAL.println("crashdet_disable");
- tmc2130_sg_stop_on_crash = false;
- eeprom_update_byte((uint8_t*)EEPROM_CRASH_DET, 0x00);
- CrashDetectMenu = 0;
-}
-
-void crashdet_stop_and_save_print()
-{
- stop_and_save_print_to_ram(10, 0); //XY - no change, Z 10mm up, E - no change
-}
-
-void crashdet_restore_print_and_continue()
-{
- restore_print_from_ram_and_continue(0); //XYZ = orig, E - no change
-// babystep_apply();
-}
-
-
-void crashdet_stop_and_save_print2()
-{
- cli();
- planner_abort_hard(); //abort printing
- cmdqueue_reset(); //empty cmdqueue
- card.sdprinting = false;
- card.closefile();
- sei();
-}
-
-
-
-#ifdef MESH_BED_LEVELING
- enum MeshLevelingState { MeshReport, MeshStart, MeshNext, MeshSet };
-#endif
-
-
-// Factory reset function
-// This function is used to erase parts or whole EEPROM memory which is used for storing calibration and and so on.
-// Level input parameter sets depth of reset
-// Quiet parameter masks all waitings for user interact.
-int er_progress = 0;
-void factory_reset(char level, bool quiet)
-{
- lcd_implementation_clear();
- int cursor_pos = 0;
- switch (level) {
-
- // Level 0: Language reset
- case 0:
- WRITE(BEEPER, HIGH);
- _delay_ms(100);
- WRITE(BEEPER, LOW);
-
- lcd_force_language_selection();
- break;
-
- //Level 1: Reset statistics
- case 1:
- WRITE(BEEPER, HIGH);
- _delay_ms(100);
- WRITE(BEEPER, LOW);
- eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, 0);
- eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, 0);
- lcd_menu_statistics();
-
- break;
-
- // Level 2: Prepare for shipping
- case 2:
- //lcd_printPGM(PSTR("Factory RESET"));
- //lcd_print_at_PGM(1,2,PSTR("Shipping prep"));
-
- // Force language selection at the next boot up.
- lcd_force_language_selection();
- // Force the "Follow calibration flow" message at the next boot up.
- calibration_status_store(CALIBRATION_STATUS_Z_CALIBRATION);
- farm_no = 0;
- farm_mode == false;
- eeprom_update_byte((uint8_t*)EEPROM_FARM_MODE, farm_mode);
- EEPROM_save_B(EEPROM_FARM_NUMBER, &farm_no);
-
- WRITE(BEEPER, HIGH);
- _delay_ms(100);
- WRITE(BEEPER, LOW);
- //_delay_ms(2000);
- break;
-
- // Level 3: erase everything, whole EEPROM will be set to 0xFF
-
- case 3:
- lcd_printPGM(PSTR("Factory RESET"));
- lcd_print_at_PGM(1, 2, PSTR("ERASING all data"));
-
- WRITE(BEEPER, HIGH);
- _delay_ms(100);
- WRITE(BEEPER, LOW);
-
- er_progress = 0;
- lcd_print_at_PGM(3, 3, PSTR(" "));
- lcd_implementation_print_at(3, 3, er_progress);
-
- // Erase EEPROM
- for (int i = 0; i < 4096; i++) {
- eeprom_write_byte((uint8_t*)i, 0xFF);
-
- if (i % 41 == 0) {
- er_progress++;
- lcd_print_at_PGM(3, 3, PSTR(" "));
- lcd_implementation_print_at(3, 3, er_progress);
- lcd_printPGM(PSTR("%"));
- }
-
- }
-
-
- break;
- case 4:
- bowden_menu();
- break;
-
- default:
- break;
- }
-
-
-}
-
-
-// "Setup" function is called by the Arduino framework on startup.
-// Before startup, the Timers-functions (PWM)/Analog RW and HardwareSerial provided by the Arduino-code
-// are initialized by the main() routine provided by the Arduino framework.
-void setup()
-{
- lcd_init();
- lcd_print_at_PGM(0, 1, PSTR(" Original Prusa "));
- lcd_print_at_PGM(0, 2, PSTR(" 3D Printers "));
- setup_killpin();
- setup_powerhold();
- farm_mode = eeprom_read_byte((uint8_t*)EEPROM_FARM_MODE);
- EEPROM_read_B(EEPROM_FARM_NUMBER, &farm_no);
- if ((farm_mode == 0xFF && farm_no == 0) || (farm_no == 0xFFFF)) farm_mode = false; //if farm_mode has not been stored to eeprom yet and farm number is set to zero or EEPROM is fresh, deactivate farm mode
- if (farm_no == 0xFFFF) farm_no = 0;
- if (farm_mode)
- {
- prusa_statistics(8);
- selectedSerialPort = 1;
- }
- else
- selectedSerialPort = 0;
- MYSERIAL.begin(BAUDRATE);
- SERIAL_PROTOCOLLNPGM("start");
- SERIAL_ECHO_START;
-
-#if 0
- SERIAL_ECHOLN("Reading eeprom from 0 to 100: start");
- for (int i = 0; i < 4096; ++i) {
- int b = eeprom_read_byte((unsigned char*)i);
- if (b != 255) {
- SERIAL_ECHO(i);
- SERIAL_ECHO(":");
- SERIAL_ECHO(b);
- SERIAL_ECHOLN("");
- }
- }
- SERIAL_ECHOLN("Reading eeprom from 0 to 100: done");
-#endif
-
- // Check startup - does nothing if bootloader sets MCUSR to 0
- byte mcu = MCUSR;
- if (mcu & 1) SERIAL_ECHOLNRPGM(MSG_POWERUP);
- if (mcu & 2) SERIAL_ECHOLNRPGM(MSG_EXTERNAL_RESET);
- if (mcu & 4) SERIAL_ECHOLNRPGM(MSG_BROWNOUT_RESET);
- if (mcu & 8) SERIAL_ECHOLNRPGM(MSG_WATCHDOG_RESET);
- if (mcu & 32) SERIAL_ECHOLNRPGM(MSG_SOFTWARE_RESET);
- MCUSR = 0;
-
- //SERIAL_ECHORPGM(MSG_MARLIN);
- //SERIAL_ECHOLNRPGM(VERSION_STRING);
-
-#ifdef STRING_VERSION_CONFIG_H
-#ifdef STRING_CONFIG_H_AUTHOR
- SERIAL_ECHO_START;
- SERIAL_ECHORPGM(MSG_CONFIGURATION_VER);
- SERIAL_ECHOPGM(STRING_VERSION_CONFIG_H);
- SERIAL_ECHORPGM(MSG_AUTHOR);
- SERIAL_ECHOLNPGM(STRING_CONFIG_H_AUTHOR);
- SERIAL_ECHOPGM("Compiled: ");
- SERIAL_ECHOLNPGM(__DATE__);
-#endif
-#endif
-
- SERIAL_ECHO_START;
- SERIAL_ECHORPGM(MSG_FREE_MEMORY);
- SERIAL_ECHO(freeMemory());
- SERIAL_ECHORPGM(MSG_PLANNER_BUFFER_BYTES);
- SERIAL_ECHOLN((int)sizeof(block_t)*BLOCK_BUFFER_SIZE);
- //lcd_update_enable(false); // why do we need this?? - andre
- // loads data from EEPROM if available else uses defaults (and resets step acceleration rate)
- Config_RetrieveSettings(EEPROM_OFFSET);
- SdFatUtil::set_stack_guard(); //writes magic number at the end of static variables to protect against overwriting static memory by stack
- tp_init(); // Initialize temperature loop
- plan_init(); // Initialize planner;
- watchdog_init();
-
-#ifdef TMC2130
- uint8_t silentMode = eeprom_read_byte((uint8_t*)EEPROM_SILENT);
- tmc2130_mode = silentMode?TMC2130_MODE_SILENT:TMC2130_MODE_NORMAL;
- uint8_t crashdet = eeprom_read_byte((uint8_t*)EEPROM_CRASH_DET);
- if (crashdet)
- {
- crashdet_enable();
- MYSERIAL.println("CrashDetect ENABLED!");
- }
- else
- {
- crashdet_disable();
- MYSERIAL.println("CrashDetect DISABLED");
- }
-
-#endif //TMC2130
-
-#ifdef PAT9125
- MYSERIAL.print("PAT9125_init:");
- int pat9125 = pat9125_init(200, 200);
- MYSERIAL.println(pat9125);
- uint8_t fsensor = eeprom_read_byte((uint8_t*)EEPROM_FSENSOR);
- if (!pat9125) fsensor = 0; //disable sensor
- if (fsensor)
- {
- fsensor_enable();
- MYSERIAL.println("Filament Sensor ENABLED!");
- }
- else
- {
- fsensor_disable();
- MYSERIAL.println("Filament Sensor DISABLED");
- }
-
-#endif //PAT9125
-
- st_init(); // Initialize stepper, this enables interrupts!
-
- setup_photpin();
- lcd_print_at_PGM(0, 1, PSTR(" Original Prusa ")); // we need to do this again for some reason, no time to research
- lcd_print_at_PGM(0, 2, PSTR(" 3D Printers "));
- servo_init();
- // Reset the machine correction matrix.
- // It does not make sense to load the correction matrix until the machine is homed.
- world2machine_reset();
-
- if (!READ(BTN_ENC))
- {
- _delay_ms(1000);
- if (!READ(BTN_ENC))
- {
- lcd_implementation_clear();
-
-
- lcd_printPGM(PSTR("Factory RESET"));
-
-
- SET_OUTPUT(BEEPER);
- WRITE(BEEPER, HIGH);
-
- while (!READ(BTN_ENC));
-
- WRITE(BEEPER, LOW);
-
-
-
- _delay_ms(2000);
-
- char level = reset_menu();
- factory_reset(level, false);
-
- switch (level) {
- case 0: _delay_ms(0); break;
- case 1: _delay_ms(0); break;
- case 2: _delay_ms(0); break;
- case 3: _delay_ms(0); break;
- }
- // _delay_ms(100);
- /*
- #ifdef MESH_BED_LEVELING
- _delay_ms(2000);
-
- if (!READ(BTN_ENC))
- {
- WRITE(BEEPER, HIGH);
- _delay_ms(100);
- WRITE(BEEPER, LOW);
- _delay_ms(200);
- WRITE(BEEPER, HIGH);
- _delay_ms(100);
- WRITE(BEEPER, LOW);
-
- int _z = 0;
- calibration_status_store(CALIBRATION_STATUS_CALIBRATED);
- EEPROM_save_B(EEPROM_BABYSTEP_X, &_z);
- EEPROM_save_B(EEPROM_BABYSTEP_Y, &_z);
- EEPROM_save_B(EEPROM_BABYSTEP_Z, &_z);
- }
- else
- {
-
- WRITE(BEEPER, HIGH);
- _delay_ms(100);
- WRITE(BEEPER, LOW);
- }
- #endif // mesh */
-
- }
- }
- else
- {
- //_delay_ms(1000); // wait 1sec to display the splash screen // what's this and why do we need it?? - andre
- }
-
-
-
-
-#if defined(CONTROLLERFAN_PIN) && (CONTROLLERFAN_PIN > -1)
- SET_OUTPUT(CONTROLLERFAN_PIN); //Set pin used for driver cooling fan
-#endif
-
-#if defined(LCD_PWM_PIN) && (LCD_PWM_PIN > -1)
- SET_OUTPUT(LCD_PWM_PIN); //Set pin used for driver cooling fan
-#endif
-
-#ifdef DIGIPOT_I2C
- digipot_i2c_init();
-#endif
- setup_homepin();
-
- if (1) {
- SERIAL_ECHOPGM("initial zsteps on power up: "); MYSERIAL.println(tmc2130_rd_MSCNT(Z_TMC2130_CS));
- // try to run to zero phase before powering the Z motor.
- // Move in negative direction
- WRITE(Z_DIR_PIN,INVERT_Z_DIR);
- // Round the current micro-micro steps to micro steps.
- for (uint16_t phase = (tmc2130_rd_MSCNT(Z_TMC2130_CS) + 8) >> 4; phase > 0; -- phase) {
- // Until the phase counter is reset to zero.
- WRITE(Z_STEP_PIN, !INVERT_Z_STEP_PIN);
- delay(2);
- WRITE(Z_STEP_PIN, INVERT_Z_STEP_PIN);
- delay(2);
- }
- SERIAL_ECHOPGM("initial zsteps after reset: "); MYSERIAL.println(tmc2130_rd_MSCNT(Z_TMC2130_CS));
- }
-
-#if defined(Z_AXIS_ALWAYS_ON)
- enable_z();
-#endif
- farm_mode = eeprom_read_byte((uint8_t*)EEPROM_FARM_MODE);
- EEPROM_read_B(EEPROM_FARM_NUMBER, &farm_no);
- if ((farm_mode == 0xFF && farm_no == 0) || (farm_no == 0xFFFF)) farm_mode = false; //if farm_mode has not been stored to eeprom yet and farm number is set to zero or EEPROM is fresh, deactivate farm mode
- if (farm_no == 0xFFFF) farm_no = 0;
- if (farm_mode)
- {
- prusa_statistics(8);
- }
-
- // Enable Toshiba FlashAir SD card / WiFi enahanced card.
- card.ToshibaFlashAir_enable(eeprom_read_byte((unsigned char*)EEPROM_TOSHIBA_FLASH_AIR_COMPATIBLITY) == 1);
- // Force SD card update. Otherwise the SD card update is done from loop() on card.checkautostart(false),
- // but this times out if a blocking dialog is shown in setup().
- card.initsd();
-
- if (eeprom_read_dword((uint32_t*)(EEPROM_TOP - 4)) == 0x0ffffffff &&
- eeprom_read_dword((uint32_t*)(EEPROM_TOP - 8)) == 0x0ffffffff &&
- eeprom_read_dword((uint32_t*)(EEPROM_TOP - 12)) == 0x0ffffffff) {
- // Maiden startup. The firmware has been loaded and first started on a virgin RAMBo board,
- // where all the EEPROM entries are set to 0x0ff.
- // Once a firmware boots up, it forces at least a language selection, which changes
- // EEPROM_LANG to number lower than 0x0ff.
- // 1) Set a high power mode.
- eeprom_write_byte((uint8_t*)EEPROM_SILENT, 0);
- }
-#ifdef SNMM
- if (eeprom_read_dword((uint32_t*)EEPROM_BOWDEN_LENGTH) == 0x0ffffffff) { //bowden length used for SNMM
- int _z = BOWDEN_LENGTH;
- for(int i = 0; i<4; i++) EEPROM_save_B(EEPROM_BOWDEN_LENGTH + i * 2, &_z);
- }
-#endif
-
- // In the future, somewhere here would one compare the current firmware version against the firmware version stored in the EEPROM.
- // If they differ, an update procedure may need to be performed. At the end of this block, the current firmware version
- // is being written into the EEPROM, so the update procedure will be triggered only once.
- lang_selected = eeprom_read_byte((uint8_t*)EEPROM_LANG);
- if (lang_selected >= LANG_NUM){
- lcd_mylang();
- }
-
- if (eeprom_read_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE) == 255) {
- eeprom_write_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE, 0);
- temp_cal_active = false;
- } else temp_cal_active = eeprom_read_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE);
-
- if (eeprom_read_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA) == 255) {
- eeprom_write_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 0);
- }
- if (eeprom_read_byte((uint8_t*)EEPROM_UVLO) == 255) {
- eeprom_write_byte((uint8_t*)EEPROM_UVLO, 0);
- }
-
- check_babystep(); //checking if Z babystep is in allowed range
- setup_uvlo_interrupt();
- setup_fan_interrupt();
- fsensor_setup_interrupt();
-
-
-#ifndef DEBUG_DISABLE_STARTMSGS
-
- if (calibration_status() == CALIBRATION_STATUS_ASSEMBLED ||
- calibration_status() == CALIBRATION_STATUS_UNKNOWN) {
- // Reset the babystepping values, so the printer will not move the Z axis up when the babystepping is enabled.
- eeprom_update_word((uint16_t*)EEPROM_BABYSTEP_Z, 0);
- // Show the message.
- lcd_show_fullscreen_message_and_wait_P(MSG_FOLLOW_CALIBRATION_FLOW);
- } else if (calibration_status() == CALIBRATION_STATUS_LIVE_ADJUST) {
- // Show the message.
- lcd_show_fullscreen_message_and_wait_P(MSG_BABYSTEP_Z_NOT_SET);
- lcd_update_enable(true);
- } else if (calibration_status() == CALIBRATION_STATUS_CALIBRATED && temp_cal_active == true && calibration_status_pinda() == false) {
- lcd_show_fullscreen_message_and_wait_P(MSG_PINDA_NOT_CALIBRATED);
- lcd_update_enable(true);
- } else if (calibration_status() == CALIBRATION_STATUS_Z_CALIBRATION) {
- // Show the message.
- lcd_show_fullscreen_message_and_wait_P(MSG_FOLLOW_CALIBRATION_FLOW);
- }
-#endif //DEBUG_DISABLE_STARTMSGS
- for (int i = 0; i<4; i++) EEPROM_read_B(EEPROM_BOWDEN_LENGTH + i * 2, &bowden_length[i]);
- lcd_update_enable(true);
- lcd_implementation_clear();
- lcd_update(2);
- // Store the currently running firmware into an eeprom,
- // so the next time the firmware gets updated, it will know from which version it has been updated.
- update_current_firmware_version_to_eeprom();
- if (eeprom_read_byte((uint8_t*)EEPROM_UVLO) == 1) { //previous print was terminated by UVLO
-/*
- if (lcd_show_fullscreen_message_yes_no_and_wait_P(MSG_RECOVER_PRINT, false)) recover_print();
- else {
- eeprom_update_byte((uint8_t*)EEPROM_UVLO, 0);
- lcd_update_enable(true);
- lcd_update(2);
- lcd_setstatuspgm(WELCOME_MSG);
- }
-*/
- manage_heater(); // Update temperatures
-#ifdef DEBUG_UVLO_AUTOMATIC_RECOVER
- MYSERIAL.println("Power panic detected!");
- MYSERIAL.print("Current bed temp:");
- MYSERIAL.println(degBed());
- MYSERIAL.print("Saved bed temp:");
- MYSERIAL.println((float)eeprom_read_byte((uint8_t*)EEPROM_UVLO_TARGET_BED));
-#endif
- if ( degBed() > ( (float)eeprom_read_byte((uint8_t*)EEPROM_UVLO_TARGET_BED) - AUTOMATIC_UVLO_BED_TEMP_OFFSET) ){
- #ifdef DEBUG_UVLO_AUTOMATIC_RECOVER
- MYSERIAL.println("Automatic recovery!");
- #endif
- recover_print(1);
- }
- else{
- #ifdef DEBUG_UVLO_AUTOMATIC_RECOVER
- MYSERIAL.println("Normal recovery!");
- #endif
- if ( lcd_show_fullscreen_message_yes_no_and_wait_P(MSG_RECOVER_PRINT, false) ) recover_print(0);
- else {
- eeprom_update_byte((uint8_t*)EEPROM_UVLO, 0);
- lcd_update_enable(true);
- lcd_update(2);
- lcd_setstatuspgm(WELCOME_MSG);
- }
-
- }
-
- }
-
-}
-
-void trace();
-
-#define CHUNK_SIZE 64 // bytes
-#define SAFETY_MARGIN 1
-char chunk[CHUNK_SIZE+SAFETY_MARGIN];
-int chunkHead = 0;
-
-int serial_read_stream() {
-
- setTargetHotend(0, 0);
- setTargetBed(0);
-
- lcd_implementation_clear();
- lcd_printPGM(PSTR(" Upload in progress"));
-
- // first wait for how many bytes we will receive
- uint32_t bytesToReceive;
-
- // receive the four bytes
- char bytesToReceiveBuffer[4];
- for (int i=0; i<4; i++) {
- int data;
- while ((data = MYSERIAL.read()) == -1) {};
- bytesToReceiveBuffer[i] = data;
-
- }
-
- // make it a uint32
- memcpy(&bytesToReceive, &bytesToReceiveBuffer, 4);
-
- // we're ready, notify the sender
- MYSERIAL.write('+');
-
- // lock in the routine
- uint32_t receivedBytes = 0;
- while (prusa_sd_card_upload) {
- int i;
- for (i=0; i 0 && millis()-_usb_timer > 1000)
- {
- is_usb_printing = true;
- usb_printing_counter--;
- _usb_timer = millis();
- }
- if (usb_printing_counter == 0)
- {
- is_usb_printing = false;
- }
-
- if (prusa_sd_card_upload)
- {
- //we read byte-by byte
- serial_read_stream();
- } else
- {
-
- get_command();
-
- #ifdef SDSUPPORT
- card.checkautostart(false);
- #endif
- if(buflen)
- {
- cmdbuffer_front_already_processed = false;
- #ifdef SDSUPPORT
- if(card.saving)
- {
- // Saving a G-code file onto an SD-card is in progress.
- // Saving starts with M28, saving until M29 is seen.
- if(strstr_P(CMDBUFFER_CURRENT_STRING, PSTR("M29")) == NULL) {
- card.write_command(CMDBUFFER_CURRENT_STRING);
- if(card.logging)
- process_commands();
- else
- SERIAL_PROTOCOLLNRPGM(MSG_OK);
- } else {
- card.closefile();
- SERIAL_PROTOCOLLNRPGM(MSG_FILE_SAVED);
- }
- } else {
- process_commands();
- }
- #else
- process_commands();
- #endif //SDSUPPORT
-
- if (! cmdbuffer_front_already_processed && buflen)
- {
- cli();
- union {
- struct {
- char lo;
- char hi;
- } lohi;
- uint16_t value;
- } sdlen;
- sdlen.value = 0;
- if (CMDBUFFER_CURRENT_TYPE == CMDBUFFER_CURRENT_TYPE_SDCARD) {
- sdlen.lohi.lo = cmdbuffer[bufindr + 1];
- sdlen.lohi.hi = cmdbuffer[bufindr + 2];
- }
- cmdqueue_pop_front();
- planner_add_sd_length(sdlen.value);
- sei();
- }
- }
-}
- //check heater every n milliseconds
- manage_heater();
- isPrintPaused ? manage_inactivity(true) : manage_inactivity(false);
- checkHitEndstops();
- lcd_update();
-#ifdef PAT9125
- fsensor_update();
-#endif //PAT9125
-#ifdef TMC2130
- tmc2130_check_overtemp();
- if (tmc2130_sg_crash)
- {
- tmc2130_sg_crash = false;
-// crashdet_stop_and_save_print();
- enquecommand_P((PSTR("D999")));
- }
-#endif //TMC2130
-}
-
-#define DEFINE_PGM_READ_ANY(type, reader) \
- static inline type pgm_read_any(const type *p) \
- { return pgm_read_##reader##_near(p); }
-
-DEFINE_PGM_READ_ANY(float, float);
-DEFINE_PGM_READ_ANY(signed char, byte);
-
-#define XYZ_CONSTS_FROM_CONFIG(type, array, CONFIG) \
-static const PROGMEM type array##_P[3] = \
- { X_##CONFIG, Y_##CONFIG, Z_##CONFIG }; \
-static inline type array(int axis) \
- { return pgm_read_any(&array##_P[axis]); } \
-type array##_ext(int axis) \
- { return pgm_read_any(&array##_P[axis]); }
-
-XYZ_CONSTS_FROM_CONFIG(float, base_min_pos, MIN_POS);
-XYZ_CONSTS_FROM_CONFIG(float, base_max_pos, MAX_POS);
-XYZ_CONSTS_FROM_CONFIG(float, base_home_pos, HOME_POS);
-XYZ_CONSTS_FROM_CONFIG(float, max_length, MAX_LENGTH);
-XYZ_CONSTS_FROM_CONFIG(float, home_retract_mm, HOME_RETRACT_MM);
-XYZ_CONSTS_FROM_CONFIG(signed char, home_dir, HOME_DIR);
-
-static void axis_is_at_home(int axis) {
- current_position[axis] = base_home_pos(axis) + add_homing[axis];
- min_pos[axis] = base_min_pos(axis) + add_homing[axis];
- max_pos[axis] = base_max_pos(axis) + add_homing[axis];
-}
-
-
-inline void set_current_to_destination() { memcpy(current_position, destination, sizeof(current_position)); }
-inline void set_destination_to_current() { memcpy(destination, current_position, sizeof(destination)); }
-
-
-static void setup_for_endstop_move(bool enable_endstops_now = true) {
- saved_feedrate = feedrate;
- saved_feedmultiply = feedmultiply;
- feedmultiply = 100;
- previous_millis_cmd = millis();
-
- enable_endstops(enable_endstops_now);
-}
-
-static void clean_up_after_endstop_move() {
-#ifdef ENDSTOPS_ONLY_FOR_HOMING
- enable_endstops(false);
-#endif
-
- feedrate = saved_feedrate;
- feedmultiply = saved_feedmultiply;
- previous_millis_cmd = millis();
-}
-
-
-
-#ifdef ENABLE_AUTO_BED_LEVELING
-#ifdef AUTO_BED_LEVELING_GRID
-static void set_bed_level_equation_lsq(double *plane_equation_coefficients)
-{
- vector_3 planeNormal = vector_3(-plane_equation_coefficients[0], -plane_equation_coefficients[1], 1);
- planeNormal.debug("planeNormal");
- plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
- //bedLevel.debug("bedLevel");
-
- //plan_bed_level_matrix.debug("bed level before");
- //vector_3 uncorrected_position = plan_get_position_mm();
- //uncorrected_position.debug("position before");
-
- vector_3 corrected_position = plan_get_position();
-// corrected_position.debug("position after");
- current_position[X_AXIS] = corrected_position.x;
- current_position[Y_AXIS] = corrected_position.y;
- current_position[Z_AXIS] = corrected_position.z;
-
- // put the bed at 0 so we don't go below it.
- current_position[Z_AXIS] = zprobe_zoffset; // in the lsq we reach here after raising the extruder due to the loop structure
-
- plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
-}
-
-#else // not AUTO_BED_LEVELING_GRID
-
-static void set_bed_level_equation_3pts(float z_at_pt_1, float z_at_pt_2, float z_at_pt_3) {
-
- plan_bed_level_matrix.set_to_identity();
-
- vector_3 pt1 = vector_3(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, z_at_pt_1);
- vector_3 pt2 = vector_3(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, z_at_pt_2);
- vector_3 pt3 = vector_3(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, z_at_pt_3);
-
- vector_3 from_2_to_1 = (pt1 - pt2).get_normal();
- vector_3 from_2_to_3 = (pt3 - pt2).get_normal();
- vector_3 planeNormal = vector_3::cross(from_2_to_1, from_2_to_3).get_normal();
- planeNormal = vector_3(planeNormal.x, planeNormal.y, abs(planeNormal.z));
-
- plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
-
- vector_3 corrected_position = plan_get_position();
- current_position[X_AXIS] = corrected_position.x;
- current_position[Y_AXIS] = corrected_position.y;
- current_position[Z_AXIS] = corrected_position.z;
-
- // put the bed at 0 so we don't go below it.
- current_position[Z_AXIS] = zprobe_zoffset;
-
- plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
-
-}
-
-#endif // AUTO_BED_LEVELING_GRID
-
-static void run_z_probe() {
- plan_bed_level_matrix.set_to_identity();
- feedrate = homing_feedrate[Z_AXIS];
-
- // move down until you find the bed
- float zPosition = -10;
- plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
- st_synchronize();
-
- // we have to let the planner know where we are right now as it is not where we said to go.
- zPosition = st_get_position_mm(Z_AXIS);
- plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS]);
-
- // move up the retract distance
- zPosition += home_retract_mm(Z_AXIS);
- plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
- st_synchronize();
-
- // move back down slowly to find bed
- feedrate = homing_feedrate[Z_AXIS]/4;
- zPosition -= home_retract_mm(Z_AXIS) * 2;
- plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
- st_synchronize();
-
- current_position[Z_AXIS] = st_get_position_mm(Z_AXIS);
- // make sure the planner knows where we are as it may be a bit different than we last said to move to
- plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
-}
-
-static void do_blocking_move_to(float x, float y, float z) {
- float oldFeedRate = feedrate;
-
- feedrate = homing_feedrate[Z_AXIS];
-
- current_position[Z_AXIS] = z;
- plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate/60, active_extruder);
- st_synchronize();
-
- feedrate = XY_TRAVEL_SPEED;
-
- current_position[X_AXIS] = x;
- current_position[Y_AXIS] = y;
- plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate/60, active_extruder);
- st_synchronize();
-
- feedrate = oldFeedRate;
-}
-
-static void do_blocking_move_relative(float offset_x, float offset_y, float offset_z) {
- do_blocking_move_to(current_position[X_AXIS] + offset_x, current_position[Y_AXIS] + offset_y, current_position[Z_AXIS] + offset_z);
-}
-
-
-/// Probe bed height at position (x,y), returns the measured z value
-static float probe_pt(float x, float y, float z_before) {
- // move to right place
- do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], z_before);
- do_blocking_move_to(x - X_PROBE_OFFSET_FROM_EXTRUDER, y - Y_PROBE_OFFSET_FROM_EXTRUDER, current_position[Z_AXIS]);
-
- run_z_probe();
- float measured_z = current_position[Z_AXIS];
-
- SERIAL_PROTOCOLRPGM(MSG_BED);
- SERIAL_PROTOCOLPGM(" x: ");
- SERIAL_PROTOCOL(x);
- SERIAL_PROTOCOLPGM(" y: ");
- SERIAL_PROTOCOL(y);
- SERIAL_PROTOCOLPGM(" z: ");
- SERIAL_PROTOCOL(measured_z);
- SERIAL_PROTOCOLPGM("\n");
- return measured_z;
-}
-
-#endif // #ifdef ENABLE_AUTO_BED_LEVELING
-
-
-#ifdef LIN_ADVANCE
- /**
- * M900: Set and/or Get advance K factor and WH/D ratio
- *
- * K Set advance K factor
- * R Set ratio directly (overrides WH/D)
- * W H D Set ratio from WH/D
- */
-inline void gcode_M900() {
- st_synchronize();
-
- const float newK = code_seen('K') ? code_value_float() : -1;
- if (newK >= 0) extruder_advance_k = newK;
-
- float newR = code_seen('R') ? code_value_float() : -1;
- if (newR < 0) {
- const float newD = code_seen('D') ? code_value_float() : -1,
- newW = code_seen('W') ? code_value_float() : -1,
- newH = code_seen('H') ? code_value_float() : -1;
- if (newD >= 0 && newW >= 0 && newH >= 0)
- newR = newD ? (newW * newH) / (sq(newD * 0.5) * M_PI) : 0;
- }
- if (newR >= 0) advance_ed_ratio = newR;
-
- SERIAL_ECHO_START;
- SERIAL_ECHOPGM("Advance K=");
- SERIAL_ECHOLN(extruder_advance_k);
- SERIAL_ECHOPGM(" E/D=");
- const float ratio = advance_ed_ratio;
- if (ratio) SERIAL_ECHOLN(ratio); else SERIAL_ECHOLNPGM("Auto");
- }
-#endif // LIN_ADVANCE
-
-#ifdef TMC2130
-bool calibrate_z_auto()
-{
- lcd_display_message_fullscreen_P(MSG_CALIBRATE_Z_AUTO);
- bool endstops_enabled = enable_endstops(true);
- int axis_up_dir = -home_dir(Z_AXIS);
- tmc2130_home_enter(Z_AXIS_MASK);
- current_position[Z_AXIS] = 0;
- plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
- set_destination_to_current();
- destination[Z_AXIS] += (1.1 * max_length(Z_AXIS) * axis_up_dir);
- feedrate = homing_feedrate[Z_AXIS];
- plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
- tmc2130_home_restart(Z_AXIS);
- st_synchronize();
-// current_position[axis] = 0;
-// plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
- tmc2130_home_exit();
- enable_endstops(false);
- current_position[Z_AXIS] = 0;
- plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
- set_destination_to_current();
- destination[Z_AXIS] += 10 * axis_up_dir; //10mm up
- feedrate = homing_feedrate[Z_AXIS] / 2;
- plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
- st_synchronize();
- enable_endstops(endstops_enabled);
- current_position[Z_AXIS] = Z_MAX_POS-3.f;
- plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
- return true;
-}
-#endif //TMC2130
-
-void homeaxis(int axis)
-{
- bool endstops_enabled = enable_endstops(true); //RP: endstops should be allways enabled durring homming
-#define HOMEAXIS_DO(LETTER) \
-((LETTER##_MIN_PIN > -1 && LETTER##_HOME_DIR==-1) || (LETTER##_MAX_PIN > -1 && LETTER##_HOME_DIR==1))
- if ((axis==X_AXIS)?HOMEAXIS_DO(X):(axis==Y_AXIS)?HOMEAXIS_DO(Y):0)
- {
- int axis_home_dir = home_dir(axis);
- feedrate = homing_feedrate[axis];
-
-#ifdef TMC2130
- tmc2130_home_enter(X_AXIS_MASK << axis);
-#endif
-
- // Move right a bit, so that the print head does not touch the left end position,
- // and the following left movement has a chance to achieve the required velocity
- // for the stall guard to work.
- current_position[axis] = 0;
- plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
-// destination[axis] = 11.f;
- destination[axis] = 3.f;
- plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
- st_synchronize();
- // Move left away from the possible collision with the collision detection disabled.
- endstops_hit_on_purpose();
- enable_endstops(false);
- current_position[axis] = 0;
- plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
- destination[axis] = - 1.;
- plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
- st_synchronize();
- // Now continue to move up to the left end stop with the collision detection enabled.
- enable_endstops(true);
- destination[axis] = - 1.1 * max_length(axis);
- plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
- st_synchronize();
- // Move right from the collision to a known distance from the left end stop with the collision detection disabled.
- endstops_hit_on_purpose();
- enable_endstops(false);
- current_position[axis] = 0;
- plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
- destination[axis] = 10.f;
- plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
- st_synchronize();
- endstops_hit_on_purpose();
- // Now move left up to the collision, this time with a repeatable velocity.
- enable_endstops(true);
- destination[axis] = - 15.f;
- feedrate = homing_feedrate[axis]/2;
- plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
- st_synchronize();
-
- axis_is_at_home(axis);
- axis_known_position[axis] = true;
-
-#ifdef TMC2130
- tmc2130_home_exit();
-#endif
- // Move the X carriage away from the collision.
- // If this is not done, the X cariage will jump from the collision at the instant the Trinamic driver reduces power on idle.
- endstops_hit_on_purpose();
- enable_endstops(false);
- {
- // Two full periods (4 full steps).
- float gap = 0.32f * 2.f;
- current_position[axis] -= gap;
- plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
- current_position[axis] += gap;
- }
- destination[axis] = current_position[axis];
- plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], 0.3f*feedrate/60, active_extruder);
- st_synchronize();
-
- feedrate = 0.0;
- }
- else if ((axis==Z_AXIS)?HOMEAXIS_DO(Z):0)
- {
- int axis_home_dir = home_dir(axis);
- current_position[axis] = 0;
- plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
- destination[axis] = 1.5 * max_length(axis) * axis_home_dir;
- feedrate = homing_feedrate[axis];
- plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
- st_synchronize();
- current_position[axis] = 0;
- plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
- destination[axis] = -home_retract_mm(axis) * axis_home_dir;
- plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
- st_synchronize();
- destination[axis] = 2*home_retract_mm(axis) * axis_home_dir;
- feedrate = homing_feedrate[axis]/2 ;
- plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
- st_synchronize();
- axis_is_at_home(axis);
- destination[axis] = current_position[axis];
- feedrate = 0.0;
- endstops_hit_on_purpose();
- axis_known_position[axis] = true;
- }
- enable_endstops(endstops_enabled);
-}
-
-/**/
-void home_xy()
-{
- set_destination_to_current();
- homeaxis(X_AXIS);
- homeaxis(Y_AXIS);
- plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
- endstops_hit_on_purpose();
-}
-
-void refresh_cmd_timeout(void)
-{
- previous_millis_cmd = millis();
-}
-
-#ifdef FWRETRACT
- void retract(bool retracting, bool swapretract = false) {
- if(retracting && !retracted[active_extruder]) {
- destination[X_AXIS]=current_position[X_AXIS];
- destination[Y_AXIS]=current_position[Y_AXIS];
- destination[Z_AXIS]=current_position[Z_AXIS];
- destination[E_AXIS]=current_position[E_AXIS];
- if (swapretract) {
- current_position[E_AXIS]+=retract_length_swap/volumetric_multiplier[active_extruder];
- } else {
- current_position[E_AXIS]+=retract_length/volumetric_multiplier[active_extruder];
- }
- plan_set_e_position(current_position[E_AXIS]);
- float oldFeedrate = feedrate;
- feedrate=retract_feedrate*60;
- retracted[active_extruder]=true;
- prepare_move();
- current_position[Z_AXIS]-=retract_zlift;
- plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
- prepare_move();
- feedrate = oldFeedrate;
- } else if(!retracting && retracted[active_extruder]) {
- destination[X_AXIS]=current_position[X_AXIS];
- destination[Y_AXIS]=current_position[Y_AXIS];
- destination[Z_AXIS]=current_position[Z_AXIS];
- destination[E_AXIS]=current_position[E_AXIS];
- current_position[Z_AXIS]+=retract_zlift;
- plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
- //prepare_move();
- if (swapretract) {
- current_position[E_AXIS]-=(retract_length_swap+retract_recover_length_swap)/volumetric_multiplier[active_extruder];
- } else {
- current_position[E_AXIS]-=(retract_length+retract_recover_length)/volumetric_multiplier[active_extruder];
- }
- plan_set_e_position(current_position[E_AXIS]);
- float oldFeedrate = feedrate;
- feedrate=retract_recover_feedrate*60;
- retracted[active_extruder]=false;
- prepare_move();
- feedrate = oldFeedrate;
- }
- } //retract
-#endif //FWRETRACT
-
-void trace() {
- tone(BEEPER, 440);
- delay(25);
- noTone(BEEPER);
- delay(20);
-}
-/*
-void ramming() {
-// float tmp[4] = DEFAULT_MAX_FEEDRATE;
- if (current_temperature[0] < 230) {
- //PLA
-
- max_feedrate[E_AXIS] = 50;
- //current_position[E_AXIS] -= 8;
- //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
- //current_position[E_AXIS] += 8;
- //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
- current_position[E_AXIS] += 5.4;
- plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2800 / 60, active_extruder);
- current_position[E_AXIS] += 3.2;
- plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
- current_position[E_AXIS] += 3;
- plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3400 / 60, active_extruder);
- st_synchronize();
- max_feedrate[E_AXIS] = 80;
- current_position[E_AXIS] -= 82;
- plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 9500 / 60, active_extruder);
- max_feedrate[E_AXIS] = 50;//tmp[E_AXIS];
- current_position[E_AXIS] -= 20;
- plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 1200 / 60, active_extruder);
- current_position[E_AXIS] += 5;
- plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400 / 60, active_extruder);
- current_position[E_AXIS] += 5;
- plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
- current_position[E_AXIS] -= 10;
- st_synchronize();
- plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
- current_position[E_AXIS] += 10;
- plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
- current_position[E_AXIS] -= 10;
- plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
- current_position[E_AXIS] += 10;
- plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
- current_position[E_AXIS] -= 10;
- plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
- st_synchronize();
- }
- else {
- //ABS
- max_feedrate[E_AXIS] = 50;
- //current_position[E_AXIS] -= 8;
- //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
- //current_position[E_AXIS] += 8;
- //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
- current_position[E_AXIS] += 3.1;
- plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2000 / 60, active_extruder);
- current_position[E_AXIS] += 3.1;
- plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2500 / 60, active_extruder);
- current_position[E_AXIS] += 4;
- plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
- st_synchronize();
- //current_position[X_AXIS] += 23; //delay
- //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600/60, active_extruder); //delay
- //current_position[X_AXIS] -= 23; //delay
- //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600/60, active_extruder); //delay
- delay(4700);
- max_feedrate[E_AXIS] = 80;
- current_position[E_AXIS] -= 92;
- plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 9900 / 60, active_extruder);
- max_feedrate[E_AXIS] = 50;//tmp[E_AXIS];
- current_position[E_AXIS] -= 5;
- plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
- current_position[E_AXIS] += 5;
- plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400 / 60, active_extruder);
- current_position[E_AXIS] -= 5;
- plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
- st_synchronize();
- current_position[E_AXIS] += 5;
- plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
- current_position[E_AXIS] -= 5;
- plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
- current_position[E_AXIS] += 5;
- plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
- current_position[E_AXIS] -= 5;
- plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
- st_synchronize();
-
- }
- }
-*/
-void process_commands()
-{
- #ifdef FILAMENT_RUNOUT_SUPPORT
- SET_INPUT(FR_SENS);
- #endif
-
-#ifdef CMDBUFFER_DEBUG
- SERIAL_ECHOPGM("Processing a GCODE command: ");
- SERIAL_ECHO(cmdbuffer+bufindr+CMDHDRSIZE);
- SERIAL_ECHOLNPGM("");
- SERIAL_ECHOPGM("In cmdqueue: ");
- SERIAL_ECHO(buflen);
- SERIAL_ECHOLNPGM("");
-#endif /* CMDBUFFER_DEBUG */
-
- unsigned long codenum; //throw away variable
- char *starpos = NULL;
-#ifdef ENABLE_AUTO_BED_LEVELING
- float x_tmp, y_tmp, z_tmp, real_z;
-#endif
-
- // PRUSA GCODES
-
-#ifdef SNMM
- float tmp_motor[3] = DEFAULT_PWM_MOTOR_CURRENT;
- float tmp_motor_loud[3] = DEFAULT_PWM_MOTOR_CURRENT_LOUD;
- int8_t SilentMode;
-#endif
- if (code_seen("M117")) { //moved to highest priority place to be able to to print strings which includes "G", "PRUSA" and "^"
- starpos = (strchr(strchr_pointer + 5, '*'));
- if (starpos != NULL)
- *(starpos) = '\0';
- lcd_setstatus(strchr_pointer + 5);
- }
- else if(code_seen("PRUSA")){
- if (code_seen("Ping")) { //PRUSA Ping
- if (farm_mode) {
- PingTime = millis();
- //MYSERIAL.print(farm_no); MYSERIAL.println(": OK");
- }
- }
- else if (code_seen("PRN")) {
- MYSERIAL.println(status_number);
-
- }else if (code_seen("fn")) {
- if (farm_mode) {
- MYSERIAL.println(farm_no);
- }
- else {
- MYSERIAL.println("Not in farm mode.");
- }
-
- }else if (code_seen("fv")) {
- // get file version
- #ifdef SDSUPPORT
- card.openFile(strchr_pointer + 3,true);
- while (true) {
- uint16_t readByte = card.get();
- MYSERIAL.write(readByte);
- if (readByte=='\n') {
- break;
- }
- }
- card.closefile();
-
- #endif // SDSUPPORT
-
- } else if (code_seen("M28")) {
- trace();
- prusa_sd_card_upload = true;
- card.openFile(strchr_pointer+4,false);
- } else if (code_seen("SN")) {
- if (farm_mode) {
- selectedSerialPort = 0;
- MSerial.write(";S");
- // S/N is:CZPX0917X003XC13518
- int numbersRead = 0;
-
- while (numbersRead < 19) {
- while (MSerial.available() > 0) {
- uint8_t serial_char = MSerial.read();
- selectedSerialPort = 1;
- MSerial.write(serial_char);
- numbersRead++;
- selectedSerialPort = 0;
- }
- }
- selectedSerialPort = 1;
- MSerial.write('\n');
- /*for (int b = 0; b < 3; b++) {
- tone(BEEPER, 110);
- delay(50);
- noTone(BEEPER);
- delay(50);
- }*/
- } else {
- MYSERIAL.println("Not in farm mode.");
- }
-
- } else if(code_seen("Fir")){
-
- SERIAL_PROTOCOLLN(FW_version);
-
- } else if(code_seen("Rev")){
-
- SERIAL_PROTOCOLLN(FILAMENT_SIZE "-" ELECTRONICS "-" NOZZLE_TYPE );
-
- } else if(code_seen("Lang")) {
- lcd_force_language_selection();
- } else if(code_seen("Lz")) {
- EEPROM_save_B(EEPROM_BABYSTEP_Z,0);
-
- } else if (code_seen("SERIAL LOW")) {
- MYSERIAL.println("SERIAL LOW");
- MYSERIAL.begin(BAUDRATE);
- return;
- } else if (code_seen("SERIAL HIGH")) {
- MYSERIAL.println("SERIAL HIGH");
- MYSERIAL.begin(1152000);
- return;
- } else if(code_seen("Beat")) {
- // Kick farm link timer
- kicktime = millis();
-
- } else if(code_seen("FR")) {
- // Factory full reset
- factory_reset(0,true);
- }
- //else if (code_seen('Cal')) {
- // lcd_calibration();
- // }
-
- }
- else if (code_seen('^')) {
- // nothing, this is a version line
- } else if(code_seen('G'))
- {
- switch((int)code_value())
- {
- case 0: // G0 -> G1
- case 1: // G1
- if(Stopped == false) {
-
- #ifdef FILAMENT_RUNOUT_SUPPORT
-
- if(READ(FR_SENS)){
-
- feedmultiplyBckp=feedmultiply;
- float target[4];
- float lastpos[4];
- target[X_AXIS]=current_position[X_AXIS];
- target[Y_AXIS]=current_position[Y_AXIS];
- target[Z_AXIS]=current_position[Z_AXIS];
- target[E_AXIS]=current_position[E_AXIS];
- lastpos[X_AXIS]=current_position[X_AXIS];
- lastpos[Y_AXIS]=current_position[Y_AXIS];
- lastpos[Z_AXIS]=current_position[Z_AXIS];
- lastpos[E_AXIS]=current_position[E_AXIS];
- //retract by E
-
- target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT ;
-
- plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder);
-
-
- target[Z_AXIS]+= FILAMENTCHANGE_ZADD ;
-
- plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 300, active_extruder);
-
- target[X_AXIS]= FILAMENTCHANGE_XPOS ;
-
- target[Y_AXIS]= FILAMENTCHANGE_YPOS ;
-
-
- plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder);
-
- target[E_AXIS]+= FILAMENTCHANGE_FINALRETRACT ;
-
-
- plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder);
-
- //finish moves
- st_synchronize();
- //disable extruder steppers so filament can be removed
- disable_e0();
- disable_e1();
- disable_e2();
- delay(100);
-
- //LCD_ALERTMESSAGEPGM(MSG_FILAMENTCHANGE);
- uint8_t cnt=0;
- int counterBeep = 0;
- lcd_wait_interact();
- while(!lcd_clicked()){
- cnt++;
- manage_heater();
- manage_inactivity(true);
- //lcd_update();
- if(cnt==0)
- {
- #if BEEPER > 0
-
- if (counterBeep== 500){
- counterBeep = 0;
-
- }
-
-
- SET_OUTPUT(BEEPER);
- if (counterBeep== 0){
- WRITE(BEEPER,HIGH);
- }
-
- if (counterBeep== 20){
- WRITE(BEEPER,LOW);
- }
-
-
-
-
- counterBeep++;
- #else
- #if !defined(LCD_FEEDBACK_FREQUENCY_HZ) || !defined(LCD_FEEDBACK_FREQUENCY_DURATION_MS)
- lcd_buzz(1000/6,100);
- #else
- lcd_buzz(LCD_FEEDBACK_FREQUENCY_DURATION_MS,LCD_FEEDBACK_FREQUENCY_HZ);
- #endif
- #endif
- }
- }
-
- WRITE(BEEPER,LOW);
-
- target[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
- plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder);
-
-
- target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
- plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
-
-
-
-
-
- lcd_change_fil_state = 0;
- lcd_loading_filament();
- while ((lcd_change_fil_state == 0)||(lcd_change_fil_state != 1)){
-
- lcd_change_fil_state = 0;
- lcd_alright();
- switch(lcd_change_fil_state){
-
- case 2:
- target[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
- plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder);
-
-
- target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
- plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
-
-
- lcd_loading_filament();
- break;
- case 3:
- target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
- plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
- lcd_loading_color();
- break;
-
- default:
- lcd_change_success();
- break;
- }
-
- }
-
-
-
- target[E_AXIS]+= 5;
- plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
-
- target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT;
- plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder);
-
-
- //current_position[E_AXIS]=target[E_AXIS]; //the long retract of L is compensated by manual filament feeding
- //plan_set_e_position(current_position[E_AXIS]);
- plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder); //should do nothing
- plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder); //move xy back
- plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], 200, active_extruder); //move z back
-
-
- target[E_AXIS]= target[E_AXIS] - FILAMENTCHANGE_FIRSTRETRACT;
-
-
-
- plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], 5, active_extruder); //final untretract
-
-
- plan_set_e_position(lastpos[E_AXIS]);
-
- feedmultiply=feedmultiplyBckp;
-
-
-
- char cmd[9];
-
- sprintf_P(cmd, PSTR("M220 S%i"), feedmultiplyBckp);
- enquecommand(cmd);
-
- }
-
-
-
- #endif
-
-
- get_coordinates(); // For X Y Z E F
- if (total_filament_used > ((current_position[E_AXIS] - destination[E_AXIS]) * 100)) { //protection against total_filament_used overflow
- total_filament_used = total_filament_used + ((destination[E_AXIS] - current_position[E_AXIS]) * 100);
- }
- #ifdef FWRETRACT
- if(autoretract_enabled)
- if( !(code_seen('X') || code_seen('Y') || code_seen('Z')) && code_seen('E')) {
- float echange=destination[E_AXIS]-current_position[E_AXIS];
-
- if((echange<-MIN_RETRACT && !retracted) || (echange>MIN_RETRACT && retracted)) { //move appears to be an attempt to retract or recover
- current_position[E_AXIS] = destination[E_AXIS]; //hide the slicer-generated retract/recover from calculations
- plan_set_e_position(current_position[E_AXIS]); //AND from the planner
- retract(!retracted);
- return;
- }
-
-
- }
- #endif //FWRETRACT
- prepare_move();
- //ClearToSend();
- }
- break;
- case 2: // G2 - CW ARC
- if(Stopped == false) {
- get_arc_coordinates();
- prepare_arc_move(true);
- }
- break;
- case 3: // G3 - CCW ARC
- if(Stopped == false) {
- get_arc_coordinates();
- prepare_arc_move(false);
- }
- break;
- case 4: // G4 dwell
- codenum = 0;
- if(code_seen('P')) codenum = code_value(); // milliseconds to wait
- if(code_seen('S')) codenum = code_value() * 1000; // seconds to wait
- if(codenum != 0) LCD_MESSAGERPGM(MSG_DWELL);
- st_synchronize();
- codenum += millis(); // keep track of when we started waiting
- previous_millis_cmd = millis();
- while(millis() < codenum) {
- manage_heater();
- manage_inactivity();
- lcd_update();
- }
- break;
- #ifdef FWRETRACT
- case 10: // G10 retract
- #if EXTRUDERS > 1
- retracted_swap[active_extruder]=(code_seen('S') && code_value_long() == 1); // checks for swap retract argument
- retract(true,retracted_swap[active_extruder]);
- #else
- retract(true);
- #endif
- break;
- case 11: // G11 retract_recover
- #if EXTRUDERS > 1
- retract(false,retracted_swap[active_extruder]);
- #else
- retract(false);
- #endif
- break;
- #endif //FWRETRACT
- case 28: //G28 Home all Axis one at a time
- {
- st_synchronize();
-
-#if 1
- SERIAL_ECHOPGM("G28, initial "); print_world_coordinates();
- SERIAL_ECHOPGM("G28, initial "); print_physical_coordinates();
-#endif
-
- // Flag for the display update routine and to disable the print cancelation during homing.
- homing_flag = true;
-
- // Which axes should be homed?
- bool home_x = code_seen(axis_codes[X_AXIS]);
- bool home_y = code_seen(axis_codes[Y_AXIS]);
- bool home_z = code_seen(axis_codes[Z_AXIS]);
- // Either all X,Y,Z codes are present, or none of them.
- bool home_all_axes = home_x == home_y && home_x == home_z;
- if (home_all_axes)
- // No X/Y/Z code provided means to home all axes.
- home_x = home_y = home_z = true;
-
-#ifdef ENABLE_AUTO_BED_LEVELING
- plan_bed_level_matrix.set_to_identity(); //Reset the plane ("erase" all leveling data)
-#endif //ENABLE_AUTO_BED_LEVELING
-
- // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
- // the planner will not perform any adjustments in the XY plane.
- // Wait for the motors to stop and update the current position with the absolute values.
- world2machine_revert_to_uncorrected();
-
- // For mesh bed leveling deactivate the matrix temporarily.
- // It is necessary to disable the bed leveling for the X and Y homing moves, so that the move is performed
- // in a single axis only.
- // In case of re-homing the X or Y axes only, the mesh bed leveling is restored after G28.
-#ifdef MESH_BED_LEVELING
- uint8_t mbl_was_active = mbl.active;
- mbl.active = 0;
- current_position[Z_AXIS] = st_get_position_mm(Z_AXIS);
-#endif
-
- // Reset baby stepping to zero, if the babystepping has already been loaded before. The babystepsTodo value will be
- // consumed during the first movements following this statement.
- if (home_z)
- babystep_undo();
-
- saved_feedrate = feedrate;
- saved_feedmultiply = feedmultiply;
- feedmultiply = 100;
- previous_millis_cmd = millis();
-
- enable_endstops(true);
-
- memcpy(destination, current_position, sizeof(destination));
- feedrate = 0.0;
-
- #if Z_HOME_DIR > 0 // If homing away from BED do Z first
- if(home_z)
- homeaxis(Z_AXIS);
- #endif
-
- #ifdef QUICK_HOME
- // In the quick mode, if both x and y are to be homed, a diagonal move will be performed initially.
- if(home_x && home_y) //first diagonal move
- {
- current_position[X_AXIS] = 0;current_position[Y_AXIS] = 0;
-
- int x_axis_home_dir = home_dir(X_AXIS);
-
- plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
- destination[X_AXIS] = 1.5 * max_length(X_AXIS) * x_axis_home_dir;destination[Y_AXIS] = 1.5 * max_length(Y_AXIS) * home_dir(Y_AXIS);
- feedrate = homing_feedrate[X_AXIS];
- if(homing_feedrate[Y_AXIS] max_length(Y_AXIS)) {
- feedrate *= sqrt(pow(max_length(Y_AXIS) / max_length(X_AXIS), 2) + 1);
- } else {
- feedrate *= sqrt(pow(max_length(X_AXIS) / max_length(Y_AXIS), 2) + 1);
- }
- plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
- st_synchronize();
-
- axis_is_at_home(X_AXIS);
- axis_is_at_home(Y_AXIS);
- plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
- destination[X_AXIS] = current_position[X_AXIS];
- destination[Y_AXIS] = current_position[Y_AXIS];
- plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
- feedrate = 0.0;
- st_synchronize();
- endstops_hit_on_purpose();
-
- current_position[X_AXIS] = destination[X_AXIS];
- current_position[Y_AXIS] = destination[Y_AXIS];
- current_position[Z_AXIS] = destination[Z_AXIS];
- }
- #endif /* QUICK_HOME */
-
-
- if(home_x)
- homeaxis(X_AXIS);
-
- if(home_y)
- homeaxis(Y_AXIS);
-
- if(code_seen(axis_codes[X_AXIS]) && code_value_long() != 0)
- current_position[X_AXIS]=code_value()+add_homing[X_AXIS];
-
- if(code_seen(axis_codes[Y_AXIS]) && code_value_long() != 0)
- current_position[Y_AXIS]=code_value()+add_homing[Y_AXIS];
-
- #if Z_HOME_DIR < 0 // If homing towards BED do Z last
- #ifndef Z_SAFE_HOMING
- if(home_z) {
- #if defined (Z_RAISE_BEFORE_HOMING) && (Z_RAISE_BEFORE_HOMING > 0)
- destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
- feedrate = max_feedrate[Z_AXIS];
- plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
- st_synchronize();
- #endif // defined (Z_RAISE_BEFORE_HOMING) && (Z_RAISE_BEFORE_HOMING > 0)
- #if (defined(MESH_BED_LEVELING) && !defined(MK1BP)) // If Mesh bed leveling, moxve X&Y to safe position for home
- if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] ))
- {
- homeaxis(X_AXIS);
- homeaxis(Y_AXIS);
- }
- // 1st mesh bed leveling measurement point, corrected.
- world2machine_initialize();
- world2machine(pgm_read_float(bed_ref_points), pgm_read_float(bed_ref_points+1), destination[X_AXIS], destination[Y_AXIS]);
- world2machine_reset();
- if (destination[Y_AXIS] < Y_MIN_POS)
- destination[Y_AXIS] = Y_MIN_POS;
- destination[Z_AXIS] = MESH_HOME_Z_SEARCH; // Set destination away from bed
- feedrate = homing_feedrate[Z_AXIS]/10;
- current_position[Z_AXIS] = 0;
- enable_endstops(false);
- plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
- plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
- st_synchronize();
- current_position[X_AXIS] = destination[X_AXIS];
- current_position[Y_AXIS] = destination[Y_AXIS];
- enable_endstops(true);
- endstops_hit_on_purpose();
- homeaxis(Z_AXIS);
- #else // MESH_BED_LEVELING
- homeaxis(Z_AXIS);
- #endif // MESH_BED_LEVELING
- }
- #else // defined(Z_SAFE_HOMING): Z Safe mode activated.
- if(home_all_axes) {
- destination[X_AXIS] = round(Z_SAFE_HOMING_X_POINT - X_PROBE_OFFSET_FROM_EXTRUDER);
- destination[Y_AXIS] = round(Z_SAFE_HOMING_Y_POINT - Y_PROBE_OFFSET_FROM_EXTRUDER);
- destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
- feedrate = XY_TRAVEL_SPEED/60;
- current_position[Z_AXIS] = 0;
-
- plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
- plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
- st_synchronize();
- current_position[X_AXIS] = destination[X_AXIS];
- current_position[Y_AXIS] = destination[Y_AXIS];
-
- homeaxis(Z_AXIS);
- }
- // Let's see if X and Y are homed and probe is inside bed area.
- if(home_z) {
- if ( (axis_known_position[X_AXIS]) && (axis_known_position[Y_AXIS]) \
- && (current_position[X_AXIS]+X_PROBE_OFFSET_FROM_EXTRUDER >= X_MIN_POS) \
- && (current_position[X_AXIS]+X_PROBE_OFFSET_FROM_EXTRUDER <= X_MAX_POS) \
- && (current_position[Y_AXIS]+Y_PROBE_OFFSET_FROM_EXTRUDER >= Y_MIN_POS) \
- && (current_position[Y_AXIS]+Y_PROBE_OFFSET_FROM_EXTRUDER <= Y_MAX_POS)) {
-
- current_position[Z_AXIS] = 0;
- plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
- destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
- feedrate = max_feedrate[Z_AXIS];
- plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
- st_synchronize();
-
- homeaxis(Z_AXIS);
- } else if (!((axis_known_position[X_AXIS]) && (axis_known_position[Y_AXIS]))) {
- LCD_MESSAGERPGM(MSG_POSITION_UNKNOWN);
- SERIAL_ECHO_START;
- SERIAL_ECHOLNRPGM(MSG_POSITION_UNKNOWN);
- } else {
- LCD_MESSAGERPGM(MSG_ZPROBE_OUT);
- SERIAL_ECHO_START;
- SERIAL_ECHOLNRPGM(MSG_ZPROBE_OUT);
- }
- }
- #endif // Z_SAFE_HOMING
- #endif // Z_HOME_DIR < 0
-
- if(code_seen(axis_codes[Z_AXIS]) && code_value_long() != 0)
- current_position[Z_AXIS]=code_value()+add_homing[Z_AXIS];
- #ifdef ENABLE_AUTO_BED_LEVELING
- if(home_z)
- current_position[Z_AXIS] += zprobe_zoffset; //Add Z_Probe offset (the distance is negative)
- #endif
-
- // Set the planner and stepper routine positions.
- // At this point the mesh bed leveling and world2machine corrections are disabled and current_position
- // contains the machine coordinates.
- plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
-
- #ifdef ENDSTOPS_ONLY_FOR_HOMING
- enable_endstops(false);
- #endif
-
- feedrate = saved_feedrate;
- feedmultiply = saved_feedmultiply;
- previous_millis_cmd = millis();
- endstops_hit_on_purpose();
-#ifndef MESH_BED_LEVELING
- // If MESH_BED_LEVELING is not active, then it is the original Prusa i3.
- // Offer the user to load the baby step value, which has been adjusted at the previous print session.
- if(card.sdprinting && eeprom_read_word((uint16_t *)EEPROM_BABYSTEP_Z))
- lcd_adjust_z();
-#endif
-
- // Load the machine correction matrix
- world2machine_initialize();
- // and correct the current_position XY axes to match the transformed coordinate system.
- world2machine_update_current();
-
-#if (defined(MESH_BED_LEVELING) && !defined(MK1BP))
- if (code_seen(axis_codes[X_AXIS]) || code_seen(axis_codes[Y_AXIS]) || code_seen('W') || code_seen(axis_codes[Z_AXIS]))
- {
- if (! home_z && mbl_was_active) {
- // Re-enable the mesh bed leveling if only the X and Y axes were re-homed.
- mbl.active = true;
- // and re-adjust the current logical Z axis with the bed leveling offset applicable at the current XY position.
- current_position[Z_AXIS] -= mbl.get_z(st_get_position_mm(X_AXIS), st_get_position_mm(Y_AXIS));
- }
- }
- else
- {
- st_synchronize();
- homing_flag = false;
- // Push the commands to the front of the message queue in the reverse order!
- // There shall be always enough space reserved for these commands.
- // enquecommand_front_P((PSTR("G80")));
- goto case_G80;
- }
-#endif
-
- if (farm_mode) { prusa_statistics(20); };
-
- homing_flag = false;
-
- SERIAL_ECHOPGM("G28, final "); print_world_coordinates();
- SERIAL_ECHOPGM("G28, final "); print_physical_coordinates();
- SERIAL_ECHOPGM("G28, final "); print_mesh_bed_leveling_table();
- break;
- }
-#ifdef ENABLE_AUTO_BED_LEVELING
- case 29: // G29 Detailed Z-Probe, probes the bed at 3 or more points.
- {
- #if Z_MIN_PIN == -1
- #error "You must have a Z_MIN endstop in order to enable Auto Bed Leveling feature! Z_MIN_PIN must point to a valid hardware pin."
- #endif
-
- // Prevent user from running a G29 without first homing in X and Y
- if (! (axis_known_position[X_AXIS] && axis_known_position[Y_AXIS]) )
- {
- LCD_MESSAGERPGM(MSG_POSITION_UNKNOWN);
- SERIAL_ECHO_START;
- SERIAL_ECHOLNRPGM(MSG_POSITION_UNKNOWN);
- break; // abort G29, since we don't know where we are
- }
-
- st_synchronize();
- // make sure the bed_level_rotation_matrix is identity or the planner will get it incorectly
- //vector_3 corrected_position = plan_get_position_mm();
- //corrected_position.debug("position before G29");
- plan_bed_level_matrix.set_to_identity();
- vector_3 uncorrected_position = plan_get_position();
- //uncorrected_position.debug("position durring G29");
- current_position[X_AXIS] = uncorrected_position.x;
- current_position[Y_AXIS] = uncorrected_position.y;
- current_position[Z_AXIS] = uncorrected_position.z;
- plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
- setup_for_endstop_move();
-
- feedrate = homing_feedrate[Z_AXIS];
-#ifdef AUTO_BED_LEVELING_GRID
- // probe at the points of a lattice grid
-
- int xGridSpacing = (RIGHT_PROBE_BED_POSITION - LEFT_PROBE_BED_POSITION) / (AUTO_BED_LEVELING_GRID_POINTS-1);
- int yGridSpacing = (BACK_PROBE_BED_POSITION - FRONT_PROBE_BED_POSITION) / (AUTO_BED_LEVELING_GRID_POINTS-1);
-
-
- // solve the plane equation ax + by + d = z
- // A is the matrix with rows [x y 1] for all the probed points
- // B is the vector of the Z positions
- // the normal vector to the plane is formed by the coefficients of the plane equation in the standard form, which is Vx*x+Vy*y+Vz*z+d = 0
- // so Vx = -a Vy = -b Vz = 1 (we want the vector facing towards positive Z
-
- // "A" matrix of the linear system of equations
- double eqnAMatrix[AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS*3];
- // "B" vector of Z points
- double eqnBVector[AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS];
-
-
- int probePointCounter = 0;
- bool zig = true;
-
- for (int yProbe=FRONT_PROBE_BED_POSITION; yProbe <= BACK_PROBE_BED_POSITION; yProbe += yGridSpacing)
- {
- int xProbe, xInc;
- if (zig)
- {
- xProbe = LEFT_PROBE_BED_POSITION;
- //xEnd = RIGHT_PROBE_BED_POSITION;
- xInc = xGridSpacing;
- zig = false;
- } else // zag
- {
- xProbe = RIGHT_PROBE_BED_POSITION;
- //xEnd = LEFT_PROBE_BED_POSITION;
- xInc = -xGridSpacing;
- zig = true;
- }
-
- for (int xCount=0; xCount < AUTO_BED_LEVELING_GRID_POINTS; xCount++)
- {
- float z_before;
- if (probePointCounter == 0)
- {
- // raise before probing
- z_before = Z_RAISE_BEFORE_PROBING;
- } else
- {
- // raise extruder
- z_before = current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS;
- }
-
- float measured_z = probe_pt(xProbe, yProbe, z_before);
-
- eqnBVector[probePointCounter] = measured_z;
-
- eqnAMatrix[probePointCounter + 0*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = xProbe;
- eqnAMatrix[probePointCounter + 1*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = yProbe;
- eqnAMatrix[probePointCounter + 2*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = 1;
- probePointCounter++;
- xProbe += xInc;
- }
- }
- clean_up_after_endstop_move();
-
- // solve lsq problem
- double *plane_equation_coefficients = qr_solve(AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS, 3, eqnAMatrix, eqnBVector);
-
- SERIAL_PROTOCOLPGM("Eqn coefficients: a: ");
- SERIAL_PROTOCOL(plane_equation_coefficients[0]);
- SERIAL_PROTOCOLPGM(" b: ");
- SERIAL_PROTOCOL(plane_equation_coefficients[1]);
- SERIAL_PROTOCOLPGM(" d: ");
- SERIAL_PROTOCOLLN(plane_equation_coefficients[2]);
-
-
- set_bed_level_equation_lsq(plane_equation_coefficients);
-
- free(plane_equation_coefficients);
-
-#else // AUTO_BED_LEVELING_GRID not defined
-
- // Probe at 3 arbitrary points
- // probe 1
- float z_at_pt_1 = probe_pt(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, Z_RAISE_BEFORE_PROBING);
-
- // probe 2
- float z_at_pt_2 = probe_pt(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS);
-
- // probe 3
- float z_at_pt_3 = probe_pt(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS);
-
- clean_up_after_endstop_move();
-
- set_bed_level_equation_3pts(z_at_pt_1, z_at_pt_2, z_at_pt_3);
-
-
-#endif // AUTO_BED_LEVELING_GRID
- st_synchronize();
-
- // The following code correct the Z height difference from z-probe position and hotend tip position.
- // The Z height on homing is measured by Z-Probe, but the probe is quite far from the hotend.
- // When the bed is uneven, this height must be corrected.
- real_z = float(st_get_position(Z_AXIS))/axis_steps_per_unit[Z_AXIS]; //get the real Z (since the auto bed leveling is already correcting the plane)
- x_tmp = current_position[X_AXIS] + X_PROBE_OFFSET_FROM_EXTRUDER;
- y_tmp = current_position[Y_AXIS] + Y_PROBE_OFFSET_FROM_EXTRUDER;
- z_tmp = current_position[Z_AXIS];
-
- apply_rotation_xyz(plan_bed_level_matrix, x_tmp, y_tmp, z_tmp); //Apply the correction sending the probe offset
- current_position[Z_AXIS] = z_tmp - real_z + current_position[Z_AXIS]; //The difference is added to current position and sent to planner.
- plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
- }
- break;
-#ifndef Z_PROBE_SLED
- case 30: // G30 Single Z Probe
- {
- st_synchronize();
- // TODO: make sure the bed_level_rotation_matrix is identity or the planner will get set incorectly
- setup_for_endstop_move();
-
- feedrate = homing_feedrate[Z_AXIS];
-
- run_z_probe();
- SERIAL_PROTOCOLPGM(MSG_BED);
- SERIAL_PROTOCOLPGM(" X: ");
- SERIAL_PROTOCOL(current_position[X_AXIS]);
- SERIAL_PROTOCOLPGM(" Y: ");
- SERIAL_PROTOCOL(current_position[Y_AXIS]);
- SERIAL_PROTOCOLPGM(" Z: ");
- SERIAL_PROTOCOL(current_position[Z_AXIS]);
- SERIAL_PROTOCOLPGM("\n");
-
- clean_up_after_endstop_move();
- }
- break;
-#else
- case 31: // dock the sled
- dock_sled(true);
- break;
- case 32: // undock the sled
- dock_sled(false);
- break;
-#endif // Z_PROBE_SLED
-#endif // ENABLE_AUTO_BED_LEVELING
-
-#ifdef MESH_BED_LEVELING
- case 30: // G30 Single Z Probe
- {
- st_synchronize();
- // TODO: make sure the bed_level_rotation_matrix is identity or the planner will get set incorectly
- setup_for_endstop_move();
-
- feedrate = homing_feedrate[Z_AXIS];
-
- find_bed_induction_sensor_point_z(-10.f, 3);
- SERIAL_PROTOCOLRPGM(MSG_BED);
- SERIAL_PROTOCOLPGM(" X: ");
- MYSERIAL.print(current_position[X_AXIS], 5);
- SERIAL_PROTOCOLPGM(" Y: ");
- MYSERIAL.print(current_position[Y_AXIS], 5);
- SERIAL_PROTOCOLPGM(" Z: ");
- MYSERIAL.print(current_position[Z_AXIS], 5);
- SERIAL_PROTOCOLPGM("\n");
- clean_up_after_endstop_move();
- }
- break;
-
-
- case 75:
- {
- for (int i = 40; i <= 110; i++) {
- MYSERIAL.print(i);
- MYSERIAL.print(" ");
- MYSERIAL.println(temp_comp_interpolation(i));// / axis_steps_per_unit[Z_AXIS]);
- }
- }
- break;
-
- case 76: //PINDA probe temperature calibration
- {
-#ifdef PINDA_THERMISTOR
- if (true)
- {
- if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS])) {
- // We don't know where we are! HOME!
- // Push the commands to the front of the message queue in the reverse order!
- // There shall be always enough space reserved for these commands.
- repeatcommand_front(); // repeat G76 with all its parameters
- enquecommand_front_P((PSTR("G28 W0")));
- break;
- }
- SERIAL_ECHOLNPGM("PINDA probe calibration start");
-
- float zero_z;
- int z_shift = 0; //unit: steps
- float start_temp = 5 * (int)(current_temperature_pinda / 5);
- if (start_temp < 35) start_temp = 35;
- if (start_temp < current_temperature_pinda) start_temp += 5;
- SERIAL_ECHOPGM("start temperature: ");
- MYSERIAL.println(start_temp);
-
-// setTargetHotend(200, 0);
- setTargetBed(50 + 10 * (start_temp - 30) / 5);
-
- custom_message = true;
- custom_message_type = 4;
- custom_message_state = 1;
- custom_message = MSG_TEMP_CALIBRATION;
- current_position[X_AXIS] = PINDA_PREHEAT_X;
- current_position[Y_AXIS] = PINDA_PREHEAT_Y;
- current_position[Z_AXIS] = PINDA_PREHEAT_Z;
- plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
- st_synchronize();
-
- while (current_temperature_pinda < start_temp)
- {
- delay_keep_alive(1000);
- serialecho_temperatures();
- }
-
- eeprom_update_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 0); //invalidate temp. calibration in case that in will be aborted during the calibration process
-
- current_position[Z_AXIS] = 5;
- plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
-
- current_position[X_AXIS] = pgm_read_float(bed_ref_points);
- current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 1);
- plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
- st_synchronize();
-
- find_bed_induction_sensor_point_z(-1.f);
- zero_z = current_position[Z_AXIS];
-
- //current_position[Z_AXIS]
- SERIAL_ECHOLNPGM("");
- SERIAL_ECHOPGM("ZERO: ");
- MYSERIAL.print(current_position[Z_AXIS]);
- SERIAL_ECHOLNPGM("");
-
- int i = -1; for (; i < 5; i++)
- {
- float temp = (40 + i * 5);
- SERIAL_ECHOPGM("Step: ");
- MYSERIAL.print(i + 2);
- SERIAL_ECHOLNPGM("/6 (skipped)");
- SERIAL_ECHOPGM("PINDA temperature: ");
- MYSERIAL.print((40 + i*5));
- SERIAL_ECHOPGM(" Z shift (mm):");
- MYSERIAL.print(0);
- SERIAL_ECHOLNPGM("");
- if (i >= 0) EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i * 2, &z_shift);
- if (start_temp <= temp) break;
- }
-
- for (i++; i < 5; i++)
- {
- float temp = (40 + i * 5);
- SERIAL_ECHOPGM("Step: ");
- MYSERIAL.print(i + 2);
- SERIAL_ECHOLNPGM("/6");
- custom_message_state = i + 2;
- setTargetBed(50 + 10 * (temp - 30) / 5);
-// setTargetHotend(255, 0);
- current_position[X_AXIS] = PINDA_PREHEAT_X;
- current_position[Y_AXIS] = PINDA_PREHEAT_Y;
- current_position[Z_AXIS] = PINDA_PREHEAT_Z;
- plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
- st_synchronize();
- while (current_temperature_pinda < temp)
- {
- delay_keep_alive(1000);
- serialecho_temperatures();
- }
- current_position[Z_AXIS] = 5;
- plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
- current_position[X_AXIS] = pgm_read_float(bed_ref_points);
- current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 1);
- plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
- st_synchronize();
- find_bed_induction_sensor_point_z(-1.f);
- z_shift = (int)((current_position[Z_AXIS] - zero_z)*axis_steps_per_unit[Z_AXIS]);
-
- SERIAL_ECHOLNPGM("");
- SERIAL_ECHOPGM("PINDA temperature: ");
- MYSERIAL.print(current_temperature_pinda);
- SERIAL_ECHOPGM(" Z shift (mm):");
- MYSERIAL.print(current_position[Z_AXIS] - zero_z);
- SERIAL_ECHOLNPGM("");
-
- EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i * 2, &z_shift);
-
- }
- custom_message_type = 0;
- custom_message = false;
-
- eeprom_update_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 1);
- SERIAL_ECHOLNPGM("Temperature calibration done. Continue with pressing the knob.");
- disable_x();
- disable_y();
- disable_z();
- disable_e0();
- disable_e1();
- disable_e2();
- lcd_show_fullscreen_message_and_wait_P(MSG_TEMP_CALIBRATION_DONE);
- lcd_update_enable(true);
- lcd_update(2);
-
- setTargetBed(0); //set bed target temperature back to 0
-// setTargetHotend(0,0); //set hotend target temperature back to 0
- break;
- }
-#endif //PINDA_THERMISTOR
-
- setTargetBed(PINDA_MIN_T);
- float zero_z;
- int z_shift = 0; //unit: steps
- int t_c; // temperature
-
- if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS])) {
- // We don't know where we are! HOME!
- // Push the commands to the front of the message queue in the reverse order!
- // There shall be always enough space reserved for these commands.
- repeatcommand_front(); // repeat G76 with all its parameters
- enquecommand_front_P((PSTR("G28 W0")));
- break;
- }
- SERIAL_ECHOLNPGM("PINDA probe calibration start");
- custom_message = true;
- custom_message_type = 4;
- custom_message_state = 1;
- custom_message = MSG_TEMP_CALIBRATION;
- current_position[X_AXIS] = PINDA_PREHEAT_X;
- current_position[Y_AXIS] = PINDA_PREHEAT_Y;
- current_position[Z_AXIS] = PINDA_PREHEAT_Z;
- plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
- st_synchronize();
-
- while (abs(degBed() - PINDA_MIN_T) > 1) {
- delay_keep_alive(1000);
- serialecho_temperatures();
- }
-
- //enquecommand_P(PSTR("M190 S50"));
- for (int i = 0; i < PINDA_HEAT_T; i++) {
- delay_keep_alive(1000);
- serialecho_temperatures();
- }
- eeprom_update_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 0); //invalidate temp. calibration in case that in will be aborted during the calibration process
-
- current_position[Z_AXIS] = 5;
- plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
-
- current_position[X_AXIS] = pgm_read_float(bed_ref_points);
- current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 1);
- plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
- st_synchronize();
-
- find_bed_induction_sensor_point_z(-1.f);
- zero_z = current_position[Z_AXIS];
-
- //current_position[Z_AXIS]
- SERIAL_ECHOLNPGM("");
- SERIAL_ECHOPGM("ZERO: ");
- MYSERIAL.print(current_position[Z_AXIS]);
- SERIAL_ECHOLNPGM("");
-
- for (int i = 0; i<5; i++) {
- SERIAL_ECHOPGM("Step: ");
- MYSERIAL.print(i+2);
- SERIAL_ECHOLNPGM("/6");
- custom_message_state = i + 2;
- t_c = 60 + i * 10;
-
- setTargetBed(t_c);
- current_position[X_AXIS] = PINDA_PREHEAT_X;
- current_position[Y_AXIS] = PINDA_PREHEAT_Y;
- current_position[Z_AXIS] = PINDA_PREHEAT_Z;
- plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
- st_synchronize();
- while (degBed() < t_c) {
- delay_keep_alive(1000);
- serialecho_temperatures();
- }
- for (int i = 0; i < PINDA_HEAT_T; i++) {
- delay_keep_alive(1000);
- serialecho_temperatures();
- }
- current_position[Z_AXIS] = 5;
- plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
- current_position[X_AXIS] = pgm_read_float(bed_ref_points);
- current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 1);
- plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
- st_synchronize();
- find_bed_induction_sensor_point_z(-1.f);
- z_shift = (int)((current_position[Z_AXIS] - zero_z)*axis_steps_per_unit[Z_AXIS]);
-
- SERIAL_ECHOLNPGM("");
- SERIAL_ECHOPGM("Temperature: ");
- MYSERIAL.print(t_c);
- SERIAL_ECHOPGM(" Z shift (mm):");
- MYSERIAL.print(current_position[Z_AXIS] - zero_z);
- SERIAL_ECHOLNPGM("");
-
- EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i*2, &z_shift);
-
-
- }
- custom_message_type = 0;
- custom_message = false;
-
- eeprom_update_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 1);
- SERIAL_ECHOLNPGM("Temperature calibration done. Continue with pressing the knob.");
- disable_x();
- disable_y();
- disable_z();
- disable_e0();
- disable_e1();
- disable_e2();
- setTargetBed(0); //set bed target temperature back to 0
- lcd_show_fullscreen_message_and_wait_P(MSG_TEMP_CALIBRATION_DONE);
- lcd_update_enable(true);
- lcd_update(2);
-
-
-
- }
- break;
-
-#ifdef DIS
- case 77:
- {
- //G77 X200 Y150 XP100 YP15 XO10 Y015
-
- //for 9 point mesh bed leveling G77 X203 Y196 XP3 YP3 XO0 YO0
-
-
- //G77 X232 Y218 XP116 YP109 XO-11 YO0
-
- float dimension_x = 40;
- float dimension_y = 40;
- int points_x = 40;
- int points_y = 40;
- float offset_x = 74;
- float offset_y = 33;
-
- if (code_seen('X')) dimension_x = code_value();
- if (code_seen('Y')) dimension_y = code_value();
- if (code_seen('XP')) points_x = code_value();
- if (code_seen('YP')) points_y = code_value();
- if (code_seen('XO')) offset_x = code_value();
- if (code_seen('YO')) offset_y = code_value();
-
- bed_analysis(dimension_x,dimension_y,points_x,points_y,offset_x,offset_y);
-
- } break;
-
-#endif
-
- case 79: {
- for (int i = 255; i > 0; i = i - 5) {
- fanSpeed = i;
- //delay_keep_alive(2000);
- for (int j = 0; j < 100; j++) {
- delay_keep_alive(100);
-
- }
- fan_speed[1];
- MYSERIAL.print(i); SERIAL_ECHOPGM(": "); MYSERIAL.println(fan_speed[1]);
- }
- }break;
-
- /**
- * G80: Mesh-based Z probe, probes a grid and produces a
- * mesh to compensate for variable bed height
- *
- * The S0 report the points as below
- *
- * +----> X-axis
- * |
- * |
- * v Y-axis
- *
- */
-
- case 80:
-#ifdef MK1BP
- break;
-#endif //MK1BP
- case_G80:
- {
- mesh_bed_leveling_flag = true;
- int8_t verbosity_level = 0;
- static bool run = false;
-
- if (code_seen('V')) {
- // Just 'V' without a number counts as V1.
- char c = strchr_pointer[1];
- verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
- }
- // Firstly check if we know where we are
- if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS])) {
- // We don't know where we are! HOME!
- // Push the commands to the front of the message queue in the reverse order!
- // There shall be always enough space reserved for these commands.
- if (lcd_commands_type != LCD_COMMAND_STOP_PRINT) {
- repeatcommand_front(); // repeat G80 with all its parameters
- enquecommand_front_P((PSTR("G28 W0")));
- }
- else {
- mesh_bed_leveling_flag = false;
- }
- break;
- }
-
-
- bool temp_comp_start = true;
-#ifdef PINDA_THERMISTOR
- temp_comp_start = false;
-#endif //PINDA_THERMISTOR
-
- if (temp_comp_start)
- if (run == false && temp_cal_active == true && calibration_status_pinda() == true && target_temperature_bed >= 50) {
- if (lcd_commands_type != LCD_COMMAND_STOP_PRINT) {
- temp_compensation_start();
- run = true;
- repeatcommand_front(); // repeat G80 with all its parameters
- enquecommand_front_P((PSTR("G28 W0")));
- }
- else {
- mesh_bed_leveling_flag = false;
- }
- break;
- }
- run = false;
- if (lcd_commands_type == LCD_COMMAND_STOP_PRINT) {
- mesh_bed_leveling_flag = false;
- break;
- }
- // Save custom message state, set a new custom message state to display: Calibrating point 9.
- bool custom_message_old = custom_message;
- unsigned int custom_message_type_old = custom_message_type;
- unsigned int custom_message_state_old = custom_message_state;
- custom_message = true;
- custom_message_type = 1;
- custom_message_state = (MESH_MEAS_NUM_X_POINTS * MESH_MEAS_NUM_Y_POINTS) + 10;
- lcd_update(1);
-
- mbl.reset(); //reset mesh bed leveling
-
- // Reset baby stepping to zero, if the babystepping has already been loaded before. The babystepsTodo value will be
- // consumed during the first movements following this statement.
- babystep_undo();
-
- // Cycle through all points and probe them
- // First move up. During this first movement, the babystepping will be reverted.
- current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
- plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 60, active_extruder);
- // The move to the first calibration point.
- current_position[X_AXIS] = pgm_read_float(bed_ref_points);
- current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 1);
- bool clamped = world2machine_clamp(current_position[X_AXIS], current_position[Y_AXIS]);
-
- if (verbosity_level >= 1) {
- clamped ? SERIAL_PROTOCOLPGM("First calibration point clamped.\n") : SERIAL_PROTOCOLPGM("No clamping for first calibration point.\n");
- }
- // mbl.get_meas_xy(0, 0, current_position[X_AXIS], current_position[Y_AXIS], false);
- plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[X_AXIS] / 30, active_extruder);
- // Wait until the move is finished.
- st_synchronize();
-
- int mesh_point = 0; //index number of calibration point
-
- int ix = 0;
- int iy = 0;
-
- int XY_AXIS_FEEDRATE = homing_feedrate[X_AXIS] / 20;
- int Z_PROBE_FEEDRATE = homing_feedrate[Z_AXIS] / 60;
- int Z_LIFT_FEEDRATE = homing_feedrate[Z_AXIS] / 40;
- bool has_z = is_bed_z_jitter_data_valid(); //checks if we have data from Z calibration (offsets of the Z heiths of the 8 calibration points from the first point)
- if (verbosity_level >= 1) {
- has_z ? SERIAL_PROTOCOLPGM("Z jitter data from Z cal. valid.\n") : SERIAL_PROTOCOLPGM("Z jitter data from Z cal. not valid.\n");
- }
- setup_for_endstop_move(false); //save feedrate and feedmultiply, sets feedmultiply to 100
- const char *kill_message = NULL;
- while (mesh_point != MESH_MEAS_NUM_X_POINTS * MESH_MEAS_NUM_Y_POINTS) {
- if (verbosity_level >= 1) SERIAL_ECHOLNPGM("");
- // Get coords of a measuring point.
- ix = mesh_point % MESH_MEAS_NUM_X_POINTS; // from 0 to MESH_NUM_X_POINTS - 1
- iy = mesh_point / MESH_MEAS_NUM_X_POINTS;
- if (iy & 1) ix = (MESH_MEAS_NUM_X_POINTS - 1) - ix; // Zig zag
- float z0 = 0.f;
- if (has_z && mesh_point > 0) {
- uint16_t z_offset_u = eeprom_read_word((uint16_t*)(EEPROM_BED_CALIBRATION_Z_JITTER + 2 * (ix + iy * 3 - 1)));
- z0 = mbl.z_values[0][0] + *reinterpret_cast(&z_offset_u) * 0.01;
- //#if 0
- if (verbosity_level >= 1) {
- SERIAL_ECHOPGM("Bed leveling, point: ");
- MYSERIAL.print(mesh_point);
- SERIAL_ECHOPGM(", calibration z: ");
- MYSERIAL.print(z0, 5);
- SERIAL_ECHOLNPGM("");
- }
- //#endif
- }
-
- // Move Z up to MESH_HOME_Z_SEARCH.
- current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
- plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
- st_synchronize();
-
- // Move to XY position of the sensor point.
- current_position[X_AXIS] = pgm_read_float(bed_ref_points + 2 * mesh_point);
- current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 2 * mesh_point + 1);
-
-
-
- world2machine_clamp(current_position[X_AXIS], current_position[Y_AXIS]);
- if (verbosity_level >= 1) {
-
- SERIAL_PROTOCOL(mesh_point);
- clamped ? SERIAL_PROTOCOLPGM(": xy clamped.\n") : SERIAL_PROTOCOLPGM(": no xy clamping\n");
- }
-
-
- plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], XY_AXIS_FEEDRATE, active_extruder);
- st_synchronize();
-
- // Go down until endstop is hit
- const float Z_CALIBRATION_THRESHOLD = 1.f;
- if (!find_bed_induction_sensor_point_z((has_z && mesh_point > 0) ? z0 - Z_CALIBRATION_THRESHOLD : -10.f)) { //if we have data from z calibration max allowed difference is 1mm for each point, if we dont have data max difference is 10mm from initial point
- kill_message = MSG_BED_LEVELING_FAILED_POINT_LOW;
- break;
- }
- if (MESH_HOME_Z_SEARCH - current_position[Z_AXIS] < 0.1f) {
- kill_message = MSG_BED_LEVELING_FAILED_PROBE_DISCONNECTED;
- break;
- }
- if (has_z && fabs(z0 - current_position[Z_AXIS]) > Z_CALIBRATION_THRESHOLD) { //if we have data from z calibration, max. allowed difference is 1mm for each point
- kill_message = MSG_BED_LEVELING_FAILED_POINT_HIGH;
- break;
- }
-
- if (verbosity_level >= 10) {
- SERIAL_ECHOPGM("X: ");
- MYSERIAL.print(current_position[X_AXIS], 5);
- SERIAL_ECHOLNPGM("");
- SERIAL_ECHOPGM("Y: ");
- MYSERIAL.print(current_position[Y_AXIS], 5);
- SERIAL_PROTOCOLPGM("\n");
- }
-
- float offset_z = 0;
-
-#ifdef PINDA_THERMISTOR
- offset_z = temp_compensation_pinda_thermistor_offset();
-#endif //PINDA_THERMISTOR
-
- if (verbosity_level >= 1) {
- SERIAL_ECHOPGM("mesh bed leveling: ");
- MYSERIAL.print(current_position[Z_AXIS], 5);
- SERIAL_ECHOPGM(" offset: ");
- MYSERIAL.print(offset_z, 5);
- SERIAL_ECHOLNPGM("");
- }
- mbl.set_z(ix, iy, current_position[Z_AXIS] - offset_z); //store measured z values z_values[iy][ix] = z - offset_z;
-
- custom_message_state--;
- mesh_point++;
- lcd_update(1);
- }
- if (verbosity_level >= 20) SERIAL_ECHOLNPGM("Mesh bed leveling while loop finished.");
- current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
- if (verbosity_level >= 20) {
- SERIAL_ECHOLNPGM("MESH_HOME_Z_SEARCH: ");
- MYSERIAL.print(current_position[Z_AXIS], 5);
- }
- plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
- st_synchronize();
- if (mesh_point != MESH_MEAS_NUM_X_POINTS * MESH_MEAS_NUM_Y_POINTS) {
- kill(kill_message);
- SERIAL_ECHOLNPGM("killed");
- }
- clean_up_after_endstop_move();
- SERIAL_ECHOLNPGM("clean up finished ");
-
- bool apply_temp_comp = true;
-#ifdef PINDA_THERMISTOR
- apply_temp_comp = false;
-#endif
- if (apply_temp_comp)
- if(temp_cal_active == true && calibration_status_pinda() == true) temp_compensation_apply(); //apply PINDA temperature compensation
- babystep_apply(); // Apply Z height correction aka baby stepping before mesh bed leveing gets activated.
- SERIAL_ECHOLNPGM("babystep applied");
- bool eeprom_bed_correction_valid = eeprom_read_byte((unsigned char*)EEPROM_BED_CORRECTION_VALID) == 1;
-
- if (verbosity_level >= 1) {
- eeprom_bed_correction_valid ? SERIAL_PROTOCOLPGM("Bed correction data valid\n") : SERIAL_PROTOCOLPGM("Bed correction data not valid\n");
- }
-
- for (uint8_t i = 0; i < 4; ++i) {
- unsigned char codes[4] = { 'L', 'R', 'F', 'B' };
- long correction = 0;
- if (code_seen(codes[i]))
- correction = code_value_long();
- else if (eeprom_bed_correction_valid) {
- unsigned char *addr = (i < 2) ?
- ((i == 0) ? (unsigned char*)EEPROM_BED_CORRECTION_LEFT : (unsigned char*)EEPROM_BED_CORRECTION_RIGHT) :
- ((i == 2) ? (unsigned char*)EEPROM_BED_CORRECTION_FRONT : (unsigned char*)EEPROM_BED_CORRECTION_REAR);
- correction = eeprom_read_int8(addr);
- }
- if (correction == 0)
- continue;
- float offset = float(correction) * 0.001f;
- if (fabs(offset) > 0.101f) {
- SERIAL_ERROR_START;
- SERIAL_ECHOPGM("Excessive bed leveling correction: ");
- SERIAL_ECHO(offset);
- SERIAL_ECHOLNPGM(" microns");
- }
- else {
- switch (i) {
- case 0:
- for (uint8_t row = 0; row < 3; ++row) {
- mbl.z_values[row][1] += 0.5f * offset;
- mbl.z_values[row][0] += offset;
- }
- break;
- case 1:
- for (uint8_t row = 0; row < 3; ++row) {
- mbl.z_values[row][1] += 0.5f * offset;
- mbl.z_values[row][2] += offset;
- }
- break;
- case 2:
- for (uint8_t col = 0; col < 3; ++col) {
- mbl.z_values[1][col] += 0.5f * offset;
- mbl.z_values[0][col] += offset;
- }
- break;
- case 3:
- for (uint8_t col = 0; col < 3; ++col) {
- mbl.z_values[1][col] += 0.5f * offset;
- mbl.z_values[2][col] += offset;
- }
- break;
- }
- }
- }
- SERIAL_ECHOLNPGM("Bed leveling correction finished");
- mbl.upsample_3x3(); //bilinear interpolation from 3x3 to 7x7 points while using the same array z_values[iy][ix] for storing (just coppying measured data to new destination and interpolating between them)
- SERIAL_ECHOLNPGM("Upsample finished");
- mbl.active = 1; //activate mesh bed leveling
- SERIAL_ECHOLNPGM("Mesh bed leveling activated");
- go_home_with_z_lift();
- SERIAL_ECHOLNPGM("Go home finished");
- //unretract (after PINDA preheat retraction)
- if (degHotend(active_extruder) > EXTRUDE_MINTEMP && temp_cal_active == true && calibration_status_pinda() == true && target_temperature_bed >= 50) {
- current_position[E_AXIS] += DEFAULT_RETRACTION;
- plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400, active_extruder);
- }
- // Restore custom message state
- custom_message = custom_message_old;
- custom_message_type = custom_message_type_old;
- custom_message_state = custom_message_state_old;
- mesh_bed_leveling_flag = false;
- mesh_bed_run_from_menu = false;
- lcd_update(2);
-
- }
- break;
-
- /**
- * G81: Print mesh bed leveling status and bed profile if activated
- */
- case 81:
- if (mbl.active) {
- SERIAL_PROTOCOLPGM("Num X,Y: ");
- SERIAL_PROTOCOL(MESH_NUM_X_POINTS);
- SERIAL_PROTOCOLPGM(",");
- SERIAL_PROTOCOL(MESH_NUM_Y_POINTS);
- SERIAL_PROTOCOLPGM("\nZ search height: ");
- SERIAL_PROTOCOL(MESH_HOME_Z_SEARCH);
- SERIAL_PROTOCOLLNPGM("\nMeasured points:");
- for (int y = MESH_NUM_Y_POINTS-1; y >= 0; y--) {
- for (int x = 0; x < MESH_NUM_X_POINTS; x++) {
- SERIAL_PROTOCOLPGM(" ");
- SERIAL_PROTOCOL_F(mbl.z_values[y][x], 5);
- }
- SERIAL_PROTOCOLPGM("\n");
- }
- }
- else
- SERIAL_PROTOCOLLNPGM("Mesh bed leveling not active.");
- break;
-
-#if 0
- /**
- * G82: Single Z probe at current location
- *
- * WARNING! USE WITH CAUTION! If you'll try to probe where is no leveling pad, nasty things can happen!
- *
- */
- case 82:
- SERIAL_PROTOCOLLNPGM("Finding bed ");
- setup_for_endstop_move();
- find_bed_induction_sensor_point_z();
- clean_up_after_endstop_move();
- SERIAL_PROTOCOLPGM("Bed found at: ");
- SERIAL_PROTOCOL_F(current_position[Z_AXIS], 5);
- SERIAL_PROTOCOLPGM("\n");
- break;
-
- /**
- * G83: Prusa3D specific: Babystep in Z and store to EEPROM
- */
- case 83:
- {
- int babystepz = code_seen('S') ? code_value() : 0;
- int BabyPosition = code_seen('P') ? code_value() : 0;
-
- if (babystepz != 0) {
- //FIXME Vojtech: What shall be the index of the axis Z: 3 or 4?
- // Is the axis indexed starting with zero or one?
- if (BabyPosition > 4) {
- SERIAL_PROTOCOLLNPGM("Index out of bounds");
- }else{
- // Save it to the eeprom
- babystepLoadZ = babystepz;
- EEPROM_save_B(EEPROM_BABYSTEP_Z0+(BabyPosition*2),&babystepLoadZ);
- // adjust the Z
- babystepsTodoZadd(babystepLoadZ);
- }
-
- }
-
- }
- break;
- /**
- * G84: Prusa3D specific: UNDO Babystep Z (move Z axis back)
- */
- case 84:
- babystepsTodoZsubtract(babystepLoadZ);
- // babystepLoadZ = 0;
- break;
-
- /**
- * G85: Prusa3D specific: Pick best babystep
- */
- case 85:
- lcd_pick_babystep();
- break;
-#endif
-
- /**
- * G86: Prusa3D specific: Disable babystep correction after home.
- * This G-code will be performed at the start of a calibration script.
- */
- case 86:
- calibration_status_store(CALIBRATION_STATUS_LIVE_ADJUST);
- break;
- /**
- * G87: Prusa3D specific: Enable babystep correction after home
- * This G-code will be performed at the end of a calibration script.
- */
- case 87:
- calibration_status_store(CALIBRATION_STATUS_CALIBRATED);
- break;
-
- /**
- * G88: Prusa3D specific: Don't know what it is for, it is in V2Calibration.gcode
- */
- case 88:
- break;
-
-
-#endif // ENABLE_MESH_BED_LEVELING
-
-
- case 90: // G90
- relative_mode = false;
- break;
- case 91: // G91
- relative_mode = true;
- break;
- case 92: // G92
- if(!code_seen(axis_codes[E_AXIS]))
- st_synchronize();
- for(int8_t i=0; i < NUM_AXIS; i++) {
- if(code_seen(axis_codes[i])) {
- if(i == E_AXIS) {
- current_position[i] = code_value();
- plan_set_e_position(current_position[E_AXIS]);
- }
- else {
- current_position[i] = code_value()+add_homing[i];
- plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
- }
- }
- }
- break;
-
- case 98: //activate farm mode
- farm_mode = 1;
- PingTime = millis();
- eeprom_update_byte((unsigned char *)EEPROM_FARM_MODE, farm_mode);
- break;
-
- case 99: //deactivate farm mode
- farm_mode = 0;
- lcd_printer_connected();
- eeprom_update_byte((unsigned char *)EEPROM_FARM_MODE, farm_mode);
- lcd_update(2);
- break;
-
-
-
-
-
-
-
- }
- } // end if(code_seen('G'))
-
- else if(code_seen('M'))
- {
- int index;
- for (index = 1; *(strchr_pointer + index) == ' ' || *(strchr_pointer + index) == '\t'; index++);
-
- /*for (++strchr_pointer; *strchr_pointer == ' ' || *strchr_pointer == '\t'; ++strchr_pointer);*/
- if (*(strchr_pointer+index) < '0' || *(strchr_pointer+index) > '9') {
- SERIAL_ECHOLNPGM("Invalid M code");
- } else
- switch((int)code_value())
- {
-#ifdef ULTIPANEL
-
- case 0: // M0 - Unconditional stop - Wait for user button press on LCD
- case 1: // M1 - Conditional stop - Wait for user button press on LCD
- {
- char *src = strchr_pointer + 2;
-
- codenum = 0;
-
- bool hasP = false, hasS = false;
- if (code_seen('P')) {
- codenum = code_value(); // milliseconds to wait
- hasP = codenum > 0;
- }
- if (code_seen('S')) {
- codenum = code_value() * 1000; // seconds to wait
- hasS = codenum > 0;
- }
- starpos = strchr(src, '*');
- if (starpos != NULL) *(starpos) = '\0';
- while (*src == ' ') ++src;
- if (!hasP && !hasS && *src != '\0') {
- lcd_setstatus(src);
- } else {
- LCD_MESSAGERPGM(MSG_USERWAIT);
- }
-
- lcd_ignore_click(); //call lcd_ignore_click aslo for else ???
- st_synchronize();
- previous_millis_cmd = millis();
- if (codenum > 0){
- codenum += millis(); // keep track of when we started waiting
- while(millis() < codenum && !lcd_clicked()){
- manage_heater();
- manage_inactivity(true);
- lcd_update();
- }
- lcd_ignore_click(false);
- }else{
- if (!lcd_detected())
- break;
- while(!lcd_clicked()){
- manage_heater();
- manage_inactivity(true);
- lcd_update();
- }
- }
- if (IS_SD_PRINTING)
- LCD_MESSAGERPGM(MSG_RESUMING);
- else
- LCD_MESSAGERPGM(WELCOME_MSG);
- }
- break;
-#endif
- case 17:
- LCD_MESSAGERPGM(MSG_NO_MOVE);
- enable_x();
- enable_y();
- enable_z();
- enable_e0();
- enable_e1();
- enable_e2();
- break;
-
-#ifdef SDSUPPORT
- case 20: // M20 - list SD card
- SERIAL_PROTOCOLLNRPGM(MSG_BEGIN_FILE_LIST);
- card.ls();
- SERIAL_PROTOCOLLNRPGM(MSG_END_FILE_LIST);
- break;
- case 21: // M21 - init SD card
-
- card.initsd();
-
- break;
- case 22: //M22 - release SD card
- card.release();
-
- break;
- case 23: //M23 - Select file
- starpos = (strchr(strchr_pointer + 4,'*'));
- if(starpos!=NULL)
- *(starpos)='\0';
- card.openFile(strchr_pointer + 4,true);
- break;
- case 24: //M24 - Start SD print
- card.startFileprint();
- starttime=millis();
- break;
- case 25: //M25 - Pause SD print
- card.pauseSDPrint();
- break;
- case 26: //M26 - Set SD index
- if(card.cardOK && code_seen('S')) {
- card.setIndex(code_value_long());
- }
- break;
- case 27: //M27 - Get SD status
- card.getStatus();
- break;
- case 28: //M28 - Start SD write
- starpos = (strchr(strchr_pointer + 4,'*'));
- if(starpos != NULL){
- char* npos = strchr(CMDBUFFER_CURRENT_STRING, 'N');
- strchr_pointer = strchr(npos,' ') + 1;
- *(starpos) = '\0';
- }
- card.openFile(strchr_pointer+4,false);
- break;
- case 29: //M29 - Stop SD write
- //processed in write to file routine above
- //card,saving = false;
- break;
- case 30: //M30 Delete File
- if (card.cardOK){
- card.closefile();
- starpos = (strchr(strchr_pointer + 4,'*'));
- if(starpos != NULL){
- char* npos = strchr(CMDBUFFER_CURRENT_STRING, 'N');
- strchr_pointer = strchr(npos,' ') + 1;
- *(starpos) = '\0';
- }
- card.removeFile(strchr_pointer + 4);
- }
- break;
- case 32: //M32 - Select file and start SD print
- {
- if(card.sdprinting) {
- st_synchronize();
-
- }
- starpos = (strchr(strchr_pointer + 4,'*'));
-
- char* namestartpos = (strchr(strchr_pointer + 4,'!')); //find ! to indicate filename string start.
- if(namestartpos==NULL)
- {
- namestartpos=strchr_pointer + 4; //default name position, 4 letters after the M
- }
- else
- namestartpos++; //to skip the '!'
-
- if(starpos!=NULL)
- *(starpos)='\0';
-
- bool call_procedure=(code_seen('P'));
-
- if(strchr_pointer>namestartpos)
- call_procedure=false; //false alert, 'P' found within filename
-
- if( card.cardOK )
- {
- card.openFile(namestartpos,true,!call_procedure);
- if(code_seen('S'))
- if(strchr_pointer= 0 && pin_status <= 255)
- pin_number = code_value();
- for(int8_t i = 0; i < (int8_t)(sizeof(sensitive_pins)/sizeof(int)); i++)
- {
- if (sensitive_pins[i] == pin_number)
- {
- pin_number = -1;
- break;
- }
- }
- #if defined(FAN_PIN) && FAN_PIN > -1
- if (pin_number == FAN_PIN)
- fanSpeed = pin_status;
- #endif
- if (pin_number > -1)
- {
- pinMode(pin_number, OUTPUT);
- digitalWrite(pin_number, pin_status);
- analogWrite(pin_number, pin_status);
- }
- }
- break;
-
- case 44: // M44: Prusa3D: Reset the bed skew and offset calibration.
-
- // Reset the baby step value and the baby step applied flag.
- calibration_status_store(CALIBRATION_STATUS_ASSEMBLED);
- eeprom_update_word((uint16_t*)EEPROM_BABYSTEP_Z, 0);
-
- // Reset the skew and offset in both RAM and EEPROM.
- reset_bed_offset_and_skew();
- // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
- // the planner will not perform any adjustments in the XY plane.
- // Wait for the motors to stop and update the current position with the absolute values.
- world2machine_revert_to_uncorrected();
- break;
-
- case 45: // M45: Prusa3D: bed skew and offset with manual Z up
- {
- // Only Z calibration?
- bool onlyZ = code_seen('Z');
-
- if (!onlyZ) {
- setTargetBed(0);
- setTargetHotend(0, 0);
- setTargetHotend(0, 1);
- setTargetHotend(0, 2);
- adjust_bed_reset(); //reset bed level correction
- }
-
- // Disable the default update procedure of the display. We will do a modal dialog.
- lcd_update_enable(false);
- // Let the planner use the uncorrected coordinates.
- mbl.reset();
- // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
- // the planner will not perform any adjustments in the XY plane.
- // Wait for the motors to stop and update the current position with the absolute values.
- world2machine_revert_to_uncorrected();
- // Reset the baby step value applied without moving the axes.
- babystep_reset();
- // Mark all axes as in a need for homing.
- memset(axis_known_position, 0, sizeof(axis_known_position));
-
- // Home in the XY plane.
- //set_destination_to_current();
- setup_for_endstop_move();
- lcd_display_message_fullscreen_P(MSG_AUTO_HOME);
- home_xy();
-
- // Let the user move the Z axes up to the end stoppers.
-#ifdef TMC2130
- if (calibrate_z_auto()) {
-#else //TMC2130
- if (lcd_calibrate_z_end_stop_manual( onlyZ )) {
-#endif //TMC2130
- refresh_cmd_timeout();
- if (((degHotend(0) > MAX_HOTEND_TEMP_CALIBRATION) || (degBed() > MAX_BED_TEMP_CALIBRATION)) && (!onlyZ)) {
- lcd_wait_for_cool_down();
- lcd_show_fullscreen_message_and_wait_P(MSG_PAPER);
- lcd_display_message_fullscreen_P(MSG_FIND_BED_OFFSET_AND_SKEW_LINE1);
- lcd_implementation_print_at(0, 2, 1);
- lcd_printPGM(MSG_FIND_BED_OFFSET_AND_SKEW_LINE2);
- }
-
- // Move the print head close to the bed.
- current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
- plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], homing_feedrate[Z_AXIS]/40, active_extruder);
- st_synchronize();
-
-
-//#ifdef TMC2130
-// tmc2130_home_enter(X_AXIS_MASK | Y_AXIS_MASK);
-//#endif
-
- int8_t verbosity_level = 0;
- if (code_seen('V')) {
- // Just 'V' without a number counts as V1.
- char c = strchr_pointer[1];
- verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
- }
-
- if (onlyZ) {
- clean_up_after_endstop_move();
- // Z only calibration.
- // Load the machine correction matrix
- world2machine_initialize();
- // and correct the current_position to match the transformed coordinate system.
- world2machine_update_current();
- //FIXME
- bool result = sample_mesh_and_store_reference();
- if (result) {
- if (calibration_status() == CALIBRATION_STATUS_Z_CALIBRATION)
- // Shipped, the nozzle height has been set already. The user can start printing now.
- calibration_status_store(CALIBRATION_STATUS_CALIBRATED);
- // babystep_apply();
- }
- } else {
- // Reset the baby step value and the baby step applied flag.
- calibration_status_store(CALIBRATION_STATUS_ASSEMBLED);
- eeprom_update_word((uint16_t*)EEPROM_BABYSTEP_Z, 0);
- // Complete XYZ calibration.
- uint8_t point_too_far_mask = 0;
- BedSkewOffsetDetectionResultType result = find_bed_offset_and_skew(verbosity_level, point_too_far_mask);
- clean_up_after_endstop_move();
- // Print head up.
- current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
- plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], homing_feedrate[Z_AXIS]/40, active_extruder);
- st_synchronize();
- if (result >= 0) {
- point_too_far_mask = 0;
- // Second half: The fine adjustment.
- // Let the planner use the uncorrected coordinates.
- mbl.reset();
- world2machine_reset();
- // Home in the XY plane.
- setup_for_endstop_move();
- home_xy();
- result = improve_bed_offset_and_skew(1, verbosity_level, point_too_far_mask);
- clean_up_after_endstop_move();
- // Print head up.
- current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
- plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], homing_feedrate[Z_AXIS]/40, active_extruder);
- st_synchronize();
- // if (result >= 0) babystep_apply();
- }
- lcd_bed_calibration_show_result(result, point_too_far_mask);
- if (result >= 0) {
- // Calibration valid, the machine should be able to print. Advise the user to run the V2Calibration.gcode.
- calibration_status_store(CALIBRATION_STATUS_LIVE_ADJUST);
- lcd_show_fullscreen_message_and_wait_P(MSG_BABYSTEP_Z_NOT_SET);
- }
- }
-#ifdef TMC2130
- tmc2130_home_exit();
-#endif
- } else {
- // Timeouted.
- }
-
-
- lcd_update_enable(true);
- break;
- }
-
- /*
- case 46:
- {
- // M46: Prusa3D: Show the assigned IP address.
- uint8_t ip[4];
- bool hasIP = card.ToshibaFlashAir_GetIP(ip);
- if (hasIP) {
- SERIAL_ECHOPGM("Toshiba FlashAir current IP: ");
- SERIAL_ECHO(int(ip[0]));
- SERIAL_ECHOPGM(".");
- SERIAL_ECHO(int(ip[1]));
- SERIAL_ECHOPGM(".");
- SERIAL_ECHO(int(ip[2]));
- SERIAL_ECHOPGM(".");
- SERIAL_ECHO(int(ip[3]));
- SERIAL_ECHOLNPGM("");
- } else {
- SERIAL_ECHOLNPGM("Toshiba FlashAir GetIP failed");
- }
- break;
- }
- */
-
- case 47:
- // M47: Prusa3D: Show end stops dialog on the display.
- lcd_diag_show_end_stops();
- break;
-
-#if 0
- case 48: // M48: scan the bed induction sensor points, print the sensor trigger coordinates to the serial line for visualization on the PC.
- {
- // Disable the default update procedure of the display. We will do a modal dialog.
- lcd_update_enable(false);
- // Let the planner use the uncorrected coordinates.
- mbl.reset();
- // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
- // the planner will not perform any adjustments in the XY plane.
- // Wait for the motors to stop and update the current position with the absolute values.
- world2machine_revert_to_uncorrected();
- // Move the print head close to the bed.
- current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
- plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], homing_feedrate[Z_AXIS]/40, active_extruder);
- st_synchronize();
- // Home in the XY plane.
- set_destination_to_current();
- setup_for_endstop_move();
- home_xy();
- int8_t verbosity_level = 0;
- if (code_seen('V')) {
- // Just 'V' without a number counts as V1.
- char c = strchr_pointer[1];
- verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
- }
- bool success = scan_bed_induction_points(verbosity_level);
- clean_up_after_endstop_move();
- // Print head up.
- current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
- plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], homing_feedrate[Z_AXIS]/40, active_extruder);
- st_synchronize();
- lcd_update_enable(true);
- break;
- }
-#endif
-
-// M48 Z-Probe repeatability measurement function.
-//
-// Usage: M48
-//
-// This function assumes the bed has been homed. Specificaly, that a G28 command
-// as been issued prior to invoking the M48 Z-Probe repeatability measurement function.
-// Any information generated by a prior G29 Bed leveling command will be lost and need to be
-// regenerated.
-//
-// The number of samples will default to 10 if not specified. You can use upper or lower case
-// letters for any of the options EXCEPT n. n must be in lower case because Marlin uses a capital
-// N for its communication protocol and will get horribly confused if you send it a capital N.
-//
-
-#ifdef ENABLE_AUTO_BED_LEVELING
-#ifdef Z_PROBE_REPEATABILITY_TEST
-
- case 48: // M48 Z-Probe repeatability
- {
- #if Z_MIN_PIN == -1
- #error "You must have a Z_MIN endstop in order to enable calculation of Z-Probe repeatability."
- #endif
-
- double sum=0.0;
- double mean=0.0;
- double sigma=0.0;
- double sample_set[50];
- int verbose_level=1, n=0, j, n_samples = 10, n_legs=0;
- double X_current, Y_current, Z_current;
- double X_probe_location, Y_probe_location, Z_start_location, ext_position;
-
- if (code_seen('V') || code_seen('v')) {
- verbose_level = code_value();
- if (verbose_level<0 || verbose_level>4 ) {
- SERIAL_PROTOCOLPGM("?Verbose Level not plausable.\n");
- goto Sigma_Exit;
- }
- }
-
- if (verbose_level > 0) {
- SERIAL_PROTOCOLPGM("M48 Z-Probe Repeatability test. Version 2.00\n");
- SERIAL_PROTOCOLPGM("Full support at: http://3dprintboard.com/forum.php\n");
- }
-
- if (code_seen('n')) {
- n_samples = code_value();
- if (n_samples<4 || n_samples>50 ) {
- SERIAL_PROTOCOLPGM("?Specified sample size not plausable.\n");
- goto Sigma_Exit;
- }
- }
-
- X_current = X_probe_location = st_get_position_mm(X_AXIS);
- Y_current = Y_probe_location = st_get_position_mm(Y_AXIS);
- Z_current = st_get_position_mm(Z_AXIS);
- Z_start_location = st_get_position_mm(Z_AXIS) + Z_RAISE_BEFORE_PROBING;
- ext_position = st_get_position_mm(E_AXIS);
-
- if (code_seen('X') || code_seen('x') ) {
- X_probe_location = code_value() - X_PROBE_OFFSET_FROM_EXTRUDER;
- if (X_probe_locationX_MAX_POS ) {
- SERIAL_PROTOCOLPGM("?Specified X position out of range.\n");
- goto Sigma_Exit;
- }
- }
-
- if (code_seen('Y') || code_seen('y') ) {
- Y_probe_location = code_value() - Y_PROBE_OFFSET_FROM_EXTRUDER;
- if (Y_probe_locationY_MAX_POS ) {
- SERIAL_PROTOCOLPGM("?Specified Y position out of range.\n");
- goto Sigma_Exit;
- }
- }
-
- if (code_seen('L') || code_seen('l') ) {
- n_legs = code_value();
- if ( n_legs==1 )
- n_legs = 2;
- if ( n_legs<0 || n_legs>15 ) {
- SERIAL_PROTOCOLPGM("?Specified number of legs in movement not plausable.\n");
- goto Sigma_Exit;
- }
- }
-
-//
-// Do all the preliminary setup work. First raise the probe.
-//
-
- st_synchronize();
- plan_bed_level_matrix.set_to_identity();
- plan_buffer_line( X_current, Y_current, Z_start_location,
- ext_position,
- homing_feedrate[Z_AXIS]/60,
- active_extruder);
- st_synchronize();
-
-//
-// Now get everything to the specified probe point So we can safely do a probe to
-// get us close to the bed. If the Z-Axis is far from the bed, we don't want to
-// use that as a starting point for each probe.
-//
- if (verbose_level > 2)
- SERIAL_PROTOCOL("Positioning probe for the test.\n");
-
- plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
- ext_position,
- homing_feedrate[X_AXIS]/60,
- active_extruder);
- st_synchronize();
-
- current_position[X_AXIS] = X_current = st_get_position_mm(X_AXIS);
- current_position[Y_AXIS] = Y_current = st_get_position_mm(Y_AXIS);
- current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
- current_position[E_AXIS] = ext_position = st_get_position_mm(E_AXIS);
-
-//
-// OK, do the inital probe to get us close to the bed.
-// Then retrace the right amount and use that in subsequent probes
-//
-
- setup_for_endstop_move();
- run_z_probe();
-
- current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
- Z_start_location = st_get_position_mm(Z_AXIS) + Z_RAISE_BEFORE_PROBING;
-
- plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
- ext_position,
- homing_feedrate[X_AXIS]/60,
- active_extruder);
- st_synchronize();
- current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
-
- for( n=0; nX_MAX_POS)
- X_current = X_MAX_POS;
-
- if ( Y_currentY_MAX_POS)
- Y_current = Y_MAX_POS;
-
- if (verbose_level>3 ) {
- SERIAL_ECHOPAIR("x: ", X_current);
- SERIAL_ECHOPAIR("y: ", Y_current);
- SERIAL_PROTOCOLLNPGM("");
- }
-
- do_blocking_move_to( X_current, Y_current, Z_current );
- }
- do_blocking_move_to( X_probe_location, Y_probe_location, Z_start_location); // Go back to the probe location
- }
-
- setup_for_endstop_move();
- run_z_probe();
-
- sample_set[n] = current_position[Z_AXIS];
-
-//
-// Get the current mean for the data points we have so far
-//
- sum=0.0;
- for( j=0; j<=n; j++) {
- sum = sum + sample_set[j];
- }
- mean = sum / (double (n+1));
-//
-// Now, use that mean to calculate the standard deviation for the
-// data points we have so far
-//
-
- sum=0.0;
- for( j=0; j<=n; j++) {
- sum = sum + (sample_set[j]-mean) * (sample_set[j]-mean);
- }
- sigma = sqrt( sum / (double (n+1)) );
-
- if (verbose_level > 1) {
- SERIAL_PROTOCOL(n+1);
- SERIAL_PROTOCOL(" of ");
- SERIAL_PROTOCOL(n_samples);
- SERIAL_PROTOCOLPGM(" z: ");
- SERIAL_PROTOCOL_F(current_position[Z_AXIS], 6);
- }
-
- if (verbose_level > 2) {
- SERIAL_PROTOCOL(" mean: ");
- SERIAL_PROTOCOL_F(mean,6);
-
- SERIAL_PROTOCOL(" sigma: ");
- SERIAL_PROTOCOL_F(sigma,6);
- }
-
- if (verbose_level > 0)
- SERIAL_PROTOCOLPGM("\n");
-
- plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
- current_position[E_AXIS], homing_feedrate[Z_AXIS]/60, active_extruder);
- st_synchronize();
-
- }
-
- delay(1000);
-
- clean_up_after_endstop_move();
-
-// enable_endstops(true);
-
- if (verbose_level > 0) {
- SERIAL_PROTOCOLPGM("Mean: ");
- SERIAL_PROTOCOL_F(mean, 6);
- SERIAL_PROTOCOLPGM("\n");
- }
-
-SERIAL_PROTOCOLPGM("Standard Deviation: ");
-SERIAL_PROTOCOL_F(sigma, 6);
-SERIAL_PROTOCOLPGM("\n\n");
-
-Sigma_Exit:
- break;
- }
-#endif // Z_PROBE_REPEATABILITY_TEST
-#endif // ENABLE_AUTO_BED_LEVELING
-
- case 104: // M104
- if(setTargetedHotend(104)){
- break;
- }
- if (code_seen('S')) setTargetHotend(code_value(), tmp_extruder);
- setWatch();
- break;
- case 112: // M112 -Emergency Stop
- kill("", 3);
- break;
- case 140: // M140 set bed temp
- if (code_seen('S')) setTargetBed(code_value());
- break;
- case 105 : // M105
- if(setTargetedHotend(105)){
- break;
- }
- #if defined(TEMP_0_PIN) && TEMP_0_PIN > -1
- SERIAL_PROTOCOLPGM("ok T:");
- SERIAL_PROTOCOL_F(degHotend(tmp_extruder),1);
- SERIAL_PROTOCOLPGM(" /");
- SERIAL_PROTOCOL_F(degTargetHotend(tmp_extruder),1);
- #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
- SERIAL_PROTOCOLPGM(" B:");
- SERIAL_PROTOCOL_F(degBed(),1);
- SERIAL_PROTOCOLPGM(" /");
- SERIAL_PROTOCOL_F(degTargetBed(),1);
- #endif //TEMP_BED_PIN
- for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
- SERIAL_PROTOCOLPGM(" T");
- SERIAL_PROTOCOL(cur_extruder);
- SERIAL_PROTOCOLPGM(":");
- SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
- SERIAL_PROTOCOLPGM(" /");
- SERIAL_PROTOCOL_F(degTargetHotend(cur_extruder),1);
- }
- #else
- SERIAL_ERROR_START;
- SERIAL_ERRORLNRPGM(MSG_ERR_NO_THERMISTORS);
- #endif
-
- SERIAL_PROTOCOLPGM(" @:");
- #ifdef EXTRUDER_WATTS
- SERIAL_PROTOCOL((EXTRUDER_WATTS * getHeaterPower(tmp_extruder))/127);
- SERIAL_PROTOCOLPGM("W");
- #else
- SERIAL_PROTOCOL(getHeaterPower(tmp_extruder));
- #endif
-
- SERIAL_PROTOCOLPGM(" B@:");
- #ifdef BED_WATTS
- SERIAL_PROTOCOL((BED_WATTS * getHeaterPower(-1))/127);
- SERIAL_PROTOCOLPGM("W");
- #else
- SERIAL_PROTOCOL(getHeaterPower(-1));
- #endif
-
-#ifdef PINDA_THERMISTOR
- SERIAL_PROTOCOLPGM(" P:");
- SERIAL_PROTOCOL_F(current_temperature_pinda,1);
-#endif //PINDA_THERMISTOR
-
-#ifdef AMBIENT_THERMISTOR
- SERIAL_PROTOCOLPGM(" A:");
- SERIAL_PROTOCOL_F(current_temperature_ambient,1);
-#endif //AMBIENT_THERMISTOR
-
-
- #ifdef SHOW_TEMP_ADC_VALUES
- {float raw = 0.0;
-
- #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
- SERIAL_PROTOCOLPGM(" ADC B:");
- SERIAL_PROTOCOL_F(degBed(),1);
- SERIAL_PROTOCOLPGM("C->");
- raw = rawBedTemp();
- SERIAL_PROTOCOL_F(raw/OVERSAMPLENR,5);
- SERIAL_PROTOCOLPGM(" Rb->");
- SERIAL_PROTOCOL_F(100 * (1 + (PtA * (raw/OVERSAMPLENR)) + (PtB * sq((raw/OVERSAMPLENR)))), 5);
- SERIAL_PROTOCOLPGM(" Rxb->");
- SERIAL_PROTOCOL_F(raw, 5);
- #endif
- for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
- SERIAL_PROTOCOLPGM(" T");
- SERIAL_PROTOCOL(cur_extruder);
- SERIAL_PROTOCOLPGM(":");
- SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
- SERIAL_PROTOCOLPGM("C->");
- raw = rawHotendTemp(cur_extruder);
- SERIAL_PROTOCOL_F(raw/OVERSAMPLENR,5);
- SERIAL_PROTOCOLPGM(" Rt");
- SERIAL_PROTOCOL(cur_extruder);
- SERIAL_PROTOCOLPGM("->");
- SERIAL_PROTOCOL_F(100 * (1 + (PtA * (raw/OVERSAMPLENR)) + (PtB * sq((raw/OVERSAMPLENR)))), 5);
- SERIAL_PROTOCOLPGM(" Rx");
- SERIAL_PROTOCOL(cur_extruder);
- SERIAL_PROTOCOLPGM("->");
- SERIAL_PROTOCOL_F(raw, 5);
- }}
- #endif
- SERIAL_PROTOCOLLN("");
- return;
- break;
- case 109:
- {// M109 - Wait for extruder heater to reach target.
- if(setTargetedHotend(109)){
- break;
- }
- LCD_MESSAGERPGM(MSG_HEATING);
- heating_status = 1;
- if (farm_mode) { prusa_statistics(1); };
-
-#ifdef AUTOTEMP
- autotemp_enabled=false;
- #endif
- if (code_seen('S')) {
- setTargetHotend(code_value(), tmp_extruder);
- CooldownNoWait = true;
- } else if (code_seen('R')) {
- setTargetHotend(code_value(), tmp_extruder);
- CooldownNoWait = false;
- }
- #ifdef AUTOTEMP
- if (code_seen('S')) autotemp_min=code_value();
- if (code_seen('B')) autotemp_max=code_value();
- if (code_seen('F'))
- {
- autotemp_factor=code_value();
- autotemp_enabled=true;
- }
- #endif
-
- setWatch();
- codenum = millis();
-
- /* See if we are heating up or cooling down */
- target_direction = isHeatingHotend(tmp_extruder); // true if heating, false if cooling
-
- cancel_heatup = false;
-
- wait_for_heater(codenum); //loops until target temperature is reached
-
- LCD_MESSAGERPGM(MSG_HEATING_COMPLETE);
- heating_status = 2;
- if (farm_mode) { prusa_statistics(2); };
-
- //starttime=millis();
- previous_millis_cmd = millis();
- }
- break;
- case 190: // M190 - Wait for bed heater to reach target.
- #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
- LCD_MESSAGERPGM(MSG_BED_HEATING);
- heating_status = 3;
- if (farm_mode) { prusa_statistics(1); };
- if (code_seen('S'))
- {
- setTargetBed(code_value());
- CooldownNoWait = true;
- }
- else if (code_seen('R'))
- {
- setTargetBed(code_value());
- CooldownNoWait = false;
- }
- codenum = millis();
-
- cancel_heatup = false;
- target_direction = isHeatingBed(); // true if heating, false if cooling
-
- while ( (target_direction)&&(!cancel_heatup) ? (isHeatingBed()) : (isCoolingBed()&&(CooldownNoWait==false)) )
- {
- if(( millis() - codenum) > 1000 ) //Print Temp Reading every 1 second while heating up.
- {
- if (!farm_mode) {
- float tt = degHotend(active_extruder);
- SERIAL_PROTOCOLPGM("T:");
- SERIAL_PROTOCOL(tt);
- SERIAL_PROTOCOLPGM(" E:");
- SERIAL_PROTOCOL((int)active_extruder);
- SERIAL_PROTOCOLPGM(" B:");
- SERIAL_PROTOCOL_F(degBed(), 1);
- SERIAL_PROTOCOLLN("");
- }
- codenum = millis();
-
- }
- manage_heater();
- manage_inactivity();
- lcd_update();
- }
- LCD_MESSAGERPGM(MSG_BED_DONE);
- heating_status = 4;
-
- previous_millis_cmd = millis();
- #endif
- break;
-
- #if defined(FAN_PIN) && FAN_PIN > -1
- case 106: //M106 Fan On
- if (code_seen('S')){
- fanSpeed=constrain(code_value(),0,255);
- }
- else {
- fanSpeed=255;
- }
- break;
- case 107: //M107 Fan Off
- fanSpeed = 0;
- break;
- #endif //FAN_PIN
-
- #if defined(PS_ON_PIN) && PS_ON_PIN > -1
- case 80: // M80 - Turn on Power Supply
- SET_OUTPUT(PS_ON_PIN); //GND
- WRITE(PS_ON_PIN, PS_ON_AWAKE);
-
- // If you have a switch on suicide pin, this is useful
- // if you want to start another print with suicide feature after
- // a print without suicide...
- #if defined SUICIDE_PIN && SUICIDE_PIN > -1
- SET_OUTPUT(SUICIDE_PIN);
- WRITE(SUICIDE_PIN, HIGH);
- #endif
-
- #ifdef ULTIPANEL
- powersupply = true;
- LCD_MESSAGERPGM(WELCOME_MSG);
- lcd_update();
- #endif
- break;
- #endif
-
- case 81: // M81 - Turn off Power Supply
- disable_heater();
- st_synchronize();
- disable_e0();
- disable_e1();
- disable_e2();
- finishAndDisableSteppers();
- fanSpeed = 0;
- delay(1000); // Wait a little before to switch off
- #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
- st_synchronize();
- suicide();
- #elif defined(PS_ON_PIN) && PS_ON_PIN > -1
- SET_OUTPUT(PS_ON_PIN);
- WRITE(PS_ON_PIN, PS_ON_ASLEEP);
- #endif
- #ifdef ULTIPANEL
- powersupply = false;
- LCD_MESSAGERPGM(CAT4(CUSTOM_MENDEL_NAME,PSTR(" "),MSG_OFF,PSTR("."))); //!!
-
- /*
- MACHNAME = "Prusa i3"
- MSGOFF = "Vypnuto"
- "Prusai3"" ""vypnuto""."
-
- "Prusa i3"" "MSG_ALL[lang_selected][50]"."
- */
- lcd_update();
- #endif
- break;
-
- case 82:
- axis_relative_modes[3] = false;
- break;
- case 83:
- axis_relative_modes[3] = true;
- break;
- case 18: //compatibility
- case 84: // M84
- if(code_seen('S')){
- stepper_inactive_time = code_value() * 1000;
- }
- else
- {
- bool all_axis = !((code_seen(axis_codes[X_AXIS])) || (code_seen(axis_codes[Y_AXIS])) || (code_seen(axis_codes[Z_AXIS]))|| (code_seen(axis_codes[E_AXIS])));
- if(all_axis)
- {
- st_synchronize();
- disable_e0();
- disable_e1();
- disable_e2();
- finishAndDisableSteppers();
- }
- else
- {
- st_synchronize();
- if (code_seen('X')) disable_x();
- if (code_seen('Y')) disable_y();
- if (code_seen('Z')) disable_z();
-#if ((E0_ENABLE_PIN != X_ENABLE_PIN) && (E1_ENABLE_PIN != Y_ENABLE_PIN)) // Only enable on boards that have seperate ENABLE_PINS
- if (code_seen('E')) {
- disable_e0();
- disable_e1();
- disable_e2();
- }
- #endif
- }
- }
- snmm_filaments_used = 0;
- break;
- case 85: // M85
- if(code_seen('S')) {
- max_inactive_time = code_value() * 1000;
- }
- break;
- case 92: // M92
- for(int8_t i=0; i < NUM_AXIS; i++)
- {
- if(code_seen(axis_codes[i]))
- {
- if(i == 3) { // E
- float value = code_value();
- if(value < 20.0) {
- float factor = axis_steps_per_unit[i] / value; // increase e constants if M92 E14 is given for netfab.
- max_jerk[E_AXIS] *= factor;
- max_feedrate[i] *= factor;
- axis_steps_per_sqr_second[i] *= factor;
- }
- axis_steps_per_unit[i] = value;
- }
- else {
- axis_steps_per_unit[i] = code_value();
- }
- }
- }
- break;
- case 115: // M115
- if (code_seen('V')) {
- // Report the Prusa version number.
- SERIAL_PROTOCOLLNRPGM(FW_VERSION_STR_P());
- } else if (code_seen('U')) {
- // Check the firmware version provided. If the firmware version provided by the U code is higher than the currently running firmware,
- // pause the print and ask the user to upgrade the firmware.
- show_upgrade_dialog_if_version_newer(++ strchr_pointer);
- } else {
- SERIAL_PROTOCOLRPGM(MSG_M115_REPORT);
- }
- break;
-/* case 117: // M117 display message
- starpos = (strchr(strchr_pointer + 5,'*'));
- if(starpos!=NULL)
- *(starpos)='\0';
- lcd_setstatus(strchr_pointer + 5);
- break;*/
- case 114: // M114
- SERIAL_PROTOCOLPGM("X:");
- SERIAL_PROTOCOL(current_position[X_AXIS]);
- SERIAL_PROTOCOLPGM(" Y:");
- SERIAL_PROTOCOL(current_position[Y_AXIS]);
- SERIAL_PROTOCOLPGM(" Z:");
- SERIAL_PROTOCOL(current_position[Z_AXIS]);
- SERIAL_PROTOCOLPGM(" E:");
- SERIAL_PROTOCOL(current_position[E_AXIS]);
-
- SERIAL_PROTOCOLRPGM(MSG_COUNT_X);
- SERIAL_PROTOCOL(float(st_get_position(X_AXIS))/axis_steps_per_unit[X_AXIS]);
- SERIAL_PROTOCOLPGM(" Y:");
- SERIAL_PROTOCOL(float(st_get_position(Y_AXIS))/axis_steps_per_unit[Y_AXIS]);
- SERIAL_PROTOCOLPGM(" Z:");
- SERIAL_PROTOCOL(float(st_get_position(Z_AXIS))/axis_steps_per_unit[Z_AXIS]);
- SERIAL_PROTOCOLPGM(" E:");
- SERIAL_PROTOCOL(float(st_get_position(E_AXIS))/axis_steps_per_unit[E_AXIS]);
-
- SERIAL_PROTOCOLLN("");
- break;
- case 120: // M120
- enable_endstops(false) ;
- break;
- case 121: // M121
- enable_endstops(true) ;
- break;
- case 119: // M119
- SERIAL_PROTOCOLRPGM(MSG_M119_REPORT);
- SERIAL_PROTOCOLLN("");
- #if defined(X_MIN_PIN) && X_MIN_PIN > -1
- SERIAL_PROTOCOLRPGM(MSG_X_MIN);
- if(READ(X_MIN_PIN)^X_MIN_ENDSTOP_INVERTING){
- SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
- }else{
- SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
- }
- SERIAL_PROTOCOLLN("");
- #endif
- #if defined(X_MAX_PIN) && X_MAX_PIN > -1
- SERIAL_PROTOCOLRPGM(MSG_X_MAX);
- if(READ(X_MAX_PIN)^X_MAX_ENDSTOP_INVERTING){
- SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
- }else{
- SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
- }
- SERIAL_PROTOCOLLN("");
- #endif
- #if defined(Y_MIN_PIN) && Y_MIN_PIN > -1
- SERIAL_PROTOCOLRPGM(MSG_Y_MIN);
- if(READ(Y_MIN_PIN)^Y_MIN_ENDSTOP_INVERTING){
- SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
- }else{
- SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
- }
- SERIAL_PROTOCOLLN("");
- #endif
- #if defined(Y_MAX_PIN) && Y_MAX_PIN > -1
- SERIAL_PROTOCOLRPGM(MSG_Y_MAX);
- if(READ(Y_MAX_PIN)^Y_MAX_ENDSTOP_INVERTING){
- SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
- }else{
- SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
- }
- SERIAL_PROTOCOLLN("");
- #endif
- #if defined(Z_MIN_PIN) && Z_MIN_PIN > -1
- SERIAL_PROTOCOLRPGM(MSG_Z_MIN);
- if(READ(Z_MIN_PIN)^Z_MIN_ENDSTOP_INVERTING){
- SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
- }else{
- SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
- }
- SERIAL_PROTOCOLLN("");
- #endif
- #if defined(Z_MAX_PIN) && Z_MAX_PIN > -1
- SERIAL_PROTOCOLRPGM(MSG_Z_MAX);
- if(READ(Z_MAX_PIN)^Z_MAX_ENDSTOP_INVERTING){
- SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
- }else{
- SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
- }
- SERIAL_PROTOCOLLN("");
- #endif
- break;
- //TODO: update for all axis, use for loop
- #ifdef BLINKM
- case 150: // M150
- {
- byte red;
- byte grn;
- byte blu;
-
- if(code_seen('R')) red = code_value();
- if(code_seen('U')) grn = code_value();
- if(code_seen('B')) blu = code_value();
-
- SendColors(red,grn,blu);
- }
- break;
- #endif //BLINKM
- case 200: // M200 D set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
- {
-
- tmp_extruder = active_extruder;
- if(code_seen('T')) {
- tmp_extruder = code_value();
- if(tmp_extruder >= EXTRUDERS) {
- SERIAL_ECHO_START;
- SERIAL_ECHO(MSG_M200_INVALID_EXTRUDER);
- break;
- }
- }
-
- float area = .0;
- if(code_seen('D')) {
- float diameter = (float)code_value();
- if (diameter == 0.0) {
- // setting any extruder filament size disables volumetric on the assumption that
- // slicers either generate in extruder values as cubic mm or as as filament feeds
- // for all extruders
- volumetric_enabled = false;
- } else {
- filament_size[tmp_extruder] = (float)code_value();
- // make sure all extruders have some sane value for the filament size
- filament_size[0] = (filament_size[0] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : filament_size[0]);
- #if EXTRUDERS > 1
- filament_size[1] = (filament_size[1] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : filament_size[1]);
- #if EXTRUDERS > 2
- filament_size[2] = (filament_size[2] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : filament_size[2]);
- #endif
- #endif
- volumetric_enabled = true;
- }
- } else {
- //reserved for setting filament diameter via UFID or filament measuring device
- break;
- }
- calculate_volumetric_multipliers();
- }
- break;
- case 201: // M201
- for(int8_t i=0; i < NUM_AXIS; i++)
- {
- if(code_seen(axis_codes[i]))
- {
- max_acceleration_units_per_sq_second[i] = code_value();
- }
- }
- // steps per sq second need to be updated to agree with the units per sq second (as they are what is used in the planner)
- reset_acceleration_rates();
- break;
- #if 0 // Not used for Sprinter/grbl gen6
- case 202: // M202
- for(int8_t i=0; i < NUM_AXIS; i++) {
- if(code_seen(axis_codes[i])) axis_travel_steps_per_sqr_second[i] = code_value() * axis_steps_per_unit[i];
- }
- break;
- #endif
- case 203: // M203 max feedrate mm/sec
- for(int8_t i=0; i < NUM_AXIS; i++) {
- if(code_seen(axis_codes[i])) max_feedrate[i] = code_value();
- }
- break;
- case 204: // M204 acclereration S normal moves T filmanent only moves
- {
- if(code_seen('S')) acceleration = code_value() ;
- if(code_seen('T')) retract_acceleration = code_value() ;
- }
- break;
- case 205: //M205 advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk
- {
- if(code_seen('S')) minimumfeedrate = code_value();
- if(code_seen('T')) mintravelfeedrate = code_value();
- if(code_seen('B')) minsegmenttime = code_value() ;
- if(code_seen('X')) max_jerk[X_AXIS] = max_jerk[Y_AXIS] = code_value();
- if(code_seen('Y')) max_jerk[Y_AXIS] = code_value();
- if(code_seen('Z')) max_jerk[Z_AXIS] = code_value();
- if(code_seen('E')) max_jerk[E_AXIS] = code_value();
- }
- break;
- case 206: // M206 additional homing offset
- for(int8_t i=0; i < 3; i++)
- {
- if(code_seen(axis_codes[i])) add_homing[i] = code_value();
- }
- break;
- #ifdef FWRETRACT
- case 207: //M207 - set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop]
- {
- if(code_seen('S'))
- {
- retract_length = code_value() ;
- }
- if(code_seen('F'))
- {
- retract_feedrate = code_value()/60 ;
- }
- if(code_seen('Z'))
- {
- retract_zlift = code_value() ;
- }
- }break;
- case 208: // M208 - set retract recover length S[positive mm surplus to the M207 S*] F[feedrate mm/min]
- {
- if(code_seen('S'))
- {
- retract_recover_length = code_value() ;
- }
- if(code_seen('F'))
- {
- retract_recover_feedrate = code_value()/60 ;
- }
- }break;
- case 209: // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
- {
- if(code_seen('S'))
- {
- int t= code_value() ;
- switch(t)
- {
- case 0:
- {
- autoretract_enabled=false;
- retracted[0]=false;
- #if EXTRUDERS > 1
- retracted[1]=false;
- #endif
- #if EXTRUDERS > 2
- retracted[2]=false;
- #endif
- }break;
- case 1:
- {
- autoretract_enabled=true;
- retracted[0]=false;
- #if EXTRUDERS > 1
- retracted[1]=false;
- #endif
- #if EXTRUDERS > 2
- retracted[2]=false;
- #endif
- }break;
- default:
- SERIAL_ECHO_START;
- SERIAL_ECHORPGM(MSG_UNKNOWN_COMMAND);
- SERIAL_ECHO(CMDBUFFER_CURRENT_STRING);
- SERIAL_ECHOLNPGM("\"(1)");
- }
- }
-
- }break;
- #endif // FWRETRACT
- #if EXTRUDERS > 1
- case 218: // M218 - set hotend offset (in mm), T X Y
- {
- if(setTargetedHotend(218)){
- break;
- }
- if(code_seen('X'))
- {
- extruder_offset[X_AXIS][tmp_extruder] = code_value();
- }
- if(code_seen('Y'))
- {
- extruder_offset[Y_AXIS][tmp_extruder] = code_value();
- }
- SERIAL_ECHO_START;
- SERIAL_ECHORPGM(MSG_HOTEND_OFFSET);
- for(tmp_extruder = 0; tmp_extruder < EXTRUDERS; tmp_extruder++)
- {
- SERIAL_ECHO(" ");
- SERIAL_ECHO(extruder_offset[X_AXIS][tmp_extruder]);
- SERIAL_ECHO(",");
- SERIAL_ECHO(extruder_offset[Y_AXIS][tmp_extruder]);
- }
- SERIAL_ECHOLN("");
- }break;
- #endif
- case 220: // M220 S- set speed factor override percentage
- {
- if(code_seen('S'))
- {
- feedmultiply = code_value() ;
- }
- }
- break;
- case 221: // M221 S- set extrude factor override percentage
- {
- if(code_seen('S'))
- {
- int tmp_code = code_value();
- if (code_seen('T'))
- {
- if(setTargetedHotend(221)){
- break;
- }
- extruder_multiply[tmp_extruder] = tmp_code;
- }
- else
- {
- extrudemultiply = tmp_code ;
- }
- }
- }
- break;
-
- case 226: // M226 P S- Wait until the specified pin reaches the state required
- {
- if(code_seen('P')){
- int pin_number = code_value(); // pin number
- int pin_state = -1; // required pin state - default is inverted
-
- if(code_seen('S')) pin_state = code_value(); // required pin state
-
- if(pin_state >= -1 && pin_state <= 1){
-
- for(int8_t i = 0; i < (int8_t)(sizeof(sensitive_pins)/sizeof(int)); i++)
- {
- if (sensitive_pins[i] == pin_number)
- {
- pin_number = -1;
- break;
- }
- }
-
- if (pin_number > -1)
- {
- int target = LOW;
-
- st_synchronize();
-
- pinMode(pin_number, INPUT);
-
- switch(pin_state){
- case 1:
- target = HIGH;
- break;
-
- case 0:
- target = LOW;
- break;
-
- case -1:
- target = !digitalRead(pin_number);
- break;
- }
-
- while(digitalRead(pin_number) != target){
- manage_heater();
- manage_inactivity();
- lcd_update();
- }
- }
- }
- }
- }
- break;
-
- #if NUM_SERVOS > 0
- case 280: // M280 - set servo position absolute. P: servo index, S: angle or microseconds
- {
- int servo_index = -1;
- int servo_position = 0;
- if (code_seen('P'))
- servo_index = code_value();
- if (code_seen('S')) {
- servo_position = code_value();
- if ((servo_index >= 0) && (servo_index < NUM_SERVOS)) {
-#if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
- servos[servo_index].attach(0);
-#endif
- servos[servo_index].write(servo_position);
-#if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
- delay(PROBE_SERVO_DEACTIVATION_DELAY);
- servos[servo_index].detach();
-#endif
- }
- else {
- SERIAL_ECHO_START;
- SERIAL_ECHO("Servo ");
- SERIAL_ECHO(servo_index);
- SERIAL_ECHOLN(" out of range");
- }
- }
- else if (servo_index >= 0) {
- SERIAL_PROTOCOL(MSG_OK);
- SERIAL_PROTOCOL(" Servo ");
- SERIAL_PROTOCOL(servo_index);
- SERIAL_PROTOCOL(": ");
- SERIAL_PROTOCOL(servos[servo_index].read());
- SERIAL_PROTOCOLLN("");
- }
- }
- break;
- #endif // NUM_SERVOS > 0
-
- #if (LARGE_FLASH == true && ( BEEPER > 0 || defined(ULTRALCD) || defined(LCD_USE_I2C_BUZZER)))
- case 300: // M300
- {
- int beepS = code_seen('S') ? code_value() : 110;
- int beepP = code_seen('P') ? code_value() : 1000;
- if (beepS > 0)
- {
- #if BEEPER > 0
- tone(BEEPER, beepS);
- delay(beepP);
- noTone(BEEPER);
- #elif defined(ULTRALCD)
- lcd_buzz(beepS, beepP);
- #elif defined(LCD_USE_I2C_BUZZER)
- lcd_buzz(beepP, beepS);
- #endif
- }
- else
- {
- delay(beepP);
- }
- }
- break;
- #endif // M300
-
- #ifdef PIDTEMP
- case 301: // M301
- {
- if(code_seen('P')) Kp = code_value();
- if(code_seen('I')) Ki = scalePID_i(code_value());
- if(code_seen('D')) Kd = scalePID_d(code_value());
-
- #ifdef PID_ADD_EXTRUSION_RATE
- if(code_seen('C')) Kc = code_value();
- #endif
-
- updatePID();
- SERIAL_PROTOCOLRPGM(MSG_OK);
- SERIAL_PROTOCOL(" p:");
- SERIAL_PROTOCOL(Kp);
- SERIAL_PROTOCOL(" i:");
- SERIAL_PROTOCOL(unscalePID_i(Ki));
- SERIAL_PROTOCOL(" d:");
- SERIAL_PROTOCOL(unscalePID_d(Kd));
- #ifdef PID_ADD_EXTRUSION_RATE
- SERIAL_PROTOCOL(" c:");
- //Kc does not have scaling applied above, or in resetting defaults
- SERIAL_PROTOCOL(Kc);
- #endif
- SERIAL_PROTOCOLLN("");
- }
- break;
- #endif //PIDTEMP
- #ifdef PIDTEMPBED
- case 304: // M304
- {
- if(code_seen('P')) bedKp = code_value();
- if(code_seen('I')) bedKi = scalePID_i(code_value());
- if(code_seen('D')) bedKd = scalePID_d(code_value());
-
- updatePID();
- SERIAL_PROTOCOLRPGM(MSG_OK);
- SERIAL_PROTOCOL(" p:");
- SERIAL_PROTOCOL(bedKp);
- SERIAL_PROTOCOL(" i:");
- SERIAL_PROTOCOL(unscalePID_i(bedKi));
- SERIAL_PROTOCOL(" d:");
- SERIAL_PROTOCOL(unscalePID_d(bedKd));
- SERIAL_PROTOCOLLN("");
- }
- break;
- #endif //PIDTEMP
- case 240: // M240 Triggers a camera by emulating a Canon RC-1 : http://www.doc-diy.net/photo/rc-1_hacked/
- {
- #ifdef CHDK
-
- SET_OUTPUT(CHDK);
- WRITE(CHDK, HIGH);
- chdkHigh = millis();
- chdkActive = true;
-
- #else
-
- #if defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1
- const uint8_t NUM_PULSES=16;
- const float PULSE_LENGTH=0.01524;
- for(int i=0; i < NUM_PULSES; i++) {
- WRITE(PHOTOGRAPH_PIN, HIGH);
- _delay_ms(PULSE_LENGTH);
- WRITE(PHOTOGRAPH_PIN, LOW);
- _delay_ms(PULSE_LENGTH);
- }
- delay(7.33);
- for(int i=0; i < NUM_PULSES; i++) {
- WRITE(PHOTOGRAPH_PIN, HIGH);
- _delay_ms(PULSE_LENGTH);
- WRITE(PHOTOGRAPH_PIN, LOW);
- _delay_ms(PULSE_LENGTH);
- }
- #endif
- #endif //chdk end if
- }
- break;
-#ifdef DOGLCD
- case 250: // M250 Set LCD contrast value: C (value 0..63)
- {
- if (code_seen('C')) {
- lcd_setcontrast( ((int)code_value())&63 );
- }
- SERIAL_PROTOCOLPGM("lcd contrast value: ");
- SERIAL_PROTOCOL(lcd_contrast);
- SERIAL_PROTOCOLLN("");
- }
- break;
-#endif
- #ifdef PREVENT_DANGEROUS_EXTRUDE
- case 302: // allow cold extrudes, or set the minimum extrude temperature
- {
- float temp = .0;
- if (code_seen('S')) temp=code_value();
- set_extrude_min_temp(temp);
- }
- break;
- #endif
- case 303: // M303 PID autotune
- {
- float temp = 150.0;
- int e=0;
- int c=5;
- if (code_seen('E')) e=code_value();
- if (e<0)
- temp=70;
- if (code_seen('S')) temp=code_value();
- if (code_seen('C')) c=code_value();
- PID_autotune(temp, e, c);
- }
- break;
- case 400: // M400 finish all moves
- {
- st_synchronize();
- }
- break;
-
-#ifdef FILAMENT_SENSOR
-case 404: //M404 Enter the nominal filament width (3mm, 1.75mm ) N<3.0> or display nominal filament width
- {
- #if (FILWIDTH_PIN > -1)
- if(code_seen('N')) filament_width_nominal=code_value();
- else{
- SERIAL_PROTOCOLPGM("Filament dia (nominal mm):");
- SERIAL_PROTOCOLLN(filament_width_nominal);
- }
- #endif
- }
- break;
-
- case 405: //M405 Turn on filament sensor for control
- {
-
-
- if(code_seen('D')) meas_delay_cm=code_value();
-
- if(meas_delay_cm> MAX_MEASUREMENT_DELAY)
- meas_delay_cm = MAX_MEASUREMENT_DELAY;
-
- if(delay_index2 == -1) //initialize the ring buffer if it has not been done since startup
- {
- int temp_ratio = widthFil_to_size_ratio();
-
- for (delay_index1=0; delay_index1<(MAX_MEASUREMENT_DELAY+1); ++delay_index1 ){
- measurement_delay[delay_index1]=temp_ratio-100; //subtract 100 to scale within a signed byte
- }
- delay_index1=0;
- delay_index2=0;
- }
-
- filament_sensor = true ;
-
- //SERIAL_PROTOCOLPGM("Filament dia (measured mm):");
- //SERIAL_PROTOCOL(filament_width_meas);
- //SERIAL_PROTOCOLPGM("Extrusion ratio(%):");
- //SERIAL_PROTOCOL(extrudemultiply);
- }
- break;
-
- case 406: //M406 Turn off filament sensor for control
- {
- filament_sensor = false ;
- }
- break;
-
- case 407: //M407 Display measured filament diameter
- {
-
-
-
- SERIAL_PROTOCOLPGM("Filament dia (measured mm):");
- SERIAL_PROTOCOLLN(filament_width_meas);
- }
- break;
- #endif
-
-
-
-
-
- case 500: // M500 Store settings in EEPROM
- {
- Config_StoreSettings(EEPROM_OFFSET);
- }
- break;
- case 501: // M501 Read settings from EEPROM
- {
- Config_RetrieveSettings(EEPROM_OFFSET);
- }
- break;
- case 502: // M502 Revert to default settings
- {
- Config_ResetDefault();
- }
- break;
- case 503: // M503 print settings currently in memory
- {
- Config_PrintSettings();
- }
- break;
- case 509: //M509 Force language selection
- {
- lcd_force_language_selection();
- SERIAL_ECHO_START;
- SERIAL_PROTOCOLPGM(("LANG SEL FORCED"));
- }
- break;
- #ifdef ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
- case 540:
- {
- if(code_seen('S')) abort_on_endstop_hit = code_value() > 0;
- }
- break;
- #endif
-
- #ifdef CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
- case CUSTOM_M_CODE_SET_Z_PROBE_OFFSET:
- {
- float value;
- if (code_seen('Z'))
- {
- value = code_value();
- if ((Z_PROBE_OFFSET_RANGE_MIN <= value) && (value <= Z_PROBE_OFFSET_RANGE_MAX))
- {
- zprobe_zoffset = -value; // compare w/ line 278 of ConfigurationStore.cpp
- SERIAL_ECHO_START;
- SERIAL_ECHOLNRPGM(CAT4(MSG_ZPROBE_ZOFFSET, " ", MSG_OK,PSTR("")));
- SERIAL_PROTOCOLLN("");
- }
- else
- {
- SERIAL_ECHO_START;
- SERIAL_ECHORPGM(MSG_ZPROBE_ZOFFSET);
- SERIAL_ECHORPGM(MSG_Z_MIN);
- SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MIN);
- SERIAL_ECHORPGM(MSG_Z_MAX);
- SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MAX);
- SERIAL_PROTOCOLLN("");
- }
- }
- else
- {
- SERIAL_ECHO_START;
- SERIAL_ECHOLNRPGM(CAT2(MSG_ZPROBE_ZOFFSET, PSTR(" : ")));
- SERIAL_ECHO(-zprobe_zoffset);
- SERIAL_PROTOCOLLN("");
- }
- break;
- }
- #endif // CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
-
- #ifdef FILAMENTCHANGEENABLE
- case 600: //Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
- {
- MYSERIAL.println("!!!!M600!!!!");
-
- st_synchronize();
- float target[4];
- float lastpos[4];
-
- if (farm_mode)
-
- {
-
- prusa_statistics(22);
-
- }
-
- feedmultiplyBckp=feedmultiply;
- int8_t TooLowZ = 0;
-
- target[X_AXIS]=current_position[X_AXIS];
- target[Y_AXIS]=current_position[Y_AXIS];
- target[Z_AXIS]=current_position[Z_AXIS];
- target[E_AXIS]=current_position[E_AXIS];
- lastpos[X_AXIS]=current_position[X_AXIS];
- lastpos[Y_AXIS]=current_position[Y_AXIS];
- lastpos[Z_AXIS]=current_position[Z_AXIS];
- lastpos[E_AXIS]=current_position[E_AXIS];
-
- //Restract extruder
- if(code_seen('E'))
- {
- target[E_AXIS]+= code_value();
- }
- else
- {
- #ifdef FILAMENTCHANGE_FIRSTRETRACT
- target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT ;
- #endif
- }
- plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);
-
- //Lift Z
- if(code_seen('Z'))
- {
- target[Z_AXIS]+= code_value();
- }
- else
- {
- #ifdef FILAMENTCHANGE_ZADD
- target[Z_AXIS]+= FILAMENTCHANGE_ZADD ;
- if(target[Z_AXIS] < 10){
- target[Z_AXIS]+= 10 ;
- TooLowZ = 1;
- }else{
- TooLowZ = 0;
- }
- #endif
-
-
- }
- plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_ZFEED, active_extruder);
-
- //Move XY to side
- if(code_seen('X'))
- {
- target[X_AXIS]+= code_value();
- }
- else
- {
- #ifdef FILAMENTCHANGE_XPOS
- target[X_AXIS]= FILAMENTCHANGE_XPOS ;
- #endif
- }
- if(code_seen('Y'))
- {
- target[Y_AXIS]= code_value();
- }
- else
- {
- #ifdef FILAMENTCHANGE_YPOS
- target[Y_AXIS]= FILAMENTCHANGE_YPOS ;
- #endif
- }
- plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_XYFEED, active_extruder);
- st_synchronize();
- custom_message = true;
- lcd_setstatuspgm(MSG_UNLOADING_FILAMENT);
-
- // Unload filament
- if(code_seen('L'))
- {
- target[E_AXIS]+= code_value();
- }
- else
- {
- #ifdef SNMM
-
- #else
- #ifdef FILAMENTCHANGE_FINALRETRACT
- target[E_AXIS] += FILAMENTCHANGE_FINALRETRACT;
- #endif
- #endif // SNMM
- }
-
-#ifdef SNMM
- target[E_AXIS] += 12;
- plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 3500, active_extruder);
- target[E_AXIS] += 6;
- plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 5000, active_extruder);
- target[E_AXIS] += (FIL_LOAD_LENGTH * -1);
- plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 5000, active_extruder);
- st_synchronize();
- target[E_AXIS] += (FIL_COOLING);
- plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 50, active_extruder);
- target[E_AXIS] += (FIL_COOLING*-1);
- plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 50, active_extruder);
- target[E_AXIS] += (bowden_length[snmm_extruder] *-1);
- plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 3000, active_extruder);
- st_synchronize();
-
-#else
- plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);
-#endif // SNMM
-
-
- //finish moves
- st_synchronize();
- //disable extruder steppers so filament can be removed
- disable_e0();
- disable_e1();
- disable_e2();
- delay(100);
-
- //Wait for user to insert filament
- uint8_t cnt=0;
- int counterBeep = 0;
- lcd_wait_interact();
- load_filament_time = millis();
- while(!lcd_clicked()){
-
- cnt++;
- manage_heater();
- manage_inactivity(true);
-
-/*#ifdef SNMM
- target[E_AXIS] += 0.002;
- plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 500, active_extruder);
-
-#endif // SNMM*/
-
- if(cnt==0)
- {
- #if BEEPER > 0
- if (counterBeep== 500){
- counterBeep = 0;
- }
- SET_OUTPUT(BEEPER);
- if (counterBeep== 0){
- WRITE(BEEPER,HIGH);
- }
- if (counterBeep== 20){
- WRITE(BEEPER,LOW);
- }
- counterBeep++;
- #else
- #if !defined(LCD_FEEDBACK_FREQUENCY_HZ) || !defined(LCD_FEEDBACK_FREQUENCY_DURATION_MS)
- lcd_buzz(1000/6,100);
- #else
- lcd_buzz(LCD_FEEDBACK_FREQUENCY_DURATION_MS,LCD_FEEDBACK_FREQUENCY_HZ);
- #endif
- #endif
- }
-
- }
-#ifdef SNMM
- display_loading();
- do {
- target[E_AXIS] += 0.002;
- plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 500, active_extruder);
- delay_keep_alive(2);
- } while (!lcd_clicked());
- /*if (millis() - load_filament_time > 2) {
- load_filament_time = millis();
- target[E_AXIS] += 0.001;
- plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 1000, active_extruder);
- }*/
-#endif
- //Filament inserted
-
- WRITE(BEEPER,LOW);
-
- //Feed the filament to the end of nozzle quickly
-#ifdef SNMM
-
- st_synchronize();
- target[E_AXIS] += bowden_length[snmm_extruder];
- plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 3000, active_extruder);
- target[E_AXIS] += FIL_LOAD_LENGTH - 60;
- plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 1400, active_extruder);
- target[E_AXIS] += 40;
- plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder);
- target[E_AXIS] += 10;
- plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 50, active_extruder);
-#else
- target[E_AXIS] += FILAMENTCHANGE_FIRSTFEED;
- plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EFEED, active_extruder);
-#endif // SNMM
-
- //Extrude some filament
- target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
- plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EXFEED, active_extruder);
-
-
-
-
- //Wait for user to check the state
- lcd_change_fil_state = 0;
- lcd_loading_filament();
- while ((lcd_change_fil_state == 0)||(lcd_change_fil_state != 1)){
- lcd_change_fil_state = 0;
- lcd_alright();
- switch(lcd_change_fil_state){
-
- // Filament failed to load so load it again
- case 2:
-#ifdef SNMM
- display_loading();
- do {
- target[E_AXIS] += 0.002;
- plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 500, active_extruder);
- delay_keep_alive(2);
- } while (!lcd_clicked());
-
- st_synchronize();
- target[E_AXIS] += bowden_length[snmm_extruder];
- plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 3000, active_extruder);
- target[E_AXIS] += FIL_LOAD_LENGTH - 60;
- plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 1400, active_extruder);
- target[E_AXIS] += 40;
- plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder);
- target[E_AXIS] += 10;
- plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 50, active_extruder);
-
-#else
- target[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
- plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EFEED, active_extruder);
-#endif
- target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
- plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EXFEED, active_extruder);
-
- lcd_loading_filament();
-
- break;
-
- // Filament loaded properly but color is not clear
- case 3:
- target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
- plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
- lcd_loading_color();
- break;
-
- // Everything good
- default:
- lcd_change_success();
- lcd_update_enable(true);
- break;
- }
-
- }
-
-
- //Not let's go back to print
-
- //Feed a little of filament to stabilize pressure
- target[E_AXIS]+= FILAMENTCHANGE_RECFEED;
- plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EXFEED, active_extruder);
-
- //Retract
- target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT;
- plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);
-
-
-
- //plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder); //should do nothing
-
- //Move XY back
- plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_XYFEED, active_extruder);
-
- //Move Z back
- plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_ZFEED, active_extruder);
-
-
- target[E_AXIS]= target[E_AXIS] - FILAMENTCHANGE_FIRSTRETRACT;
-
- //Unretract
- plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);
-
- //Set E position to original
- plan_set_e_position(lastpos[E_AXIS]);
-
- //Recover feed rate
- feedmultiply=feedmultiplyBckp;
- char cmd[9];
- sprintf_P(cmd, PSTR("M220 S%i"), feedmultiplyBckp);
- enquecommand(cmd);
-
- lcd_setstatuspgm(WELCOME_MSG);
- custom_message = false;
- custom_message_type = 0;
-#ifdef PAT9125
- if (fsensor_M600)
- {
- cmdqueue_pop_front(); //hack because M600 repeated 2x when enqueued to front
- st_synchronize();
- while (!is_buffer_empty())
- {
- process_commands();
- cmdqueue_pop_front();
- }
- fsensor_enable();
- fsensor_restore_print_and_continue();
- }
-#endif //PAT9125
-
- }
- break;
- #endif //FILAMENTCHANGEENABLE
- case 601: {
- if(lcd_commands_type == 0) lcd_commands_type = LCD_COMMAND_LONG_PAUSE;
- }
- break;
-
- case 602: {
- if(lcd_commands_type == 0) lcd_commands_type = LCD_COMMAND_LONG_PAUSE_RESUME;
- }
- break;
-
-#ifdef LIN_ADVANCE
- case 900: // M900: Set LIN_ADVANCE options.
- gcode_M900();
- break;
-#endif
-
- case 907: // M907 Set digital trimpot motor current using axis codes.
- {
- #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
- for(int i=0;i -1
- uint8_t channel,current;
- if(code_seen('P')) channel=code_value();
- if(code_seen('S')) current=code_value();
- digitalPotWrite(channel, current);
- #endif
- }
- break;
-
- case 910: // M910 TMC2130 init
- {
- tmc2130_init();
- }
- break;
-
- case 911: // M911 Set TMC2130 holding currents
- {
- if (code_seen('X')) tmc2130_set_current_h(0, code_value());
- if (code_seen('Y')) tmc2130_set_current_h(1, code_value());
- if (code_seen('Z')) tmc2130_set_current_h(2, code_value());
- if (code_seen('E')) tmc2130_set_current_h(3, code_value());
- }
- break;
-
- case 912: // M912 Set TMC2130 running currents
- {
- if (code_seen('X')) tmc2130_set_current_r(0, code_value());
- if (code_seen('Y')) tmc2130_set_current_r(1, code_value());
- if (code_seen('Z')) tmc2130_set_current_r(2, code_value());
- if (code_seen('E')) tmc2130_set_current_r(3, code_value());
- }
- break;
-
- case 913: // M913 Print TMC2130 currents
- {
- tmc2130_print_currents();
- }
- break;
-
- case 914: // M914 Set normal mode
- {
- tmc2130_mode = TMC2130_MODE_NORMAL;
- tmc2130_init();
- }
- break;
-
- case 915: // M915 Set silent mode
- {
- tmc2130_mode = TMC2130_MODE_SILENT;
- tmc2130_init();
- }
- break;
-
- case 916: // M916 Set sg_thrs
- {
- if (code_seen('X')) tmc2130_sg_thr[X_AXIS] = code_value();
- if (code_seen('Y')) tmc2130_sg_thr[Y_AXIS] = code_value();
- if (code_seen('Z')) tmc2130_sg_thr[Z_AXIS] = code_value();
- if (code_seen('E')) tmc2130_sg_thr[E_AXIS] = code_value();
- MYSERIAL.print("tmc2130_sg_thr[X]=");
- MYSERIAL.println(tmc2130_sg_thr[X_AXIS], DEC);
- MYSERIAL.print("tmc2130_sg_thr[Y]=");
- MYSERIAL.println(tmc2130_sg_thr[Y_AXIS], DEC);
- MYSERIAL.print("tmc2130_sg_thr[Z]=");
- MYSERIAL.println(tmc2130_sg_thr[Z_AXIS], DEC);
- MYSERIAL.print("tmc2130_sg_thr[E]=");
- MYSERIAL.println(tmc2130_sg_thr[E_AXIS], DEC);
- }
- break;
-
- case 917: // M917 Set TMC2130 pwm_ampl
- {
- if (code_seen('X')) tmc2130_set_pwm_ampl(0, code_value());
- if (code_seen('Y')) tmc2130_set_pwm_ampl(1, code_value());
- if (code_seen('Z')) tmc2130_set_pwm_ampl(2, code_value());
- if (code_seen('E')) tmc2130_set_pwm_ampl(3, code_value());
- }
- break;
-
- case 918: // M918 Set TMC2130 pwm_grad
- {
- if (code_seen('X')) tmc2130_set_pwm_grad(0, code_value());
- if (code_seen('Y')) tmc2130_set_pwm_grad(1, code_value());
- if (code_seen('Z')) tmc2130_set_pwm_grad(2, code_value());
- if (code_seen('E')) tmc2130_set_pwm_grad(3, code_value());
- }
- break;
-
- case 350: // M350 Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
- {
- #if defined(X_MS1_PIN) && X_MS1_PIN > -1
- if(code_seen('S')) for(int i=0;i<=4;i++) microstep_mode(i,code_value());
- for(int i=0;i -1
- if(code_seen('S')) switch((int)code_value())
- {
- case 1:
- for(int i=0;i '9') && *(strchr_pointer + index) != '?') {
- SERIAL_ECHOLNPGM("Invalid T code.");
- }
- else {
- if (*(strchr_pointer + index) == '?') {
- tmp_extruder = choose_extruder_menu();
- }
- else {
- tmp_extruder = code_value();
- }
- snmm_filaments_used |= (1 << tmp_extruder); //for stop print
-#ifdef SNMM
-
- #ifdef LIN_ADVANCE
- if (snmm_extruder != tmp_extruder)
- clear_current_adv_vars(); //Check if the selected extruder is not the active one and reset LIN_ADVANCE variables if so.
- #endif
-
- snmm_extruder = tmp_extruder;
-
- st_synchronize();
- delay(100);
-
- disable_e0();
- disable_e1();
- disable_e2();
-
- pinMode(E_MUX0_PIN, OUTPUT);
- pinMode(E_MUX1_PIN, OUTPUT);
- pinMode(E_MUX2_PIN, OUTPUT);
-
- delay(100);
- SERIAL_ECHO_START;
- SERIAL_ECHO("T:");
- SERIAL_ECHOLN((int)tmp_extruder);
- switch (tmp_extruder) {
- case 1:
- WRITE(E_MUX0_PIN, HIGH);
- WRITE(E_MUX1_PIN, LOW);
- WRITE(E_MUX2_PIN, LOW);
-
- break;
- case 2:
- WRITE(E_MUX0_PIN, LOW);
- WRITE(E_MUX1_PIN, HIGH);
- WRITE(E_MUX2_PIN, LOW);
-
- break;
- case 3:
- WRITE(E_MUX0_PIN, HIGH);
- WRITE(E_MUX1_PIN, HIGH);
- WRITE(E_MUX2_PIN, LOW);
-
- break;
- default:
- WRITE(E_MUX0_PIN, LOW);
- WRITE(E_MUX1_PIN, LOW);
- WRITE(E_MUX2_PIN, LOW);
-
- break;
- }
- delay(100);
-
-#else
- if (tmp_extruder >= EXTRUDERS) {
- SERIAL_ECHO_START;
- SERIAL_ECHOPGM("T");
- SERIAL_PROTOCOLLN((int)tmp_extruder);
- SERIAL_ECHOLNRPGM(MSG_INVALID_EXTRUDER);
- }
- else {
- boolean make_move = false;
- if (code_seen('F')) {
- make_move = true;
- next_feedrate = code_value();
- if (next_feedrate > 0.0) {
- feedrate = next_feedrate;
- }
- }
-#if EXTRUDERS > 1
- if (tmp_extruder != active_extruder) {
- // Save current position to return to after applying extruder offset
- memcpy(destination, current_position, sizeof(destination));
- // Offset extruder (only by XY)
- int i;
- for (i = 0; i < 2; i++) {
- current_position[i] = current_position[i] -
- extruder_offset[i][active_extruder] +
- extruder_offset[i][tmp_extruder];
- }
- // Set the new active extruder and position
- active_extruder = tmp_extruder;
- plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
- // Move to the old position if 'F' was in the parameters
- if (make_move && Stopped == false) {
- prepare_move();
- }
- }
-#endif
- SERIAL_ECHO_START;
- SERIAL_ECHORPGM(MSG_ACTIVE_EXTRUDER);
- SERIAL_PROTOCOLLN((int)active_extruder);
- }
-
-#endif
- }
- } // end if(code_seen('T')) (end of T codes)
-
-#ifdef DEBUG_DCODES
- else if (code_seen('D')) // D codes (debug)
- {
- switch((int)code_value())
- {
- case 0: // D0 - Reset
- dcode_0(); break;
- case 1: // D1 - Clear EEPROM
- dcode_1(); break;
- case 2: // D2 - Read/Write RAM
- dcode_2(); break;
- case 3: // D3 - Read/Write EEPROM
- dcode_3(); break;
- case 4: // D4 - Read/Write PIN
- dcode_4(); break;
- case 9125: // D9125 - PAT9125
- dcode_9125(); break;
- case 5:
- MYSERIAL.println("D5 - Test");
- if (code_seen('P'))
- selectedSerialPort = (int)code_value();
- MYSERIAL.print("selectedSerialPort = ");
- MYSERIAL.println(selectedSerialPort, DEC);
- break;
- case 10: // D10 - Tell the printer that XYZ calibration went OK
- calibration_status_store(CALIBRATION_STATUS_LIVE_ADJUST);
- break;
-
- case 12: //D12 - Reset Filament error, Power loss and crash counter ( Do it before every print and you can get stats for the print )
- eeprom_update_byte((uint8_t*)EEPROM_CRASH_COUNT, 0x00);
- eeprom_update_byte((uint8_t*)EEPROM_FERROR_COUNT, 0x00);
- eeprom_update_byte((uint8_t*)EEPROM_POWER_COUNT, 0x00);
- case 999:
- {
- MYSERIAL.println("D999 - crash");
-
-/* while (!is_buffer_empty())
- {
- process_commands();
- cmdqueue_pop_front();
- }*/
- st_synchronize();
-
- lcd_update_enable(true);
- lcd_implementation_clear();
- lcd_update(2);
-
- // Increment crash counter
- uint8_t crash_count = eeprom_read_byte((uint8_t*)EEPROM_CRASH_COUNT);
- crash_count++;
- eeprom_update_byte((uint8_t*)EEPROM_CRASH_COUNT, crash_count);
-
-#ifdef AUTOMATIC_RECOVERY_AFTER_CRASH
- bool yesno = true;
-#else
- bool yesno = lcd_show_fullscreen_message_yes_no_and_wait_P(MSG_CRASH_DETECTED, false);
-#endif
- lcd_update_enable(true);
- lcd_update(2);
- lcd_setstatuspgm(WELCOME_MSG);
- if (yesno)
- {
- enquecommand_P(PSTR("G28 X"));
- enquecommand_P(PSTR("G28 Y"));
- enquecommand_P(PSTR("D1000"));
- }
- else
- {
- enquecommand_P(PSTR("D1001"));
- }
- }
- break;
- case 1000:
- crashdet_restore_print_and_continue();
- tmc2130_sg_stop_on_crash = true;
- break;
- case 1001:
- card.sdprinting = false;
- card.closefile();
- tmc2130_sg_stop_on_crash = true;
- break;
-/* case 4:
- {
- MYSERIAL.println("D4 - Test");
- uint8_t data[16];
- int cnt = parse_hex(strchr_pointer + 2, data, 16);
- MYSERIAL.println(cnt, DEC);
- for (int i = 0; i < cnt; i++)
- {
- serial_print_hex_byte(data[i]);
- MYSERIAL.write(' ');
- }
- MYSERIAL.write('\n');
- }
- break;
-/* case 3:
- if (code_seen('L')) // lcd pwm (0-255)
- {
- lcdSoftPwm = (int)code_value();
- }
- if (code_seen('B')) // lcd blink delay (0-255)
- {
- lcdBlinkDelay = (int)code_value();
- }
-// calibrate_z_auto();
-/* MYSERIAL.print("fsensor_enable()");
-#ifdef PAT9125
- fsensor_enable();
-#endif*/
- break;
-// case 4:
-// lcdBlinkDelay = 10;
-/* MYSERIAL.print("fsensor_disable()");
-#ifdef PAT9125
- fsensor_disable();
-#endif
- break;*/
-// break;
-/* case 5:
- {
- MYSERIAL.print("tmc2130_rd_MSCNT(0)=");
- int val = tmc2130_rd_MSCNT(tmc2130_cs[0]);
- MYSERIAL.println(val);
- homeaxis(0);
- }
- break;*/
- case 6:
- {
-/* MYSERIAL.print("tmc2130_rd_MSCNT(1)=");
- int val = tmc2130_rd_MSCNT(tmc2130_cs[1]);
- MYSERIAL.println(val);*/
- homeaxis(1);
- }
- break;
- case 7:
- {
- MYSERIAL.print("pat9125_init=");
- MYSERIAL.println(pat9125_init(200, 200));
- }
- break;
- case 8:
- {
- MYSERIAL.print("swi2c_check=");
- MYSERIAL.println(swi2c_check(0x75));
- }
- break;
- }
- }
-#endif //DEBUG_DCODES
-
- else
- {
- SERIAL_ECHO_START;
- SERIAL_ECHORPGM(MSG_UNKNOWN_COMMAND);
- SERIAL_ECHO(CMDBUFFER_CURRENT_STRING);
- SERIAL_ECHOLNPGM("\"(2)");
- }
-
- ClearToSend();
-}
-
-void FlushSerialRequestResend()
-{
- //char cmdbuffer[bufindr][100]="Resend:";
- MYSERIAL.flush();
- SERIAL_PROTOCOLRPGM(MSG_RESEND);
- SERIAL_PROTOCOLLN(gcode_LastN + 1);
- ClearToSend();
-}
-
-// Confirm the execution of a command, if sent from a serial line.
-// Execution of a command from a SD card will not be confirmed.
-void ClearToSend()
-{
- previous_millis_cmd = millis();
- if (CMDBUFFER_CURRENT_TYPE == CMDBUFFER_CURRENT_TYPE_USB)
- SERIAL_PROTOCOLLNRPGM(MSG_OK);
-}
-
-void get_coordinates()
-{
- bool seen[4]={false,false,false,false};
- for(int8_t i=0; i < NUM_AXIS; i++) {
- if(code_seen(axis_codes[i]))
- {
- destination[i] = (float)code_value() + (axis_relative_modes[i] || relative_mode)*current_position[i];
- seen[i]=true;
- }
- else destination[i] = current_position[i]; //Are these else lines really needed?
- }
- if(code_seen('F')) {
- next_feedrate = code_value();
-#ifdef MAX_SILENT_FEEDRATE
- if (tmc2130_mode == TMC2130_MODE_SILENT)
- if (next_feedrate > MAX_SILENT_FEEDRATE) next_feedrate = MAX_SILENT_FEEDRATE;
-#endif //MAX_SILENT_FEEDRATE
- if(next_feedrate > 0.0) feedrate = next_feedrate;
- }
-}
-
-void get_arc_coordinates()
-{
-#ifdef SF_ARC_FIX
- bool relative_mode_backup = relative_mode;
- relative_mode = true;
-#endif
- get_coordinates();
-#ifdef SF_ARC_FIX
- relative_mode=relative_mode_backup;
-#endif
-
- if(code_seen('I')) {
- offset[0] = code_value();
- }
- else {
- offset[0] = 0.0;
- }
- if(code_seen('J')) {
- offset[1] = code_value();
- }
- else {
- offset[1] = 0.0;
- }
-}
-
-void clamp_to_software_endstops(float target[3])
-{
-#ifdef DEBUG_DISABLE_SWLIMITS
- return;
-#endif //DEBUG_DISABLE_SWLIMITS
- world2machine_clamp(target[0], target[1]);
-
- // Clamp the Z coordinate.
- if (min_software_endstops) {
- float negative_z_offset = 0;
- #ifdef ENABLE_AUTO_BED_LEVELING
- if (Z_PROBE_OFFSET_FROM_EXTRUDER < 0) negative_z_offset = negative_z_offset + Z_PROBE_OFFSET_FROM_EXTRUDER;
- if (add_homing[Z_AXIS] < 0) negative_z_offset = negative_z_offset + add_homing[Z_AXIS];
- #endif
- if (target[Z_AXIS] < min_pos[Z_AXIS]+negative_z_offset) target[Z_AXIS] = min_pos[Z_AXIS]+negative_z_offset;
- }
- if (max_software_endstops) {
- if (target[Z_AXIS] > max_pos[Z_AXIS]) target[Z_AXIS] = max_pos[Z_AXIS];
- }
-}
-
-#ifdef MESH_BED_LEVELING
- void mesh_plan_buffer_line(const float &x, const float &y, const float &z, const float &e, const float &feed_rate, const uint8_t extruder) {
- float dx = x - current_position[X_AXIS];
- float dy = y - current_position[Y_AXIS];
- float dz = z - current_position[Z_AXIS];
- int n_segments = 0;
-
- if (mbl.active) {
- float len = abs(dx) + abs(dy);
- if (len > 0)
- // Split to 3cm segments or shorter.
- n_segments = int(ceil(len / 30.f));
- }
-
- if (n_segments > 1) {
- float de = e - current_position[E_AXIS];
- for (int i = 1; i < n_segments; ++ i) {
- float t = float(i) / float(n_segments);
- plan_buffer_line(
- current_position[X_AXIS] + t * dx,
- current_position[Y_AXIS] + t * dy,
- current_position[Z_AXIS] + t * dz,
- current_position[E_AXIS] + t * de,
- feed_rate, extruder);
- }
- }
- // The rest of the path.
- plan_buffer_line(x, y, z, e, feed_rate, extruder);
- current_position[X_AXIS] = x;
- current_position[Y_AXIS] = y;
- current_position[Z_AXIS] = z;
- current_position[E_AXIS] = e;
- }
-#endif // MESH_BED_LEVELING
-
-void prepare_move()
-{
- clamp_to_software_endstops(destination);
- previous_millis_cmd = millis();
-
- // Do not use feedmultiply for E or Z only moves
- if( (current_position[X_AXIS] == destination [X_AXIS]) && (current_position[Y_AXIS] == destination [Y_AXIS])) {
- plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
- }
- else {
-#ifdef MESH_BED_LEVELING
- mesh_plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate*feedmultiply*(1./(60.f*100.f)), active_extruder);
-#else
- plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate*feedmultiply*(1./(60.f*100.f)), active_extruder);
-#endif
- }
-
- for(int8_t i=0; i < NUM_AXIS; i++) {
- current_position[i] = destination[i];
- }
-}
-
-void prepare_arc_move(char isclockwise) {
- float r = hypot(offset[X_AXIS], offset[Y_AXIS]); // Compute arc radius for mc_arc
-
- // Trace the arc
- mc_arc(current_position, destination, offset, X_AXIS, Y_AXIS, Z_AXIS, feedrate*feedmultiply/60/100.0, r, isclockwise, active_extruder);
-
- // As far as the parser is concerned, the position is now == target. In reality the
- // motion control system might still be processing the action and the real tool position
- // in any intermediate location.
- for(int8_t i=0; i < NUM_AXIS; i++) {
- current_position[i] = destination[i];
- }
- previous_millis_cmd = millis();
-}
-
-#if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
-
-#if defined(FAN_PIN)
- #if CONTROLLERFAN_PIN == FAN_PIN
- #error "You cannot set CONTROLLERFAN_PIN equal to FAN_PIN"
- #endif
-#endif
-
-unsigned long lastMotor = 0; //Save the time for when a motor was turned on last
-unsigned long lastMotorCheck = 0;
-
-void controllerFan()
-{
- if ((millis() - lastMotorCheck) >= 2500) //Not a time critical function, so we only check every 2500ms
- {
- lastMotorCheck = millis();
-
- if(!READ(X_ENABLE_PIN) || !READ(Y_ENABLE_PIN) || !READ(Z_ENABLE_PIN) || (soft_pwm_bed > 0)
- #if EXTRUDERS > 2
- || !READ(E2_ENABLE_PIN)
- #endif
- #if EXTRUDER > 1
- #if defined(X2_ENABLE_PIN) && X2_ENABLE_PIN > -1
- || !READ(X2_ENABLE_PIN)
- #endif
- || !READ(E1_ENABLE_PIN)
- #endif
- || !READ(E0_ENABLE_PIN)) //If any of the drivers are enabled...
- {
- lastMotor = millis(); //... set time to NOW so the fan will turn on
- }
-
- if ((millis() - lastMotor) >= (CONTROLLERFAN_SECS*1000UL) || lastMotor == 0) //If the last time any driver was enabled, is longer since than CONTROLLERSEC...
- {
- digitalWrite(CONTROLLERFAN_PIN, 0);
- analogWrite(CONTROLLERFAN_PIN, 0);
- }
- else
- {
- // allows digital or PWM fan output to be used (see M42 handling)
- digitalWrite(CONTROLLERFAN_PIN, CONTROLLERFAN_SPEED);
- analogWrite(CONTROLLERFAN_PIN, CONTROLLERFAN_SPEED);
- }
- }
-}
-#endif
-
-#ifdef TEMP_STAT_LEDS
-static bool blue_led = false;
-static bool red_led = false;
-static uint32_t stat_update = 0;
-
-void handle_status_leds(void) {
- float max_temp = 0.0;
- if(millis() > stat_update) {
- stat_update += 500; // Update every 0.5s
- for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
- max_temp = max(max_temp, degHotend(cur_extruder));
- max_temp = max(max_temp, degTargetHotend(cur_extruder));
- }
- #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
- max_temp = max(max_temp, degTargetBed());
- max_temp = max(max_temp, degBed());
- #endif
- if((max_temp > 55.0) && (red_led == false)) {
- digitalWrite(STAT_LED_RED, 1);
- digitalWrite(STAT_LED_BLUE, 0);
- red_led = true;
- blue_led = false;
- }
- if((max_temp < 54.0) && (blue_led == false)) {
- digitalWrite(STAT_LED_RED, 0);
- digitalWrite(STAT_LED_BLUE, 1);
- red_led = false;
- blue_led = true;
- }
- }
-}
-#endif
-
-void manage_inactivity(bool ignore_stepper_queue/*=false*/) //default argument set in Marlin.h
-{
-
-#if defined(KILL_PIN) && KILL_PIN > -1
- static int killCount = 0; // make the inactivity button a bit less responsive
- const int KILL_DELAY = 10000;
-#endif
-
- if(buflen < (BUFSIZE-1)){
- get_command();
- }
-
- if( (millis() - previous_millis_cmd) > max_inactive_time )
- if(max_inactive_time)
- kill("", 4);
- if(stepper_inactive_time) {
- if( (millis() - previous_millis_cmd) > stepper_inactive_time )
- {
- if(blocks_queued() == false && ignore_stepper_queue == false) {
- disable_x();
-// SERIAL_ECHOLNPGM("manage_inactivity - disable Y");
- disable_y();
- disable_z();
- disable_e0();
- disable_e1();
- disable_e2();
- }
- }
- }
-
- #ifdef CHDK //Check if pin should be set to LOW after M240 set it to HIGH
- if (chdkActive && (millis() - chdkHigh > CHDK_DELAY))
- {
- chdkActive = false;
- WRITE(CHDK, LOW);
- }
- #endif
-
- #if defined(KILL_PIN) && KILL_PIN > -1
-
- // Check if the kill button was pressed and wait just in case it was an accidental
- // key kill key press
- // -------------------------------------------------------------------------------
- if( 0 == READ(KILL_PIN) )
- {
- killCount++;
- }
- else if (killCount > 0)
- {
- killCount--;
- }
- // Exceeded threshold and we can confirm that it was not accidental
- // KILL the machine
- // ----------------------------------------------------------------
- if ( killCount >= KILL_DELAY)
- {
- kill("", 5);
- }
- #endif
-
- #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
- controllerFan(); //Check if fan should be turned on to cool stepper drivers down
- #endif
- #ifdef EXTRUDER_RUNOUT_PREVENT
- if( (millis() - previous_millis_cmd) > EXTRUDER_RUNOUT_SECONDS*1000 )
- if(degHotend(active_extruder)>EXTRUDER_RUNOUT_MINTEMP)
- {
- bool oldstatus=READ(E0_ENABLE_PIN);
- enable_e0();
- float oldepos=current_position[E_AXIS];
- float oldedes=destination[E_AXIS];
- plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS],
- destination[E_AXIS]+EXTRUDER_RUNOUT_EXTRUDE*EXTRUDER_RUNOUT_ESTEPS/axis_steps_per_unit[E_AXIS],
- EXTRUDER_RUNOUT_SPEED/60.*EXTRUDER_RUNOUT_ESTEPS/axis_steps_per_unit[E_AXIS], active_extruder);
- current_position[E_AXIS]=oldepos;
- destination[E_AXIS]=oldedes;
- plan_set_e_position(oldepos);
- previous_millis_cmd=millis();
- st_synchronize();
- WRITE(E0_ENABLE_PIN,oldstatus);
- }
- #endif
- #ifdef TEMP_STAT_LEDS
- handle_status_leds();
- #endif
- check_axes_activity();
-}
-
-void kill(const char *full_screen_message, unsigned char id)
-{
- SERIAL_ECHOPGM("KILL: ");
- MYSERIAL.println(int(id));
- //return;
- cli(); // Stop interrupts
- disable_heater();
-
- disable_x();
-// SERIAL_ECHOLNPGM("kill - disable Y");
- disable_y();
- disable_z();
- disable_e0();
- disable_e1();
- disable_e2();
-
-#if defined(PS_ON_PIN) && PS_ON_PIN > -1
- pinMode(PS_ON_PIN,INPUT);
-#endif
- SERIAL_ERROR_START;
- SERIAL_ERRORLNRPGM(MSG_ERR_KILLED);
- if (full_screen_message != NULL) {
- SERIAL_ERRORLNRPGM(full_screen_message);
- lcd_display_message_fullscreen_P(full_screen_message);
- } else {
- LCD_ALERTMESSAGERPGM(MSG_KILLED);
- }
-
- // FMC small patch to update the LCD before ending
- sei(); // enable interrupts
- for ( int i=5; i--; lcd_update())
- {
- delay(200);
- }
- cli(); // disable interrupts
- suicide();
- while(1) { /* Intentionally left empty */ } // Wait for reset
-}
-
-void Stop()
-{
- disable_heater();
- if(Stopped == false) {
- Stopped = true;
- Stopped_gcode_LastN = gcode_LastN; // Save last g_code for restart
- SERIAL_ERROR_START;
- SERIAL_ERRORLNRPGM(MSG_ERR_STOPPED);
- LCD_MESSAGERPGM(MSG_STOPPED);
- }
-}
-
-bool IsStopped() { return Stopped; };
-
-#ifdef FAST_PWM_FAN
-void setPwmFrequency(uint8_t pin, int val)
-{
- val &= 0x07;
- switch(digitalPinToTimer(pin))
- {
-
- #if defined(TCCR0A)
- case TIMER0A:
- case TIMER0B:
-// TCCR0B &= ~(_BV(CS00) | _BV(CS01) | _BV(CS02));
-// TCCR0B |= val;
- break;
- #endif
-
- #if defined(TCCR1A)
- case TIMER1A:
- case TIMER1B:
-// TCCR1B &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
-// TCCR1B |= val;
- break;
- #endif
-
- #if defined(TCCR2)
- case TIMER2:
- case TIMER2:
- TCCR2 &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
- TCCR2 |= val;
- break;
- #endif
-
- #if defined(TCCR2A)
- case TIMER2A:
- case TIMER2B:
- TCCR2B &= ~(_BV(CS20) | _BV(CS21) | _BV(CS22));
- TCCR2B |= val;
- break;
- #endif
-
- #if defined(TCCR3A)
- case TIMER3A:
- case TIMER3B:
- case TIMER3C:
- TCCR3B &= ~(_BV(CS30) | _BV(CS31) | _BV(CS32));
- TCCR3B |= val;
- break;
- #endif
-
- #if defined(TCCR4A)
- case TIMER4A:
- case TIMER4B:
- case TIMER4C:
- TCCR4B &= ~(_BV(CS40) | _BV(CS41) | _BV(CS42));
- TCCR4B |= val;
- break;
- #endif
-
- #if defined(TCCR5A)
- case TIMER5A:
- case TIMER5B:
- case TIMER5C:
- TCCR5B &= ~(_BV(CS50) | _BV(CS51) | _BV(CS52));
- TCCR5B |= val;
- break;
- #endif
-
- }
-}
-#endif //FAST_PWM_FAN
-
-bool setTargetedHotend(int code){
- tmp_extruder = active_extruder;
- if(code_seen('T')) {
- tmp_extruder = code_value();
- if(tmp_extruder >= EXTRUDERS) {
- SERIAL_ECHO_START;
- switch(code){
- case 104:
- SERIAL_ECHORPGM(MSG_M104_INVALID_EXTRUDER);
- break;
- case 105:
- SERIAL_ECHO(MSG_M105_INVALID_EXTRUDER);
- break;
- case 109:
- SERIAL_ECHO(MSG_M109_INVALID_EXTRUDER);
- break;
- case 218:
- SERIAL_ECHO(MSG_M218_INVALID_EXTRUDER);
- break;
- case 221:
- SERIAL_ECHO(MSG_M221_INVALID_EXTRUDER);
- break;
- }
- SERIAL_PROTOCOLLN((int)tmp_extruder);
- return true;
- }
- }
- return false;
-}
-
-void save_statistics(unsigned long _total_filament_used, unsigned long _total_print_time) //_total_filament_used unit: mm/100; print time in s
-{
- if (eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 1) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 2) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 3) == 255)
- {
- eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, 0);
- eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, 0);
- }
-
- unsigned long _previous_filament = eeprom_read_dword((uint32_t *)EEPROM_FILAMENTUSED); //_previous_filament unit: cm
- unsigned long _previous_time = eeprom_read_dword((uint32_t *)EEPROM_TOTALTIME); //_previous_time unit: min
-
- eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, _previous_time + (_total_print_time/60)); //EEPROM_TOTALTIME unit: min
- eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, _previous_filament + (_total_filament_used / 1000));
-
- total_filament_used = 0;
-
-}
-
-float calculate_volumetric_multiplier(float diameter) {
- float area = .0;
- float radius = .0;
-
- radius = diameter * .5;
- if (! volumetric_enabled || radius == 0) {
- area = 1;
- }
- else {
- area = M_PI * pow(radius, 2);
- }
-
- return 1.0 / area;
-}
-
-void calculate_volumetric_multipliers() {
- volumetric_multiplier[0] = calculate_volumetric_multiplier(filament_size[0]);
-#if EXTRUDERS > 1
- volumetric_multiplier[1] = calculate_volumetric_multiplier(filament_size[1]);
-#if EXTRUDERS > 2
- volumetric_multiplier[2] = calculate_volumetric_multiplier(filament_size[2]);
-#endif
-#endif
-}
-
-void delay_keep_alive(unsigned int ms)
-{
- for (;;) {
- manage_heater();
- // Manage inactivity, but don't disable steppers on timeout.
- manage_inactivity(true);
- lcd_update();
- if (ms == 0)
- break;
- else if (ms >= 50) {
- delay(50);
- ms -= 50;
- } else {
- delay(ms);
- ms = 0;
- }
- }
-}
-
-void wait_for_heater(long codenum) {
-
-#ifdef TEMP_RESIDENCY_TIME
- long residencyStart;
- residencyStart = -1;
- /* continue to loop until we have reached the target temp
- _and_ until TEMP_RESIDENCY_TIME hasn't passed since we reached it */
- while ((!cancel_heatup) && ((residencyStart == -1) ||
- (residencyStart >= 0 && (((unsigned int)(millis() - residencyStart)) < (TEMP_RESIDENCY_TIME * 1000UL))))) {
-#else
- while (target_direction ? (isHeatingHotend(tmp_extruder)) : (isCoolingHotend(tmp_extruder) && (CooldownNoWait == false))) {
-#endif //TEMP_RESIDENCY_TIME
- if ((millis() - codenum) > 1000UL)
- { //Print Temp Reading and remaining time every 1 second while heating up/cooling down
- if (!farm_mode) {
- SERIAL_PROTOCOLPGM("T:");
- SERIAL_PROTOCOL_F(degHotend(tmp_extruder), 1);
- SERIAL_PROTOCOLPGM(" E:");
- SERIAL_PROTOCOL((int)tmp_extruder);
-
-#ifdef TEMP_RESIDENCY_TIME
- SERIAL_PROTOCOLPGM(" W:");
- if (residencyStart > -1)
- {
- codenum = ((TEMP_RESIDENCY_TIME * 1000UL) - (millis() - residencyStart)) / 1000UL;
- SERIAL_PROTOCOLLN(codenum);
- }
- else
- {
- SERIAL_PROTOCOLLN("?");
- }
- }
-#else
- SERIAL_PROTOCOLLN("");
-#endif
- codenum = millis();
- }
- manage_heater();
- manage_inactivity();
- lcd_update();
-#ifdef TEMP_RESIDENCY_TIME
- /* start/restart the TEMP_RESIDENCY_TIME timer whenever we reach target temp for the first time
- or when current temp falls outside the hysteresis after target temp was reached */
- if ((residencyStart == -1 && target_direction && (degHotend(tmp_extruder) >= (degTargetHotend(tmp_extruder) - TEMP_WINDOW))) ||
- (residencyStart == -1 && !target_direction && (degHotend(tmp_extruder) <= (degTargetHotend(tmp_extruder) + TEMP_WINDOW))) ||
- (residencyStart > -1 && labs(degHotend(tmp_extruder) - degTargetHotend(tmp_extruder)) > TEMP_HYSTERESIS))
- {
- residencyStart = millis();
- }
-#endif //TEMP_RESIDENCY_TIME
- }
-}
-
-void check_babystep() {
- int babystep_z;
- EEPROM_read_B(EEPROM_BABYSTEP_Z, &babystep_z);
- if ((babystep_z < Z_BABYSTEP_MIN) || (babystep_z > Z_BABYSTEP_MAX)) {
- babystep_z = 0; //if babystep value is out of min max range, set it to 0
- SERIAL_ECHOLNPGM("Z live adjust out of range. Setting to 0");
- EEPROM_save_B(EEPROM_BABYSTEP_Z, &babystep_z);
- lcd_show_fullscreen_message_and_wait_P(PSTR("Z live adjust out of range. Setting to 0. Click to continue."));
- lcd_update_enable(true);
- }
-}
-#ifdef DIS
-void d_setup()
-{
- pinMode(D_DATACLOCK, INPUT_PULLUP);
- pinMode(D_DATA, INPUT_PULLUP);
- pinMode(D_REQUIRE, OUTPUT);
- digitalWrite(D_REQUIRE, HIGH);
-}
-
-
-float d_ReadData()
-{
- int digit[13];
- String mergeOutput;
- float output;
-
- digitalWrite(D_REQUIRE, HIGH);
- for (int i = 0; i<13; i++)
- {
- for (int j = 0; j < 4; j++)
- {
- while (digitalRead(D_DATACLOCK) == LOW) {}
- while (digitalRead(D_DATACLOCK) == HIGH) {}
- bitWrite(digit[i], j, digitalRead(D_DATA));
- }
- }
-
- digitalWrite(D_REQUIRE, LOW);
- mergeOutput = "";
- output = 0;
- for (int r = 5; r <= 10; r++) //Merge digits
- {
- mergeOutput += digit[r];
- }
- output = mergeOutput.toFloat();
-
- if (digit[4] == 8) //Handle sign
- {
- output *= -1;
- }
-
- for (int i = digit[11]; i > 0; i--) //Handle floating point
- {
- output /= 10;
- }
-
- return output;
-
-}
-
-void bed_analysis(float x_dimension, float y_dimension, int x_points_num, int y_points_num, float shift_x, float shift_y) {
- int t1 = 0;
- int t_delay = 0;
- int digit[13];
- int m;
- char str[3];
- //String mergeOutput;
- char mergeOutput[15];
- float output;
-
- int mesh_point = 0; //index number of calibration point
- float bed_zero_ref_x = (-22.f + X_PROBE_OFFSET_FROM_EXTRUDER); //shift between zero point on bed and target and between probe and nozzle
- float bed_zero_ref_y = (-0.6f + Y_PROBE_OFFSET_FROM_EXTRUDER);
-
- float mesh_home_z_search = 4;
- float row[x_points_num];
- int ix = 0;
- int iy = 0;
-
- char* filename_wldsd = "wldsd.txt";
- char data_wldsd[70];
- char numb_wldsd[10];
-
- d_setup();
-
- if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS])) {
- // We don't know where we are! HOME!
- // Push the commands to the front of the message queue in the reverse order!
- // There shall be always enough space reserved for these commands.
- repeatcommand_front(); // repeat G80 with all its parameters
-
- enquecommand_front_P((PSTR("G28 W0")));
- enquecommand_front_P((PSTR("G1 Z5")));
- return;
- }
- bool custom_message_old = custom_message;
- unsigned int custom_message_type_old = custom_message_type;
- unsigned int custom_message_state_old = custom_message_state;
- custom_message = true;
- custom_message_type = 1;
- custom_message_state = (x_points_num * y_points_num) + 10;
- lcd_update(1);
-
- mbl.reset();
- babystep_undo();
-
- card.openFile(filename_wldsd, false);
-
- current_position[Z_AXIS] = mesh_home_z_search;
- plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 60, active_extruder);
-
- int XY_AXIS_FEEDRATE = homing_feedrate[X_AXIS] / 20;
- int Z_PROBE_FEEDRATE = homing_feedrate[Z_AXIS] / 60;
- int Z_LIFT_FEEDRATE = homing_feedrate[Z_AXIS] / 40;
-
- setup_for_endstop_move(false);
-
- SERIAL_PROTOCOLPGM("Num X,Y: ");
- SERIAL_PROTOCOL(x_points_num);
- SERIAL_PROTOCOLPGM(",");
- SERIAL_PROTOCOL(y_points_num);
- SERIAL_PROTOCOLPGM("\nZ search height: ");
- SERIAL_PROTOCOL(mesh_home_z_search);
- SERIAL_PROTOCOLPGM("\nDimension X,Y: ");
- SERIAL_PROTOCOL(x_dimension);
- SERIAL_PROTOCOLPGM(",");
- SERIAL_PROTOCOL(y_dimension);
- SERIAL_PROTOCOLLNPGM("\nMeasured points:");
-
- while (mesh_point != x_points_num * y_points_num) {
- ix = mesh_point % x_points_num; // from 0 to MESH_NUM_X_POINTS - 1
- iy = mesh_point / x_points_num;
- if (iy & 1) ix = (x_points_num - 1) - ix; // Zig zag
- float z0 = 0.f;
- current_position[Z_AXIS] = mesh_home_z_search;
- plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
- st_synchronize();
-
-
- current_position[X_AXIS] = 13.f + ix * (x_dimension / (x_points_num - 1)) - bed_zero_ref_x + shift_x;
- current_position[Y_AXIS] = 6.4f + iy * (y_dimension / (y_points_num - 1)) - bed_zero_ref_y + shift_y;
-
- plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], XY_AXIS_FEEDRATE, active_extruder);
- st_synchronize();
-
- if (!find_bed_induction_sensor_point_z(-10.f)) { //if we have data from z calibration max allowed difference is 1mm for each point, if we dont have data max difference is 10mm from initial point
- break;
- card.closefile();
- }
-
-
- //memset(numb_wldsd, 0, sizeof(numb_wldsd));
- //dtostrf(d_ReadData(), 8, 5, numb_wldsd);
- //strcat(data_wldsd, numb_wldsd);
-
-
-
- //MYSERIAL.println(data_wldsd);
- //delay(1000);
- //delay(3000);
- //t1 = millis();
-
- //while (digitalRead(D_DATACLOCK) == LOW) {}
- //while (digitalRead(D_DATACLOCK) == HIGH) {}
- memset(digit, 0, sizeof(digit));
- //cli();
- digitalWrite(D_REQUIRE, LOW);
-
- for (int i = 0; i<13; i++)
- {
- //t1 = millis();
- for (int j = 0; j < 4; j++)
- {
- while (digitalRead(D_DATACLOCK) == LOW) {}
- while (digitalRead(D_DATACLOCK) == HIGH) {}
- bitWrite(digit[i], j, digitalRead(D_DATA));
- }
- //t_delay = (millis() - t1);
- //SERIAL_PROTOCOLPGM(" ");
- //SERIAL_PROTOCOL_F(t_delay, 5);
- //SERIAL_PROTOCOLPGM(" ");
- }
- //sei();
- digitalWrite(D_REQUIRE, HIGH);
- mergeOutput[0] = '\0';
- output = 0;
- for (int r = 5; r <= 10; r++) //Merge digits
- {
- sprintf(str, "%d", digit[r]);
- strcat(mergeOutput, str);
- }
-
- output = atof(mergeOutput);
-
- if (digit[4] == 8) //Handle sign
- {
- output *= -1;
- }
-
- for (int i = digit[11]; i > 0; i--) //Handle floating point
- {
- output *= 0.1;
- }
-
-
- //output = d_ReadData();
-
- //row[ix] = current_position[Z_AXIS];
-
- memset(data_wldsd, 0, sizeof(data_wldsd));
-
- for (int i = 0; i <3; i++) {
- memset(numb_wldsd, 0, sizeof(numb_wldsd));
- dtostrf(current_position[i], 8, 5, numb_wldsd);
- strcat(data_wldsd, numb_wldsd);
- strcat(data_wldsd, ";");
-
- }
- memset(numb_wldsd, 0, sizeof(numb_wldsd));
- dtostrf(output, 8, 5, numb_wldsd);
- strcat(data_wldsd, numb_wldsd);
- //strcat(data_wldsd, ";");
- card.write_command(data_wldsd);
-
-
- //row[ix] = d_ReadData();
-
- row[ix] = output; // current_position[Z_AXIS];
-
- if (iy % 2 == 1 ? ix == 0 : ix == x_points_num - 1) {
- for (int i = 0; i < x_points_num; i++) {
- SERIAL_PROTOCOLPGM(" ");
- SERIAL_PROTOCOL_F(row[i], 5);
-
-
- }
- SERIAL_PROTOCOLPGM("\n");
- }
- custom_message_state--;
- mesh_point++;
- lcd_update(1);
-
- }
- card.closefile();
-
-}
-#endif
-
-void temp_compensation_start() {
-
- custom_message = true;
- custom_message_type = 5;
- custom_message_state = PINDA_HEAT_T + 1;
- lcd_update(2);
- if (degHotend(active_extruder) > EXTRUDE_MINTEMP) {
- current_position[E_AXIS] -= DEFAULT_RETRACTION;
- }
- plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400, active_extruder);
-
- current_position[X_AXIS] = PINDA_PREHEAT_X;
- current_position[Y_AXIS] = PINDA_PREHEAT_Y;
- current_position[Z_AXIS] = PINDA_PREHEAT_Z;
- plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
- st_synchronize();
- while (fabs(degBed() - target_temperature_bed) > 1) delay_keep_alive(1000);
-
- for (int i = 0; i < PINDA_HEAT_T; i++) {
- delay_keep_alive(1000);
- custom_message_state = PINDA_HEAT_T - i;
- if (custom_message_state == 99 || custom_message_state == 9) lcd_update(2); //force whole display redraw if number of digits changed
- else lcd_update(1);
- }
- custom_message_type = 0;
- custom_message_state = 0;
- custom_message = false;
-}
-
-void temp_compensation_apply() {
- int i_add;
- int compensation_value;
- int z_shift = 0;
- float z_shift_mm;
-
- if (calibration_status() == CALIBRATION_STATUS_CALIBRATED) {
- if (target_temperature_bed % 10 == 0 && target_temperature_bed >= 60 && target_temperature_bed <= 100) {
- i_add = (target_temperature_bed - 60) / 10;
- EEPROM_read_B(EEPROM_PROBE_TEMP_SHIFT + i_add * 2, &z_shift);
- z_shift_mm = z_shift / axis_steps_per_unit[Z_AXIS];
- }else {
- //interpolation
- z_shift_mm = temp_comp_interpolation(target_temperature_bed) / axis_steps_per_unit[Z_AXIS];
- }
- SERIAL_PROTOCOLPGM("\n");
- SERIAL_PROTOCOLPGM("Z shift applied:");
- MYSERIAL.print(z_shift_mm);
- plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS] - z_shift_mm, current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
- st_synchronize();
- plan_set_z_position(current_position[Z_AXIS]);
- }
- else {
- //we have no temp compensation data
- }
-}
-
-float temp_comp_interpolation(float inp_temperature) {
-
- //cubic spline interpolation
-
- int n, i, j, k;
- float h[10], a, b, c, d, sum, s[10] = { 0 }, x[10], F[10], f[10], m[10][10] = { 0 }, temp;
- int shift[10];
- int temp_C[10];
-
- n = 6; //number of measured points
-
- shift[0] = 0;
- for (i = 0; i < n; i++) {
- if (i>0) EEPROM_read_B(EEPROM_PROBE_TEMP_SHIFT + (i-1) * 2, &shift[i]); //read shift in steps from EEPROM
- temp_C[i] = 50 + i * 10; //temperature in C
-#ifdef PINDA_THERMISTOR
- temp_C[i] = 35 + i * 5; //temperature in C
-#else
- temp_C[i] = 50 + i * 10; //temperature in C
-#endif
- x[i] = (float)temp_C[i];
- f[i] = (float)shift[i];
- }
- if (inp_temperature < x[0]) return 0;
-
-
- for (i = n - 1; i>0; i--) {
- F[i] = (f[i] - f[i - 1]) / (x[i] - x[i - 1]);
- h[i - 1] = x[i] - x[i - 1];
- }
- //*********** formation of h, s , f matrix **************
- for (i = 1; i0; i--) {
- sum = 0;
- for (j = i; j <= n - 2; j++)
- sum += m[i][j] * s[j];
- s[i] = (m[i][n - 1] - sum) / m[i][i];
- }
-
- for (i = 0; i x[i + 1])) {
- a = (s[i + 1] - s[i]) / (6 * h[i]);
- b = s[i] / 2;
- c = (f[i + 1] - f[i]) / h[i] - (2 * h[i] * s[i] + s[i + 1] * h[i]) / 6;
- d = f[i];
- sum = a*pow((inp_temperature - x[i]), 3) + b*pow((inp_temperature - x[i]), 2) + c*(inp_temperature - x[i]) + d;
- }
-
- return sum;
-
-}
-
-#ifdef PINDA_THERMISTOR
-float temp_compensation_pinda_thermistor_offset()
-{
- if (!temp_cal_active) return 0;
- if (!calibration_status_pinda()) return 0;
- return temp_comp_interpolation(current_temperature_pinda) / axis_steps_per_unit[Z_AXIS];
-}
-#endif //PINDA_THERMISTOR
-
-void long_pause() //long pause print
-{
- st_synchronize();
-
- //save currently set parameters to global variables
- saved_feedmultiply = feedmultiply;
- HotendTempBckp = degTargetHotend(active_extruder);
- fanSpeedBckp = fanSpeed;
- start_pause_print = millis();
-
-
- //save position
- pause_lastpos[X_AXIS] = current_position[X_AXIS];
- pause_lastpos[Y_AXIS] = current_position[Y_AXIS];
- pause_lastpos[Z_AXIS] = current_position[Z_AXIS];
- pause_lastpos[E_AXIS] = current_position[E_AXIS];
-
- //retract
- current_position[E_AXIS] -= DEFAULT_RETRACTION;
- plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400, active_extruder);
-
- //lift z
- current_position[Z_AXIS] += Z_PAUSE_LIFT;
- if (current_position[Z_AXIS] > Z_MAX_POS) current_position[Z_AXIS] = Z_MAX_POS;
- plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 15, active_extruder);
-
- //set nozzle target temperature to 0
- setTargetHotend(0, 0);
- setTargetHotend(0, 1);
- setTargetHotend(0, 2);
-
- //Move XY to side
- current_position[X_AXIS] = X_PAUSE_POS;
- current_position[Y_AXIS] = Y_PAUSE_POS;
- plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 50, active_extruder);
-
- // Turn off the print fan
- fanSpeed = 0;
-
- st_synchronize();
-}
-
-void serialecho_temperatures() {
- float tt = degHotend(active_extruder);
- SERIAL_PROTOCOLPGM("T:");
- SERIAL_PROTOCOL(tt);
- SERIAL_PROTOCOLPGM(" E:");
- SERIAL_PROTOCOL((int)active_extruder);
- SERIAL_PROTOCOLPGM(" B:");
- SERIAL_PROTOCOL_F(degBed(), 1);
- SERIAL_PROTOCOLLN("");
-}
-
-extern uint32_t sdpos_atomic;
-
-void uvlo_()
-{
- // Conserve power as soon as possible.
- disable_x();
- disable_y();
-
- // Indicate that the interrupt has been triggered.
- SERIAL_ECHOLNPGM("UVLO");
-
- // Read out the current Z motor microstep counter. This will be later used
- // for reaching the zero full step before powering off.
- uint16_t z_microsteps = tmc2130_rd_MSCNT(Z_TMC2130_CS);
-
- // Calculate the file position, from which to resume this print.
- long sd_position = sdpos_atomic; //atomic sd position of last command added in queue
- {
- uint16_t sdlen_planner = planner_calc_sd_length(); //length of sd commands in planner
- sd_position -= sdlen_planner;
- uint16_t sdlen_cmdqueue = cmdqueue_calc_sd_length(); //length of sd commands in cmdqueue
- sd_position -= sdlen_cmdqueue;
- if (sd_position < 0) sd_position = 0;
- }
-
- // Backup the feedrate in mm/min.
- int feedrate_bckp = blocks_queued() ? (block_buffer[block_buffer_tail].nominal_speed * 60.f) : feedrate;
-
- // After this call, the planner queue is emptied and the current_position is set to a current logical coordinate.
- // The logical coordinate will likely differ from the machine coordinate if the skew calibration and mesh bed leveling
- // are in action.
- planner_abort_hard();
-
- // Clean the input command queue.
- cmdqueue_reset();
- card.sdprinting = false;
-// card.closefile();
-
- // Enable stepper driver interrupt to move Z axis.
- // This should be fine as the planner and command queues are empty and the SD card printing is disabled.
- //FIXME one may want to disable serial lines at this point of time to avoid interfering with the command queue,
- // though it should not happen that the command queue is touched as the plan_buffer_line always succeed without blocking.
- sei();
- plan_buffer_line(
- current_position[X_AXIS],
- current_position[Y_AXIS],
- current_position[Z_AXIS],
- current_position[E_AXIS] - DEFAULT_RETRACTION,
- 400, active_extruder);
- plan_buffer_line(
- current_position[X_AXIS],
- current_position[Y_AXIS],
- current_position[Z_AXIS] + UVLO_Z_AXIS_SHIFT + float((1024 - z_microsteps + 7) >> 4) / axis_steps_per_unit[Z_AXIS],
- current_position[E_AXIS] - DEFAULT_RETRACTION,
- 40, active_extruder);
-
- // Move Z up to the next 0th full step.
- // Write the file position.
- eeprom_update_dword((uint32_t*)(EEPROM_FILE_POSITION), sd_position);
- // Store the mesh bed leveling offsets. This is 2*9=18 bytes, which takes 18*3.4us=52us in worst case.
- for (int8_t mesh_point = 0; mesh_point < 9; ++ mesh_point) {
- uint8_t ix = mesh_point % MESH_MEAS_NUM_X_POINTS; // from 0 to MESH_NUM_X_POINTS - 1
- uint8_t iy = mesh_point / MESH_MEAS_NUM_X_POINTS;
- // Scale the z value to 1u resolution.
- int16_t v = mbl.active ? int16_t(floor(mbl.z_values[iy*3][ix*3] * 1000.f + 0.5f)) : 0;
- eeprom_update_word((uint16_t*)(EEPROM_UVLO_MESH_BED_LEVELING+2*mesh_point), *reinterpret_cast(&v));
- }
- // Read out the current Z motor microstep counter. This will be later used
- // for reaching the zero full step before powering off.
- eeprom_update_word((uint16_t*)(EEPROM_UVLO_Z_MICROSTEPS), z_microsteps);
- // Store the current position.
- eeprom_update_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 0), current_position[X_AXIS]);
- eeprom_update_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 4), current_position[Y_AXIS]);
- eeprom_update_float((float*)(EEPROM_UVLO_CURRENT_POSITION_Z), current_position[Z_AXIS]);
- // Store the current feed rate, temperatures and fan speed.
- EEPROM_save_B(EEPROM_UVLO_FEEDRATE, &feedrate_bckp);
- eeprom_update_byte((uint8_t*)EEPROM_UVLO_TARGET_HOTEND, target_temperature[active_extruder]);
- eeprom_update_byte((uint8_t*)EEPROM_UVLO_TARGET_BED, target_temperature_bed);
- eeprom_update_byte((uint8_t*)EEPROM_UVLO_FAN_SPEED, fanSpeed);
- // Finaly store the "power outage" flag.
- eeprom_update_byte((uint8_t*)EEPROM_UVLO, 1);
-
- st_synchronize();
- SERIAL_ECHOPGM("stps");
- MYSERIAL.println(tmc2130_rd_MSCNT(Z_TMC2130_CS));
-#if 0
- // Move the print head to the side of the print until all the power stored in the power supply capacitors is depleted.
- current_position[X_AXIS] = (current_position[X_AXIS] < 0.5f * (X_MIN_POS + X_MAX_POS)) ? X_MIN_POS : X_MAX_POS;
- plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 500, active_extruder);
- st_synchronize();
-#endif
- disable_z();
-
- // Increment power failure counter
- uint8_t power_count = eeprom_read_byte((uint8_t*)EEPROM_POWER_COUNT);
- power_count++;
- eeprom_update_byte((uint8_t*)EEPROM_POWER_COUNT, power_count);
-
- SERIAL_ECHOLNPGM("UVLO - end");
- cli();
- while(1);
-}
-
-void setup_fan_interrupt() {
-//INT7
- DDRE &= ~(1 << 7); //input pin
- PORTE &= ~(1 << 7); //no internal pull-up
-
- //start with sensing rising edge
- EICRB &= ~(1 << 6);
- EICRB |= (1 << 7);
-
- //enable INT7 interrupt
- EIMSK |= (1 << 7);
-}
-
-ISR(INT7_vect) {
- //measuring speed now works for fanSpeed > 18 (approximately), which is sufficient because MIN_PRINT_FAN_SPEED is higher
-
- if (fanSpeed < MIN_PRINT_FAN_SPEED) return;
- if ((1 << 6) & EICRB) { //interrupt was triggered by rising edge
- t_fan_rising_edge = millis();
- }
- else { //interrupt was triggered by falling edge
- if ((millis() - t_fan_rising_edge) >= FAN_PULSE_WIDTH_LIMIT) {//this pulse was from sensor and not from pwm
- fan_edge_counter[1] += 2; //we are currently counting all edges so lets count two edges for one pulse
- }
- }
- EICRB ^= (1 << 6); //change edge
-}
-
-void setup_uvlo_interrupt() {
- DDRE &= ~(1 << 4); //input pin
- PORTE &= ~(1 << 4); //no internal pull-up
-
- //sensing falling edge
- EICRB |= (1 << 0);
- EICRB &= ~(1 << 1);
-
- //enable INT4 interrupt
- EIMSK |= (1 << 4);
-}
-
-ISR(INT4_vect) {
- EIMSK &= ~(1 << 4); //disable INT4 interrupt to make sure that this code will be executed just once
- SERIAL_ECHOLNPGM("INT4");
- if (IS_SD_PRINTING) uvlo_();
-}
-
-void recover_print(uint8_t automatic) {
- char cmd[30];
- lcd_update_enable(true);
- lcd_update(2);
- lcd_setstatuspgm(MSG_RECOVERING_PRINT);
-
- recover_machine_state_after_power_panic();
-
- // Set the target bed and nozzle temperatures.
- sprintf_P(cmd, PSTR("M104 S%d"), target_temperature[active_extruder]);
- enquecommand(cmd);
- sprintf_P(cmd, PSTR("M140 S%d"), target_temperature_bed);
- enquecommand(cmd);
-
- // Lift the print head, so one may remove the excess priming material.
- if (current_position[Z_AXIS] < 25)
- enquecommand_P(PSTR("G1 Z25 F800"));
- // Home X and Y axes. Homing just X and Y shall not touch the babystep and the world2machine transformation status.
- enquecommand_P(PSTR("G28 X Y"));
- // Set the target bed and nozzle temperatures and wait.
- sprintf_P(cmd, PSTR("M109 S%d"), target_temperature[active_extruder]);
- enquecommand(cmd);
- sprintf_P(cmd, PSTR("M190 S%d"), target_temperature_bed);
- enquecommand(cmd);
- enquecommand_P(PSTR("M83")); //E axis relative mode
- //enquecommand_P(PSTR("G1 E5 F120")); //Extrude some filament to stabilize pessure
- // If not automatically recoreverd (long power loss), extrude extra filament to stabilize
- if(automatic == 0){
- enquecommand_P(PSTR("G1 E5 F120")); //Extrude some filament to stabilize pessure
- }
- enquecommand_P(PSTR("G1 E" STRINGIFY(-DEFAULT_RETRACTION)" F480"));
- // Mark the power panic status as inactive.
- eeprom_update_byte((uint8_t*)EEPROM_UVLO, 0);
- /*while ((abs(degHotend(0)- target_temperature[0])>5) || (abs(degBed() -target_temperature_bed)>3)) { //wait for heater and bed to reach target temp
- delay_keep_alive(1000);
- }*/
- SERIAL_ECHOPGM("After waiting for temp:");
- SERIAL_ECHOPGM("Current position X_AXIS:");
- MYSERIAL.println(current_position[X_AXIS]);
- SERIAL_ECHOPGM("Current position Y_AXIS:");
- MYSERIAL.println(current_position[Y_AXIS]);
-
- // Restart the print.
- restore_print_from_eeprom();
-
- SERIAL_ECHOPGM("current_position[Z_AXIS]:");
- MYSERIAL.print(current_position[Z_AXIS]);
-}
-
-void recover_machine_state_after_power_panic()
-{
- // 1) Recover the logical cordinates at the time of the power panic.
- // The logical XY coordinates are needed to recover the machine Z coordinate corrected by the mesh bed leveling.
- current_position[X_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 0));
- current_position[Y_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 4));
- // Recover the logical coordinate of the Z axis at the time of the power panic.
- // The current position after power panic is moved to the next closest 0th full step.
- current_position[Z_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION_Z)) +
- UVLO_Z_AXIS_SHIFT + float((1024 - eeprom_read_word((uint16_t*)(EEPROM_UVLO_Z_MICROSTEPS)) + 7) >> 4) / axis_steps_per_unit[Z_AXIS];
- memcpy(destination, current_position, sizeof(destination));
-
- SERIAL_ECHOPGM("recover_machine_state_after_power_panic, initial ");
- print_world_coordinates();
-
- // 2) Initialize the logical to physical coordinate system transformation.
- world2machine_initialize();
-
- // 3) Restore the mesh bed leveling offsets. This is 2*9=18 bytes, which takes 18*3.4us=52us in worst case.
- mbl.active = false;
- for (int8_t mesh_point = 0; mesh_point < 9; ++ mesh_point) {
- uint8_t ix = mesh_point % MESH_MEAS_NUM_X_POINTS; // from 0 to MESH_NUM_X_POINTS - 1
- uint8_t iy = mesh_point / MESH_MEAS_NUM_X_POINTS;
- // Scale the z value to 10u resolution.
- int16_t v;
- eeprom_read_block(&v, (void*)(EEPROM_UVLO_MESH_BED_LEVELING+2*mesh_point), 2);
- if (v != 0)
- mbl.active = true;
- mbl.z_values[iy][ix] = float(v) * 0.001f;
- }
- if (mbl.active)
- mbl.upsample_3x3();
- SERIAL_ECHOPGM("recover_machine_state_after_power_panic, initial ");
- print_mesh_bed_leveling_table();
-
- // 4) Load the baby stepping value, which is expected to be active at the time of power panic.
- // The baby stepping value is used to reset the physical Z axis when rehoming the Z axis.
- babystep_load();
-
- // 5) Set the physical positions from the logical positions using the world2machine transformation and the active bed leveling.
- plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
-
- // 6) Power up the motors, mark their positions as known.
- //FIXME Verfiy, whether the X and Y axes should be powered up here, as they will later be re-homed anyway.
- axis_known_position[X_AXIS] = true; enable_x();
- axis_known_position[Y_AXIS] = true; enable_y();
- axis_known_position[Z_AXIS] = true; enable_z();
-
- SERIAL_ECHOPGM("recover_machine_state_after_power_panic, initial ");
- print_physical_coordinates();
-
- // 7) Recover the target temperatures.
- target_temperature[active_extruder] = eeprom_read_byte((uint8_t*)EEPROM_UVLO_TARGET_HOTEND);
- target_temperature_bed = eeprom_read_byte((uint8_t*)EEPROM_UVLO_TARGET_BED);
-}
-
-void restore_print_from_eeprom() {
- float x_rec, y_rec, z_pos;
- int feedrate_rec;
- uint8_t fan_speed_rec;
- char cmd[30];
- char* c;
- char filename[13];
-
- fan_speed_rec = eeprom_read_byte((uint8_t*)EEPROM_UVLO_FAN_SPEED);
- EEPROM_read_B(EEPROM_UVLO_FEEDRATE, &feedrate_rec);
- SERIAL_ECHOPGM("Feedrate:");
- MYSERIAL.println(feedrate_rec);
- for (int i = 0; i < 8; i++) {
- filename[i] = eeprom_read_byte((uint8_t*)EEPROM_FILENAME + i);
-
- }
- filename[8] = '\0';
-
- MYSERIAL.print(filename);
- strcat_P(filename, PSTR(".gco"));
- sprintf_P(cmd, PSTR("M23 %s"), filename);
- for (c = &cmd[4]; *c; c++)
- *c = tolower(*c);
- enquecommand(cmd);
- uint32_t position = eeprom_read_dword((uint32_t*)(EEPROM_FILE_POSITION));
- SERIAL_ECHOPGM("Position read from eeprom:");
- MYSERIAL.println(position);
-
- // E axis relative mode.
- enquecommand_P(PSTR("M83"));
- // Move to the XY print position in logical coordinates, where the print has been killed.
- strcpy_P(cmd, PSTR("G1 X")); strcat(cmd, ftostr32(eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 0))));
- strcat_P(cmd, PSTR(" Y")); strcat(cmd, ftostr32(eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 4))));
- strcat_P(cmd, PSTR(" F2000"));
- enquecommand(cmd);
- // Move the Z axis down to the print, in logical coordinates.
- strcpy_P(cmd, PSTR("G1 Z")); strcat(cmd, ftostr32(eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION_Z))));
- enquecommand(cmd);
- // Unretract.
- enquecommand_P(PSTR("G1 E" STRINGIFY(DEFAULT_RETRACTION)" F480"));
- // Set the feedrate saved at the power panic.
- sprintf_P(cmd, PSTR("G1 F%d"), feedrate_rec);
- enquecommand(cmd);
- // Set the fan speed saved at the power panic.
- strcpy_P(cmd, PSTR("M106 S"));
- strcat(cmd, itostr3(int(fan_speed_rec)));
- enquecommand(cmd);
-
- // Set a position in the file.
- sprintf_P(cmd, PSTR("M26 S%lu"), position);
- enquecommand(cmd);
- // Start SD print.
- enquecommand_P(PSTR("M24"));
-}
-
-
-////////////////////////////////////////////////////////////////////////////////
-// new save/restore printing
-
-//extern uint32_t sdpos_atomic;
-
-bool saved_printing = false;
-uint32_t saved_sdpos = 0;
-float saved_pos[4] = {0, 0, 0, 0};
-// Feedrate hopefully derived from an active block of the planner at the time the print has been canceled, in mm/min.
-float saved_feedrate2 = 0;
-uint8_t saved_active_extruder = 0;
-bool saved_extruder_under_pressure = false;
-
-void stop_and_save_print_to_ram(float z_move, float e_move)
-{
- if (saved_printing) return;
- cli();
- unsigned char nplanner_blocks = number_of_blocks();
- saved_sdpos = sdpos_atomic; //atomic sd position of last command added in queue
- uint16_t sdlen_planner = planner_calc_sd_length(); //length of sd commands in planner
- saved_sdpos -= sdlen_planner;
- uint16_t sdlen_cmdqueue = cmdqueue_calc_sd_length(); //length of sd commands in cmdqueue
- saved_sdpos -= sdlen_cmdqueue;
-
-#if 0
- SERIAL_ECHOPGM("SDPOS_ATOMIC="); MYSERIAL.println(sdpos_atomic, DEC);
- SERIAL_ECHOPGM("SDPOS="); MYSERIAL.println(card.get_sdpos(), DEC);
- SERIAL_ECHOPGM("SDLEN_PLAN="); MYSERIAL.println(sdlen_planner, DEC);
- SERIAL_ECHOPGM("SDLEN_CMDQ="); MYSERIAL.println(sdlen_cmdqueue, DEC);
- SERIAL_ECHOPGM("PLANNERBLOCKS="); MYSERIAL.println(int(nplanner_blocks), DEC);
- SERIAL_ECHOPGM("SDSAVED="); MYSERIAL.println(saved_sdpos, DEC);
- SERIAL_ECHOPGM("SDFILELEN="); MYSERIAL.println(card.fileSize(), DEC);
-
- {
- card.setIndex(saved_sdpos);
- SERIAL_ECHOLNPGM("Content of planner buffer: ");
- for (unsigned int idx = 0; idx < sdlen_planner; ++ idx)
- MYSERIAL.print(char(card.get()));
- SERIAL_ECHOLNPGM("Content of command buffer: ");
- for (unsigned int idx = 0; idx < sdlen_cmdqueue; ++ idx)
- MYSERIAL.print(char(card.get()));
- SERIAL_ECHOLNPGM("End of command buffer");
- }
-
- {
- // Print the content of the planner buffer, line by line:
- card.setIndex(saved_sdpos);
- int8_t iline = 0;
- for (unsigned char idx = block_buffer_tail; idx != block_buffer_head; idx = (idx + 1) & (BLOCK_BUFFER_SIZE - 1), ++ iline) {
- SERIAL_ECHOPGM("Planner line (from file): ");
- MYSERIAL.print(int(iline), DEC);
- SERIAL_ECHOPGM(", length: ");
- MYSERIAL.print(block_buffer[idx].sdlen, DEC);
- SERIAL_ECHOPGM(", steps: (");
- MYSERIAL.print(block_buffer[idx].steps_x, DEC);
- SERIAL_ECHOPGM(",");
- MYSERIAL.print(block_buffer[idx].steps_y, DEC);
- SERIAL_ECHOPGM(",");
- MYSERIAL.print(block_buffer[idx].steps_z, DEC);
- SERIAL_ECHOPGM(",");
- MYSERIAL.print(block_buffer[idx].steps_e, DEC);
- SERIAL_ECHOPGM("), events: ");
- MYSERIAL.println(block_buffer[idx].step_event_count, DEC);
- for (int len = block_buffer[idx].sdlen; len > 0; -- len)
- MYSERIAL.print(char(card.get()));
- }
- }
- {
- // Print the content of the command buffer, line by line:
- int8_t iline = 0;
- union {
- struct {
- char lo;
- char hi;
- } lohi;
- uint16_t value;
- } sdlen_single;
- int _bufindr = bufindr;
- for (int _buflen = buflen; _buflen > 0; ++ iline) {
- if (cmdbuffer[_bufindr] == CMDBUFFER_CURRENT_TYPE_SDCARD) {
- sdlen_single.lohi.lo = cmdbuffer[_bufindr + 1];
- sdlen_single.lohi.hi = cmdbuffer[_bufindr + 2];
- }
- SERIAL_ECHOPGM("Buffer line (from buffer): ");
- MYSERIAL.print(int(iline), DEC);
- SERIAL_ECHOPGM(", type: ");
- MYSERIAL.print(int(cmdbuffer[_bufindr]), DEC);
- SERIAL_ECHOPGM(", len: ");
- MYSERIAL.println(sdlen_single.value, DEC);
- // Print the content of the buffer line.
- MYSERIAL.println(cmdbuffer + _bufindr + CMDHDRSIZE);
-
- SERIAL_ECHOPGM("Buffer line (from file): ");
- MYSERIAL.print(int(iline), DEC);
- MYSERIAL.println(int(iline), DEC);
- for (; sdlen_single.value > 0; -- sdlen_single.value)
- MYSERIAL.print(char(card.get()));
-
- if (-- _buflen == 0)
- break;
- // First skip the current command ID and iterate up to the end of the string.
- for (_bufindr += CMDHDRSIZE; cmdbuffer[_bufindr] != 0; ++ _bufindr) ;
- // Second, skip the end of string null character and iterate until a nonzero command ID is found.
- for (++ _bufindr; _bufindr < sizeof(cmdbuffer) && cmdbuffer[_bufindr] == 0; ++ _bufindr) ;
- // If the end of the buffer was empty,
- if (_bufindr == sizeof(cmdbuffer)) {
- // skip to the start and find the nonzero command.
- for (_bufindr = 0; cmdbuffer[_bufindr] == 0; ++ _bufindr) ;
- }
- }
- }
-#endif
-
-#if 0
- saved_feedrate2 = feedrate; //save feedrate
-#else
- // Try to deduce the feedrate from the first block of the planner.
- // Speed is in mm/min.
- saved_feedrate2 = blocks_queued() ? (block_buffer[block_buffer_tail].nominal_speed * 60.f) : feedrate;
-#endif
-
- planner_abort_hard(); //abort printing
- memcpy(saved_pos, current_position, sizeof(saved_pos));
- saved_active_extruder = active_extruder; //save active_extruder
-
- saved_extruder_under_pressure = extruder_under_pressure; //extruder under pressure flag - currently unused
-
- cmdqueue_reset(); //empty cmdqueue
- card.sdprinting = false;
-// card.closefile();
- saved_printing = true;
- sei();
- if ((z_move != 0) || (e_move != 0)) { // extruder or z move
-#if 1
- // Rather than calling plan_buffer_line directly, push the move into the command queue,
- char buf[48];
- strcpy_P(buf, PSTR("G1 Z"));
- dtostrf(saved_pos[Z_AXIS] + z_move, 8, 3, buf + strlen(buf));
- strcat_P(buf, PSTR(" E"));
- // Relative extrusion
- dtostrf(e_move, 6, 3, buf + strlen(buf));
- strcat_P(buf, PSTR(" F"));
- dtostrf(homing_feedrate[Z_AXIS], 8, 3, buf + strlen(buf));
- // At this point the command queue is empty.
- enquecommand(buf, false);
- // If this call is invoked from the main Arduino loop() function, let the caller know that the command
- // in the command queue is not the original command, but a new one, so it should not be removed from the queue.
- repeatcommand_front();
-#else
- plan_buffer_line(saved_pos[X_AXIS], saved_pos[Y_AXIS], saved_pos[Z_AXIS] + z_move, saved_pos[E_AXIS] + e_move, homing_feedrate[Z_AXIS], active_extruder);
- st_synchronize(); //wait moving
- memcpy(current_position, saved_pos, sizeof(saved_pos));
- memcpy(destination, current_position, sizeof(destination));
-#endif
- }
-}
-
-void restore_print_from_ram_and_continue(float e_move)
-{
- if (!saved_printing) return;
-// for (int axis = X_AXIS; axis <= E_AXIS; axis++)
-// current_position[axis] = st_get_position_mm(axis);
- active_extruder = saved_active_extruder; //restore active_extruder
- feedrate = saved_feedrate2; //restore feedrate
- float e = saved_pos[E_AXIS] - e_move;
- plan_set_e_position(e);
- plan_buffer_line(saved_pos[X_AXIS], saved_pos[Y_AXIS], saved_pos[Z_AXIS], saved_pos[E_AXIS], homing_feedrate[Z_AXIS]/13, active_extruder);
- st_synchronize();
- memcpy(current_position, saved_pos, sizeof(saved_pos));
- memcpy(destination, current_position, sizeof(destination));
- card.setIndex(saved_sdpos);
- sdpos_atomic = saved_sdpos;
- card.sdprinting = true;
- saved_printing = false;
-}
-
-void print_world_coordinates()
-{
- SERIAL_ECHOPGM("world coordinates: (");
- MYSERIAL.print(current_position[X_AXIS], 3);
- SERIAL_ECHOPGM(", ");
- MYSERIAL.print(current_position[Y_AXIS], 3);
- SERIAL_ECHOPGM(", ");
- MYSERIAL.print(current_position[Z_AXIS], 3);
- SERIAL_ECHOLNPGM(")");
-}
-
-void print_physical_coordinates()
-{
- SERIAL_ECHOPGM("physical coordinates: (");
- MYSERIAL.print(st_get_position_mm(X_AXIS), 3);
- SERIAL_ECHOPGM(", ");
- MYSERIAL.print(st_get_position_mm(Y_AXIS), 3);
- SERIAL_ECHOPGM(", ");
- MYSERIAL.print(st_get_position_mm(Z_AXIS), 3);
- SERIAL_ECHOLNPGM(")");
-}
-
-void print_mesh_bed_leveling_table()
-{
- SERIAL_ECHOPGM("mesh bed leveling: ");
- for (int8_t y = 0; y < MESH_NUM_Y_POINTS; ++ y)
- for (int8_t x = 0; x < MESH_NUM_Y_POINTS; ++ x) {
- MYSERIAL.print(mbl.z_values[y][x], 3);
- SERIAL_ECHOPGM(" ");
- }
- SERIAL_ECHOLNPGM("");
-}
+/* -*- c++ -*- */
+
+/*
+ Reprap firmware based on Sprinter and grbl.
+ Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
+
+ This program is free software: you can redistribute it and/or modify
+ it under the terms of the GNU General Public License as published by
+ the Free Software Foundation, either version 3 of the License, or
+ (at your option) any later version.
+
+ This program is distributed in the hope that it will be useful,
+ but WITHOUT ANY WARRANTY; without even the implied warranty of
+ MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ GNU General Public License for more details.
+
+ You should have received a copy of the GNU General Public License
+ along with this program. If not, see .
+ */
+
+/*
+ This firmware is a mashup between Sprinter and grbl.
+ (https://github.com/kliment/Sprinter)
+ (https://github.com/simen/grbl/tree)
+
+ It has preliminary support for Matthew Roberts advance algorithm
+ http://reprap.org/pipermail/reprap-dev/2011-May/003323.html
+ */
+
+#include "Marlin.h"
+
+#ifdef ENABLE_AUTO_BED_LEVELING
+#include "vector_3.h"
+ #ifdef AUTO_BED_LEVELING_GRID
+ #include "qr_solve.h"
+ #endif
+#endif // ENABLE_AUTO_BED_LEVELING
+
+#ifdef MESH_BED_LEVELING
+ #include "mesh_bed_leveling.h"
+ #include "mesh_bed_calibration.h"
+#endif
+
+#include "ultralcd.h"
+#include "Configuration_prusa.h"
+#include "planner.h"
+#include "stepper.h"
+#include "temperature.h"
+#include "motion_control.h"
+#include "cardreader.h"
+#include "watchdog.h"
+#include "ConfigurationStore.h"
+#include "language.h"
+#include "pins_arduino.h"
+#include "math.h"
+#include "util.h"
+
+#include
+
+#include "Dcodes.h"
+
+
+#ifdef SWSPI
+#include "swspi.h"
+#endif //SWSPI
+
+#ifdef SWI2C
+#include "swi2c.h"
+#endif //SWI2C
+
+#ifdef PAT9125
+#include "pat9125.h"
+#include "fsensor.h"
+#endif //PAT9125
+
+#ifdef TMC2130
+#include "tmc2130.h"
+#endif //TMC2130
+
+
+#ifdef BLINKM
+#include "BlinkM.h"
+#include "Wire.h"
+#endif
+
+#ifdef ULTRALCD
+#include "ultralcd.h"
+#endif
+
+#if NUM_SERVOS > 0
+#include "Servo.h"
+#endif
+
+#if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
+#include
+#endif
+
+#define VERSION_STRING "1.0.2"
+
+
+#include "ultralcd.h"
+
+#include "cmdqueue.h"
+
+// Macros for bit masks
+#define BIT(b) (1<<(b))
+#define TEST(n,b) (((n)&BIT(b))!=0)
+#define SET_BIT(n,b,value) (n) ^= ((-value)^(n)) & (BIT(b))
+
+//Macro for print fan speed
+#define FAN_PULSE_WIDTH_LIMIT ((fanSpeed > 100) ? 3 : 4) //time in ms
+
+// look here for descriptions of G-codes: http://linuxcnc.org/handbook/gcode/g-code.html
+// http://objects.reprap.org/wiki/Mendel_User_Manual:_RepRapGCodes
+
+//Implemented Codes
+//-------------------
+
+// PRUSA CODES
+// P F - Returns FW versions
+// P R - Returns revision of printer
+
+// G0 -> G1
+// G1 - Coordinated Movement X Y Z E
+// G2 - CW ARC
+// G3 - CCW ARC
+// G4 - Dwell S or P
+// G10 - retract filament according to settings of M207
+// G11 - retract recover filament according to settings of M208
+// G28 - Home all Axis
+// G29 - Detailed Z-Probe, probes the bed at 3 or more points. Will fail if you haven't homed yet.
+// G30 - Single Z Probe, probes bed at current XY location.
+// G31 - Dock sled (Z_PROBE_SLED only)
+// G32 - Undock sled (Z_PROBE_SLED only)
+// G80 - Automatic mesh bed leveling
+// G81 - Print bed profile
+// G90 - Use Absolute Coordinates
+// G91 - Use Relative Coordinates
+// G92 - Set current position to coordinates given
+
+// M Codes
+// M0 - Unconditional stop - Wait for user to press a button on the LCD (Only if ULTRA_LCD is enabled)
+// M1 - Same as M0
+// M17 - Enable/Power all stepper motors
+// M18 - Disable all stepper motors; same as M84
+// M20 - List SD card
+// M21 - Init SD card
+// M22 - Release SD card
+// M23 - Select SD file (M23 filename.g)
+// M24 - Start/resume SD print
+// M25 - Pause SD print
+// M26 - Set SD position in bytes (M26 S12345)
+// M27 - Report SD print status
+// M28 - Start SD write (M28 filename.g)
+// M29 - Stop SD write
+// M30 - Delete file from SD (M30 filename.g)
+// M31 - Output time since last M109 or SD card start to serial
+// M32 - Select file and start SD print (Can be used _while_ printing from SD card files):
+// syntax "M32 /path/filename#", or "M32 S !filename#"
+// Call gcode file : "M32 P !filename#" and return to caller file after finishing (similar to #include).
+// The '#' is necessary when calling from within sd files, as it stops buffer prereading
+// M42 - Change pin status via gcode Use M42 Px Sy to set pin x to value y, when omitting Px the onboard led will be used.
+// M80 - Turn on Power Supply
+// M81 - Turn off Power Supply
+// M82 - Set E codes absolute (default)
+// M83 - Set E codes relative while in Absolute Coordinates (G90) mode
+// M84 - Disable steppers until next move,
+// or use S to specify an inactivity timeout, after which the steppers will be disabled. S0 to disable the timeout.
+// M85 - Set inactivity shutdown timer with parameter S. To disable set zero (default)
+// M92 - Set axis_steps_per_unit - same syntax as G92
+// M104 - Set extruder target temp
+// M105 - Read current temp
+// M106 - Fan on
+// M107 - Fan off
+// M109 - Sxxx Wait for extruder current temp to reach target temp. Waits only when heating
+// Rxxx Wait for extruder current temp to reach target temp. Waits when heating and cooling
+// IF AUTOTEMP is enabled, S B F. Exit autotemp by any M109 without F
+// M112 - Emergency stop
+// M114 - Output current position to serial port
+// M115 - Capabilities string
+// M117 - display message
+// M119 - Output Endstop status to serial port
+// M126 - Solenoid Air Valve Open (BariCUDA support by jmil)
+// M127 - Solenoid Air Valve Closed (BariCUDA vent to atmospheric pressure by jmil)
+// M128 - EtoP Open (BariCUDA EtoP = electricity to air pressure transducer by jmil)
+// M129 - EtoP Closed (BariCUDA EtoP = electricity to air pressure transducer by jmil)
+// M140 - Set bed target temp
+// M150 - Set BlinkM Color Output R: Red<0-255> U(!): Green<0-255> B: Blue<0-255> over i2c, G for green does not work.
+// M190 - Sxxx Wait for bed current temp to reach target temp. Waits only when heating
+// Rxxx Wait for bed current temp to reach target temp. Waits when heating and cooling
+// M200 D- set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
+// M201 - Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
+// M202 - Set max acceleration in units/s^2 for travel moves (M202 X1000 Y1000) Unused in Marlin!!
+// M203 - Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in mm/sec
+// M204 - Set default acceleration: S normal moves T filament only moves (M204 S3000 T7000) in mm/sec^2 also sets minimum segment time in ms (B20000) to prevent buffer under-runs and M20 minimum feedrate
+// M205 - advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk, E=maximum E jerk
+// M206 - set additional homing offset
+// M207 - set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop], stays in mm regardless of M200 setting
+// M208 - set recover=unretract length S[positive mm surplus to the M207 S*] F[feedrate mm/sec]
+// M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
+// M218 - set hotend offset (in mm): T X Y
+// M220 S- set speed factor override percentage
+// M221 S- set extrude factor override percentage
+// M226 P S- Wait until the specified pin reaches the state required
+// M240 - Trigger a camera to take a photograph
+// M250 - Set LCD contrast C (value 0..63)
+// M280 - set servo position absolute. P: servo index, S: angle or microseconds
+// M300 - Play beep sound S P
+// M301 - Set PID parameters P I and D
+// M302 - Allow cold extrudes, or set the minimum extrude S.
+// M303 - PID relay autotune S sets the target temperature. (default target temperature = 150C)
+// M304 - Set bed PID parameters P I and D
+// M400 - Finish all moves
+// M401 - Lower z-probe if present
+// M402 - Raise z-probe if present
+// M404 - N Enter the nominal filament width (3mm, 1.75mm ) or will display nominal filament width without parameters
+// M405 - Turn on Filament Sensor extrusion control. Optional D to set delay in centimeters between sensor and extruder
+// M406 - Turn off Filament Sensor extrusion control
+// M407 - Displays measured filament diameter
+// M500 - stores parameters in EEPROM
+// M501 - reads parameters from EEPROM (if you need reset them after you changed them temporarily).
+// M502 - reverts to the default "factory settings". You still need to store them in EEPROM afterwards if you want to.
+// M503 - print the current settings (from memory not from EEPROM)
+// M509 - force language selection on next restart
+// M540 - Use S[0|1] to enable or disable the stop SD card print on endstop hit (requires ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
+// M600 - Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
+// M605 - Set dual x-carriage movement mode: S [ X R ]
+// M900 - Set LIN_ADVANCE options, if enabled. See Configuration_adv.h for details.
+// M907 - Set digital trimpot motor current using axis codes.
+// M908 - Control digital trimpot directly.
+// M350 - Set microstepping mode.
+// M351 - Toggle MS1 MS2 pins directly.
+
+// M928 - Start SD logging (M928 filename.g) - ended by M29
+// M999 - Restart after being stopped by error
+
+//Stepper Movement Variables
+
+//===========================================================================
+//=============================imported variables============================
+//===========================================================================
+
+
+//===========================================================================
+//=============================public variables=============================
+//===========================================================================
+#ifdef SDSUPPORT
+CardReader card;
+#endif
+
+unsigned long PingTime = millis();
+union Data
+{
+byte b[2];
+int value;
+};
+
+float homing_feedrate[] = HOMING_FEEDRATE;
+// Currently only the extruder axis may be switched to a relative mode.
+// Other axes are always absolute or relative based on the common relative_mode flag.
+bool axis_relative_modes[] = AXIS_RELATIVE_MODES;
+int feedmultiply=100; //100->1 200->2
+int saved_feedmultiply;
+int extrudemultiply=100; //100->1 200->2
+int extruder_multiply[EXTRUDERS] = {100
+ #if EXTRUDERS > 1
+ , 100
+ #if EXTRUDERS > 2
+ , 100
+ #endif
+ #endif
+};
+
+int bowden_length[4];
+
+bool is_usb_printing = false;
+bool homing_flag = false;
+
+bool temp_cal_active = false;
+
+unsigned long kicktime = millis()+100000;
+
+unsigned int usb_printing_counter;
+
+int lcd_change_fil_state = 0;
+
+int feedmultiplyBckp = 100;
+float HotendTempBckp = 0;
+int fanSpeedBckp = 0;
+float pause_lastpos[4];
+unsigned long pause_time = 0;
+unsigned long start_pause_print = millis();
+unsigned long t_fan_rising_edge = millis();
+
+unsigned long load_filament_time;
+
+bool mesh_bed_leveling_flag = false;
+bool mesh_bed_run_from_menu = false;
+
+unsigned char lang_selected = 0;
+int8_t FarmMode = 0;
+
+bool prusa_sd_card_upload = false;
+
+unsigned int status_number = 0;
+
+unsigned long total_filament_used;
+unsigned int heating_status;
+unsigned int heating_status_counter;
+bool custom_message;
+bool loading_flag = false;
+unsigned int custom_message_type;
+unsigned int custom_message_state;
+char snmm_filaments_used = 0;
+
+float distance_from_min[3];
+float angleDiff;
+
+bool fan_state[2];
+int fan_edge_counter[2];
+int fan_speed[2];
+
+
+bool volumetric_enabled = false;
+float filament_size[EXTRUDERS] = { DEFAULT_NOMINAL_FILAMENT_DIA
+ #if EXTRUDERS > 1
+ , DEFAULT_NOMINAL_FILAMENT_DIA
+ #if EXTRUDERS > 2
+ , DEFAULT_NOMINAL_FILAMENT_DIA
+ #endif
+ #endif
+};
+float volumetric_multiplier[EXTRUDERS] = {1.0
+ #if EXTRUDERS > 1
+ , 1.0
+ #if EXTRUDERS > 2
+ , 1.0
+ #endif
+ #endif
+};
+float current_position[NUM_AXIS] = { 0.0, 0.0, 0.0, 0.0 };
+float add_homing[3]={0,0,0};
+
+float min_pos[3] = { X_MIN_POS, Y_MIN_POS, Z_MIN_POS };
+float max_pos[3] = { X_MAX_POS, Y_MAX_POS, Z_MAX_POS };
+bool axis_known_position[3] = {false, false, false};
+float zprobe_zoffset;
+
+// Extruder offset
+#if EXTRUDERS > 1
+ #define NUM_EXTRUDER_OFFSETS 2 // only in XY plane
+float extruder_offset[NUM_EXTRUDER_OFFSETS][EXTRUDERS] = {
+#if defined(EXTRUDER_OFFSET_X) && defined(EXTRUDER_OFFSET_Y)
+ EXTRUDER_OFFSET_X, EXTRUDER_OFFSET_Y
+#endif
+};
+#endif
+
+uint8_t active_extruder = 0;
+int fanSpeed=0;
+
+#ifdef FWRETRACT
+ bool autoretract_enabled=false;
+ bool retracted[EXTRUDERS]={false
+ #if EXTRUDERS > 1
+ , false
+ #if EXTRUDERS > 2
+ , false
+ #endif
+ #endif
+ };
+ bool retracted_swap[EXTRUDERS]={false
+ #if EXTRUDERS > 1
+ , false
+ #if EXTRUDERS > 2
+ , false
+ #endif
+ #endif
+ };
+
+ float retract_length = RETRACT_LENGTH;
+ float retract_length_swap = RETRACT_LENGTH_SWAP;
+ float retract_feedrate = RETRACT_FEEDRATE;
+ float retract_zlift = RETRACT_ZLIFT;
+ float retract_recover_length = RETRACT_RECOVER_LENGTH;
+ float retract_recover_length_swap = RETRACT_RECOVER_LENGTH_SWAP;
+ float retract_recover_feedrate = RETRACT_RECOVER_FEEDRATE;
+#endif
+
+#ifdef ULTIPANEL
+ #ifdef PS_DEFAULT_OFF
+ bool powersupply = false;
+ #else
+ bool powersupply = true;
+ #endif
+#endif
+
+bool cancel_heatup = false ;
+
+#ifdef FILAMENT_SENSOR
+ //Variables for Filament Sensor input
+ float filament_width_nominal=DEFAULT_NOMINAL_FILAMENT_DIA; //Set nominal filament width, can be changed with M404
+ bool filament_sensor=false; //M405 turns on filament_sensor control, M406 turns it off
+ float filament_width_meas=DEFAULT_MEASURED_FILAMENT_DIA; //Stores the measured filament diameter
+ signed char measurement_delay[MAX_MEASUREMENT_DELAY+1]; //ring buffer to delay measurement store extruder factor after subtracting 100
+ int delay_index1=0; //index into ring buffer
+ int delay_index2=-1; //index into ring buffer - set to -1 on startup to indicate ring buffer needs to be initialized
+ float delay_dist=0; //delay distance counter
+ int meas_delay_cm = MEASUREMENT_DELAY_CM; //distance delay setting
+#endif
+
+const char errormagic[] PROGMEM = "Error:";
+const char echomagic[] PROGMEM = "echo:";
+
+//===========================================================================
+//=============================Private Variables=============================
+//===========================================================================
+const char axis_codes[NUM_AXIS] = {'X', 'Y', 'Z', 'E'};
+float destination[NUM_AXIS] = { 0.0, 0.0, 0.0, 0.0};
+
+static float delta[3] = {0.0, 0.0, 0.0};
+
+// For tracing an arc
+static float offset[3] = {0.0, 0.0, 0.0};
+static float feedrate = 1500.0, next_feedrate, saved_feedrate;
+
+// Determines Absolute or Relative Coordinates.
+// Also there is bool axis_relative_modes[] per axis flag.
+static bool relative_mode = false;
+
+const int sensitive_pins[] = SENSITIVE_PINS; // Sensitive pin list for M42
+
+//static float tt = 0;
+//static float bt = 0;
+
+//Inactivity shutdown variables
+static unsigned long previous_millis_cmd = 0;
+unsigned long max_inactive_time = 0;
+static unsigned long stepper_inactive_time = DEFAULT_STEPPER_DEACTIVE_TIME*1000l;
+
+unsigned long starttime=0;
+unsigned long stoptime=0;
+unsigned long _usb_timer = 0;
+
+static uint8_t tmp_extruder;
+
+bool extruder_under_pressure = true;
+
+
+bool Stopped=false;
+
+#if NUM_SERVOS > 0
+ Servo servos[NUM_SERVOS];
+#endif
+
+bool CooldownNoWait = true;
+bool target_direction;
+
+//Insert variables if CHDK is defined
+#ifdef CHDK
+unsigned long chdkHigh = 0;
+boolean chdkActive = false;
+#endif
+
+//===========================================================================
+//=============================Routines======================================
+//===========================================================================
+
+void get_arc_coordinates();
+bool setTargetedHotend(int code);
+
+void serial_echopair_P(const char *s_P, float v)
+ { serialprintPGM(s_P); SERIAL_ECHO(v); }
+void serial_echopair_P(const char *s_P, double v)
+ { serialprintPGM(s_P); SERIAL_ECHO(v); }
+void serial_echopair_P(const char *s_P, unsigned long v)
+ { serialprintPGM(s_P); SERIAL_ECHO(v); }
+
+#ifdef SDSUPPORT
+ #include "SdFatUtil.h"
+ int freeMemory() { return SdFatUtil::FreeRam(); }
+#else
+ extern "C" {
+ extern unsigned int __bss_end;
+ extern unsigned int __heap_start;
+ extern void *__brkval;
+
+ int freeMemory() {
+ int free_memory;
+
+ if ((int)__brkval == 0)
+ free_memory = ((int)&free_memory) - ((int)&__bss_end);
+ else
+ free_memory = ((int)&free_memory) - ((int)__brkval);
+
+ return free_memory;
+ }
+ }
+#endif //!SDSUPPORT
+
+void setup_killpin()
+{
+ #if defined(KILL_PIN) && KILL_PIN > -1
+ SET_INPUT(KILL_PIN);
+ WRITE(KILL_PIN,HIGH);
+ #endif
+}
+
+// Set home pin
+void setup_homepin(void)
+{
+#if defined(HOME_PIN) && HOME_PIN > -1
+ SET_INPUT(HOME_PIN);
+ WRITE(HOME_PIN,HIGH);
+#endif
+}
+
+void setup_photpin()
+{
+ #if defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1
+ SET_OUTPUT(PHOTOGRAPH_PIN);
+ WRITE(PHOTOGRAPH_PIN, LOW);
+ #endif
+}
+
+void setup_powerhold()
+{
+ #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
+ SET_OUTPUT(SUICIDE_PIN);
+ WRITE(SUICIDE_PIN, HIGH);
+ #endif
+ #if defined(PS_ON_PIN) && PS_ON_PIN > -1
+ SET_OUTPUT(PS_ON_PIN);
+ #if defined(PS_DEFAULT_OFF)
+ WRITE(PS_ON_PIN, PS_ON_ASLEEP);
+ #else
+ WRITE(PS_ON_PIN, PS_ON_AWAKE);
+ #endif
+ #endif
+}
+
+void suicide()
+{
+ #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
+ SET_OUTPUT(SUICIDE_PIN);
+ WRITE(SUICIDE_PIN, LOW);
+ #endif
+}
+
+void servo_init()
+{
+ #if (NUM_SERVOS >= 1) && defined(SERVO0_PIN) && (SERVO0_PIN > -1)
+ servos[0].attach(SERVO0_PIN);
+ #endif
+ #if (NUM_SERVOS >= 2) && defined(SERVO1_PIN) && (SERVO1_PIN > -1)
+ servos[1].attach(SERVO1_PIN);
+ #endif
+ #if (NUM_SERVOS >= 3) && defined(SERVO2_PIN) && (SERVO2_PIN > -1)
+ servos[2].attach(SERVO2_PIN);
+ #endif
+ #if (NUM_SERVOS >= 4) && defined(SERVO3_PIN) && (SERVO3_PIN > -1)
+ servos[3].attach(SERVO3_PIN);
+ #endif
+ #if (NUM_SERVOS >= 5)
+ #error "TODO: enter initalisation code for more servos"
+ #endif
+}
+
+static void lcd_language_menu();
+
+void stop_and_save_print_to_ram(float z_move, float e_move);
+void restore_print_from_ram_and_continue(float e_move);
+
+extern int8_t CrashDetectMenu;
+
+
+void crashdet_enable()
+{
+ MYSERIAL.println("crashdet_enable");
+ tmc2130_sg_stop_on_crash = true;
+ eeprom_update_byte((uint8_t*)EEPROM_CRASH_DET, 0xFF);
+ CrashDetectMenu = 1;
+
+}
+
+void crashdet_disable()
+{
+ MYSERIAL.println("crashdet_disable");
+ tmc2130_sg_stop_on_crash = false;
+ eeprom_update_byte((uint8_t*)EEPROM_CRASH_DET, 0x00);
+ CrashDetectMenu = 0;
+}
+
+void crashdet_stop_and_save_print()
+{
+ stop_and_save_print_to_ram(10, 0); //XY - no change, Z 10mm up, E - no change
+}
+
+void crashdet_restore_print_and_continue()
+{
+ restore_print_from_ram_and_continue(0); //XYZ = orig, E - no change
+// babystep_apply();
+}
+
+
+void crashdet_stop_and_save_print2()
+{
+ cli();
+ planner_abort_hard(); //abort printing
+ cmdqueue_reset(); //empty cmdqueue
+ card.sdprinting = false;
+ card.closefile();
+ sei();
+}
+
+
+
+#ifdef MESH_BED_LEVELING
+ enum MeshLevelingState { MeshReport, MeshStart, MeshNext, MeshSet };
+#endif
+
+
+// Factory reset function
+// This function is used to erase parts or whole EEPROM memory which is used for storing calibration and and so on.
+// Level input parameter sets depth of reset
+// Quiet parameter masks all waitings for user interact.
+int er_progress = 0;
+void factory_reset(char level, bool quiet)
+{
+ lcd_implementation_clear();
+ int cursor_pos = 0;
+ switch (level) {
+
+ // Level 0: Language reset
+ case 0:
+ WRITE(BEEPER, HIGH);
+ _delay_ms(100);
+ WRITE(BEEPER, LOW);
+
+ lcd_force_language_selection();
+ break;
+
+ //Level 1: Reset statistics
+ case 1:
+ WRITE(BEEPER, HIGH);
+ _delay_ms(100);
+ WRITE(BEEPER, LOW);
+ eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, 0);
+ eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, 0);
+ lcd_menu_statistics();
+
+ break;
+
+ // Level 2: Prepare for shipping
+ case 2:
+ //lcd_printPGM(PSTR("Factory RESET"));
+ //lcd_print_at_PGM(1,2,PSTR("Shipping prep"));
+
+ // Force language selection at the next boot up.
+ lcd_force_language_selection();
+ // Force the "Follow calibration flow" message at the next boot up.
+ calibration_status_store(CALIBRATION_STATUS_Z_CALIBRATION);
+ farm_no = 0;
+ farm_mode == false;
+ eeprom_update_byte((uint8_t*)EEPROM_FARM_MODE, farm_mode);
+ EEPROM_save_B(EEPROM_FARM_NUMBER, &farm_no);
+
+ WRITE(BEEPER, HIGH);
+ _delay_ms(100);
+ WRITE(BEEPER, LOW);
+ //_delay_ms(2000);
+ break;
+
+ // Level 3: erase everything, whole EEPROM will be set to 0xFF
+
+ case 3:
+ lcd_printPGM(PSTR("Factory RESET"));
+ lcd_print_at_PGM(1, 2, PSTR("ERASING all data"));
+
+ WRITE(BEEPER, HIGH);
+ _delay_ms(100);
+ WRITE(BEEPER, LOW);
+
+ er_progress = 0;
+ lcd_print_at_PGM(3, 3, PSTR(" "));
+ lcd_implementation_print_at(3, 3, er_progress);
+
+ // Erase EEPROM
+ for (int i = 0; i < 4096; i++) {
+ eeprom_write_byte((uint8_t*)i, 0xFF);
+
+ if (i % 41 == 0) {
+ er_progress++;
+ lcd_print_at_PGM(3, 3, PSTR(" "));
+ lcd_implementation_print_at(3, 3, er_progress);
+ lcd_printPGM(PSTR("%"));
+ }
+
+ }
+
+
+ break;
+ case 4:
+ bowden_menu();
+ break;
+
+ default:
+ break;
+ }
+
+
+}
+
+
+// "Setup" function is called by the Arduino framework on startup.
+// Before startup, the Timers-functions (PWM)/Analog RW and HardwareSerial provided by the Arduino-code
+// are initialized by the main() routine provided by the Arduino framework.
+void setup()
+{
+ lcd_init();
+ lcd_print_at_PGM(0, 1, PSTR(" Original Prusa "));
+ lcd_print_at_PGM(0, 2, PSTR(" 3D Printers "));
+ setup_killpin();
+ setup_powerhold();
+ farm_mode = eeprom_read_byte((uint8_t*)EEPROM_FARM_MODE);
+ EEPROM_read_B(EEPROM_FARM_NUMBER, &farm_no);
+ if ((farm_mode == 0xFF && farm_no == 0) || (farm_no == 0xFFFF)) farm_mode = false; //if farm_mode has not been stored to eeprom yet and farm number is set to zero or EEPROM is fresh, deactivate farm mode
+ if (farm_no == 0xFFFF) farm_no = 0;
+ if (farm_mode)
+ {
+ prusa_statistics(8);
+ selectedSerialPort = 1;
+ }
+ else
+ selectedSerialPort = 0;
+ MYSERIAL.begin(BAUDRATE);
+ SERIAL_PROTOCOLLNPGM("start");
+ SERIAL_ECHO_START;
+
+#if 0
+ SERIAL_ECHOLN("Reading eeprom from 0 to 100: start");
+ for (int i = 0; i < 4096; ++i) {
+ int b = eeprom_read_byte((unsigned char*)i);
+ if (b != 255) {
+ SERIAL_ECHO(i);
+ SERIAL_ECHO(":");
+ SERIAL_ECHO(b);
+ SERIAL_ECHOLN("");
+ }
+ }
+ SERIAL_ECHOLN("Reading eeprom from 0 to 100: done");
+#endif
+
+ // Check startup - does nothing if bootloader sets MCUSR to 0
+ byte mcu = MCUSR;
+ if (mcu & 1) SERIAL_ECHOLNRPGM(MSG_POWERUP);
+ if (mcu & 2) SERIAL_ECHOLNRPGM(MSG_EXTERNAL_RESET);
+ if (mcu & 4) SERIAL_ECHOLNRPGM(MSG_BROWNOUT_RESET);
+ if (mcu & 8) SERIAL_ECHOLNRPGM(MSG_WATCHDOG_RESET);
+ if (mcu & 32) SERIAL_ECHOLNRPGM(MSG_SOFTWARE_RESET);
+ MCUSR = 0;
+
+ //SERIAL_ECHORPGM(MSG_MARLIN);
+ //SERIAL_ECHOLNRPGM(VERSION_STRING);
+
+#ifdef STRING_VERSION_CONFIG_H
+#ifdef STRING_CONFIG_H_AUTHOR
+ SERIAL_ECHO_START;
+ SERIAL_ECHORPGM(MSG_CONFIGURATION_VER);
+ SERIAL_ECHOPGM(STRING_VERSION_CONFIG_H);
+ SERIAL_ECHORPGM(MSG_AUTHOR);
+ SERIAL_ECHOLNPGM(STRING_CONFIG_H_AUTHOR);
+ SERIAL_ECHOPGM("Compiled: ");
+ SERIAL_ECHOLNPGM(__DATE__);
+#endif
+#endif
+
+ SERIAL_ECHO_START;
+ SERIAL_ECHORPGM(MSG_FREE_MEMORY);
+ SERIAL_ECHO(freeMemory());
+ SERIAL_ECHORPGM(MSG_PLANNER_BUFFER_BYTES);
+ SERIAL_ECHOLN((int)sizeof(block_t)*BLOCK_BUFFER_SIZE);
+ //lcd_update_enable(false); // why do we need this?? - andre
+ // loads data from EEPROM if available else uses defaults (and resets step acceleration rate)
+ Config_RetrieveSettings(EEPROM_OFFSET);
+ SdFatUtil::set_stack_guard(); //writes magic number at the end of static variables to protect against overwriting static memory by stack
+ tp_init(); // Initialize temperature loop
+ plan_init(); // Initialize planner;
+ watchdog_init();
+
+#ifdef TMC2130
+ uint8_t silentMode = eeprom_read_byte((uint8_t*)EEPROM_SILENT);
+ tmc2130_mode = silentMode?TMC2130_MODE_SILENT:TMC2130_MODE_NORMAL;
+ uint8_t crashdet = eeprom_read_byte((uint8_t*)EEPROM_CRASH_DET);
+ if (crashdet)
+ {
+ crashdet_enable();
+ MYSERIAL.println("CrashDetect ENABLED!");
+ }
+ else
+ {
+ crashdet_disable();
+ MYSERIAL.println("CrashDetect DISABLED");
+ }
+
+#endif //TMC2130
+
+#ifdef PAT9125
+ MYSERIAL.print("PAT9125_init:");
+ int pat9125 = pat9125_init(200, 200);
+ MYSERIAL.println(pat9125);
+ uint8_t fsensor = eeprom_read_byte((uint8_t*)EEPROM_FSENSOR);
+ if (!pat9125) fsensor = 0; //disable sensor
+ if (fsensor)
+ {
+ fsensor_enable();
+ MYSERIAL.println("Filament Sensor ENABLED!");
+ }
+ else
+ {
+ fsensor_disable();
+ MYSERIAL.println("Filament Sensor DISABLED");
+ }
+
+#endif //PAT9125
+
+ st_init(); // Initialize stepper, this enables interrupts!
+
+ setup_photpin();
+ lcd_print_at_PGM(0, 1, PSTR(" Original Prusa ")); // we need to do this again for some reason, no time to research
+ lcd_print_at_PGM(0, 2, PSTR(" 3D Printers "));
+ servo_init();
+ // Reset the machine correction matrix.
+ // It does not make sense to load the correction matrix until the machine is homed.
+ world2machine_reset();
+
+ if (!READ(BTN_ENC))
+ {
+ _delay_ms(1000);
+ if (!READ(BTN_ENC))
+ {
+ lcd_implementation_clear();
+
+
+ lcd_printPGM(PSTR("Factory RESET"));
+
+
+ SET_OUTPUT(BEEPER);
+ WRITE(BEEPER, HIGH);
+
+ while (!READ(BTN_ENC));
+
+ WRITE(BEEPER, LOW);
+
+
+
+ _delay_ms(2000);
+
+ char level = reset_menu();
+ factory_reset(level, false);
+
+ switch (level) {
+ case 0: _delay_ms(0); break;
+ case 1: _delay_ms(0); break;
+ case 2: _delay_ms(0); break;
+ case 3: _delay_ms(0); break;
+ }
+ // _delay_ms(100);
+ /*
+ #ifdef MESH_BED_LEVELING
+ _delay_ms(2000);
+
+ if (!READ(BTN_ENC))
+ {
+ WRITE(BEEPER, HIGH);
+ _delay_ms(100);
+ WRITE(BEEPER, LOW);
+ _delay_ms(200);
+ WRITE(BEEPER, HIGH);
+ _delay_ms(100);
+ WRITE(BEEPER, LOW);
+
+ int _z = 0;
+ calibration_status_store(CALIBRATION_STATUS_CALIBRATED);
+ EEPROM_save_B(EEPROM_BABYSTEP_X, &_z);
+ EEPROM_save_B(EEPROM_BABYSTEP_Y, &_z);
+ EEPROM_save_B(EEPROM_BABYSTEP_Z, &_z);
+ }
+ else
+ {
+
+ WRITE(BEEPER, HIGH);
+ _delay_ms(100);
+ WRITE(BEEPER, LOW);
+ }
+ #endif // mesh */
+
+ }
+ }
+ else
+ {
+ //_delay_ms(1000); // wait 1sec to display the splash screen // what's this and why do we need it?? - andre
+ }
+
+
+
+
+#if defined(CONTROLLERFAN_PIN) && (CONTROLLERFAN_PIN > -1)
+ SET_OUTPUT(CONTROLLERFAN_PIN); //Set pin used for driver cooling fan
+#endif
+
+#if defined(LCD_PWM_PIN) && (LCD_PWM_PIN > -1)
+ SET_OUTPUT(LCD_PWM_PIN); //Set pin used for driver cooling fan
+#endif
+
+#ifdef DIGIPOT_I2C
+ digipot_i2c_init();
+#endif
+ setup_homepin();
+
+ if (1) {
+ SERIAL_ECHOPGM("initial zsteps on power up: "); MYSERIAL.println(tmc2130_rd_MSCNT(Z_TMC2130_CS));
+ // try to run to zero phase before powering the Z motor.
+ // Move in negative direction
+ WRITE(Z_DIR_PIN,INVERT_Z_DIR);
+ // Round the current micro-micro steps to micro steps.
+ for (uint16_t phase = (tmc2130_rd_MSCNT(Z_TMC2130_CS) + 8) >> 4; phase > 0; -- phase) {
+ // Until the phase counter is reset to zero.
+ WRITE(Z_STEP_PIN, !INVERT_Z_STEP_PIN);
+ delay(2);
+ WRITE(Z_STEP_PIN, INVERT_Z_STEP_PIN);
+ delay(2);
+ }
+ SERIAL_ECHOPGM("initial zsteps after reset: "); MYSERIAL.println(tmc2130_rd_MSCNT(Z_TMC2130_CS));
+ }
+
+#if defined(Z_AXIS_ALWAYS_ON)
+ enable_z();
+#endif
+ farm_mode = eeprom_read_byte((uint8_t*)EEPROM_FARM_MODE);
+ EEPROM_read_B(EEPROM_FARM_NUMBER, &farm_no);
+ if ((farm_mode == 0xFF && farm_no == 0) || (farm_no == 0xFFFF)) farm_mode = false; //if farm_mode has not been stored to eeprom yet and farm number is set to zero or EEPROM is fresh, deactivate farm mode
+ if (farm_no == 0xFFFF) farm_no = 0;
+ if (farm_mode)
+ {
+ prusa_statistics(8);
+ }
+
+ // Enable Toshiba FlashAir SD card / WiFi enahanced card.
+ card.ToshibaFlashAir_enable(eeprom_read_byte((unsigned char*)EEPROM_TOSHIBA_FLASH_AIR_COMPATIBLITY) == 1);
+ // Force SD card update. Otherwise the SD card update is done from loop() on card.checkautostart(false),
+ // but this times out if a blocking dialog is shown in setup().
+ card.initsd();
+
+ if (eeprom_read_dword((uint32_t*)(EEPROM_TOP - 4)) == 0x0ffffffff &&
+ eeprom_read_dword((uint32_t*)(EEPROM_TOP - 8)) == 0x0ffffffff &&
+ eeprom_read_dword((uint32_t*)(EEPROM_TOP - 12)) == 0x0ffffffff) {
+ // Maiden startup. The firmware has been loaded and first started on a virgin RAMBo board,
+ // where all the EEPROM entries are set to 0x0ff.
+ // Once a firmware boots up, it forces at least a language selection, which changes
+ // EEPROM_LANG to number lower than 0x0ff.
+ // 1) Set a high power mode.
+ eeprom_write_byte((uint8_t*)EEPROM_SILENT, 0);
+ }
+#ifdef SNMM
+ if (eeprom_read_dword((uint32_t*)EEPROM_BOWDEN_LENGTH) == 0x0ffffffff) { //bowden length used for SNMM
+ int _z = BOWDEN_LENGTH;
+ for(int i = 0; i<4; i++) EEPROM_save_B(EEPROM_BOWDEN_LENGTH + i * 2, &_z);
+ }
+#endif
+
+ // In the future, somewhere here would one compare the current firmware version against the firmware version stored in the EEPROM.
+ // If they differ, an update procedure may need to be performed. At the end of this block, the current firmware version
+ // is being written into the EEPROM, so the update procedure will be triggered only once.
+ lang_selected = eeprom_read_byte((uint8_t*)EEPROM_LANG);
+ if (lang_selected >= LANG_NUM){
+ lcd_mylang();
+ }
+
+ if (eeprom_read_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE) == 255) {
+ eeprom_write_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE, 0);
+ temp_cal_active = false;
+ } else temp_cal_active = eeprom_read_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE);
+
+ if (eeprom_read_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA) == 255) {
+ eeprom_write_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 0);
+ }
+ if (eeprom_read_byte((uint8_t*)EEPROM_UVLO) == 255) {
+ eeprom_write_byte((uint8_t*)EEPROM_UVLO, 0);
+ }
+
+ check_babystep(); //checking if Z babystep is in allowed range
+ setup_uvlo_interrupt();
+ setup_fan_interrupt();
+ fsensor_setup_interrupt();
+
+
+#ifndef DEBUG_DISABLE_STARTMSGS
+
+ if (calibration_status() == CALIBRATION_STATUS_ASSEMBLED ||
+ calibration_status() == CALIBRATION_STATUS_UNKNOWN) {
+ // Reset the babystepping values, so the printer will not move the Z axis up when the babystepping is enabled.
+ eeprom_update_word((uint16_t*)EEPROM_BABYSTEP_Z, 0);
+ // Show the message.
+ lcd_show_fullscreen_message_and_wait_P(MSG_FOLLOW_CALIBRATION_FLOW);
+ } else if (calibration_status() == CALIBRATION_STATUS_LIVE_ADJUST) {
+ // Show the message.
+ lcd_show_fullscreen_message_and_wait_P(MSG_BABYSTEP_Z_NOT_SET);
+ lcd_update_enable(true);
+ } else if (calibration_status() == CALIBRATION_STATUS_CALIBRATED && temp_cal_active == true && calibration_status_pinda() == false) {
+ lcd_show_fullscreen_message_and_wait_P(MSG_PINDA_NOT_CALIBRATED);
+ lcd_update_enable(true);
+ } else if (calibration_status() == CALIBRATION_STATUS_Z_CALIBRATION) {
+ // Show the message.
+ lcd_show_fullscreen_message_and_wait_P(MSG_FOLLOW_CALIBRATION_FLOW);
+ }
+#endif //DEBUG_DISABLE_STARTMSGS
+ for (int i = 0; i<4; i++) EEPROM_read_B(EEPROM_BOWDEN_LENGTH + i * 2, &bowden_length[i]);
+ lcd_update_enable(true);
+ lcd_implementation_clear();
+ lcd_update(2);
+ // Store the currently running firmware into an eeprom,
+ // so the next time the firmware gets updated, it will know from which version it has been updated.
+ update_current_firmware_version_to_eeprom();
+ if (eeprom_read_byte((uint8_t*)EEPROM_UVLO) == 1) { //previous print was terminated by UVLO
+/*
+ if (lcd_show_fullscreen_message_yes_no_and_wait_P(MSG_RECOVER_PRINT, false)) recover_print();
+ else {
+ eeprom_update_byte((uint8_t*)EEPROM_UVLO, 0);
+ lcd_update_enable(true);
+ lcd_update(2);
+ lcd_setstatuspgm(WELCOME_MSG);
+ }
+*/
+ manage_heater(); // Update temperatures
+#ifdef DEBUG_UVLO_AUTOMATIC_RECOVER
+ MYSERIAL.println("Power panic detected!");
+ MYSERIAL.print("Current bed temp:");
+ MYSERIAL.println(degBed());
+ MYSERIAL.print("Saved bed temp:");
+ MYSERIAL.println((float)eeprom_read_byte((uint8_t*)EEPROM_UVLO_TARGET_BED));
+#endif
+ if ( degBed() > ( (float)eeprom_read_byte((uint8_t*)EEPROM_UVLO_TARGET_BED) - AUTOMATIC_UVLO_BED_TEMP_OFFSET) ){
+ #ifdef DEBUG_UVLO_AUTOMATIC_RECOVER
+ MYSERIAL.println("Automatic recovery!");
+ #endif
+ recover_print(1);
+ }
+ else{
+ #ifdef DEBUG_UVLO_AUTOMATIC_RECOVER
+ MYSERIAL.println("Normal recovery!");
+ #endif
+ if ( lcd_show_fullscreen_message_yes_no_and_wait_P(MSG_RECOVER_PRINT, false) ) recover_print(0);
+ else {
+ eeprom_update_byte((uint8_t*)EEPROM_UVLO, 0);
+ lcd_update_enable(true);
+ lcd_update(2);
+ lcd_setstatuspgm(WELCOME_MSG);
+ }
+
+ }
+
+ }
+
+}
+
+void trace();
+
+#define CHUNK_SIZE 64 // bytes
+#define SAFETY_MARGIN 1
+char chunk[CHUNK_SIZE+SAFETY_MARGIN];
+int chunkHead = 0;
+
+int serial_read_stream() {
+
+ setTargetHotend(0, 0);
+ setTargetBed(0);
+
+ lcd_implementation_clear();
+ lcd_printPGM(PSTR(" Upload in progress"));
+
+ // first wait for how many bytes we will receive
+ uint32_t bytesToReceive;
+
+ // receive the four bytes
+ char bytesToReceiveBuffer[4];
+ for (int i=0; i<4; i++) {
+ int data;
+ while ((data = MYSERIAL.read()) == -1) {};
+ bytesToReceiveBuffer[i] = data;
+
+ }
+
+ // make it a uint32
+ memcpy(&bytesToReceive, &bytesToReceiveBuffer, 4);
+
+ // we're ready, notify the sender
+ MYSERIAL.write('+');
+
+ // lock in the routine
+ uint32_t receivedBytes = 0;
+ while (prusa_sd_card_upload) {
+ int i;
+ for (i=0; i 0 && millis()-_usb_timer > 1000)
+ {
+ is_usb_printing = true;
+ usb_printing_counter--;
+ _usb_timer = millis();
+ }
+ if (usb_printing_counter == 0)
+ {
+ is_usb_printing = false;
+ }
+
+ if (prusa_sd_card_upload)
+ {
+ //we read byte-by byte
+ serial_read_stream();
+ } else
+ {
+
+ get_command();
+
+ #ifdef SDSUPPORT
+ card.checkautostart(false);
+ #endif
+ if(buflen)
+ {
+ cmdbuffer_front_already_processed = false;
+ #ifdef SDSUPPORT
+ if(card.saving)
+ {
+ // Saving a G-code file onto an SD-card is in progress.
+ // Saving starts with M28, saving until M29 is seen.
+ if(strstr_P(CMDBUFFER_CURRENT_STRING, PSTR("M29")) == NULL) {
+ card.write_command(CMDBUFFER_CURRENT_STRING);
+ if(card.logging)
+ process_commands();
+ else
+ SERIAL_PROTOCOLLNRPGM(MSG_OK);
+ } else {
+ card.closefile();
+ SERIAL_PROTOCOLLNRPGM(MSG_FILE_SAVED);
+ }
+ } else {
+ process_commands();
+ }
+ #else
+ process_commands();
+ #endif //SDSUPPORT
+
+ if (! cmdbuffer_front_already_processed && buflen)
+ {
+ cli();
+ union {
+ struct {
+ char lo;
+ char hi;
+ } lohi;
+ uint16_t value;
+ } sdlen;
+ sdlen.value = 0;
+ if (CMDBUFFER_CURRENT_TYPE == CMDBUFFER_CURRENT_TYPE_SDCARD) {
+ sdlen.lohi.lo = cmdbuffer[bufindr + 1];
+ sdlen.lohi.hi = cmdbuffer[bufindr + 2];
+ }
+ cmdqueue_pop_front();
+ planner_add_sd_length(sdlen.value);
+ sei();
+ }
+ }
+}
+ //check heater every n milliseconds
+ manage_heater();
+ isPrintPaused ? manage_inactivity(true) : manage_inactivity(false);
+ checkHitEndstops();
+ lcd_update();
+#ifdef PAT9125
+ fsensor_update();
+#endif //PAT9125
+#ifdef TMC2130
+ tmc2130_check_overtemp();
+ if (tmc2130_sg_crash)
+ {
+ tmc2130_sg_crash = false;
+// crashdet_stop_and_save_print();
+ enquecommand_P((PSTR("D999")));
+ }
+#endif //TMC2130
+}
+
+#define DEFINE_PGM_READ_ANY(type, reader) \
+ static inline type pgm_read_any(const type *p) \
+ { return pgm_read_##reader##_near(p); }
+
+DEFINE_PGM_READ_ANY(float, float);
+DEFINE_PGM_READ_ANY(signed char, byte);
+
+#define XYZ_CONSTS_FROM_CONFIG(type, array, CONFIG) \
+static const PROGMEM type array##_P[3] = \
+ { X_##CONFIG, Y_##CONFIG, Z_##CONFIG }; \
+static inline type array(int axis) \
+ { return pgm_read_any(&array##_P[axis]); } \
+type array##_ext(int axis) \
+ { return pgm_read_any(&array##_P[axis]); }
+
+XYZ_CONSTS_FROM_CONFIG(float, base_min_pos, MIN_POS);
+XYZ_CONSTS_FROM_CONFIG(float, base_max_pos, MAX_POS);
+XYZ_CONSTS_FROM_CONFIG(float, base_home_pos, HOME_POS);
+XYZ_CONSTS_FROM_CONFIG(float, max_length, MAX_LENGTH);
+XYZ_CONSTS_FROM_CONFIG(float, home_retract_mm, HOME_RETRACT_MM);
+XYZ_CONSTS_FROM_CONFIG(signed char, home_dir, HOME_DIR);
+
+static void axis_is_at_home(int axis) {
+ current_position[axis] = base_home_pos(axis) + add_homing[axis];
+ min_pos[axis] = base_min_pos(axis) + add_homing[axis];
+ max_pos[axis] = base_max_pos(axis) + add_homing[axis];
+}
+
+
+inline void set_current_to_destination() { memcpy(current_position, destination, sizeof(current_position)); }
+inline void set_destination_to_current() { memcpy(destination, current_position, sizeof(destination)); }
+
+
+static void setup_for_endstop_move(bool enable_endstops_now = true) {
+ saved_feedrate = feedrate;
+ saved_feedmultiply = feedmultiply;
+ feedmultiply = 100;
+ previous_millis_cmd = millis();
+
+ enable_endstops(enable_endstops_now);
+}
+
+static void clean_up_after_endstop_move() {
+#ifdef ENDSTOPS_ONLY_FOR_HOMING
+ enable_endstops(false);
+#endif
+
+ feedrate = saved_feedrate;
+ feedmultiply = saved_feedmultiply;
+ previous_millis_cmd = millis();
+}
+
+
+
+#ifdef ENABLE_AUTO_BED_LEVELING
+#ifdef AUTO_BED_LEVELING_GRID
+static void set_bed_level_equation_lsq(double *plane_equation_coefficients)
+{
+ vector_3 planeNormal = vector_3(-plane_equation_coefficients[0], -plane_equation_coefficients[1], 1);
+ planeNormal.debug("planeNormal");
+ plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
+ //bedLevel.debug("bedLevel");
+
+ //plan_bed_level_matrix.debug("bed level before");
+ //vector_3 uncorrected_position = plan_get_position_mm();
+ //uncorrected_position.debug("position before");
+
+ vector_3 corrected_position = plan_get_position();
+// corrected_position.debug("position after");
+ current_position[X_AXIS] = corrected_position.x;
+ current_position[Y_AXIS] = corrected_position.y;
+ current_position[Z_AXIS] = corrected_position.z;
+
+ // put the bed at 0 so we don't go below it.
+ current_position[Z_AXIS] = zprobe_zoffset; // in the lsq we reach here after raising the extruder due to the loop structure
+
+ plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
+}
+
+#else // not AUTO_BED_LEVELING_GRID
+
+static void set_bed_level_equation_3pts(float z_at_pt_1, float z_at_pt_2, float z_at_pt_3) {
+
+ plan_bed_level_matrix.set_to_identity();
+
+ vector_3 pt1 = vector_3(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, z_at_pt_1);
+ vector_3 pt2 = vector_3(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, z_at_pt_2);
+ vector_3 pt3 = vector_3(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, z_at_pt_3);
+
+ vector_3 from_2_to_1 = (pt1 - pt2).get_normal();
+ vector_3 from_2_to_3 = (pt3 - pt2).get_normal();
+ vector_3 planeNormal = vector_3::cross(from_2_to_1, from_2_to_3).get_normal();
+ planeNormal = vector_3(planeNormal.x, planeNormal.y, abs(planeNormal.z));
+
+ plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
+
+ vector_3 corrected_position = plan_get_position();
+ current_position[X_AXIS] = corrected_position.x;
+ current_position[Y_AXIS] = corrected_position.y;
+ current_position[Z_AXIS] = corrected_position.z;
+
+ // put the bed at 0 so we don't go below it.
+ current_position[Z_AXIS] = zprobe_zoffset;
+
+ plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
+
+}
+
+#endif // AUTO_BED_LEVELING_GRID
+
+static void run_z_probe() {
+ plan_bed_level_matrix.set_to_identity();
+ feedrate = homing_feedrate[Z_AXIS];
+
+ // move down until you find the bed
+ float zPosition = -10;
+ plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
+ st_synchronize();
+
+ // we have to let the planner know where we are right now as it is not where we said to go.
+ zPosition = st_get_position_mm(Z_AXIS);
+ plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS]);
+
+ // move up the retract distance
+ zPosition += home_retract_mm(Z_AXIS);
+ plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
+ st_synchronize();
+
+ // move back down slowly to find bed
+ feedrate = homing_feedrate[Z_AXIS]/4;
+ zPosition -= home_retract_mm(Z_AXIS) * 2;
+ plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
+ st_synchronize();
+
+ current_position[Z_AXIS] = st_get_position_mm(Z_AXIS);
+ // make sure the planner knows where we are as it may be a bit different than we last said to move to
+ plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
+}
+
+static void do_blocking_move_to(float x, float y, float z) {
+ float oldFeedRate = feedrate;
+
+ feedrate = homing_feedrate[Z_AXIS];
+
+ current_position[Z_AXIS] = z;
+ plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate/60, active_extruder);
+ st_synchronize();
+
+ feedrate = XY_TRAVEL_SPEED;
+
+ current_position[X_AXIS] = x;
+ current_position[Y_AXIS] = y;
+ plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate/60, active_extruder);
+ st_synchronize();
+
+ feedrate = oldFeedRate;
+}
+
+static void do_blocking_move_relative(float offset_x, float offset_y, float offset_z) {
+ do_blocking_move_to(current_position[X_AXIS] + offset_x, current_position[Y_AXIS] + offset_y, current_position[Z_AXIS] + offset_z);
+}
+
+
+/// Probe bed height at position (x,y), returns the measured z value
+static float probe_pt(float x, float y, float z_before) {
+ // move to right place
+ do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], z_before);
+ do_blocking_move_to(x - X_PROBE_OFFSET_FROM_EXTRUDER, y - Y_PROBE_OFFSET_FROM_EXTRUDER, current_position[Z_AXIS]);
+
+ run_z_probe();
+ float measured_z = current_position[Z_AXIS];
+
+ SERIAL_PROTOCOLRPGM(MSG_BED);
+ SERIAL_PROTOCOLPGM(" x: ");
+ SERIAL_PROTOCOL(x);
+ SERIAL_PROTOCOLPGM(" y: ");
+ SERIAL_PROTOCOL(y);
+ SERIAL_PROTOCOLPGM(" z: ");
+ SERIAL_PROTOCOL(measured_z);
+ SERIAL_PROTOCOLPGM("\n");
+ return measured_z;
+}
+
+#endif // #ifdef ENABLE_AUTO_BED_LEVELING
+
+
+#ifdef LIN_ADVANCE
+ /**
+ * M900: Set and/or Get advance K factor and WH/D ratio
+ *
+ * K Set advance K factor
+ * R Set ratio directly (overrides WH/D)
+ * W H D Set ratio from WH/D
+ */
+inline void gcode_M900() {
+ st_synchronize();
+
+ const float newK = code_seen('K') ? code_value_float() : -1;
+ if (newK >= 0) extruder_advance_k = newK;
+
+ float newR = code_seen('R') ? code_value_float() : -1;
+ if (newR < 0) {
+ const float newD = code_seen('D') ? code_value_float() : -1,
+ newW = code_seen('W') ? code_value_float() : -1,
+ newH = code_seen('H') ? code_value_float() : -1;
+ if (newD >= 0 && newW >= 0 && newH >= 0)
+ newR = newD ? (newW * newH) / (sq(newD * 0.5) * M_PI) : 0;
+ }
+ if (newR >= 0) advance_ed_ratio = newR;
+
+ SERIAL_ECHO_START;
+ SERIAL_ECHOPGM("Advance K=");
+ SERIAL_ECHOLN(extruder_advance_k);
+ SERIAL_ECHOPGM(" E/D=");
+ const float ratio = advance_ed_ratio;
+ if (ratio) SERIAL_ECHOLN(ratio); else SERIAL_ECHOLNPGM("Auto");
+ }
+#endif // LIN_ADVANCE
+
+#ifdef TMC2130
+bool calibrate_z_auto()
+{
+ lcd_display_message_fullscreen_P(MSG_CALIBRATE_Z_AUTO);
+ bool endstops_enabled = enable_endstops(true);
+ int axis_up_dir = -home_dir(Z_AXIS);
+ tmc2130_home_enter(Z_AXIS_MASK);
+ current_position[Z_AXIS] = 0;
+ plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
+ set_destination_to_current();
+ destination[Z_AXIS] += (1.1 * max_length(Z_AXIS) * axis_up_dir);
+ feedrate = homing_feedrate[Z_AXIS];
+ plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
+ tmc2130_home_restart(Z_AXIS);
+ st_synchronize();
+// current_position[axis] = 0;
+// plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
+ tmc2130_home_exit();
+ enable_endstops(false);
+ current_position[Z_AXIS] = 0;
+ plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
+ set_destination_to_current();
+ destination[Z_AXIS] += 10 * axis_up_dir; //10mm up
+ feedrate = homing_feedrate[Z_AXIS] / 2;
+ plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
+ st_synchronize();
+ enable_endstops(endstops_enabled);
+ current_position[Z_AXIS] = Z_MAX_POS-3.f;
+ plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
+ return true;
+}
+#endif //TMC2130
+
+void homeaxis(int axis)
+{
+ bool endstops_enabled = enable_endstops(true); //RP: endstops should be allways enabled durring homming
+#define HOMEAXIS_DO(LETTER) \
+((LETTER##_MIN_PIN > -1 && LETTER##_HOME_DIR==-1) || (LETTER##_MAX_PIN > -1 && LETTER##_HOME_DIR==1))
+ if ((axis==X_AXIS)?HOMEAXIS_DO(X):(axis==Y_AXIS)?HOMEAXIS_DO(Y):0)
+ {
+ int axis_home_dir = home_dir(axis);
+ feedrate = homing_feedrate[axis];
+
+#ifdef TMC2130
+ tmc2130_home_enter(X_AXIS_MASK << axis);
+#endif
+
+ // Move right a bit, so that the print head does not touch the left end position,
+ // and the following left movement has a chance to achieve the required velocity
+ // for the stall guard to work.
+ current_position[axis] = 0;
+ plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
+// destination[axis] = 11.f;
+ destination[axis] = 3.f;
+ plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
+ st_synchronize();
+ // Move left away from the possible collision with the collision detection disabled.
+ endstops_hit_on_purpose();
+ enable_endstops(false);
+ current_position[axis] = 0;
+ plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
+ destination[axis] = - 1.;
+ plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
+ st_synchronize();
+ // Now continue to move up to the left end stop with the collision detection enabled.
+ enable_endstops(true);
+ destination[axis] = - 1.1 * max_length(axis);
+ plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
+ st_synchronize();
+ // Move right from the collision to a known distance from the left end stop with the collision detection disabled.
+ endstops_hit_on_purpose();
+ enable_endstops(false);
+ current_position[axis] = 0;
+ plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
+ destination[axis] = 10.f;
+ plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
+ st_synchronize();
+ endstops_hit_on_purpose();
+ // Now move left up to the collision, this time with a repeatable velocity.
+ enable_endstops(true);
+ destination[axis] = - 15.f;
+ feedrate = homing_feedrate[axis]/2;
+ plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
+ st_synchronize();
+
+ axis_is_at_home(axis);
+ axis_known_position[axis] = true;
+
+#ifdef TMC2130
+ tmc2130_home_exit();
+#endif
+ // Move the X carriage away from the collision.
+ // If this is not done, the X cariage will jump from the collision at the instant the Trinamic driver reduces power on idle.
+ endstops_hit_on_purpose();
+ enable_endstops(false);
+ {
+ // Two full periods (4 full steps).
+ float gap = 0.32f * 2.f;
+ current_position[axis] -= gap;
+ plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
+ current_position[axis] += gap;
+ }
+ destination[axis] = current_position[axis];
+ plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], 0.3f*feedrate/60, active_extruder);
+ st_synchronize();
+
+ feedrate = 0.0;
+ }
+ else if ((axis==Z_AXIS)?HOMEAXIS_DO(Z):0)
+ {
+ int axis_home_dir = home_dir(axis);
+ current_position[axis] = 0;
+ plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
+ destination[axis] = 1.5 * max_length(axis) * axis_home_dir;
+ feedrate = homing_feedrate[axis];
+ plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
+ st_synchronize();
+ current_position[axis] = 0;
+ plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
+ destination[axis] = -home_retract_mm(axis) * axis_home_dir;
+ plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
+ st_synchronize();
+ destination[axis] = 2*home_retract_mm(axis) * axis_home_dir;
+ feedrate = homing_feedrate[axis]/2 ;
+ plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
+ st_synchronize();
+ axis_is_at_home(axis);
+ destination[axis] = current_position[axis];
+ feedrate = 0.0;
+ endstops_hit_on_purpose();
+ axis_known_position[axis] = true;
+ }
+ enable_endstops(endstops_enabled);
+}
+
+/**/
+void home_xy()
+{
+ set_destination_to_current();
+ homeaxis(X_AXIS);
+ homeaxis(Y_AXIS);
+ plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
+ endstops_hit_on_purpose();
+}
+
+void refresh_cmd_timeout(void)
+{
+ previous_millis_cmd = millis();
+}
+
+#ifdef FWRETRACT
+ void retract(bool retracting, bool swapretract = false) {
+ if(retracting && !retracted[active_extruder]) {
+ destination[X_AXIS]=current_position[X_AXIS];
+ destination[Y_AXIS]=current_position[Y_AXIS];
+ destination[Z_AXIS]=current_position[Z_AXIS];
+ destination[E_AXIS]=current_position[E_AXIS];
+ if (swapretract) {
+ current_position[E_AXIS]+=retract_length_swap/volumetric_multiplier[active_extruder];
+ } else {
+ current_position[E_AXIS]+=retract_length/volumetric_multiplier[active_extruder];
+ }
+ plan_set_e_position(current_position[E_AXIS]);
+ float oldFeedrate = feedrate;
+ feedrate=retract_feedrate*60;
+ retracted[active_extruder]=true;
+ prepare_move();
+ current_position[Z_AXIS]-=retract_zlift;
+ plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
+ prepare_move();
+ feedrate = oldFeedrate;
+ } else if(!retracting && retracted[active_extruder]) {
+ destination[X_AXIS]=current_position[X_AXIS];
+ destination[Y_AXIS]=current_position[Y_AXIS];
+ destination[Z_AXIS]=current_position[Z_AXIS];
+ destination[E_AXIS]=current_position[E_AXIS];
+ current_position[Z_AXIS]+=retract_zlift;
+ plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
+ //prepare_move();
+ if (swapretract) {
+ current_position[E_AXIS]-=(retract_length_swap+retract_recover_length_swap)/volumetric_multiplier[active_extruder];
+ } else {
+ current_position[E_AXIS]-=(retract_length+retract_recover_length)/volumetric_multiplier[active_extruder];
+ }
+ plan_set_e_position(current_position[E_AXIS]);
+ float oldFeedrate = feedrate;
+ feedrate=retract_recover_feedrate*60;
+ retracted[active_extruder]=false;
+ prepare_move();
+ feedrate = oldFeedrate;
+ }
+ } //retract
+#endif //FWRETRACT
+
+void trace() {
+ tone(BEEPER, 440);
+ delay(25);
+ noTone(BEEPER);
+ delay(20);
+}
+/*
+void ramming() {
+// float tmp[4] = DEFAULT_MAX_FEEDRATE;
+ if (current_temperature[0] < 230) {
+ //PLA
+
+ max_feedrate[E_AXIS] = 50;
+ //current_position[E_AXIS] -= 8;
+ //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
+ //current_position[E_AXIS] += 8;
+ //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
+ current_position[E_AXIS] += 5.4;
+ plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2800 / 60, active_extruder);
+ current_position[E_AXIS] += 3.2;
+ plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
+ current_position[E_AXIS] += 3;
+ plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3400 / 60, active_extruder);
+ st_synchronize();
+ max_feedrate[E_AXIS] = 80;
+ current_position[E_AXIS] -= 82;
+ plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 9500 / 60, active_extruder);
+ max_feedrate[E_AXIS] = 50;//tmp[E_AXIS];
+ current_position[E_AXIS] -= 20;
+ plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 1200 / 60, active_extruder);
+ current_position[E_AXIS] += 5;
+ plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400 / 60, active_extruder);
+ current_position[E_AXIS] += 5;
+ plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
+ current_position[E_AXIS] -= 10;
+ st_synchronize();
+ plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
+ current_position[E_AXIS] += 10;
+ plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
+ current_position[E_AXIS] -= 10;
+ plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
+ current_position[E_AXIS] += 10;
+ plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
+ current_position[E_AXIS] -= 10;
+ plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
+ st_synchronize();
+ }
+ else {
+ //ABS
+ max_feedrate[E_AXIS] = 50;
+ //current_position[E_AXIS] -= 8;
+ //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
+ //current_position[E_AXIS] += 8;
+ //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
+ current_position[E_AXIS] += 3.1;
+ plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2000 / 60, active_extruder);
+ current_position[E_AXIS] += 3.1;
+ plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2500 / 60, active_extruder);
+ current_position[E_AXIS] += 4;
+ plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
+ st_synchronize();
+ //current_position[X_AXIS] += 23; //delay
+ //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600/60, active_extruder); //delay
+ //current_position[X_AXIS] -= 23; //delay
+ //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600/60, active_extruder); //delay
+ delay(4700);
+ max_feedrate[E_AXIS] = 80;
+ current_position[E_AXIS] -= 92;
+ plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 9900 / 60, active_extruder);
+ max_feedrate[E_AXIS] = 50;//tmp[E_AXIS];
+ current_position[E_AXIS] -= 5;
+ plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
+ current_position[E_AXIS] += 5;
+ plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400 / 60, active_extruder);
+ current_position[E_AXIS] -= 5;
+ plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
+ st_synchronize();
+ current_position[E_AXIS] += 5;
+ plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
+ current_position[E_AXIS] -= 5;
+ plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
+ current_position[E_AXIS] += 5;
+ plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
+ current_position[E_AXIS] -= 5;
+ plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
+ st_synchronize();
+
+ }
+ }
+*/
+void process_commands()
+{
+ #ifdef FILAMENT_RUNOUT_SUPPORT
+ SET_INPUT(FR_SENS);
+ #endif
+
+#ifdef CMDBUFFER_DEBUG
+ SERIAL_ECHOPGM("Processing a GCODE command: ");
+ SERIAL_ECHO(cmdbuffer+bufindr+CMDHDRSIZE);
+ SERIAL_ECHOLNPGM("");
+ SERIAL_ECHOPGM("In cmdqueue: ");
+ SERIAL_ECHO(buflen);
+ SERIAL_ECHOLNPGM("");
+#endif /* CMDBUFFER_DEBUG */
+
+ unsigned long codenum; //throw away variable
+ char *starpos = NULL;
+#ifdef ENABLE_AUTO_BED_LEVELING
+ float x_tmp, y_tmp, z_tmp, real_z;
+#endif
+
+ // PRUSA GCODES
+
+#ifdef SNMM
+ float tmp_motor[3] = DEFAULT_PWM_MOTOR_CURRENT;
+ float tmp_motor_loud[3] = DEFAULT_PWM_MOTOR_CURRENT_LOUD;
+ int8_t SilentMode;
+#endif
+ if (code_seen("M117")) { //moved to highest priority place to be able to to print strings which includes "G", "PRUSA" and "^"
+ starpos = (strchr(strchr_pointer + 5, '*'));
+ if (starpos != NULL)
+ *(starpos) = '\0';
+ lcd_setstatus(strchr_pointer + 5);
+ }
+ else if(code_seen("PRUSA")){
+ if (code_seen("Ping")) { //PRUSA Ping
+ if (farm_mode) {
+ PingTime = millis();
+ //MYSERIAL.print(farm_no); MYSERIAL.println(": OK");
+ }
+ }
+ else if (code_seen("PRN")) {
+ MYSERIAL.println(status_number);
+
+ }else if (code_seen("fn")) {
+ if (farm_mode) {
+ MYSERIAL.println(farm_no);
+ }
+ else {
+ MYSERIAL.println("Not in farm mode.");
+ }
+
+ }else if (code_seen("fv")) {
+ // get file version
+ #ifdef SDSUPPORT
+ card.openFile(strchr_pointer + 3,true);
+ while (true) {
+ uint16_t readByte = card.get();
+ MYSERIAL.write(readByte);
+ if (readByte=='\n') {
+ break;
+ }
+ }
+ card.closefile();
+
+ #endif // SDSUPPORT
+
+ } else if (code_seen("M28")) {
+ trace();
+ prusa_sd_card_upload = true;
+ card.openFile(strchr_pointer+4,false);
+ } else if (code_seen("SN")) {
+ if (farm_mode) {
+ selectedSerialPort = 0;
+ MSerial.write(";S");
+ // S/N is:CZPX0917X003XC13518
+ int numbersRead = 0;
+
+ while (numbersRead < 19) {
+ while (MSerial.available() > 0) {
+ uint8_t serial_char = MSerial.read();
+ selectedSerialPort = 1;
+ MSerial.write(serial_char);
+ numbersRead++;
+ selectedSerialPort = 0;
+ }
+ }
+ selectedSerialPort = 1;
+ MSerial.write('\n');
+ /*for (int b = 0; b < 3; b++) {
+ tone(BEEPER, 110);
+ delay(50);
+ noTone(BEEPER);
+ delay(50);
+ }*/
+ } else {
+ MYSERIAL.println("Not in farm mode.");
+ }
+
+ } else if(code_seen("Fir")){
+
+ SERIAL_PROTOCOLLN(FW_version);
+
+ } else if(code_seen("Rev")){
+
+ SERIAL_PROTOCOLLN(FILAMENT_SIZE "-" ELECTRONICS "-" NOZZLE_TYPE );
+
+ } else if(code_seen("Lang")) {
+ lcd_force_language_selection();
+ } else if(code_seen("Lz")) {
+ EEPROM_save_B(EEPROM_BABYSTEP_Z,0);
+
+ } else if (code_seen("SERIAL LOW")) {
+ MYSERIAL.println("SERIAL LOW");
+ MYSERIAL.begin(BAUDRATE);
+ return;
+ } else if (code_seen("SERIAL HIGH")) {
+ MYSERIAL.println("SERIAL HIGH");
+ MYSERIAL.begin(1152000);
+ return;
+ } else if(code_seen("Beat")) {
+ // Kick farm link timer
+ kicktime = millis();
+
+ } else if(code_seen("FR")) {
+ // Factory full reset
+ factory_reset(0,true);
+ }
+ //else if (code_seen('Cal')) {
+ // lcd_calibration();
+ // }
+
+ }
+ else if (code_seen('^')) {
+ // nothing, this is a version line
+ } else if(code_seen('G'))
+ {
+ switch((int)code_value())
+ {
+ case 0: // G0 -> G1
+ case 1: // G1
+ if(Stopped == false) {
+
+ #ifdef FILAMENT_RUNOUT_SUPPORT
+
+ if(READ(FR_SENS)){
+
+ feedmultiplyBckp=feedmultiply;
+ float target[4];
+ float lastpos[4];
+ target[X_AXIS]=current_position[X_AXIS];
+ target[Y_AXIS]=current_position[Y_AXIS];
+ target[Z_AXIS]=current_position[Z_AXIS];
+ target[E_AXIS]=current_position[E_AXIS];
+ lastpos[X_AXIS]=current_position[X_AXIS];
+ lastpos[Y_AXIS]=current_position[Y_AXIS];
+ lastpos[Z_AXIS]=current_position[Z_AXIS];
+ lastpos[E_AXIS]=current_position[E_AXIS];
+ //retract by E
+
+ target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT ;
+
+ plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder);
+
+
+ target[Z_AXIS]+= FILAMENTCHANGE_ZADD ;
+
+ plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 300, active_extruder);
+
+ target[X_AXIS]= FILAMENTCHANGE_XPOS ;
+
+ target[Y_AXIS]= FILAMENTCHANGE_YPOS ;
+
+
+ plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder);
+
+ target[E_AXIS]+= FILAMENTCHANGE_FINALRETRACT ;
+
+
+ plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder);
+
+ //finish moves
+ st_synchronize();
+ //disable extruder steppers so filament can be removed
+ disable_e0();
+ disable_e1();
+ disable_e2();
+ delay(100);
+
+ //LCD_ALERTMESSAGEPGM(MSG_FILAMENTCHANGE);
+ uint8_t cnt=0;
+ int counterBeep = 0;
+ lcd_wait_interact();
+ while(!lcd_clicked()){
+ cnt++;
+ manage_heater();
+ manage_inactivity(true);
+ //lcd_update();
+ if(cnt==0)
+ {
+ #if BEEPER > 0
+
+ if (counterBeep== 500){
+ counterBeep = 0;
+
+ }
+
+
+ SET_OUTPUT(BEEPER);
+ if (counterBeep== 0){
+ WRITE(BEEPER,HIGH);
+ }
+
+ if (counterBeep== 20){
+ WRITE(BEEPER,LOW);
+ }
+
+
+
+
+ counterBeep++;
+ #else
+ #if !defined(LCD_FEEDBACK_FREQUENCY_HZ) || !defined(LCD_FEEDBACK_FREQUENCY_DURATION_MS)
+ lcd_buzz(1000/6,100);
+ #else
+ lcd_buzz(LCD_FEEDBACK_FREQUENCY_DURATION_MS,LCD_FEEDBACK_FREQUENCY_HZ);
+ #endif
+ #endif
+ }
+ }
+
+ WRITE(BEEPER,LOW);
+
+ target[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
+ plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder);
+
+
+ target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
+ plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
+
+
+
+
+
+ lcd_change_fil_state = 0;
+ lcd_loading_filament();
+ while ((lcd_change_fil_state == 0)||(lcd_change_fil_state != 1)){
+
+ lcd_change_fil_state = 0;
+ lcd_alright();
+ switch(lcd_change_fil_state){
+
+ case 2:
+ target[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
+ plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder);
+
+
+ target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
+ plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
+
+
+ lcd_loading_filament();
+ break;
+ case 3:
+ target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
+ plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
+ lcd_loading_color();
+ break;
+
+ default:
+ lcd_change_success();
+ break;
+ }
+
+ }
+
+
+
+ target[E_AXIS]+= 5;
+ plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
+
+ target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT;
+ plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder);
+
+
+ //current_position[E_AXIS]=target[E_AXIS]; //the long retract of L is compensated by manual filament feeding
+ //plan_set_e_position(current_position[E_AXIS]);
+ plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder); //should do nothing
+ plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder); //move xy back
+ plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], 200, active_extruder); //move z back
+
+
+ target[E_AXIS]= target[E_AXIS] - FILAMENTCHANGE_FIRSTRETRACT;
+
+
+
+ plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], 5, active_extruder); //final untretract
+
+
+ plan_set_e_position(lastpos[E_AXIS]);
+
+ feedmultiply=feedmultiplyBckp;
+
+
+
+ char cmd[9];
+
+ sprintf_P(cmd, PSTR("M220 S%i"), feedmultiplyBckp);
+ enquecommand(cmd);
+
+ }
+
+
+
+ #endif
+
+
+ get_coordinates(); // For X Y Z E F
+ if (total_filament_used > ((current_position[E_AXIS] - destination[E_AXIS]) * 100)) { //protection against total_filament_used overflow
+ total_filament_used = total_filament_used + ((destination[E_AXIS] - current_position[E_AXIS]) * 100);
+ }
+ #ifdef FWRETRACT
+ if(autoretract_enabled)
+ if( !(code_seen('X') || code_seen('Y') || code_seen('Z')) && code_seen('E')) {
+ float echange=destination[E_AXIS]-current_position[E_AXIS];
+
+ if((echange<-MIN_RETRACT && !retracted) || (echange>MIN_RETRACT && retracted)) { //move appears to be an attempt to retract or recover
+ current_position[E_AXIS] = destination[E_AXIS]; //hide the slicer-generated retract/recover from calculations
+ plan_set_e_position(current_position[E_AXIS]); //AND from the planner
+ retract(!retracted);
+ return;
+ }
+
+
+ }
+ #endif //FWRETRACT
+ prepare_move();
+ //ClearToSend();
+ }
+ break;
+ case 2: // G2 - CW ARC
+ if(Stopped == false) {
+ get_arc_coordinates();
+ prepare_arc_move(true);
+ }
+ break;
+ case 3: // G3 - CCW ARC
+ if(Stopped == false) {
+ get_arc_coordinates();
+ prepare_arc_move(false);
+ }
+ break;
+ case 4: // G4 dwell
+ codenum = 0;
+ if(code_seen('P')) codenum = code_value(); // milliseconds to wait
+ if(code_seen('S')) codenum = code_value() * 1000; // seconds to wait
+ if(codenum != 0) LCD_MESSAGERPGM(MSG_DWELL);
+ st_synchronize();
+ codenum += millis(); // keep track of when we started waiting
+ previous_millis_cmd = millis();
+ while(millis() < codenum) {
+ manage_heater();
+ manage_inactivity();
+ lcd_update();
+ }
+ break;
+ #ifdef FWRETRACT
+ case 10: // G10 retract
+ #if EXTRUDERS > 1
+ retracted_swap[active_extruder]=(code_seen('S') && code_value_long() == 1); // checks for swap retract argument
+ retract(true,retracted_swap[active_extruder]);
+ #else
+ retract(true);
+ #endif
+ break;
+ case 11: // G11 retract_recover
+ #if EXTRUDERS > 1
+ retract(false,retracted_swap[active_extruder]);
+ #else
+ retract(false);
+ #endif
+ break;
+ #endif //FWRETRACT
+ case 28: //G28 Home all Axis one at a time
+ {
+ st_synchronize();
+
+#if 1
+ SERIAL_ECHOPGM("G28, initial "); print_world_coordinates();
+ SERIAL_ECHOPGM("G28, initial "); print_physical_coordinates();
+#endif
+
+ // Flag for the display update routine and to disable the print cancelation during homing.
+ homing_flag = true;
+
+ // Which axes should be homed?
+ bool home_x = code_seen(axis_codes[X_AXIS]);
+ bool home_y = code_seen(axis_codes[Y_AXIS]);
+ bool home_z = code_seen(axis_codes[Z_AXIS]);
+ // Either all X,Y,Z codes are present, or none of them.
+ bool home_all_axes = home_x == home_y && home_x == home_z;
+ if (home_all_axes)
+ // No X/Y/Z code provided means to home all axes.
+ home_x = home_y = home_z = true;
+
+#ifdef ENABLE_AUTO_BED_LEVELING
+ plan_bed_level_matrix.set_to_identity(); //Reset the plane ("erase" all leveling data)
+#endif //ENABLE_AUTO_BED_LEVELING
+
+ // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
+ // the planner will not perform any adjustments in the XY plane.
+ // Wait for the motors to stop and update the current position with the absolute values.
+ world2machine_revert_to_uncorrected();
+
+ // For mesh bed leveling deactivate the matrix temporarily.
+ // It is necessary to disable the bed leveling for the X and Y homing moves, so that the move is performed
+ // in a single axis only.
+ // In case of re-homing the X or Y axes only, the mesh bed leveling is restored after G28.
+#ifdef MESH_BED_LEVELING
+ uint8_t mbl_was_active = mbl.active;
+ mbl.active = 0;
+ current_position[Z_AXIS] = st_get_position_mm(Z_AXIS);
+#endif
+
+ // Reset baby stepping to zero, if the babystepping has already been loaded before. The babystepsTodo value will be
+ // consumed during the first movements following this statement.
+ if (home_z)
+ babystep_undo();
+
+ saved_feedrate = feedrate;
+ saved_feedmultiply = feedmultiply;
+ feedmultiply = 100;
+ previous_millis_cmd = millis();
+
+ enable_endstops(true);
+
+ memcpy(destination, current_position, sizeof(destination));
+ feedrate = 0.0;
+
+ #if Z_HOME_DIR > 0 // If homing away from BED do Z first
+ if(home_z)
+ homeaxis(Z_AXIS);
+ #endif
+
+ #ifdef QUICK_HOME
+ // In the quick mode, if both x and y are to be homed, a diagonal move will be performed initially.
+ if(home_x && home_y) //first diagonal move
+ {
+ current_position[X_AXIS] = 0;current_position[Y_AXIS] = 0;
+
+ int x_axis_home_dir = home_dir(X_AXIS);
+
+ plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
+ destination[X_AXIS] = 1.5 * max_length(X_AXIS) * x_axis_home_dir;destination[Y_AXIS] = 1.5 * max_length(Y_AXIS) * home_dir(Y_AXIS);
+ feedrate = homing_feedrate[X_AXIS];
+ if(homing_feedrate[Y_AXIS] max_length(Y_AXIS)) {
+ feedrate *= sqrt(pow(max_length(Y_AXIS) / max_length(X_AXIS), 2) + 1);
+ } else {
+ feedrate *= sqrt(pow(max_length(X_AXIS) / max_length(Y_AXIS), 2) + 1);
+ }
+ plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
+ st_synchronize();
+
+ axis_is_at_home(X_AXIS);
+ axis_is_at_home(Y_AXIS);
+ plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
+ destination[X_AXIS] = current_position[X_AXIS];
+ destination[Y_AXIS] = current_position[Y_AXIS];
+ plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
+ feedrate = 0.0;
+ st_synchronize();
+ endstops_hit_on_purpose();
+
+ current_position[X_AXIS] = destination[X_AXIS];
+ current_position[Y_AXIS] = destination[Y_AXIS];
+ current_position[Z_AXIS] = destination[Z_AXIS];
+ }
+ #endif /* QUICK_HOME */
+
+
+ if(home_x)
+ homeaxis(X_AXIS);
+
+ if(home_y)
+ homeaxis(Y_AXIS);
+
+ if(code_seen(axis_codes[X_AXIS]) && code_value_long() != 0)
+ current_position[X_AXIS]=code_value()+add_homing[X_AXIS];
+
+ if(code_seen(axis_codes[Y_AXIS]) && code_value_long() != 0)
+ current_position[Y_AXIS]=code_value()+add_homing[Y_AXIS];
+
+ #if Z_HOME_DIR < 0 // If homing towards BED do Z last
+ #ifndef Z_SAFE_HOMING
+ if(home_z) {
+ #if defined (Z_RAISE_BEFORE_HOMING) && (Z_RAISE_BEFORE_HOMING > 0)
+ destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
+ feedrate = max_feedrate[Z_AXIS];
+ plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
+ st_synchronize();
+ #endif // defined (Z_RAISE_BEFORE_HOMING) && (Z_RAISE_BEFORE_HOMING > 0)
+ #if (defined(MESH_BED_LEVELING) && !defined(MK1BP)) // If Mesh bed leveling, moxve X&Y to safe position for home
+ if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] ))
+ {
+ homeaxis(X_AXIS);
+ homeaxis(Y_AXIS);
+ }
+ // 1st mesh bed leveling measurement point, corrected.
+ world2machine_initialize();
+ world2machine(pgm_read_float(bed_ref_points), pgm_read_float(bed_ref_points+1), destination[X_AXIS], destination[Y_AXIS]);
+ world2machine_reset();
+ if (destination[Y_AXIS] < Y_MIN_POS)
+ destination[Y_AXIS] = Y_MIN_POS;
+ destination[Z_AXIS] = MESH_HOME_Z_SEARCH; // Set destination away from bed
+ feedrate = homing_feedrate[Z_AXIS]/10;
+ current_position[Z_AXIS] = 0;
+ enable_endstops(false);
+ plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
+ plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
+ st_synchronize();
+ current_position[X_AXIS] = destination[X_AXIS];
+ current_position[Y_AXIS] = destination[Y_AXIS];
+ enable_endstops(true);
+ endstops_hit_on_purpose();
+ homeaxis(Z_AXIS);
+ #else // MESH_BED_LEVELING
+ homeaxis(Z_AXIS);
+ #endif // MESH_BED_LEVELING
+ }
+ #else // defined(Z_SAFE_HOMING): Z Safe mode activated.
+ if(home_all_axes) {
+ destination[X_AXIS] = round(Z_SAFE_HOMING_X_POINT - X_PROBE_OFFSET_FROM_EXTRUDER);
+ destination[Y_AXIS] = round(Z_SAFE_HOMING_Y_POINT - Y_PROBE_OFFSET_FROM_EXTRUDER);
+ destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
+ feedrate = XY_TRAVEL_SPEED/60;
+ current_position[Z_AXIS] = 0;
+
+ plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
+ plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
+ st_synchronize();
+ current_position[X_AXIS] = destination[X_AXIS];
+ current_position[Y_AXIS] = destination[Y_AXIS];
+
+ homeaxis(Z_AXIS);
+ }
+ // Let's see if X and Y are homed and probe is inside bed area.
+ if(home_z) {
+ if ( (axis_known_position[X_AXIS]) && (axis_known_position[Y_AXIS]) \
+ && (current_position[X_AXIS]+X_PROBE_OFFSET_FROM_EXTRUDER >= X_MIN_POS) \
+ && (current_position[X_AXIS]+X_PROBE_OFFSET_FROM_EXTRUDER <= X_MAX_POS) \
+ && (current_position[Y_AXIS]+Y_PROBE_OFFSET_FROM_EXTRUDER >= Y_MIN_POS) \
+ && (current_position[Y_AXIS]+Y_PROBE_OFFSET_FROM_EXTRUDER <= Y_MAX_POS)) {
+
+ current_position[Z_AXIS] = 0;
+ plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
+ destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
+ feedrate = max_feedrate[Z_AXIS];
+ plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
+ st_synchronize();
+
+ homeaxis(Z_AXIS);
+ } else if (!((axis_known_position[X_AXIS]) && (axis_known_position[Y_AXIS]))) {
+ LCD_MESSAGERPGM(MSG_POSITION_UNKNOWN);
+ SERIAL_ECHO_START;
+ SERIAL_ECHOLNRPGM(MSG_POSITION_UNKNOWN);
+ } else {
+ LCD_MESSAGERPGM(MSG_ZPROBE_OUT);
+ SERIAL_ECHO_START;
+ SERIAL_ECHOLNRPGM(MSG_ZPROBE_OUT);
+ }
+ }
+ #endif // Z_SAFE_HOMING
+ #endif // Z_HOME_DIR < 0
+
+ if(code_seen(axis_codes[Z_AXIS]) && code_value_long() != 0)
+ current_position[Z_AXIS]=code_value()+add_homing[Z_AXIS];
+ #ifdef ENABLE_AUTO_BED_LEVELING
+ if(home_z)
+ current_position[Z_AXIS] += zprobe_zoffset; //Add Z_Probe offset (the distance is negative)
+ #endif
+
+ // Set the planner and stepper routine positions.
+ // At this point the mesh bed leveling and world2machine corrections are disabled and current_position
+ // contains the machine coordinates.
+ plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
+
+ #ifdef ENDSTOPS_ONLY_FOR_HOMING
+ enable_endstops(false);
+ #endif
+
+ feedrate = saved_feedrate;
+ feedmultiply = saved_feedmultiply;
+ previous_millis_cmd = millis();
+ endstops_hit_on_purpose();
+#ifndef MESH_BED_LEVELING
+ // If MESH_BED_LEVELING is not active, then it is the original Prusa i3.
+ // Offer the user to load the baby step value, which has been adjusted at the previous print session.
+ if(card.sdprinting && eeprom_read_word((uint16_t *)EEPROM_BABYSTEP_Z))
+ lcd_adjust_z();
+#endif
+
+ // Load the machine correction matrix
+ world2machine_initialize();
+ // and correct the current_position XY axes to match the transformed coordinate system.
+ world2machine_update_current();
+
+#if (defined(MESH_BED_LEVELING) && !defined(MK1BP))
+ if (code_seen(axis_codes[X_AXIS]) || code_seen(axis_codes[Y_AXIS]) || code_seen('W') || code_seen(axis_codes[Z_AXIS]))
+ {
+ if (! home_z && mbl_was_active) {
+ // Re-enable the mesh bed leveling if only the X and Y axes were re-homed.
+ mbl.active = true;
+ // and re-adjust the current logical Z axis with the bed leveling offset applicable at the current XY position.
+ current_position[Z_AXIS] -= mbl.get_z(st_get_position_mm(X_AXIS), st_get_position_mm(Y_AXIS));
+ }
+ }
+ else
+ {
+ st_synchronize();
+ homing_flag = false;
+ // Push the commands to the front of the message queue in the reverse order!
+ // There shall be always enough space reserved for these commands.
+ // enquecommand_front_P((PSTR("G80")));
+ goto case_G80;
+ }
+#endif
+
+ if (farm_mode) { prusa_statistics(20); };
+
+ homing_flag = false;
+
+ SERIAL_ECHOPGM("G28, final "); print_world_coordinates();
+ SERIAL_ECHOPGM("G28, final "); print_physical_coordinates();
+ SERIAL_ECHOPGM("G28, final "); print_mesh_bed_leveling_table();
+ break;
+ }
+#ifdef ENABLE_AUTO_BED_LEVELING
+ case 29: // G29 Detailed Z-Probe, probes the bed at 3 or more points.
+ {
+ #if Z_MIN_PIN == -1
+ #error "You must have a Z_MIN endstop in order to enable Auto Bed Leveling feature! Z_MIN_PIN must point to a valid hardware pin."
+ #endif
+
+ // Prevent user from running a G29 without first homing in X and Y
+ if (! (axis_known_position[X_AXIS] && axis_known_position[Y_AXIS]) )
+ {
+ LCD_MESSAGERPGM(MSG_POSITION_UNKNOWN);
+ SERIAL_ECHO_START;
+ SERIAL_ECHOLNRPGM(MSG_POSITION_UNKNOWN);
+ break; // abort G29, since we don't know where we are
+ }
+
+ st_synchronize();
+ // make sure the bed_level_rotation_matrix is identity or the planner will get it incorectly
+ //vector_3 corrected_position = plan_get_position_mm();
+ //corrected_position.debug("position before G29");
+ plan_bed_level_matrix.set_to_identity();
+ vector_3 uncorrected_position = plan_get_position();
+ //uncorrected_position.debug("position durring G29");
+ current_position[X_AXIS] = uncorrected_position.x;
+ current_position[Y_AXIS] = uncorrected_position.y;
+ current_position[Z_AXIS] = uncorrected_position.z;
+ plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
+ setup_for_endstop_move();
+
+ feedrate = homing_feedrate[Z_AXIS];
+#ifdef AUTO_BED_LEVELING_GRID
+ // probe at the points of a lattice grid
+
+ int xGridSpacing = (RIGHT_PROBE_BED_POSITION - LEFT_PROBE_BED_POSITION) / (AUTO_BED_LEVELING_GRID_POINTS-1);
+ int yGridSpacing = (BACK_PROBE_BED_POSITION - FRONT_PROBE_BED_POSITION) / (AUTO_BED_LEVELING_GRID_POINTS-1);
+
+
+ // solve the plane equation ax + by + d = z
+ // A is the matrix with rows [x y 1] for all the probed points
+ // B is the vector of the Z positions
+ // the normal vector to the plane is formed by the coefficients of the plane equation in the standard form, which is Vx*x+Vy*y+Vz*z+d = 0
+ // so Vx = -a Vy = -b Vz = 1 (we want the vector facing towards positive Z
+
+ // "A" matrix of the linear system of equations
+ double eqnAMatrix[AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS*3];
+ // "B" vector of Z points
+ double eqnBVector[AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS];
+
+
+ int probePointCounter = 0;
+ bool zig = true;
+
+ for (int yProbe=FRONT_PROBE_BED_POSITION; yProbe <= BACK_PROBE_BED_POSITION; yProbe += yGridSpacing)
+ {
+ int xProbe, xInc;
+ if (zig)
+ {
+ xProbe = LEFT_PROBE_BED_POSITION;
+ //xEnd = RIGHT_PROBE_BED_POSITION;
+ xInc = xGridSpacing;
+ zig = false;
+ } else // zag
+ {
+ xProbe = RIGHT_PROBE_BED_POSITION;
+ //xEnd = LEFT_PROBE_BED_POSITION;
+ xInc = -xGridSpacing;
+ zig = true;
+ }
+
+ for (int xCount=0; xCount < AUTO_BED_LEVELING_GRID_POINTS; xCount++)
+ {
+ float z_before;
+ if (probePointCounter == 0)
+ {
+ // raise before probing
+ z_before = Z_RAISE_BEFORE_PROBING;
+ } else
+ {
+ // raise extruder
+ z_before = current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS;
+ }
+
+ float measured_z = probe_pt(xProbe, yProbe, z_before);
+
+ eqnBVector[probePointCounter] = measured_z;
+
+ eqnAMatrix[probePointCounter + 0*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = xProbe;
+ eqnAMatrix[probePointCounter + 1*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = yProbe;
+ eqnAMatrix[probePointCounter + 2*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = 1;
+ probePointCounter++;
+ xProbe += xInc;
+ }
+ }
+ clean_up_after_endstop_move();
+
+ // solve lsq problem
+ double *plane_equation_coefficients = qr_solve(AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS, 3, eqnAMatrix, eqnBVector);
+
+ SERIAL_PROTOCOLPGM("Eqn coefficients: a: ");
+ SERIAL_PROTOCOL(plane_equation_coefficients[0]);
+ SERIAL_PROTOCOLPGM(" b: ");
+ SERIAL_PROTOCOL(plane_equation_coefficients[1]);
+ SERIAL_PROTOCOLPGM(" d: ");
+ SERIAL_PROTOCOLLN(plane_equation_coefficients[2]);
+
+
+ set_bed_level_equation_lsq(plane_equation_coefficients);
+
+ free(plane_equation_coefficients);
+
+#else // AUTO_BED_LEVELING_GRID not defined
+
+ // Probe at 3 arbitrary points
+ // probe 1
+ float z_at_pt_1 = probe_pt(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, Z_RAISE_BEFORE_PROBING);
+
+ // probe 2
+ float z_at_pt_2 = probe_pt(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS);
+
+ // probe 3
+ float z_at_pt_3 = probe_pt(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS);
+
+ clean_up_after_endstop_move();
+
+ set_bed_level_equation_3pts(z_at_pt_1, z_at_pt_2, z_at_pt_3);
+
+
+#endif // AUTO_BED_LEVELING_GRID
+ st_synchronize();
+
+ // The following code correct the Z height difference from z-probe position and hotend tip position.
+ // The Z height on homing is measured by Z-Probe, but the probe is quite far from the hotend.
+ // When the bed is uneven, this height must be corrected.
+ real_z = float(st_get_position(Z_AXIS))/axis_steps_per_unit[Z_AXIS]; //get the real Z (since the auto bed leveling is already correcting the plane)
+ x_tmp = current_position[X_AXIS] + X_PROBE_OFFSET_FROM_EXTRUDER;
+ y_tmp = current_position[Y_AXIS] + Y_PROBE_OFFSET_FROM_EXTRUDER;
+ z_tmp = current_position[Z_AXIS];
+
+ apply_rotation_xyz(plan_bed_level_matrix, x_tmp, y_tmp, z_tmp); //Apply the correction sending the probe offset
+ current_position[Z_AXIS] = z_tmp - real_z + current_position[Z_AXIS]; //The difference is added to current position and sent to planner.
+ plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
+ }
+ break;
+#ifndef Z_PROBE_SLED
+ case 30: // G30 Single Z Probe
+ {
+ st_synchronize();
+ // TODO: make sure the bed_level_rotation_matrix is identity or the planner will get set incorectly
+ setup_for_endstop_move();
+
+ feedrate = homing_feedrate[Z_AXIS];
+
+ run_z_probe();
+ SERIAL_PROTOCOLPGM(MSG_BED);
+ SERIAL_PROTOCOLPGM(" X: ");
+ SERIAL_PROTOCOL(current_position[X_AXIS]);
+ SERIAL_PROTOCOLPGM(" Y: ");
+ SERIAL_PROTOCOL(current_position[Y_AXIS]);
+ SERIAL_PROTOCOLPGM(" Z: ");
+ SERIAL_PROTOCOL(current_position[Z_AXIS]);
+ SERIAL_PROTOCOLPGM("\n");
+
+ clean_up_after_endstop_move();
+ }
+ break;
+#else
+ case 31: // dock the sled
+ dock_sled(true);
+ break;
+ case 32: // undock the sled
+ dock_sled(false);
+ break;
+#endif // Z_PROBE_SLED
+#endif // ENABLE_AUTO_BED_LEVELING
+
+#ifdef MESH_BED_LEVELING
+ case 30: // G30 Single Z Probe
+ {
+ st_synchronize();
+ // TODO: make sure the bed_level_rotation_matrix is identity or the planner will get set incorectly
+ setup_for_endstop_move();
+
+ feedrate = homing_feedrate[Z_AXIS];
+
+ find_bed_induction_sensor_point_z(-10.f, 3);
+ SERIAL_PROTOCOLRPGM(MSG_BED);
+ SERIAL_PROTOCOLPGM(" X: ");
+ MYSERIAL.print(current_position[X_AXIS], 5);
+ SERIAL_PROTOCOLPGM(" Y: ");
+ MYSERIAL.print(current_position[Y_AXIS], 5);
+ SERIAL_PROTOCOLPGM(" Z: ");
+ MYSERIAL.print(current_position[Z_AXIS], 5);
+ SERIAL_PROTOCOLPGM("\n");
+ clean_up_after_endstop_move();
+ }
+ break;
+
+
+ case 75:
+ {
+ for (int i = 40; i <= 110; i++) {
+ MYSERIAL.print(i);
+ MYSERIAL.print(" ");
+ MYSERIAL.println(temp_comp_interpolation(i));// / axis_steps_per_unit[Z_AXIS]);
+ }
+ }
+ break;
+
+ case 76: //PINDA probe temperature calibration
+ {
+#ifdef PINDA_THERMISTOR
+ if (true)
+ {
+ if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS])) {
+ // We don't know where we are! HOME!
+ // Push the commands to the front of the message queue in the reverse order!
+ // There shall be always enough space reserved for these commands.
+ repeatcommand_front(); // repeat G76 with all its parameters
+ enquecommand_front_P((PSTR("G28 W0")));
+ break;
+ }
+ SERIAL_ECHOLNPGM("PINDA probe calibration start");
+
+ float zero_z;
+ int z_shift = 0; //unit: steps
+ float start_temp = 5 * (int)(current_temperature_pinda / 5);
+ if (start_temp < 35) start_temp = 35;
+ if (start_temp < current_temperature_pinda) start_temp += 5;
+ SERIAL_ECHOPGM("start temperature: ");
+ MYSERIAL.println(start_temp);
+
+// setTargetHotend(200, 0);
+ setTargetBed(50 + 10 * (start_temp - 30) / 5);
+
+ custom_message = true;
+ custom_message_type = 4;
+ custom_message_state = 1;
+ custom_message = MSG_TEMP_CALIBRATION;
+ current_position[X_AXIS] = PINDA_PREHEAT_X;
+ current_position[Y_AXIS] = PINDA_PREHEAT_Y;
+ current_position[Z_AXIS] = PINDA_PREHEAT_Z;
+ plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
+ st_synchronize();
+
+ while (current_temperature_pinda < start_temp)
+ {
+ delay_keep_alive(1000);
+ serialecho_temperatures();
+ }
+
+ eeprom_update_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 0); //invalidate temp. calibration in case that in will be aborted during the calibration process
+
+ current_position[Z_AXIS] = 5;
+ plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
+
+ current_position[X_AXIS] = pgm_read_float(bed_ref_points);
+ current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 1);
+ plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
+ st_synchronize();
+
+ find_bed_induction_sensor_point_z(-1.f);
+ zero_z = current_position[Z_AXIS];
+
+ //current_position[Z_AXIS]
+ SERIAL_ECHOLNPGM("");
+ SERIAL_ECHOPGM("ZERO: ");
+ MYSERIAL.print(current_position[Z_AXIS]);
+ SERIAL_ECHOLNPGM("");
+
+ int i = -1; for (; i < 5; i++)
+ {
+ float temp = (40 + i * 5);
+ SERIAL_ECHOPGM("Step: ");
+ MYSERIAL.print(i + 2);
+ SERIAL_ECHOLNPGM("/6 (skipped)");
+ SERIAL_ECHOPGM("PINDA temperature: ");
+ MYSERIAL.print((40 + i*5));
+ SERIAL_ECHOPGM(" Z shift (mm):");
+ MYSERIAL.print(0);
+ SERIAL_ECHOLNPGM("");
+ if (i >= 0) EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i * 2, &z_shift);
+ if (start_temp <= temp) break;
+ }
+
+ for (i++; i < 5; i++)
+ {
+ float temp = (40 + i * 5);
+ SERIAL_ECHOPGM("Step: ");
+ MYSERIAL.print(i + 2);
+ SERIAL_ECHOLNPGM("/6");
+ custom_message_state = i + 2;
+ setTargetBed(50 + 10 * (temp - 30) / 5);
+// setTargetHotend(255, 0);
+ current_position[X_AXIS] = PINDA_PREHEAT_X;
+ current_position[Y_AXIS] = PINDA_PREHEAT_Y;
+ current_position[Z_AXIS] = PINDA_PREHEAT_Z;
+ plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
+ st_synchronize();
+ while (current_temperature_pinda < temp)
+ {
+ delay_keep_alive(1000);
+ serialecho_temperatures();
+ }
+ current_position[Z_AXIS] = 5;
+ plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
+ current_position[X_AXIS] = pgm_read_float(bed_ref_points);
+ current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 1);
+ plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
+ st_synchronize();
+ find_bed_induction_sensor_point_z(-1.f);
+ z_shift = (int)((current_position[Z_AXIS] - zero_z)*axis_steps_per_unit[Z_AXIS]);
+
+ SERIAL_ECHOLNPGM("");
+ SERIAL_ECHOPGM("PINDA temperature: ");
+ MYSERIAL.print(current_temperature_pinda);
+ SERIAL_ECHOPGM(" Z shift (mm):");
+ MYSERIAL.print(current_position[Z_AXIS] - zero_z);
+ SERIAL_ECHOLNPGM("");
+
+ EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i * 2, &z_shift);
+
+ }
+ custom_message_type = 0;
+ custom_message = false;
+
+ eeprom_update_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 1);
+ SERIAL_ECHOLNPGM("Temperature calibration done. Continue with pressing the knob.");
+ disable_x();
+ disable_y();
+ disable_z();
+ disable_e0();
+ disable_e1();
+ disable_e2();
+ lcd_show_fullscreen_message_and_wait_P(MSG_TEMP_CALIBRATION_DONE);
+ lcd_update_enable(true);
+ lcd_update(2);
+
+ setTargetBed(0); //set bed target temperature back to 0
+// setTargetHotend(0,0); //set hotend target temperature back to 0
+ break;
+ }
+#endif //PINDA_THERMISTOR
+
+ setTargetBed(PINDA_MIN_T);
+ float zero_z;
+ int z_shift = 0; //unit: steps
+ int t_c; // temperature
+
+ if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS])) {
+ // We don't know where we are! HOME!
+ // Push the commands to the front of the message queue in the reverse order!
+ // There shall be always enough space reserved for these commands.
+ repeatcommand_front(); // repeat G76 with all its parameters
+ enquecommand_front_P((PSTR("G28 W0")));
+ break;
+ }
+ SERIAL_ECHOLNPGM("PINDA probe calibration start");
+ custom_message = true;
+ custom_message_type = 4;
+ custom_message_state = 1;
+ custom_message = MSG_TEMP_CALIBRATION;
+ current_position[X_AXIS] = PINDA_PREHEAT_X;
+ current_position[Y_AXIS] = PINDA_PREHEAT_Y;
+ current_position[Z_AXIS] = PINDA_PREHEAT_Z;
+ plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
+ st_synchronize();
+
+ while (abs(degBed() - PINDA_MIN_T) > 1) {
+ delay_keep_alive(1000);
+ serialecho_temperatures();
+ }
+
+ //enquecommand_P(PSTR("M190 S50"));
+ for (int i = 0; i < PINDA_HEAT_T; i++) {
+ delay_keep_alive(1000);
+ serialecho_temperatures();
+ }
+ eeprom_update_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 0); //invalidate temp. calibration in case that in will be aborted during the calibration process
+
+ current_position[Z_AXIS] = 5;
+ plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
+
+ current_position[X_AXIS] = pgm_read_float(bed_ref_points);
+ current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 1);
+ plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
+ st_synchronize();
+
+ find_bed_induction_sensor_point_z(-1.f);
+ zero_z = current_position[Z_AXIS];
+
+ //current_position[Z_AXIS]
+ SERIAL_ECHOLNPGM("");
+ SERIAL_ECHOPGM("ZERO: ");
+ MYSERIAL.print(current_position[Z_AXIS]);
+ SERIAL_ECHOLNPGM("");
+
+ for (int i = 0; i<5; i++) {
+ SERIAL_ECHOPGM("Step: ");
+ MYSERIAL.print(i+2);
+ SERIAL_ECHOLNPGM("/6");
+ custom_message_state = i + 2;
+ t_c = 60 + i * 10;
+
+ setTargetBed(t_c);
+ current_position[X_AXIS] = PINDA_PREHEAT_X;
+ current_position[Y_AXIS] = PINDA_PREHEAT_Y;
+ current_position[Z_AXIS] = PINDA_PREHEAT_Z;
+ plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
+ st_synchronize();
+ while (degBed() < t_c) {
+ delay_keep_alive(1000);
+ serialecho_temperatures();
+ }
+ for (int i = 0; i < PINDA_HEAT_T; i++) {
+ delay_keep_alive(1000);
+ serialecho_temperatures();
+ }
+ current_position[Z_AXIS] = 5;
+ plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
+ current_position[X_AXIS] = pgm_read_float(bed_ref_points);
+ current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 1);
+ plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
+ st_synchronize();
+ find_bed_induction_sensor_point_z(-1.f);
+ z_shift = (int)((current_position[Z_AXIS] - zero_z)*axis_steps_per_unit[Z_AXIS]);
+
+ SERIAL_ECHOLNPGM("");
+ SERIAL_ECHOPGM("Temperature: ");
+ MYSERIAL.print(t_c);
+ SERIAL_ECHOPGM(" Z shift (mm):");
+ MYSERIAL.print(current_position[Z_AXIS] - zero_z);
+ SERIAL_ECHOLNPGM("");
+
+ EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i*2, &z_shift);
+
+
+ }
+ custom_message_type = 0;
+ custom_message = false;
+
+ eeprom_update_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 1);
+ SERIAL_ECHOLNPGM("Temperature calibration done. Continue with pressing the knob.");
+ disable_x();
+ disable_y();
+ disable_z();
+ disable_e0();
+ disable_e1();
+ disable_e2();
+ setTargetBed(0); //set bed target temperature back to 0
+ lcd_show_fullscreen_message_and_wait_P(MSG_TEMP_CALIBRATION_DONE);
+ lcd_update_enable(true);
+ lcd_update(2);
+
+
+
+ }
+ break;
+
+#ifdef DIS
+ case 77:
+ {
+ //G77 X200 Y150 XP100 YP15 XO10 Y015
+
+ //for 9 point mesh bed leveling G77 X203 Y196 XP3 YP3 XO0 YO0
+
+
+ //G77 X232 Y218 XP116 YP109 XO-11 YO0
+
+ float dimension_x = 40;
+ float dimension_y = 40;
+ int points_x = 40;
+ int points_y = 40;
+ float offset_x = 74;
+ float offset_y = 33;
+
+ if (code_seen('X')) dimension_x = code_value();
+ if (code_seen('Y')) dimension_y = code_value();
+ if (code_seen('XP')) points_x = code_value();
+ if (code_seen('YP')) points_y = code_value();
+ if (code_seen('XO')) offset_x = code_value();
+ if (code_seen('YO')) offset_y = code_value();
+
+ bed_analysis(dimension_x,dimension_y,points_x,points_y,offset_x,offset_y);
+
+ } break;
+
+#endif
+
+ case 79: {
+ for (int i = 255; i > 0; i = i - 5) {
+ fanSpeed = i;
+ //delay_keep_alive(2000);
+ for (int j = 0; j < 100; j++) {
+ delay_keep_alive(100);
+
+ }
+ fan_speed[1];
+ MYSERIAL.print(i); SERIAL_ECHOPGM(": "); MYSERIAL.println(fan_speed[1]);
+ }
+ }break;
+
+ /**
+ * G80: Mesh-based Z probe, probes a grid and produces a
+ * mesh to compensate for variable bed height
+ *
+ * The S0 report the points as below
+ *
+ * +----> X-axis
+ * |
+ * |
+ * v Y-axis
+ *
+ */
+
+ case 80:
+#ifdef MK1BP
+ break;
+#endif //MK1BP
+ case_G80:
+ {
+ mesh_bed_leveling_flag = true;
+ int8_t verbosity_level = 0;
+ static bool run = false;
+
+ if (code_seen('V')) {
+ // Just 'V' without a number counts as V1.
+ char c = strchr_pointer[1];
+ verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
+ }
+ // Firstly check if we know where we are
+ if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS])) {
+ // We don't know where we are! HOME!
+ // Push the commands to the front of the message queue in the reverse order!
+ // There shall be always enough space reserved for these commands.
+ if (lcd_commands_type != LCD_COMMAND_STOP_PRINT) {
+ repeatcommand_front(); // repeat G80 with all its parameters
+ enquecommand_front_P((PSTR("G28 W0")));
+ }
+ else {
+ mesh_bed_leveling_flag = false;
+ }
+ break;
+ }
+
+
+ bool temp_comp_start = true;
+#ifdef PINDA_THERMISTOR
+ temp_comp_start = false;
+#endif //PINDA_THERMISTOR
+
+ if (temp_comp_start)
+ if (run == false && temp_cal_active == true && calibration_status_pinda() == true && target_temperature_bed >= 50) {
+ if (lcd_commands_type != LCD_COMMAND_STOP_PRINT) {
+ temp_compensation_start();
+ run = true;
+ repeatcommand_front(); // repeat G80 with all its parameters
+ enquecommand_front_P((PSTR("G28 W0")));
+ }
+ else {
+ mesh_bed_leveling_flag = false;
+ }
+ break;
+ }
+ run = false;
+ if (lcd_commands_type == LCD_COMMAND_STOP_PRINT) {
+ mesh_bed_leveling_flag = false;
+ break;
+ }
+ // Save custom message state, set a new custom message state to display: Calibrating point 9.
+ bool custom_message_old = custom_message;
+ unsigned int custom_message_type_old = custom_message_type;
+ unsigned int custom_message_state_old = custom_message_state;
+ custom_message = true;
+ custom_message_type = 1;
+ custom_message_state = (MESH_MEAS_NUM_X_POINTS * MESH_MEAS_NUM_Y_POINTS) + 10;
+ lcd_update(1);
+
+ mbl.reset(); //reset mesh bed leveling
+
+ // Reset baby stepping to zero, if the babystepping has already been loaded before. The babystepsTodo value will be
+ // consumed during the first movements following this statement.
+ babystep_undo();
+
+ // Cycle through all points and probe them
+ // First move up. During this first movement, the babystepping will be reverted.
+ current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
+ plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 60, active_extruder);
+ // The move to the first calibration point.
+ current_position[X_AXIS] = pgm_read_float(bed_ref_points);
+ current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 1);
+ bool clamped = world2machine_clamp(current_position[X_AXIS], current_position[Y_AXIS]);
+
+ if (verbosity_level >= 1) {
+ clamped ? SERIAL_PROTOCOLPGM("First calibration point clamped.\n") : SERIAL_PROTOCOLPGM("No clamping for first calibration point.\n");
+ }
+ // mbl.get_meas_xy(0, 0, current_position[X_AXIS], current_position[Y_AXIS], false);
+ plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[X_AXIS] / 30, active_extruder);
+ // Wait until the move is finished.
+ st_synchronize();
+
+ int mesh_point = 0; //index number of calibration point
+
+ int ix = 0;
+ int iy = 0;
+
+ int XY_AXIS_FEEDRATE = homing_feedrate[X_AXIS] / 20;
+ int Z_PROBE_FEEDRATE = homing_feedrate[Z_AXIS] / 60;
+ int Z_LIFT_FEEDRATE = homing_feedrate[Z_AXIS] / 40;
+ bool has_z = is_bed_z_jitter_data_valid(); //checks if we have data from Z calibration (offsets of the Z heiths of the 8 calibration points from the first point)
+ if (verbosity_level >= 1) {
+ has_z ? SERIAL_PROTOCOLPGM("Z jitter data from Z cal. valid.\n") : SERIAL_PROTOCOLPGM("Z jitter data from Z cal. not valid.\n");
+ }
+ setup_for_endstop_move(false); //save feedrate and feedmultiply, sets feedmultiply to 100
+ const char *kill_message = NULL;
+ while (mesh_point != MESH_MEAS_NUM_X_POINTS * MESH_MEAS_NUM_Y_POINTS) {
+ if (verbosity_level >= 1) SERIAL_ECHOLNPGM("");
+ // Get coords of a measuring point.
+ ix = mesh_point % MESH_MEAS_NUM_X_POINTS; // from 0 to MESH_NUM_X_POINTS - 1
+ iy = mesh_point / MESH_MEAS_NUM_X_POINTS;
+ if (iy & 1) ix = (MESH_MEAS_NUM_X_POINTS - 1) - ix; // Zig zag
+ float z0 = 0.f;
+ if (has_z && mesh_point > 0) {
+ uint16_t z_offset_u = eeprom_read_word((uint16_t*)(EEPROM_BED_CALIBRATION_Z_JITTER + 2 * (ix + iy * 3 - 1)));
+ z0 = mbl.z_values[0][0] + *reinterpret_cast(&z_offset_u) * 0.01;
+ //#if 0
+ if (verbosity_level >= 1) {
+ SERIAL_ECHOPGM("Bed leveling, point: ");
+ MYSERIAL.print(mesh_point);
+ SERIAL_ECHOPGM(", calibration z: ");
+ MYSERIAL.print(z0, 5);
+ SERIAL_ECHOLNPGM("");
+ }
+ //#endif
+ }
+
+ // Move Z up to MESH_HOME_Z_SEARCH.
+ current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
+ plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
+ st_synchronize();
+
+ // Move to XY position of the sensor point.
+ current_position[X_AXIS] = pgm_read_float(bed_ref_points + 2 * mesh_point);
+ current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 2 * mesh_point + 1);
+
+
+
+ world2machine_clamp(current_position[X_AXIS], current_position[Y_AXIS]);
+ if (verbosity_level >= 1) {
+
+ SERIAL_PROTOCOL(mesh_point);
+ clamped ? SERIAL_PROTOCOLPGM(": xy clamped.\n") : SERIAL_PROTOCOLPGM(": no xy clamping\n");
+ }
+
+
+ plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], XY_AXIS_FEEDRATE, active_extruder);
+ st_synchronize();
+
+ // Go down until endstop is hit
+ const float Z_CALIBRATION_THRESHOLD = 1.f;
+ if (!find_bed_induction_sensor_point_z((has_z && mesh_point > 0) ? z0 - Z_CALIBRATION_THRESHOLD : -10.f)) { //if we have data from z calibration max allowed difference is 1mm for each point, if we dont have data max difference is 10mm from initial point
+ kill_message = MSG_BED_LEVELING_FAILED_POINT_LOW;
+ break;
+ }
+ if (MESH_HOME_Z_SEARCH - current_position[Z_AXIS] < 0.1f) {
+ kill_message = MSG_BED_LEVELING_FAILED_PROBE_DISCONNECTED;
+ break;
+ }
+ if (has_z && fabs(z0 - current_position[Z_AXIS]) > Z_CALIBRATION_THRESHOLD) { //if we have data from z calibration, max. allowed difference is 1mm for each point
+ kill_message = MSG_BED_LEVELING_FAILED_POINT_HIGH;
+ break;
+ }
+
+ if (verbosity_level >= 10) {
+ SERIAL_ECHOPGM("X: ");
+ MYSERIAL.print(current_position[X_AXIS], 5);
+ SERIAL_ECHOLNPGM("");
+ SERIAL_ECHOPGM("Y: ");
+ MYSERIAL.print(current_position[Y_AXIS], 5);
+ SERIAL_PROTOCOLPGM("\n");
+ }
+
+ float offset_z = 0;
+
+#ifdef PINDA_THERMISTOR
+ offset_z = temp_compensation_pinda_thermistor_offset();
+#endif //PINDA_THERMISTOR
+
+ if (verbosity_level >= 1) {
+ SERIAL_ECHOPGM("mesh bed leveling: ");
+ MYSERIAL.print(current_position[Z_AXIS], 5);
+ SERIAL_ECHOPGM(" offset: ");
+ MYSERIAL.print(offset_z, 5);
+ SERIAL_ECHOLNPGM("");
+ }
+ mbl.set_z(ix, iy, current_position[Z_AXIS] - offset_z); //store measured z values z_values[iy][ix] = z - offset_z;
+
+ custom_message_state--;
+ mesh_point++;
+ lcd_update(1);
+ }
+ if (verbosity_level >= 20) SERIAL_ECHOLNPGM("Mesh bed leveling while loop finished.");
+ current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
+ if (verbosity_level >= 20) {
+ SERIAL_ECHOLNPGM("MESH_HOME_Z_SEARCH: ");
+ MYSERIAL.print(current_position[Z_AXIS], 5);
+ }
+ plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
+ st_synchronize();
+ if (mesh_point != MESH_MEAS_NUM_X_POINTS * MESH_MEAS_NUM_Y_POINTS) {
+ kill(kill_message);
+ SERIAL_ECHOLNPGM("killed");
+ }
+ clean_up_after_endstop_move();
+ SERIAL_ECHOLNPGM("clean up finished ");
+
+ bool apply_temp_comp = true;
+#ifdef PINDA_THERMISTOR
+ apply_temp_comp = false;
+#endif
+ if (apply_temp_comp)
+ if(temp_cal_active == true && calibration_status_pinda() == true) temp_compensation_apply(); //apply PINDA temperature compensation
+ babystep_apply(); // Apply Z height correction aka baby stepping before mesh bed leveing gets activated.
+ SERIAL_ECHOLNPGM("babystep applied");
+ bool eeprom_bed_correction_valid = eeprom_read_byte((unsigned char*)EEPROM_BED_CORRECTION_VALID) == 1;
+
+ if (verbosity_level >= 1) {
+ eeprom_bed_correction_valid ? SERIAL_PROTOCOLPGM("Bed correction data valid\n") : SERIAL_PROTOCOLPGM("Bed correction data not valid\n");
+ }
+
+ for (uint8_t i = 0; i < 4; ++i) {
+ unsigned char codes[4] = { 'L', 'R', 'F', 'B' };
+ long correction = 0;
+ if (code_seen(codes[i]))
+ correction = code_value_long();
+ else if (eeprom_bed_correction_valid) {
+ unsigned char *addr = (i < 2) ?
+ ((i == 0) ? (unsigned char*)EEPROM_BED_CORRECTION_LEFT : (unsigned char*)EEPROM_BED_CORRECTION_RIGHT) :
+ ((i == 2) ? (unsigned char*)EEPROM_BED_CORRECTION_FRONT : (unsigned char*)EEPROM_BED_CORRECTION_REAR);
+ correction = eeprom_read_int8(addr);
+ }
+ if (correction == 0)
+ continue;
+ float offset = float(correction) * 0.001f;
+ if (fabs(offset) > 0.101f) {
+ SERIAL_ERROR_START;
+ SERIAL_ECHOPGM("Excessive bed leveling correction: ");
+ SERIAL_ECHO(offset);
+ SERIAL_ECHOLNPGM(" microns");
+ }
+ else {
+ switch (i) {
+ case 0:
+ for (uint8_t row = 0; row < 3; ++row) {
+ mbl.z_values[row][1] += 0.5f * offset;
+ mbl.z_values[row][0] += offset;
+ }
+ break;
+ case 1:
+ for (uint8_t row = 0; row < 3; ++row) {
+ mbl.z_values[row][1] += 0.5f * offset;
+ mbl.z_values[row][2] += offset;
+ }
+ break;
+ case 2:
+ for (uint8_t col = 0; col < 3; ++col) {
+ mbl.z_values[1][col] += 0.5f * offset;
+ mbl.z_values[0][col] += offset;
+ }
+ break;
+ case 3:
+ for (uint8_t col = 0; col < 3; ++col) {
+ mbl.z_values[1][col] += 0.5f * offset;
+ mbl.z_values[2][col] += offset;
+ }
+ break;
+ }
+ }
+ }
+ SERIAL_ECHOLNPGM("Bed leveling correction finished");
+ mbl.upsample_3x3(); //bilinear interpolation from 3x3 to 7x7 points while using the same array z_values[iy][ix] for storing (just coppying measured data to new destination and interpolating between them)
+ SERIAL_ECHOLNPGM("Upsample finished");
+ mbl.active = 1; //activate mesh bed leveling
+ SERIAL_ECHOLNPGM("Mesh bed leveling activated");
+ go_home_with_z_lift();
+ SERIAL_ECHOLNPGM("Go home finished");
+ //unretract (after PINDA preheat retraction)
+ if (degHotend(active_extruder) > EXTRUDE_MINTEMP && temp_cal_active == true && calibration_status_pinda() == true && target_temperature_bed >= 50) {
+ current_position[E_AXIS] += DEFAULT_RETRACTION;
+ plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400, active_extruder);
+ }
+ // Restore custom message state
+ custom_message = custom_message_old;
+ custom_message_type = custom_message_type_old;
+ custom_message_state = custom_message_state_old;
+ mesh_bed_leveling_flag = false;
+ mesh_bed_run_from_menu = false;
+ lcd_update(2);
+
+ }
+ break;
+
+ /**
+ * G81: Print mesh bed leveling status and bed profile if activated
+ */
+ case 81:
+ if (mbl.active) {
+ SERIAL_PROTOCOLPGM("Num X,Y: ");
+ SERIAL_PROTOCOL(MESH_NUM_X_POINTS);
+ SERIAL_PROTOCOLPGM(",");
+ SERIAL_PROTOCOL(MESH_NUM_Y_POINTS);
+ SERIAL_PROTOCOLPGM("\nZ search height: ");
+ SERIAL_PROTOCOL(MESH_HOME_Z_SEARCH);
+ SERIAL_PROTOCOLLNPGM("\nMeasured points:");
+ for (int y = MESH_NUM_Y_POINTS-1; y >= 0; y--) {
+ for (int x = 0; x < MESH_NUM_X_POINTS; x++) {
+ SERIAL_PROTOCOLPGM(" ");
+ SERIAL_PROTOCOL_F(mbl.z_values[y][x], 5);
+ }
+ SERIAL_PROTOCOLPGM("\n");
+ }
+ }
+ else
+ SERIAL_PROTOCOLLNPGM("Mesh bed leveling not active.");
+ break;
+
+#if 0
+ /**
+ * G82: Single Z probe at current location
+ *
+ * WARNING! USE WITH CAUTION! If you'll try to probe where is no leveling pad, nasty things can happen!
+ *
+ */
+ case 82:
+ SERIAL_PROTOCOLLNPGM("Finding bed ");
+ setup_for_endstop_move();
+ find_bed_induction_sensor_point_z();
+ clean_up_after_endstop_move();
+ SERIAL_PROTOCOLPGM("Bed found at: ");
+ SERIAL_PROTOCOL_F(current_position[Z_AXIS], 5);
+ SERIAL_PROTOCOLPGM("\n");
+ break;
+
+ /**
+ * G83: Prusa3D specific: Babystep in Z and store to EEPROM
+ */
+ case 83:
+ {
+ int babystepz = code_seen('S') ? code_value() : 0;
+ int BabyPosition = code_seen('P') ? code_value() : 0;
+
+ if (babystepz != 0) {
+ //FIXME Vojtech: What shall be the index of the axis Z: 3 or 4?
+ // Is the axis indexed starting with zero or one?
+ if (BabyPosition > 4) {
+ SERIAL_PROTOCOLLNPGM("Index out of bounds");
+ }else{
+ // Save it to the eeprom
+ babystepLoadZ = babystepz;
+ EEPROM_save_B(EEPROM_BABYSTEP_Z0+(BabyPosition*2),&babystepLoadZ);
+ // adjust the Z
+ babystepsTodoZadd(babystepLoadZ);
+ }
+
+ }
+
+ }
+ break;
+ /**
+ * G84: Prusa3D specific: UNDO Babystep Z (move Z axis back)
+ */
+ case 84:
+ babystepsTodoZsubtract(babystepLoadZ);
+ // babystepLoadZ = 0;
+ break;
+
+ /**
+ * G85: Prusa3D specific: Pick best babystep
+ */
+ case 85:
+ lcd_pick_babystep();
+ break;
+#endif
+
+ /**
+ * G86: Prusa3D specific: Disable babystep correction after home.
+ * This G-code will be performed at the start of a calibration script.
+ */
+ case 86:
+ calibration_status_store(CALIBRATION_STATUS_LIVE_ADJUST);
+ break;
+ /**
+ * G87: Prusa3D specific: Enable babystep correction after home
+ * This G-code will be performed at the end of a calibration script.
+ */
+ case 87:
+ calibration_status_store(CALIBRATION_STATUS_CALIBRATED);
+ break;
+
+ /**
+ * G88: Prusa3D specific: Don't know what it is for, it is in V2Calibration.gcode
+ */
+ case 88:
+ break;
+
+
+#endif // ENABLE_MESH_BED_LEVELING
+
+
+ case 90: // G90
+ relative_mode = false;
+ break;
+ case 91: // G91
+ relative_mode = true;
+ break;
+ case 92: // G92
+ if(!code_seen(axis_codes[E_AXIS]))
+ st_synchronize();
+ for(int8_t i=0; i < NUM_AXIS; i++) {
+ if(code_seen(axis_codes[i])) {
+ if(i == E_AXIS) {
+ current_position[i] = code_value();
+ plan_set_e_position(current_position[E_AXIS]);
+ }
+ else {
+ current_position[i] = code_value()+add_homing[i];
+ plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
+ }
+ }
+ }
+ break;
+
+ case 98: //activate farm mode
+ farm_mode = 1;
+ PingTime = millis();
+ eeprom_update_byte((unsigned char *)EEPROM_FARM_MODE, farm_mode);
+ break;
+
+ case 99: //deactivate farm mode
+ farm_mode = 0;
+ lcd_printer_connected();
+ eeprom_update_byte((unsigned char *)EEPROM_FARM_MODE, farm_mode);
+ lcd_update(2);
+ break;
+
+
+
+
+
+
+
+ }
+ } // end if(code_seen('G'))
+
+ else if(code_seen('M'))
+ {
+ int index;
+ for (index = 1; *(strchr_pointer + index) == ' ' || *(strchr_pointer + index) == '\t'; index++);
+
+ /*for (++strchr_pointer; *strchr_pointer == ' ' || *strchr_pointer == '\t'; ++strchr_pointer);*/
+ if (*(strchr_pointer+index) < '0' || *(strchr_pointer+index) > '9') {
+ SERIAL_ECHOLNPGM("Invalid M code");
+ } else
+ switch((int)code_value())
+ {
+#ifdef ULTIPANEL
+
+ case 0: // M0 - Unconditional stop - Wait for user button press on LCD
+ case 1: // M1 - Conditional stop - Wait for user button press on LCD
+ {
+ char *src = strchr_pointer + 2;
+
+ codenum = 0;
+
+ bool hasP = false, hasS = false;
+ if (code_seen('P')) {
+ codenum = code_value(); // milliseconds to wait
+ hasP = codenum > 0;
+ }
+ if (code_seen('S')) {
+ codenum = code_value() * 1000; // seconds to wait
+ hasS = codenum > 0;
+ }
+ starpos = strchr(src, '*');
+ if (starpos != NULL) *(starpos) = '\0';
+ while (*src == ' ') ++src;
+ if (!hasP && !hasS && *src != '\0') {
+ lcd_setstatus(src);
+ } else {
+ LCD_MESSAGERPGM(MSG_USERWAIT);
+ }
+
+ lcd_ignore_click(); //call lcd_ignore_click aslo for else ???
+ st_synchronize();
+ previous_millis_cmd = millis();
+ if (codenum > 0){
+ codenum += millis(); // keep track of when we started waiting
+ while(millis() < codenum && !lcd_clicked()){
+ manage_heater();
+ manage_inactivity(true);
+ lcd_update();
+ }
+ lcd_ignore_click(false);
+ }else{
+ if (!lcd_detected())
+ break;
+ while(!lcd_clicked()){
+ manage_heater();
+ manage_inactivity(true);
+ lcd_update();
+ }
+ }
+ if (IS_SD_PRINTING)
+ LCD_MESSAGERPGM(MSG_RESUMING);
+ else
+ LCD_MESSAGERPGM(WELCOME_MSG);
+ }
+ break;
+#endif
+ case 17:
+ LCD_MESSAGERPGM(MSG_NO_MOVE);
+ enable_x();
+ enable_y();
+ enable_z();
+ enable_e0();
+ enable_e1();
+ enable_e2();
+ break;
+
+#ifdef SDSUPPORT
+ case 20: // M20 - list SD card
+ SERIAL_PROTOCOLLNRPGM(MSG_BEGIN_FILE_LIST);
+ card.ls();
+ SERIAL_PROTOCOLLNRPGM(MSG_END_FILE_LIST);
+ break;
+ case 21: // M21 - init SD card
+
+ card.initsd();
+
+ break;
+ case 22: //M22 - release SD card
+ card.release();
+
+ break;
+ case 23: //M23 - Select file
+ starpos = (strchr(strchr_pointer + 4,'*'));
+ if(starpos!=NULL)
+ *(starpos)='\0';
+ card.openFile(strchr_pointer + 4,true);
+ break;
+ case 24: //M24 - Start SD print
+ card.startFileprint();
+ starttime=millis();
+ break;
+ case 25: //M25 - Pause SD print
+ card.pauseSDPrint();
+ break;
+ case 26: //M26 - Set SD index
+ if(card.cardOK && code_seen('S')) {
+ card.setIndex(code_value_long());
+ }
+ break;
+ case 27: //M27 - Get SD status
+ card.getStatus();
+ break;
+ case 28: //M28 - Start SD write
+ starpos = (strchr(strchr_pointer + 4,'*'));
+ if(starpos != NULL){
+ char* npos = strchr(CMDBUFFER_CURRENT_STRING, 'N');
+ strchr_pointer = strchr(npos,' ') + 1;
+ *(starpos) = '\0';
+ }
+ card.openFile(strchr_pointer+4,false);
+ break;
+ case 29: //M29 - Stop SD write
+ //processed in write to file routine above
+ //card,saving = false;
+ break;
+ case 30: //M30 Delete File
+ if (card.cardOK){
+ card.closefile();
+ starpos = (strchr(strchr_pointer + 4,'*'));
+ if(starpos != NULL){
+ char* npos = strchr(CMDBUFFER_CURRENT_STRING, 'N');
+ strchr_pointer = strchr(npos,' ') + 1;
+ *(starpos) = '\0';
+ }
+ card.removeFile(strchr_pointer + 4);
+ }
+ break;
+ case 32: //M32 - Select file and start SD print
+ {
+ if(card.sdprinting) {
+ st_synchronize();
+
+ }
+ starpos = (strchr(strchr_pointer + 4,'*'));
+
+ char* namestartpos = (strchr(strchr_pointer + 4,'!')); //find ! to indicate filename string start.
+ if(namestartpos==NULL)
+ {
+ namestartpos=strchr_pointer + 4; //default name position, 4 letters after the M
+ }
+ else
+ namestartpos++; //to skip the '!'
+
+ if(starpos!=NULL)
+ *(starpos)='\0';
+
+ bool call_procedure=(code_seen('P'));
+
+ if(strchr_pointer>namestartpos)
+ call_procedure=false; //false alert, 'P' found within filename
+
+ if( card.cardOK )
+ {
+ card.openFile(namestartpos,true,!call_procedure);
+ if(code_seen('S'))
+ if(strchr_pointer= 0 && pin_status <= 255)
+ pin_number = code_value();
+ for(int8_t i = 0; i < (int8_t)(sizeof(sensitive_pins)/sizeof(int)); i++)
+ {
+ if (sensitive_pins[i] == pin_number)
+ {
+ pin_number = -1;
+ break;
+ }
+ }
+ #if defined(FAN_PIN) && FAN_PIN > -1
+ if (pin_number == FAN_PIN)
+ fanSpeed = pin_status;
+ #endif
+ if (pin_number > -1)
+ {
+ pinMode(pin_number, OUTPUT);
+ digitalWrite(pin_number, pin_status);
+ analogWrite(pin_number, pin_status);
+ }
+ }
+ break;
+
+ case 44: // M44: Prusa3D: Reset the bed skew and offset calibration.
+
+ // Reset the baby step value and the baby step applied flag.
+ calibration_status_store(CALIBRATION_STATUS_ASSEMBLED);
+ eeprom_update_word((uint16_t*)EEPROM_BABYSTEP_Z, 0);
+
+ // Reset the skew and offset in both RAM and EEPROM.
+ reset_bed_offset_and_skew();
+ // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
+ // the planner will not perform any adjustments in the XY plane.
+ // Wait for the motors to stop and update the current position with the absolute values.
+ world2machine_revert_to_uncorrected();
+ break;
+
+ case 45: // M45: Prusa3D: bed skew and offset with manual Z up
+ {
+ // Only Z calibration?
+ bool onlyZ = code_seen('Z');
+
+ if (!onlyZ) {
+ setTargetBed(0);
+ setTargetHotend(0, 0);
+ setTargetHotend(0, 1);
+ setTargetHotend(0, 2);
+ adjust_bed_reset(); //reset bed level correction
+ }
+
+ // Disable the default update procedure of the display. We will do a modal dialog.
+ lcd_update_enable(false);
+ // Let the planner use the uncorrected coordinates.
+ mbl.reset();
+ // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
+ // the planner will not perform any adjustments in the XY plane.
+ // Wait for the motors to stop and update the current position with the absolute values.
+ world2machine_revert_to_uncorrected();
+ // Reset the baby step value applied without moving the axes.
+ babystep_reset();
+ // Mark all axes as in a need for homing.
+ memset(axis_known_position, 0, sizeof(axis_known_position));
+
+ // Home in the XY plane.
+ //set_destination_to_current();
+ setup_for_endstop_move();
+ lcd_display_message_fullscreen_P(MSG_AUTO_HOME);
+ home_xy();
+
+ // Let the user move the Z axes up to the end stoppers.
+#ifdef TMC2130
+ if (calibrate_z_auto()) {
+#else //TMC2130
+ if (lcd_calibrate_z_end_stop_manual( onlyZ )) {
+#endif //TMC2130
+ refresh_cmd_timeout();
+ if (((degHotend(0) > MAX_HOTEND_TEMP_CALIBRATION) || (degBed() > MAX_BED_TEMP_CALIBRATION)) && (!onlyZ)) {
+ lcd_wait_for_cool_down();
+ lcd_show_fullscreen_message_and_wait_P(MSG_PAPER);
+ lcd_display_message_fullscreen_P(MSG_FIND_BED_OFFSET_AND_SKEW_LINE1);
+ lcd_implementation_print_at(0, 2, 1);
+ lcd_printPGM(MSG_FIND_BED_OFFSET_AND_SKEW_LINE2);
+ }
+
+ // Move the print head close to the bed.
+ current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
+ plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], homing_feedrate[Z_AXIS]/40, active_extruder);
+ st_synchronize();
+
+
+//#ifdef TMC2130
+// tmc2130_home_enter(X_AXIS_MASK | Y_AXIS_MASK);
+//#endif
+
+ int8_t verbosity_level = 0;
+ if (code_seen('V')) {
+ // Just 'V' without a number counts as V1.
+ char c = strchr_pointer[1];
+ verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
+ }
+
+ if (onlyZ) {
+ clean_up_after_endstop_move();
+ // Z only calibration.
+ // Load the machine correction matrix
+ world2machine_initialize();
+ // and correct the current_position to match the transformed coordinate system.
+ world2machine_update_current();
+ //FIXME
+ bool result = sample_mesh_and_store_reference();
+ if (result) {
+ if (calibration_status() == CALIBRATION_STATUS_Z_CALIBRATION)
+ // Shipped, the nozzle height has been set already. The user can start printing now.
+ calibration_status_store(CALIBRATION_STATUS_CALIBRATED);
+ // babystep_apply();
+ }
+ } else {
+ // Reset the baby step value and the baby step applied flag.
+ calibration_status_store(CALIBRATION_STATUS_ASSEMBLED);
+ eeprom_update_word((uint16_t*)EEPROM_BABYSTEP_Z, 0);
+ // Complete XYZ calibration.
+ uint8_t point_too_far_mask = 0;
+ BedSkewOffsetDetectionResultType result = find_bed_offset_and_skew(verbosity_level, point_too_far_mask);
+ clean_up_after_endstop_move();
+ // Print head up.
+ current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
+ plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], homing_feedrate[Z_AXIS]/40, active_extruder);
+ st_synchronize();
+ if (result >= 0) {
+ point_too_far_mask = 0;
+ // Second half: The fine adjustment.
+ // Let the planner use the uncorrected coordinates.
+ mbl.reset();
+ world2machine_reset();
+ // Home in the XY plane.
+ setup_for_endstop_move();
+ home_xy();
+ result = improve_bed_offset_and_skew(1, verbosity_level, point_too_far_mask);
+ clean_up_after_endstop_move();
+ // Print head up.
+ current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
+ plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], homing_feedrate[Z_AXIS]/40, active_extruder);
+ st_synchronize();
+ // if (result >= 0) babystep_apply();
+ }
+ lcd_bed_calibration_show_result(result, point_too_far_mask);
+ if (result >= 0) {
+ // Calibration valid, the machine should be able to print. Advise the user to run the V2Calibration.gcode.
+ calibration_status_store(CALIBRATION_STATUS_LIVE_ADJUST);
+ lcd_show_fullscreen_message_and_wait_P(MSG_BABYSTEP_Z_NOT_SET);
+ }
+ }
+#ifdef TMC2130
+ tmc2130_home_exit();
+#endif
+ } else {
+ // Timeouted.
+ }
+
+
+ lcd_update_enable(true);
+ break;
+ }
+
+ /*
+ case 46:
+ {
+ // M46: Prusa3D: Show the assigned IP address.
+ uint8_t ip[4];
+ bool hasIP = card.ToshibaFlashAir_GetIP(ip);
+ if (hasIP) {
+ SERIAL_ECHOPGM("Toshiba FlashAir current IP: ");
+ SERIAL_ECHO(int(ip[0]));
+ SERIAL_ECHOPGM(".");
+ SERIAL_ECHO(int(ip[1]));
+ SERIAL_ECHOPGM(".");
+ SERIAL_ECHO(int(ip[2]));
+ SERIAL_ECHOPGM(".");
+ SERIAL_ECHO(int(ip[3]));
+ SERIAL_ECHOLNPGM("");
+ } else {
+ SERIAL_ECHOLNPGM("Toshiba FlashAir GetIP failed");
+ }
+ break;
+ }
+ */
+
+ case 47:
+ // M47: Prusa3D: Show end stops dialog on the display.
+ lcd_diag_show_end_stops();
+ break;
+
+#if 0
+ case 48: // M48: scan the bed induction sensor points, print the sensor trigger coordinates to the serial line for visualization on the PC.
+ {
+ // Disable the default update procedure of the display. We will do a modal dialog.
+ lcd_update_enable(false);
+ // Let the planner use the uncorrected coordinates.
+ mbl.reset();
+ // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
+ // the planner will not perform any adjustments in the XY plane.
+ // Wait for the motors to stop and update the current position with the absolute values.
+ world2machine_revert_to_uncorrected();
+ // Move the print head close to the bed.
+ current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
+ plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], homing_feedrate[Z_AXIS]/40, active_extruder);
+ st_synchronize();
+ // Home in the XY plane.
+ set_destination_to_current();
+ setup_for_endstop_move();
+ home_xy();
+ int8_t verbosity_level = 0;
+ if (code_seen('V')) {
+ // Just 'V' without a number counts as V1.
+ char c = strchr_pointer[1];
+ verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
+ }
+ bool success = scan_bed_induction_points(verbosity_level);
+ clean_up_after_endstop_move();
+ // Print head up.
+ current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
+ plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], homing_feedrate[Z_AXIS]/40, active_extruder);
+ st_synchronize();
+ lcd_update_enable(true);
+ break;
+ }
+#endif
+
+// M48 Z-Probe repeatability measurement function.
+//
+// Usage: M48
+//
+// This function assumes the bed has been homed. Specificaly, that a G28 command
+// as been issued prior to invoking the M48 Z-Probe repeatability measurement function.
+// Any information generated by a prior G29 Bed leveling command will be lost and need to be
+// regenerated.
+//
+// The number of samples will default to 10 if not specified. You can use upper or lower case
+// letters for any of the options EXCEPT n. n must be in lower case because Marlin uses a capital
+// N for its communication protocol and will get horribly confused if you send it a capital N.
+//
+
+#ifdef ENABLE_AUTO_BED_LEVELING
+#ifdef Z_PROBE_REPEATABILITY_TEST
+
+ case 48: // M48 Z-Probe repeatability
+ {
+ #if Z_MIN_PIN == -1
+ #error "You must have a Z_MIN endstop in order to enable calculation of Z-Probe repeatability."
+ #endif
+
+ double sum=0.0;
+ double mean=0.0;
+ double sigma=0.0;
+ double sample_set[50];
+ int verbose_level=1, n=0, j, n_samples = 10, n_legs=0;
+ double X_current, Y_current, Z_current;
+ double X_probe_location, Y_probe_location, Z_start_location, ext_position;
+
+ if (code_seen('V') || code_seen('v')) {
+ verbose_level = code_value();
+ if (verbose_level<0 || verbose_level>4 ) {
+ SERIAL_PROTOCOLPGM("?Verbose Level not plausable.\n");
+ goto Sigma_Exit;
+ }
+ }
+
+ if (verbose_level > 0) {
+ SERIAL_PROTOCOLPGM("M48 Z-Probe Repeatability test. Version 2.00\n");
+ SERIAL_PROTOCOLPGM("Full support at: http://3dprintboard.com/forum.php\n");
+ }
+
+ if (code_seen('n')) {
+ n_samples = code_value();
+ if (n_samples<4 || n_samples>50 ) {
+ SERIAL_PROTOCOLPGM("?Specified sample size not plausable.\n");
+ goto Sigma_Exit;
+ }
+ }
+
+ X_current = X_probe_location = st_get_position_mm(X_AXIS);
+ Y_current = Y_probe_location = st_get_position_mm(Y_AXIS);
+ Z_current = st_get_position_mm(Z_AXIS);
+ Z_start_location = st_get_position_mm(Z_AXIS) + Z_RAISE_BEFORE_PROBING;
+ ext_position = st_get_position_mm(E_AXIS);
+
+ if (code_seen('X') || code_seen('x') ) {
+ X_probe_location = code_value() - X_PROBE_OFFSET_FROM_EXTRUDER;
+ if (X_probe_locationX_MAX_POS ) {
+ SERIAL_PROTOCOLPGM("?Specified X position out of range.\n");
+ goto Sigma_Exit;
+ }
+ }
+
+ if (code_seen('Y') || code_seen('y') ) {
+ Y_probe_location = code_value() - Y_PROBE_OFFSET_FROM_EXTRUDER;
+ if (Y_probe_locationY_MAX_POS ) {
+ SERIAL_PROTOCOLPGM("?Specified Y position out of range.\n");
+ goto Sigma_Exit;
+ }
+ }
+
+ if (code_seen('L') || code_seen('l') ) {
+ n_legs = code_value();
+ if ( n_legs==1 )
+ n_legs = 2;
+ if ( n_legs<0 || n_legs>15 ) {
+ SERIAL_PROTOCOLPGM("?Specified number of legs in movement not plausable.\n");
+ goto Sigma_Exit;
+ }
+ }
+
+//
+// Do all the preliminary setup work. First raise the probe.
+//
+
+ st_synchronize();
+ plan_bed_level_matrix.set_to_identity();
+ plan_buffer_line( X_current, Y_current, Z_start_location,
+ ext_position,
+ homing_feedrate[Z_AXIS]/60,
+ active_extruder);
+ st_synchronize();
+
+//
+// Now get everything to the specified probe point So we can safely do a probe to
+// get us close to the bed. If the Z-Axis is far from the bed, we don't want to
+// use that as a starting point for each probe.
+//
+ if (verbose_level > 2)
+ SERIAL_PROTOCOL("Positioning probe for the test.\n");
+
+ plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
+ ext_position,
+ homing_feedrate[X_AXIS]/60,
+ active_extruder);
+ st_synchronize();
+
+ current_position[X_AXIS] = X_current = st_get_position_mm(X_AXIS);
+ current_position[Y_AXIS] = Y_current = st_get_position_mm(Y_AXIS);
+ current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
+ current_position[E_AXIS] = ext_position = st_get_position_mm(E_AXIS);
+
+//
+// OK, do the inital probe to get us close to the bed.
+// Then retrace the right amount and use that in subsequent probes
+//
+
+ setup_for_endstop_move();
+ run_z_probe();
+
+ current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
+ Z_start_location = st_get_position_mm(Z_AXIS) + Z_RAISE_BEFORE_PROBING;
+
+ plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
+ ext_position,
+ homing_feedrate[X_AXIS]/60,
+ active_extruder);
+ st_synchronize();
+ current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
+
+ for( n=0; nX_MAX_POS)
+ X_current = X_MAX_POS;
+
+ if ( Y_currentY_MAX_POS)
+ Y_current = Y_MAX_POS;
+
+ if (verbose_level>3 ) {
+ SERIAL_ECHOPAIR("x: ", X_current);
+ SERIAL_ECHOPAIR("y: ", Y_current);
+ SERIAL_PROTOCOLLNPGM("");
+ }
+
+ do_blocking_move_to( X_current, Y_current, Z_current );
+ }
+ do_blocking_move_to( X_probe_location, Y_probe_location, Z_start_location); // Go back to the probe location
+ }
+
+ setup_for_endstop_move();
+ run_z_probe();
+
+ sample_set[n] = current_position[Z_AXIS];
+
+//
+// Get the current mean for the data points we have so far
+//
+ sum=0.0;
+ for( j=0; j<=n; j++) {
+ sum = sum + sample_set[j];
+ }
+ mean = sum / (double (n+1));
+//
+// Now, use that mean to calculate the standard deviation for the
+// data points we have so far
+//
+
+ sum=0.0;
+ for( j=0; j<=n; j++) {
+ sum = sum + (sample_set[j]-mean) * (sample_set[j]-mean);
+ }
+ sigma = sqrt( sum / (double (n+1)) );
+
+ if (verbose_level > 1) {
+ SERIAL_PROTOCOL(n+1);
+ SERIAL_PROTOCOL(" of ");
+ SERIAL_PROTOCOL(n_samples);
+ SERIAL_PROTOCOLPGM(" z: ");
+ SERIAL_PROTOCOL_F(current_position[Z_AXIS], 6);
+ }
+
+ if (verbose_level > 2) {
+ SERIAL_PROTOCOL(" mean: ");
+ SERIAL_PROTOCOL_F(mean,6);
+
+ SERIAL_PROTOCOL(" sigma: ");
+ SERIAL_PROTOCOL_F(sigma,6);
+ }
+
+ if (verbose_level > 0)
+ SERIAL_PROTOCOLPGM("\n");
+
+ plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
+ current_position[E_AXIS], homing_feedrate[Z_AXIS]/60, active_extruder);
+ st_synchronize();
+
+ }
+
+ delay(1000);
+
+ clean_up_after_endstop_move();
+
+// enable_endstops(true);
+
+ if (verbose_level > 0) {
+ SERIAL_PROTOCOLPGM("Mean: ");
+ SERIAL_PROTOCOL_F(mean, 6);
+ SERIAL_PROTOCOLPGM("\n");
+ }
+
+SERIAL_PROTOCOLPGM("Standard Deviation: ");
+SERIAL_PROTOCOL_F(sigma, 6);
+SERIAL_PROTOCOLPGM("\n\n");
+
+Sigma_Exit:
+ break;
+ }
+#endif // Z_PROBE_REPEATABILITY_TEST
+#endif // ENABLE_AUTO_BED_LEVELING
+
+ case 104: // M104
+ if(setTargetedHotend(104)){
+ break;
+ }
+ if (code_seen('S')) setTargetHotend(code_value(), tmp_extruder);
+ setWatch();
+ break;
+ case 112: // M112 -Emergency Stop
+ kill("", 3);
+ break;
+ case 140: // M140 set bed temp
+ if (code_seen('S')) setTargetBed(code_value());
+ break;
+ case 105 : // M105
+ if(setTargetedHotend(105)){
+ break;
+ }
+ #if defined(TEMP_0_PIN) && TEMP_0_PIN > -1
+ SERIAL_PROTOCOLPGM("ok T:");
+ SERIAL_PROTOCOL_F(degHotend(tmp_extruder),1);
+ SERIAL_PROTOCOLPGM(" /");
+ SERIAL_PROTOCOL_F(degTargetHotend(tmp_extruder),1);
+ #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
+ SERIAL_PROTOCOLPGM(" B:");
+ SERIAL_PROTOCOL_F(degBed(),1);
+ SERIAL_PROTOCOLPGM(" /");
+ SERIAL_PROTOCOL_F(degTargetBed(),1);
+ #endif //TEMP_BED_PIN
+ for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
+ SERIAL_PROTOCOLPGM(" T");
+ SERIAL_PROTOCOL(cur_extruder);
+ SERIAL_PROTOCOLPGM(":");
+ SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
+ SERIAL_PROTOCOLPGM(" /");
+ SERIAL_PROTOCOL_F(degTargetHotend(cur_extruder),1);
+ }
+ #else
+ SERIAL_ERROR_START;
+ SERIAL_ERRORLNRPGM(MSG_ERR_NO_THERMISTORS);
+ #endif
+
+ SERIAL_PROTOCOLPGM(" @:");
+ #ifdef EXTRUDER_WATTS
+ SERIAL_PROTOCOL((EXTRUDER_WATTS * getHeaterPower(tmp_extruder))/127);
+ SERIAL_PROTOCOLPGM("W");
+ #else
+ SERIAL_PROTOCOL(getHeaterPower(tmp_extruder));
+ #endif
+
+ SERIAL_PROTOCOLPGM(" B@:");
+ #ifdef BED_WATTS
+ SERIAL_PROTOCOL((BED_WATTS * getHeaterPower(-1))/127);
+ SERIAL_PROTOCOLPGM("W");
+ #else
+ SERIAL_PROTOCOL(getHeaterPower(-1));
+ #endif
+
+#ifdef PINDA_THERMISTOR
+ SERIAL_PROTOCOLPGM(" P:");
+ SERIAL_PROTOCOL_F(current_temperature_pinda,1);
+#endif //PINDA_THERMISTOR
+
+#ifdef AMBIENT_THERMISTOR
+ SERIAL_PROTOCOLPGM(" A:");
+ SERIAL_PROTOCOL_F(current_temperature_ambient,1);
+#endif //AMBIENT_THERMISTOR
+
+
+ #ifdef SHOW_TEMP_ADC_VALUES
+ {float raw = 0.0;
+
+ #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
+ SERIAL_PROTOCOLPGM(" ADC B:");
+ SERIAL_PROTOCOL_F(degBed(),1);
+ SERIAL_PROTOCOLPGM("C->");
+ raw = rawBedTemp();
+ SERIAL_PROTOCOL_F(raw/OVERSAMPLENR,5);
+ SERIAL_PROTOCOLPGM(" Rb->");
+ SERIAL_PROTOCOL_F(100 * (1 + (PtA * (raw/OVERSAMPLENR)) + (PtB * sq((raw/OVERSAMPLENR)))), 5);
+ SERIAL_PROTOCOLPGM(" Rxb->");
+ SERIAL_PROTOCOL_F(raw, 5);
+ #endif
+ for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
+ SERIAL_PROTOCOLPGM(" T");
+ SERIAL_PROTOCOL(cur_extruder);
+ SERIAL_PROTOCOLPGM(":");
+ SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
+ SERIAL_PROTOCOLPGM("C->");
+ raw = rawHotendTemp(cur_extruder);
+ SERIAL_PROTOCOL_F(raw/OVERSAMPLENR,5);
+ SERIAL_PROTOCOLPGM(" Rt");
+ SERIAL_PROTOCOL(cur_extruder);
+ SERIAL_PROTOCOLPGM("->");
+ SERIAL_PROTOCOL_F(100 * (1 + (PtA * (raw/OVERSAMPLENR)) + (PtB * sq((raw/OVERSAMPLENR)))), 5);
+ SERIAL_PROTOCOLPGM(" Rx");
+ SERIAL_PROTOCOL(cur_extruder);
+ SERIAL_PROTOCOLPGM("->");
+ SERIAL_PROTOCOL_F(raw, 5);
+ }}
+ #endif
+ SERIAL_PROTOCOLLN("");
+ return;
+ break;
+ case 109:
+ {// M109 - Wait for extruder heater to reach target.
+ if(setTargetedHotend(109)){
+ break;
+ }
+ LCD_MESSAGERPGM(MSG_HEATING);
+ heating_status = 1;
+ if (farm_mode) { prusa_statistics(1); };
+
+#ifdef AUTOTEMP
+ autotemp_enabled=false;
+ #endif
+ if (code_seen('S')) {
+ setTargetHotend(code_value(), tmp_extruder);
+ CooldownNoWait = true;
+ } else if (code_seen('R')) {
+ setTargetHotend(code_value(), tmp_extruder);
+ CooldownNoWait = false;
+ }
+ #ifdef AUTOTEMP
+ if (code_seen('S')) autotemp_min=code_value();
+ if (code_seen('B')) autotemp_max=code_value();
+ if (code_seen('F'))
+ {
+ autotemp_factor=code_value();
+ autotemp_enabled=true;
+ }
+ #endif
+
+ setWatch();
+ codenum = millis();
+
+ /* See if we are heating up or cooling down */
+ target_direction = isHeatingHotend(tmp_extruder); // true if heating, false if cooling
+
+ cancel_heatup = false;
+
+ wait_for_heater(codenum); //loops until target temperature is reached
+
+ LCD_MESSAGERPGM(MSG_HEATING_COMPLETE);
+ heating_status = 2;
+ if (farm_mode) { prusa_statistics(2); };
+
+ //starttime=millis();
+ previous_millis_cmd = millis();
+ }
+ break;
+ case 190: // M190 - Wait for bed heater to reach target.
+ #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
+ LCD_MESSAGERPGM(MSG_BED_HEATING);
+ heating_status = 3;
+ if (farm_mode) { prusa_statistics(1); };
+ if (code_seen('S'))
+ {
+ setTargetBed(code_value());
+ CooldownNoWait = true;
+ }
+ else if (code_seen('R'))
+ {
+ setTargetBed(code_value());
+ CooldownNoWait = false;
+ }
+ codenum = millis();
+
+ cancel_heatup = false;
+ target_direction = isHeatingBed(); // true if heating, false if cooling
+
+ while ( (target_direction)&&(!cancel_heatup) ? (isHeatingBed()) : (isCoolingBed()&&(CooldownNoWait==false)) )
+ {
+ if(( millis() - codenum) > 1000 ) //Print Temp Reading every 1 second while heating up.
+ {
+ if (!farm_mode) {
+ float tt = degHotend(active_extruder);
+ SERIAL_PROTOCOLPGM("T:");
+ SERIAL_PROTOCOL(tt);
+ SERIAL_PROTOCOLPGM(" E:");
+ SERIAL_PROTOCOL((int)active_extruder);
+ SERIAL_PROTOCOLPGM(" B:");
+ SERIAL_PROTOCOL_F(degBed(), 1);
+ SERIAL_PROTOCOLLN("");
+ }
+ codenum = millis();
+
+ }
+ manage_heater();
+ manage_inactivity();
+ lcd_update();
+ }
+ LCD_MESSAGERPGM(MSG_BED_DONE);
+ heating_status = 4;
+
+ previous_millis_cmd = millis();
+ #endif
+ break;
+
+ #if defined(FAN_PIN) && FAN_PIN > -1
+ case 106: //M106 Fan On
+ if (code_seen('S')){
+ fanSpeed=constrain(code_value(),0,255);
+ }
+ else {
+ fanSpeed=255;
+ }
+ break;
+ case 107: //M107 Fan Off
+ fanSpeed = 0;
+ break;
+ #endif //FAN_PIN
+
+ #if defined(PS_ON_PIN) && PS_ON_PIN > -1
+ case 80: // M80 - Turn on Power Supply
+ SET_OUTPUT(PS_ON_PIN); //GND
+ WRITE(PS_ON_PIN, PS_ON_AWAKE);
+
+ // If you have a switch on suicide pin, this is useful
+ // if you want to start another print with suicide feature after
+ // a print without suicide...
+ #if defined SUICIDE_PIN && SUICIDE_PIN > -1
+ SET_OUTPUT(SUICIDE_PIN);
+ WRITE(SUICIDE_PIN, HIGH);
+ #endif
+
+ #ifdef ULTIPANEL
+ powersupply = true;
+ LCD_MESSAGERPGM(WELCOME_MSG);
+ lcd_update();
+ #endif
+ break;
+ #endif
+
+ case 81: // M81 - Turn off Power Supply
+ disable_heater();
+ st_synchronize();
+ disable_e0();
+ disable_e1();
+ disable_e2();
+ finishAndDisableSteppers();
+ fanSpeed = 0;
+ delay(1000); // Wait a little before to switch off
+ #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
+ st_synchronize();
+ suicide();
+ #elif defined(PS_ON_PIN) && PS_ON_PIN > -1
+ SET_OUTPUT(PS_ON_PIN);
+ WRITE(PS_ON_PIN, PS_ON_ASLEEP);
+ #endif
+ #ifdef ULTIPANEL
+ powersupply = false;
+ LCD_MESSAGERPGM(CAT4(CUSTOM_MENDEL_NAME,PSTR(" "),MSG_OFF,PSTR("."))); //!!
+
+ /*
+ MACHNAME = "Prusa i3"
+ MSGOFF = "Vypnuto"
+ "Prusai3"" ""vypnuto""."
+
+ "Prusa i3"" "MSG_ALL[lang_selected][50]"."
+ */
+ lcd_update();
+ #endif
+ break;
+
+ case 82:
+ axis_relative_modes[3] = false;
+ break;
+ case 83:
+ axis_relative_modes[3] = true;
+ break;
+ case 18: //compatibility
+ case 84: // M84
+ if(code_seen('S')){
+ stepper_inactive_time = code_value() * 1000;
+ }
+ else
+ {
+ bool all_axis = !((code_seen(axis_codes[X_AXIS])) || (code_seen(axis_codes[Y_AXIS])) || (code_seen(axis_codes[Z_AXIS]))|| (code_seen(axis_codes[E_AXIS])));
+ if(all_axis)
+ {
+ st_synchronize();
+ disable_e0();
+ disable_e1();
+ disable_e2();
+ finishAndDisableSteppers();
+ }
+ else
+ {
+ st_synchronize();
+ if (code_seen('X')) disable_x();
+ if (code_seen('Y')) disable_y();
+ if (code_seen('Z')) disable_z();
+#if ((E0_ENABLE_PIN != X_ENABLE_PIN) && (E1_ENABLE_PIN != Y_ENABLE_PIN)) // Only enable on boards that have seperate ENABLE_PINS
+ if (code_seen('E')) {
+ disable_e0();
+ disable_e1();
+ disable_e2();
+ }
+ #endif
+ }
+ }
+ snmm_filaments_used = 0;
+ break;
+ case 85: // M85
+ if(code_seen('S')) {
+ max_inactive_time = code_value() * 1000;
+ }
+ break;
+ case 92: // M92
+ for(int8_t i=0; i < NUM_AXIS; i++)
+ {
+ if(code_seen(axis_codes[i]))
+ {
+ if(i == 3) { // E
+ float value = code_value();
+ if(value < 20.0) {
+ float factor = axis_steps_per_unit[i] / value; // increase e constants if M92 E14 is given for netfab.
+ max_jerk[E_AXIS] *= factor;
+ max_feedrate[i] *= factor;
+ axis_steps_per_sqr_second[i] *= factor;
+ }
+ axis_steps_per_unit[i] = value;
+ }
+ else {
+ axis_steps_per_unit[i] = code_value();
+ }
+ }
+ }
+ break;
+ case 115: // M115
+ if (code_seen('V')) {
+ // Report the Prusa version number.
+ SERIAL_PROTOCOLLNRPGM(FW_VERSION_STR_P());
+ } else if (code_seen('U')) {
+ // Check the firmware version provided. If the firmware version provided by the U code is higher than the currently running firmware,
+ // pause the print and ask the user to upgrade the firmware.
+ show_upgrade_dialog_if_version_newer(++ strchr_pointer);
+ } else {
+ SERIAL_PROTOCOLRPGM(MSG_M115_REPORT);
+ }
+ break;
+/* case 117: // M117 display message
+ starpos = (strchr(strchr_pointer + 5,'*'));
+ if(starpos!=NULL)
+ *(starpos)='\0';
+ lcd_setstatus(strchr_pointer + 5);
+ break;*/
+ case 114: // M114
+ SERIAL_PROTOCOLPGM("X:");
+ SERIAL_PROTOCOL(current_position[X_AXIS]);
+ SERIAL_PROTOCOLPGM(" Y:");
+ SERIAL_PROTOCOL(current_position[Y_AXIS]);
+ SERIAL_PROTOCOLPGM(" Z:");
+ SERIAL_PROTOCOL(current_position[Z_AXIS]);
+ SERIAL_PROTOCOLPGM(" E:");
+ SERIAL_PROTOCOL(current_position[E_AXIS]);
+
+ SERIAL_PROTOCOLRPGM(MSG_COUNT_X);
+ SERIAL_PROTOCOL(float(st_get_position(X_AXIS))/axis_steps_per_unit[X_AXIS]);
+ SERIAL_PROTOCOLPGM(" Y:");
+ SERIAL_PROTOCOL(float(st_get_position(Y_AXIS))/axis_steps_per_unit[Y_AXIS]);
+ SERIAL_PROTOCOLPGM(" Z:");
+ SERIAL_PROTOCOL(float(st_get_position(Z_AXIS))/axis_steps_per_unit[Z_AXIS]);
+ SERIAL_PROTOCOLPGM(" E:");
+ SERIAL_PROTOCOL(float(st_get_position(E_AXIS))/axis_steps_per_unit[E_AXIS]);
+
+ SERIAL_PROTOCOLLN("");
+ break;
+ case 120: // M120
+ enable_endstops(false) ;
+ break;
+ case 121: // M121
+ enable_endstops(true) ;
+ break;
+ case 119: // M119
+ SERIAL_PROTOCOLRPGM(MSG_M119_REPORT);
+ SERIAL_PROTOCOLLN("");
+ #if defined(X_MIN_PIN) && X_MIN_PIN > -1
+ SERIAL_PROTOCOLRPGM(MSG_X_MIN);
+ if(READ(X_MIN_PIN)^X_MIN_ENDSTOP_INVERTING){
+ SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
+ }else{
+ SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
+ }
+ SERIAL_PROTOCOLLN("");
+ #endif
+ #if defined(X_MAX_PIN) && X_MAX_PIN > -1
+ SERIAL_PROTOCOLRPGM(MSG_X_MAX);
+ if(READ(X_MAX_PIN)^X_MAX_ENDSTOP_INVERTING){
+ SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
+ }else{
+ SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
+ }
+ SERIAL_PROTOCOLLN("");
+ #endif
+ #if defined(Y_MIN_PIN) && Y_MIN_PIN > -1
+ SERIAL_PROTOCOLRPGM(MSG_Y_MIN);
+ if(READ(Y_MIN_PIN)^Y_MIN_ENDSTOP_INVERTING){
+ SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
+ }else{
+ SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
+ }
+ SERIAL_PROTOCOLLN("");
+ #endif
+ #if defined(Y_MAX_PIN) && Y_MAX_PIN > -1
+ SERIAL_PROTOCOLRPGM(MSG_Y_MAX);
+ if(READ(Y_MAX_PIN)^Y_MAX_ENDSTOP_INVERTING){
+ SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
+ }else{
+ SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
+ }
+ SERIAL_PROTOCOLLN("");
+ #endif
+ #if defined(Z_MIN_PIN) && Z_MIN_PIN > -1
+ SERIAL_PROTOCOLRPGM(MSG_Z_MIN);
+ if(READ(Z_MIN_PIN)^Z_MIN_ENDSTOP_INVERTING){
+ SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
+ }else{
+ SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
+ }
+ SERIAL_PROTOCOLLN("");
+ #endif
+ #if defined(Z_MAX_PIN) && Z_MAX_PIN > -1
+ SERIAL_PROTOCOLRPGM(MSG_Z_MAX);
+ if(READ(Z_MAX_PIN)^Z_MAX_ENDSTOP_INVERTING){
+ SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
+ }else{
+ SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
+ }
+ SERIAL_PROTOCOLLN("");
+ #endif
+ break;
+ //TODO: update for all axis, use for loop
+ #ifdef BLINKM
+ case 150: // M150
+ {
+ byte red;
+ byte grn;
+ byte blu;
+
+ if(code_seen('R')) red = code_value();
+ if(code_seen('U')) grn = code_value();
+ if(code_seen('B')) blu = code_value();
+
+ SendColors(red,grn,blu);
+ }
+ break;
+ #endif //BLINKM
+ case 200: // M200 D set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
+ {
+
+ tmp_extruder = active_extruder;
+ if(code_seen('T')) {
+ tmp_extruder = code_value();
+ if(tmp_extruder >= EXTRUDERS) {
+ SERIAL_ECHO_START;
+ SERIAL_ECHO(MSG_M200_INVALID_EXTRUDER);
+ break;
+ }
+ }
+
+ float area = .0;
+ if(code_seen('D')) {
+ float diameter = (float)code_value();
+ if (diameter == 0.0) {
+ // setting any extruder filament size disables volumetric on the assumption that
+ // slicers either generate in extruder values as cubic mm or as as filament feeds
+ // for all extruders
+ volumetric_enabled = false;
+ } else {
+ filament_size[tmp_extruder] = (float)code_value();
+ // make sure all extruders have some sane value for the filament size
+ filament_size[0] = (filament_size[0] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : filament_size[0]);
+ #if EXTRUDERS > 1
+ filament_size[1] = (filament_size[1] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : filament_size[1]);
+ #if EXTRUDERS > 2
+ filament_size[2] = (filament_size[2] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : filament_size[2]);
+ #endif
+ #endif
+ volumetric_enabled = true;
+ }
+ } else {
+ //reserved for setting filament diameter via UFID or filament measuring device
+ break;
+ }
+ calculate_volumetric_multipliers();
+ }
+ break;
+ case 201: // M201
+ for(int8_t i=0; i < NUM_AXIS; i++)
+ {
+ if(code_seen(axis_codes[i]))
+ {
+ max_acceleration_units_per_sq_second[i] = code_value();
+ }
+ }
+ // steps per sq second need to be updated to agree with the units per sq second (as they are what is used in the planner)
+ reset_acceleration_rates();
+ break;
+ #if 0 // Not used for Sprinter/grbl gen6
+ case 202: // M202
+ for(int8_t i=0; i < NUM_AXIS; i++) {
+ if(code_seen(axis_codes[i])) axis_travel_steps_per_sqr_second[i] = code_value() * axis_steps_per_unit[i];
+ }
+ break;
+ #endif
+ case 203: // M203 max feedrate mm/sec
+ for(int8_t i=0; i < NUM_AXIS; i++) {
+ if(code_seen(axis_codes[i])) max_feedrate[i] = code_value();
+ }
+ break;
+ case 204: // M204 acclereration S normal moves T filmanent only moves
+ {
+ if(code_seen('S')) acceleration = code_value() ;
+ if(code_seen('T')) retract_acceleration = code_value() ;
+ }
+ break;
+ case 205: //M205 advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk
+ {
+ if(code_seen('S')) minimumfeedrate = code_value();
+ if(code_seen('T')) mintravelfeedrate = code_value();
+ if(code_seen('B')) minsegmenttime = code_value() ;
+ if(code_seen('X')) max_jerk[X_AXIS] = max_jerk[Y_AXIS] = code_value();
+ if(code_seen('Y')) max_jerk[Y_AXIS] = code_value();
+ if(code_seen('Z')) max_jerk[Z_AXIS] = code_value();
+ if(code_seen('E')) max_jerk[E_AXIS] = code_value();
+ }
+ break;
+ case 206: // M206 additional homing offset
+ for(int8_t i=0; i < 3; i++)
+ {
+ if(code_seen(axis_codes[i])) add_homing[i] = code_value();
+ }
+ break;
+ #ifdef FWRETRACT
+ case 207: //M207 - set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop]
+ {
+ if(code_seen('S'))
+ {
+ retract_length = code_value() ;
+ }
+ if(code_seen('F'))
+ {
+ retract_feedrate = code_value()/60 ;
+ }
+ if(code_seen('Z'))
+ {
+ retract_zlift = code_value() ;
+ }
+ }break;
+ case 208: // M208 - set retract recover length S[positive mm surplus to the M207 S*] F[feedrate mm/min]
+ {
+ if(code_seen('S'))
+ {
+ retract_recover_length = code_value() ;
+ }
+ if(code_seen('F'))
+ {
+ retract_recover_feedrate = code_value()/60 ;
+ }
+ }break;
+ case 209: // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
+ {
+ if(code_seen('S'))
+ {
+ int t= code_value() ;
+ switch(t)
+ {
+ case 0:
+ {
+ autoretract_enabled=false;
+ retracted[0]=false;
+ #if EXTRUDERS > 1
+ retracted[1]=false;
+ #endif
+ #if EXTRUDERS > 2
+ retracted[2]=false;
+ #endif
+ }break;
+ case 1:
+ {
+ autoretract_enabled=true;
+ retracted[0]=false;
+ #if EXTRUDERS > 1
+ retracted[1]=false;
+ #endif
+ #if EXTRUDERS > 2
+ retracted[2]=false;
+ #endif
+ }break;
+ default:
+ SERIAL_ECHO_START;
+ SERIAL_ECHORPGM(MSG_UNKNOWN_COMMAND);
+ SERIAL_ECHO(CMDBUFFER_CURRENT_STRING);
+ SERIAL_ECHOLNPGM("\"(1)");
+ }
+ }
+
+ }break;
+ #endif // FWRETRACT
+ #if EXTRUDERS > 1
+ case 218: // M218 - set hotend offset (in mm), T X Y
+ {
+ if(setTargetedHotend(218)){
+ break;
+ }
+ if(code_seen('X'))
+ {
+ extruder_offset[X_AXIS][tmp_extruder] = code_value();
+ }
+ if(code_seen('Y'))
+ {
+ extruder_offset[Y_AXIS][tmp_extruder] = code_value();
+ }
+ SERIAL_ECHO_START;
+ SERIAL_ECHORPGM(MSG_HOTEND_OFFSET);
+ for(tmp_extruder = 0; tmp_extruder < EXTRUDERS; tmp_extruder++)
+ {
+ SERIAL_ECHO(" ");
+ SERIAL_ECHO(extruder_offset[X_AXIS][tmp_extruder]);
+ SERIAL_ECHO(",");
+ SERIAL_ECHO(extruder_offset[Y_AXIS][tmp_extruder]);
+ }
+ SERIAL_ECHOLN("");
+ }break;
+ #endif
+ case 220: // M220 S- set speed factor override percentage
+ {
+ if(code_seen('S'))
+ {
+ feedmultiply = code_value() ;
+ }
+ }
+ break;
+ case 221: // M221 S- set extrude factor override percentage
+ {
+ if(code_seen('S'))
+ {
+ int tmp_code = code_value();
+ if (code_seen('T'))
+ {
+ if(setTargetedHotend(221)){
+ break;
+ }
+ extruder_multiply[tmp_extruder] = tmp_code;
+ }
+ else
+ {
+ extrudemultiply = tmp_code ;
+ }
+ }
+ }
+ break;
+
+ case 226: // M226 P S- Wait until the specified pin reaches the state required
+ {
+ if(code_seen('P')){
+ int pin_number = code_value(); // pin number
+ int pin_state = -1; // required pin state - default is inverted
+
+ if(code_seen('S')) pin_state = code_value(); // required pin state
+
+ if(pin_state >= -1 && pin_state <= 1){
+
+ for(int8_t i = 0; i < (int8_t)(sizeof(sensitive_pins)/sizeof(int)); i++)
+ {
+ if (sensitive_pins[i] == pin_number)
+ {
+ pin_number = -1;
+ break;
+ }
+ }
+
+ if (pin_number > -1)
+ {
+ int target = LOW;
+
+ st_synchronize();
+
+ pinMode(pin_number, INPUT);
+
+ switch(pin_state){
+ case 1:
+ target = HIGH;
+ break;
+
+ case 0:
+ target = LOW;
+ break;
+
+ case -1:
+ target = !digitalRead(pin_number);
+ break;
+ }
+
+ while(digitalRead(pin_number) != target){
+ manage_heater();
+ manage_inactivity();
+ lcd_update();
+ }
+ }
+ }
+ }
+ }
+ break;
+
+ #if NUM_SERVOS > 0
+ case 280: // M280 - set servo position absolute. P: servo index, S: angle or microseconds
+ {
+ int servo_index = -1;
+ int servo_position = 0;
+ if (code_seen('P'))
+ servo_index = code_value();
+ if (code_seen('S')) {
+ servo_position = code_value();
+ if ((servo_index >= 0) && (servo_index < NUM_SERVOS)) {
+#if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
+ servos[servo_index].attach(0);
+#endif
+ servos[servo_index].write(servo_position);
+#if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
+ delay(PROBE_SERVO_DEACTIVATION_DELAY);
+ servos[servo_index].detach();
+#endif
+ }
+ else {
+ SERIAL_ECHO_START;
+ SERIAL_ECHO("Servo ");
+ SERIAL_ECHO(servo_index);
+ SERIAL_ECHOLN(" out of range");
+ }
+ }
+ else if (servo_index >= 0) {
+ SERIAL_PROTOCOL(MSG_OK);
+ SERIAL_PROTOCOL(" Servo ");
+ SERIAL_PROTOCOL(servo_index);
+ SERIAL_PROTOCOL(": ");
+ SERIAL_PROTOCOL(servos[servo_index].read());
+ SERIAL_PROTOCOLLN("");
+ }
+ }
+ break;
+ #endif // NUM_SERVOS > 0
+
+ #if (LARGE_FLASH == true && ( BEEPER > 0 || defined(ULTRALCD) || defined(LCD_USE_I2C_BUZZER)))
+ case 300: // M300
+ {
+ int beepS = code_seen('S') ? code_value() : 110;
+ int beepP = code_seen('P') ? code_value() : 1000;
+ if (beepS > 0)
+ {
+ #if BEEPER > 0
+ tone(BEEPER, beepS);
+ delay(beepP);
+ noTone(BEEPER);
+ #elif defined(ULTRALCD)
+ lcd_buzz(beepS, beepP);
+ #elif defined(LCD_USE_I2C_BUZZER)
+ lcd_buzz(beepP, beepS);
+ #endif
+ }
+ else
+ {
+ delay(beepP);
+ }
+ }
+ break;
+ #endif // M300
+
+ #ifdef PIDTEMP
+ case 301: // M301
+ {
+ if(code_seen('P')) Kp = code_value();
+ if(code_seen('I')) Ki = scalePID_i(code_value());
+ if(code_seen('D')) Kd = scalePID_d(code_value());
+
+ #ifdef PID_ADD_EXTRUSION_RATE
+ if(code_seen('C')) Kc = code_value();
+ #endif
+
+ updatePID();
+ SERIAL_PROTOCOLRPGM(MSG_OK);
+ SERIAL_PROTOCOL(" p:");
+ SERIAL_PROTOCOL(Kp);
+ SERIAL_PROTOCOL(" i:");
+ SERIAL_PROTOCOL(unscalePID_i(Ki));
+ SERIAL_PROTOCOL(" d:");
+ SERIAL_PROTOCOL(unscalePID_d(Kd));
+ #ifdef PID_ADD_EXTRUSION_RATE
+ SERIAL_PROTOCOL(" c:");
+ //Kc does not have scaling applied above, or in resetting defaults
+ SERIAL_PROTOCOL(Kc);
+ #endif
+ SERIAL_PROTOCOLLN("");
+ }
+ break;
+ #endif //PIDTEMP
+ #ifdef PIDTEMPBED
+ case 304: // M304
+ {
+ if(code_seen('P')) bedKp = code_value();
+ if(code_seen('I')) bedKi = scalePID_i(code_value());
+ if(code_seen('D')) bedKd = scalePID_d(code_value());
+
+ updatePID();
+ SERIAL_PROTOCOLRPGM(MSG_OK);
+ SERIAL_PROTOCOL(" p:");
+ SERIAL_PROTOCOL(bedKp);
+ SERIAL_PROTOCOL(" i:");
+ SERIAL_PROTOCOL(unscalePID_i(bedKi));
+ SERIAL_PROTOCOL(" d:");
+ SERIAL_PROTOCOL(unscalePID_d(bedKd));
+ SERIAL_PROTOCOLLN("");
+ }
+ break;
+ #endif //PIDTEMP
+ case 240: // M240 Triggers a camera by emulating a Canon RC-1 : http://www.doc-diy.net/photo/rc-1_hacked/
+ {
+ #ifdef CHDK
+
+ SET_OUTPUT(CHDK);
+ WRITE(CHDK, HIGH);
+ chdkHigh = millis();
+ chdkActive = true;
+
+ #else
+
+ #if defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1
+ const uint8_t NUM_PULSES=16;
+ const float PULSE_LENGTH=0.01524;
+ for(int i=0; i < NUM_PULSES; i++) {
+ WRITE(PHOTOGRAPH_PIN, HIGH);
+ _delay_ms(PULSE_LENGTH);
+ WRITE(PHOTOGRAPH_PIN, LOW);
+ _delay_ms(PULSE_LENGTH);
+ }
+ delay(7.33);
+ for(int i=0; i < NUM_PULSES; i++) {
+ WRITE(PHOTOGRAPH_PIN, HIGH);
+ _delay_ms(PULSE_LENGTH);
+ WRITE(PHOTOGRAPH_PIN, LOW);
+ _delay_ms(PULSE_LENGTH);
+ }
+ #endif
+ #endif //chdk end if
+ }
+ break;
+#ifdef DOGLCD
+ case 250: // M250 Set LCD contrast value: C (value 0..63)
+ {
+ if (code_seen('C')) {
+ lcd_setcontrast( ((int)code_value())&63 );
+ }
+ SERIAL_PROTOCOLPGM("lcd contrast value: ");
+ SERIAL_PROTOCOL(lcd_contrast);
+ SERIAL_PROTOCOLLN("");
+ }
+ break;
+#endif
+ #ifdef PREVENT_DANGEROUS_EXTRUDE
+ case 302: // allow cold extrudes, or set the minimum extrude temperature
+ {
+ float temp = .0;
+ if (code_seen('S')) temp=code_value();
+ set_extrude_min_temp(temp);
+ }
+ break;
+ #endif
+ case 303: // M303 PID autotune
+ {
+ float temp = 150.0;
+ int e=0;
+ int c=5;
+ if (code_seen('E')) e=code_value();
+ if (e<0)
+ temp=70;
+ if (code_seen('S')) temp=code_value();
+ if (code_seen('C')) c=code_value();
+ PID_autotune(temp, e, c);
+ }
+ break;
+ case 400: // M400 finish all moves
+ {
+ st_synchronize();
+ }
+ break;
+
+#ifdef FILAMENT_SENSOR
+case 404: //M404 Enter the nominal filament width (3mm, 1.75mm ) N<3.0> or display nominal filament width
+ {
+ #if (FILWIDTH_PIN > -1)
+ if(code_seen('N')) filament_width_nominal=code_value();
+ else{
+ SERIAL_PROTOCOLPGM("Filament dia (nominal mm):");
+ SERIAL_PROTOCOLLN(filament_width_nominal);
+ }
+ #endif
+ }
+ break;
+
+ case 405: //M405 Turn on filament sensor for control
+ {
+
+
+ if(code_seen('D')) meas_delay_cm=code_value();
+
+ if(meas_delay_cm> MAX_MEASUREMENT_DELAY)
+ meas_delay_cm = MAX_MEASUREMENT_DELAY;
+
+ if(delay_index2 == -1) //initialize the ring buffer if it has not been done since startup
+ {
+ int temp_ratio = widthFil_to_size_ratio();
+
+ for (delay_index1=0; delay_index1<(MAX_MEASUREMENT_DELAY+1); ++delay_index1 ){
+ measurement_delay[delay_index1]=temp_ratio-100; //subtract 100 to scale within a signed byte
+ }
+ delay_index1=0;
+ delay_index2=0;
+ }
+
+ filament_sensor = true ;
+
+ //SERIAL_PROTOCOLPGM("Filament dia (measured mm):");
+ //SERIAL_PROTOCOL(filament_width_meas);
+ //SERIAL_PROTOCOLPGM("Extrusion ratio(%):");
+ //SERIAL_PROTOCOL(extrudemultiply);
+ }
+ break;
+
+ case 406: //M406 Turn off filament sensor for control
+ {
+ filament_sensor = false ;
+ }
+ break;
+
+ case 407: //M407 Display measured filament diameter
+ {
+
+
+
+ SERIAL_PROTOCOLPGM("Filament dia (measured mm):");
+ SERIAL_PROTOCOLLN(filament_width_meas);
+ }
+ break;
+ #endif
+
+
+
+
+
+ case 500: // M500 Store settings in EEPROM
+ {
+ Config_StoreSettings(EEPROM_OFFSET);
+ }
+ break;
+ case 501: // M501 Read settings from EEPROM
+ {
+ Config_RetrieveSettings(EEPROM_OFFSET);
+ }
+ break;
+ case 502: // M502 Revert to default settings
+ {
+ Config_ResetDefault();
+ }
+ break;
+ case 503: // M503 print settings currently in memory
+ {
+ Config_PrintSettings();
+ }
+ break;
+ case 509: //M509 Force language selection
+ {
+ lcd_force_language_selection();
+ SERIAL_ECHO_START;
+ SERIAL_PROTOCOLPGM(("LANG SEL FORCED"));
+ }
+ break;
+ #ifdef ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
+ case 540:
+ {
+ if(code_seen('S')) abort_on_endstop_hit = code_value() > 0;
+ }
+ break;
+ #endif
+
+ #ifdef CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
+ case CUSTOM_M_CODE_SET_Z_PROBE_OFFSET:
+ {
+ float value;
+ if (code_seen('Z'))
+ {
+ value = code_value();
+ if ((Z_PROBE_OFFSET_RANGE_MIN <= value) && (value <= Z_PROBE_OFFSET_RANGE_MAX))
+ {
+ zprobe_zoffset = -value; // compare w/ line 278 of ConfigurationStore.cpp
+ SERIAL_ECHO_START;
+ SERIAL_ECHOLNRPGM(CAT4(MSG_ZPROBE_ZOFFSET, " ", MSG_OK,PSTR("")));
+ SERIAL_PROTOCOLLN("");
+ }
+ else
+ {
+ SERIAL_ECHO_START;
+ SERIAL_ECHORPGM(MSG_ZPROBE_ZOFFSET);
+ SERIAL_ECHORPGM(MSG_Z_MIN);
+ SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MIN);
+ SERIAL_ECHORPGM(MSG_Z_MAX);
+ SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MAX);
+ SERIAL_PROTOCOLLN("");
+ }
+ }
+ else
+ {
+ SERIAL_ECHO_START;
+ SERIAL_ECHOLNRPGM(CAT2(MSG_ZPROBE_ZOFFSET, PSTR(" : ")));
+ SERIAL_ECHO(-zprobe_zoffset);
+ SERIAL_PROTOCOLLN("");
+ }
+ break;
+ }
+ #endif // CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
+
+ #ifdef FILAMENTCHANGEENABLE
+ case 600: //Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
+ {
+ MYSERIAL.println("!!!!M600!!!!");
+
+ st_synchronize();
+ float target[4];
+ float lastpos[4];
+
+ if (farm_mode)
+
+ {
+
+ prusa_statistics(22);
+
+ }
+
+ feedmultiplyBckp=feedmultiply;
+ int8_t TooLowZ = 0;
+
+ target[X_AXIS]=current_position[X_AXIS];
+ target[Y_AXIS]=current_position[Y_AXIS];
+ target[Z_AXIS]=current_position[Z_AXIS];
+ target[E_AXIS]=current_position[E_AXIS];
+ lastpos[X_AXIS]=current_position[X_AXIS];
+ lastpos[Y_AXIS]=current_position[Y_AXIS];
+ lastpos[Z_AXIS]=current_position[Z_AXIS];
+ lastpos[E_AXIS]=current_position[E_AXIS];
+
+ //Restract extruder
+ if(code_seen('E'))
+ {
+ target[E_AXIS]+= code_value();
+ }
+ else
+ {
+ #ifdef FILAMENTCHANGE_FIRSTRETRACT
+ target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT ;
+ #endif
+ }
+ plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);
+
+ //Lift Z
+ if(code_seen('Z'))
+ {
+ target[Z_AXIS]+= code_value();
+ }
+ else
+ {
+ #ifdef FILAMENTCHANGE_ZADD
+ target[Z_AXIS]+= FILAMENTCHANGE_ZADD ;
+ if(target[Z_AXIS] < 10){
+ target[Z_AXIS]+= 10 ;
+ TooLowZ = 1;
+ }else{
+ TooLowZ = 0;
+ }
+ #endif
+
+
+ }
+ plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_ZFEED, active_extruder);
+
+ //Move XY to side
+ if(code_seen('X'))
+ {
+ target[X_AXIS]+= code_value();
+ }
+ else
+ {
+ #ifdef FILAMENTCHANGE_XPOS
+ target[X_AXIS]= FILAMENTCHANGE_XPOS ;
+ #endif
+ }
+ if(code_seen('Y'))
+ {
+ target[Y_AXIS]= code_value();
+ }
+ else
+ {
+ #ifdef FILAMENTCHANGE_YPOS
+ target[Y_AXIS]= FILAMENTCHANGE_YPOS ;
+ #endif
+ }
+ plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_XYFEED, active_extruder);
+ st_synchronize();
+ custom_message = true;
+ lcd_setstatuspgm(MSG_UNLOADING_FILAMENT);
+
+ // Unload filament
+ if(code_seen('L'))
+ {
+ target[E_AXIS]+= code_value();
+ }
+ else
+ {
+ #ifdef SNMM
+
+ #else
+ #ifdef FILAMENTCHANGE_FINALRETRACT
+ target[E_AXIS] += FILAMENTCHANGE_FINALRETRACT;
+ #endif
+ #endif // SNMM
+ }
+
+#ifdef SNMM
+ target[E_AXIS] += 12;
+ plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 3500, active_extruder);
+ target[E_AXIS] += 6;
+ plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 5000, active_extruder);
+ target[E_AXIS] += (FIL_LOAD_LENGTH * -1);
+ plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 5000, active_extruder);
+ st_synchronize();
+ target[E_AXIS] += (FIL_COOLING);
+ plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 50, active_extruder);
+ target[E_AXIS] += (FIL_COOLING*-1);
+ plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 50, active_extruder);
+ target[E_AXIS] += (bowden_length[snmm_extruder] *-1);
+ plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 3000, active_extruder);
+ st_synchronize();
+
+#else
+ plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);
+#endif // SNMM
+
+
+ //finish moves
+ st_synchronize();
+ //disable extruder steppers so filament can be removed
+ disable_e0();
+ disable_e1();
+ disable_e2();
+ delay(100);
+
+ //Wait for user to insert filament
+ uint8_t cnt=0;
+ int counterBeep = 0;
+ lcd_wait_interact();
+ load_filament_time = millis();
+ while(!lcd_clicked()){
+
+ cnt++;
+ manage_heater();
+ manage_inactivity(true);
+
+/*#ifdef SNMM
+ target[E_AXIS] += 0.002;
+ plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 500, active_extruder);
+
+#endif // SNMM*/
+
+ if(cnt==0)
+ {
+ #if BEEPER > 0
+ if (counterBeep== 500){
+ counterBeep = 0;
+ }
+ SET_OUTPUT(BEEPER);
+ if (counterBeep== 0){
+ WRITE(BEEPER,HIGH);
+ }
+ if (counterBeep== 20){
+ WRITE(BEEPER,LOW);
+ }
+ counterBeep++;
+ #else
+ #if !defined(LCD_FEEDBACK_FREQUENCY_HZ) || !defined(LCD_FEEDBACK_FREQUENCY_DURATION_MS)
+ lcd_buzz(1000/6,100);
+ #else
+ lcd_buzz(LCD_FEEDBACK_FREQUENCY_DURATION_MS,LCD_FEEDBACK_FREQUENCY_HZ);
+ #endif
+ #endif
+ }
+
+ }
+#ifdef SNMM
+ display_loading();
+ do {
+ target[E_AXIS] += 0.002;
+ plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 500, active_extruder);
+ delay_keep_alive(2);
+ } while (!lcd_clicked());
+ /*if (millis() - load_filament_time > 2) {
+ load_filament_time = millis();
+ target[E_AXIS] += 0.001;
+ plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 1000, active_extruder);
+ }*/
+#endif
+ //Filament inserted
+
+ WRITE(BEEPER,LOW);
+
+ //Feed the filament to the end of nozzle quickly
+#ifdef SNMM
+
+ st_synchronize();
+ target[E_AXIS] += bowden_length[snmm_extruder];
+ plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 3000, active_extruder);
+ target[E_AXIS] += FIL_LOAD_LENGTH - 60;
+ plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 1400, active_extruder);
+ target[E_AXIS] += 40;
+ plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder);
+ target[E_AXIS] += 10;
+ plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 50, active_extruder);
+#else
+ target[E_AXIS] += FILAMENTCHANGE_FIRSTFEED;
+ plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EFEED, active_extruder);
+#endif // SNMM
+
+ //Extrude some filament
+ target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
+ plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EXFEED, active_extruder);
+
+
+
+
+ //Wait for user to check the state
+ lcd_change_fil_state = 0;
+ lcd_loading_filament();
+ while ((lcd_change_fil_state == 0)||(lcd_change_fil_state != 1)){
+ lcd_change_fil_state = 0;
+ lcd_alright();
+ switch(lcd_change_fil_state){
+
+ // Filament failed to load so load it again
+ case 2:
+#ifdef SNMM
+ display_loading();
+ do {
+ target[E_AXIS] += 0.002;
+ plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 500, active_extruder);
+ delay_keep_alive(2);
+ } while (!lcd_clicked());
+
+ st_synchronize();
+ target[E_AXIS] += bowden_length[snmm_extruder];
+ plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 3000, active_extruder);
+ target[E_AXIS] += FIL_LOAD_LENGTH - 60;
+ plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 1400, active_extruder);
+ target[E_AXIS] += 40;
+ plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder);
+ target[E_AXIS] += 10;
+ plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 50, active_extruder);
+
+#else
+ target[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
+ plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EFEED, active_extruder);
+#endif
+ target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
+ plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EXFEED, active_extruder);
+
+ lcd_loading_filament();
+
+ break;
+
+ // Filament loaded properly but color is not clear
+ case 3:
+ target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
+ plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
+ lcd_loading_color();
+ break;
+
+ // Everything good
+ default:
+ lcd_change_success();
+ lcd_update_enable(true);
+ break;
+ }
+
+ }
+
+
+ //Not let's go back to print
+
+ //Feed a little of filament to stabilize pressure
+ target[E_AXIS]+= FILAMENTCHANGE_RECFEED;
+ plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EXFEED, active_extruder);
+
+ //Retract
+ target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT;
+ plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);
+
+
+
+ //plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder); //should do nothing
+
+ //Move XY back
+ plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_XYFEED, active_extruder);
+
+ //Move Z back
+ plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_ZFEED, active_extruder);
+
+
+ target[E_AXIS]= target[E_AXIS] - FILAMENTCHANGE_FIRSTRETRACT;
+
+ //Unretract
+ plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);
+
+ //Set E position to original
+ plan_set_e_position(lastpos[E_AXIS]);
+
+ //Recover feed rate
+ feedmultiply=feedmultiplyBckp;
+ char cmd[9];
+ sprintf_P(cmd, PSTR("M220 S%i"), feedmultiplyBckp);
+ enquecommand(cmd);
+
+ lcd_setstatuspgm(WELCOME_MSG);
+ custom_message = false;
+ custom_message_type = 0;
+#ifdef PAT9125
+ if (fsensor_M600)
+ {
+ cmdqueue_pop_front(); //hack because M600 repeated 2x when enqueued to front
+ st_synchronize();
+ while (!is_buffer_empty())
+ {
+ process_commands();
+ cmdqueue_pop_front();
+ }
+ fsensor_enable();
+ fsensor_restore_print_and_continue();
+ }
+#endif //PAT9125
+
+ }
+ break;
+ #endif //FILAMENTCHANGEENABLE
+ case 601: {
+ if(lcd_commands_type == 0) lcd_commands_type = LCD_COMMAND_LONG_PAUSE;
+ }
+ break;
+
+ case 602: {
+ if(lcd_commands_type == 0) lcd_commands_type = LCD_COMMAND_LONG_PAUSE_RESUME;
+ }
+ break;
+
+#ifdef LIN_ADVANCE
+ case 900: // M900: Set LIN_ADVANCE options.
+ gcode_M900();
+ break;
+#endif
+
+ case 907: // M907 Set digital trimpot motor current using axis codes.
+ {
+ #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
+ for(int i=0;i -1
+ uint8_t channel,current;
+ if(code_seen('P')) channel=code_value();
+ if(code_seen('S')) current=code_value();
+ digitalPotWrite(channel, current);
+ #endif
+ }
+ break;
+
+ case 910: // M910 TMC2130 init
+ {
+ tmc2130_init();
+ }
+ break;
+
+ case 911: // M911 Set TMC2130 holding currents
+ {
+ if (code_seen('X')) tmc2130_set_current_h(0, code_value());
+ if (code_seen('Y')) tmc2130_set_current_h(1, code_value());
+ if (code_seen('Z')) tmc2130_set_current_h(2, code_value());
+ if (code_seen('E')) tmc2130_set_current_h(3, code_value());
+ }
+ break;
+
+ case 912: // M912 Set TMC2130 running currents
+ {
+ if (code_seen('X')) tmc2130_set_current_r(0, code_value());
+ if (code_seen('Y')) tmc2130_set_current_r(1, code_value());
+ if (code_seen('Z')) tmc2130_set_current_r(2, code_value());
+ if (code_seen('E')) tmc2130_set_current_r(3, code_value());
+ }
+ break;
+
+ case 913: // M913 Print TMC2130 currents
+ {
+ tmc2130_print_currents();
+ }
+ break;
+
+ case 914: // M914 Set normal mode
+ {
+ tmc2130_mode = TMC2130_MODE_NORMAL;
+ tmc2130_init();
+ }
+ break;
+
+ case 915: // M915 Set silent mode
+ {
+ tmc2130_mode = TMC2130_MODE_SILENT;
+ tmc2130_init();
+ }
+ break;
+
+ case 916: // M916 Set sg_thrs
+ {
+ if (code_seen('X')) tmc2130_sg_thr[X_AXIS] = code_value();
+ if (code_seen('Y')) tmc2130_sg_thr[Y_AXIS] = code_value();
+ if (code_seen('Z')) tmc2130_sg_thr[Z_AXIS] = code_value();
+ if (code_seen('E')) tmc2130_sg_thr[E_AXIS] = code_value();
+ MYSERIAL.print("tmc2130_sg_thr[X]=");
+ MYSERIAL.println(tmc2130_sg_thr[X_AXIS], DEC);
+ MYSERIAL.print("tmc2130_sg_thr[Y]=");
+ MYSERIAL.println(tmc2130_sg_thr[Y_AXIS], DEC);
+ MYSERIAL.print("tmc2130_sg_thr[Z]=");
+ MYSERIAL.println(tmc2130_sg_thr[Z_AXIS], DEC);
+ MYSERIAL.print("tmc2130_sg_thr[E]=");
+ MYSERIAL.println(tmc2130_sg_thr[E_AXIS], DEC);
+ }
+ break;
+
+ case 917: // M917 Set TMC2130 pwm_ampl
+ {
+ if (code_seen('X')) tmc2130_set_pwm_ampl(0, code_value());
+ if (code_seen('Y')) tmc2130_set_pwm_ampl(1, code_value());
+ if (code_seen('Z')) tmc2130_set_pwm_ampl(2, code_value());
+ if (code_seen('E')) tmc2130_set_pwm_ampl(3, code_value());
+ }
+ break;
+
+ case 918: // M918 Set TMC2130 pwm_grad
+ {
+ if (code_seen('X')) tmc2130_set_pwm_grad(0, code_value());
+ if (code_seen('Y')) tmc2130_set_pwm_grad(1, code_value());
+ if (code_seen('Z')) tmc2130_set_pwm_grad(2, code_value());
+ if (code_seen('E')) tmc2130_set_pwm_grad(3, code_value());
+ }
+ break;
+
+ case 350: // M350 Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
+ {
+ #if defined(X_MS1_PIN) && X_MS1_PIN > -1
+ if(code_seen('S')) for(int i=0;i<=4;i++) microstep_mode(i,code_value());
+ for(int i=0;i -1
+ if(code_seen('S')) switch((int)code_value())
+ {
+ case 1:
+ for(int i=0;i '9') && *(strchr_pointer + index) != '?') {
+ SERIAL_ECHOLNPGM("Invalid T code.");
+ }
+ else {
+ if (*(strchr_pointer + index) == '?') {
+ tmp_extruder = choose_extruder_menu();
+ }
+ else {
+ tmp_extruder = code_value();
+ }
+ snmm_filaments_used |= (1 << tmp_extruder); //for stop print
+#ifdef SNMM
+
+ #ifdef LIN_ADVANCE
+ if (snmm_extruder != tmp_extruder)
+ clear_current_adv_vars(); //Check if the selected extruder is not the active one and reset LIN_ADVANCE variables if so.
+ #endif
+
+ snmm_extruder = tmp_extruder;
+
+ st_synchronize();
+ delay(100);
+
+ disable_e0();
+ disable_e1();
+ disable_e2();
+
+ pinMode(E_MUX0_PIN, OUTPUT);
+ pinMode(E_MUX1_PIN, OUTPUT);
+ pinMode(E_MUX2_PIN, OUTPUT);
+
+ delay(100);
+ SERIAL_ECHO_START;
+ SERIAL_ECHO("T:");
+ SERIAL_ECHOLN((int)tmp_extruder);
+ switch (tmp_extruder) {
+ case 1:
+ WRITE(E_MUX0_PIN, HIGH);
+ WRITE(E_MUX1_PIN, LOW);
+ WRITE(E_MUX2_PIN, LOW);
+
+ break;
+ case 2:
+ WRITE(E_MUX0_PIN, LOW);
+ WRITE(E_MUX1_PIN, HIGH);
+ WRITE(E_MUX2_PIN, LOW);
+
+ break;
+ case 3:
+ WRITE(E_MUX0_PIN, HIGH);
+ WRITE(E_MUX1_PIN, HIGH);
+ WRITE(E_MUX2_PIN, LOW);
+
+ break;
+ default:
+ WRITE(E_MUX0_PIN, LOW);
+ WRITE(E_MUX1_PIN, LOW);
+ WRITE(E_MUX2_PIN, LOW);
+
+ break;
+ }
+ delay(100);
+
+#else
+ if (tmp_extruder >= EXTRUDERS) {
+ SERIAL_ECHO_START;
+ SERIAL_ECHOPGM("T");
+ SERIAL_PROTOCOLLN((int)tmp_extruder);
+ SERIAL_ECHOLNRPGM(MSG_INVALID_EXTRUDER);
+ }
+ else {
+ boolean make_move = false;
+ if (code_seen('F')) {
+ make_move = true;
+ next_feedrate = code_value();
+ if (next_feedrate > 0.0) {
+ feedrate = next_feedrate;
+ }
+ }
+#if EXTRUDERS > 1
+ if (tmp_extruder != active_extruder) {
+ // Save current position to return to after applying extruder offset
+ memcpy(destination, current_position, sizeof(destination));
+ // Offset extruder (only by XY)
+ int i;
+ for (i = 0; i < 2; i++) {
+ current_position[i] = current_position[i] -
+ extruder_offset[i][active_extruder] +
+ extruder_offset[i][tmp_extruder];
+ }
+ // Set the new active extruder and position
+ active_extruder = tmp_extruder;
+ plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
+ // Move to the old position if 'F' was in the parameters
+ if (make_move && Stopped == false) {
+ prepare_move();
+ }
+ }
+#endif
+ SERIAL_ECHO_START;
+ SERIAL_ECHORPGM(MSG_ACTIVE_EXTRUDER);
+ SERIAL_PROTOCOLLN((int)active_extruder);
+ }
+
+#endif
+ }
+ } // end if(code_seen('T')) (end of T codes)
+
+#ifdef DEBUG_DCODES
+ else if (code_seen('D')) // D codes (debug)
+ {
+ switch((int)code_value())
+ {
+ case 0: // D0 - Reset
+ dcode_0(); break;
+ case 1: // D1 - Clear EEPROM
+ dcode_1(); break;
+ case 2: // D2 - Read/Write RAM
+ dcode_2(); break;
+ case 3: // D3 - Read/Write EEPROM
+ dcode_3(); break;
+ case 4: // D4 - Read/Write PIN
+ dcode_4(); break;
+ case 9125: // D9125 - PAT9125
+ dcode_9125(); break;
+ case 5:
+ MYSERIAL.println("D5 - Test");
+ if (code_seen('P'))
+ selectedSerialPort = (int)code_value();
+ MYSERIAL.print("selectedSerialPort = ");
+ MYSERIAL.println(selectedSerialPort, DEC);
+ break;
+ case 10: // D10 - Tell the printer that XYZ calibration went OK
+ calibration_status_store(CALIBRATION_STATUS_LIVE_ADJUST);
+ break;
+
+ case 12: //D12 - Reset Filament error, Power loss and crash counter ( Do it before every print and you can get stats for the print )
+ eeprom_update_byte((uint8_t*)EEPROM_CRASH_COUNT, 0x00);
+ eeprom_update_byte((uint8_t*)EEPROM_FERROR_COUNT, 0x00);
+ eeprom_update_byte((uint8_t*)EEPROM_POWER_COUNT, 0x00);
+ case 999:
+ {
+ MYSERIAL.println("D999 - crash");
+
+/* while (!is_buffer_empty())
+ {
+ process_commands();
+ cmdqueue_pop_front();
+ }*/
+ st_synchronize();
+
+ lcd_update_enable(true);
+ lcd_implementation_clear();
+ lcd_update(2);
+
+ // Increment crash counter
+ uint8_t crash_count = eeprom_read_byte((uint8_t*)EEPROM_CRASH_COUNT);
+ crash_count++;
+ eeprom_update_byte((uint8_t*)EEPROM_CRASH_COUNT, crash_count);
+
+#ifdef AUTOMATIC_RECOVERY_AFTER_CRASH
+ bool yesno = true;
+#else
+ bool yesno = lcd_show_fullscreen_message_yes_no_and_wait_P(MSG_CRASH_DETECTED, false);
+#endif
+ lcd_update_enable(true);
+ lcd_update(2);
+ lcd_setstatuspgm(WELCOME_MSG);
+ if (yesno)
+ {
+ enquecommand_P(PSTR("G28 X"));
+ enquecommand_P(PSTR("G28 Y"));
+ enquecommand_P(PSTR("D1000"));
+ }
+ else
+ {
+ enquecommand_P(PSTR("D1001"));
+ }
+ }
+ break;
+ case 1000:
+ crashdet_restore_print_and_continue();
+ tmc2130_sg_stop_on_crash = true;
+ break;
+ case 1001:
+ card.sdprinting = false;
+ card.closefile();
+ tmc2130_sg_stop_on_crash = true;
+ break;
+/* case 4:
+ {
+ MYSERIAL.println("D4 - Test");
+ uint8_t data[16];
+ int cnt = parse_hex(strchr_pointer + 2, data, 16);
+ MYSERIAL.println(cnt, DEC);
+ for (int i = 0; i < cnt; i++)
+ {
+ serial_print_hex_byte(data[i]);
+ MYSERIAL.write(' ');
+ }
+ MYSERIAL.write('\n');
+ }
+ break;
+/* case 3:
+ if (code_seen('L')) // lcd pwm (0-255)
+ {
+ lcdSoftPwm = (int)code_value();
+ }
+ if (code_seen('B')) // lcd blink delay (0-255)
+ {
+ lcdBlinkDelay = (int)code_value();
+ }
+// calibrate_z_auto();
+/* MYSERIAL.print("fsensor_enable()");
+#ifdef PAT9125
+ fsensor_enable();
+#endif*/
+ break;
+// case 4:
+// lcdBlinkDelay = 10;
+/* MYSERIAL.print("fsensor_disable()");
+#ifdef PAT9125
+ fsensor_disable();
+#endif
+ break;*/
+// break;
+/* case 5:
+ {
+ MYSERIAL.print("tmc2130_rd_MSCNT(0)=");
+ int val = tmc2130_rd_MSCNT(tmc2130_cs[0]);
+ MYSERIAL.println(val);
+ homeaxis(0);
+ }
+ break;*/
+ case 6:
+ {
+/* MYSERIAL.print("tmc2130_rd_MSCNT(1)=");
+ int val = tmc2130_rd_MSCNT(tmc2130_cs[1]);
+ MYSERIAL.println(val);*/
+ homeaxis(1);
+ }
+ break;
+ case 7:
+ {
+ MYSERIAL.print("pat9125_init=");
+ MYSERIAL.println(pat9125_init(200, 200));
+ }
+ break;
+ case 8:
+ {
+ MYSERIAL.print("swi2c_check=");
+ MYSERIAL.println(swi2c_check(0x75));
+ }
+ break;
+ }
+ }
+#endif //DEBUG_DCODES
+
+ else
+ {
+ SERIAL_ECHO_START;
+ SERIAL_ECHORPGM(MSG_UNKNOWN_COMMAND);
+ SERIAL_ECHO(CMDBUFFER_CURRENT_STRING);
+ SERIAL_ECHOLNPGM("\"(2)");
+ }
+
+ ClearToSend();
+}
+
+void FlushSerialRequestResend()
+{
+ //char cmdbuffer[bufindr][100]="Resend:";
+ MYSERIAL.flush();
+ SERIAL_PROTOCOLRPGM(MSG_RESEND);
+ SERIAL_PROTOCOLLN(gcode_LastN + 1);
+ ClearToSend();
+}
+
+// Confirm the execution of a command, if sent from a serial line.
+// Execution of a command from a SD card will not be confirmed.
+void ClearToSend()
+{
+ previous_millis_cmd = millis();
+ if (CMDBUFFER_CURRENT_TYPE == CMDBUFFER_CURRENT_TYPE_USB)
+ SERIAL_PROTOCOLLNRPGM(MSG_OK);
+}
+
+void get_coordinates()
+{
+ bool seen[4]={false,false,false,false};
+ for(int8_t i=0; i < NUM_AXIS; i++) {
+ if(code_seen(axis_codes[i]))
+ {
+ destination[i] = (float)code_value() + (axis_relative_modes[i] || relative_mode)*current_position[i];
+ seen[i]=true;
+ }
+ else destination[i] = current_position[i]; //Are these else lines really needed?
+ }
+ if(code_seen('F')) {
+ next_feedrate = code_value();
+#ifdef MAX_SILENT_FEEDRATE
+ if (tmc2130_mode == TMC2130_MODE_SILENT)
+ if (next_feedrate > MAX_SILENT_FEEDRATE) next_feedrate = MAX_SILENT_FEEDRATE;
+#endif //MAX_SILENT_FEEDRATE
+ if(next_feedrate > 0.0) feedrate = next_feedrate;
+ }
+}
+
+void get_arc_coordinates()
+{
+#ifdef SF_ARC_FIX
+ bool relative_mode_backup = relative_mode;
+ relative_mode = true;
+#endif
+ get_coordinates();
+#ifdef SF_ARC_FIX
+ relative_mode=relative_mode_backup;
+#endif
+
+ if(code_seen('I')) {
+ offset[0] = code_value();
+ }
+ else {
+ offset[0] = 0.0;
+ }
+ if(code_seen('J')) {
+ offset[1] = code_value();
+ }
+ else {
+ offset[1] = 0.0;
+ }
+}
+
+void clamp_to_software_endstops(float target[3])
+{
+#ifdef DEBUG_DISABLE_SWLIMITS
+ return;
+#endif //DEBUG_DISABLE_SWLIMITS
+ world2machine_clamp(target[0], target[1]);
+
+ // Clamp the Z coordinate.
+ if (min_software_endstops) {
+ float negative_z_offset = 0;
+ #ifdef ENABLE_AUTO_BED_LEVELING
+ if (Z_PROBE_OFFSET_FROM_EXTRUDER < 0) negative_z_offset = negative_z_offset + Z_PROBE_OFFSET_FROM_EXTRUDER;
+ if (add_homing[Z_AXIS] < 0) negative_z_offset = negative_z_offset + add_homing[Z_AXIS];
+ #endif
+ if (target[Z_AXIS] < min_pos[Z_AXIS]+negative_z_offset) target[Z_AXIS] = min_pos[Z_AXIS]+negative_z_offset;
+ }
+ if (max_software_endstops) {
+ if (target[Z_AXIS] > max_pos[Z_AXIS]) target[Z_AXIS] = max_pos[Z_AXIS];
+ }
+}
+
+#ifdef MESH_BED_LEVELING
+ void mesh_plan_buffer_line(const float &x, const float &y, const float &z, const float &e, const float &feed_rate, const uint8_t extruder) {
+ float dx = x - current_position[X_AXIS];
+ float dy = y - current_position[Y_AXIS];
+ float dz = z - current_position[Z_AXIS];
+ int n_segments = 0;
+
+ if (mbl.active) {
+ float len = abs(dx) + abs(dy);
+ if (len > 0)
+ // Split to 3cm segments or shorter.
+ n_segments = int(ceil(len / 30.f));
+ }
+
+ if (n_segments > 1) {
+ float de = e - current_position[E_AXIS];
+ for (int i = 1; i < n_segments; ++ i) {
+ float t = float(i) / float(n_segments);
+ plan_buffer_line(
+ current_position[X_AXIS] + t * dx,
+ current_position[Y_AXIS] + t * dy,
+ current_position[Z_AXIS] + t * dz,
+ current_position[E_AXIS] + t * de,
+ feed_rate, extruder);
+ }
+ }
+ // The rest of the path.
+ plan_buffer_line(x, y, z, e, feed_rate, extruder);
+ current_position[X_AXIS] = x;
+ current_position[Y_AXIS] = y;
+ current_position[Z_AXIS] = z;
+ current_position[E_AXIS] = e;
+ }
+#endif // MESH_BED_LEVELING
+
+void prepare_move()
+{
+ clamp_to_software_endstops(destination);
+ previous_millis_cmd = millis();
+
+ // Do not use feedmultiply for E or Z only moves
+ if( (current_position[X_AXIS] == destination [X_AXIS]) && (current_position[Y_AXIS] == destination [Y_AXIS])) {
+ plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
+ }
+ else {
+#ifdef MESH_BED_LEVELING
+ mesh_plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate*feedmultiply*(1./(60.f*100.f)), active_extruder);
+#else
+ plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate*feedmultiply*(1./(60.f*100.f)), active_extruder);
+#endif
+ }
+
+ for(int8_t i=0; i < NUM_AXIS; i++) {
+ current_position[i] = destination[i];
+ }
+}
+
+void prepare_arc_move(char isclockwise) {
+ float r = hypot(offset[X_AXIS], offset[Y_AXIS]); // Compute arc radius for mc_arc
+
+ // Trace the arc
+ mc_arc(current_position, destination, offset, X_AXIS, Y_AXIS, Z_AXIS, feedrate*feedmultiply/60/100.0, r, isclockwise, active_extruder);
+
+ // As far as the parser is concerned, the position is now == target. In reality the
+ // motion control system might still be processing the action and the real tool position
+ // in any intermediate location.
+ for(int8_t i=0; i < NUM_AXIS; i++) {
+ current_position[i] = destination[i];
+ }
+ previous_millis_cmd = millis();
+}
+
+#if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
+
+#if defined(FAN_PIN)
+ #if CONTROLLERFAN_PIN == FAN_PIN
+ #error "You cannot set CONTROLLERFAN_PIN equal to FAN_PIN"
+ #endif
+#endif
+
+unsigned long lastMotor = 0; //Save the time for when a motor was turned on last
+unsigned long lastMotorCheck = 0;
+
+void controllerFan()
+{
+ if ((millis() - lastMotorCheck) >= 2500) //Not a time critical function, so we only check every 2500ms
+ {
+ lastMotorCheck = millis();
+
+ if(!READ(X_ENABLE_PIN) || !READ(Y_ENABLE_PIN) || !READ(Z_ENABLE_PIN) || (soft_pwm_bed > 0)
+ #if EXTRUDERS > 2
+ || !READ(E2_ENABLE_PIN)
+ #endif
+ #if EXTRUDER > 1
+ #if defined(X2_ENABLE_PIN) && X2_ENABLE_PIN > -1
+ || !READ(X2_ENABLE_PIN)
+ #endif
+ || !READ(E1_ENABLE_PIN)
+ #endif
+ || !READ(E0_ENABLE_PIN)) //If any of the drivers are enabled...
+ {
+ lastMotor = millis(); //... set time to NOW so the fan will turn on
+ }
+
+ if ((millis() - lastMotor) >= (CONTROLLERFAN_SECS*1000UL) || lastMotor == 0) //If the last time any driver was enabled, is longer since than CONTROLLERSEC...
+ {
+ digitalWrite(CONTROLLERFAN_PIN, 0);
+ analogWrite(CONTROLLERFAN_PIN, 0);
+ }
+ else
+ {
+ // allows digital or PWM fan output to be used (see M42 handling)
+ digitalWrite(CONTROLLERFAN_PIN, CONTROLLERFAN_SPEED);
+ analogWrite(CONTROLLERFAN_PIN, CONTROLLERFAN_SPEED);
+ }
+ }
+}
+#endif
+
+#ifdef TEMP_STAT_LEDS
+static bool blue_led = false;
+static bool red_led = false;
+static uint32_t stat_update = 0;
+
+void handle_status_leds(void) {
+ float max_temp = 0.0;
+ if(millis() > stat_update) {
+ stat_update += 500; // Update every 0.5s
+ for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
+ max_temp = max(max_temp, degHotend(cur_extruder));
+ max_temp = max(max_temp, degTargetHotend(cur_extruder));
+ }
+ #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
+ max_temp = max(max_temp, degTargetBed());
+ max_temp = max(max_temp, degBed());
+ #endif
+ if((max_temp > 55.0) && (red_led == false)) {
+ digitalWrite(STAT_LED_RED, 1);
+ digitalWrite(STAT_LED_BLUE, 0);
+ red_led = true;
+ blue_led = false;
+ }
+ if((max_temp < 54.0) && (blue_led == false)) {
+ digitalWrite(STAT_LED_RED, 0);
+ digitalWrite(STAT_LED_BLUE, 1);
+ red_led = false;
+ blue_led = true;
+ }
+ }
+}
+#endif
+
+void manage_inactivity(bool ignore_stepper_queue/*=false*/) //default argument set in Marlin.h
+{
+
+#if defined(KILL_PIN) && KILL_PIN > -1
+ static int killCount = 0; // make the inactivity button a bit less responsive
+ const int KILL_DELAY = 10000;
+#endif
+
+ if(buflen < (BUFSIZE-1)){
+ get_command();
+ }
+
+ if( (millis() - previous_millis_cmd) > max_inactive_time )
+ if(max_inactive_time)
+ kill("", 4);
+ if(stepper_inactive_time) {
+ if( (millis() - previous_millis_cmd) > stepper_inactive_time )
+ {
+ if(blocks_queued() == false && ignore_stepper_queue == false) {
+ disable_x();
+// SERIAL_ECHOLNPGM("manage_inactivity - disable Y");
+ disable_y();
+ disable_z();
+ disable_e0();
+ disable_e1();
+ disable_e2();
+ }
+ }
+ }
+
+ #ifdef CHDK //Check if pin should be set to LOW after M240 set it to HIGH
+ if (chdkActive && (millis() - chdkHigh > CHDK_DELAY))
+ {
+ chdkActive = false;
+ WRITE(CHDK, LOW);
+ }
+ #endif
+
+ #if defined(KILL_PIN) && KILL_PIN > -1
+
+ // Check if the kill button was pressed and wait just in case it was an accidental
+ // key kill key press
+ // -------------------------------------------------------------------------------
+ if( 0 == READ(KILL_PIN) )
+ {
+ killCount++;
+ }
+ else if (killCount > 0)
+ {
+ killCount--;
+ }
+ // Exceeded threshold and we can confirm that it was not accidental
+ // KILL the machine
+ // ----------------------------------------------------------------
+ if ( killCount >= KILL_DELAY)
+ {
+ kill("", 5);
+ }
+ #endif
+
+ #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
+ controllerFan(); //Check if fan should be turned on to cool stepper drivers down
+ #endif
+ #ifdef EXTRUDER_RUNOUT_PREVENT
+ if( (millis() - previous_millis_cmd) > EXTRUDER_RUNOUT_SECONDS*1000 )
+ if(degHotend(active_extruder)>EXTRUDER_RUNOUT_MINTEMP)
+ {
+ bool oldstatus=READ(E0_ENABLE_PIN);
+ enable_e0();
+ float oldepos=current_position[E_AXIS];
+ float oldedes=destination[E_AXIS];
+ plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS],
+ destination[E_AXIS]+EXTRUDER_RUNOUT_EXTRUDE*EXTRUDER_RUNOUT_ESTEPS/axis_steps_per_unit[E_AXIS],
+ EXTRUDER_RUNOUT_SPEED/60.*EXTRUDER_RUNOUT_ESTEPS/axis_steps_per_unit[E_AXIS], active_extruder);
+ current_position[E_AXIS]=oldepos;
+ destination[E_AXIS]=oldedes;
+ plan_set_e_position(oldepos);
+ previous_millis_cmd=millis();
+ st_synchronize();
+ WRITE(E0_ENABLE_PIN,oldstatus);
+ }
+ #endif
+ #ifdef TEMP_STAT_LEDS
+ handle_status_leds();
+ #endif
+ check_axes_activity();
+}
+
+void kill(const char *full_screen_message, unsigned char id)
+{
+ SERIAL_ECHOPGM("KILL: ");
+ MYSERIAL.println(int(id));
+ //return;
+ cli(); // Stop interrupts
+ disable_heater();
+
+ disable_x();
+// SERIAL_ECHOLNPGM("kill - disable Y");
+ disable_y();
+ disable_z();
+ disable_e0();
+ disable_e1();
+ disable_e2();
+
+#if defined(PS_ON_PIN) && PS_ON_PIN > -1
+ pinMode(PS_ON_PIN,INPUT);
+#endif
+ SERIAL_ERROR_START;
+ SERIAL_ERRORLNRPGM(MSG_ERR_KILLED);
+ if (full_screen_message != NULL) {
+ SERIAL_ERRORLNRPGM(full_screen_message);
+ lcd_display_message_fullscreen_P(full_screen_message);
+ } else {
+ LCD_ALERTMESSAGERPGM(MSG_KILLED);
+ }
+
+ // FMC small patch to update the LCD before ending
+ sei(); // enable interrupts
+ for ( int i=5; i--; lcd_update())
+ {
+ delay(200);
+ }
+ cli(); // disable interrupts
+ suicide();
+ while(1) { /* Intentionally left empty */ } // Wait for reset
+}
+
+void Stop()
+{
+ disable_heater();
+ if(Stopped == false) {
+ Stopped = true;
+ Stopped_gcode_LastN = gcode_LastN; // Save last g_code for restart
+ SERIAL_ERROR_START;
+ SERIAL_ERRORLNRPGM(MSG_ERR_STOPPED);
+ LCD_MESSAGERPGM(MSG_STOPPED);
+ }
+}
+
+bool IsStopped() { return Stopped; };
+
+#ifdef FAST_PWM_FAN
+void setPwmFrequency(uint8_t pin, int val)
+{
+ val &= 0x07;
+ switch(digitalPinToTimer(pin))
+ {
+
+ #if defined(TCCR0A)
+ case TIMER0A:
+ case TIMER0B:
+// TCCR0B &= ~(_BV(CS00) | _BV(CS01) | _BV(CS02));
+// TCCR0B |= val;
+ break;
+ #endif
+
+ #if defined(TCCR1A)
+ case TIMER1A:
+ case TIMER1B:
+// TCCR1B &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
+// TCCR1B |= val;
+ break;
+ #endif
+
+ #if defined(TCCR2)
+ case TIMER2:
+ case TIMER2:
+ TCCR2 &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
+ TCCR2 |= val;
+ break;
+ #endif
+
+ #if defined(TCCR2A)
+ case TIMER2A:
+ case TIMER2B:
+ TCCR2B &= ~(_BV(CS20) | _BV(CS21) | _BV(CS22));
+ TCCR2B |= val;
+ break;
+ #endif
+
+ #if defined(TCCR3A)
+ case TIMER3A:
+ case TIMER3B:
+ case TIMER3C:
+ TCCR3B &= ~(_BV(CS30) | _BV(CS31) | _BV(CS32));
+ TCCR3B |= val;
+ break;
+ #endif
+
+ #if defined(TCCR4A)
+ case TIMER4A:
+ case TIMER4B:
+ case TIMER4C:
+ TCCR4B &= ~(_BV(CS40) | _BV(CS41) | _BV(CS42));
+ TCCR4B |= val;
+ break;
+ #endif
+
+ #if defined(TCCR5A)
+ case TIMER5A:
+ case TIMER5B:
+ case TIMER5C:
+ TCCR5B &= ~(_BV(CS50) | _BV(CS51) | _BV(CS52));
+ TCCR5B |= val;
+ break;
+ #endif
+
+ }
+}
+#endif //FAST_PWM_FAN
+
+bool setTargetedHotend(int code){
+ tmp_extruder = active_extruder;
+ if(code_seen('T')) {
+ tmp_extruder = code_value();
+ if(tmp_extruder >= EXTRUDERS) {
+ SERIAL_ECHO_START;
+ switch(code){
+ case 104:
+ SERIAL_ECHORPGM(MSG_M104_INVALID_EXTRUDER);
+ break;
+ case 105:
+ SERIAL_ECHO(MSG_M105_INVALID_EXTRUDER);
+ break;
+ case 109:
+ SERIAL_ECHO(MSG_M109_INVALID_EXTRUDER);
+ break;
+ case 218:
+ SERIAL_ECHO(MSG_M218_INVALID_EXTRUDER);
+ break;
+ case 221:
+ SERIAL_ECHO(MSG_M221_INVALID_EXTRUDER);
+ break;
+ }
+ SERIAL_PROTOCOLLN((int)tmp_extruder);
+ return true;
+ }
+ }
+ return false;
+}
+
+void save_statistics(unsigned long _total_filament_used, unsigned long _total_print_time) //_total_filament_used unit: mm/100; print time in s
+{
+ if (eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 1) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 2) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 3) == 255)
+ {
+ eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, 0);
+ eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, 0);
+ }
+
+ unsigned long _previous_filament = eeprom_read_dword((uint32_t *)EEPROM_FILAMENTUSED); //_previous_filament unit: cm
+ unsigned long _previous_time = eeprom_read_dword((uint32_t *)EEPROM_TOTALTIME); //_previous_time unit: min
+
+ eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, _previous_time + (_total_print_time/60)); //EEPROM_TOTALTIME unit: min
+ eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, _previous_filament + (_total_filament_used / 1000));
+
+ total_filament_used = 0;
+
+}
+
+float calculate_volumetric_multiplier(float diameter) {
+ float area = .0;
+ float radius = .0;
+
+ radius = diameter * .5;
+ if (! volumetric_enabled || radius == 0) {
+ area = 1;
+ }
+ else {
+ area = M_PI * pow(radius, 2);
+ }
+
+ return 1.0 / area;
+}
+
+void calculate_volumetric_multipliers() {
+ volumetric_multiplier[0] = calculate_volumetric_multiplier(filament_size[0]);
+#if EXTRUDERS > 1
+ volumetric_multiplier[1] = calculate_volumetric_multiplier(filament_size[1]);
+#if EXTRUDERS > 2
+ volumetric_multiplier[2] = calculate_volumetric_multiplier(filament_size[2]);
+#endif
+#endif
+}
+
+void delay_keep_alive(unsigned int ms)
+{
+ for (;;) {
+ manage_heater();
+ // Manage inactivity, but don't disable steppers on timeout.
+ manage_inactivity(true);
+ lcd_update();
+ if (ms == 0)
+ break;
+ else if (ms >= 50) {
+ delay(50);
+ ms -= 50;
+ } else {
+ delay(ms);
+ ms = 0;
+ }
+ }
+}
+
+void wait_for_heater(long codenum) {
+
+#ifdef TEMP_RESIDENCY_TIME
+ long residencyStart;
+ residencyStart = -1;
+ /* continue to loop until we have reached the target temp
+ _and_ until TEMP_RESIDENCY_TIME hasn't passed since we reached it */
+ while ((!cancel_heatup) && ((residencyStart == -1) ||
+ (residencyStart >= 0 && (((unsigned int)(millis() - residencyStart)) < (TEMP_RESIDENCY_TIME * 1000UL))))) {
+#else
+ while (target_direction ? (isHeatingHotend(tmp_extruder)) : (isCoolingHotend(tmp_extruder) && (CooldownNoWait == false))) {
+#endif //TEMP_RESIDENCY_TIME
+ if ((millis() - codenum) > 1000UL)
+ { //Print Temp Reading and remaining time every 1 second while heating up/cooling down
+ if (!farm_mode) {
+ SERIAL_PROTOCOLPGM("T:");
+ SERIAL_PROTOCOL_F(degHotend(tmp_extruder), 1);
+ SERIAL_PROTOCOLPGM(" E:");
+ SERIAL_PROTOCOL((int)tmp_extruder);
+
+#ifdef TEMP_RESIDENCY_TIME
+ SERIAL_PROTOCOLPGM(" W:");
+ if (residencyStart > -1)
+ {
+ codenum = ((TEMP_RESIDENCY_TIME * 1000UL) - (millis() - residencyStart)) / 1000UL;
+ SERIAL_PROTOCOLLN(codenum);
+ }
+ else
+ {
+ SERIAL_PROTOCOLLN("?");
+ }
+ }
+#else
+ SERIAL_PROTOCOLLN("");
+#endif
+ codenum = millis();
+ }
+ manage_heater();
+ manage_inactivity();
+ lcd_update();
+#ifdef TEMP_RESIDENCY_TIME
+ /* start/restart the TEMP_RESIDENCY_TIME timer whenever we reach target temp for the first time
+ or when current temp falls outside the hysteresis after target temp was reached */
+ if ((residencyStart == -1 && target_direction && (degHotend(tmp_extruder) >= (degTargetHotend(tmp_extruder) - TEMP_WINDOW))) ||
+ (residencyStart == -1 && !target_direction && (degHotend(tmp_extruder) <= (degTargetHotend(tmp_extruder) + TEMP_WINDOW))) ||
+ (residencyStart > -1 && labs(degHotend(tmp_extruder) - degTargetHotend(tmp_extruder)) > TEMP_HYSTERESIS))
+ {
+ residencyStart = millis();
+ }
+#endif //TEMP_RESIDENCY_TIME
+ }
+}
+
+void check_babystep() {
+ int babystep_z;
+ EEPROM_read_B(EEPROM_BABYSTEP_Z, &babystep_z);
+ if ((babystep_z < Z_BABYSTEP_MIN) || (babystep_z > Z_BABYSTEP_MAX)) {
+ babystep_z = 0; //if babystep value is out of min max range, set it to 0
+ SERIAL_ECHOLNPGM("Z live adjust out of range. Setting to 0");
+ EEPROM_save_B(EEPROM_BABYSTEP_Z, &babystep_z);
+ lcd_show_fullscreen_message_and_wait_P(PSTR("Z live adjust out of range. Setting to 0. Click to continue."));
+ lcd_update_enable(true);
+ }
+}
+#ifdef DIS
+void d_setup()
+{
+ pinMode(D_DATACLOCK, INPUT_PULLUP);
+ pinMode(D_DATA, INPUT_PULLUP);
+ pinMode(D_REQUIRE, OUTPUT);
+ digitalWrite(D_REQUIRE, HIGH);
+}
+
+
+float d_ReadData()
+{
+ int digit[13];
+ String mergeOutput;
+ float output;
+
+ digitalWrite(D_REQUIRE, HIGH);
+ for (int i = 0; i<13; i++)
+ {
+ for (int j = 0; j < 4; j++)
+ {
+ while (digitalRead(D_DATACLOCK) == LOW) {}
+ while (digitalRead(D_DATACLOCK) == HIGH) {}
+ bitWrite(digit[i], j, digitalRead(D_DATA));
+ }
+ }
+
+ digitalWrite(D_REQUIRE, LOW);
+ mergeOutput = "";
+ output = 0;
+ for (int r = 5; r <= 10; r++) //Merge digits
+ {
+ mergeOutput += digit[r];
+ }
+ output = mergeOutput.toFloat();
+
+ if (digit[4] == 8) //Handle sign
+ {
+ output *= -1;
+ }
+
+ for (int i = digit[11]; i > 0; i--) //Handle floating point
+ {
+ output /= 10;
+ }
+
+ return output;
+
+}
+
+void bed_analysis(float x_dimension, float y_dimension, int x_points_num, int y_points_num, float shift_x, float shift_y) {
+ int t1 = 0;
+ int t_delay = 0;
+ int digit[13];
+ int m;
+ char str[3];
+ //String mergeOutput;
+ char mergeOutput[15];
+ float output;
+
+ int mesh_point = 0; //index number of calibration point
+ float bed_zero_ref_x = (-22.f + X_PROBE_OFFSET_FROM_EXTRUDER); //shift between zero point on bed and target and between probe and nozzle
+ float bed_zero_ref_y = (-0.6f + Y_PROBE_OFFSET_FROM_EXTRUDER);
+
+ float mesh_home_z_search = 4;
+ float row[x_points_num];
+ int ix = 0;
+ int iy = 0;
+
+ char* filename_wldsd = "wldsd.txt";
+ char data_wldsd[70];
+ char numb_wldsd[10];
+
+ d_setup();
+
+ if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS])) {
+ // We don't know where we are! HOME!
+ // Push the commands to the front of the message queue in the reverse order!
+ // There shall be always enough space reserved for these commands.
+ repeatcommand_front(); // repeat G80 with all its parameters
+
+ enquecommand_front_P((PSTR("G28 W0")));
+ enquecommand_front_P((PSTR("G1 Z5")));
+ return;
+ }
+ bool custom_message_old = custom_message;
+ unsigned int custom_message_type_old = custom_message_type;
+ unsigned int custom_message_state_old = custom_message_state;
+ custom_message = true;
+ custom_message_type = 1;
+ custom_message_state = (x_points_num * y_points_num) + 10;
+ lcd_update(1);
+
+ mbl.reset();
+ babystep_undo();
+
+ card.openFile(filename_wldsd, false);
+
+ current_position[Z_AXIS] = mesh_home_z_search;
+ plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 60, active_extruder);
+
+ int XY_AXIS_FEEDRATE = homing_feedrate[X_AXIS] / 20;
+ int Z_PROBE_FEEDRATE = homing_feedrate[Z_AXIS] / 60;
+ int Z_LIFT_FEEDRATE = homing_feedrate[Z_AXIS] / 40;
+
+ setup_for_endstop_move(false);
+
+ SERIAL_PROTOCOLPGM("Num X,Y: ");
+ SERIAL_PROTOCOL(x_points_num);
+ SERIAL_PROTOCOLPGM(",");
+ SERIAL_PROTOCOL(y_points_num);
+ SERIAL_PROTOCOLPGM("\nZ search height: ");
+ SERIAL_PROTOCOL(mesh_home_z_search);
+ SERIAL_PROTOCOLPGM("\nDimension X,Y: ");
+ SERIAL_PROTOCOL(x_dimension);
+ SERIAL_PROTOCOLPGM(",");
+ SERIAL_PROTOCOL(y_dimension);
+ SERIAL_PROTOCOLLNPGM("\nMeasured points:");
+
+ while (mesh_point != x_points_num * y_points_num) {
+ ix = mesh_point % x_points_num; // from 0 to MESH_NUM_X_POINTS - 1
+ iy = mesh_point / x_points_num;
+ if (iy & 1) ix = (x_points_num - 1) - ix; // Zig zag
+ float z0 = 0.f;
+ current_position[Z_AXIS] = mesh_home_z_search;
+ plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
+ st_synchronize();
+
+
+ current_position[X_AXIS] = 13.f + ix * (x_dimension / (x_points_num - 1)) - bed_zero_ref_x + shift_x;
+ current_position[Y_AXIS] = 6.4f + iy * (y_dimension / (y_points_num - 1)) - bed_zero_ref_y + shift_y;
+
+ plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], XY_AXIS_FEEDRATE, active_extruder);
+ st_synchronize();
+
+ if (!find_bed_induction_sensor_point_z(-10.f)) { //if we have data from z calibration max allowed difference is 1mm for each point, if we dont have data max difference is 10mm from initial point
+ break;
+ card.closefile();
+ }
+
+
+ //memset(numb_wldsd, 0, sizeof(numb_wldsd));
+ //dtostrf(d_ReadData(), 8, 5, numb_wldsd);
+ //strcat(data_wldsd, numb_wldsd);
+
+
+
+ //MYSERIAL.println(data_wldsd);
+ //delay(1000);
+ //delay(3000);
+ //t1 = millis();
+
+ //while (digitalRead(D_DATACLOCK) == LOW) {}
+ //while (digitalRead(D_DATACLOCK) == HIGH) {}
+ memset(digit, 0, sizeof(digit));
+ //cli();
+ digitalWrite(D_REQUIRE, LOW);
+
+ for (int i = 0; i<13; i++)
+ {
+ //t1 = millis();
+ for (int j = 0; j < 4; j++)
+ {
+ while (digitalRead(D_DATACLOCK) == LOW) {}
+ while (digitalRead(D_DATACLOCK) == HIGH) {}
+ bitWrite(digit[i], j, digitalRead(D_DATA));
+ }
+ //t_delay = (millis() - t1);
+ //SERIAL_PROTOCOLPGM(" ");
+ //SERIAL_PROTOCOL_F(t_delay, 5);
+ //SERIAL_PROTOCOLPGM(" ");
+ }
+ //sei();
+ digitalWrite(D_REQUIRE, HIGH);
+ mergeOutput[0] = '\0';
+ output = 0;
+ for (int r = 5; r <= 10; r++) //Merge digits
+ {
+ sprintf(str, "%d", digit[r]);
+ strcat(mergeOutput, str);
+ }
+
+ output = atof(mergeOutput);
+
+ if (digit[4] == 8) //Handle sign
+ {
+ output *= -1;
+ }
+
+ for (int i = digit[11]; i > 0; i--) //Handle floating point
+ {
+ output *= 0.1;
+ }
+
+
+ //output = d_ReadData();
+
+ //row[ix] = current_position[Z_AXIS];
+
+ memset(data_wldsd, 0, sizeof(data_wldsd));
+
+ for (int i = 0; i <3; i++) {
+ memset(numb_wldsd, 0, sizeof(numb_wldsd));
+ dtostrf(current_position[i], 8, 5, numb_wldsd);
+ strcat(data_wldsd, numb_wldsd);
+ strcat(data_wldsd, ";");
+
+ }
+ memset(numb_wldsd, 0, sizeof(numb_wldsd));
+ dtostrf(output, 8, 5, numb_wldsd);
+ strcat(data_wldsd, numb_wldsd);
+ //strcat(data_wldsd, ";");
+ card.write_command(data_wldsd);
+
+
+ //row[ix] = d_ReadData();
+
+ row[ix] = output; // current_position[Z_AXIS];
+
+ if (iy % 2 == 1 ? ix == 0 : ix == x_points_num - 1) {
+ for (int i = 0; i < x_points_num; i++) {
+ SERIAL_PROTOCOLPGM(" ");
+ SERIAL_PROTOCOL_F(row[i], 5);
+
+
+ }
+ SERIAL_PROTOCOLPGM("\n");
+ }
+ custom_message_state--;
+ mesh_point++;
+ lcd_update(1);
+
+ }
+ card.closefile();
+
+}
+#endif
+
+void temp_compensation_start() {
+
+ custom_message = true;
+ custom_message_type = 5;
+ custom_message_state = PINDA_HEAT_T + 1;
+ lcd_update(2);
+ if (degHotend(active_extruder) > EXTRUDE_MINTEMP) {
+ current_position[E_AXIS] -= DEFAULT_RETRACTION;
+ }
+ plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400, active_extruder);
+
+ current_position[X_AXIS] = PINDA_PREHEAT_X;
+ current_position[Y_AXIS] = PINDA_PREHEAT_Y;
+ current_position[Z_AXIS] = PINDA_PREHEAT_Z;
+ plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
+ st_synchronize();
+ while (fabs(degBed() - target_temperature_bed) > 1) delay_keep_alive(1000);
+
+ for (int i = 0; i < PINDA_HEAT_T; i++) {
+ delay_keep_alive(1000);
+ custom_message_state = PINDA_HEAT_T - i;
+ if (custom_message_state == 99 || custom_message_state == 9) lcd_update(2); //force whole display redraw if number of digits changed
+ else lcd_update(1);
+ }
+ custom_message_type = 0;
+ custom_message_state = 0;
+ custom_message = false;
+}
+
+void temp_compensation_apply() {
+ int i_add;
+ int compensation_value;
+ int z_shift = 0;
+ float z_shift_mm;
+
+ if (calibration_status() == CALIBRATION_STATUS_CALIBRATED) {
+ if (target_temperature_bed % 10 == 0 && target_temperature_bed >= 60 && target_temperature_bed <= 100) {
+ i_add = (target_temperature_bed - 60) / 10;
+ EEPROM_read_B(EEPROM_PROBE_TEMP_SHIFT + i_add * 2, &z_shift);
+ z_shift_mm = z_shift / axis_steps_per_unit[Z_AXIS];
+ }else {
+ //interpolation
+ z_shift_mm = temp_comp_interpolation(target_temperature_bed) / axis_steps_per_unit[Z_AXIS];
+ }
+ SERIAL_PROTOCOLPGM("\n");
+ SERIAL_PROTOCOLPGM("Z shift applied:");
+ MYSERIAL.print(z_shift_mm);
+ plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS] - z_shift_mm, current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
+ st_synchronize();
+ plan_set_z_position(current_position[Z_AXIS]);
+ }
+ else {
+ //we have no temp compensation data
+ }
+}
+
+float temp_comp_interpolation(float inp_temperature) {
+
+ //cubic spline interpolation
+
+ int n, i, j, k;
+ float h[10], a, b, c, d, sum, s[10] = { 0 }, x[10], F[10], f[10], m[10][10] = { 0 }, temp;
+ int shift[10];
+ int temp_C[10];
+
+ n = 6; //number of measured points
+
+ shift[0] = 0;
+ for (i = 0; i < n; i++) {
+ if (i>0) EEPROM_read_B(EEPROM_PROBE_TEMP_SHIFT + (i-1) * 2, &shift[i]); //read shift in steps from EEPROM
+ temp_C[i] = 50 + i * 10; //temperature in C
+#ifdef PINDA_THERMISTOR
+ temp_C[i] = 35 + i * 5; //temperature in C
+#else
+ temp_C[i] = 50 + i * 10; //temperature in C
+#endif
+ x[i] = (float)temp_C[i];
+ f[i] = (float)shift[i];
+ }
+ if (inp_temperature < x[0]) return 0;
+
+
+ for (i = n - 1; i>0; i--) {
+ F[i] = (f[i] - f[i - 1]) / (x[i] - x[i - 1]);
+ h[i - 1] = x[i] - x[i - 1];
+ }
+ //*********** formation of h, s , f matrix **************
+ for (i = 1; i0; i--) {
+ sum = 0;
+ for (j = i; j <= n - 2; j++)
+ sum += m[i][j] * s[j];
+ s[i] = (m[i][n - 1] - sum) / m[i][i];
+ }
+
+ for (i = 0; i x[i + 1])) {
+ a = (s[i + 1] - s[i]) / (6 * h[i]);
+ b = s[i] / 2;
+ c = (f[i + 1] - f[i]) / h[i] - (2 * h[i] * s[i] + s[i + 1] * h[i]) / 6;
+ d = f[i];
+ sum = a*pow((inp_temperature - x[i]), 3) + b*pow((inp_temperature - x[i]), 2) + c*(inp_temperature - x[i]) + d;
+ }
+
+ return sum;
+
+}
+
+#ifdef PINDA_THERMISTOR
+float temp_compensation_pinda_thermistor_offset()
+{
+ if (!temp_cal_active) return 0;
+ if (!calibration_status_pinda()) return 0;
+ return temp_comp_interpolation(current_temperature_pinda) / axis_steps_per_unit[Z_AXIS];
+}
+#endif //PINDA_THERMISTOR
+
+void long_pause() //long pause print
+{
+ st_synchronize();
+
+ //save currently set parameters to global variables
+ saved_feedmultiply = feedmultiply;
+ HotendTempBckp = degTargetHotend(active_extruder);
+ fanSpeedBckp = fanSpeed;
+ start_pause_print = millis();
+
+
+ //save position
+ pause_lastpos[X_AXIS] = current_position[X_AXIS];
+ pause_lastpos[Y_AXIS] = current_position[Y_AXIS];
+ pause_lastpos[Z_AXIS] = current_position[Z_AXIS];
+ pause_lastpos[E_AXIS] = current_position[E_AXIS];
+
+ //retract
+ current_position[E_AXIS] -= DEFAULT_RETRACTION;
+ plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400, active_extruder);
+
+ //lift z
+ current_position[Z_AXIS] += Z_PAUSE_LIFT;
+ if (current_position[Z_AXIS] > Z_MAX_POS) current_position[Z_AXIS] = Z_MAX_POS;
+ plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 15, active_extruder);
+
+ //set nozzle target temperature to 0
+ setTargetHotend(0, 0);
+ setTargetHotend(0, 1);
+ setTargetHotend(0, 2);
+
+ //Move XY to side
+ current_position[X_AXIS] = X_PAUSE_POS;
+ current_position[Y_AXIS] = Y_PAUSE_POS;
+ plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 50, active_extruder);
+
+ // Turn off the print fan
+ fanSpeed = 0;
+
+ st_synchronize();
+}
+
+void serialecho_temperatures() {
+ float tt = degHotend(active_extruder);
+ SERIAL_PROTOCOLPGM("T:");
+ SERIAL_PROTOCOL(tt);
+ SERIAL_PROTOCOLPGM(" E:");
+ SERIAL_PROTOCOL((int)active_extruder);
+ SERIAL_PROTOCOLPGM(" B:");
+ SERIAL_PROTOCOL_F(degBed(), 1);
+ SERIAL_PROTOCOLLN("");
+}
+
+extern uint32_t sdpos_atomic;
+
+void uvlo_()
+{
+ // Conserve power as soon as possible.
+ disable_x();
+ disable_y();
+
+ // Indicate that the interrupt has been triggered.
+ SERIAL_ECHOLNPGM("UVLO");
+
+ // Read out the current Z motor microstep counter. This will be later used
+ // for reaching the zero full step before powering off.
+ uint16_t z_microsteps = tmc2130_rd_MSCNT(Z_TMC2130_CS);
+
+ // Calculate the file position, from which to resume this print.
+ long sd_position = sdpos_atomic; //atomic sd position of last command added in queue
+ {
+ uint16_t sdlen_planner = planner_calc_sd_length(); //length of sd commands in planner
+ sd_position -= sdlen_planner;
+ uint16_t sdlen_cmdqueue = cmdqueue_calc_sd_length(); //length of sd commands in cmdqueue
+ sd_position -= sdlen_cmdqueue;
+ if (sd_position < 0) sd_position = 0;
+ }
+
+ // Backup the feedrate in mm/min.
+ int feedrate_bckp = blocks_queued() ? (block_buffer[block_buffer_tail].nominal_speed * 60.f) : feedrate;
+
+ // After this call, the planner queue is emptied and the current_position is set to a current logical coordinate.
+ // The logical coordinate will likely differ from the machine coordinate if the skew calibration and mesh bed leveling
+ // are in action.
+ planner_abort_hard();
+
+ // Clean the input command queue.
+ cmdqueue_reset();
+ card.sdprinting = false;
+// card.closefile();
+
+ // Enable stepper driver interrupt to move Z axis.
+ // This should be fine as the planner and command queues are empty and the SD card printing is disabled.
+ //FIXME one may want to disable serial lines at this point of time to avoid interfering with the command queue,
+ // though it should not happen that the command queue is touched as the plan_buffer_line always succeed without blocking.
+ sei();
+ plan_buffer_line(
+ current_position[X_AXIS],
+ current_position[Y_AXIS],
+ current_position[Z_AXIS],
+ current_position[E_AXIS] - DEFAULT_RETRACTION,
+ 400, active_extruder);
+ plan_buffer_line(
+ current_position[X_AXIS],
+ current_position[Y_AXIS],
+ current_position[Z_AXIS] + UVLO_Z_AXIS_SHIFT + float((1024 - z_microsteps + 7) >> 4) / axis_steps_per_unit[Z_AXIS],
+ current_position[E_AXIS] - DEFAULT_RETRACTION,
+ 40, active_extruder);
+
+ // Move Z up to the next 0th full step.
+ // Write the file position.
+ eeprom_update_dword((uint32_t*)(EEPROM_FILE_POSITION), sd_position);
+ // Store the mesh bed leveling offsets. This is 2*9=18 bytes, which takes 18*3.4us=52us in worst case.
+ for (int8_t mesh_point = 0; mesh_point < 9; ++ mesh_point) {
+ uint8_t ix = mesh_point % MESH_MEAS_NUM_X_POINTS; // from 0 to MESH_NUM_X_POINTS - 1
+ uint8_t iy = mesh_point / MESH_MEAS_NUM_X_POINTS;
+ // Scale the z value to 1u resolution.
+ int16_t v = mbl.active ? int16_t(floor(mbl.z_values[iy*3][ix*3] * 1000.f + 0.5f)) : 0;
+ eeprom_update_word((uint16_t*)(EEPROM_UVLO_MESH_BED_LEVELING+2*mesh_point), *reinterpret_cast(&v));
+ }
+ // Read out the current Z motor microstep counter. This will be later used
+ // for reaching the zero full step before powering off.
+ eeprom_update_word((uint16_t*)(EEPROM_UVLO_Z_MICROSTEPS), z_microsteps);
+ // Store the current position.
+ eeprom_update_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 0), current_position[X_AXIS]);
+ eeprom_update_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 4), current_position[Y_AXIS]);
+ eeprom_update_float((float*)(EEPROM_UVLO_CURRENT_POSITION_Z), current_position[Z_AXIS]);
+ // Store the current feed rate, temperatures and fan speed.
+ EEPROM_save_B(EEPROM_UVLO_FEEDRATE, &feedrate_bckp);
+ eeprom_update_byte((uint8_t*)EEPROM_UVLO_TARGET_HOTEND, target_temperature[active_extruder]);
+ eeprom_update_byte((uint8_t*)EEPROM_UVLO_TARGET_BED, target_temperature_bed);
+ eeprom_update_byte((uint8_t*)EEPROM_UVLO_FAN_SPEED, fanSpeed);
+ // Finaly store the "power outage" flag.
+ eeprom_update_byte((uint8_t*)EEPROM_UVLO, 1);
+
+ st_synchronize();
+ SERIAL_ECHOPGM("stps");
+ MYSERIAL.println(tmc2130_rd_MSCNT(Z_TMC2130_CS));
+#if 0
+ // Move the print head to the side of the print until all the power stored in the power supply capacitors is depleted.
+ current_position[X_AXIS] = (current_position[X_AXIS] < 0.5f * (X_MIN_POS + X_MAX_POS)) ? X_MIN_POS : X_MAX_POS;
+ plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 500, active_extruder);
+ st_synchronize();
+#endif
+ disable_z();
+
+ // Increment power failure counter
+ uint8_t power_count = eeprom_read_byte((uint8_t*)EEPROM_POWER_COUNT);
+ power_count++;
+ eeprom_update_byte((uint8_t*)EEPROM_POWER_COUNT, power_count);
+
+ SERIAL_ECHOLNPGM("UVLO - end");
+ cli();
+ while(1);
+}
+
+void setup_fan_interrupt() {
+//INT7
+ DDRE &= ~(1 << 7); //input pin
+ PORTE &= ~(1 << 7); //no internal pull-up
+
+ //start with sensing rising edge
+ EICRB &= ~(1 << 6);
+ EICRB |= (1 << 7);
+
+ //enable INT7 interrupt
+ EIMSK |= (1 << 7);
+}
+
+ISR(INT7_vect) {
+ //measuring speed now works for fanSpeed > 18 (approximately), which is sufficient because MIN_PRINT_FAN_SPEED is higher
+
+ if (fanSpeed < MIN_PRINT_FAN_SPEED) return;
+ if ((1 << 6) & EICRB) { //interrupt was triggered by rising edge
+ t_fan_rising_edge = millis();
+ }
+ else { //interrupt was triggered by falling edge
+ if ((millis() - t_fan_rising_edge) >= FAN_PULSE_WIDTH_LIMIT) {//this pulse was from sensor and not from pwm
+ fan_edge_counter[1] += 2; //we are currently counting all edges so lets count two edges for one pulse
+ }
+ }
+ EICRB ^= (1 << 6); //change edge
+}
+
+void setup_uvlo_interrupt() {
+ DDRE &= ~(1 << 4); //input pin
+ PORTE &= ~(1 << 4); //no internal pull-up
+
+ //sensing falling edge
+ EICRB |= (1 << 0);
+ EICRB &= ~(1 << 1);
+
+ //enable INT4 interrupt
+ EIMSK |= (1 << 4);
+}
+
+ISR(INT4_vect) {
+ EIMSK &= ~(1 << 4); //disable INT4 interrupt to make sure that this code will be executed just once
+ SERIAL_ECHOLNPGM("INT4");
+ if (IS_SD_PRINTING) uvlo_();
+}
+
+void recover_print(uint8_t automatic) {
+ char cmd[30];
+ lcd_update_enable(true);
+ lcd_update(2);
+ lcd_setstatuspgm(MSG_RECOVERING_PRINT);
+
+ recover_machine_state_after_power_panic();
+
+ // Set the target bed and nozzle temperatures.
+ sprintf_P(cmd, PSTR("M104 S%d"), target_temperature[active_extruder]);
+ enquecommand(cmd);
+ sprintf_P(cmd, PSTR("M140 S%d"), target_temperature_bed);
+ enquecommand(cmd);
+
+ // Lift the print head, so one may remove the excess priming material.
+ if (current_position[Z_AXIS] < 25)
+ enquecommand_P(PSTR("G1 Z25 F800"));
+ // Home X and Y axes. Homing just X and Y shall not touch the babystep and the world2machine transformation status.
+ enquecommand_P(PSTR("G28 X Y"));
+ // Set the target bed and nozzle temperatures and wait.
+ sprintf_P(cmd, PSTR("M109 S%d"), target_temperature[active_extruder]);
+ enquecommand(cmd);
+ sprintf_P(cmd, PSTR("M190 S%d"), target_temperature_bed);
+ enquecommand(cmd);
+ enquecommand_P(PSTR("M83")); //E axis relative mode
+ //enquecommand_P(PSTR("G1 E5 F120")); //Extrude some filament to stabilize pessure
+ // If not automatically recoreverd (long power loss), extrude extra filament to stabilize
+ if(automatic == 0){
+ enquecommand_P(PSTR("G1 E5 F120")); //Extrude some filament to stabilize pessure
+ }
+ enquecommand_P(PSTR("G1 E" STRINGIFY(-DEFAULT_RETRACTION)" F480"));
+ // Mark the power panic status as inactive.
+ eeprom_update_byte((uint8_t*)EEPROM_UVLO, 0);
+ /*while ((abs(degHotend(0)- target_temperature[0])>5) || (abs(degBed() -target_temperature_bed)>3)) { //wait for heater and bed to reach target temp
+ delay_keep_alive(1000);
+ }*/
+ SERIAL_ECHOPGM("After waiting for temp:");
+ SERIAL_ECHOPGM("Current position X_AXIS:");
+ MYSERIAL.println(current_position[X_AXIS]);
+ SERIAL_ECHOPGM("Current position Y_AXIS:");
+ MYSERIAL.println(current_position[Y_AXIS]);
+
+ // Restart the print.
+ restore_print_from_eeprom();
+
+ SERIAL_ECHOPGM("current_position[Z_AXIS]:");
+ MYSERIAL.print(current_position[Z_AXIS]);
+}
+
+void recover_machine_state_after_power_panic()
+{
+ // 1) Recover the logical cordinates at the time of the power panic.
+ // The logical XY coordinates are needed to recover the machine Z coordinate corrected by the mesh bed leveling.
+ current_position[X_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 0));
+ current_position[Y_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 4));
+ // Recover the logical coordinate of the Z axis at the time of the power panic.
+ // The current position after power panic is moved to the next closest 0th full step.
+ current_position[Z_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION_Z)) +
+ UVLO_Z_AXIS_SHIFT + float((1024 - eeprom_read_word((uint16_t*)(EEPROM_UVLO_Z_MICROSTEPS)) + 7) >> 4) / axis_steps_per_unit[Z_AXIS];
+ memcpy(destination, current_position, sizeof(destination));
+
+ SERIAL_ECHOPGM("recover_machine_state_after_power_panic, initial ");
+ print_world_coordinates();
+
+ // 2) Initialize the logical to physical coordinate system transformation.
+ world2machine_initialize();
+
+ // 3) Restore the mesh bed leveling offsets. This is 2*9=18 bytes, which takes 18*3.4us=52us in worst case.
+ mbl.active = false;
+ for (int8_t mesh_point = 0; mesh_point < 9; ++ mesh_point) {
+ uint8_t ix = mesh_point % MESH_MEAS_NUM_X_POINTS; // from 0 to MESH_NUM_X_POINTS - 1
+ uint8_t iy = mesh_point / MESH_MEAS_NUM_X_POINTS;
+ // Scale the z value to 10u resolution.
+ int16_t v;
+ eeprom_read_block(&v, (void*)(EEPROM_UVLO_MESH_BED_LEVELING+2*mesh_point), 2);
+ if (v != 0)
+ mbl.active = true;
+ mbl.z_values[iy][ix] = float(v) * 0.001f;
+ }
+ if (mbl.active)
+ mbl.upsample_3x3();
+ SERIAL_ECHOPGM("recover_machine_state_after_power_panic, initial ");
+ print_mesh_bed_leveling_table();
+
+ // 4) Load the baby stepping value, which is expected to be active at the time of power panic.
+ // The baby stepping value is used to reset the physical Z axis when rehoming the Z axis.
+ babystep_load();
+
+ // 5) Set the physical positions from the logical positions using the world2machine transformation and the active bed leveling.
+ plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
+
+ // 6) Power up the motors, mark their positions as known.
+ //FIXME Verfiy, whether the X and Y axes should be powered up here, as they will later be re-homed anyway.
+ axis_known_position[X_AXIS] = true; enable_x();
+ axis_known_position[Y_AXIS] = true; enable_y();
+ axis_known_position[Z_AXIS] = true; enable_z();
+
+ SERIAL_ECHOPGM("recover_machine_state_after_power_panic, initial ");
+ print_physical_coordinates();
+
+ // 7) Recover the target temperatures.
+ target_temperature[active_extruder] = eeprom_read_byte((uint8_t*)EEPROM_UVLO_TARGET_HOTEND);
+ target_temperature_bed = eeprom_read_byte((uint8_t*)EEPROM_UVLO_TARGET_BED);
+}
+
+void restore_print_from_eeprom() {
+ float x_rec, y_rec, z_pos;
+ int feedrate_rec;
+ uint8_t fan_speed_rec;
+ char cmd[30];
+ char* c;
+ char filename[13];
+
+ fan_speed_rec = eeprom_read_byte((uint8_t*)EEPROM_UVLO_FAN_SPEED);
+ EEPROM_read_B(EEPROM_UVLO_FEEDRATE, &feedrate_rec);
+ SERIAL_ECHOPGM("Feedrate:");
+ MYSERIAL.println(feedrate_rec);
+ for (int i = 0; i < 8; i++) {
+ filename[i] = eeprom_read_byte((uint8_t*)EEPROM_FILENAME + i);
+
+ }
+ filename[8] = '\0';
+
+ MYSERIAL.print(filename);
+ strcat_P(filename, PSTR(".gco"));
+ sprintf_P(cmd, PSTR("M23 %s"), filename);
+ for (c = &cmd[4]; *c; c++)
+ *c = tolower(*c);
+ enquecommand(cmd);
+ uint32_t position = eeprom_read_dword((uint32_t*)(EEPROM_FILE_POSITION));
+ SERIAL_ECHOPGM("Position read from eeprom:");
+ MYSERIAL.println(position);
+
+ // E axis relative mode.
+ enquecommand_P(PSTR("M83"));
+ // Move to the XY print position in logical coordinates, where the print has been killed.
+ strcpy_P(cmd, PSTR("G1 X")); strcat(cmd, ftostr32(eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 0))));
+ strcat_P(cmd, PSTR(" Y")); strcat(cmd, ftostr32(eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 4))));
+ strcat_P(cmd, PSTR(" F2000"));
+ enquecommand(cmd);
+ // Move the Z axis down to the print, in logical coordinates.
+ strcpy_P(cmd, PSTR("G1 Z")); strcat(cmd, ftostr32(eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION_Z))));
+ enquecommand(cmd);
+ // Unretract.
+ enquecommand_P(PSTR("G1 E" STRINGIFY(DEFAULT_RETRACTION)" F480"));
+ // Set the feedrate saved at the power panic.
+ sprintf_P(cmd, PSTR("G1 F%d"), feedrate_rec);
+ enquecommand(cmd);
+ // Set the fan speed saved at the power panic.
+ strcpy_P(cmd, PSTR("M106 S"));
+ strcat(cmd, itostr3(int(fan_speed_rec)));
+ enquecommand(cmd);
+
+ // Set a position in the file.
+ sprintf_P(cmd, PSTR("M26 S%lu"), position);
+ enquecommand(cmd);
+ // Start SD print.
+ enquecommand_P(PSTR("M24"));
+}
+
+
+////////////////////////////////////////////////////////////////////////////////
+// new save/restore printing
+
+//extern uint32_t sdpos_atomic;
+
+bool saved_printing = false;
+uint32_t saved_sdpos = 0;
+float saved_pos[4] = {0, 0, 0, 0};
+// Feedrate hopefully derived from an active block of the planner at the time the print has been canceled, in mm/min.
+float saved_feedrate2 = 0;
+uint8_t saved_active_extruder = 0;
+bool saved_extruder_under_pressure = false;
+
+void stop_and_save_print_to_ram(float z_move, float e_move)
+{
+ if (saved_printing) return;
+ cli();
+ unsigned char nplanner_blocks = number_of_blocks();
+ saved_sdpos = sdpos_atomic; //atomic sd position of last command added in queue
+ uint16_t sdlen_planner = planner_calc_sd_length(); //length of sd commands in planner
+ saved_sdpos -= sdlen_planner;
+ uint16_t sdlen_cmdqueue = cmdqueue_calc_sd_length(); //length of sd commands in cmdqueue
+ saved_sdpos -= sdlen_cmdqueue;
+
+#if 0
+ SERIAL_ECHOPGM("SDPOS_ATOMIC="); MYSERIAL.println(sdpos_atomic, DEC);
+ SERIAL_ECHOPGM("SDPOS="); MYSERIAL.println(card.get_sdpos(), DEC);
+ SERIAL_ECHOPGM("SDLEN_PLAN="); MYSERIAL.println(sdlen_planner, DEC);
+ SERIAL_ECHOPGM("SDLEN_CMDQ="); MYSERIAL.println(sdlen_cmdqueue, DEC);
+ SERIAL_ECHOPGM("PLANNERBLOCKS="); MYSERIAL.println(int(nplanner_blocks), DEC);
+ SERIAL_ECHOPGM("SDSAVED="); MYSERIAL.println(saved_sdpos, DEC);
+ SERIAL_ECHOPGM("SDFILELEN="); MYSERIAL.println(card.fileSize(), DEC);
+
+ {
+ card.setIndex(saved_sdpos);
+ SERIAL_ECHOLNPGM("Content of planner buffer: ");
+ for (unsigned int idx = 0; idx < sdlen_planner; ++ idx)
+ MYSERIAL.print(char(card.get()));
+ SERIAL_ECHOLNPGM("Content of command buffer: ");
+ for (unsigned int idx = 0; idx < sdlen_cmdqueue; ++ idx)
+ MYSERIAL.print(char(card.get()));
+ SERIAL_ECHOLNPGM("End of command buffer");
+ }
+
+ {
+ // Print the content of the planner buffer, line by line:
+ card.setIndex(saved_sdpos);
+ int8_t iline = 0;
+ for (unsigned char idx = block_buffer_tail; idx != block_buffer_head; idx = (idx + 1) & (BLOCK_BUFFER_SIZE - 1), ++ iline) {
+ SERIAL_ECHOPGM("Planner line (from file): ");
+ MYSERIAL.print(int(iline), DEC);
+ SERIAL_ECHOPGM(", length: ");
+ MYSERIAL.print(block_buffer[idx].sdlen, DEC);
+ SERIAL_ECHOPGM(", steps: (");
+ MYSERIAL.print(block_buffer[idx].steps_x, DEC);
+ SERIAL_ECHOPGM(",");
+ MYSERIAL.print(block_buffer[idx].steps_y, DEC);
+ SERIAL_ECHOPGM(",");
+ MYSERIAL.print(block_buffer[idx].steps_z, DEC);
+ SERIAL_ECHOPGM(",");
+ MYSERIAL.print(block_buffer[idx].steps_e, DEC);
+ SERIAL_ECHOPGM("), events: ");
+ MYSERIAL.println(block_buffer[idx].step_event_count, DEC);
+ for (int len = block_buffer[idx].sdlen; len > 0; -- len)
+ MYSERIAL.print(char(card.get()));
+ }
+ }
+ {
+ // Print the content of the command buffer, line by line:
+ int8_t iline = 0;
+ union {
+ struct {
+ char lo;
+ char hi;
+ } lohi;
+ uint16_t value;
+ } sdlen_single;
+ int _bufindr = bufindr;
+ for (int _buflen = buflen; _buflen > 0; ++ iline) {
+ if (cmdbuffer[_bufindr] == CMDBUFFER_CURRENT_TYPE_SDCARD) {
+ sdlen_single.lohi.lo = cmdbuffer[_bufindr + 1];
+ sdlen_single.lohi.hi = cmdbuffer[_bufindr + 2];
+ }
+ SERIAL_ECHOPGM("Buffer line (from buffer): ");
+ MYSERIAL.print(int(iline), DEC);
+ SERIAL_ECHOPGM(", type: ");
+ MYSERIAL.print(int(cmdbuffer[_bufindr]), DEC);
+ SERIAL_ECHOPGM(", len: ");
+ MYSERIAL.println(sdlen_single.value, DEC);
+ // Print the content of the buffer line.
+ MYSERIAL.println(cmdbuffer + _bufindr + CMDHDRSIZE);
+
+ SERIAL_ECHOPGM("Buffer line (from file): ");
+ MYSERIAL.print(int(iline), DEC);
+ MYSERIAL.println(int(iline), DEC);
+ for (; sdlen_single.value > 0; -- sdlen_single.value)
+ MYSERIAL.print(char(card.get()));
+
+ if (-- _buflen == 0)
+ break;
+ // First skip the current command ID and iterate up to the end of the string.
+ for (_bufindr += CMDHDRSIZE; cmdbuffer[_bufindr] != 0; ++ _bufindr) ;
+ // Second, skip the end of string null character and iterate until a nonzero command ID is found.
+ for (++ _bufindr; _bufindr < sizeof(cmdbuffer) && cmdbuffer[_bufindr] == 0; ++ _bufindr) ;
+ // If the end of the buffer was empty,
+ if (_bufindr == sizeof(cmdbuffer)) {
+ // skip to the start and find the nonzero command.
+ for (_bufindr = 0; cmdbuffer[_bufindr] == 0; ++ _bufindr) ;
+ }
+ }
+ }
+#endif
+
+#if 0
+ saved_feedrate2 = feedrate; //save feedrate
+#else
+ // Try to deduce the feedrate from the first block of the planner.
+ // Speed is in mm/min.
+ saved_feedrate2 = blocks_queued() ? (block_buffer[block_buffer_tail].nominal_speed * 60.f) : feedrate;
+#endif
+
+ planner_abort_hard(); //abort printing
+ memcpy(saved_pos, current_position, sizeof(saved_pos));
+ saved_active_extruder = active_extruder; //save active_extruder
+
+ saved_extruder_under_pressure = extruder_under_pressure; //extruder under pressure flag - currently unused
+
+ cmdqueue_reset(); //empty cmdqueue
+ card.sdprinting = false;
+// card.closefile();
+ saved_printing = true;
+ sei();
+ if ((z_move != 0) || (e_move != 0)) { // extruder or z move
+#if 1
+ // Rather than calling plan_buffer_line directly, push the move into the command queue,
+ char buf[48];
+ strcpy_P(buf, PSTR("G1 Z"));
+ dtostrf(saved_pos[Z_AXIS] + z_move, 8, 3, buf + strlen(buf));
+ strcat_P(buf, PSTR(" E"));
+ // Relative extrusion
+ dtostrf(e_move, 6, 3, buf + strlen(buf));
+ strcat_P(buf, PSTR(" F"));
+ dtostrf(homing_feedrate[Z_AXIS], 8, 3, buf + strlen(buf));
+ // At this point the command queue is empty.
+ enquecommand(buf, false);
+ // If this call is invoked from the main Arduino loop() function, let the caller know that the command
+ // in the command queue is not the original command, but a new one, so it should not be removed from the queue.
+ repeatcommand_front();
+#else
+ plan_buffer_line(saved_pos[X_AXIS], saved_pos[Y_AXIS], saved_pos[Z_AXIS] + z_move, saved_pos[E_AXIS] + e_move, homing_feedrate[Z_AXIS], active_extruder);
+ st_synchronize(); //wait moving
+ memcpy(current_position, saved_pos, sizeof(saved_pos));
+ memcpy(destination, current_position, sizeof(destination));
+#endif
+ }
+}
+
+void restore_print_from_ram_and_continue(float e_move)
+{
+ if (!saved_printing) return;
+// for (int axis = X_AXIS; axis <= E_AXIS; axis++)
+// current_position[axis] = st_get_position_mm(axis);
+ active_extruder = saved_active_extruder; //restore active_extruder
+ feedrate = saved_feedrate2; //restore feedrate
+ float e = saved_pos[E_AXIS] - e_move;
+ plan_set_e_position(e);
+ plan_buffer_line(saved_pos[X_AXIS], saved_pos[Y_AXIS], saved_pos[Z_AXIS], saved_pos[E_AXIS], homing_feedrate[Z_AXIS]/13, active_extruder);
+ st_synchronize();
+ memcpy(current_position, saved_pos, sizeof(saved_pos));
+ memcpy(destination, current_position, sizeof(destination));
+ card.setIndex(saved_sdpos);
+ sdpos_atomic = saved_sdpos;
+ card.sdprinting = true;
+ saved_printing = false;
+}
+
+void print_world_coordinates()
+{
+ SERIAL_ECHOPGM("world coordinates: (");
+ MYSERIAL.print(current_position[X_AXIS], 3);
+ SERIAL_ECHOPGM(", ");
+ MYSERIAL.print(current_position[Y_AXIS], 3);
+ SERIAL_ECHOPGM(", ");
+ MYSERIAL.print(current_position[Z_AXIS], 3);
+ SERIAL_ECHOLNPGM(")");
+}
+
+void print_physical_coordinates()
+{
+ SERIAL_ECHOPGM("physical coordinates: (");
+ MYSERIAL.print(st_get_position_mm(X_AXIS), 3);
+ SERIAL_ECHOPGM(", ");
+ MYSERIAL.print(st_get_position_mm(Y_AXIS), 3);
+ SERIAL_ECHOPGM(", ");
+ MYSERIAL.print(st_get_position_mm(Z_AXIS), 3);
+ SERIAL_ECHOLNPGM(")");
+}
+
+void print_mesh_bed_leveling_table()
+{
+ SERIAL_ECHOPGM("mesh bed leveling: ");
+ for (int8_t y = 0; y < MESH_NUM_Y_POINTS; ++ y)
+ for (int8_t x = 0; x < MESH_NUM_Y_POINTS; ++ x) {
+ MYSERIAL.print(mbl.z_values[y][x], 3);
+ SERIAL_ECHOPGM(" ");
+ }
+ SERIAL_ECHOLNPGM("");
+}