diff --git a/Firmware/Marlin_main.cpp b/Firmware/Marlin_main.cpp index f6109918..30980c57 100644 --- a/Firmware/Marlin_main.cpp +++ b/Firmware/Marlin_main.cpp @@ -1,7411 +1,7411 @@ -/* -*- c++ -*- */ - -/* - Reprap firmware based on Sprinter and grbl. - Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm - - This program is free software: you can redistribute it and/or modify - it under the terms of the GNU General Public License as published by - the Free Software Foundation, either version 3 of the License, or - (at your option) any later version. - - This program is distributed in the hope that it will be useful, - but WITHOUT ANY WARRANTY; without even the implied warranty of - MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the - GNU General Public License for more details. - - You should have received a copy of the GNU General Public License - along with this program. If not, see . - */ - -/* - This firmware is a mashup between Sprinter and grbl. - (https://github.com/kliment/Sprinter) - (https://github.com/simen/grbl/tree) - - It has preliminary support for Matthew Roberts advance algorithm - http://reprap.org/pipermail/reprap-dev/2011-May/003323.html - */ - -#include "Marlin.h" - -#ifdef ENABLE_AUTO_BED_LEVELING -#include "vector_3.h" - #ifdef AUTO_BED_LEVELING_GRID - #include "qr_solve.h" - #endif -#endif // ENABLE_AUTO_BED_LEVELING - -#ifdef MESH_BED_LEVELING - #include "mesh_bed_leveling.h" - #include "mesh_bed_calibration.h" -#endif - -#include "ultralcd.h" -#include "Configuration_prusa.h" -#include "planner.h" -#include "stepper.h" -#include "temperature.h" -#include "motion_control.h" -#include "cardreader.h" -#include "watchdog.h" -#include "ConfigurationStore.h" -#include "language.h" -#include "pins_arduino.h" -#include "math.h" -#include "util.h" - -#include - -#include "Dcodes.h" - - -#ifdef SWSPI -#include "swspi.h" -#endif //SWSPI - -#ifdef SWI2C -#include "swi2c.h" -#endif //SWI2C - -#ifdef PAT9125 -#include "pat9125.h" -#include "fsensor.h" -#endif //PAT9125 - -#ifdef TMC2130 -#include "tmc2130.h" -#endif //TMC2130 - - -#ifdef BLINKM -#include "BlinkM.h" -#include "Wire.h" -#endif - -#ifdef ULTRALCD -#include "ultralcd.h" -#endif - -#if NUM_SERVOS > 0 -#include "Servo.h" -#endif - -#if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1 -#include -#endif - -#define VERSION_STRING "1.0.2" - - -#include "ultralcd.h" - -#include "cmdqueue.h" - -// Macros for bit masks -#define BIT(b) (1<<(b)) -#define TEST(n,b) (((n)&BIT(b))!=0) -#define SET_BIT(n,b,value) (n) ^= ((-value)^(n)) & (BIT(b)) - -//Macro for print fan speed -#define FAN_PULSE_WIDTH_LIMIT ((fanSpeed > 100) ? 3 : 4) //time in ms - -// look here for descriptions of G-codes: http://linuxcnc.org/handbook/gcode/g-code.html -// http://objects.reprap.org/wiki/Mendel_User_Manual:_RepRapGCodes - -//Implemented Codes -//------------------- - -// PRUSA CODES -// P F - Returns FW versions -// P R - Returns revision of printer - -// G0 -> G1 -// G1 - Coordinated Movement X Y Z E -// G2 - CW ARC -// G3 - CCW ARC -// G4 - Dwell S or P -// G10 - retract filament according to settings of M207 -// G11 - retract recover filament according to settings of M208 -// G28 - Home all Axis -// G29 - Detailed Z-Probe, probes the bed at 3 or more points. Will fail if you haven't homed yet. -// G30 - Single Z Probe, probes bed at current XY location. -// G31 - Dock sled (Z_PROBE_SLED only) -// G32 - Undock sled (Z_PROBE_SLED only) -// G80 - Automatic mesh bed leveling -// G81 - Print bed profile -// G90 - Use Absolute Coordinates -// G91 - Use Relative Coordinates -// G92 - Set current position to coordinates given - -// M Codes -// M0 - Unconditional stop - Wait for user to press a button on the LCD (Only if ULTRA_LCD is enabled) -// M1 - Same as M0 -// M17 - Enable/Power all stepper motors -// M18 - Disable all stepper motors; same as M84 -// M20 - List SD card -// M21 - Init SD card -// M22 - Release SD card -// M23 - Select SD file (M23 filename.g) -// M24 - Start/resume SD print -// M25 - Pause SD print -// M26 - Set SD position in bytes (M26 S12345) -// M27 - Report SD print status -// M28 - Start SD write (M28 filename.g) -// M29 - Stop SD write -// M30 - Delete file from SD (M30 filename.g) -// M31 - Output time since last M109 or SD card start to serial -// M32 - Select file and start SD print (Can be used _while_ printing from SD card files): -// syntax "M32 /path/filename#", or "M32 S !filename#" -// Call gcode file : "M32 P !filename#" and return to caller file after finishing (similar to #include). -// The '#' is necessary when calling from within sd files, as it stops buffer prereading -// M42 - Change pin status via gcode Use M42 Px Sy to set pin x to value y, when omitting Px the onboard led will be used. -// M80 - Turn on Power Supply -// M81 - Turn off Power Supply -// M82 - Set E codes absolute (default) -// M83 - Set E codes relative while in Absolute Coordinates (G90) mode -// M84 - Disable steppers until next move, -// or use S to specify an inactivity timeout, after which the steppers will be disabled. S0 to disable the timeout. -// M85 - Set inactivity shutdown timer with parameter S. To disable set zero (default) -// M92 - Set axis_steps_per_unit - same syntax as G92 -// M104 - Set extruder target temp -// M105 - Read current temp -// M106 - Fan on -// M107 - Fan off -// M109 - Sxxx Wait for extruder current temp to reach target temp. Waits only when heating -// Rxxx Wait for extruder current temp to reach target temp. Waits when heating and cooling -// IF AUTOTEMP is enabled, S B F. Exit autotemp by any M109 without F -// M112 - Emergency stop -// M114 - Output current position to serial port -// M115 - Capabilities string -// M117 - display message -// M119 - Output Endstop status to serial port -// M126 - Solenoid Air Valve Open (BariCUDA support by jmil) -// M127 - Solenoid Air Valve Closed (BariCUDA vent to atmospheric pressure by jmil) -// M128 - EtoP Open (BariCUDA EtoP = electricity to air pressure transducer by jmil) -// M129 - EtoP Closed (BariCUDA EtoP = electricity to air pressure transducer by jmil) -// M140 - Set bed target temp -// M150 - Set BlinkM Color Output R: Red<0-255> U(!): Green<0-255> B: Blue<0-255> over i2c, G for green does not work. -// M190 - Sxxx Wait for bed current temp to reach target temp. Waits only when heating -// Rxxx Wait for bed current temp to reach target temp. Waits when heating and cooling -// M200 D- set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters). -// M201 - Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000) -// M202 - Set max acceleration in units/s^2 for travel moves (M202 X1000 Y1000) Unused in Marlin!! -// M203 - Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in mm/sec -// M204 - Set default acceleration: S normal moves T filament only moves (M204 S3000 T7000) in mm/sec^2 also sets minimum segment time in ms (B20000) to prevent buffer under-runs and M20 minimum feedrate -// M205 - advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk, E=maximum E jerk -// M206 - set additional homing offset -// M207 - set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop], stays in mm regardless of M200 setting -// M208 - set recover=unretract length S[positive mm surplus to the M207 S*] F[feedrate mm/sec] -// M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction. -// M218 - set hotend offset (in mm): T X Y -// M220 S- set speed factor override percentage -// M221 S- set extrude factor override percentage -// M226 P S- Wait until the specified pin reaches the state required -// M240 - Trigger a camera to take a photograph -// M250 - Set LCD contrast C (value 0..63) -// M280 - set servo position absolute. P: servo index, S: angle or microseconds -// M300 - Play beep sound S P -// M301 - Set PID parameters P I and D -// M302 - Allow cold extrudes, or set the minimum extrude S. -// M303 - PID relay autotune S sets the target temperature. (default target temperature = 150C) -// M304 - Set bed PID parameters P I and D -// M400 - Finish all moves -// M401 - Lower z-probe if present -// M402 - Raise z-probe if present -// M404 - N Enter the nominal filament width (3mm, 1.75mm ) or will display nominal filament width without parameters -// M405 - Turn on Filament Sensor extrusion control. Optional D to set delay in centimeters between sensor and extruder -// M406 - Turn off Filament Sensor extrusion control -// M407 - Displays measured filament diameter -// M500 - stores parameters in EEPROM -// M501 - reads parameters from EEPROM (if you need reset them after you changed them temporarily). -// M502 - reverts to the default "factory settings". You still need to store them in EEPROM afterwards if you want to. -// M503 - print the current settings (from memory not from EEPROM) -// M509 - force language selection on next restart -// M540 - Use S[0|1] to enable or disable the stop SD card print on endstop hit (requires ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED) -// M600 - Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal] -// M605 - Set dual x-carriage movement mode: S [ X R ] -// M900 - Set LIN_ADVANCE options, if enabled. See Configuration_adv.h for details. -// M907 - Set digital trimpot motor current using axis codes. -// M908 - Control digital trimpot directly. -// M350 - Set microstepping mode. -// M351 - Toggle MS1 MS2 pins directly. - -// M928 - Start SD logging (M928 filename.g) - ended by M29 -// M999 - Restart after being stopped by error - -//Stepper Movement Variables - -//=========================================================================== -//=============================imported variables============================ -//=========================================================================== - - -//=========================================================================== -//=============================public variables============================= -//=========================================================================== -#ifdef SDSUPPORT -CardReader card; -#endif - -unsigned long PingTime = millis(); -union Data -{ -byte b[2]; -int value; -}; - -float homing_feedrate[] = HOMING_FEEDRATE; -// Currently only the extruder axis may be switched to a relative mode. -// Other axes are always absolute or relative based on the common relative_mode flag. -bool axis_relative_modes[] = AXIS_RELATIVE_MODES; -int feedmultiply=100; //100->1 200->2 -int saved_feedmultiply; -int extrudemultiply=100; //100->1 200->2 -int extruder_multiply[EXTRUDERS] = {100 - #if EXTRUDERS > 1 - , 100 - #if EXTRUDERS > 2 - , 100 - #endif - #endif -}; - -int bowden_length[4]; - -bool is_usb_printing = false; -bool homing_flag = false; - -bool temp_cal_active = false; - -unsigned long kicktime = millis()+100000; - -unsigned int usb_printing_counter; - -int lcd_change_fil_state = 0; - -int feedmultiplyBckp = 100; -float HotendTempBckp = 0; -int fanSpeedBckp = 0; -float pause_lastpos[4]; -unsigned long pause_time = 0; -unsigned long start_pause_print = millis(); -unsigned long t_fan_rising_edge = millis(); - -unsigned long load_filament_time; - -bool mesh_bed_leveling_flag = false; -bool mesh_bed_run_from_menu = false; - -unsigned char lang_selected = 0; -int8_t FarmMode = 0; - -bool prusa_sd_card_upload = false; - -unsigned int status_number = 0; - -unsigned long total_filament_used; -unsigned int heating_status; -unsigned int heating_status_counter; -bool custom_message; -bool loading_flag = false; -unsigned int custom_message_type; -unsigned int custom_message_state; -char snmm_filaments_used = 0; - -float distance_from_min[3]; -float angleDiff; - -bool fan_state[2]; -int fan_edge_counter[2]; -int fan_speed[2]; - - -bool volumetric_enabled = false; -float filament_size[EXTRUDERS] = { DEFAULT_NOMINAL_FILAMENT_DIA - #if EXTRUDERS > 1 - , DEFAULT_NOMINAL_FILAMENT_DIA - #if EXTRUDERS > 2 - , DEFAULT_NOMINAL_FILAMENT_DIA - #endif - #endif -}; -float volumetric_multiplier[EXTRUDERS] = {1.0 - #if EXTRUDERS > 1 - , 1.0 - #if EXTRUDERS > 2 - , 1.0 - #endif - #endif -}; -float current_position[NUM_AXIS] = { 0.0, 0.0, 0.0, 0.0 }; -float add_homing[3]={0,0,0}; - -float min_pos[3] = { X_MIN_POS, Y_MIN_POS, Z_MIN_POS }; -float max_pos[3] = { X_MAX_POS, Y_MAX_POS, Z_MAX_POS }; -bool axis_known_position[3] = {false, false, false}; -float zprobe_zoffset; - -// Extruder offset -#if EXTRUDERS > 1 - #define NUM_EXTRUDER_OFFSETS 2 // only in XY plane -float extruder_offset[NUM_EXTRUDER_OFFSETS][EXTRUDERS] = { -#if defined(EXTRUDER_OFFSET_X) && defined(EXTRUDER_OFFSET_Y) - EXTRUDER_OFFSET_X, EXTRUDER_OFFSET_Y -#endif -}; -#endif - -uint8_t active_extruder = 0; -int fanSpeed=0; - -#ifdef FWRETRACT - bool autoretract_enabled=false; - bool retracted[EXTRUDERS]={false - #if EXTRUDERS > 1 - , false - #if EXTRUDERS > 2 - , false - #endif - #endif - }; - bool retracted_swap[EXTRUDERS]={false - #if EXTRUDERS > 1 - , false - #if EXTRUDERS > 2 - , false - #endif - #endif - }; - - float retract_length = RETRACT_LENGTH; - float retract_length_swap = RETRACT_LENGTH_SWAP; - float retract_feedrate = RETRACT_FEEDRATE; - float retract_zlift = RETRACT_ZLIFT; - float retract_recover_length = RETRACT_RECOVER_LENGTH; - float retract_recover_length_swap = RETRACT_RECOVER_LENGTH_SWAP; - float retract_recover_feedrate = RETRACT_RECOVER_FEEDRATE; -#endif - -#ifdef ULTIPANEL - #ifdef PS_DEFAULT_OFF - bool powersupply = false; - #else - bool powersupply = true; - #endif -#endif - -bool cancel_heatup = false ; - -#ifdef FILAMENT_SENSOR - //Variables for Filament Sensor input - float filament_width_nominal=DEFAULT_NOMINAL_FILAMENT_DIA; //Set nominal filament width, can be changed with M404 - bool filament_sensor=false; //M405 turns on filament_sensor control, M406 turns it off - float filament_width_meas=DEFAULT_MEASURED_FILAMENT_DIA; //Stores the measured filament diameter - signed char measurement_delay[MAX_MEASUREMENT_DELAY+1]; //ring buffer to delay measurement store extruder factor after subtracting 100 - int delay_index1=0; //index into ring buffer - int delay_index2=-1; //index into ring buffer - set to -1 on startup to indicate ring buffer needs to be initialized - float delay_dist=0; //delay distance counter - int meas_delay_cm = MEASUREMENT_DELAY_CM; //distance delay setting -#endif - -const char errormagic[] PROGMEM = "Error:"; -const char echomagic[] PROGMEM = "echo:"; - -//=========================================================================== -//=============================Private Variables============================= -//=========================================================================== -const char axis_codes[NUM_AXIS] = {'X', 'Y', 'Z', 'E'}; -float destination[NUM_AXIS] = { 0.0, 0.0, 0.0, 0.0}; - -static float delta[3] = {0.0, 0.0, 0.0}; - -// For tracing an arc -static float offset[3] = {0.0, 0.0, 0.0}; -static float feedrate = 1500.0, next_feedrate, saved_feedrate; - -// Determines Absolute or Relative Coordinates. -// Also there is bool axis_relative_modes[] per axis flag. -static bool relative_mode = false; - -const int sensitive_pins[] = SENSITIVE_PINS; // Sensitive pin list for M42 - -//static float tt = 0; -//static float bt = 0; - -//Inactivity shutdown variables -static unsigned long previous_millis_cmd = 0; -unsigned long max_inactive_time = 0; -static unsigned long stepper_inactive_time = DEFAULT_STEPPER_DEACTIVE_TIME*1000l; - -unsigned long starttime=0; -unsigned long stoptime=0; -unsigned long _usb_timer = 0; - -static uint8_t tmp_extruder; - -bool extruder_under_pressure = true; - - -bool Stopped=false; - -#if NUM_SERVOS > 0 - Servo servos[NUM_SERVOS]; -#endif - -bool CooldownNoWait = true; -bool target_direction; - -//Insert variables if CHDK is defined -#ifdef CHDK -unsigned long chdkHigh = 0; -boolean chdkActive = false; -#endif - -//=========================================================================== -//=============================Routines====================================== -//=========================================================================== - -void get_arc_coordinates(); -bool setTargetedHotend(int code); - -void serial_echopair_P(const char *s_P, float v) - { serialprintPGM(s_P); SERIAL_ECHO(v); } -void serial_echopair_P(const char *s_P, double v) - { serialprintPGM(s_P); SERIAL_ECHO(v); } -void serial_echopair_P(const char *s_P, unsigned long v) - { serialprintPGM(s_P); SERIAL_ECHO(v); } - -#ifdef SDSUPPORT - #include "SdFatUtil.h" - int freeMemory() { return SdFatUtil::FreeRam(); } -#else - extern "C" { - extern unsigned int __bss_end; - extern unsigned int __heap_start; - extern void *__brkval; - - int freeMemory() { - int free_memory; - - if ((int)__brkval == 0) - free_memory = ((int)&free_memory) - ((int)&__bss_end); - else - free_memory = ((int)&free_memory) - ((int)__brkval); - - return free_memory; - } - } -#endif //!SDSUPPORT - -void setup_killpin() -{ - #if defined(KILL_PIN) && KILL_PIN > -1 - SET_INPUT(KILL_PIN); - WRITE(KILL_PIN,HIGH); - #endif -} - -// Set home pin -void setup_homepin(void) -{ -#if defined(HOME_PIN) && HOME_PIN > -1 - SET_INPUT(HOME_PIN); - WRITE(HOME_PIN,HIGH); -#endif -} - -void setup_photpin() -{ - #if defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1 - SET_OUTPUT(PHOTOGRAPH_PIN); - WRITE(PHOTOGRAPH_PIN, LOW); - #endif -} - -void setup_powerhold() -{ - #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1 - SET_OUTPUT(SUICIDE_PIN); - WRITE(SUICIDE_PIN, HIGH); - #endif - #if defined(PS_ON_PIN) && PS_ON_PIN > -1 - SET_OUTPUT(PS_ON_PIN); - #if defined(PS_DEFAULT_OFF) - WRITE(PS_ON_PIN, PS_ON_ASLEEP); - #else - WRITE(PS_ON_PIN, PS_ON_AWAKE); - #endif - #endif -} - -void suicide() -{ - #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1 - SET_OUTPUT(SUICIDE_PIN); - WRITE(SUICIDE_PIN, LOW); - #endif -} - -void servo_init() -{ - #if (NUM_SERVOS >= 1) && defined(SERVO0_PIN) && (SERVO0_PIN > -1) - servos[0].attach(SERVO0_PIN); - #endif - #if (NUM_SERVOS >= 2) && defined(SERVO1_PIN) && (SERVO1_PIN > -1) - servos[1].attach(SERVO1_PIN); - #endif - #if (NUM_SERVOS >= 3) && defined(SERVO2_PIN) && (SERVO2_PIN > -1) - servos[2].attach(SERVO2_PIN); - #endif - #if (NUM_SERVOS >= 4) && defined(SERVO3_PIN) && (SERVO3_PIN > -1) - servos[3].attach(SERVO3_PIN); - #endif - #if (NUM_SERVOS >= 5) - #error "TODO: enter initalisation code for more servos" - #endif -} - -static void lcd_language_menu(); - -void stop_and_save_print_to_ram(float z_move, float e_move); -void restore_print_from_ram_and_continue(float e_move); - -extern int8_t CrashDetectMenu; - - -void crashdet_enable() -{ - MYSERIAL.println("crashdet_enable"); - tmc2130_sg_stop_on_crash = true; - eeprom_update_byte((uint8_t*)EEPROM_CRASH_DET, 0xFF); - CrashDetectMenu = 1; - -} - -void crashdet_disable() -{ - MYSERIAL.println("crashdet_disable"); - tmc2130_sg_stop_on_crash = false; - eeprom_update_byte((uint8_t*)EEPROM_CRASH_DET, 0x00); - CrashDetectMenu = 0; -} - -void crashdet_stop_and_save_print() -{ - stop_and_save_print_to_ram(10, 0); //XY - no change, Z 10mm up, E - no change -} - -void crashdet_restore_print_and_continue() -{ - restore_print_from_ram_and_continue(0); //XYZ = orig, E - no change -// babystep_apply(); -} - - -void crashdet_stop_and_save_print2() -{ - cli(); - planner_abort_hard(); //abort printing - cmdqueue_reset(); //empty cmdqueue - card.sdprinting = false; - card.closefile(); - sei(); -} - - - -#ifdef MESH_BED_LEVELING - enum MeshLevelingState { MeshReport, MeshStart, MeshNext, MeshSet }; -#endif - - -// Factory reset function -// This function is used to erase parts or whole EEPROM memory which is used for storing calibration and and so on. -// Level input parameter sets depth of reset -// Quiet parameter masks all waitings for user interact. -int er_progress = 0; -void factory_reset(char level, bool quiet) -{ - lcd_implementation_clear(); - int cursor_pos = 0; - switch (level) { - - // Level 0: Language reset - case 0: - WRITE(BEEPER, HIGH); - _delay_ms(100); - WRITE(BEEPER, LOW); - - lcd_force_language_selection(); - break; - - //Level 1: Reset statistics - case 1: - WRITE(BEEPER, HIGH); - _delay_ms(100); - WRITE(BEEPER, LOW); - eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, 0); - eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, 0); - lcd_menu_statistics(); - - break; - - // Level 2: Prepare for shipping - case 2: - //lcd_printPGM(PSTR("Factory RESET")); - //lcd_print_at_PGM(1,2,PSTR("Shipping prep")); - - // Force language selection at the next boot up. - lcd_force_language_selection(); - // Force the "Follow calibration flow" message at the next boot up. - calibration_status_store(CALIBRATION_STATUS_Z_CALIBRATION); - farm_no = 0; - farm_mode == false; - eeprom_update_byte((uint8_t*)EEPROM_FARM_MODE, farm_mode); - EEPROM_save_B(EEPROM_FARM_NUMBER, &farm_no); - - WRITE(BEEPER, HIGH); - _delay_ms(100); - WRITE(BEEPER, LOW); - //_delay_ms(2000); - break; - - // Level 3: erase everything, whole EEPROM will be set to 0xFF - - case 3: - lcd_printPGM(PSTR("Factory RESET")); - lcd_print_at_PGM(1, 2, PSTR("ERASING all data")); - - WRITE(BEEPER, HIGH); - _delay_ms(100); - WRITE(BEEPER, LOW); - - er_progress = 0; - lcd_print_at_PGM(3, 3, PSTR(" ")); - lcd_implementation_print_at(3, 3, er_progress); - - // Erase EEPROM - for (int i = 0; i < 4096; i++) { - eeprom_write_byte((uint8_t*)i, 0xFF); - - if (i % 41 == 0) { - er_progress++; - lcd_print_at_PGM(3, 3, PSTR(" ")); - lcd_implementation_print_at(3, 3, er_progress); - lcd_printPGM(PSTR("%")); - } - - } - - - break; - case 4: - bowden_menu(); - break; - - default: - break; - } - - -} - - -// "Setup" function is called by the Arduino framework on startup. -// Before startup, the Timers-functions (PWM)/Analog RW and HardwareSerial provided by the Arduino-code -// are initialized by the main() routine provided by the Arduino framework. -void setup() -{ - lcd_init(); - lcd_print_at_PGM(0, 1, PSTR(" Original Prusa ")); - lcd_print_at_PGM(0, 2, PSTR(" 3D Printers ")); - setup_killpin(); - setup_powerhold(); - farm_mode = eeprom_read_byte((uint8_t*)EEPROM_FARM_MODE); - EEPROM_read_B(EEPROM_FARM_NUMBER, &farm_no); - if ((farm_mode == 0xFF && farm_no == 0) || (farm_no == 0xFFFF)) farm_mode = false; //if farm_mode has not been stored to eeprom yet and farm number is set to zero or EEPROM is fresh, deactivate farm mode - if (farm_no == 0xFFFF) farm_no = 0; - if (farm_mode) - { - prusa_statistics(8); - selectedSerialPort = 1; - } - else - selectedSerialPort = 0; - MYSERIAL.begin(BAUDRATE); - SERIAL_PROTOCOLLNPGM("start"); - SERIAL_ECHO_START; - -#if 0 - SERIAL_ECHOLN("Reading eeprom from 0 to 100: start"); - for (int i = 0; i < 4096; ++i) { - int b = eeprom_read_byte((unsigned char*)i); - if (b != 255) { - SERIAL_ECHO(i); - SERIAL_ECHO(":"); - SERIAL_ECHO(b); - SERIAL_ECHOLN(""); - } - } - SERIAL_ECHOLN("Reading eeprom from 0 to 100: done"); -#endif - - // Check startup - does nothing if bootloader sets MCUSR to 0 - byte mcu = MCUSR; - if (mcu & 1) SERIAL_ECHOLNRPGM(MSG_POWERUP); - if (mcu & 2) SERIAL_ECHOLNRPGM(MSG_EXTERNAL_RESET); - if (mcu & 4) SERIAL_ECHOLNRPGM(MSG_BROWNOUT_RESET); - if (mcu & 8) SERIAL_ECHOLNRPGM(MSG_WATCHDOG_RESET); - if (mcu & 32) SERIAL_ECHOLNRPGM(MSG_SOFTWARE_RESET); - MCUSR = 0; - - //SERIAL_ECHORPGM(MSG_MARLIN); - //SERIAL_ECHOLNRPGM(VERSION_STRING); - -#ifdef STRING_VERSION_CONFIG_H -#ifdef STRING_CONFIG_H_AUTHOR - SERIAL_ECHO_START; - SERIAL_ECHORPGM(MSG_CONFIGURATION_VER); - SERIAL_ECHOPGM(STRING_VERSION_CONFIG_H); - SERIAL_ECHORPGM(MSG_AUTHOR); - SERIAL_ECHOLNPGM(STRING_CONFIG_H_AUTHOR); - SERIAL_ECHOPGM("Compiled: "); - SERIAL_ECHOLNPGM(__DATE__); -#endif -#endif - - SERIAL_ECHO_START; - SERIAL_ECHORPGM(MSG_FREE_MEMORY); - SERIAL_ECHO(freeMemory()); - SERIAL_ECHORPGM(MSG_PLANNER_BUFFER_BYTES); - SERIAL_ECHOLN((int)sizeof(block_t)*BLOCK_BUFFER_SIZE); - //lcd_update_enable(false); // why do we need this?? - andre - // loads data from EEPROM if available else uses defaults (and resets step acceleration rate) - Config_RetrieveSettings(EEPROM_OFFSET); - SdFatUtil::set_stack_guard(); //writes magic number at the end of static variables to protect against overwriting static memory by stack - tp_init(); // Initialize temperature loop - plan_init(); // Initialize planner; - watchdog_init(); - -#ifdef TMC2130 - uint8_t silentMode = eeprom_read_byte((uint8_t*)EEPROM_SILENT); - tmc2130_mode = silentMode?TMC2130_MODE_SILENT:TMC2130_MODE_NORMAL; - uint8_t crashdet = eeprom_read_byte((uint8_t*)EEPROM_CRASH_DET); - if (crashdet) - { - crashdet_enable(); - MYSERIAL.println("CrashDetect ENABLED!"); - } - else - { - crashdet_disable(); - MYSERIAL.println("CrashDetect DISABLED"); - } - -#endif //TMC2130 - -#ifdef PAT9125 - MYSERIAL.print("PAT9125_init:"); - int pat9125 = pat9125_init(200, 200); - MYSERIAL.println(pat9125); - uint8_t fsensor = eeprom_read_byte((uint8_t*)EEPROM_FSENSOR); - if (!pat9125) fsensor = 0; //disable sensor - if (fsensor) - { - fsensor_enable(); - MYSERIAL.println("Filament Sensor ENABLED!"); - } - else - { - fsensor_disable(); - MYSERIAL.println("Filament Sensor DISABLED"); - } - -#endif //PAT9125 - - st_init(); // Initialize stepper, this enables interrupts! - - setup_photpin(); - lcd_print_at_PGM(0, 1, PSTR(" Original Prusa ")); // we need to do this again for some reason, no time to research - lcd_print_at_PGM(0, 2, PSTR(" 3D Printers ")); - servo_init(); - // Reset the machine correction matrix. - // It does not make sense to load the correction matrix until the machine is homed. - world2machine_reset(); - - if (!READ(BTN_ENC)) - { - _delay_ms(1000); - if (!READ(BTN_ENC)) - { - lcd_implementation_clear(); - - - lcd_printPGM(PSTR("Factory RESET")); - - - SET_OUTPUT(BEEPER); - WRITE(BEEPER, HIGH); - - while (!READ(BTN_ENC)); - - WRITE(BEEPER, LOW); - - - - _delay_ms(2000); - - char level = reset_menu(); - factory_reset(level, false); - - switch (level) { - case 0: _delay_ms(0); break; - case 1: _delay_ms(0); break; - case 2: _delay_ms(0); break; - case 3: _delay_ms(0); break; - } - // _delay_ms(100); - /* - #ifdef MESH_BED_LEVELING - _delay_ms(2000); - - if (!READ(BTN_ENC)) - { - WRITE(BEEPER, HIGH); - _delay_ms(100); - WRITE(BEEPER, LOW); - _delay_ms(200); - WRITE(BEEPER, HIGH); - _delay_ms(100); - WRITE(BEEPER, LOW); - - int _z = 0; - calibration_status_store(CALIBRATION_STATUS_CALIBRATED); - EEPROM_save_B(EEPROM_BABYSTEP_X, &_z); - EEPROM_save_B(EEPROM_BABYSTEP_Y, &_z); - EEPROM_save_B(EEPROM_BABYSTEP_Z, &_z); - } - else - { - - WRITE(BEEPER, HIGH); - _delay_ms(100); - WRITE(BEEPER, LOW); - } - #endif // mesh */ - - } - } - else - { - //_delay_ms(1000); // wait 1sec to display the splash screen // what's this and why do we need it?? - andre - } - - - - -#if defined(CONTROLLERFAN_PIN) && (CONTROLLERFAN_PIN > -1) - SET_OUTPUT(CONTROLLERFAN_PIN); //Set pin used for driver cooling fan -#endif - -#if defined(LCD_PWM_PIN) && (LCD_PWM_PIN > -1) - SET_OUTPUT(LCD_PWM_PIN); //Set pin used for driver cooling fan -#endif - -#ifdef DIGIPOT_I2C - digipot_i2c_init(); -#endif - setup_homepin(); - - if (1) { - SERIAL_ECHOPGM("initial zsteps on power up: "); MYSERIAL.println(tmc2130_rd_MSCNT(Z_TMC2130_CS)); - // try to run to zero phase before powering the Z motor. - // Move in negative direction - WRITE(Z_DIR_PIN,INVERT_Z_DIR); - // Round the current micro-micro steps to micro steps. - for (uint16_t phase = (tmc2130_rd_MSCNT(Z_TMC2130_CS) + 8) >> 4; phase > 0; -- phase) { - // Until the phase counter is reset to zero. - WRITE(Z_STEP_PIN, !INVERT_Z_STEP_PIN); - delay(2); - WRITE(Z_STEP_PIN, INVERT_Z_STEP_PIN); - delay(2); - } - SERIAL_ECHOPGM("initial zsteps after reset: "); MYSERIAL.println(tmc2130_rd_MSCNT(Z_TMC2130_CS)); - } - -#if defined(Z_AXIS_ALWAYS_ON) - enable_z(); -#endif - farm_mode = eeprom_read_byte((uint8_t*)EEPROM_FARM_MODE); - EEPROM_read_B(EEPROM_FARM_NUMBER, &farm_no); - if ((farm_mode == 0xFF && farm_no == 0) || (farm_no == 0xFFFF)) farm_mode = false; //if farm_mode has not been stored to eeprom yet and farm number is set to zero or EEPROM is fresh, deactivate farm mode - if (farm_no == 0xFFFF) farm_no = 0; - if (farm_mode) - { - prusa_statistics(8); - } - - // Enable Toshiba FlashAir SD card / WiFi enahanced card. - card.ToshibaFlashAir_enable(eeprom_read_byte((unsigned char*)EEPROM_TOSHIBA_FLASH_AIR_COMPATIBLITY) == 1); - // Force SD card update. Otherwise the SD card update is done from loop() on card.checkautostart(false), - // but this times out if a blocking dialog is shown in setup(). - card.initsd(); - - if (eeprom_read_dword((uint32_t*)(EEPROM_TOP - 4)) == 0x0ffffffff && - eeprom_read_dword((uint32_t*)(EEPROM_TOP - 8)) == 0x0ffffffff && - eeprom_read_dword((uint32_t*)(EEPROM_TOP - 12)) == 0x0ffffffff) { - // Maiden startup. The firmware has been loaded and first started on a virgin RAMBo board, - // where all the EEPROM entries are set to 0x0ff. - // Once a firmware boots up, it forces at least a language selection, which changes - // EEPROM_LANG to number lower than 0x0ff. - // 1) Set a high power mode. - eeprom_write_byte((uint8_t*)EEPROM_SILENT, 0); - } -#ifdef SNMM - if (eeprom_read_dword((uint32_t*)EEPROM_BOWDEN_LENGTH) == 0x0ffffffff) { //bowden length used for SNMM - int _z = BOWDEN_LENGTH; - for(int i = 0; i<4; i++) EEPROM_save_B(EEPROM_BOWDEN_LENGTH + i * 2, &_z); - } -#endif - - // In the future, somewhere here would one compare the current firmware version against the firmware version stored in the EEPROM. - // If they differ, an update procedure may need to be performed. At the end of this block, the current firmware version - // is being written into the EEPROM, so the update procedure will be triggered only once. - lang_selected = eeprom_read_byte((uint8_t*)EEPROM_LANG); - if (lang_selected >= LANG_NUM){ - lcd_mylang(); - } - - if (eeprom_read_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE) == 255) { - eeprom_write_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE, 0); - temp_cal_active = false; - } else temp_cal_active = eeprom_read_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE); - - if (eeprom_read_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA) == 255) { - eeprom_write_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 0); - } - if (eeprom_read_byte((uint8_t*)EEPROM_UVLO) == 255) { - eeprom_write_byte((uint8_t*)EEPROM_UVLO, 0); - } - - check_babystep(); //checking if Z babystep is in allowed range - setup_uvlo_interrupt(); - setup_fan_interrupt(); - fsensor_setup_interrupt(); - - -#ifndef DEBUG_DISABLE_STARTMSGS - - if (calibration_status() == CALIBRATION_STATUS_ASSEMBLED || - calibration_status() == CALIBRATION_STATUS_UNKNOWN) { - // Reset the babystepping values, so the printer will not move the Z axis up when the babystepping is enabled. - eeprom_update_word((uint16_t*)EEPROM_BABYSTEP_Z, 0); - // Show the message. - lcd_show_fullscreen_message_and_wait_P(MSG_FOLLOW_CALIBRATION_FLOW); - } else if (calibration_status() == CALIBRATION_STATUS_LIVE_ADJUST) { - // Show the message. - lcd_show_fullscreen_message_and_wait_P(MSG_BABYSTEP_Z_NOT_SET); - lcd_update_enable(true); - } else if (calibration_status() == CALIBRATION_STATUS_CALIBRATED && temp_cal_active == true && calibration_status_pinda() == false) { - lcd_show_fullscreen_message_and_wait_P(MSG_PINDA_NOT_CALIBRATED); - lcd_update_enable(true); - } else if (calibration_status() == CALIBRATION_STATUS_Z_CALIBRATION) { - // Show the message. - lcd_show_fullscreen_message_and_wait_P(MSG_FOLLOW_CALIBRATION_FLOW); - } -#endif //DEBUG_DISABLE_STARTMSGS - for (int i = 0; i<4; i++) EEPROM_read_B(EEPROM_BOWDEN_LENGTH + i * 2, &bowden_length[i]); - lcd_update_enable(true); - lcd_implementation_clear(); - lcd_update(2); - // Store the currently running firmware into an eeprom, - // so the next time the firmware gets updated, it will know from which version it has been updated. - update_current_firmware_version_to_eeprom(); - if (eeprom_read_byte((uint8_t*)EEPROM_UVLO) == 1) { //previous print was terminated by UVLO -/* - if (lcd_show_fullscreen_message_yes_no_and_wait_P(MSG_RECOVER_PRINT, false)) recover_print(); - else { - eeprom_update_byte((uint8_t*)EEPROM_UVLO, 0); - lcd_update_enable(true); - lcd_update(2); - lcd_setstatuspgm(WELCOME_MSG); - } -*/ - manage_heater(); // Update temperatures -#ifdef DEBUG_UVLO_AUTOMATIC_RECOVER - MYSERIAL.println("Power panic detected!"); - MYSERIAL.print("Current bed temp:"); - MYSERIAL.println(degBed()); - MYSERIAL.print("Saved bed temp:"); - MYSERIAL.println((float)eeprom_read_byte((uint8_t*)EEPROM_UVLO_TARGET_BED)); -#endif - if ( degBed() > ( (float)eeprom_read_byte((uint8_t*)EEPROM_UVLO_TARGET_BED) - AUTOMATIC_UVLO_BED_TEMP_OFFSET) ){ - #ifdef DEBUG_UVLO_AUTOMATIC_RECOVER - MYSERIAL.println("Automatic recovery!"); - #endif - recover_print(1); - } - else{ - #ifdef DEBUG_UVLO_AUTOMATIC_RECOVER - MYSERIAL.println("Normal recovery!"); - #endif - if ( lcd_show_fullscreen_message_yes_no_and_wait_P(MSG_RECOVER_PRINT, false) ) recover_print(0); - else { - eeprom_update_byte((uint8_t*)EEPROM_UVLO, 0); - lcd_update_enable(true); - lcd_update(2); - lcd_setstatuspgm(WELCOME_MSG); - } - - } - - } - -} - -void trace(); - -#define CHUNK_SIZE 64 // bytes -#define SAFETY_MARGIN 1 -char chunk[CHUNK_SIZE+SAFETY_MARGIN]; -int chunkHead = 0; - -int serial_read_stream() { - - setTargetHotend(0, 0); - setTargetBed(0); - - lcd_implementation_clear(); - lcd_printPGM(PSTR(" Upload in progress")); - - // first wait for how many bytes we will receive - uint32_t bytesToReceive; - - // receive the four bytes - char bytesToReceiveBuffer[4]; - for (int i=0; i<4; i++) { - int data; - while ((data = MYSERIAL.read()) == -1) {}; - bytesToReceiveBuffer[i] = data; - - } - - // make it a uint32 - memcpy(&bytesToReceive, &bytesToReceiveBuffer, 4); - - // we're ready, notify the sender - MYSERIAL.write('+'); - - // lock in the routine - uint32_t receivedBytes = 0; - while (prusa_sd_card_upload) { - int i; - for (i=0; i 0 && millis()-_usb_timer > 1000) - { - is_usb_printing = true; - usb_printing_counter--; - _usb_timer = millis(); - } - if (usb_printing_counter == 0) - { - is_usb_printing = false; - } - - if (prusa_sd_card_upload) - { - //we read byte-by byte - serial_read_stream(); - } else - { - - get_command(); - - #ifdef SDSUPPORT - card.checkautostart(false); - #endif - if(buflen) - { - cmdbuffer_front_already_processed = false; - #ifdef SDSUPPORT - if(card.saving) - { - // Saving a G-code file onto an SD-card is in progress. - // Saving starts with M28, saving until M29 is seen. - if(strstr_P(CMDBUFFER_CURRENT_STRING, PSTR("M29")) == NULL) { - card.write_command(CMDBUFFER_CURRENT_STRING); - if(card.logging) - process_commands(); - else - SERIAL_PROTOCOLLNRPGM(MSG_OK); - } else { - card.closefile(); - SERIAL_PROTOCOLLNRPGM(MSG_FILE_SAVED); - } - } else { - process_commands(); - } - #else - process_commands(); - #endif //SDSUPPORT - - if (! cmdbuffer_front_already_processed && buflen) - { - cli(); - union { - struct { - char lo; - char hi; - } lohi; - uint16_t value; - } sdlen; - sdlen.value = 0; - if (CMDBUFFER_CURRENT_TYPE == CMDBUFFER_CURRENT_TYPE_SDCARD) { - sdlen.lohi.lo = cmdbuffer[bufindr + 1]; - sdlen.lohi.hi = cmdbuffer[bufindr + 2]; - } - cmdqueue_pop_front(); - planner_add_sd_length(sdlen.value); - sei(); - } - } -} - //check heater every n milliseconds - manage_heater(); - isPrintPaused ? manage_inactivity(true) : manage_inactivity(false); - checkHitEndstops(); - lcd_update(); -#ifdef PAT9125 - fsensor_update(); -#endif //PAT9125 -#ifdef TMC2130 - tmc2130_check_overtemp(); - if (tmc2130_sg_crash) - { - tmc2130_sg_crash = false; -// crashdet_stop_and_save_print(); - enquecommand_P((PSTR("D999"))); - } -#endif //TMC2130 -} - -#define DEFINE_PGM_READ_ANY(type, reader) \ - static inline type pgm_read_any(const type *p) \ - { return pgm_read_##reader##_near(p); } - -DEFINE_PGM_READ_ANY(float, float); -DEFINE_PGM_READ_ANY(signed char, byte); - -#define XYZ_CONSTS_FROM_CONFIG(type, array, CONFIG) \ -static const PROGMEM type array##_P[3] = \ - { X_##CONFIG, Y_##CONFIG, Z_##CONFIG }; \ -static inline type array(int axis) \ - { return pgm_read_any(&array##_P[axis]); } \ -type array##_ext(int axis) \ - { return pgm_read_any(&array##_P[axis]); } - -XYZ_CONSTS_FROM_CONFIG(float, base_min_pos, MIN_POS); -XYZ_CONSTS_FROM_CONFIG(float, base_max_pos, MAX_POS); -XYZ_CONSTS_FROM_CONFIG(float, base_home_pos, HOME_POS); -XYZ_CONSTS_FROM_CONFIG(float, max_length, MAX_LENGTH); -XYZ_CONSTS_FROM_CONFIG(float, home_retract_mm, HOME_RETRACT_MM); -XYZ_CONSTS_FROM_CONFIG(signed char, home_dir, HOME_DIR); - -static void axis_is_at_home(int axis) { - current_position[axis] = base_home_pos(axis) + add_homing[axis]; - min_pos[axis] = base_min_pos(axis) + add_homing[axis]; - max_pos[axis] = base_max_pos(axis) + add_homing[axis]; -} - - -inline void set_current_to_destination() { memcpy(current_position, destination, sizeof(current_position)); } -inline void set_destination_to_current() { memcpy(destination, current_position, sizeof(destination)); } - - -static void setup_for_endstop_move(bool enable_endstops_now = true) { - saved_feedrate = feedrate; - saved_feedmultiply = feedmultiply; - feedmultiply = 100; - previous_millis_cmd = millis(); - - enable_endstops(enable_endstops_now); -} - -static void clean_up_after_endstop_move() { -#ifdef ENDSTOPS_ONLY_FOR_HOMING - enable_endstops(false); -#endif - - feedrate = saved_feedrate; - feedmultiply = saved_feedmultiply; - previous_millis_cmd = millis(); -} - - - -#ifdef ENABLE_AUTO_BED_LEVELING -#ifdef AUTO_BED_LEVELING_GRID -static void set_bed_level_equation_lsq(double *plane_equation_coefficients) -{ - vector_3 planeNormal = vector_3(-plane_equation_coefficients[0], -plane_equation_coefficients[1], 1); - planeNormal.debug("planeNormal"); - plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal); - //bedLevel.debug("bedLevel"); - - //plan_bed_level_matrix.debug("bed level before"); - //vector_3 uncorrected_position = plan_get_position_mm(); - //uncorrected_position.debug("position before"); - - vector_3 corrected_position = plan_get_position(); -// corrected_position.debug("position after"); - current_position[X_AXIS] = corrected_position.x; - current_position[Y_AXIS] = corrected_position.y; - current_position[Z_AXIS] = corrected_position.z; - - // put the bed at 0 so we don't go below it. - current_position[Z_AXIS] = zprobe_zoffset; // in the lsq we reach here after raising the extruder due to the loop structure - - plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]); -} - -#else // not AUTO_BED_LEVELING_GRID - -static void set_bed_level_equation_3pts(float z_at_pt_1, float z_at_pt_2, float z_at_pt_3) { - - plan_bed_level_matrix.set_to_identity(); - - vector_3 pt1 = vector_3(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, z_at_pt_1); - vector_3 pt2 = vector_3(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, z_at_pt_2); - vector_3 pt3 = vector_3(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, z_at_pt_3); - - vector_3 from_2_to_1 = (pt1 - pt2).get_normal(); - vector_3 from_2_to_3 = (pt3 - pt2).get_normal(); - vector_3 planeNormal = vector_3::cross(from_2_to_1, from_2_to_3).get_normal(); - planeNormal = vector_3(planeNormal.x, planeNormal.y, abs(planeNormal.z)); - - plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal); - - vector_3 corrected_position = plan_get_position(); - current_position[X_AXIS] = corrected_position.x; - current_position[Y_AXIS] = corrected_position.y; - current_position[Z_AXIS] = corrected_position.z; - - // put the bed at 0 so we don't go below it. - current_position[Z_AXIS] = zprobe_zoffset; - - plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]); - -} - -#endif // AUTO_BED_LEVELING_GRID - -static void run_z_probe() { - plan_bed_level_matrix.set_to_identity(); - feedrate = homing_feedrate[Z_AXIS]; - - // move down until you find the bed - float zPosition = -10; - plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder); - st_synchronize(); - - // we have to let the planner know where we are right now as it is not where we said to go. - zPosition = st_get_position_mm(Z_AXIS); - plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS]); - - // move up the retract distance - zPosition += home_retract_mm(Z_AXIS); - plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder); - st_synchronize(); - - // move back down slowly to find bed - feedrate = homing_feedrate[Z_AXIS]/4; - zPosition -= home_retract_mm(Z_AXIS) * 2; - plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder); - st_synchronize(); - - current_position[Z_AXIS] = st_get_position_mm(Z_AXIS); - // make sure the planner knows where we are as it may be a bit different than we last said to move to - plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]); -} - -static void do_blocking_move_to(float x, float y, float z) { - float oldFeedRate = feedrate; - - feedrate = homing_feedrate[Z_AXIS]; - - current_position[Z_AXIS] = z; - plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate/60, active_extruder); - st_synchronize(); - - feedrate = XY_TRAVEL_SPEED; - - current_position[X_AXIS] = x; - current_position[Y_AXIS] = y; - plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate/60, active_extruder); - st_synchronize(); - - feedrate = oldFeedRate; -} - -static void do_blocking_move_relative(float offset_x, float offset_y, float offset_z) { - do_blocking_move_to(current_position[X_AXIS] + offset_x, current_position[Y_AXIS] + offset_y, current_position[Z_AXIS] + offset_z); -} - - -/// Probe bed height at position (x,y), returns the measured z value -static float probe_pt(float x, float y, float z_before) { - // move to right place - do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], z_before); - do_blocking_move_to(x - X_PROBE_OFFSET_FROM_EXTRUDER, y - Y_PROBE_OFFSET_FROM_EXTRUDER, current_position[Z_AXIS]); - - run_z_probe(); - float measured_z = current_position[Z_AXIS]; - - SERIAL_PROTOCOLRPGM(MSG_BED); - SERIAL_PROTOCOLPGM(" x: "); - SERIAL_PROTOCOL(x); - SERIAL_PROTOCOLPGM(" y: "); - SERIAL_PROTOCOL(y); - SERIAL_PROTOCOLPGM(" z: "); - SERIAL_PROTOCOL(measured_z); - SERIAL_PROTOCOLPGM("\n"); - return measured_z; -} - -#endif // #ifdef ENABLE_AUTO_BED_LEVELING - - -#ifdef LIN_ADVANCE - /** - * M900: Set and/or Get advance K factor and WH/D ratio - * - * K Set advance K factor - * R Set ratio directly (overrides WH/D) - * W H D Set ratio from WH/D - */ -inline void gcode_M900() { - st_synchronize(); - - const float newK = code_seen('K') ? code_value_float() : -1; - if (newK >= 0) extruder_advance_k = newK; - - float newR = code_seen('R') ? code_value_float() : -1; - if (newR < 0) { - const float newD = code_seen('D') ? code_value_float() : -1, - newW = code_seen('W') ? code_value_float() : -1, - newH = code_seen('H') ? code_value_float() : -1; - if (newD >= 0 && newW >= 0 && newH >= 0) - newR = newD ? (newW * newH) / (sq(newD * 0.5) * M_PI) : 0; - } - if (newR >= 0) advance_ed_ratio = newR; - - SERIAL_ECHO_START; - SERIAL_ECHOPGM("Advance K="); - SERIAL_ECHOLN(extruder_advance_k); - SERIAL_ECHOPGM(" E/D="); - const float ratio = advance_ed_ratio; - if (ratio) SERIAL_ECHOLN(ratio); else SERIAL_ECHOLNPGM("Auto"); - } -#endif // LIN_ADVANCE - -#ifdef TMC2130 -bool calibrate_z_auto() -{ - lcd_display_message_fullscreen_P(MSG_CALIBRATE_Z_AUTO); - bool endstops_enabled = enable_endstops(true); - int axis_up_dir = -home_dir(Z_AXIS); - tmc2130_home_enter(Z_AXIS_MASK); - current_position[Z_AXIS] = 0; - plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]); - set_destination_to_current(); - destination[Z_AXIS] += (1.1 * max_length(Z_AXIS) * axis_up_dir); - feedrate = homing_feedrate[Z_AXIS]; - plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder); - tmc2130_home_restart(Z_AXIS); - st_synchronize(); -// current_position[axis] = 0; -// plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]); - tmc2130_home_exit(); - enable_endstops(false); - current_position[Z_AXIS] = 0; - plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]); - set_destination_to_current(); - destination[Z_AXIS] += 10 * axis_up_dir; //10mm up - feedrate = homing_feedrate[Z_AXIS] / 2; - plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder); - st_synchronize(); - enable_endstops(endstops_enabled); - current_position[Z_AXIS] = Z_MAX_POS-3.f; - plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]); - return true; -} -#endif //TMC2130 - -void homeaxis(int axis) -{ - bool endstops_enabled = enable_endstops(true); //RP: endstops should be allways enabled durring homming -#define HOMEAXIS_DO(LETTER) \ -((LETTER##_MIN_PIN > -1 && LETTER##_HOME_DIR==-1) || (LETTER##_MAX_PIN > -1 && LETTER##_HOME_DIR==1)) - if ((axis==X_AXIS)?HOMEAXIS_DO(X):(axis==Y_AXIS)?HOMEAXIS_DO(Y):0) - { - int axis_home_dir = home_dir(axis); - feedrate = homing_feedrate[axis]; - -#ifdef TMC2130 - tmc2130_home_enter(X_AXIS_MASK << axis); -#endif - - // Move right a bit, so that the print head does not touch the left end position, - // and the following left movement has a chance to achieve the required velocity - // for the stall guard to work. - current_position[axis] = 0; - plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]); -// destination[axis] = 11.f; - destination[axis] = 3.f; - plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder); - st_synchronize(); - // Move left away from the possible collision with the collision detection disabled. - endstops_hit_on_purpose(); - enable_endstops(false); - current_position[axis] = 0; - plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]); - destination[axis] = - 1.; - plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder); - st_synchronize(); - // Now continue to move up to the left end stop with the collision detection enabled. - enable_endstops(true); - destination[axis] = - 1.1 * max_length(axis); - plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder); - st_synchronize(); - // Move right from the collision to a known distance from the left end stop with the collision detection disabled. - endstops_hit_on_purpose(); - enable_endstops(false); - current_position[axis] = 0; - plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]); - destination[axis] = 10.f; - plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder); - st_synchronize(); - endstops_hit_on_purpose(); - // Now move left up to the collision, this time with a repeatable velocity. - enable_endstops(true); - destination[axis] = - 15.f; - feedrate = homing_feedrate[axis]/2; - plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder); - st_synchronize(); - - axis_is_at_home(axis); - axis_known_position[axis] = true; - -#ifdef TMC2130 - tmc2130_home_exit(); -#endif - // Move the X carriage away from the collision. - // If this is not done, the X cariage will jump from the collision at the instant the Trinamic driver reduces power on idle. - endstops_hit_on_purpose(); - enable_endstops(false); - { - // Two full periods (4 full steps). - float gap = 0.32f * 2.f; - current_position[axis] -= gap; - plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]); - current_position[axis] += gap; - } - destination[axis] = current_position[axis]; - plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], 0.3f*feedrate/60, active_extruder); - st_synchronize(); - - feedrate = 0.0; - } - else if ((axis==Z_AXIS)?HOMEAXIS_DO(Z):0) - { - int axis_home_dir = home_dir(axis); - current_position[axis] = 0; - plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]); - destination[axis] = 1.5 * max_length(axis) * axis_home_dir; - feedrate = homing_feedrate[axis]; - plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder); - st_synchronize(); - current_position[axis] = 0; - plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]); - destination[axis] = -home_retract_mm(axis) * axis_home_dir; - plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder); - st_synchronize(); - destination[axis] = 2*home_retract_mm(axis) * axis_home_dir; - feedrate = homing_feedrate[axis]/2 ; - plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder); - st_synchronize(); - axis_is_at_home(axis); - destination[axis] = current_position[axis]; - feedrate = 0.0; - endstops_hit_on_purpose(); - axis_known_position[axis] = true; - } - enable_endstops(endstops_enabled); -} - -/**/ -void home_xy() -{ - set_destination_to_current(); - homeaxis(X_AXIS); - homeaxis(Y_AXIS); - plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]); - endstops_hit_on_purpose(); -} - -void refresh_cmd_timeout(void) -{ - previous_millis_cmd = millis(); -} - -#ifdef FWRETRACT - void retract(bool retracting, bool swapretract = false) { - if(retracting && !retracted[active_extruder]) { - destination[X_AXIS]=current_position[X_AXIS]; - destination[Y_AXIS]=current_position[Y_AXIS]; - destination[Z_AXIS]=current_position[Z_AXIS]; - destination[E_AXIS]=current_position[E_AXIS]; - if (swapretract) { - current_position[E_AXIS]+=retract_length_swap/volumetric_multiplier[active_extruder]; - } else { - current_position[E_AXIS]+=retract_length/volumetric_multiplier[active_extruder]; - } - plan_set_e_position(current_position[E_AXIS]); - float oldFeedrate = feedrate; - feedrate=retract_feedrate*60; - retracted[active_extruder]=true; - prepare_move(); - current_position[Z_AXIS]-=retract_zlift; - plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]); - prepare_move(); - feedrate = oldFeedrate; - } else if(!retracting && retracted[active_extruder]) { - destination[X_AXIS]=current_position[X_AXIS]; - destination[Y_AXIS]=current_position[Y_AXIS]; - destination[Z_AXIS]=current_position[Z_AXIS]; - destination[E_AXIS]=current_position[E_AXIS]; - current_position[Z_AXIS]+=retract_zlift; - plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]); - //prepare_move(); - if (swapretract) { - current_position[E_AXIS]-=(retract_length_swap+retract_recover_length_swap)/volumetric_multiplier[active_extruder]; - } else { - current_position[E_AXIS]-=(retract_length+retract_recover_length)/volumetric_multiplier[active_extruder]; - } - plan_set_e_position(current_position[E_AXIS]); - float oldFeedrate = feedrate; - feedrate=retract_recover_feedrate*60; - retracted[active_extruder]=false; - prepare_move(); - feedrate = oldFeedrate; - } - } //retract -#endif //FWRETRACT - -void trace() { - tone(BEEPER, 440); - delay(25); - noTone(BEEPER); - delay(20); -} -/* -void ramming() { -// float tmp[4] = DEFAULT_MAX_FEEDRATE; - if (current_temperature[0] < 230) { - //PLA - - max_feedrate[E_AXIS] = 50; - //current_position[E_AXIS] -= 8; - //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder); - //current_position[E_AXIS] += 8; - //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder); - current_position[E_AXIS] += 5.4; - plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2800 / 60, active_extruder); - current_position[E_AXIS] += 3.2; - plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder); - current_position[E_AXIS] += 3; - plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3400 / 60, active_extruder); - st_synchronize(); - max_feedrate[E_AXIS] = 80; - current_position[E_AXIS] -= 82; - plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 9500 / 60, active_extruder); - max_feedrate[E_AXIS] = 50;//tmp[E_AXIS]; - current_position[E_AXIS] -= 20; - plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 1200 / 60, active_extruder); - current_position[E_AXIS] += 5; - plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400 / 60, active_extruder); - current_position[E_AXIS] += 5; - plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder); - current_position[E_AXIS] -= 10; - st_synchronize(); - plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder); - current_position[E_AXIS] += 10; - plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder); - current_position[E_AXIS] -= 10; - plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder); - current_position[E_AXIS] += 10; - plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder); - current_position[E_AXIS] -= 10; - plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder); - st_synchronize(); - } - else { - //ABS - max_feedrate[E_AXIS] = 50; - //current_position[E_AXIS] -= 8; - //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder); - //current_position[E_AXIS] += 8; - //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder); - current_position[E_AXIS] += 3.1; - plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2000 / 60, active_extruder); - current_position[E_AXIS] += 3.1; - plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2500 / 60, active_extruder); - current_position[E_AXIS] += 4; - plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder); - st_synchronize(); - //current_position[X_AXIS] += 23; //delay - //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600/60, active_extruder); //delay - //current_position[X_AXIS] -= 23; //delay - //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600/60, active_extruder); //delay - delay(4700); - max_feedrate[E_AXIS] = 80; - current_position[E_AXIS] -= 92; - plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 9900 / 60, active_extruder); - max_feedrate[E_AXIS] = 50;//tmp[E_AXIS]; - current_position[E_AXIS] -= 5; - plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder); - current_position[E_AXIS] += 5; - plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400 / 60, active_extruder); - current_position[E_AXIS] -= 5; - plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder); - st_synchronize(); - current_position[E_AXIS] += 5; - plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder); - current_position[E_AXIS] -= 5; - plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder); - current_position[E_AXIS] += 5; - plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder); - current_position[E_AXIS] -= 5; - plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder); - st_synchronize(); - - } - } -*/ -void process_commands() -{ - #ifdef FILAMENT_RUNOUT_SUPPORT - SET_INPUT(FR_SENS); - #endif - -#ifdef CMDBUFFER_DEBUG - SERIAL_ECHOPGM("Processing a GCODE command: "); - SERIAL_ECHO(cmdbuffer+bufindr+CMDHDRSIZE); - SERIAL_ECHOLNPGM(""); - SERIAL_ECHOPGM("In cmdqueue: "); - SERIAL_ECHO(buflen); - SERIAL_ECHOLNPGM(""); -#endif /* CMDBUFFER_DEBUG */ - - unsigned long codenum; //throw away variable - char *starpos = NULL; -#ifdef ENABLE_AUTO_BED_LEVELING - float x_tmp, y_tmp, z_tmp, real_z; -#endif - - // PRUSA GCODES - -#ifdef SNMM - float tmp_motor[3] = DEFAULT_PWM_MOTOR_CURRENT; - float tmp_motor_loud[3] = DEFAULT_PWM_MOTOR_CURRENT_LOUD; - int8_t SilentMode; -#endif - if (code_seen("M117")) { //moved to highest priority place to be able to to print strings which includes "G", "PRUSA" and "^" - starpos = (strchr(strchr_pointer + 5, '*')); - if (starpos != NULL) - *(starpos) = '\0'; - lcd_setstatus(strchr_pointer + 5); - } - else if(code_seen("PRUSA")){ - if (code_seen("Ping")) { //PRUSA Ping - if (farm_mode) { - PingTime = millis(); - //MYSERIAL.print(farm_no); MYSERIAL.println(": OK"); - } - } - else if (code_seen("PRN")) { - MYSERIAL.println(status_number); - - }else if (code_seen("fn")) { - if (farm_mode) { - MYSERIAL.println(farm_no); - } - else { - MYSERIAL.println("Not in farm mode."); - } - - }else if (code_seen("fv")) { - // get file version - #ifdef SDSUPPORT - card.openFile(strchr_pointer + 3,true); - while (true) { - uint16_t readByte = card.get(); - MYSERIAL.write(readByte); - if (readByte=='\n') { - break; - } - } - card.closefile(); - - #endif // SDSUPPORT - - } else if (code_seen("M28")) { - trace(); - prusa_sd_card_upload = true; - card.openFile(strchr_pointer+4,false); - } else if (code_seen("SN")) { - if (farm_mode) { - selectedSerialPort = 0; - MSerial.write(";S"); - // S/N is:CZPX0917X003XC13518 - int numbersRead = 0; - - while (numbersRead < 19) { - while (MSerial.available() > 0) { - uint8_t serial_char = MSerial.read(); - selectedSerialPort = 1; - MSerial.write(serial_char); - numbersRead++; - selectedSerialPort = 0; - } - } - selectedSerialPort = 1; - MSerial.write('\n'); - /*for (int b = 0; b < 3; b++) { - tone(BEEPER, 110); - delay(50); - noTone(BEEPER); - delay(50); - }*/ - } else { - MYSERIAL.println("Not in farm mode."); - } - - } else if(code_seen("Fir")){ - - SERIAL_PROTOCOLLN(FW_version); - - } else if(code_seen("Rev")){ - - SERIAL_PROTOCOLLN(FILAMENT_SIZE "-" ELECTRONICS "-" NOZZLE_TYPE ); - - } else if(code_seen("Lang")) { - lcd_force_language_selection(); - } else if(code_seen("Lz")) { - EEPROM_save_B(EEPROM_BABYSTEP_Z,0); - - } else if (code_seen("SERIAL LOW")) { - MYSERIAL.println("SERIAL LOW"); - MYSERIAL.begin(BAUDRATE); - return; - } else if (code_seen("SERIAL HIGH")) { - MYSERIAL.println("SERIAL HIGH"); - MYSERIAL.begin(1152000); - return; - } else if(code_seen("Beat")) { - // Kick farm link timer - kicktime = millis(); - - } else if(code_seen("FR")) { - // Factory full reset - factory_reset(0,true); - } - //else if (code_seen('Cal')) { - // lcd_calibration(); - // } - - } - else if (code_seen('^')) { - // nothing, this is a version line - } else if(code_seen('G')) - { - switch((int)code_value()) - { - case 0: // G0 -> G1 - case 1: // G1 - if(Stopped == false) { - - #ifdef FILAMENT_RUNOUT_SUPPORT - - if(READ(FR_SENS)){ - - feedmultiplyBckp=feedmultiply; - float target[4]; - float lastpos[4]; - target[X_AXIS]=current_position[X_AXIS]; - target[Y_AXIS]=current_position[Y_AXIS]; - target[Z_AXIS]=current_position[Z_AXIS]; - target[E_AXIS]=current_position[E_AXIS]; - lastpos[X_AXIS]=current_position[X_AXIS]; - lastpos[Y_AXIS]=current_position[Y_AXIS]; - lastpos[Z_AXIS]=current_position[Z_AXIS]; - lastpos[E_AXIS]=current_position[E_AXIS]; - //retract by E - - target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT ; - - plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder); - - - target[Z_AXIS]+= FILAMENTCHANGE_ZADD ; - - plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 300, active_extruder); - - target[X_AXIS]= FILAMENTCHANGE_XPOS ; - - target[Y_AXIS]= FILAMENTCHANGE_YPOS ; - - - plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder); - - target[E_AXIS]+= FILAMENTCHANGE_FINALRETRACT ; - - - plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder); - - //finish moves - st_synchronize(); - //disable extruder steppers so filament can be removed - disable_e0(); - disable_e1(); - disable_e2(); - delay(100); - - //LCD_ALERTMESSAGEPGM(MSG_FILAMENTCHANGE); - uint8_t cnt=0; - int counterBeep = 0; - lcd_wait_interact(); - while(!lcd_clicked()){ - cnt++; - manage_heater(); - manage_inactivity(true); - //lcd_update(); - if(cnt==0) - { - #if BEEPER > 0 - - if (counterBeep== 500){ - counterBeep = 0; - - } - - - SET_OUTPUT(BEEPER); - if (counterBeep== 0){ - WRITE(BEEPER,HIGH); - } - - if (counterBeep== 20){ - WRITE(BEEPER,LOW); - } - - - - - counterBeep++; - #else - #if !defined(LCD_FEEDBACK_FREQUENCY_HZ) || !defined(LCD_FEEDBACK_FREQUENCY_DURATION_MS) - lcd_buzz(1000/6,100); - #else - lcd_buzz(LCD_FEEDBACK_FREQUENCY_DURATION_MS,LCD_FEEDBACK_FREQUENCY_HZ); - #endif - #endif - } - } - - WRITE(BEEPER,LOW); - - target[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ; - plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder); - - - target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ; - plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder); - - - - - - lcd_change_fil_state = 0; - lcd_loading_filament(); - while ((lcd_change_fil_state == 0)||(lcd_change_fil_state != 1)){ - - lcd_change_fil_state = 0; - lcd_alright(); - switch(lcd_change_fil_state){ - - case 2: - target[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ; - plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder); - - - target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ; - plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder); - - - lcd_loading_filament(); - break; - case 3: - target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ; - plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder); - lcd_loading_color(); - break; - - default: - lcd_change_success(); - break; - } - - } - - - - target[E_AXIS]+= 5; - plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder); - - target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT; - plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder); - - - //current_position[E_AXIS]=target[E_AXIS]; //the long retract of L is compensated by manual filament feeding - //plan_set_e_position(current_position[E_AXIS]); - plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder); //should do nothing - plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder); //move xy back - plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], 200, active_extruder); //move z back - - - target[E_AXIS]= target[E_AXIS] - FILAMENTCHANGE_FIRSTRETRACT; - - - - plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], 5, active_extruder); //final untretract - - - plan_set_e_position(lastpos[E_AXIS]); - - feedmultiply=feedmultiplyBckp; - - - - char cmd[9]; - - sprintf_P(cmd, PSTR("M220 S%i"), feedmultiplyBckp); - enquecommand(cmd); - - } - - - - #endif - - - get_coordinates(); // For X Y Z E F - if (total_filament_used > ((current_position[E_AXIS] - destination[E_AXIS]) * 100)) { //protection against total_filament_used overflow - total_filament_used = total_filament_used + ((destination[E_AXIS] - current_position[E_AXIS]) * 100); - } - #ifdef FWRETRACT - if(autoretract_enabled) - if( !(code_seen('X') || code_seen('Y') || code_seen('Z')) && code_seen('E')) { - float echange=destination[E_AXIS]-current_position[E_AXIS]; - - if((echange<-MIN_RETRACT && !retracted) || (echange>MIN_RETRACT && retracted)) { //move appears to be an attempt to retract or recover - current_position[E_AXIS] = destination[E_AXIS]; //hide the slicer-generated retract/recover from calculations - plan_set_e_position(current_position[E_AXIS]); //AND from the planner - retract(!retracted); - return; - } - - - } - #endif //FWRETRACT - prepare_move(); - //ClearToSend(); - } - break; - case 2: // G2 - CW ARC - if(Stopped == false) { - get_arc_coordinates(); - prepare_arc_move(true); - } - break; - case 3: // G3 - CCW ARC - if(Stopped == false) { - get_arc_coordinates(); - prepare_arc_move(false); - } - break; - case 4: // G4 dwell - codenum = 0; - if(code_seen('P')) codenum = code_value(); // milliseconds to wait - if(code_seen('S')) codenum = code_value() * 1000; // seconds to wait - if(codenum != 0) LCD_MESSAGERPGM(MSG_DWELL); - st_synchronize(); - codenum += millis(); // keep track of when we started waiting - previous_millis_cmd = millis(); - while(millis() < codenum) { - manage_heater(); - manage_inactivity(); - lcd_update(); - } - break; - #ifdef FWRETRACT - case 10: // G10 retract - #if EXTRUDERS > 1 - retracted_swap[active_extruder]=(code_seen('S') && code_value_long() == 1); // checks for swap retract argument - retract(true,retracted_swap[active_extruder]); - #else - retract(true); - #endif - break; - case 11: // G11 retract_recover - #if EXTRUDERS > 1 - retract(false,retracted_swap[active_extruder]); - #else - retract(false); - #endif - break; - #endif //FWRETRACT - case 28: //G28 Home all Axis one at a time - { - st_synchronize(); - -#if 1 - SERIAL_ECHOPGM("G28, initial "); print_world_coordinates(); - SERIAL_ECHOPGM("G28, initial "); print_physical_coordinates(); -#endif - - // Flag for the display update routine and to disable the print cancelation during homing. - homing_flag = true; - - // Which axes should be homed? - bool home_x = code_seen(axis_codes[X_AXIS]); - bool home_y = code_seen(axis_codes[Y_AXIS]); - bool home_z = code_seen(axis_codes[Z_AXIS]); - // Either all X,Y,Z codes are present, or none of them. - bool home_all_axes = home_x == home_y && home_x == home_z; - if (home_all_axes) - // No X/Y/Z code provided means to home all axes. - home_x = home_y = home_z = true; - -#ifdef ENABLE_AUTO_BED_LEVELING - plan_bed_level_matrix.set_to_identity(); //Reset the plane ("erase" all leveling data) -#endif //ENABLE_AUTO_BED_LEVELING - - // Reset world2machine_rotation_and_skew and world2machine_shift, therefore - // the planner will not perform any adjustments in the XY plane. - // Wait for the motors to stop and update the current position with the absolute values. - world2machine_revert_to_uncorrected(); - - // For mesh bed leveling deactivate the matrix temporarily. - // It is necessary to disable the bed leveling for the X and Y homing moves, so that the move is performed - // in a single axis only. - // In case of re-homing the X or Y axes only, the mesh bed leveling is restored after G28. -#ifdef MESH_BED_LEVELING - uint8_t mbl_was_active = mbl.active; - mbl.active = 0; - current_position[Z_AXIS] = st_get_position_mm(Z_AXIS); -#endif - - // Reset baby stepping to zero, if the babystepping has already been loaded before. The babystepsTodo value will be - // consumed during the first movements following this statement. - if (home_z) - babystep_undo(); - - saved_feedrate = feedrate; - saved_feedmultiply = feedmultiply; - feedmultiply = 100; - previous_millis_cmd = millis(); - - enable_endstops(true); - - memcpy(destination, current_position, sizeof(destination)); - feedrate = 0.0; - - #if Z_HOME_DIR > 0 // If homing away from BED do Z first - if(home_z) - homeaxis(Z_AXIS); - #endif - - #ifdef QUICK_HOME - // In the quick mode, if both x and y are to be homed, a diagonal move will be performed initially. - if(home_x && home_y) //first diagonal move - { - current_position[X_AXIS] = 0;current_position[Y_AXIS] = 0; - - int x_axis_home_dir = home_dir(X_AXIS); - - plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]); - destination[X_AXIS] = 1.5 * max_length(X_AXIS) * x_axis_home_dir;destination[Y_AXIS] = 1.5 * max_length(Y_AXIS) * home_dir(Y_AXIS); - feedrate = homing_feedrate[X_AXIS]; - if(homing_feedrate[Y_AXIS] max_length(Y_AXIS)) { - feedrate *= sqrt(pow(max_length(Y_AXIS) / max_length(X_AXIS), 2) + 1); - } else { - feedrate *= sqrt(pow(max_length(X_AXIS) / max_length(Y_AXIS), 2) + 1); - } - plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder); - st_synchronize(); - - axis_is_at_home(X_AXIS); - axis_is_at_home(Y_AXIS); - plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]); - destination[X_AXIS] = current_position[X_AXIS]; - destination[Y_AXIS] = current_position[Y_AXIS]; - plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder); - feedrate = 0.0; - st_synchronize(); - endstops_hit_on_purpose(); - - current_position[X_AXIS] = destination[X_AXIS]; - current_position[Y_AXIS] = destination[Y_AXIS]; - current_position[Z_AXIS] = destination[Z_AXIS]; - } - #endif /* QUICK_HOME */ - - - if(home_x) - homeaxis(X_AXIS); - - if(home_y) - homeaxis(Y_AXIS); - - if(code_seen(axis_codes[X_AXIS]) && code_value_long() != 0) - current_position[X_AXIS]=code_value()+add_homing[X_AXIS]; - - if(code_seen(axis_codes[Y_AXIS]) && code_value_long() != 0) - current_position[Y_AXIS]=code_value()+add_homing[Y_AXIS]; - - #if Z_HOME_DIR < 0 // If homing towards BED do Z last - #ifndef Z_SAFE_HOMING - if(home_z) { - #if defined (Z_RAISE_BEFORE_HOMING) && (Z_RAISE_BEFORE_HOMING > 0) - destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed - feedrate = max_feedrate[Z_AXIS]; - plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder); - st_synchronize(); - #endif // defined (Z_RAISE_BEFORE_HOMING) && (Z_RAISE_BEFORE_HOMING > 0) - #if (defined(MESH_BED_LEVELING) && !defined(MK1BP)) // If Mesh bed leveling, moxve X&Y to safe position for home - if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] )) - { - homeaxis(X_AXIS); - homeaxis(Y_AXIS); - } - // 1st mesh bed leveling measurement point, corrected. - world2machine_initialize(); - world2machine(pgm_read_float(bed_ref_points), pgm_read_float(bed_ref_points+1), destination[X_AXIS], destination[Y_AXIS]); - world2machine_reset(); - if (destination[Y_AXIS] < Y_MIN_POS) - destination[Y_AXIS] = Y_MIN_POS; - destination[Z_AXIS] = MESH_HOME_Z_SEARCH; // Set destination away from bed - feedrate = homing_feedrate[Z_AXIS]/10; - current_position[Z_AXIS] = 0; - enable_endstops(false); - plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]); - plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder); - st_synchronize(); - current_position[X_AXIS] = destination[X_AXIS]; - current_position[Y_AXIS] = destination[Y_AXIS]; - enable_endstops(true); - endstops_hit_on_purpose(); - homeaxis(Z_AXIS); - #else // MESH_BED_LEVELING - homeaxis(Z_AXIS); - #endif // MESH_BED_LEVELING - } - #else // defined(Z_SAFE_HOMING): Z Safe mode activated. - if(home_all_axes) { - destination[X_AXIS] = round(Z_SAFE_HOMING_X_POINT - X_PROBE_OFFSET_FROM_EXTRUDER); - destination[Y_AXIS] = round(Z_SAFE_HOMING_Y_POINT - Y_PROBE_OFFSET_FROM_EXTRUDER); - destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed - feedrate = XY_TRAVEL_SPEED/60; - current_position[Z_AXIS] = 0; - - plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]); - plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder); - st_synchronize(); - current_position[X_AXIS] = destination[X_AXIS]; - current_position[Y_AXIS] = destination[Y_AXIS]; - - homeaxis(Z_AXIS); - } - // Let's see if X and Y are homed and probe is inside bed area. - if(home_z) { - if ( (axis_known_position[X_AXIS]) && (axis_known_position[Y_AXIS]) \ - && (current_position[X_AXIS]+X_PROBE_OFFSET_FROM_EXTRUDER >= X_MIN_POS) \ - && (current_position[X_AXIS]+X_PROBE_OFFSET_FROM_EXTRUDER <= X_MAX_POS) \ - && (current_position[Y_AXIS]+Y_PROBE_OFFSET_FROM_EXTRUDER >= Y_MIN_POS) \ - && (current_position[Y_AXIS]+Y_PROBE_OFFSET_FROM_EXTRUDER <= Y_MAX_POS)) { - - current_position[Z_AXIS] = 0; - plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]); - destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed - feedrate = max_feedrate[Z_AXIS]; - plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder); - st_synchronize(); - - homeaxis(Z_AXIS); - } else if (!((axis_known_position[X_AXIS]) && (axis_known_position[Y_AXIS]))) { - LCD_MESSAGERPGM(MSG_POSITION_UNKNOWN); - SERIAL_ECHO_START; - SERIAL_ECHOLNRPGM(MSG_POSITION_UNKNOWN); - } else { - LCD_MESSAGERPGM(MSG_ZPROBE_OUT); - SERIAL_ECHO_START; - SERIAL_ECHOLNRPGM(MSG_ZPROBE_OUT); - } - } - #endif // Z_SAFE_HOMING - #endif // Z_HOME_DIR < 0 - - if(code_seen(axis_codes[Z_AXIS]) && code_value_long() != 0) - current_position[Z_AXIS]=code_value()+add_homing[Z_AXIS]; - #ifdef ENABLE_AUTO_BED_LEVELING - if(home_z) - current_position[Z_AXIS] += zprobe_zoffset; //Add Z_Probe offset (the distance is negative) - #endif - - // Set the planner and stepper routine positions. - // At this point the mesh bed leveling and world2machine corrections are disabled and current_position - // contains the machine coordinates. - plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]); - - #ifdef ENDSTOPS_ONLY_FOR_HOMING - enable_endstops(false); - #endif - - feedrate = saved_feedrate; - feedmultiply = saved_feedmultiply; - previous_millis_cmd = millis(); - endstops_hit_on_purpose(); -#ifndef MESH_BED_LEVELING - // If MESH_BED_LEVELING is not active, then it is the original Prusa i3. - // Offer the user to load the baby step value, which has been adjusted at the previous print session. - if(card.sdprinting && eeprom_read_word((uint16_t *)EEPROM_BABYSTEP_Z)) - lcd_adjust_z(); -#endif - - // Load the machine correction matrix - world2machine_initialize(); - // and correct the current_position XY axes to match the transformed coordinate system. - world2machine_update_current(); - -#if (defined(MESH_BED_LEVELING) && !defined(MK1BP)) - if (code_seen(axis_codes[X_AXIS]) || code_seen(axis_codes[Y_AXIS]) || code_seen('W') || code_seen(axis_codes[Z_AXIS])) - { - if (! home_z && mbl_was_active) { - // Re-enable the mesh bed leveling if only the X and Y axes were re-homed. - mbl.active = true; - // and re-adjust the current logical Z axis with the bed leveling offset applicable at the current XY position. - current_position[Z_AXIS] -= mbl.get_z(st_get_position_mm(X_AXIS), st_get_position_mm(Y_AXIS)); - } - } - else - { - st_synchronize(); - homing_flag = false; - // Push the commands to the front of the message queue in the reverse order! - // There shall be always enough space reserved for these commands. - // enquecommand_front_P((PSTR("G80"))); - goto case_G80; - } -#endif - - if (farm_mode) { prusa_statistics(20); }; - - homing_flag = false; - - SERIAL_ECHOPGM("G28, final "); print_world_coordinates(); - SERIAL_ECHOPGM("G28, final "); print_physical_coordinates(); - SERIAL_ECHOPGM("G28, final "); print_mesh_bed_leveling_table(); - break; - } -#ifdef ENABLE_AUTO_BED_LEVELING - case 29: // G29 Detailed Z-Probe, probes the bed at 3 or more points. - { - #if Z_MIN_PIN == -1 - #error "You must have a Z_MIN endstop in order to enable Auto Bed Leveling feature! Z_MIN_PIN must point to a valid hardware pin." - #endif - - // Prevent user from running a G29 without first homing in X and Y - if (! (axis_known_position[X_AXIS] && axis_known_position[Y_AXIS]) ) - { - LCD_MESSAGERPGM(MSG_POSITION_UNKNOWN); - SERIAL_ECHO_START; - SERIAL_ECHOLNRPGM(MSG_POSITION_UNKNOWN); - break; // abort G29, since we don't know where we are - } - - st_synchronize(); - // make sure the bed_level_rotation_matrix is identity or the planner will get it incorectly - //vector_3 corrected_position = plan_get_position_mm(); - //corrected_position.debug("position before G29"); - plan_bed_level_matrix.set_to_identity(); - vector_3 uncorrected_position = plan_get_position(); - //uncorrected_position.debug("position durring G29"); - current_position[X_AXIS] = uncorrected_position.x; - current_position[Y_AXIS] = uncorrected_position.y; - current_position[Z_AXIS] = uncorrected_position.z; - plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]); - setup_for_endstop_move(); - - feedrate = homing_feedrate[Z_AXIS]; -#ifdef AUTO_BED_LEVELING_GRID - // probe at the points of a lattice grid - - int xGridSpacing = (RIGHT_PROBE_BED_POSITION - LEFT_PROBE_BED_POSITION) / (AUTO_BED_LEVELING_GRID_POINTS-1); - int yGridSpacing = (BACK_PROBE_BED_POSITION - FRONT_PROBE_BED_POSITION) / (AUTO_BED_LEVELING_GRID_POINTS-1); - - - // solve the plane equation ax + by + d = z - // A is the matrix with rows [x y 1] for all the probed points - // B is the vector of the Z positions - // the normal vector to the plane is formed by the coefficients of the plane equation in the standard form, which is Vx*x+Vy*y+Vz*z+d = 0 - // so Vx = -a Vy = -b Vz = 1 (we want the vector facing towards positive Z - - // "A" matrix of the linear system of equations - double eqnAMatrix[AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS*3]; - // "B" vector of Z points - double eqnBVector[AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS]; - - - int probePointCounter = 0; - bool zig = true; - - for (int yProbe=FRONT_PROBE_BED_POSITION; yProbe <= BACK_PROBE_BED_POSITION; yProbe += yGridSpacing) - { - int xProbe, xInc; - if (zig) - { - xProbe = LEFT_PROBE_BED_POSITION; - //xEnd = RIGHT_PROBE_BED_POSITION; - xInc = xGridSpacing; - zig = false; - } else // zag - { - xProbe = RIGHT_PROBE_BED_POSITION; - //xEnd = LEFT_PROBE_BED_POSITION; - xInc = -xGridSpacing; - zig = true; - } - - for (int xCount=0; xCount < AUTO_BED_LEVELING_GRID_POINTS; xCount++) - { - float z_before; - if (probePointCounter == 0) - { - // raise before probing - z_before = Z_RAISE_BEFORE_PROBING; - } else - { - // raise extruder - z_before = current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS; - } - - float measured_z = probe_pt(xProbe, yProbe, z_before); - - eqnBVector[probePointCounter] = measured_z; - - eqnAMatrix[probePointCounter + 0*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = xProbe; - eqnAMatrix[probePointCounter + 1*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = yProbe; - eqnAMatrix[probePointCounter + 2*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = 1; - probePointCounter++; - xProbe += xInc; - } - } - clean_up_after_endstop_move(); - - // solve lsq problem - double *plane_equation_coefficients = qr_solve(AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS, 3, eqnAMatrix, eqnBVector); - - SERIAL_PROTOCOLPGM("Eqn coefficients: a: "); - SERIAL_PROTOCOL(plane_equation_coefficients[0]); - SERIAL_PROTOCOLPGM(" b: "); - SERIAL_PROTOCOL(plane_equation_coefficients[1]); - SERIAL_PROTOCOLPGM(" d: "); - SERIAL_PROTOCOLLN(plane_equation_coefficients[2]); - - - set_bed_level_equation_lsq(plane_equation_coefficients); - - free(plane_equation_coefficients); - -#else // AUTO_BED_LEVELING_GRID not defined - - // Probe at 3 arbitrary points - // probe 1 - float z_at_pt_1 = probe_pt(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, Z_RAISE_BEFORE_PROBING); - - // probe 2 - float z_at_pt_2 = probe_pt(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS); - - // probe 3 - float z_at_pt_3 = probe_pt(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS); - - clean_up_after_endstop_move(); - - set_bed_level_equation_3pts(z_at_pt_1, z_at_pt_2, z_at_pt_3); - - -#endif // AUTO_BED_LEVELING_GRID - st_synchronize(); - - // The following code correct the Z height difference from z-probe position and hotend tip position. - // The Z height on homing is measured by Z-Probe, but the probe is quite far from the hotend. - // When the bed is uneven, this height must be corrected. - real_z = float(st_get_position(Z_AXIS))/axis_steps_per_unit[Z_AXIS]; //get the real Z (since the auto bed leveling is already correcting the plane) - x_tmp = current_position[X_AXIS] + X_PROBE_OFFSET_FROM_EXTRUDER; - y_tmp = current_position[Y_AXIS] + Y_PROBE_OFFSET_FROM_EXTRUDER; - z_tmp = current_position[Z_AXIS]; - - apply_rotation_xyz(plan_bed_level_matrix, x_tmp, y_tmp, z_tmp); //Apply the correction sending the probe offset - current_position[Z_AXIS] = z_tmp - real_z + current_position[Z_AXIS]; //The difference is added to current position and sent to planner. - plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]); - } - break; -#ifndef Z_PROBE_SLED - case 30: // G30 Single Z Probe - { - st_synchronize(); - // TODO: make sure the bed_level_rotation_matrix is identity or the planner will get set incorectly - setup_for_endstop_move(); - - feedrate = homing_feedrate[Z_AXIS]; - - run_z_probe(); - SERIAL_PROTOCOLPGM(MSG_BED); - SERIAL_PROTOCOLPGM(" X: "); - SERIAL_PROTOCOL(current_position[X_AXIS]); - SERIAL_PROTOCOLPGM(" Y: "); - SERIAL_PROTOCOL(current_position[Y_AXIS]); - SERIAL_PROTOCOLPGM(" Z: "); - SERIAL_PROTOCOL(current_position[Z_AXIS]); - SERIAL_PROTOCOLPGM("\n"); - - clean_up_after_endstop_move(); - } - break; -#else - case 31: // dock the sled - dock_sled(true); - break; - case 32: // undock the sled - dock_sled(false); - break; -#endif // Z_PROBE_SLED -#endif // ENABLE_AUTO_BED_LEVELING - -#ifdef MESH_BED_LEVELING - case 30: // G30 Single Z Probe - { - st_synchronize(); - // TODO: make sure the bed_level_rotation_matrix is identity or the planner will get set incorectly - setup_for_endstop_move(); - - feedrate = homing_feedrate[Z_AXIS]; - - find_bed_induction_sensor_point_z(-10.f, 3); - SERIAL_PROTOCOLRPGM(MSG_BED); - SERIAL_PROTOCOLPGM(" X: "); - MYSERIAL.print(current_position[X_AXIS], 5); - SERIAL_PROTOCOLPGM(" Y: "); - MYSERIAL.print(current_position[Y_AXIS], 5); - SERIAL_PROTOCOLPGM(" Z: "); - MYSERIAL.print(current_position[Z_AXIS], 5); - SERIAL_PROTOCOLPGM("\n"); - clean_up_after_endstop_move(); - } - break; - - - case 75: - { - for (int i = 40; i <= 110; i++) { - MYSERIAL.print(i); - MYSERIAL.print(" "); - MYSERIAL.println(temp_comp_interpolation(i));// / axis_steps_per_unit[Z_AXIS]); - } - } - break; - - case 76: //PINDA probe temperature calibration - { -#ifdef PINDA_THERMISTOR - if (true) - { - if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS])) { - // We don't know where we are! HOME! - // Push the commands to the front of the message queue in the reverse order! - // There shall be always enough space reserved for these commands. - repeatcommand_front(); // repeat G76 with all its parameters - enquecommand_front_P((PSTR("G28 W0"))); - break; - } - SERIAL_ECHOLNPGM("PINDA probe calibration start"); - - float zero_z; - int z_shift = 0; //unit: steps - float start_temp = 5 * (int)(current_temperature_pinda / 5); - if (start_temp < 35) start_temp = 35; - if (start_temp < current_temperature_pinda) start_temp += 5; - SERIAL_ECHOPGM("start temperature: "); - MYSERIAL.println(start_temp); - -// setTargetHotend(200, 0); - setTargetBed(50 + 10 * (start_temp - 30) / 5); - - custom_message = true; - custom_message_type = 4; - custom_message_state = 1; - custom_message = MSG_TEMP_CALIBRATION; - current_position[X_AXIS] = PINDA_PREHEAT_X; - current_position[Y_AXIS] = PINDA_PREHEAT_Y; - current_position[Z_AXIS] = PINDA_PREHEAT_Z; - plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder); - st_synchronize(); - - while (current_temperature_pinda < start_temp) - { - delay_keep_alive(1000); - serialecho_temperatures(); - } - - eeprom_update_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 0); //invalidate temp. calibration in case that in will be aborted during the calibration process - - current_position[Z_AXIS] = 5; - plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder); - - current_position[X_AXIS] = pgm_read_float(bed_ref_points); - current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 1); - plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder); - st_synchronize(); - - find_bed_induction_sensor_point_z(-1.f); - zero_z = current_position[Z_AXIS]; - - //current_position[Z_AXIS] - SERIAL_ECHOLNPGM(""); - SERIAL_ECHOPGM("ZERO: "); - MYSERIAL.print(current_position[Z_AXIS]); - SERIAL_ECHOLNPGM(""); - - int i = -1; for (; i < 5; i++) - { - float temp = (40 + i * 5); - SERIAL_ECHOPGM("Step: "); - MYSERIAL.print(i + 2); - SERIAL_ECHOLNPGM("/6 (skipped)"); - SERIAL_ECHOPGM("PINDA temperature: "); - MYSERIAL.print((40 + i*5)); - SERIAL_ECHOPGM(" Z shift (mm):"); - MYSERIAL.print(0); - SERIAL_ECHOLNPGM(""); - if (i >= 0) EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i * 2, &z_shift); - if (start_temp <= temp) break; - } - - for (i++; i < 5; i++) - { - float temp = (40 + i * 5); - SERIAL_ECHOPGM("Step: "); - MYSERIAL.print(i + 2); - SERIAL_ECHOLNPGM("/6"); - custom_message_state = i + 2; - setTargetBed(50 + 10 * (temp - 30) / 5); -// setTargetHotend(255, 0); - current_position[X_AXIS] = PINDA_PREHEAT_X; - current_position[Y_AXIS] = PINDA_PREHEAT_Y; - current_position[Z_AXIS] = PINDA_PREHEAT_Z; - plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder); - st_synchronize(); - while (current_temperature_pinda < temp) - { - delay_keep_alive(1000); - serialecho_temperatures(); - } - current_position[Z_AXIS] = 5; - plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder); - current_position[X_AXIS] = pgm_read_float(bed_ref_points); - current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 1); - plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder); - st_synchronize(); - find_bed_induction_sensor_point_z(-1.f); - z_shift = (int)((current_position[Z_AXIS] - zero_z)*axis_steps_per_unit[Z_AXIS]); - - SERIAL_ECHOLNPGM(""); - SERIAL_ECHOPGM("PINDA temperature: "); - MYSERIAL.print(current_temperature_pinda); - SERIAL_ECHOPGM(" Z shift (mm):"); - MYSERIAL.print(current_position[Z_AXIS] - zero_z); - SERIAL_ECHOLNPGM(""); - - EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i * 2, &z_shift); - - } - custom_message_type = 0; - custom_message = false; - - eeprom_update_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 1); - SERIAL_ECHOLNPGM("Temperature calibration done. Continue with pressing the knob."); - disable_x(); - disable_y(); - disable_z(); - disable_e0(); - disable_e1(); - disable_e2(); - lcd_show_fullscreen_message_and_wait_P(MSG_TEMP_CALIBRATION_DONE); - lcd_update_enable(true); - lcd_update(2); - - setTargetBed(0); //set bed target temperature back to 0 -// setTargetHotend(0,0); //set hotend target temperature back to 0 - break; - } -#endif //PINDA_THERMISTOR - - setTargetBed(PINDA_MIN_T); - float zero_z; - int z_shift = 0; //unit: steps - int t_c; // temperature - - if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS])) { - // We don't know where we are! HOME! - // Push the commands to the front of the message queue in the reverse order! - // There shall be always enough space reserved for these commands. - repeatcommand_front(); // repeat G76 with all its parameters - enquecommand_front_P((PSTR("G28 W0"))); - break; - } - SERIAL_ECHOLNPGM("PINDA probe calibration start"); - custom_message = true; - custom_message_type = 4; - custom_message_state = 1; - custom_message = MSG_TEMP_CALIBRATION; - current_position[X_AXIS] = PINDA_PREHEAT_X; - current_position[Y_AXIS] = PINDA_PREHEAT_Y; - current_position[Z_AXIS] = PINDA_PREHEAT_Z; - plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder); - st_synchronize(); - - while (abs(degBed() - PINDA_MIN_T) > 1) { - delay_keep_alive(1000); - serialecho_temperatures(); - } - - //enquecommand_P(PSTR("M190 S50")); - for (int i = 0; i < PINDA_HEAT_T; i++) { - delay_keep_alive(1000); - serialecho_temperatures(); - } - eeprom_update_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 0); //invalidate temp. calibration in case that in will be aborted during the calibration process - - current_position[Z_AXIS] = 5; - plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder); - - current_position[X_AXIS] = pgm_read_float(bed_ref_points); - current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 1); - plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder); - st_synchronize(); - - find_bed_induction_sensor_point_z(-1.f); - zero_z = current_position[Z_AXIS]; - - //current_position[Z_AXIS] - SERIAL_ECHOLNPGM(""); - SERIAL_ECHOPGM("ZERO: "); - MYSERIAL.print(current_position[Z_AXIS]); - SERIAL_ECHOLNPGM(""); - - for (int i = 0; i<5; i++) { - SERIAL_ECHOPGM("Step: "); - MYSERIAL.print(i+2); - SERIAL_ECHOLNPGM("/6"); - custom_message_state = i + 2; - t_c = 60 + i * 10; - - setTargetBed(t_c); - current_position[X_AXIS] = PINDA_PREHEAT_X; - current_position[Y_AXIS] = PINDA_PREHEAT_Y; - current_position[Z_AXIS] = PINDA_PREHEAT_Z; - plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder); - st_synchronize(); - while (degBed() < t_c) { - delay_keep_alive(1000); - serialecho_temperatures(); - } - for (int i = 0; i < PINDA_HEAT_T; i++) { - delay_keep_alive(1000); - serialecho_temperatures(); - } - current_position[Z_AXIS] = 5; - plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder); - current_position[X_AXIS] = pgm_read_float(bed_ref_points); - current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 1); - plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder); - st_synchronize(); - find_bed_induction_sensor_point_z(-1.f); - z_shift = (int)((current_position[Z_AXIS] - zero_z)*axis_steps_per_unit[Z_AXIS]); - - SERIAL_ECHOLNPGM(""); - SERIAL_ECHOPGM("Temperature: "); - MYSERIAL.print(t_c); - SERIAL_ECHOPGM(" Z shift (mm):"); - MYSERIAL.print(current_position[Z_AXIS] - zero_z); - SERIAL_ECHOLNPGM(""); - - EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i*2, &z_shift); - - - } - custom_message_type = 0; - custom_message = false; - - eeprom_update_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 1); - SERIAL_ECHOLNPGM("Temperature calibration done. Continue with pressing the knob."); - disable_x(); - disable_y(); - disable_z(); - disable_e0(); - disable_e1(); - disable_e2(); - setTargetBed(0); //set bed target temperature back to 0 - lcd_show_fullscreen_message_and_wait_P(MSG_TEMP_CALIBRATION_DONE); - lcd_update_enable(true); - lcd_update(2); - - - - } - break; - -#ifdef DIS - case 77: - { - //G77 X200 Y150 XP100 YP15 XO10 Y015 - - //for 9 point mesh bed leveling G77 X203 Y196 XP3 YP3 XO0 YO0 - - - //G77 X232 Y218 XP116 YP109 XO-11 YO0 - - float dimension_x = 40; - float dimension_y = 40; - int points_x = 40; - int points_y = 40; - float offset_x = 74; - float offset_y = 33; - - if (code_seen('X')) dimension_x = code_value(); - if (code_seen('Y')) dimension_y = code_value(); - if (code_seen('XP')) points_x = code_value(); - if (code_seen('YP')) points_y = code_value(); - if (code_seen('XO')) offset_x = code_value(); - if (code_seen('YO')) offset_y = code_value(); - - bed_analysis(dimension_x,dimension_y,points_x,points_y,offset_x,offset_y); - - } break; - -#endif - - case 79: { - for (int i = 255; i > 0; i = i - 5) { - fanSpeed = i; - //delay_keep_alive(2000); - for (int j = 0; j < 100; j++) { - delay_keep_alive(100); - - } - fan_speed[1]; - MYSERIAL.print(i); SERIAL_ECHOPGM(": "); MYSERIAL.println(fan_speed[1]); - } - }break; - - /** - * G80: Mesh-based Z probe, probes a grid and produces a - * mesh to compensate for variable bed height - * - * The S0 report the points as below - * - * +----> X-axis - * | - * | - * v Y-axis - * - */ - - case 80: -#ifdef MK1BP - break; -#endif //MK1BP - case_G80: - { - mesh_bed_leveling_flag = true; - int8_t verbosity_level = 0; - static bool run = false; - - if (code_seen('V')) { - // Just 'V' without a number counts as V1. - char c = strchr_pointer[1]; - verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short(); - } - // Firstly check if we know where we are - if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS])) { - // We don't know where we are! HOME! - // Push the commands to the front of the message queue in the reverse order! - // There shall be always enough space reserved for these commands. - if (lcd_commands_type != LCD_COMMAND_STOP_PRINT) { - repeatcommand_front(); // repeat G80 with all its parameters - enquecommand_front_P((PSTR("G28 W0"))); - } - else { - mesh_bed_leveling_flag = false; - } - break; - } - - - bool temp_comp_start = true; -#ifdef PINDA_THERMISTOR - temp_comp_start = false; -#endif //PINDA_THERMISTOR - - if (temp_comp_start) - if (run == false && temp_cal_active == true && calibration_status_pinda() == true && target_temperature_bed >= 50) { - if (lcd_commands_type != LCD_COMMAND_STOP_PRINT) { - temp_compensation_start(); - run = true; - repeatcommand_front(); // repeat G80 with all its parameters - enquecommand_front_P((PSTR("G28 W0"))); - } - else { - mesh_bed_leveling_flag = false; - } - break; - } - run = false; - if (lcd_commands_type == LCD_COMMAND_STOP_PRINT) { - mesh_bed_leveling_flag = false; - break; - } - // Save custom message state, set a new custom message state to display: Calibrating point 9. - bool custom_message_old = custom_message; - unsigned int custom_message_type_old = custom_message_type; - unsigned int custom_message_state_old = custom_message_state; - custom_message = true; - custom_message_type = 1; - custom_message_state = (MESH_MEAS_NUM_X_POINTS * MESH_MEAS_NUM_Y_POINTS) + 10; - lcd_update(1); - - mbl.reset(); //reset mesh bed leveling - - // Reset baby stepping to zero, if the babystepping has already been loaded before. The babystepsTodo value will be - // consumed during the first movements following this statement. - babystep_undo(); - - // Cycle through all points and probe them - // First move up. During this first movement, the babystepping will be reverted. - current_position[Z_AXIS] = MESH_HOME_Z_SEARCH; - plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 60, active_extruder); - // The move to the first calibration point. - current_position[X_AXIS] = pgm_read_float(bed_ref_points); - current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 1); - bool clamped = world2machine_clamp(current_position[X_AXIS], current_position[Y_AXIS]); - - if (verbosity_level >= 1) { - clamped ? SERIAL_PROTOCOLPGM("First calibration point clamped.\n") : SERIAL_PROTOCOLPGM("No clamping for first calibration point.\n"); - } - // mbl.get_meas_xy(0, 0, current_position[X_AXIS], current_position[Y_AXIS], false); - plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[X_AXIS] / 30, active_extruder); - // Wait until the move is finished. - st_synchronize(); - - int mesh_point = 0; //index number of calibration point - - int ix = 0; - int iy = 0; - - int XY_AXIS_FEEDRATE = homing_feedrate[X_AXIS] / 20; - int Z_PROBE_FEEDRATE = homing_feedrate[Z_AXIS] / 60; - int Z_LIFT_FEEDRATE = homing_feedrate[Z_AXIS] / 40; - bool has_z = is_bed_z_jitter_data_valid(); //checks if we have data from Z calibration (offsets of the Z heiths of the 8 calibration points from the first point) - if (verbosity_level >= 1) { - has_z ? SERIAL_PROTOCOLPGM("Z jitter data from Z cal. valid.\n") : SERIAL_PROTOCOLPGM("Z jitter data from Z cal. not valid.\n"); - } - setup_for_endstop_move(false); //save feedrate and feedmultiply, sets feedmultiply to 100 - const char *kill_message = NULL; - while (mesh_point != MESH_MEAS_NUM_X_POINTS * MESH_MEAS_NUM_Y_POINTS) { - if (verbosity_level >= 1) SERIAL_ECHOLNPGM(""); - // Get coords of a measuring point. - ix = mesh_point % MESH_MEAS_NUM_X_POINTS; // from 0 to MESH_NUM_X_POINTS - 1 - iy = mesh_point / MESH_MEAS_NUM_X_POINTS; - if (iy & 1) ix = (MESH_MEAS_NUM_X_POINTS - 1) - ix; // Zig zag - float z0 = 0.f; - if (has_z && mesh_point > 0) { - uint16_t z_offset_u = eeprom_read_word((uint16_t*)(EEPROM_BED_CALIBRATION_Z_JITTER + 2 * (ix + iy * 3 - 1))); - z0 = mbl.z_values[0][0] + *reinterpret_cast(&z_offset_u) * 0.01; - //#if 0 - if (verbosity_level >= 1) { - SERIAL_ECHOPGM("Bed leveling, point: "); - MYSERIAL.print(mesh_point); - SERIAL_ECHOPGM(", calibration z: "); - MYSERIAL.print(z0, 5); - SERIAL_ECHOLNPGM(""); - } - //#endif - } - - // Move Z up to MESH_HOME_Z_SEARCH. - current_position[Z_AXIS] = MESH_HOME_Z_SEARCH; - plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], Z_LIFT_FEEDRATE, active_extruder); - st_synchronize(); - - // Move to XY position of the sensor point. - current_position[X_AXIS] = pgm_read_float(bed_ref_points + 2 * mesh_point); - current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 2 * mesh_point + 1); - - - - world2machine_clamp(current_position[X_AXIS], current_position[Y_AXIS]); - if (verbosity_level >= 1) { - - SERIAL_PROTOCOL(mesh_point); - clamped ? SERIAL_PROTOCOLPGM(": xy clamped.\n") : SERIAL_PROTOCOLPGM(": no xy clamping\n"); - } - - - plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], XY_AXIS_FEEDRATE, active_extruder); - st_synchronize(); - - // Go down until endstop is hit - const float Z_CALIBRATION_THRESHOLD = 1.f; - if (!find_bed_induction_sensor_point_z((has_z && mesh_point > 0) ? z0 - Z_CALIBRATION_THRESHOLD : -10.f)) { //if we have data from z calibration max allowed difference is 1mm for each point, if we dont have data max difference is 10mm from initial point - kill_message = MSG_BED_LEVELING_FAILED_POINT_LOW; - break; - } - if (MESH_HOME_Z_SEARCH - current_position[Z_AXIS] < 0.1f) { - kill_message = MSG_BED_LEVELING_FAILED_PROBE_DISCONNECTED; - break; - } - if (has_z && fabs(z0 - current_position[Z_AXIS]) > Z_CALIBRATION_THRESHOLD) { //if we have data from z calibration, max. allowed difference is 1mm for each point - kill_message = MSG_BED_LEVELING_FAILED_POINT_HIGH; - break; - } - - if (verbosity_level >= 10) { - SERIAL_ECHOPGM("X: "); - MYSERIAL.print(current_position[X_AXIS], 5); - SERIAL_ECHOLNPGM(""); - SERIAL_ECHOPGM("Y: "); - MYSERIAL.print(current_position[Y_AXIS], 5); - SERIAL_PROTOCOLPGM("\n"); - } - - float offset_z = 0; - -#ifdef PINDA_THERMISTOR - offset_z = temp_compensation_pinda_thermistor_offset(); -#endif //PINDA_THERMISTOR - - if (verbosity_level >= 1) { - SERIAL_ECHOPGM("mesh bed leveling: "); - MYSERIAL.print(current_position[Z_AXIS], 5); - SERIAL_ECHOPGM(" offset: "); - MYSERIAL.print(offset_z, 5); - SERIAL_ECHOLNPGM(""); - } - mbl.set_z(ix, iy, current_position[Z_AXIS] - offset_z); //store measured z values z_values[iy][ix] = z - offset_z; - - custom_message_state--; - mesh_point++; - lcd_update(1); - } - if (verbosity_level >= 20) SERIAL_ECHOLNPGM("Mesh bed leveling while loop finished."); - current_position[Z_AXIS] = MESH_HOME_Z_SEARCH; - if (verbosity_level >= 20) { - SERIAL_ECHOLNPGM("MESH_HOME_Z_SEARCH: "); - MYSERIAL.print(current_position[Z_AXIS], 5); - } - plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], Z_LIFT_FEEDRATE, active_extruder); - st_synchronize(); - if (mesh_point != MESH_MEAS_NUM_X_POINTS * MESH_MEAS_NUM_Y_POINTS) { - kill(kill_message); - SERIAL_ECHOLNPGM("killed"); - } - clean_up_after_endstop_move(); - SERIAL_ECHOLNPGM("clean up finished "); - - bool apply_temp_comp = true; -#ifdef PINDA_THERMISTOR - apply_temp_comp = false; -#endif - if (apply_temp_comp) - if(temp_cal_active == true && calibration_status_pinda() == true) temp_compensation_apply(); //apply PINDA temperature compensation - babystep_apply(); // Apply Z height correction aka baby stepping before mesh bed leveing gets activated. - SERIAL_ECHOLNPGM("babystep applied"); - bool eeprom_bed_correction_valid = eeprom_read_byte((unsigned char*)EEPROM_BED_CORRECTION_VALID) == 1; - - if (verbosity_level >= 1) { - eeprom_bed_correction_valid ? SERIAL_PROTOCOLPGM("Bed correction data valid\n") : SERIAL_PROTOCOLPGM("Bed correction data not valid\n"); - } - - for (uint8_t i = 0; i < 4; ++i) { - unsigned char codes[4] = { 'L', 'R', 'F', 'B' }; - long correction = 0; - if (code_seen(codes[i])) - correction = code_value_long(); - else if (eeprom_bed_correction_valid) { - unsigned char *addr = (i < 2) ? - ((i == 0) ? (unsigned char*)EEPROM_BED_CORRECTION_LEFT : (unsigned char*)EEPROM_BED_CORRECTION_RIGHT) : - ((i == 2) ? (unsigned char*)EEPROM_BED_CORRECTION_FRONT : (unsigned char*)EEPROM_BED_CORRECTION_REAR); - correction = eeprom_read_int8(addr); - } - if (correction == 0) - continue; - float offset = float(correction) * 0.001f; - if (fabs(offset) > 0.101f) { - SERIAL_ERROR_START; - SERIAL_ECHOPGM("Excessive bed leveling correction: "); - SERIAL_ECHO(offset); - SERIAL_ECHOLNPGM(" microns"); - } - else { - switch (i) { - case 0: - for (uint8_t row = 0; row < 3; ++row) { - mbl.z_values[row][1] += 0.5f * offset; - mbl.z_values[row][0] += offset; - } - break; - case 1: - for (uint8_t row = 0; row < 3; ++row) { - mbl.z_values[row][1] += 0.5f * offset; - mbl.z_values[row][2] += offset; - } - break; - case 2: - for (uint8_t col = 0; col < 3; ++col) { - mbl.z_values[1][col] += 0.5f * offset; - mbl.z_values[0][col] += offset; - } - break; - case 3: - for (uint8_t col = 0; col < 3; ++col) { - mbl.z_values[1][col] += 0.5f * offset; - mbl.z_values[2][col] += offset; - } - break; - } - } - } - SERIAL_ECHOLNPGM("Bed leveling correction finished"); - mbl.upsample_3x3(); //bilinear interpolation from 3x3 to 7x7 points while using the same array z_values[iy][ix] for storing (just coppying measured data to new destination and interpolating between them) - SERIAL_ECHOLNPGM("Upsample finished"); - mbl.active = 1; //activate mesh bed leveling - SERIAL_ECHOLNPGM("Mesh bed leveling activated"); - go_home_with_z_lift(); - SERIAL_ECHOLNPGM("Go home finished"); - //unretract (after PINDA preheat retraction) - if (degHotend(active_extruder) > EXTRUDE_MINTEMP && temp_cal_active == true && calibration_status_pinda() == true && target_temperature_bed >= 50) { - current_position[E_AXIS] += DEFAULT_RETRACTION; - plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400, active_extruder); - } - // Restore custom message state - custom_message = custom_message_old; - custom_message_type = custom_message_type_old; - custom_message_state = custom_message_state_old; - mesh_bed_leveling_flag = false; - mesh_bed_run_from_menu = false; - lcd_update(2); - - } - break; - - /** - * G81: Print mesh bed leveling status and bed profile if activated - */ - case 81: - if (mbl.active) { - SERIAL_PROTOCOLPGM("Num X,Y: "); - SERIAL_PROTOCOL(MESH_NUM_X_POINTS); - SERIAL_PROTOCOLPGM(","); - SERIAL_PROTOCOL(MESH_NUM_Y_POINTS); - SERIAL_PROTOCOLPGM("\nZ search height: "); - SERIAL_PROTOCOL(MESH_HOME_Z_SEARCH); - SERIAL_PROTOCOLLNPGM("\nMeasured points:"); - for (int y = MESH_NUM_Y_POINTS-1; y >= 0; y--) { - for (int x = 0; x < MESH_NUM_X_POINTS; x++) { - SERIAL_PROTOCOLPGM(" "); - SERIAL_PROTOCOL_F(mbl.z_values[y][x], 5); - } - SERIAL_PROTOCOLPGM("\n"); - } - } - else - SERIAL_PROTOCOLLNPGM("Mesh bed leveling not active."); - break; - -#if 0 - /** - * G82: Single Z probe at current location - * - * WARNING! USE WITH CAUTION! If you'll try to probe where is no leveling pad, nasty things can happen! - * - */ - case 82: - SERIAL_PROTOCOLLNPGM("Finding bed "); - setup_for_endstop_move(); - find_bed_induction_sensor_point_z(); - clean_up_after_endstop_move(); - SERIAL_PROTOCOLPGM("Bed found at: "); - SERIAL_PROTOCOL_F(current_position[Z_AXIS], 5); - SERIAL_PROTOCOLPGM("\n"); - break; - - /** - * G83: Prusa3D specific: Babystep in Z and store to EEPROM - */ - case 83: - { - int babystepz = code_seen('S') ? code_value() : 0; - int BabyPosition = code_seen('P') ? code_value() : 0; - - if (babystepz != 0) { - //FIXME Vojtech: What shall be the index of the axis Z: 3 or 4? - // Is the axis indexed starting with zero or one? - if (BabyPosition > 4) { - SERIAL_PROTOCOLLNPGM("Index out of bounds"); - }else{ - // Save it to the eeprom - babystepLoadZ = babystepz; - EEPROM_save_B(EEPROM_BABYSTEP_Z0+(BabyPosition*2),&babystepLoadZ); - // adjust the Z - babystepsTodoZadd(babystepLoadZ); - } - - } - - } - break; - /** - * G84: Prusa3D specific: UNDO Babystep Z (move Z axis back) - */ - case 84: - babystepsTodoZsubtract(babystepLoadZ); - // babystepLoadZ = 0; - break; - - /** - * G85: Prusa3D specific: Pick best babystep - */ - case 85: - lcd_pick_babystep(); - break; -#endif - - /** - * G86: Prusa3D specific: Disable babystep correction after home. - * This G-code will be performed at the start of a calibration script. - */ - case 86: - calibration_status_store(CALIBRATION_STATUS_LIVE_ADJUST); - break; - /** - * G87: Prusa3D specific: Enable babystep correction after home - * This G-code will be performed at the end of a calibration script. - */ - case 87: - calibration_status_store(CALIBRATION_STATUS_CALIBRATED); - break; - - /** - * G88: Prusa3D specific: Don't know what it is for, it is in V2Calibration.gcode - */ - case 88: - break; - - -#endif // ENABLE_MESH_BED_LEVELING - - - case 90: // G90 - relative_mode = false; - break; - case 91: // G91 - relative_mode = true; - break; - case 92: // G92 - if(!code_seen(axis_codes[E_AXIS])) - st_synchronize(); - for(int8_t i=0; i < NUM_AXIS; i++) { - if(code_seen(axis_codes[i])) { - if(i == E_AXIS) { - current_position[i] = code_value(); - plan_set_e_position(current_position[E_AXIS]); - } - else { - current_position[i] = code_value()+add_homing[i]; - plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]); - } - } - } - break; - - case 98: //activate farm mode - farm_mode = 1; - PingTime = millis(); - eeprom_update_byte((unsigned char *)EEPROM_FARM_MODE, farm_mode); - break; - - case 99: //deactivate farm mode - farm_mode = 0; - lcd_printer_connected(); - eeprom_update_byte((unsigned char *)EEPROM_FARM_MODE, farm_mode); - lcd_update(2); - break; - - - - - - - - } - } // end if(code_seen('G')) - - else if(code_seen('M')) - { - int index; - for (index = 1; *(strchr_pointer + index) == ' ' || *(strchr_pointer + index) == '\t'; index++); - - /*for (++strchr_pointer; *strchr_pointer == ' ' || *strchr_pointer == '\t'; ++strchr_pointer);*/ - if (*(strchr_pointer+index) < '0' || *(strchr_pointer+index) > '9') { - SERIAL_ECHOLNPGM("Invalid M code"); - } else - switch((int)code_value()) - { -#ifdef ULTIPANEL - - case 0: // M0 - Unconditional stop - Wait for user button press on LCD - case 1: // M1 - Conditional stop - Wait for user button press on LCD - { - char *src = strchr_pointer + 2; - - codenum = 0; - - bool hasP = false, hasS = false; - if (code_seen('P')) { - codenum = code_value(); // milliseconds to wait - hasP = codenum > 0; - } - if (code_seen('S')) { - codenum = code_value() * 1000; // seconds to wait - hasS = codenum > 0; - } - starpos = strchr(src, '*'); - if (starpos != NULL) *(starpos) = '\0'; - while (*src == ' ') ++src; - if (!hasP && !hasS && *src != '\0') { - lcd_setstatus(src); - } else { - LCD_MESSAGERPGM(MSG_USERWAIT); - } - - lcd_ignore_click(); //call lcd_ignore_click aslo for else ??? - st_synchronize(); - previous_millis_cmd = millis(); - if (codenum > 0){ - codenum += millis(); // keep track of when we started waiting - while(millis() < codenum && !lcd_clicked()){ - manage_heater(); - manage_inactivity(true); - lcd_update(); - } - lcd_ignore_click(false); - }else{ - if (!lcd_detected()) - break; - while(!lcd_clicked()){ - manage_heater(); - manage_inactivity(true); - lcd_update(); - } - } - if (IS_SD_PRINTING) - LCD_MESSAGERPGM(MSG_RESUMING); - else - LCD_MESSAGERPGM(WELCOME_MSG); - } - break; -#endif - case 17: - LCD_MESSAGERPGM(MSG_NO_MOVE); - enable_x(); - enable_y(); - enable_z(); - enable_e0(); - enable_e1(); - enable_e2(); - break; - -#ifdef SDSUPPORT - case 20: // M20 - list SD card - SERIAL_PROTOCOLLNRPGM(MSG_BEGIN_FILE_LIST); - card.ls(); - SERIAL_PROTOCOLLNRPGM(MSG_END_FILE_LIST); - break; - case 21: // M21 - init SD card - - card.initsd(); - - break; - case 22: //M22 - release SD card - card.release(); - - break; - case 23: //M23 - Select file - starpos = (strchr(strchr_pointer + 4,'*')); - if(starpos!=NULL) - *(starpos)='\0'; - card.openFile(strchr_pointer + 4,true); - break; - case 24: //M24 - Start SD print - card.startFileprint(); - starttime=millis(); - break; - case 25: //M25 - Pause SD print - card.pauseSDPrint(); - break; - case 26: //M26 - Set SD index - if(card.cardOK && code_seen('S')) { - card.setIndex(code_value_long()); - } - break; - case 27: //M27 - Get SD status - card.getStatus(); - break; - case 28: //M28 - Start SD write - starpos = (strchr(strchr_pointer + 4,'*')); - if(starpos != NULL){ - char* npos = strchr(CMDBUFFER_CURRENT_STRING, 'N'); - strchr_pointer = strchr(npos,' ') + 1; - *(starpos) = '\0'; - } - card.openFile(strchr_pointer+4,false); - break; - case 29: //M29 - Stop SD write - //processed in write to file routine above - //card,saving = false; - break; - case 30: //M30 Delete File - if (card.cardOK){ - card.closefile(); - starpos = (strchr(strchr_pointer + 4,'*')); - if(starpos != NULL){ - char* npos = strchr(CMDBUFFER_CURRENT_STRING, 'N'); - strchr_pointer = strchr(npos,' ') + 1; - *(starpos) = '\0'; - } - card.removeFile(strchr_pointer + 4); - } - break; - case 32: //M32 - Select file and start SD print - { - if(card.sdprinting) { - st_synchronize(); - - } - starpos = (strchr(strchr_pointer + 4,'*')); - - char* namestartpos = (strchr(strchr_pointer + 4,'!')); //find ! to indicate filename string start. - if(namestartpos==NULL) - { - namestartpos=strchr_pointer + 4; //default name position, 4 letters after the M - } - else - namestartpos++; //to skip the '!' - - if(starpos!=NULL) - *(starpos)='\0'; - - bool call_procedure=(code_seen('P')); - - if(strchr_pointer>namestartpos) - call_procedure=false; //false alert, 'P' found within filename - - if( card.cardOK ) - { - card.openFile(namestartpos,true,!call_procedure); - if(code_seen('S')) - if(strchr_pointer= 0 && pin_status <= 255) - pin_number = code_value(); - for(int8_t i = 0; i < (int8_t)(sizeof(sensitive_pins)/sizeof(int)); i++) - { - if (sensitive_pins[i] == pin_number) - { - pin_number = -1; - break; - } - } - #if defined(FAN_PIN) && FAN_PIN > -1 - if (pin_number == FAN_PIN) - fanSpeed = pin_status; - #endif - if (pin_number > -1) - { - pinMode(pin_number, OUTPUT); - digitalWrite(pin_number, pin_status); - analogWrite(pin_number, pin_status); - } - } - break; - - case 44: // M44: Prusa3D: Reset the bed skew and offset calibration. - - // Reset the baby step value and the baby step applied flag. - calibration_status_store(CALIBRATION_STATUS_ASSEMBLED); - eeprom_update_word((uint16_t*)EEPROM_BABYSTEP_Z, 0); - - // Reset the skew and offset in both RAM and EEPROM. - reset_bed_offset_and_skew(); - // Reset world2machine_rotation_and_skew and world2machine_shift, therefore - // the planner will not perform any adjustments in the XY plane. - // Wait for the motors to stop and update the current position with the absolute values. - world2machine_revert_to_uncorrected(); - break; - - case 45: // M45: Prusa3D: bed skew and offset with manual Z up - { - // Only Z calibration? - bool onlyZ = code_seen('Z'); - - if (!onlyZ) { - setTargetBed(0); - setTargetHotend(0, 0); - setTargetHotend(0, 1); - setTargetHotend(0, 2); - adjust_bed_reset(); //reset bed level correction - } - - // Disable the default update procedure of the display. We will do a modal dialog. - lcd_update_enable(false); - // Let the planner use the uncorrected coordinates. - mbl.reset(); - // Reset world2machine_rotation_and_skew and world2machine_shift, therefore - // the planner will not perform any adjustments in the XY plane. - // Wait for the motors to stop and update the current position with the absolute values. - world2machine_revert_to_uncorrected(); - // Reset the baby step value applied without moving the axes. - babystep_reset(); - // Mark all axes as in a need for homing. - memset(axis_known_position, 0, sizeof(axis_known_position)); - - // Home in the XY plane. - //set_destination_to_current(); - setup_for_endstop_move(); - lcd_display_message_fullscreen_P(MSG_AUTO_HOME); - home_xy(); - - // Let the user move the Z axes up to the end stoppers. -#ifdef TMC2130 - if (calibrate_z_auto()) { -#else //TMC2130 - if (lcd_calibrate_z_end_stop_manual( onlyZ )) { -#endif //TMC2130 - refresh_cmd_timeout(); - if (((degHotend(0) > MAX_HOTEND_TEMP_CALIBRATION) || (degBed() > MAX_BED_TEMP_CALIBRATION)) && (!onlyZ)) { - lcd_wait_for_cool_down(); - lcd_show_fullscreen_message_and_wait_P(MSG_PAPER); - lcd_display_message_fullscreen_P(MSG_FIND_BED_OFFSET_AND_SKEW_LINE1); - lcd_implementation_print_at(0, 2, 1); - lcd_printPGM(MSG_FIND_BED_OFFSET_AND_SKEW_LINE2); - } - - // Move the print head close to the bed. - current_position[Z_AXIS] = MESH_HOME_Z_SEARCH; - plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], homing_feedrate[Z_AXIS]/40, active_extruder); - st_synchronize(); - - -//#ifdef TMC2130 -// tmc2130_home_enter(X_AXIS_MASK | Y_AXIS_MASK); -//#endif - - int8_t verbosity_level = 0; - if (code_seen('V')) { - // Just 'V' without a number counts as V1. - char c = strchr_pointer[1]; - verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short(); - } - - if (onlyZ) { - clean_up_after_endstop_move(); - // Z only calibration. - // Load the machine correction matrix - world2machine_initialize(); - // and correct the current_position to match the transformed coordinate system. - world2machine_update_current(); - //FIXME - bool result = sample_mesh_and_store_reference(); - if (result) { - if (calibration_status() == CALIBRATION_STATUS_Z_CALIBRATION) - // Shipped, the nozzle height has been set already. The user can start printing now. - calibration_status_store(CALIBRATION_STATUS_CALIBRATED); - // babystep_apply(); - } - } else { - // Reset the baby step value and the baby step applied flag. - calibration_status_store(CALIBRATION_STATUS_ASSEMBLED); - eeprom_update_word((uint16_t*)EEPROM_BABYSTEP_Z, 0); - // Complete XYZ calibration. - uint8_t point_too_far_mask = 0; - BedSkewOffsetDetectionResultType result = find_bed_offset_and_skew(verbosity_level, point_too_far_mask); - clean_up_after_endstop_move(); - // Print head up. - current_position[Z_AXIS] = MESH_HOME_Z_SEARCH; - plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], homing_feedrate[Z_AXIS]/40, active_extruder); - st_synchronize(); - if (result >= 0) { - point_too_far_mask = 0; - // Second half: The fine adjustment. - // Let the planner use the uncorrected coordinates. - mbl.reset(); - world2machine_reset(); - // Home in the XY plane. - setup_for_endstop_move(); - home_xy(); - result = improve_bed_offset_and_skew(1, verbosity_level, point_too_far_mask); - clean_up_after_endstop_move(); - // Print head up. - current_position[Z_AXIS] = MESH_HOME_Z_SEARCH; - plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], homing_feedrate[Z_AXIS]/40, active_extruder); - st_synchronize(); - // if (result >= 0) babystep_apply(); - } - lcd_bed_calibration_show_result(result, point_too_far_mask); - if (result >= 0) { - // Calibration valid, the machine should be able to print. Advise the user to run the V2Calibration.gcode. - calibration_status_store(CALIBRATION_STATUS_LIVE_ADJUST); - lcd_show_fullscreen_message_and_wait_P(MSG_BABYSTEP_Z_NOT_SET); - } - } -#ifdef TMC2130 - tmc2130_home_exit(); -#endif - } else { - // Timeouted. - } - - - lcd_update_enable(true); - break; - } - - /* - case 46: - { - // M46: Prusa3D: Show the assigned IP address. - uint8_t ip[4]; - bool hasIP = card.ToshibaFlashAir_GetIP(ip); - if (hasIP) { - SERIAL_ECHOPGM("Toshiba FlashAir current IP: "); - SERIAL_ECHO(int(ip[0])); - SERIAL_ECHOPGM("."); - SERIAL_ECHO(int(ip[1])); - SERIAL_ECHOPGM("."); - SERIAL_ECHO(int(ip[2])); - SERIAL_ECHOPGM("."); - SERIAL_ECHO(int(ip[3])); - SERIAL_ECHOLNPGM(""); - } else { - SERIAL_ECHOLNPGM("Toshiba FlashAir GetIP failed"); - } - break; - } - */ - - case 47: - // M47: Prusa3D: Show end stops dialog on the display. - lcd_diag_show_end_stops(); - break; - -#if 0 - case 48: // M48: scan the bed induction sensor points, print the sensor trigger coordinates to the serial line for visualization on the PC. - { - // Disable the default update procedure of the display. We will do a modal dialog. - lcd_update_enable(false); - // Let the planner use the uncorrected coordinates. - mbl.reset(); - // Reset world2machine_rotation_and_skew and world2machine_shift, therefore - // the planner will not perform any adjustments in the XY plane. - // Wait for the motors to stop and update the current position with the absolute values. - world2machine_revert_to_uncorrected(); - // Move the print head close to the bed. - current_position[Z_AXIS] = MESH_HOME_Z_SEARCH; - plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], homing_feedrate[Z_AXIS]/40, active_extruder); - st_synchronize(); - // Home in the XY plane. - set_destination_to_current(); - setup_for_endstop_move(); - home_xy(); - int8_t verbosity_level = 0; - if (code_seen('V')) { - // Just 'V' without a number counts as V1. - char c = strchr_pointer[1]; - verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short(); - } - bool success = scan_bed_induction_points(verbosity_level); - clean_up_after_endstop_move(); - // Print head up. - current_position[Z_AXIS] = MESH_HOME_Z_SEARCH; - plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], homing_feedrate[Z_AXIS]/40, active_extruder); - st_synchronize(); - lcd_update_enable(true); - break; - } -#endif - -// M48 Z-Probe repeatability measurement function. -// -// Usage: M48 -// -// This function assumes the bed has been homed. Specificaly, that a G28 command -// as been issued prior to invoking the M48 Z-Probe repeatability measurement function. -// Any information generated by a prior G29 Bed leveling command will be lost and need to be -// regenerated. -// -// The number of samples will default to 10 if not specified. You can use upper or lower case -// letters for any of the options EXCEPT n. n must be in lower case because Marlin uses a capital -// N for its communication protocol and will get horribly confused if you send it a capital N. -// - -#ifdef ENABLE_AUTO_BED_LEVELING -#ifdef Z_PROBE_REPEATABILITY_TEST - - case 48: // M48 Z-Probe repeatability - { - #if Z_MIN_PIN == -1 - #error "You must have a Z_MIN endstop in order to enable calculation of Z-Probe repeatability." - #endif - - double sum=0.0; - double mean=0.0; - double sigma=0.0; - double sample_set[50]; - int verbose_level=1, n=0, j, n_samples = 10, n_legs=0; - double X_current, Y_current, Z_current; - double X_probe_location, Y_probe_location, Z_start_location, ext_position; - - if (code_seen('V') || code_seen('v')) { - verbose_level = code_value(); - if (verbose_level<0 || verbose_level>4 ) { - SERIAL_PROTOCOLPGM("?Verbose Level not plausable.\n"); - goto Sigma_Exit; - } - } - - if (verbose_level > 0) { - SERIAL_PROTOCOLPGM("M48 Z-Probe Repeatability test. Version 2.00\n"); - SERIAL_PROTOCOLPGM("Full support at: http://3dprintboard.com/forum.php\n"); - } - - if (code_seen('n')) { - n_samples = code_value(); - if (n_samples<4 || n_samples>50 ) { - SERIAL_PROTOCOLPGM("?Specified sample size not plausable.\n"); - goto Sigma_Exit; - } - } - - X_current = X_probe_location = st_get_position_mm(X_AXIS); - Y_current = Y_probe_location = st_get_position_mm(Y_AXIS); - Z_current = st_get_position_mm(Z_AXIS); - Z_start_location = st_get_position_mm(Z_AXIS) + Z_RAISE_BEFORE_PROBING; - ext_position = st_get_position_mm(E_AXIS); - - if (code_seen('X') || code_seen('x') ) { - X_probe_location = code_value() - X_PROBE_OFFSET_FROM_EXTRUDER; - if (X_probe_locationX_MAX_POS ) { - SERIAL_PROTOCOLPGM("?Specified X position out of range.\n"); - goto Sigma_Exit; - } - } - - if (code_seen('Y') || code_seen('y') ) { - Y_probe_location = code_value() - Y_PROBE_OFFSET_FROM_EXTRUDER; - if (Y_probe_locationY_MAX_POS ) { - SERIAL_PROTOCOLPGM("?Specified Y position out of range.\n"); - goto Sigma_Exit; - } - } - - if (code_seen('L') || code_seen('l') ) { - n_legs = code_value(); - if ( n_legs==1 ) - n_legs = 2; - if ( n_legs<0 || n_legs>15 ) { - SERIAL_PROTOCOLPGM("?Specified number of legs in movement not plausable.\n"); - goto Sigma_Exit; - } - } - -// -// Do all the preliminary setup work. First raise the probe. -// - - st_synchronize(); - plan_bed_level_matrix.set_to_identity(); - plan_buffer_line( X_current, Y_current, Z_start_location, - ext_position, - homing_feedrate[Z_AXIS]/60, - active_extruder); - st_synchronize(); - -// -// Now get everything to the specified probe point So we can safely do a probe to -// get us close to the bed. If the Z-Axis is far from the bed, we don't want to -// use that as a starting point for each probe. -// - if (verbose_level > 2) - SERIAL_PROTOCOL("Positioning probe for the test.\n"); - - plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location, - ext_position, - homing_feedrate[X_AXIS]/60, - active_extruder); - st_synchronize(); - - current_position[X_AXIS] = X_current = st_get_position_mm(X_AXIS); - current_position[Y_AXIS] = Y_current = st_get_position_mm(Y_AXIS); - current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS); - current_position[E_AXIS] = ext_position = st_get_position_mm(E_AXIS); - -// -// OK, do the inital probe to get us close to the bed. -// Then retrace the right amount and use that in subsequent probes -// - - setup_for_endstop_move(); - run_z_probe(); - - current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS); - Z_start_location = st_get_position_mm(Z_AXIS) + Z_RAISE_BEFORE_PROBING; - - plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location, - ext_position, - homing_feedrate[X_AXIS]/60, - active_extruder); - st_synchronize(); - current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS); - - for( n=0; nX_MAX_POS) - X_current = X_MAX_POS; - - if ( Y_currentY_MAX_POS) - Y_current = Y_MAX_POS; - - if (verbose_level>3 ) { - SERIAL_ECHOPAIR("x: ", X_current); - SERIAL_ECHOPAIR("y: ", Y_current); - SERIAL_PROTOCOLLNPGM(""); - } - - do_blocking_move_to( X_current, Y_current, Z_current ); - } - do_blocking_move_to( X_probe_location, Y_probe_location, Z_start_location); // Go back to the probe location - } - - setup_for_endstop_move(); - run_z_probe(); - - sample_set[n] = current_position[Z_AXIS]; - -// -// Get the current mean for the data points we have so far -// - sum=0.0; - for( j=0; j<=n; j++) { - sum = sum + sample_set[j]; - } - mean = sum / (double (n+1)); -// -// Now, use that mean to calculate the standard deviation for the -// data points we have so far -// - - sum=0.0; - for( j=0; j<=n; j++) { - sum = sum + (sample_set[j]-mean) * (sample_set[j]-mean); - } - sigma = sqrt( sum / (double (n+1)) ); - - if (verbose_level > 1) { - SERIAL_PROTOCOL(n+1); - SERIAL_PROTOCOL(" of "); - SERIAL_PROTOCOL(n_samples); - SERIAL_PROTOCOLPGM(" z: "); - SERIAL_PROTOCOL_F(current_position[Z_AXIS], 6); - } - - if (verbose_level > 2) { - SERIAL_PROTOCOL(" mean: "); - SERIAL_PROTOCOL_F(mean,6); - - SERIAL_PROTOCOL(" sigma: "); - SERIAL_PROTOCOL_F(sigma,6); - } - - if (verbose_level > 0) - SERIAL_PROTOCOLPGM("\n"); - - plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location, - current_position[E_AXIS], homing_feedrate[Z_AXIS]/60, active_extruder); - st_synchronize(); - - } - - delay(1000); - - clean_up_after_endstop_move(); - -// enable_endstops(true); - - if (verbose_level > 0) { - SERIAL_PROTOCOLPGM("Mean: "); - SERIAL_PROTOCOL_F(mean, 6); - SERIAL_PROTOCOLPGM("\n"); - } - -SERIAL_PROTOCOLPGM("Standard Deviation: "); -SERIAL_PROTOCOL_F(sigma, 6); -SERIAL_PROTOCOLPGM("\n\n"); - -Sigma_Exit: - break; - } -#endif // Z_PROBE_REPEATABILITY_TEST -#endif // ENABLE_AUTO_BED_LEVELING - - case 104: // M104 - if(setTargetedHotend(104)){ - break; - } - if (code_seen('S')) setTargetHotend(code_value(), tmp_extruder); - setWatch(); - break; - case 112: // M112 -Emergency Stop - kill("", 3); - break; - case 140: // M140 set bed temp - if (code_seen('S')) setTargetBed(code_value()); - break; - case 105 : // M105 - if(setTargetedHotend(105)){ - break; - } - #if defined(TEMP_0_PIN) && TEMP_0_PIN > -1 - SERIAL_PROTOCOLPGM("ok T:"); - SERIAL_PROTOCOL_F(degHotend(tmp_extruder),1); - SERIAL_PROTOCOLPGM(" /"); - SERIAL_PROTOCOL_F(degTargetHotend(tmp_extruder),1); - #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1 - SERIAL_PROTOCOLPGM(" B:"); - SERIAL_PROTOCOL_F(degBed(),1); - SERIAL_PROTOCOLPGM(" /"); - SERIAL_PROTOCOL_F(degTargetBed(),1); - #endif //TEMP_BED_PIN - for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) { - SERIAL_PROTOCOLPGM(" T"); - SERIAL_PROTOCOL(cur_extruder); - SERIAL_PROTOCOLPGM(":"); - SERIAL_PROTOCOL_F(degHotend(cur_extruder),1); - SERIAL_PROTOCOLPGM(" /"); - SERIAL_PROTOCOL_F(degTargetHotend(cur_extruder),1); - } - #else - SERIAL_ERROR_START; - SERIAL_ERRORLNRPGM(MSG_ERR_NO_THERMISTORS); - #endif - - SERIAL_PROTOCOLPGM(" @:"); - #ifdef EXTRUDER_WATTS - SERIAL_PROTOCOL((EXTRUDER_WATTS * getHeaterPower(tmp_extruder))/127); - SERIAL_PROTOCOLPGM("W"); - #else - SERIAL_PROTOCOL(getHeaterPower(tmp_extruder)); - #endif - - SERIAL_PROTOCOLPGM(" B@:"); - #ifdef BED_WATTS - SERIAL_PROTOCOL((BED_WATTS * getHeaterPower(-1))/127); - SERIAL_PROTOCOLPGM("W"); - #else - SERIAL_PROTOCOL(getHeaterPower(-1)); - #endif - -#ifdef PINDA_THERMISTOR - SERIAL_PROTOCOLPGM(" P:"); - SERIAL_PROTOCOL_F(current_temperature_pinda,1); -#endif //PINDA_THERMISTOR - -#ifdef AMBIENT_THERMISTOR - SERIAL_PROTOCOLPGM(" A:"); - SERIAL_PROTOCOL_F(current_temperature_ambient,1); -#endif //AMBIENT_THERMISTOR - - - #ifdef SHOW_TEMP_ADC_VALUES - {float raw = 0.0; - - #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1 - SERIAL_PROTOCOLPGM(" ADC B:"); - SERIAL_PROTOCOL_F(degBed(),1); - SERIAL_PROTOCOLPGM("C->"); - raw = rawBedTemp(); - SERIAL_PROTOCOL_F(raw/OVERSAMPLENR,5); - SERIAL_PROTOCOLPGM(" Rb->"); - SERIAL_PROTOCOL_F(100 * (1 + (PtA * (raw/OVERSAMPLENR)) + (PtB * sq((raw/OVERSAMPLENR)))), 5); - SERIAL_PROTOCOLPGM(" Rxb->"); - SERIAL_PROTOCOL_F(raw, 5); - #endif - for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) { - SERIAL_PROTOCOLPGM(" T"); - SERIAL_PROTOCOL(cur_extruder); - SERIAL_PROTOCOLPGM(":"); - SERIAL_PROTOCOL_F(degHotend(cur_extruder),1); - SERIAL_PROTOCOLPGM("C->"); - raw = rawHotendTemp(cur_extruder); - SERIAL_PROTOCOL_F(raw/OVERSAMPLENR,5); - SERIAL_PROTOCOLPGM(" Rt"); - SERIAL_PROTOCOL(cur_extruder); - SERIAL_PROTOCOLPGM("->"); - SERIAL_PROTOCOL_F(100 * (1 + (PtA * (raw/OVERSAMPLENR)) + (PtB * sq((raw/OVERSAMPLENR)))), 5); - SERIAL_PROTOCOLPGM(" Rx"); - SERIAL_PROTOCOL(cur_extruder); - SERIAL_PROTOCOLPGM("->"); - SERIAL_PROTOCOL_F(raw, 5); - }} - #endif - SERIAL_PROTOCOLLN(""); - return; - break; - case 109: - {// M109 - Wait for extruder heater to reach target. - if(setTargetedHotend(109)){ - break; - } - LCD_MESSAGERPGM(MSG_HEATING); - heating_status = 1; - if (farm_mode) { prusa_statistics(1); }; - -#ifdef AUTOTEMP - autotemp_enabled=false; - #endif - if (code_seen('S')) { - setTargetHotend(code_value(), tmp_extruder); - CooldownNoWait = true; - } else if (code_seen('R')) { - setTargetHotend(code_value(), tmp_extruder); - CooldownNoWait = false; - } - #ifdef AUTOTEMP - if (code_seen('S')) autotemp_min=code_value(); - if (code_seen('B')) autotemp_max=code_value(); - if (code_seen('F')) - { - autotemp_factor=code_value(); - autotemp_enabled=true; - } - #endif - - setWatch(); - codenum = millis(); - - /* See if we are heating up or cooling down */ - target_direction = isHeatingHotend(tmp_extruder); // true if heating, false if cooling - - cancel_heatup = false; - - wait_for_heater(codenum); //loops until target temperature is reached - - LCD_MESSAGERPGM(MSG_HEATING_COMPLETE); - heating_status = 2; - if (farm_mode) { prusa_statistics(2); }; - - //starttime=millis(); - previous_millis_cmd = millis(); - } - break; - case 190: // M190 - Wait for bed heater to reach target. - #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1 - LCD_MESSAGERPGM(MSG_BED_HEATING); - heating_status = 3; - if (farm_mode) { prusa_statistics(1); }; - if (code_seen('S')) - { - setTargetBed(code_value()); - CooldownNoWait = true; - } - else if (code_seen('R')) - { - setTargetBed(code_value()); - CooldownNoWait = false; - } - codenum = millis(); - - cancel_heatup = false; - target_direction = isHeatingBed(); // true if heating, false if cooling - - while ( (target_direction)&&(!cancel_heatup) ? (isHeatingBed()) : (isCoolingBed()&&(CooldownNoWait==false)) ) - { - if(( millis() - codenum) > 1000 ) //Print Temp Reading every 1 second while heating up. - { - if (!farm_mode) { - float tt = degHotend(active_extruder); - SERIAL_PROTOCOLPGM("T:"); - SERIAL_PROTOCOL(tt); - SERIAL_PROTOCOLPGM(" E:"); - SERIAL_PROTOCOL((int)active_extruder); - SERIAL_PROTOCOLPGM(" B:"); - SERIAL_PROTOCOL_F(degBed(), 1); - SERIAL_PROTOCOLLN(""); - } - codenum = millis(); - - } - manage_heater(); - manage_inactivity(); - lcd_update(); - } - LCD_MESSAGERPGM(MSG_BED_DONE); - heating_status = 4; - - previous_millis_cmd = millis(); - #endif - break; - - #if defined(FAN_PIN) && FAN_PIN > -1 - case 106: //M106 Fan On - if (code_seen('S')){ - fanSpeed=constrain(code_value(),0,255); - } - else { - fanSpeed=255; - } - break; - case 107: //M107 Fan Off - fanSpeed = 0; - break; - #endif //FAN_PIN - - #if defined(PS_ON_PIN) && PS_ON_PIN > -1 - case 80: // M80 - Turn on Power Supply - SET_OUTPUT(PS_ON_PIN); //GND - WRITE(PS_ON_PIN, PS_ON_AWAKE); - - // If you have a switch on suicide pin, this is useful - // if you want to start another print with suicide feature after - // a print without suicide... - #if defined SUICIDE_PIN && SUICIDE_PIN > -1 - SET_OUTPUT(SUICIDE_PIN); - WRITE(SUICIDE_PIN, HIGH); - #endif - - #ifdef ULTIPANEL - powersupply = true; - LCD_MESSAGERPGM(WELCOME_MSG); - lcd_update(); - #endif - break; - #endif - - case 81: // M81 - Turn off Power Supply - disable_heater(); - st_synchronize(); - disable_e0(); - disable_e1(); - disable_e2(); - finishAndDisableSteppers(); - fanSpeed = 0; - delay(1000); // Wait a little before to switch off - #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1 - st_synchronize(); - suicide(); - #elif defined(PS_ON_PIN) && PS_ON_PIN > -1 - SET_OUTPUT(PS_ON_PIN); - WRITE(PS_ON_PIN, PS_ON_ASLEEP); - #endif - #ifdef ULTIPANEL - powersupply = false; - LCD_MESSAGERPGM(CAT4(CUSTOM_MENDEL_NAME,PSTR(" "),MSG_OFF,PSTR("."))); //!! - - /* - MACHNAME = "Prusa i3" - MSGOFF = "Vypnuto" - "Prusai3"" ""vypnuto""." - - "Prusa i3"" "MSG_ALL[lang_selected][50]"." - */ - lcd_update(); - #endif - break; - - case 82: - axis_relative_modes[3] = false; - break; - case 83: - axis_relative_modes[3] = true; - break; - case 18: //compatibility - case 84: // M84 - if(code_seen('S')){ - stepper_inactive_time = code_value() * 1000; - } - else - { - bool all_axis = !((code_seen(axis_codes[X_AXIS])) || (code_seen(axis_codes[Y_AXIS])) || (code_seen(axis_codes[Z_AXIS]))|| (code_seen(axis_codes[E_AXIS]))); - if(all_axis) - { - st_synchronize(); - disable_e0(); - disable_e1(); - disable_e2(); - finishAndDisableSteppers(); - } - else - { - st_synchronize(); - if (code_seen('X')) disable_x(); - if (code_seen('Y')) disable_y(); - if (code_seen('Z')) disable_z(); -#if ((E0_ENABLE_PIN != X_ENABLE_PIN) && (E1_ENABLE_PIN != Y_ENABLE_PIN)) // Only enable on boards that have seperate ENABLE_PINS - if (code_seen('E')) { - disable_e0(); - disable_e1(); - disable_e2(); - } - #endif - } - } - snmm_filaments_used = 0; - break; - case 85: // M85 - if(code_seen('S')) { - max_inactive_time = code_value() * 1000; - } - break; - case 92: // M92 - for(int8_t i=0; i < NUM_AXIS; i++) - { - if(code_seen(axis_codes[i])) - { - if(i == 3) { // E - float value = code_value(); - if(value < 20.0) { - float factor = axis_steps_per_unit[i] / value; // increase e constants if M92 E14 is given for netfab. - max_jerk[E_AXIS] *= factor; - max_feedrate[i] *= factor; - axis_steps_per_sqr_second[i] *= factor; - } - axis_steps_per_unit[i] = value; - } - else { - axis_steps_per_unit[i] = code_value(); - } - } - } - break; - case 115: // M115 - if (code_seen('V')) { - // Report the Prusa version number. - SERIAL_PROTOCOLLNRPGM(FW_VERSION_STR_P()); - } else if (code_seen('U')) { - // Check the firmware version provided. If the firmware version provided by the U code is higher than the currently running firmware, - // pause the print and ask the user to upgrade the firmware. - show_upgrade_dialog_if_version_newer(++ strchr_pointer); - } else { - SERIAL_PROTOCOLRPGM(MSG_M115_REPORT); - } - break; -/* case 117: // M117 display message - starpos = (strchr(strchr_pointer + 5,'*')); - if(starpos!=NULL) - *(starpos)='\0'; - lcd_setstatus(strchr_pointer + 5); - break;*/ - case 114: // M114 - SERIAL_PROTOCOLPGM("X:"); - SERIAL_PROTOCOL(current_position[X_AXIS]); - SERIAL_PROTOCOLPGM(" Y:"); - SERIAL_PROTOCOL(current_position[Y_AXIS]); - SERIAL_PROTOCOLPGM(" Z:"); - SERIAL_PROTOCOL(current_position[Z_AXIS]); - SERIAL_PROTOCOLPGM(" E:"); - SERIAL_PROTOCOL(current_position[E_AXIS]); - - SERIAL_PROTOCOLRPGM(MSG_COUNT_X); - SERIAL_PROTOCOL(float(st_get_position(X_AXIS))/axis_steps_per_unit[X_AXIS]); - SERIAL_PROTOCOLPGM(" Y:"); - SERIAL_PROTOCOL(float(st_get_position(Y_AXIS))/axis_steps_per_unit[Y_AXIS]); - SERIAL_PROTOCOLPGM(" Z:"); - SERIAL_PROTOCOL(float(st_get_position(Z_AXIS))/axis_steps_per_unit[Z_AXIS]); - SERIAL_PROTOCOLPGM(" E:"); - SERIAL_PROTOCOL(float(st_get_position(E_AXIS))/axis_steps_per_unit[E_AXIS]); - - SERIAL_PROTOCOLLN(""); - break; - case 120: // M120 - enable_endstops(false) ; - break; - case 121: // M121 - enable_endstops(true) ; - break; - case 119: // M119 - SERIAL_PROTOCOLRPGM(MSG_M119_REPORT); - SERIAL_PROTOCOLLN(""); - #if defined(X_MIN_PIN) && X_MIN_PIN > -1 - SERIAL_PROTOCOLRPGM(MSG_X_MIN); - if(READ(X_MIN_PIN)^X_MIN_ENDSTOP_INVERTING){ - SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT); - }else{ - SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN); - } - SERIAL_PROTOCOLLN(""); - #endif - #if defined(X_MAX_PIN) && X_MAX_PIN > -1 - SERIAL_PROTOCOLRPGM(MSG_X_MAX); - if(READ(X_MAX_PIN)^X_MAX_ENDSTOP_INVERTING){ - SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT); - }else{ - SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN); - } - SERIAL_PROTOCOLLN(""); - #endif - #if defined(Y_MIN_PIN) && Y_MIN_PIN > -1 - SERIAL_PROTOCOLRPGM(MSG_Y_MIN); - if(READ(Y_MIN_PIN)^Y_MIN_ENDSTOP_INVERTING){ - SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT); - }else{ - SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN); - } - SERIAL_PROTOCOLLN(""); - #endif - #if defined(Y_MAX_PIN) && Y_MAX_PIN > -1 - SERIAL_PROTOCOLRPGM(MSG_Y_MAX); - if(READ(Y_MAX_PIN)^Y_MAX_ENDSTOP_INVERTING){ - SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT); - }else{ - SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN); - } - SERIAL_PROTOCOLLN(""); - #endif - #if defined(Z_MIN_PIN) && Z_MIN_PIN > -1 - SERIAL_PROTOCOLRPGM(MSG_Z_MIN); - if(READ(Z_MIN_PIN)^Z_MIN_ENDSTOP_INVERTING){ - SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT); - }else{ - SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN); - } - SERIAL_PROTOCOLLN(""); - #endif - #if defined(Z_MAX_PIN) && Z_MAX_PIN > -1 - SERIAL_PROTOCOLRPGM(MSG_Z_MAX); - if(READ(Z_MAX_PIN)^Z_MAX_ENDSTOP_INVERTING){ - SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT); - }else{ - SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN); - } - SERIAL_PROTOCOLLN(""); - #endif - break; - //TODO: update for all axis, use for loop - #ifdef BLINKM - case 150: // M150 - { - byte red; - byte grn; - byte blu; - - if(code_seen('R')) red = code_value(); - if(code_seen('U')) grn = code_value(); - if(code_seen('B')) blu = code_value(); - - SendColors(red,grn,blu); - } - break; - #endif //BLINKM - case 200: // M200 D set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters). - { - - tmp_extruder = active_extruder; - if(code_seen('T')) { - tmp_extruder = code_value(); - if(tmp_extruder >= EXTRUDERS) { - SERIAL_ECHO_START; - SERIAL_ECHO(MSG_M200_INVALID_EXTRUDER); - break; - } - } - - float area = .0; - if(code_seen('D')) { - float diameter = (float)code_value(); - if (diameter == 0.0) { - // setting any extruder filament size disables volumetric on the assumption that - // slicers either generate in extruder values as cubic mm or as as filament feeds - // for all extruders - volumetric_enabled = false; - } else { - filament_size[tmp_extruder] = (float)code_value(); - // make sure all extruders have some sane value for the filament size - filament_size[0] = (filament_size[0] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : filament_size[0]); - #if EXTRUDERS > 1 - filament_size[1] = (filament_size[1] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : filament_size[1]); - #if EXTRUDERS > 2 - filament_size[2] = (filament_size[2] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : filament_size[2]); - #endif - #endif - volumetric_enabled = true; - } - } else { - //reserved for setting filament diameter via UFID or filament measuring device - break; - } - calculate_volumetric_multipliers(); - } - break; - case 201: // M201 - for(int8_t i=0; i < NUM_AXIS; i++) - { - if(code_seen(axis_codes[i])) - { - max_acceleration_units_per_sq_second[i] = code_value(); - } - } - // steps per sq second need to be updated to agree with the units per sq second (as they are what is used in the planner) - reset_acceleration_rates(); - break; - #if 0 // Not used for Sprinter/grbl gen6 - case 202: // M202 - for(int8_t i=0; i < NUM_AXIS; i++) { - if(code_seen(axis_codes[i])) axis_travel_steps_per_sqr_second[i] = code_value() * axis_steps_per_unit[i]; - } - break; - #endif - case 203: // M203 max feedrate mm/sec - for(int8_t i=0; i < NUM_AXIS; i++) { - if(code_seen(axis_codes[i])) max_feedrate[i] = code_value(); - } - break; - case 204: // M204 acclereration S normal moves T filmanent only moves - { - if(code_seen('S')) acceleration = code_value() ; - if(code_seen('T')) retract_acceleration = code_value() ; - } - break; - case 205: //M205 advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk - { - if(code_seen('S')) minimumfeedrate = code_value(); - if(code_seen('T')) mintravelfeedrate = code_value(); - if(code_seen('B')) minsegmenttime = code_value() ; - if(code_seen('X')) max_jerk[X_AXIS] = max_jerk[Y_AXIS] = code_value(); - if(code_seen('Y')) max_jerk[Y_AXIS] = code_value(); - if(code_seen('Z')) max_jerk[Z_AXIS] = code_value(); - if(code_seen('E')) max_jerk[E_AXIS] = code_value(); - } - break; - case 206: // M206 additional homing offset - for(int8_t i=0; i < 3; i++) - { - if(code_seen(axis_codes[i])) add_homing[i] = code_value(); - } - break; - #ifdef FWRETRACT - case 207: //M207 - set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop] - { - if(code_seen('S')) - { - retract_length = code_value() ; - } - if(code_seen('F')) - { - retract_feedrate = code_value()/60 ; - } - if(code_seen('Z')) - { - retract_zlift = code_value() ; - } - }break; - case 208: // M208 - set retract recover length S[positive mm surplus to the M207 S*] F[feedrate mm/min] - { - if(code_seen('S')) - { - retract_recover_length = code_value() ; - } - if(code_seen('F')) - { - retract_recover_feedrate = code_value()/60 ; - } - }break; - case 209: // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction. - { - if(code_seen('S')) - { - int t= code_value() ; - switch(t) - { - case 0: - { - autoretract_enabled=false; - retracted[0]=false; - #if EXTRUDERS > 1 - retracted[1]=false; - #endif - #if EXTRUDERS > 2 - retracted[2]=false; - #endif - }break; - case 1: - { - autoretract_enabled=true; - retracted[0]=false; - #if EXTRUDERS > 1 - retracted[1]=false; - #endif - #if EXTRUDERS > 2 - retracted[2]=false; - #endif - }break; - default: - SERIAL_ECHO_START; - SERIAL_ECHORPGM(MSG_UNKNOWN_COMMAND); - SERIAL_ECHO(CMDBUFFER_CURRENT_STRING); - SERIAL_ECHOLNPGM("\"(1)"); - } - } - - }break; - #endif // FWRETRACT - #if EXTRUDERS > 1 - case 218: // M218 - set hotend offset (in mm), T X Y - { - if(setTargetedHotend(218)){ - break; - } - if(code_seen('X')) - { - extruder_offset[X_AXIS][tmp_extruder] = code_value(); - } - if(code_seen('Y')) - { - extruder_offset[Y_AXIS][tmp_extruder] = code_value(); - } - SERIAL_ECHO_START; - SERIAL_ECHORPGM(MSG_HOTEND_OFFSET); - for(tmp_extruder = 0; tmp_extruder < EXTRUDERS; tmp_extruder++) - { - SERIAL_ECHO(" "); - SERIAL_ECHO(extruder_offset[X_AXIS][tmp_extruder]); - SERIAL_ECHO(","); - SERIAL_ECHO(extruder_offset[Y_AXIS][tmp_extruder]); - } - SERIAL_ECHOLN(""); - }break; - #endif - case 220: // M220 S- set speed factor override percentage - { - if(code_seen('S')) - { - feedmultiply = code_value() ; - } - } - break; - case 221: // M221 S- set extrude factor override percentage - { - if(code_seen('S')) - { - int tmp_code = code_value(); - if (code_seen('T')) - { - if(setTargetedHotend(221)){ - break; - } - extruder_multiply[tmp_extruder] = tmp_code; - } - else - { - extrudemultiply = tmp_code ; - } - } - } - break; - - case 226: // M226 P S- Wait until the specified pin reaches the state required - { - if(code_seen('P')){ - int pin_number = code_value(); // pin number - int pin_state = -1; // required pin state - default is inverted - - if(code_seen('S')) pin_state = code_value(); // required pin state - - if(pin_state >= -1 && pin_state <= 1){ - - for(int8_t i = 0; i < (int8_t)(sizeof(sensitive_pins)/sizeof(int)); i++) - { - if (sensitive_pins[i] == pin_number) - { - pin_number = -1; - break; - } - } - - if (pin_number > -1) - { - int target = LOW; - - st_synchronize(); - - pinMode(pin_number, INPUT); - - switch(pin_state){ - case 1: - target = HIGH; - break; - - case 0: - target = LOW; - break; - - case -1: - target = !digitalRead(pin_number); - break; - } - - while(digitalRead(pin_number) != target){ - manage_heater(); - manage_inactivity(); - lcd_update(); - } - } - } - } - } - break; - - #if NUM_SERVOS > 0 - case 280: // M280 - set servo position absolute. P: servo index, S: angle or microseconds - { - int servo_index = -1; - int servo_position = 0; - if (code_seen('P')) - servo_index = code_value(); - if (code_seen('S')) { - servo_position = code_value(); - if ((servo_index >= 0) && (servo_index < NUM_SERVOS)) { -#if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0) - servos[servo_index].attach(0); -#endif - servos[servo_index].write(servo_position); -#if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0) - delay(PROBE_SERVO_DEACTIVATION_DELAY); - servos[servo_index].detach(); -#endif - } - else { - SERIAL_ECHO_START; - SERIAL_ECHO("Servo "); - SERIAL_ECHO(servo_index); - SERIAL_ECHOLN(" out of range"); - } - } - else if (servo_index >= 0) { - SERIAL_PROTOCOL(MSG_OK); - SERIAL_PROTOCOL(" Servo "); - SERIAL_PROTOCOL(servo_index); - SERIAL_PROTOCOL(": "); - SERIAL_PROTOCOL(servos[servo_index].read()); - SERIAL_PROTOCOLLN(""); - } - } - break; - #endif // NUM_SERVOS > 0 - - #if (LARGE_FLASH == true && ( BEEPER > 0 || defined(ULTRALCD) || defined(LCD_USE_I2C_BUZZER))) - case 300: // M300 - { - int beepS = code_seen('S') ? code_value() : 110; - int beepP = code_seen('P') ? code_value() : 1000; - if (beepS > 0) - { - #if BEEPER > 0 - tone(BEEPER, beepS); - delay(beepP); - noTone(BEEPER); - #elif defined(ULTRALCD) - lcd_buzz(beepS, beepP); - #elif defined(LCD_USE_I2C_BUZZER) - lcd_buzz(beepP, beepS); - #endif - } - else - { - delay(beepP); - } - } - break; - #endif // M300 - - #ifdef PIDTEMP - case 301: // M301 - { - if(code_seen('P')) Kp = code_value(); - if(code_seen('I')) Ki = scalePID_i(code_value()); - if(code_seen('D')) Kd = scalePID_d(code_value()); - - #ifdef PID_ADD_EXTRUSION_RATE - if(code_seen('C')) Kc = code_value(); - #endif - - updatePID(); - SERIAL_PROTOCOLRPGM(MSG_OK); - SERIAL_PROTOCOL(" p:"); - SERIAL_PROTOCOL(Kp); - SERIAL_PROTOCOL(" i:"); - SERIAL_PROTOCOL(unscalePID_i(Ki)); - SERIAL_PROTOCOL(" d:"); - SERIAL_PROTOCOL(unscalePID_d(Kd)); - #ifdef PID_ADD_EXTRUSION_RATE - SERIAL_PROTOCOL(" c:"); - //Kc does not have scaling applied above, or in resetting defaults - SERIAL_PROTOCOL(Kc); - #endif - SERIAL_PROTOCOLLN(""); - } - break; - #endif //PIDTEMP - #ifdef PIDTEMPBED - case 304: // M304 - { - if(code_seen('P')) bedKp = code_value(); - if(code_seen('I')) bedKi = scalePID_i(code_value()); - if(code_seen('D')) bedKd = scalePID_d(code_value()); - - updatePID(); - SERIAL_PROTOCOLRPGM(MSG_OK); - SERIAL_PROTOCOL(" p:"); - SERIAL_PROTOCOL(bedKp); - SERIAL_PROTOCOL(" i:"); - SERIAL_PROTOCOL(unscalePID_i(bedKi)); - SERIAL_PROTOCOL(" d:"); - SERIAL_PROTOCOL(unscalePID_d(bedKd)); - SERIAL_PROTOCOLLN(""); - } - break; - #endif //PIDTEMP - case 240: // M240 Triggers a camera by emulating a Canon RC-1 : http://www.doc-diy.net/photo/rc-1_hacked/ - { - #ifdef CHDK - - SET_OUTPUT(CHDK); - WRITE(CHDK, HIGH); - chdkHigh = millis(); - chdkActive = true; - - #else - - #if defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1 - const uint8_t NUM_PULSES=16; - const float PULSE_LENGTH=0.01524; - for(int i=0; i < NUM_PULSES; i++) { - WRITE(PHOTOGRAPH_PIN, HIGH); - _delay_ms(PULSE_LENGTH); - WRITE(PHOTOGRAPH_PIN, LOW); - _delay_ms(PULSE_LENGTH); - } - delay(7.33); - for(int i=0; i < NUM_PULSES; i++) { - WRITE(PHOTOGRAPH_PIN, HIGH); - _delay_ms(PULSE_LENGTH); - WRITE(PHOTOGRAPH_PIN, LOW); - _delay_ms(PULSE_LENGTH); - } - #endif - #endif //chdk end if - } - break; -#ifdef DOGLCD - case 250: // M250 Set LCD contrast value: C (value 0..63) - { - if (code_seen('C')) { - lcd_setcontrast( ((int)code_value())&63 ); - } - SERIAL_PROTOCOLPGM("lcd contrast value: "); - SERIAL_PROTOCOL(lcd_contrast); - SERIAL_PROTOCOLLN(""); - } - break; -#endif - #ifdef PREVENT_DANGEROUS_EXTRUDE - case 302: // allow cold extrudes, or set the minimum extrude temperature - { - float temp = .0; - if (code_seen('S')) temp=code_value(); - set_extrude_min_temp(temp); - } - break; - #endif - case 303: // M303 PID autotune - { - float temp = 150.0; - int e=0; - int c=5; - if (code_seen('E')) e=code_value(); - if (e<0) - temp=70; - if (code_seen('S')) temp=code_value(); - if (code_seen('C')) c=code_value(); - PID_autotune(temp, e, c); - } - break; - case 400: // M400 finish all moves - { - st_synchronize(); - } - break; - -#ifdef FILAMENT_SENSOR -case 404: //M404 Enter the nominal filament width (3mm, 1.75mm ) N<3.0> or display nominal filament width - { - #if (FILWIDTH_PIN > -1) - if(code_seen('N')) filament_width_nominal=code_value(); - else{ - SERIAL_PROTOCOLPGM("Filament dia (nominal mm):"); - SERIAL_PROTOCOLLN(filament_width_nominal); - } - #endif - } - break; - - case 405: //M405 Turn on filament sensor for control - { - - - if(code_seen('D')) meas_delay_cm=code_value(); - - if(meas_delay_cm> MAX_MEASUREMENT_DELAY) - meas_delay_cm = MAX_MEASUREMENT_DELAY; - - if(delay_index2 == -1) //initialize the ring buffer if it has not been done since startup - { - int temp_ratio = widthFil_to_size_ratio(); - - for (delay_index1=0; delay_index1<(MAX_MEASUREMENT_DELAY+1); ++delay_index1 ){ - measurement_delay[delay_index1]=temp_ratio-100; //subtract 100 to scale within a signed byte - } - delay_index1=0; - delay_index2=0; - } - - filament_sensor = true ; - - //SERIAL_PROTOCOLPGM("Filament dia (measured mm):"); - //SERIAL_PROTOCOL(filament_width_meas); - //SERIAL_PROTOCOLPGM("Extrusion ratio(%):"); - //SERIAL_PROTOCOL(extrudemultiply); - } - break; - - case 406: //M406 Turn off filament sensor for control - { - filament_sensor = false ; - } - break; - - case 407: //M407 Display measured filament diameter - { - - - - SERIAL_PROTOCOLPGM("Filament dia (measured mm):"); - SERIAL_PROTOCOLLN(filament_width_meas); - } - break; - #endif - - - - - - case 500: // M500 Store settings in EEPROM - { - Config_StoreSettings(EEPROM_OFFSET); - } - break; - case 501: // M501 Read settings from EEPROM - { - Config_RetrieveSettings(EEPROM_OFFSET); - } - break; - case 502: // M502 Revert to default settings - { - Config_ResetDefault(); - } - break; - case 503: // M503 print settings currently in memory - { - Config_PrintSettings(); - } - break; - case 509: //M509 Force language selection - { - lcd_force_language_selection(); - SERIAL_ECHO_START; - SERIAL_PROTOCOLPGM(("LANG SEL FORCED")); - } - break; - #ifdef ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED - case 540: - { - if(code_seen('S')) abort_on_endstop_hit = code_value() > 0; - } - break; - #endif - - #ifdef CUSTOM_M_CODE_SET_Z_PROBE_OFFSET - case CUSTOM_M_CODE_SET_Z_PROBE_OFFSET: - { - float value; - if (code_seen('Z')) - { - value = code_value(); - if ((Z_PROBE_OFFSET_RANGE_MIN <= value) && (value <= Z_PROBE_OFFSET_RANGE_MAX)) - { - zprobe_zoffset = -value; // compare w/ line 278 of ConfigurationStore.cpp - SERIAL_ECHO_START; - SERIAL_ECHOLNRPGM(CAT4(MSG_ZPROBE_ZOFFSET, " ", MSG_OK,PSTR(""))); - SERIAL_PROTOCOLLN(""); - } - else - { - SERIAL_ECHO_START; - SERIAL_ECHORPGM(MSG_ZPROBE_ZOFFSET); - SERIAL_ECHORPGM(MSG_Z_MIN); - SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MIN); - SERIAL_ECHORPGM(MSG_Z_MAX); - SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MAX); - SERIAL_PROTOCOLLN(""); - } - } - else - { - SERIAL_ECHO_START; - SERIAL_ECHOLNRPGM(CAT2(MSG_ZPROBE_ZOFFSET, PSTR(" : "))); - SERIAL_ECHO(-zprobe_zoffset); - SERIAL_PROTOCOLLN(""); - } - break; - } - #endif // CUSTOM_M_CODE_SET_Z_PROBE_OFFSET - - #ifdef FILAMENTCHANGEENABLE - case 600: //Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal] - { - MYSERIAL.println("!!!!M600!!!!"); - - st_synchronize(); - float target[4]; - float lastpos[4]; - - if (farm_mode) - - { - - prusa_statistics(22); - - } - - feedmultiplyBckp=feedmultiply; - int8_t TooLowZ = 0; - - target[X_AXIS]=current_position[X_AXIS]; - target[Y_AXIS]=current_position[Y_AXIS]; - target[Z_AXIS]=current_position[Z_AXIS]; - target[E_AXIS]=current_position[E_AXIS]; - lastpos[X_AXIS]=current_position[X_AXIS]; - lastpos[Y_AXIS]=current_position[Y_AXIS]; - lastpos[Z_AXIS]=current_position[Z_AXIS]; - lastpos[E_AXIS]=current_position[E_AXIS]; - - //Restract extruder - if(code_seen('E')) - { - target[E_AXIS]+= code_value(); - } - else - { - #ifdef FILAMENTCHANGE_FIRSTRETRACT - target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT ; - #endif - } - plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder); - - //Lift Z - if(code_seen('Z')) - { - target[Z_AXIS]+= code_value(); - } - else - { - #ifdef FILAMENTCHANGE_ZADD - target[Z_AXIS]+= FILAMENTCHANGE_ZADD ; - if(target[Z_AXIS] < 10){ - target[Z_AXIS]+= 10 ; - TooLowZ = 1; - }else{ - TooLowZ = 0; - } - #endif - - - } - plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_ZFEED, active_extruder); - - //Move XY to side - if(code_seen('X')) - { - target[X_AXIS]+= code_value(); - } - else - { - #ifdef FILAMENTCHANGE_XPOS - target[X_AXIS]= FILAMENTCHANGE_XPOS ; - #endif - } - if(code_seen('Y')) - { - target[Y_AXIS]= code_value(); - } - else - { - #ifdef FILAMENTCHANGE_YPOS - target[Y_AXIS]= FILAMENTCHANGE_YPOS ; - #endif - } - plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_XYFEED, active_extruder); - st_synchronize(); - custom_message = true; - lcd_setstatuspgm(MSG_UNLOADING_FILAMENT); - - // Unload filament - if(code_seen('L')) - { - target[E_AXIS]+= code_value(); - } - else - { - #ifdef SNMM - - #else - #ifdef FILAMENTCHANGE_FINALRETRACT - target[E_AXIS] += FILAMENTCHANGE_FINALRETRACT; - #endif - #endif // SNMM - } - -#ifdef SNMM - target[E_AXIS] += 12; - plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 3500, active_extruder); - target[E_AXIS] += 6; - plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 5000, active_extruder); - target[E_AXIS] += (FIL_LOAD_LENGTH * -1); - plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 5000, active_extruder); - st_synchronize(); - target[E_AXIS] += (FIL_COOLING); - plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 50, active_extruder); - target[E_AXIS] += (FIL_COOLING*-1); - plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 50, active_extruder); - target[E_AXIS] += (bowden_length[snmm_extruder] *-1); - plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 3000, active_extruder); - st_synchronize(); - -#else - plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder); -#endif // SNMM - - - //finish moves - st_synchronize(); - //disable extruder steppers so filament can be removed - disable_e0(); - disable_e1(); - disable_e2(); - delay(100); - - //Wait for user to insert filament - uint8_t cnt=0; - int counterBeep = 0; - lcd_wait_interact(); - load_filament_time = millis(); - while(!lcd_clicked()){ - - cnt++; - manage_heater(); - manage_inactivity(true); - -/*#ifdef SNMM - target[E_AXIS] += 0.002; - plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 500, active_extruder); - -#endif // SNMM*/ - - if(cnt==0) - { - #if BEEPER > 0 - if (counterBeep== 500){ - counterBeep = 0; - } - SET_OUTPUT(BEEPER); - if (counterBeep== 0){ - WRITE(BEEPER,HIGH); - } - if (counterBeep== 20){ - WRITE(BEEPER,LOW); - } - counterBeep++; - #else - #if !defined(LCD_FEEDBACK_FREQUENCY_HZ) || !defined(LCD_FEEDBACK_FREQUENCY_DURATION_MS) - lcd_buzz(1000/6,100); - #else - lcd_buzz(LCD_FEEDBACK_FREQUENCY_DURATION_MS,LCD_FEEDBACK_FREQUENCY_HZ); - #endif - #endif - } - - } -#ifdef SNMM - display_loading(); - do { - target[E_AXIS] += 0.002; - plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 500, active_extruder); - delay_keep_alive(2); - } while (!lcd_clicked()); - /*if (millis() - load_filament_time > 2) { - load_filament_time = millis(); - target[E_AXIS] += 0.001; - plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 1000, active_extruder); - }*/ -#endif - //Filament inserted - - WRITE(BEEPER,LOW); - - //Feed the filament to the end of nozzle quickly -#ifdef SNMM - - st_synchronize(); - target[E_AXIS] += bowden_length[snmm_extruder]; - plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 3000, active_extruder); - target[E_AXIS] += FIL_LOAD_LENGTH - 60; - plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 1400, active_extruder); - target[E_AXIS] += 40; - plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder); - target[E_AXIS] += 10; - plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 50, active_extruder); -#else - target[E_AXIS] += FILAMENTCHANGE_FIRSTFEED; - plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EFEED, active_extruder); -#endif // SNMM - - //Extrude some filament - target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ; - plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EXFEED, active_extruder); - - - - - //Wait for user to check the state - lcd_change_fil_state = 0; - lcd_loading_filament(); - while ((lcd_change_fil_state == 0)||(lcd_change_fil_state != 1)){ - lcd_change_fil_state = 0; - lcd_alright(); - switch(lcd_change_fil_state){ - - // Filament failed to load so load it again - case 2: -#ifdef SNMM - display_loading(); - do { - target[E_AXIS] += 0.002; - plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 500, active_extruder); - delay_keep_alive(2); - } while (!lcd_clicked()); - - st_synchronize(); - target[E_AXIS] += bowden_length[snmm_extruder]; - plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 3000, active_extruder); - target[E_AXIS] += FIL_LOAD_LENGTH - 60; - plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 1400, active_extruder); - target[E_AXIS] += 40; - plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder); - target[E_AXIS] += 10; - plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 50, active_extruder); - -#else - target[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ; - plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EFEED, active_extruder); -#endif - target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ; - plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EXFEED, active_extruder); - - lcd_loading_filament(); - - break; - - // Filament loaded properly but color is not clear - case 3: - target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ; - plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder); - lcd_loading_color(); - break; - - // Everything good - default: - lcd_change_success(); - lcd_update_enable(true); - break; - } - - } - - - //Not let's go back to print - - //Feed a little of filament to stabilize pressure - target[E_AXIS]+= FILAMENTCHANGE_RECFEED; - plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EXFEED, active_extruder); - - //Retract - target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT; - plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder); - - - - //plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder); //should do nothing - - //Move XY back - plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_XYFEED, active_extruder); - - //Move Z back - plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_ZFEED, active_extruder); - - - target[E_AXIS]= target[E_AXIS] - FILAMENTCHANGE_FIRSTRETRACT; - - //Unretract - plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder); - - //Set E position to original - plan_set_e_position(lastpos[E_AXIS]); - - //Recover feed rate - feedmultiply=feedmultiplyBckp; - char cmd[9]; - sprintf_P(cmd, PSTR("M220 S%i"), feedmultiplyBckp); - enquecommand(cmd); - - lcd_setstatuspgm(WELCOME_MSG); - custom_message = false; - custom_message_type = 0; -#ifdef PAT9125 - if (fsensor_M600) - { - cmdqueue_pop_front(); //hack because M600 repeated 2x when enqueued to front - st_synchronize(); - while (!is_buffer_empty()) - { - process_commands(); - cmdqueue_pop_front(); - } - fsensor_enable(); - fsensor_restore_print_and_continue(); - } -#endif //PAT9125 - - } - break; - #endif //FILAMENTCHANGEENABLE - case 601: { - if(lcd_commands_type == 0) lcd_commands_type = LCD_COMMAND_LONG_PAUSE; - } - break; - - case 602: { - if(lcd_commands_type == 0) lcd_commands_type = LCD_COMMAND_LONG_PAUSE_RESUME; - } - break; - -#ifdef LIN_ADVANCE - case 900: // M900: Set LIN_ADVANCE options. - gcode_M900(); - break; -#endif - - case 907: // M907 Set digital trimpot motor current using axis codes. - { - #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1 - for(int i=0;i -1 - uint8_t channel,current; - if(code_seen('P')) channel=code_value(); - if(code_seen('S')) current=code_value(); - digitalPotWrite(channel, current); - #endif - } - break; - - case 910: // M910 TMC2130 init - { - tmc2130_init(); - } - break; - - case 911: // M911 Set TMC2130 holding currents - { - if (code_seen('X')) tmc2130_set_current_h(0, code_value()); - if (code_seen('Y')) tmc2130_set_current_h(1, code_value()); - if (code_seen('Z')) tmc2130_set_current_h(2, code_value()); - if (code_seen('E')) tmc2130_set_current_h(3, code_value()); - } - break; - - case 912: // M912 Set TMC2130 running currents - { - if (code_seen('X')) tmc2130_set_current_r(0, code_value()); - if (code_seen('Y')) tmc2130_set_current_r(1, code_value()); - if (code_seen('Z')) tmc2130_set_current_r(2, code_value()); - if (code_seen('E')) tmc2130_set_current_r(3, code_value()); - } - break; - - case 913: // M913 Print TMC2130 currents - { - tmc2130_print_currents(); - } - break; - - case 914: // M914 Set normal mode - { - tmc2130_mode = TMC2130_MODE_NORMAL; - tmc2130_init(); - } - break; - - case 915: // M915 Set silent mode - { - tmc2130_mode = TMC2130_MODE_SILENT; - tmc2130_init(); - } - break; - - case 916: // M916 Set sg_thrs - { - if (code_seen('X')) tmc2130_sg_thr[X_AXIS] = code_value(); - if (code_seen('Y')) tmc2130_sg_thr[Y_AXIS] = code_value(); - if (code_seen('Z')) tmc2130_sg_thr[Z_AXIS] = code_value(); - if (code_seen('E')) tmc2130_sg_thr[E_AXIS] = code_value(); - MYSERIAL.print("tmc2130_sg_thr[X]="); - MYSERIAL.println(tmc2130_sg_thr[X_AXIS], DEC); - MYSERIAL.print("tmc2130_sg_thr[Y]="); - MYSERIAL.println(tmc2130_sg_thr[Y_AXIS], DEC); - MYSERIAL.print("tmc2130_sg_thr[Z]="); - MYSERIAL.println(tmc2130_sg_thr[Z_AXIS], DEC); - MYSERIAL.print("tmc2130_sg_thr[E]="); - MYSERIAL.println(tmc2130_sg_thr[E_AXIS], DEC); - } - break; - - case 917: // M917 Set TMC2130 pwm_ampl - { - if (code_seen('X')) tmc2130_set_pwm_ampl(0, code_value()); - if (code_seen('Y')) tmc2130_set_pwm_ampl(1, code_value()); - if (code_seen('Z')) tmc2130_set_pwm_ampl(2, code_value()); - if (code_seen('E')) tmc2130_set_pwm_ampl(3, code_value()); - } - break; - - case 918: // M918 Set TMC2130 pwm_grad - { - if (code_seen('X')) tmc2130_set_pwm_grad(0, code_value()); - if (code_seen('Y')) tmc2130_set_pwm_grad(1, code_value()); - if (code_seen('Z')) tmc2130_set_pwm_grad(2, code_value()); - if (code_seen('E')) tmc2130_set_pwm_grad(3, code_value()); - } - break; - - case 350: // M350 Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers. - { - #if defined(X_MS1_PIN) && X_MS1_PIN > -1 - if(code_seen('S')) for(int i=0;i<=4;i++) microstep_mode(i,code_value()); - for(int i=0;i -1 - if(code_seen('S')) switch((int)code_value()) - { - case 1: - for(int i=0;i '9') && *(strchr_pointer + index) != '?') { - SERIAL_ECHOLNPGM("Invalid T code."); - } - else { - if (*(strchr_pointer + index) == '?') { - tmp_extruder = choose_extruder_menu(); - } - else { - tmp_extruder = code_value(); - } - snmm_filaments_used |= (1 << tmp_extruder); //for stop print -#ifdef SNMM - - #ifdef LIN_ADVANCE - if (snmm_extruder != tmp_extruder) - clear_current_adv_vars(); //Check if the selected extruder is not the active one and reset LIN_ADVANCE variables if so. - #endif - - snmm_extruder = tmp_extruder; - - st_synchronize(); - delay(100); - - disable_e0(); - disable_e1(); - disable_e2(); - - pinMode(E_MUX0_PIN, OUTPUT); - pinMode(E_MUX1_PIN, OUTPUT); - pinMode(E_MUX2_PIN, OUTPUT); - - delay(100); - SERIAL_ECHO_START; - SERIAL_ECHO("T:"); - SERIAL_ECHOLN((int)tmp_extruder); - switch (tmp_extruder) { - case 1: - WRITE(E_MUX0_PIN, HIGH); - WRITE(E_MUX1_PIN, LOW); - WRITE(E_MUX2_PIN, LOW); - - break; - case 2: - WRITE(E_MUX0_PIN, LOW); - WRITE(E_MUX1_PIN, HIGH); - WRITE(E_MUX2_PIN, LOW); - - break; - case 3: - WRITE(E_MUX0_PIN, HIGH); - WRITE(E_MUX1_PIN, HIGH); - WRITE(E_MUX2_PIN, LOW); - - break; - default: - WRITE(E_MUX0_PIN, LOW); - WRITE(E_MUX1_PIN, LOW); - WRITE(E_MUX2_PIN, LOW); - - break; - } - delay(100); - -#else - if (tmp_extruder >= EXTRUDERS) { - SERIAL_ECHO_START; - SERIAL_ECHOPGM("T"); - SERIAL_PROTOCOLLN((int)tmp_extruder); - SERIAL_ECHOLNRPGM(MSG_INVALID_EXTRUDER); - } - else { - boolean make_move = false; - if (code_seen('F')) { - make_move = true; - next_feedrate = code_value(); - if (next_feedrate > 0.0) { - feedrate = next_feedrate; - } - } -#if EXTRUDERS > 1 - if (tmp_extruder != active_extruder) { - // Save current position to return to after applying extruder offset - memcpy(destination, current_position, sizeof(destination)); - // Offset extruder (only by XY) - int i; - for (i = 0; i < 2; i++) { - current_position[i] = current_position[i] - - extruder_offset[i][active_extruder] + - extruder_offset[i][tmp_extruder]; - } - // Set the new active extruder and position - active_extruder = tmp_extruder; - plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]); - // Move to the old position if 'F' was in the parameters - if (make_move && Stopped == false) { - prepare_move(); - } - } -#endif - SERIAL_ECHO_START; - SERIAL_ECHORPGM(MSG_ACTIVE_EXTRUDER); - SERIAL_PROTOCOLLN((int)active_extruder); - } - -#endif - } - } // end if(code_seen('T')) (end of T codes) - -#ifdef DEBUG_DCODES - else if (code_seen('D')) // D codes (debug) - { - switch((int)code_value()) - { - case 0: // D0 - Reset - dcode_0(); break; - case 1: // D1 - Clear EEPROM - dcode_1(); break; - case 2: // D2 - Read/Write RAM - dcode_2(); break; - case 3: // D3 - Read/Write EEPROM - dcode_3(); break; - case 4: // D4 - Read/Write PIN - dcode_4(); break; - case 9125: // D9125 - PAT9125 - dcode_9125(); break; - case 5: - MYSERIAL.println("D5 - Test"); - if (code_seen('P')) - selectedSerialPort = (int)code_value(); - MYSERIAL.print("selectedSerialPort = "); - MYSERIAL.println(selectedSerialPort, DEC); - break; - case 10: // D10 - Tell the printer that XYZ calibration went OK - calibration_status_store(CALIBRATION_STATUS_LIVE_ADJUST); - break; - - case 12: //D12 - Reset Filament error, Power loss and crash counter ( Do it before every print and you can get stats for the print ) - eeprom_update_byte((uint8_t*)EEPROM_CRASH_COUNT, 0x00); - eeprom_update_byte((uint8_t*)EEPROM_FERROR_COUNT, 0x00); - eeprom_update_byte((uint8_t*)EEPROM_POWER_COUNT, 0x00); - case 999: - { - MYSERIAL.println("D999 - crash"); - -/* while (!is_buffer_empty()) - { - process_commands(); - cmdqueue_pop_front(); - }*/ - st_synchronize(); - - lcd_update_enable(true); - lcd_implementation_clear(); - lcd_update(2); - - // Increment crash counter - uint8_t crash_count = eeprom_read_byte((uint8_t*)EEPROM_CRASH_COUNT); - crash_count++; - eeprom_update_byte((uint8_t*)EEPROM_CRASH_COUNT, crash_count); - -#ifdef AUTOMATIC_RECOVERY_AFTER_CRASH - bool yesno = true; -#else - bool yesno = lcd_show_fullscreen_message_yes_no_and_wait_P(MSG_CRASH_DETECTED, false); -#endif - lcd_update_enable(true); - lcd_update(2); - lcd_setstatuspgm(WELCOME_MSG); - if (yesno) - { - enquecommand_P(PSTR("G28 X")); - enquecommand_P(PSTR("G28 Y")); - enquecommand_P(PSTR("D1000")); - } - else - { - enquecommand_P(PSTR("D1001")); - } - } - break; - case 1000: - crashdet_restore_print_and_continue(); - tmc2130_sg_stop_on_crash = true; - break; - case 1001: - card.sdprinting = false; - card.closefile(); - tmc2130_sg_stop_on_crash = true; - break; -/* case 4: - { - MYSERIAL.println("D4 - Test"); - uint8_t data[16]; - int cnt = parse_hex(strchr_pointer + 2, data, 16); - MYSERIAL.println(cnt, DEC); - for (int i = 0; i < cnt; i++) - { - serial_print_hex_byte(data[i]); - MYSERIAL.write(' '); - } - MYSERIAL.write('\n'); - } - break; -/* case 3: - if (code_seen('L')) // lcd pwm (0-255) - { - lcdSoftPwm = (int)code_value(); - } - if (code_seen('B')) // lcd blink delay (0-255) - { - lcdBlinkDelay = (int)code_value(); - } -// calibrate_z_auto(); -/* MYSERIAL.print("fsensor_enable()"); -#ifdef PAT9125 - fsensor_enable(); -#endif*/ - break; -// case 4: -// lcdBlinkDelay = 10; -/* MYSERIAL.print("fsensor_disable()"); -#ifdef PAT9125 - fsensor_disable(); -#endif - break;*/ -// break; -/* case 5: - { - MYSERIAL.print("tmc2130_rd_MSCNT(0)="); - int val = tmc2130_rd_MSCNT(tmc2130_cs[0]); - MYSERIAL.println(val); - homeaxis(0); - } - break;*/ - case 6: - { -/* MYSERIAL.print("tmc2130_rd_MSCNT(1)="); - int val = tmc2130_rd_MSCNT(tmc2130_cs[1]); - MYSERIAL.println(val);*/ - homeaxis(1); - } - break; - case 7: - { - MYSERIAL.print("pat9125_init="); - MYSERIAL.println(pat9125_init(200, 200)); - } - break; - case 8: - { - MYSERIAL.print("swi2c_check="); - MYSERIAL.println(swi2c_check(0x75)); - } - break; - } - } -#endif //DEBUG_DCODES - - else - { - SERIAL_ECHO_START; - SERIAL_ECHORPGM(MSG_UNKNOWN_COMMAND); - SERIAL_ECHO(CMDBUFFER_CURRENT_STRING); - SERIAL_ECHOLNPGM("\"(2)"); - } - - ClearToSend(); -} - -void FlushSerialRequestResend() -{ - //char cmdbuffer[bufindr][100]="Resend:"; - MYSERIAL.flush(); - SERIAL_PROTOCOLRPGM(MSG_RESEND); - SERIAL_PROTOCOLLN(gcode_LastN + 1); - ClearToSend(); -} - -// Confirm the execution of a command, if sent from a serial line. -// Execution of a command from a SD card will not be confirmed. -void ClearToSend() -{ - previous_millis_cmd = millis(); - if (CMDBUFFER_CURRENT_TYPE == CMDBUFFER_CURRENT_TYPE_USB) - SERIAL_PROTOCOLLNRPGM(MSG_OK); -} - -void get_coordinates() -{ - bool seen[4]={false,false,false,false}; - for(int8_t i=0; i < NUM_AXIS; i++) { - if(code_seen(axis_codes[i])) - { - destination[i] = (float)code_value() + (axis_relative_modes[i] || relative_mode)*current_position[i]; - seen[i]=true; - } - else destination[i] = current_position[i]; //Are these else lines really needed? - } - if(code_seen('F')) { - next_feedrate = code_value(); -#ifdef MAX_SILENT_FEEDRATE - if (tmc2130_mode == TMC2130_MODE_SILENT) - if (next_feedrate > MAX_SILENT_FEEDRATE) next_feedrate = MAX_SILENT_FEEDRATE; -#endif //MAX_SILENT_FEEDRATE - if(next_feedrate > 0.0) feedrate = next_feedrate; - } -} - -void get_arc_coordinates() -{ -#ifdef SF_ARC_FIX - bool relative_mode_backup = relative_mode; - relative_mode = true; -#endif - get_coordinates(); -#ifdef SF_ARC_FIX - relative_mode=relative_mode_backup; -#endif - - if(code_seen('I')) { - offset[0] = code_value(); - } - else { - offset[0] = 0.0; - } - if(code_seen('J')) { - offset[1] = code_value(); - } - else { - offset[1] = 0.0; - } -} - -void clamp_to_software_endstops(float target[3]) -{ -#ifdef DEBUG_DISABLE_SWLIMITS - return; -#endif //DEBUG_DISABLE_SWLIMITS - world2machine_clamp(target[0], target[1]); - - // Clamp the Z coordinate. - if (min_software_endstops) { - float negative_z_offset = 0; - #ifdef ENABLE_AUTO_BED_LEVELING - if (Z_PROBE_OFFSET_FROM_EXTRUDER < 0) negative_z_offset = negative_z_offset + Z_PROBE_OFFSET_FROM_EXTRUDER; - if (add_homing[Z_AXIS] < 0) negative_z_offset = negative_z_offset + add_homing[Z_AXIS]; - #endif - if (target[Z_AXIS] < min_pos[Z_AXIS]+negative_z_offset) target[Z_AXIS] = min_pos[Z_AXIS]+negative_z_offset; - } - if (max_software_endstops) { - if (target[Z_AXIS] > max_pos[Z_AXIS]) target[Z_AXIS] = max_pos[Z_AXIS]; - } -} - -#ifdef MESH_BED_LEVELING - void mesh_plan_buffer_line(const float &x, const float &y, const float &z, const float &e, const float &feed_rate, const uint8_t extruder) { - float dx = x - current_position[X_AXIS]; - float dy = y - current_position[Y_AXIS]; - float dz = z - current_position[Z_AXIS]; - int n_segments = 0; - - if (mbl.active) { - float len = abs(dx) + abs(dy); - if (len > 0) - // Split to 3cm segments or shorter. - n_segments = int(ceil(len / 30.f)); - } - - if (n_segments > 1) { - float de = e - current_position[E_AXIS]; - for (int i = 1; i < n_segments; ++ i) { - float t = float(i) / float(n_segments); - plan_buffer_line( - current_position[X_AXIS] + t * dx, - current_position[Y_AXIS] + t * dy, - current_position[Z_AXIS] + t * dz, - current_position[E_AXIS] + t * de, - feed_rate, extruder); - } - } - // The rest of the path. - plan_buffer_line(x, y, z, e, feed_rate, extruder); - current_position[X_AXIS] = x; - current_position[Y_AXIS] = y; - current_position[Z_AXIS] = z; - current_position[E_AXIS] = e; - } -#endif // MESH_BED_LEVELING - -void prepare_move() -{ - clamp_to_software_endstops(destination); - previous_millis_cmd = millis(); - - // Do not use feedmultiply for E or Z only moves - if( (current_position[X_AXIS] == destination [X_AXIS]) && (current_position[Y_AXIS] == destination [Y_AXIS])) { - plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder); - } - else { -#ifdef MESH_BED_LEVELING - mesh_plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate*feedmultiply*(1./(60.f*100.f)), active_extruder); -#else - plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate*feedmultiply*(1./(60.f*100.f)), active_extruder); -#endif - } - - for(int8_t i=0; i < NUM_AXIS; i++) { - current_position[i] = destination[i]; - } -} - -void prepare_arc_move(char isclockwise) { - float r = hypot(offset[X_AXIS], offset[Y_AXIS]); // Compute arc radius for mc_arc - - // Trace the arc - mc_arc(current_position, destination, offset, X_AXIS, Y_AXIS, Z_AXIS, feedrate*feedmultiply/60/100.0, r, isclockwise, active_extruder); - - // As far as the parser is concerned, the position is now == target. In reality the - // motion control system might still be processing the action and the real tool position - // in any intermediate location. - for(int8_t i=0; i < NUM_AXIS; i++) { - current_position[i] = destination[i]; - } - previous_millis_cmd = millis(); -} - -#if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1 - -#if defined(FAN_PIN) - #if CONTROLLERFAN_PIN == FAN_PIN - #error "You cannot set CONTROLLERFAN_PIN equal to FAN_PIN" - #endif -#endif - -unsigned long lastMotor = 0; //Save the time for when a motor was turned on last -unsigned long lastMotorCheck = 0; - -void controllerFan() -{ - if ((millis() - lastMotorCheck) >= 2500) //Not a time critical function, so we only check every 2500ms - { - lastMotorCheck = millis(); - - if(!READ(X_ENABLE_PIN) || !READ(Y_ENABLE_PIN) || !READ(Z_ENABLE_PIN) || (soft_pwm_bed > 0) - #if EXTRUDERS > 2 - || !READ(E2_ENABLE_PIN) - #endif - #if EXTRUDER > 1 - #if defined(X2_ENABLE_PIN) && X2_ENABLE_PIN > -1 - || !READ(X2_ENABLE_PIN) - #endif - || !READ(E1_ENABLE_PIN) - #endif - || !READ(E0_ENABLE_PIN)) //If any of the drivers are enabled... - { - lastMotor = millis(); //... set time to NOW so the fan will turn on - } - - if ((millis() - lastMotor) >= (CONTROLLERFAN_SECS*1000UL) || lastMotor == 0) //If the last time any driver was enabled, is longer since than CONTROLLERSEC... - { - digitalWrite(CONTROLLERFAN_PIN, 0); - analogWrite(CONTROLLERFAN_PIN, 0); - } - else - { - // allows digital or PWM fan output to be used (see M42 handling) - digitalWrite(CONTROLLERFAN_PIN, CONTROLLERFAN_SPEED); - analogWrite(CONTROLLERFAN_PIN, CONTROLLERFAN_SPEED); - } - } -} -#endif - -#ifdef TEMP_STAT_LEDS -static bool blue_led = false; -static bool red_led = false; -static uint32_t stat_update = 0; - -void handle_status_leds(void) { - float max_temp = 0.0; - if(millis() > stat_update) { - stat_update += 500; // Update every 0.5s - for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) { - max_temp = max(max_temp, degHotend(cur_extruder)); - max_temp = max(max_temp, degTargetHotend(cur_extruder)); - } - #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1 - max_temp = max(max_temp, degTargetBed()); - max_temp = max(max_temp, degBed()); - #endif - if((max_temp > 55.0) && (red_led == false)) { - digitalWrite(STAT_LED_RED, 1); - digitalWrite(STAT_LED_BLUE, 0); - red_led = true; - blue_led = false; - } - if((max_temp < 54.0) && (blue_led == false)) { - digitalWrite(STAT_LED_RED, 0); - digitalWrite(STAT_LED_BLUE, 1); - red_led = false; - blue_led = true; - } - } -} -#endif - -void manage_inactivity(bool ignore_stepper_queue/*=false*/) //default argument set in Marlin.h -{ - -#if defined(KILL_PIN) && KILL_PIN > -1 - static int killCount = 0; // make the inactivity button a bit less responsive - const int KILL_DELAY = 10000; -#endif - - if(buflen < (BUFSIZE-1)){ - get_command(); - } - - if( (millis() - previous_millis_cmd) > max_inactive_time ) - if(max_inactive_time) - kill("", 4); - if(stepper_inactive_time) { - if( (millis() - previous_millis_cmd) > stepper_inactive_time ) - { - if(blocks_queued() == false && ignore_stepper_queue == false) { - disable_x(); -// SERIAL_ECHOLNPGM("manage_inactivity - disable Y"); - disable_y(); - disable_z(); - disable_e0(); - disable_e1(); - disable_e2(); - } - } - } - - #ifdef CHDK //Check if pin should be set to LOW after M240 set it to HIGH - if (chdkActive && (millis() - chdkHigh > CHDK_DELAY)) - { - chdkActive = false; - WRITE(CHDK, LOW); - } - #endif - - #if defined(KILL_PIN) && KILL_PIN > -1 - - // Check if the kill button was pressed and wait just in case it was an accidental - // key kill key press - // ------------------------------------------------------------------------------- - if( 0 == READ(KILL_PIN) ) - { - killCount++; - } - else if (killCount > 0) - { - killCount--; - } - // Exceeded threshold and we can confirm that it was not accidental - // KILL the machine - // ---------------------------------------------------------------- - if ( killCount >= KILL_DELAY) - { - kill("", 5); - } - #endif - - #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1 - controllerFan(); //Check if fan should be turned on to cool stepper drivers down - #endif - #ifdef EXTRUDER_RUNOUT_PREVENT - if( (millis() - previous_millis_cmd) > EXTRUDER_RUNOUT_SECONDS*1000 ) - if(degHotend(active_extruder)>EXTRUDER_RUNOUT_MINTEMP) - { - bool oldstatus=READ(E0_ENABLE_PIN); - enable_e0(); - float oldepos=current_position[E_AXIS]; - float oldedes=destination[E_AXIS]; - plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], - destination[E_AXIS]+EXTRUDER_RUNOUT_EXTRUDE*EXTRUDER_RUNOUT_ESTEPS/axis_steps_per_unit[E_AXIS], - EXTRUDER_RUNOUT_SPEED/60.*EXTRUDER_RUNOUT_ESTEPS/axis_steps_per_unit[E_AXIS], active_extruder); - current_position[E_AXIS]=oldepos; - destination[E_AXIS]=oldedes; - plan_set_e_position(oldepos); - previous_millis_cmd=millis(); - st_synchronize(); - WRITE(E0_ENABLE_PIN,oldstatus); - } - #endif - #ifdef TEMP_STAT_LEDS - handle_status_leds(); - #endif - check_axes_activity(); -} - -void kill(const char *full_screen_message, unsigned char id) -{ - SERIAL_ECHOPGM("KILL: "); - MYSERIAL.println(int(id)); - //return; - cli(); // Stop interrupts - disable_heater(); - - disable_x(); -// SERIAL_ECHOLNPGM("kill - disable Y"); - disable_y(); - disable_z(); - disable_e0(); - disable_e1(); - disable_e2(); - -#if defined(PS_ON_PIN) && PS_ON_PIN > -1 - pinMode(PS_ON_PIN,INPUT); -#endif - SERIAL_ERROR_START; - SERIAL_ERRORLNRPGM(MSG_ERR_KILLED); - if (full_screen_message != NULL) { - SERIAL_ERRORLNRPGM(full_screen_message); - lcd_display_message_fullscreen_P(full_screen_message); - } else { - LCD_ALERTMESSAGERPGM(MSG_KILLED); - } - - // FMC small patch to update the LCD before ending - sei(); // enable interrupts - for ( int i=5; i--; lcd_update()) - { - delay(200); - } - cli(); // disable interrupts - suicide(); - while(1) { /* Intentionally left empty */ } // Wait for reset -} - -void Stop() -{ - disable_heater(); - if(Stopped == false) { - Stopped = true; - Stopped_gcode_LastN = gcode_LastN; // Save last g_code for restart - SERIAL_ERROR_START; - SERIAL_ERRORLNRPGM(MSG_ERR_STOPPED); - LCD_MESSAGERPGM(MSG_STOPPED); - } -} - -bool IsStopped() { return Stopped; }; - -#ifdef FAST_PWM_FAN -void setPwmFrequency(uint8_t pin, int val) -{ - val &= 0x07; - switch(digitalPinToTimer(pin)) - { - - #if defined(TCCR0A) - case TIMER0A: - case TIMER0B: -// TCCR0B &= ~(_BV(CS00) | _BV(CS01) | _BV(CS02)); -// TCCR0B |= val; - break; - #endif - - #if defined(TCCR1A) - case TIMER1A: - case TIMER1B: -// TCCR1B &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12)); -// TCCR1B |= val; - break; - #endif - - #if defined(TCCR2) - case TIMER2: - case TIMER2: - TCCR2 &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12)); - TCCR2 |= val; - break; - #endif - - #if defined(TCCR2A) - case TIMER2A: - case TIMER2B: - TCCR2B &= ~(_BV(CS20) | _BV(CS21) | _BV(CS22)); - TCCR2B |= val; - break; - #endif - - #if defined(TCCR3A) - case TIMER3A: - case TIMER3B: - case TIMER3C: - TCCR3B &= ~(_BV(CS30) | _BV(CS31) | _BV(CS32)); - TCCR3B |= val; - break; - #endif - - #if defined(TCCR4A) - case TIMER4A: - case TIMER4B: - case TIMER4C: - TCCR4B &= ~(_BV(CS40) | _BV(CS41) | _BV(CS42)); - TCCR4B |= val; - break; - #endif - - #if defined(TCCR5A) - case TIMER5A: - case TIMER5B: - case TIMER5C: - TCCR5B &= ~(_BV(CS50) | _BV(CS51) | _BV(CS52)); - TCCR5B |= val; - break; - #endif - - } -} -#endif //FAST_PWM_FAN - -bool setTargetedHotend(int code){ - tmp_extruder = active_extruder; - if(code_seen('T')) { - tmp_extruder = code_value(); - if(tmp_extruder >= EXTRUDERS) { - SERIAL_ECHO_START; - switch(code){ - case 104: - SERIAL_ECHORPGM(MSG_M104_INVALID_EXTRUDER); - break; - case 105: - SERIAL_ECHO(MSG_M105_INVALID_EXTRUDER); - break; - case 109: - SERIAL_ECHO(MSG_M109_INVALID_EXTRUDER); - break; - case 218: - SERIAL_ECHO(MSG_M218_INVALID_EXTRUDER); - break; - case 221: - SERIAL_ECHO(MSG_M221_INVALID_EXTRUDER); - break; - } - SERIAL_PROTOCOLLN((int)tmp_extruder); - return true; - } - } - return false; -} - -void save_statistics(unsigned long _total_filament_used, unsigned long _total_print_time) //_total_filament_used unit: mm/100; print time in s -{ - if (eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 1) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 2) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 3) == 255) - { - eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, 0); - eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, 0); - } - - unsigned long _previous_filament = eeprom_read_dword((uint32_t *)EEPROM_FILAMENTUSED); //_previous_filament unit: cm - unsigned long _previous_time = eeprom_read_dword((uint32_t *)EEPROM_TOTALTIME); //_previous_time unit: min - - eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, _previous_time + (_total_print_time/60)); //EEPROM_TOTALTIME unit: min - eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, _previous_filament + (_total_filament_used / 1000)); - - total_filament_used = 0; - -} - -float calculate_volumetric_multiplier(float diameter) { - float area = .0; - float radius = .0; - - radius = diameter * .5; - if (! volumetric_enabled || radius == 0) { - area = 1; - } - else { - area = M_PI * pow(radius, 2); - } - - return 1.0 / area; -} - -void calculate_volumetric_multipliers() { - volumetric_multiplier[0] = calculate_volumetric_multiplier(filament_size[0]); -#if EXTRUDERS > 1 - volumetric_multiplier[1] = calculate_volumetric_multiplier(filament_size[1]); -#if EXTRUDERS > 2 - volumetric_multiplier[2] = calculate_volumetric_multiplier(filament_size[2]); -#endif -#endif -} - -void delay_keep_alive(unsigned int ms) -{ - for (;;) { - manage_heater(); - // Manage inactivity, but don't disable steppers on timeout. - manage_inactivity(true); - lcd_update(); - if (ms == 0) - break; - else if (ms >= 50) { - delay(50); - ms -= 50; - } else { - delay(ms); - ms = 0; - } - } -} - -void wait_for_heater(long codenum) { - -#ifdef TEMP_RESIDENCY_TIME - long residencyStart; - residencyStart = -1; - /* continue to loop until we have reached the target temp - _and_ until TEMP_RESIDENCY_TIME hasn't passed since we reached it */ - while ((!cancel_heatup) && ((residencyStart == -1) || - (residencyStart >= 0 && (((unsigned int)(millis() - residencyStart)) < (TEMP_RESIDENCY_TIME * 1000UL))))) { -#else - while (target_direction ? (isHeatingHotend(tmp_extruder)) : (isCoolingHotend(tmp_extruder) && (CooldownNoWait == false))) { -#endif //TEMP_RESIDENCY_TIME - if ((millis() - codenum) > 1000UL) - { //Print Temp Reading and remaining time every 1 second while heating up/cooling down - if (!farm_mode) { - SERIAL_PROTOCOLPGM("T:"); - SERIAL_PROTOCOL_F(degHotend(tmp_extruder), 1); - SERIAL_PROTOCOLPGM(" E:"); - SERIAL_PROTOCOL((int)tmp_extruder); - -#ifdef TEMP_RESIDENCY_TIME - SERIAL_PROTOCOLPGM(" W:"); - if (residencyStart > -1) - { - codenum = ((TEMP_RESIDENCY_TIME * 1000UL) - (millis() - residencyStart)) / 1000UL; - SERIAL_PROTOCOLLN(codenum); - } - else - { - SERIAL_PROTOCOLLN("?"); - } - } -#else - SERIAL_PROTOCOLLN(""); -#endif - codenum = millis(); - } - manage_heater(); - manage_inactivity(); - lcd_update(); -#ifdef TEMP_RESIDENCY_TIME - /* start/restart the TEMP_RESIDENCY_TIME timer whenever we reach target temp for the first time - or when current temp falls outside the hysteresis after target temp was reached */ - if ((residencyStart == -1 && target_direction && (degHotend(tmp_extruder) >= (degTargetHotend(tmp_extruder) - TEMP_WINDOW))) || - (residencyStart == -1 && !target_direction && (degHotend(tmp_extruder) <= (degTargetHotend(tmp_extruder) + TEMP_WINDOW))) || - (residencyStart > -1 && labs(degHotend(tmp_extruder) - degTargetHotend(tmp_extruder)) > TEMP_HYSTERESIS)) - { - residencyStart = millis(); - } -#endif //TEMP_RESIDENCY_TIME - } -} - -void check_babystep() { - int babystep_z; - EEPROM_read_B(EEPROM_BABYSTEP_Z, &babystep_z); - if ((babystep_z < Z_BABYSTEP_MIN) || (babystep_z > Z_BABYSTEP_MAX)) { - babystep_z = 0; //if babystep value is out of min max range, set it to 0 - SERIAL_ECHOLNPGM("Z live adjust out of range. Setting to 0"); - EEPROM_save_B(EEPROM_BABYSTEP_Z, &babystep_z); - lcd_show_fullscreen_message_and_wait_P(PSTR("Z live adjust out of range. Setting to 0. Click to continue.")); - lcd_update_enable(true); - } -} -#ifdef DIS -void d_setup() -{ - pinMode(D_DATACLOCK, INPUT_PULLUP); - pinMode(D_DATA, INPUT_PULLUP); - pinMode(D_REQUIRE, OUTPUT); - digitalWrite(D_REQUIRE, HIGH); -} - - -float d_ReadData() -{ - int digit[13]; - String mergeOutput; - float output; - - digitalWrite(D_REQUIRE, HIGH); - for (int i = 0; i<13; i++) - { - for (int j = 0; j < 4; j++) - { - while (digitalRead(D_DATACLOCK) == LOW) {} - while (digitalRead(D_DATACLOCK) == HIGH) {} - bitWrite(digit[i], j, digitalRead(D_DATA)); - } - } - - digitalWrite(D_REQUIRE, LOW); - mergeOutput = ""; - output = 0; - for (int r = 5; r <= 10; r++) //Merge digits - { - mergeOutput += digit[r]; - } - output = mergeOutput.toFloat(); - - if (digit[4] == 8) //Handle sign - { - output *= -1; - } - - for (int i = digit[11]; i > 0; i--) //Handle floating point - { - output /= 10; - } - - return output; - -} - -void bed_analysis(float x_dimension, float y_dimension, int x_points_num, int y_points_num, float shift_x, float shift_y) { - int t1 = 0; - int t_delay = 0; - int digit[13]; - int m; - char str[3]; - //String mergeOutput; - char mergeOutput[15]; - float output; - - int mesh_point = 0; //index number of calibration point - float bed_zero_ref_x = (-22.f + X_PROBE_OFFSET_FROM_EXTRUDER); //shift between zero point on bed and target and between probe and nozzle - float bed_zero_ref_y = (-0.6f + Y_PROBE_OFFSET_FROM_EXTRUDER); - - float mesh_home_z_search = 4; - float row[x_points_num]; - int ix = 0; - int iy = 0; - - char* filename_wldsd = "wldsd.txt"; - char data_wldsd[70]; - char numb_wldsd[10]; - - d_setup(); - - if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS])) { - // We don't know where we are! HOME! - // Push the commands to the front of the message queue in the reverse order! - // There shall be always enough space reserved for these commands. - repeatcommand_front(); // repeat G80 with all its parameters - - enquecommand_front_P((PSTR("G28 W0"))); - enquecommand_front_P((PSTR("G1 Z5"))); - return; - } - bool custom_message_old = custom_message; - unsigned int custom_message_type_old = custom_message_type; - unsigned int custom_message_state_old = custom_message_state; - custom_message = true; - custom_message_type = 1; - custom_message_state = (x_points_num * y_points_num) + 10; - lcd_update(1); - - mbl.reset(); - babystep_undo(); - - card.openFile(filename_wldsd, false); - - current_position[Z_AXIS] = mesh_home_z_search; - plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 60, active_extruder); - - int XY_AXIS_FEEDRATE = homing_feedrate[X_AXIS] / 20; - int Z_PROBE_FEEDRATE = homing_feedrate[Z_AXIS] / 60; - int Z_LIFT_FEEDRATE = homing_feedrate[Z_AXIS] / 40; - - setup_for_endstop_move(false); - - SERIAL_PROTOCOLPGM("Num X,Y: "); - SERIAL_PROTOCOL(x_points_num); - SERIAL_PROTOCOLPGM(","); - SERIAL_PROTOCOL(y_points_num); - SERIAL_PROTOCOLPGM("\nZ search height: "); - SERIAL_PROTOCOL(mesh_home_z_search); - SERIAL_PROTOCOLPGM("\nDimension X,Y: "); - SERIAL_PROTOCOL(x_dimension); - SERIAL_PROTOCOLPGM(","); - SERIAL_PROTOCOL(y_dimension); - SERIAL_PROTOCOLLNPGM("\nMeasured points:"); - - while (mesh_point != x_points_num * y_points_num) { - ix = mesh_point % x_points_num; // from 0 to MESH_NUM_X_POINTS - 1 - iy = mesh_point / x_points_num; - if (iy & 1) ix = (x_points_num - 1) - ix; // Zig zag - float z0 = 0.f; - current_position[Z_AXIS] = mesh_home_z_search; - plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], Z_LIFT_FEEDRATE, active_extruder); - st_synchronize(); - - - current_position[X_AXIS] = 13.f + ix * (x_dimension / (x_points_num - 1)) - bed_zero_ref_x + shift_x; - current_position[Y_AXIS] = 6.4f + iy * (y_dimension / (y_points_num - 1)) - bed_zero_ref_y + shift_y; - - plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], XY_AXIS_FEEDRATE, active_extruder); - st_synchronize(); - - if (!find_bed_induction_sensor_point_z(-10.f)) { //if we have data from z calibration max allowed difference is 1mm for each point, if we dont have data max difference is 10mm from initial point - break; - card.closefile(); - } - - - //memset(numb_wldsd, 0, sizeof(numb_wldsd)); - //dtostrf(d_ReadData(), 8, 5, numb_wldsd); - //strcat(data_wldsd, numb_wldsd); - - - - //MYSERIAL.println(data_wldsd); - //delay(1000); - //delay(3000); - //t1 = millis(); - - //while (digitalRead(D_DATACLOCK) == LOW) {} - //while (digitalRead(D_DATACLOCK) == HIGH) {} - memset(digit, 0, sizeof(digit)); - //cli(); - digitalWrite(D_REQUIRE, LOW); - - for (int i = 0; i<13; i++) - { - //t1 = millis(); - for (int j = 0; j < 4; j++) - { - while (digitalRead(D_DATACLOCK) == LOW) {} - while (digitalRead(D_DATACLOCK) == HIGH) {} - bitWrite(digit[i], j, digitalRead(D_DATA)); - } - //t_delay = (millis() - t1); - //SERIAL_PROTOCOLPGM(" "); - //SERIAL_PROTOCOL_F(t_delay, 5); - //SERIAL_PROTOCOLPGM(" "); - } - //sei(); - digitalWrite(D_REQUIRE, HIGH); - mergeOutput[0] = '\0'; - output = 0; - for (int r = 5; r <= 10; r++) //Merge digits - { - sprintf(str, "%d", digit[r]); - strcat(mergeOutput, str); - } - - output = atof(mergeOutput); - - if (digit[4] == 8) //Handle sign - { - output *= -1; - } - - for (int i = digit[11]; i > 0; i--) //Handle floating point - { - output *= 0.1; - } - - - //output = d_ReadData(); - - //row[ix] = current_position[Z_AXIS]; - - memset(data_wldsd, 0, sizeof(data_wldsd)); - - for (int i = 0; i <3; i++) { - memset(numb_wldsd, 0, sizeof(numb_wldsd)); - dtostrf(current_position[i], 8, 5, numb_wldsd); - strcat(data_wldsd, numb_wldsd); - strcat(data_wldsd, ";"); - - } - memset(numb_wldsd, 0, sizeof(numb_wldsd)); - dtostrf(output, 8, 5, numb_wldsd); - strcat(data_wldsd, numb_wldsd); - //strcat(data_wldsd, ";"); - card.write_command(data_wldsd); - - - //row[ix] = d_ReadData(); - - row[ix] = output; // current_position[Z_AXIS]; - - if (iy % 2 == 1 ? ix == 0 : ix == x_points_num - 1) { - for (int i = 0; i < x_points_num; i++) { - SERIAL_PROTOCOLPGM(" "); - SERIAL_PROTOCOL_F(row[i], 5); - - - } - SERIAL_PROTOCOLPGM("\n"); - } - custom_message_state--; - mesh_point++; - lcd_update(1); - - } - card.closefile(); - -} -#endif - -void temp_compensation_start() { - - custom_message = true; - custom_message_type = 5; - custom_message_state = PINDA_HEAT_T + 1; - lcd_update(2); - if (degHotend(active_extruder) > EXTRUDE_MINTEMP) { - current_position[E_AXIS] -= DEFAULT_RETRACTION; - } - plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400, active_extruder); - - current_position[X_AXIS] = PINDA_PREHEAT_X; - current_position[Y_AXIS] = PINDA_PREHEAT_Y; - current_position[Z_AXIS] = PINDA_PREHEAT_Z; - plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder); - st_synchronize(); - while (fabs(degBed() - target_temperature_bed) > 1) delay_keep_alive(1000); - - for (int i = 0; i < PINDA_HEAT_T; i++) { - delay_keep_alive(1000); - custom_message_state = PINDA_HEAT_T - i; - if (custom_message_state == 99 || custom_message_state == 9) lcd_update(2); //force whole display redraw if number of digits changed - else lcd_update(1); - } - custom_message_type = 0; - custom_message_state = 0; - custom_message = false; -} - -void temp_compensation_apply() { - int i_add; - int compensation_value; - int z_shift = 0; - float z_shift_mm; - - if (calibration_status() == CALIBRATION_STATUS_CALIBRATED) { - if (target_temperature_bed % 10 == 0 && target_temperature_bed >= 60 && target_temperature_bed <= 100) { - i_add = (target_temperature_bed - 60) / 10; - EEPROM_read_B(EEPROM_PROBE_TEMP_SHIFT + i_add * 2, &z_shift); - z_shift_mm = z_shift / axis_steps_per_unit[Z_AXIS]; - }else { - //interpolation - z_shift_mm = temp_comp_interpolation(target_temperature_bed) / axis_steps_per_unit[Z_AXIS]; - } - SERIAL_PROTOCOLPGM("\n"); - SERIAL_PROTOCOLPGM("Z shift applied:"); - MYSERIAL.print(z_shift_mm); - plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS] - z_shift_mm, current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder); - st_synchronize(); - plan_set_z_position(current_position[Z_AXIS]); - } - else { - //we have no temp compensation data - } -} - -float temp_comp_interpolation(float inp_temperature) { - - //cubic spline interpolation - - int n, i, j, k; - float h[10], a, b, c, d, sum, s[10] = { 0 }, x[10], F[10], f[10], m[10][10] = { 0 }, temp; - int shift[10]; - int temp_C[10]; - - n = 6; //number of measured points - - shift[0] = 0; - for (i = 0; i < n; i++) { - if (i>0) EEPROM_read_B(EEPROM_PROBE_TEMP_SHIFT + (i-1) * 2, &shift[i]); //read shift in steps from EEPROM - temp_C[i] = 50 + i * 10; //temperature in C -#ifdef PINDA_THERMISTOR - temp_C[i] = 35 + i * 5; //temperature in C -#else - temp_C[i] = 50 + i * 10; //temperature in C -#endif - x[i] = (float)temp_C[i]; - f[i] = (float)shift[i]; - } - if (inp_temperature < x[0]) return 0; - - - for (i = n - 1; i>0; i--) { - F[i] = (f[i] - f[i - 1]) / (x[i] - x[i - 1]); - h[i - 1] = x[i] - x[i - 1]; - } - //*********** formation of h, s , f matrix ************** - for (i = 1; i0; i--) { - sum = 0; - for (j = i; j <= n - 2; j++) - sum += m[i][j] * s[j]; - s[i] = (m[i][n - 1] - sum) / m[i][i]; - } - - for (i = 0; i x[i + 1])) { - a = (s[i + 1] - s[i]) / (6 * h[i]); - b = s[i] / 2; - c = (f[i + 1] - f[i]) / h[i] - (2 * h[i] * s[i] + s[i + 1] * h[i]) / 6; - d = f[i]; - sum = a*pow((inp_temperature - x[i]), 3) + b*pow((inp_temperature - x[i]), 2) + c*(inp_temperature - x[i]) + d; - } - - return sum; - -} - -#ifdef PINDA_THERMISTOR -float temp_compensation_pinda_thermistor_offset() -{ - if (!temp_cal_active) return 0; - if (!calibration_status_pinda()) return 0; - return temp_comp_interpolation(current_temperature_pinda) / axis_steps_per_unit[Z_AXIS]; -} -#endif //PINDA_THERMISTOR - -void long_pause() //long pause print -{ - st_synchronize(); - - //save currently set parameters to global variables - saved_feedmultiply = feedmultiply; - HotendTempBckp = degTargetHotend(active_extruder); - fanSpeedBckp = fanSpeed; - start_pause_print = millis(); - - - //save position - pause_lastpos[X_AXIS] = current_position[X_AXIS]; - pause_lastpos[Y_AXIS] = current_position[Y_AXIS]; - pause_lastpos[Z_AXIS] = current_position[Z_AXIS]; - pause_lastpos[E_AXIS] = current_position[E_AXIS]; - - //retract - current_position[E_AXIS] -= DEFAULT_RETRACTION; - plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400, active_extruder); - - //lift z - current_position[Z_AXIS] += Z_PAUSE_LIFT; - if (current_position[Z_AXIS] > Z_MAX_POS) current_position[Z_AXIS] = Z_MAX_POS; - plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 15, active_extruder); - - //set nozzle target temperature to 0 - setTargetHotend(0, 0); - setTargetHotend(0, 1); - setTargetHotend(0, 2); - - //Move XY to side - current_position[X_AXIS] = X_PAUSE_POS; - current_position[Y_AXIS] = Y_PAUSE_POS; - plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 50, active_extruder); - - // Turn off the print fan - fanSpeed = 0; - - st_synchronize(); -} - -void serialecho_temperatures() { - float tt = degHotend(active_extruder); - SERIAL_PROTOCOLPGM("T:"); - SERIAL_PROTOCOL(tt); - SERIAL_PROTOCOLPGM(" E:"); - SERIAL_PROTOCOL((int)active_extruder); - SERIAL_PROTOCOLPGM(" B:"); - SERIAL_PROTOCOL_F(degBed(), 1); - SERIAL_PROTOCOLLN(""); -} - -extern uint32_t sdpos_atomic; - -void uvlo_() -{ - // Conserve power as soon as possible. - disable_x(); - disable_y(); - - // Indicate that the interrupt has been triggered. - SERIAL_ECHOLNPGM("UVLO"); - - // Read out the current Z motor microstep counter. This will be later used - // for reaching the zero full step before powering off. - uint16_t z_microsteps = tmc2130_rd_MSCNT(Z_TMC2130_CS); - - // Calculate the file position, from which to resume this print. - long sd_position = sdpos_atomic; //atomic sd position of last command added in queue - { - uint16_t sdlen_planner = planner_calc_sd_length(); //length of sd commands in planner - sd_position -= sdlen_planner; - uint16_t sdlen_cmdqueue = cmdqueue_calc_sd_length(); //length of sd commands in cmdqueue - sd_position -= sdlen_cmdqueue; - if (sd_position < 0) sd_position = 0; - } - - // Backup the feedrate in mm/min. - int feedrate_bckp = blocks_queued() ? (block_buffer[block_buffer_tail].nominal_speed * 60.f) : feedrate; - - // After this call, the planner queue is emptied and the current_position is set to a current logical coordinate. - // The logical coordinate will likely differ from the machine coordinate if the skew calibration and mesh bed leveling - // are in action. - planner_abort_hard(); - - // Clean the input command queue. - cmdqueue_reset(); - card.sdprinting = false; -// card.closefile(); - - // Enable stepper driver interrupt to move Z axis. - // This should be fine as the planner and command queues are empty and the SD card printing is disabled. - //FIXME one may want to disable serial lines at this point of time to avoid interfering with the command queue, - // though it should not happen that the command queue is touched as the plan_buffer_line always succeed without blocking. - sei(); - plan_buffer_line( - current_position[X_AXIS], - current_position[Y_AXIS], - current_position[Z_AXIS], - current_position[E_AXIS] - DEFAULT_RETRACTION, - 400, active_extruder); - plan_buffer_line( - current_position[X_AXIS], - current_position[Y_AXIS], - current_position[Z_AXIS] + UVLO_Z_AXIS_SHIFT + float((1024 - z_microsteps + 7) >> 4) / axis_steps_per_unit[Z_AXIS], - current_position[E_AXIS] - DEFAULT_RETRACTION, - 40, active_extruder); - - // Move Z up to the next 0th full step. - // Write the file position. - eeprom_update_dword((uint32_t*)(EEPROM_FILE_POSITION), sd_position); - // Store the mesh bed leveling offsets. This is 2*9=18 bytes, which takes 18*3.4us=52us in worst case. - for (int8_t mesh_point = 0; mesh_point < 9; ++ mesh_point) { - uint8_t ix = mesh_point % MESH_MEAS_NUM_X_POINTS; // from 0 to MESH_NUM_X_POINTS - 1 - uint8_t iy = mesh_point / MESH_MEAS_NUM_X_POINTS; - // Scale the z value to 1u resolution. - int16_t v = mbl.active ? int16_t(floor(mbl.z_values[iy*3][ix*3] * 1000.f + 0.5f)) : 0; - eeprom_update_word((uint16_t*)(EEPROM_UVLO_MESH_BED_LEVELING+2*mesh_point), *reinterpret_cast(&v)); - } - // Read out the current Z motor microstep counter. This will be later used - // for reaching the zero full step before powering off. - eeprom_update_word((uint16_t*)(EEPROM_UVLO_Z_MICROSTEPS), z_microsteps); - // Store the current position. - eeprom_update_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 0), current_position[X_AXIS]); - eeprom_update_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 4), current_position[Y_AXIS]); - eeprom_update_float((float*)(EEPROM_UVLO_CURRENT_POSITION_Z), current_position[Z_AXIS]); - // Store the current feed rate, temperatures and fan speed. - EEPROM_save_B(EEPROM_UVLO_FEEDRATE, &feedrate_bckp); - eeprom_update_byte((uint8_t*)EEPROM_UVLO_TARGET_HOTEND, target_temperature[active_extruder]); - eeprom_update_byte((uint8_t*)EEPROM_UVLO_TARGET_BED, target_temperature_bed); - eeprom_update_byte((uint8_t*)EEPROM_UVLO_FAN_SPEED, fanSpeed); - // Finaly store the "power outage" flag. - eeprom_update_byte((uint8_t*)EEPROM_UVLO, 1); - - st_synchronize(); - SERIAL_ECHOPGM("stps"); - MYSERIAL.println(tmc2130_rd_MSCNT(Z_TMC2130_CS)); -#if 0 - // Move the print head to the side of the print until all the power stored in the power supply capacitors is depleted. - current_position[X_AXIS] = (current_position[X_AXIS] < 0.5f * (X_MIN_POS + X_MAX_POS)) ? X_MIN_POS : X_MAX_POS; - plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 500, active_extruder); - st_synchronize(); -#endif - disable_z(); - - // Increment power failure counter - uint8_t power_count = eeprom_read_byte((uint8_t*)EEPROM_POWER_COUNT); - power_count++; - eeprom_update_byte((uint8_t*)EEPROM_POWER_COUNT, power_count); - - SERIAL_ECHOLNPGM("UVLO - end"); - cli(); - while(1); -} - -void setup_fan_interrupt() { -//INT7 - DDRE &= ~(1 << 7); //input pin - PORTE &= ~(1 << 7); //no internal pull-up - - //start with sensing rising edge - EICRB &= ~(1 << 6); - EICRB |= (1 << 7); - - //enable INT7 interrupt - EIMSK |= (1 << 7); -} - -ISR(INT7_vect) { - //measuring speed now works for fanSpeed > 18 (approximately), which is sufficient because MIN_PRINT_FAN_SPEED is higher - - if (fanSpeed < MIN_PRINT_FAN_SPEED) return; - if ((1 << 6) & EICRB) { //interrupt was triggered by rising edge - t_fan_rising_edge = millis(); - } - else { //interrupt was triggered by falling edge - if ((millis() - t_fan_rising_edge) >= FAN_PULSE_WIDTH_LIMIT) {//this pulse was from sensor and not from pwm - fan_edge_counter[1] += 2; //we are currently counting all edges so lets count two edges for one pulse - } - } - EICRB ^= (1 << 6); //change edge -} - -void setup_uvlo_interrupt() { - DDRE &= ~(1 << 4); //input pin - PORTE &= ~(1 << 4); //no internal pull-up - - //sensing falling edge - EICRB |= (1 << 0); - EICRB &= ~(1 << 1); - - //enable INT4 interrupt - EIMSK |= (1 << 4); -} - -ISR(INT4_vect) { - EIMSK &= ~(1 << 4); //disable INT4 interrupt to make sure that this code will be executed just once - SERIAL_ECHOLNPGM("INT4"); - if (IS_SD_PRINTING) uvlo_(); -} - -void recover_print(uint8_t automatic) { - char cmd[30]; - lcd_update_enable(true); - lcd_update(2); - lcd_setstatuspgm(MSG_RECOVERING_PRINT); - - recover_machine_state_after_power_panic(); - - // Set the target bed and nozzle temperatures. - sprintf_P(cmd, PSTR("M104 S%d"), target_temperature[active_extruder]); - enquecommand(cmd); - sprintf_P(cmd, PSTR("M140 S%d"), target_temperature_bed); - enquecommand(cmd); - - // Lift the print head, so one may remove the excess priming material. - if (current_position[Z_AXIS] < 25) - enquecommand_P(PSTR("G1 Z25 F800")); - // Home X and Y axes. Homing just X and Y shall not touch the babystep and the world2machine transformation status. - enquecommand_P(PSTR("G28 X Y")); - // Set the target bed and nozzle temperatures and wait. - sprintf_P(cmd, PSTR("M109 S%d"), target_temperature[active_extruder]); - enquecommand(cmd); - sprintf_P(cmd, PSTR("M190 S%d"), target_temperature_bed); - enquecommand(cmd); - enquecommand_P(PSTR("M83")); //E axis relative mode - //enquecommand_P(PSTR("G1 E5 F120")); //Extrude some filament to stabilize pessure - // If not automatically recoreverd (long power loss), extrude extra filament to stabilize - if(automatic == 0){ - enquecommand_P(PSTR("G1 E5 F120")); //Extrude some filament to stabilize pessure - } - enquecommand_P(PSTR("G1 E" STRINGIFY(-DEFAULT_RETRACTION)" F480")); - // Mark the power panic status as inactive. - eeprom_update_byte((uint8_t*)EEPROM_UVLO, 0); - /*while ((abs(degHotend(0)- target_temperature[0])>5) || (abs(degBed() -target_temperature_bed)>3)) { //wait for heater and bed to reach target temp - delay_keep_alive(1000); - }*/ - SERIAL_ECHOPGM("After waiting for temp:"); - SERIAL_ECHOPGM("Current position X_AXIS:"); - MYSERIAL.println(current_position[X_AXIS]); - SERIAL_ECHOPGM("Current position Y_AXIS:"); - MYSERIAL.println(current_position[Y_AXIS]); - - // Restart the print. - restore_print_from_eeprom(); - - SERIAL_ECHOPGM("current_position[Z_AXIS]:"); - MYSERIAL.print(current_position[Z_AXIS]); -} - -void recover_machine_state_after_power_panic() -{ - // 1) Recover the logical cordinates at the time of the power panic. - // The logical XY coordinates are needed to recover the machine Z coordinate corrected by the mesh bed leveling. - current_position[X_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 0)); - current_position[Y_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 4)); - // Recover the logical coordinate of the Z axis at the time of the power panic. - // The current position after power panic is moved to the next closest 0th full step. - current_position[Z_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION_Z)) + - UVLO_Z_AXIS_SHIFT + float((1024 - eeprom_read_word((uint16_t*)(EEPROM_UVLO_Z_MICROSTEPS)) + 7) >> 4) / axis_steps_per_unit[Z_AXIS]; - memcpy(destination, current_position, sizeof(destination)); - - SERIAL_ECHOPGM("recover_machine_state_after_power_panic, initial "); - print_world_coordinates(); - - // 2) Initialize the logical to physical coordinate system transformation. - world2machine_initialize(); - - // 3) Restore the mesh bed leveling offsets. This is 2*9=18 bytes, which takes 18*3.4us=52us in worst case. - mbl.active = false; - for (int8_t mesh_point = 0; mesh_point < 9; ++ mesh_point) { - uint8_t ix = mesh_point % MESH_MEAS_NUM_X_POINTS; // from 0 to MESH_NUM_X_POINTS - 1 - uint8_t iy = mesh_point / MESH_MEAS_NUM_X_POINTS; - // Scale the z value to 10u resolution. - int16_t v; - eeprom_read_block(&v, (void*)(EEPROM_UVLO_MESH_BED_LEVELING+2*mesh_point), 2); - if (v != 0) - mbl.active = true; - mbl.z_values[iy][ix] = float(v) * 0.001f; - } - if (mbl.active) - mbl.upsample_3x3(); - SERIAL_ECHOPGM("recover_machine_state_after_power_panic, initial "); - print_mesh_bed_leveling_table(); - - // 4) Load the baby stepping value, which is expected to be active at the time of power panic. - // The baby stepping value is used to reset the physical Z axis when rehoming the Z axis. - babystep_load(); - - // 5) Set the physical positions from the logical positions using the world2machine transformation and the active bed leveling. - plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]); - - // 6) Power up the motors, mark their positions as known. - //FIXME Verfiy, whether the X and Y axes should be powered up here, as they will later be re-homed anyway. - axis_known_position[X_AXIS] = true; enable_x(); - axis_known_position[Y_AXIS] = true; enable_y(); - axis_known_position[Z_AXIS] = true; enable_z(); - - SERIAL_ECHOPGM("recover_machine_state_after_power_panic, initial "); - print_physical_coordinates(); - - // 7) Recover the target temperatures. - target_temperature[active_extruder] = eeprom_read_byte((uint8_t*)EEPROM_UVLO_TARGET_HOTEND); - target_temperature_bed = eeprom_read_byte((uint8_t*)EEPROM_UVLO_TARGET_BED); -} - -void restore_print_from_eeprom() { - float x_rec, y_rec, z_pos; - int feedrate_rec; - uint8_t fan_speed_rec; - char cmd[30]; - char* c; - char filename[13]; - - fan_speed_rec = eeprom_read_byte((uint8_t*)EEPROM_UVLO_FAN_SPEED); - EEPROM_read_B(EEPROM_UVLO_FEEDRATE, &feedrate_rec); - SERIAL_ECHOPGM("Feedrate:"); - MYSERIAL.println(feedrate_rec); - for (int i = 0; i < 8; i++) { - filename[i] = eeprom_read_byte((uint8_t*)EEPROM_FILENAME + i); - - } - filename[8] = '\0'; - - MYSERIAL.print(filename); - strcat_P(filename, PSTR(".gco")); - sprintf_P(cmd, PSTR("M23 %s"), filename); - for (c = &cmd[4]; *c; c++) - *c = tolower(*c); - enquecommand(cmd); - uint32_t position = eeprom_read_dword((uint32_t*)(EEPROM_FILE_POSITION)); - SERIAL_ECHOPGM("Position read from eeprom:"); - MYSERIAL.println(position); - - // E axis relative mode. - enquecommand_P(PSTR("M83")); - // Move to the XY print position in logical coordinates, where the print has been killed. - strcpy_P(cmd, PSTR("G1 X")); strcat(cmd, ftostr32(eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 0)))); - strcat_P(cmd, PSTR(" Y")); strcat(cmd, ftostr32(eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 4)))); - strcat_P(cmd, PSTR(" F2000")); - enquecommand(cmd); - // Move the Z axis down to the print, in logical coordinates. - strcpy_P(cmd, PSTR("G1 Z")); strcat(cmd, ftostr32(eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION_Z)))); - enquecommand(cmd); - // Unretract. - enquecommand_P(PSTR("G1 E" STRINGIFY(DEFAULT_RETRACTION)" F480")); - // Set the feedrate saved at the power panic. - sprintf_P(cmd, PSTR("G1 F%d"), feedrate_rec); - enquecommand(cmd); - // Set the fan speed saved at the power panic. - strcpy_P(cmd, PSTR("M106 S")); - strcat(cmd, itostr3(int(fan_speed_rec))); - enquecommand(cmd); - - // Set a position in the file. - sprintf_P(cmd, PSTR("M26 S%lu"), position); - enquecommand(cmd); - // Start SD print. - enquecommand_P(PSTR("M24")); -} - - -//////////////////////////////////////////////////////////////////////////////// -// new save/restore printing - -//extern uint32_t sdpos_atomic; - -bool saved_printing = false; -uint32_t saved_sdpos = 0; -float saved_pos[4] = {0, 0, 0, 0}; -// Feedrate hopefully derived from an active block of the planner at the time the print has been canceled, in mm/min. -float saved_feedrate2 = 0; -uint8_t saved_active_extruder = 0; -bool saved_extruder_under_pressure = false; - -void stop_and_save_print_to_ram(float z_move, float e_move) -{ - if (saved_printing) return; - cli(); - unsigned char nplanner_blocks = number_of_blocks(); - saved_sdpos = sdpos_atomic; //atomic sd position of last command added in queue - uint16_t sdlen_planner = planner_calc_sd_length(); //length of sd commands in planner - saved_sdpos -= sdlen_planner; - uint16_t sdlen_cmdqueue = cmdqueue_calc_sd_length(); //length of sd commands in cmdqueue - saved_sdpos -= sdlen_cmdqueue; - -#if 0 - SERIAL_ECHOPGM("SDPOS_ATOMIC="); MYSERIAL.println(sdpos_atomic, DEC); - SERIAL_ECHOPGM("SDPOS="); MYSERIAL.println(card.get_sdpos(), DEC); - SERIAL_ECHOPGM("SDLEN_PLAN="); MYSERIAL.println(sdlen_planner, DEC); - SERIAL_ECHOPGM("SDLEN_CMDQ="); MYSERIAL.println(sdlen_cmdqueue, DEC); - SERIAL_ECHOPGM("PLANNERBLOCKS="); MYSERIAL.println(int(nplanner_blocks), DEC); - SERIAL_ECHOPGM("SDSAVED="); MYSERIAL.println(saved_sdpos, DEC); - SERIAL_ECHOPGM("SDFILELEN="); MYSERIAL.println(card.fileSize(), DEC); - - { - card.setIndex(saved_sdpos); - SERIAL_ECHOLNPGM("Content of planner buffer: "); - for (unsigned int idx = 0; idx < sdlen_planner; ++ idx) - MYSERIAL.print(char(card.get())); - SERIAL_ECHOLNPGM("Content of command buffer: "); - for (unsigned int idx = 0; idx < sdlen_cmdqueue; ++ idx) - MYSERIAL.print(char(card.get())); - SERIAL_ECHOLNPGM("End of command buffer"); - } - - { - // Print the content of the planner buffer, line by line: - card.setIndex(saved_sdpos); - int8_t iline = 0; - for (unsigned char idx = block_buffer_tail; idx != block_buffer_head; idx = (idx + 1) & (BLOCK_BUFFER_SIZE - 1), ++ iline) { - SERIAL_ECHOPGM("Planner line (from file): "); - MYSERIAL.print(int(iline), DEC); - SERIAL_ECHOPGM(", length: "); - MYSERIAL.print(block_buffer[idx].sdlen, DEC); - SERIAL_ECHOPGM(", steps: ("); - MYSERIAL.print(block_buffer[idx].steps_x, DEC); - SERIAL_ECHOPGM(","); - MYSERIAL.print(block_buffer[idx].steps_y, DEC); - SERIAL_ECHOPGM(","); - MYSERIAL.print(block_buffer[idx].steps_z, DEC); - SERIAL_ECHOPGM(","); - MYSERIAL.print(block_buffer[idx].steps_e, DEC); - SERIAL_ECHOPGM("), events: "); - MYSERIAL.println(block_buffer[idx].step_event_count, DEC); - for (int len = block_buffer[idx].sdlen; len > 0; -- len) - MYSERIAL.print(char(card.get())); - } - } - { - // Print the content of the command buffer, line by line: - int8_t iline = 0; - union { - struct { - char lo; - char hi; - } lohi; - uint16_t value; - } sdlen_single; - int _bufindr = bufindr; - for (int _buflen = buflen; _buflen > 0; ++ iline) { - if (cmdbuffer[_bufindr] == CMDBUFFER_CURRENT_TYPE_SDCARD) { - sdlen_single.lohi.lo = cmdbuffer[_bufindr + 1]; - sdlen_single.lohi.hi = cmdbuffer[_bufindr + 2]; - } - SERIAL_ECHOPGM("Buffer line (from buffer): "); - MYSERIAL.print(int(iline), DEC); - SERIAL_ECHOPGM(", type: "); - MYSERIAL.print(int(cmdbuffer[_bufindr]), DEC); - SERIAL_ECHOPGM(", len: "); - MYSERIAL.println(sdlen_single.value, DEC); - // Print the content of the buffer line. - MYSERIAL.println(cmdbuffer + _bufindr + CMDHDRSIZE); - - SERIAL_ECHOPGM("Buffer line (from file): "); - MYSERIAL.print(int(iline), DEC); - MYSERIAL.println(int(iline), DEC); - for (; sdlen_single.value > 0; -- sdlen_single.value) - MYSERIAL.print(char(card.get())); - - if (-- _buflen == 0) - break; - // First skip the current command ID and iterate up to the end of the string. - for (_bufindr += CMDHDRSIZE; cmdbuffer[_bufindr] != 0; ++ _bufindr) ; - // Second, skip the end of string null character and iterate until a nonzero command ID is found. - for (++ _bufindr; _bufindr < sizeof(cmdbuffer) && cmdbuffer[_bufindr] == 0; ++ _bufindr) ; - // If the end of the buffer was empty, - if (_bufindr == sizeof(cmdbuffer)) { - // skip to the start and find the nonzero command. - for (_bufindr = 0; cmdbuffer[_bufindr] == 0; ++ _bufindr) ; - } - } - } -#endif - -#if 0 - saved_feedrate2 = feedrate; //save feedrate -#else - // Try to deduce the feedrate from the first block of the planner. - // Speed is in mm/min. - saved_feedrate2 = blocks_queued() ? (block_buffer[block_buffer_tail].nominal_speed * 60.f) : feedrate; -#endif - - planner_abort_hard(); //abort printing - memcpy(saved_pos, current_position, sizeof(saved_pos)); - saved_active_extruder = active_extruder; //save active_extruder - - saved_extruder_under_pressure = extruder_under_pressure; //extruder under pressure flag - currently unused - - cmdqueue_reset(); //empty cmdqueue - card.sdprinting = false; -// card.closefile(); - saved_printing = true; - sei(); - if ((z_move != 0) || (e_move != 0)) { // extruder or z move -#if 1 - // Rather than calling plan_buffer_line directly, push the move into the command queue, - char buf[48]; - strcpy_P(buf, PSTR("G1 Z")); - dtostrf(saved_pos[Z_AXIS] + z_move, 8, 3, buf + strlen(buf)); - strcat_P(buf, PSTR(" E")); - // Relative extrusion - dtostrf(e_move, 6, 3, buf + strlen(buf)); - strcat_P(buf, PSTR(" F")); - dtostrf(homing_feedrate[Z_AXIS], 8, 3, buf + strlen(buf)); - // At this point the command queue is empty. - enquecommand(buf, false); - // If this call is invoked from the main Arduino loop() function, let the caller know that the command - // in the command queue is not the original command, but a new one, so it should not be removed from the queue. - repeatcommand_front(); -#else - plan_buffer_line(saved_pos[X_AXIS], saved_pos[Y_AXIS], saved_pos[Z_AXIS] + z_move, saved_pos[E_AXIS] + e_move, homing_feedrate[Z_AXIS], active_extruder); - st_synchronize(); //wait moving - memcpy(current_position, saved_pos, sizeof(saved_pos)); - memcpy(destination, current_position, sizeof(destination)); -#endif - } -} - -void restore_print_from_ram_and_continue(float e_move) -{ - if (!saved_printing) return; -// for (int axis = X_AXIS; axis <= E_AXIS; axis++) -// current_position[axis] = st_get_position_mm(axis); - active_extruder = saved_active_extruder; //restore active_extruder - feedrate = saved_feedrate2; //restore feedrate - float e = saved_pos[E_AXIS] - e_move; - plan_set_e_position(e); - plan_buffer_line(saved_pos[X_AXIS], saved_pos[Y_AXIS], saved_pos[Z_AXIS], saved_pos[E_AXIS], homing_feedrate[Z_AXIS]/13, active_extruder); - st_synchronize(); - memcpy(current_position, saved_pos, sizeof(saved_pos)); - memcpy(destination, current_position, sizeof(destination)); - card.setIndex(saved_sdpos); - sdpos_atomic = saved_sdpos; - card.sdprinting = true; - saved_printing = false; -} - -void print_world_coordinates() -{ - SERIAL_ECHOPGM("world coordinates: ("); - MYSERIAL.print(current_position[X_AXIS], 3); - SERIAL_ECHOPGM(", "); - MYSERIAL.print(current_position[Y_AXIS], 3); - SERIAL_ECHOPGM(", "); - MYSERIAL.print(current_position[Z_AXIS], 3); - SERIAL_ECHOLNPGM(")"); -} - -void print_physical_coordinates() -{ - SERIAL_ECHOPGM("physical coordinates: ("); - MYSERIAL.print(st_get_position_mm(X_AXIS), 3); - SERIAL_ECHOPGM(", "); - MYSERIAL.print(st_get_position_mm(Y_AXIS), 3); - SERIAL_ECHOPGM(", "); - MYSERIAL.print(st_get_position_mm(Z_AXIS), 3); - SERIAL_ECHOLNPGM(")"); -} - -void print_mesh_bed_leveling_table() -{ - SERIAL_ECHOPGM("mesh bed leveling: "); - for (int8_t y = 0; y < MESH_NUM_Y_POINTS; ++ y) - for (int8_t x = 0; x < MESH_NUM_Y_POINTS; ++ x) { - MYSERIAL.print(mbl.z_values[y][x], 3); - SERIAL_ECHOPGM(" "); - } - SERIAL_ECHOLNPGM(""); -} +/* -*- c++ -*- */ + +/* + Reprap firmware based on Sprinter and grbl. + Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm + + This program is free software: you can redistribute it and/or modify + it under the terms of the GNU General Public License as published by + the Free Software Foundation, either version 3 of the License, or + (at your option) any later version. + + This program is distributed in the hope that it will be useful, + but WITHOUT ANY WARRANTY; without even the implied warranty of + MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + GNU General Public License for more details. + + You should have received a copy of the GNU General Public License + along with this program. If not, see . + */ + +/* + This firmware is a mashup between Sprinter and grbl. + (https://github.com/kliment/Sprinter) + (https://github.com/simen/grbl/tree) + + It has preliminary support for Matthew Roberts advance algorithm + http://reprap.org/pipermail/reprap-dev/2011-May/003323.html + */ + +#include "Marlin.h" + +#ifdef ENABLE_AUTO_BED_LEVELING +#include "vector_3.h" + #ifdef AUTO_BED_LEVELING_GRID + #include "qr_solve.h" + #endif +#endif // ENABLE_AUTO_BED_LEVELING + +#ifdef MESH_BED_LEVELING + #include "mesh_bed_leveling.h" + #include "mesh_bed_calibration.h" +#endif + +#include "ultralcd.h" +#include "Configuration_prusa.h" +#include "planner.h" +#include "stepper.h" +#include "temperature.h" +#include "motion_control.h" +#include "cardreader.h" +#include "watchdog.h" +#include "ConfigurationStore.h" +#include "language.h" +#include "pins_arduino.h" +#include "math.h" +#include "util.h" + +#include + +#include "Dcodes.h" + + +#ifdef SWSPI +#include "swspi.h" +#endif //SWSPI + +#ifdef SWI2C +#include "swi2c.h" +#endif //SWI2C + +#ifdef PAT9125 +#include "pat9125.h" +#include "fsensor.h" +#endif //PAT9125 + +#ifdef TMC2130 +#include "tmc2130.h" +#endif //TMC2130 + + +#ifdef BLINKM +#include "BlinkM.h" +#include "Wire.h" +#endif + +#ifdef ULTRALCD +#include "ultralcd.h" +#endif + +#if NUM_SERVOS > 0 +#include "Servo.h" +#endif + +#if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1 +#include +#endif + +#define VERSION_STRING "1.0.2" + + +#include "ultralcd.h" + +#include "cmdqueue.h" + +// Macros for bit masks +#define BIT(b) (1<<(b)) +#define TEST(n,b) (((n)&BIT(b))!=0) +#define SET_BIT(n,b,value) (n) ^= ((-value)^(n)) & (BIT(b)) + +//Macro for print fan speed +#define FAN_PULSE_WIDTH_LIMIT ((fanSpeed > 100) ? 3 : 4) //time in ms + +// look here for descriptions of G-codes: http://linuxcnc.org/handbook/gcode/g-code.html +// http://objects.reprap.org/wiki/Mendel_User_Manual:_RepRapGCodes + +//Implemented Codes +//------------------- + +// PRUSA CODES +// P F - Returns FW versions +// P R - Returns revision of printer + +// G0 -> G1 +// G1 - Coordinated Movement X Y Z E +// G2 - CW ARC +// G3 - CCW ARC +// G4 - Dwell S or P +// G10 - retract filament according to settings of M207 +// G11 - retract recover filament according to settings of M208 +// G28 - Home all Axis +// G29 - Detailed Z-Probe, probes the bed at 3 or more points. Will fail if you haven't homed yet. +// G30 - Single Z Probe, probes bed at current XY location. +// G31 - Dock sled (Z_PROBE_SLED only) +// G32 - Undock sled (Z_PROBE_SLED only) +// G80 - Automatic mesh bed leveling +// G81 - Print bed profile +// G90 - Use Absolute Coordinates +// G91 - Use Relative Coordinates +// G92 - Set current position to coordinates given + +// M Codes +// M0 - Unconditional stop - Wait for user to press a button on the LCD (Only if ULTRA_LCD is enabled) +// M1 - Same as M0 +// M17 - Enable/Power all stepper motors +// M18 - Disable all stepper motors; same as M84 +// M20 - List SD card +// M21 - Init SD card +// M22 - Release SD card +// M23 - Select SD file (M23 filename.g) +// M24 - Start/resume SD print +// M25 - Pause SD print +// M26 - Set SD position in bytes (M26 S12345) +// M27 - Report SD print status +// M28 - Start SD write (M28 filename.g) +// M29 - Stop SD write +// M30 - Delete file from SD (M30 filename.g) +// M31 - Output time since last M109 or SD card start to serial +// M32 - Select file and start SD print (Can be used _while_ printing from SD card files): +// syntax "M32 /path/filename#", or "M32 S !filename#" +// Call gcode file : "M32 P !filename#" and return to caller file after finishing (similar to #include). +// The '#' is necessary when calling from within sd files, as it stops buffer prereading +// M42 - Change pin status via gcode Use M42 Px Sy to set pin x to value y, when omitting Px the onboard led will be used. +// M80 - Turn on Power Supply +// M81 - Turn off Power Supply +// M82 - Set E codes absolute (default) +// M83 - Set E codes relative while in Absolute Coordinates (G90) mode +// M84 - Disable steppers until next move, +// or use S to specify an inactivity timeout, after which the steppers will be disabled. S0 to disable the timeout. +// M85 - Set inactivity shutdown timer with parameter S. To disable set zero (default) +// M92 - Set axis_steps_per_unit - same syntax as G92 +// M104 - Set extruder target temp +// M105 - Read current temp +// M106 - Fan on +// M107 - Fan off +// M109 - Sxxx Wait for extruder current temp to reach target temp. Waits only when heating +// Rxxx Wait for extruder current temp to reach target temp. Waits when heating and cooling +// IF AUTOTEMP is enabled, S B F. Exit autotemp by any M109 without F +// M112 - Emergency stop +// M114 - Output current position to serial port +// M115 - Capabilities string +// M117 - display message +// M119 - Output Endstop status to serial port +// M126 - Solenoid Air Valve Open (BariCUDA support by jmil) +// M127 - Solenoid Air Valve Closed (BariCUDA vent to atmospheric pressure by jmil) +// M128 - EtoP Open (BariCUDA EtoP = electricity to air pressure transducer by jmil) +// M129 - EtoP Closed (BariCUDA EtoP = electricity to air pressure transducer by jmil) +// M140 - Set bed target temp +// M150 - Set BlinkM Color Output R: Red<0-255> U(!): Green<0-255> B: Blue<0-255> over i2c, G for green does not work. +// M190 - Sxxx Wait for bed current temp to reach target temp. Waits only when heating +// Rxxx Wait for bed current temp to reach target temp. Waits when heating and cooling +// M200 D- set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters). +// M201 - Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000) +// M202 - Set max acceleration in units/s^2 for travel moves (M202 X1000 Y1000) Unused in Marlin!! +// M203 - Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in mm/sec +// M204 - Set default acceleration: S normal moves T filament only moves (M204 S3000 T7000) in mm/sec^2 also sets minimum segment time in ms (B20000) to prevent buffer under-runs and M20 minimum feedrate +// M205 - advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk, E=maximum E jerk +// M206 - set additional homing offset +// M207 - set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop], stays in mm regardless of M200 setting +// M208 - set recover=unretract length S[positive mm surplus to the M207 S*] F[feedrate mm/sec] +// M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction. +// M218 - set hotend offset (in mm): T X Y +// M220 S- set speed factor override percentage +// M221 S- set extrude factor override percentage +// M226 P S- Wait until the specified pin reaches the state required +// M240 - Trigger a camera to take a photograph +// M250 - Set LCD contrast C (value 0..63) +// M280 - set servo position absolute. P: servo index, S: angle or microseconds +// M300 - Play beep sound S P +// M301 - Set PID parameters P I and D +// M302 - Allow cold extrudes, or set the minimum extrude S. +// M303 - PID relay autotune S sets the target temperature. (default target temperature = 150C) +// M304 - Set bed PID parameters P I and D +// M400 - Finish all moves +// M401 - Lower z-probe if present +// M402 - Raise z-probe if present +// M404 - N Enter the nominal filament width (3mm, 1.75mm ) or will display nominal filament width without parameters +// M405 - Turn on Filament Sensor extrusion control. Optional D to set delay in centimeters between sensor and extruder +// M406 - Turn off Filament Sensor extrusion control +// M407 - Displays measured filament diameter +// M500 - stores parameters in EEPROM +// M501 - reads parameters from EEPROM (if you need reset them after you changed them temporarily). +// M502 - reverts to the default "factory settings". You still need to store them in EEPROM afterwards if you want to. +// M503 - print the current settings (from memory not from EEPROM) +// M509 - force language selection on next restart +// M540 - Use S[0|1] to enable or disable the stop SD card print on endstop hit (requires ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED) +// M600 - Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal] +// M605 - Set dual x-carriage movement mode: S [ X R ] +// M900 - Set LIN_ADVANCE options, if enabled. See Configuration_adv.h for details. +// M907 - Set digital trimpot motor current using axis codes. +// M908 - Control digital trimpot directly. +// M350 - Set microstepping mode. +// M351 - Toggle MS1 MS2 pins directly. + +// M928 - Start SD logging (M928 filename.g) - ended by M29 +// M999 - Restart after being stopped by error + +//Stepper Movement Variables + +//=========================================================================== +//=============================imported variables============================ +//=========================================================================== + + +//=========================================================================== +//=============================public variables============================= +//=========================================================================== +#ifdef SDSUPPORT +CardReader card; +#endif + +unsigned long PingTime = millis(); +union Data +{ +byte b[2]; +int value; +}; + +float homing_feedrate[] = HOMING_FEEDRATE; +// Currently only the extruder axis may be switched to a relative mode. +// Other axes are always absolute or relative based on the common relative_mode flag. +bool axis_relative_modes[] = AXIS_RELATIVE_MODES; +int feedmultiply=100; //100->1 200->2 +int saved_feedmultiply; +int extrudemultiply=100; //100->1 200->2 +int extruder_multiply[EXTRUDERS] = {100 + #if EXTRUDERS > 1 + , 100 + #if EXTRUDERS > 2 + , 100 + #endif + #endif +}; + +int bowden_length[4]; + +bool is_usb_printing = false; +bool homing_flag = false; + +bool temp_cal_active = false; + +unsigned long kicktime = millis()+100000; + +unsigned int usb_printing_counter; + +int lcd_change_fil_state = 0; + +int feedmultiplyBckp = 100; +float HotendTempBckp = 0; +int fanSpeedBckp = 0; +float pause_lastpos[4]; +unsigned long pause_time = 0; +unsigned long start_pause_print = millis(); +unsigned long t_fan_rising_edge = millis(); + +unsigned long load_filament_time; + +bool mesh_bed_leveling_flag = false; +bool mesh_bed_run_from_menu = false; + +unsigned char lang_selected = 0; +int8_t FarmMode = 0; + +bool prusa_sd_card_upload = false; + +unsigned int status_number = 0; + +unsigned long total_filament_used; +unsigned int heating_status; +unsigned int heating_status_counter; +bool custom_message; +bool loading_flag = false; +unsigned int custom_message_type; +unsigned int custom_message_state; +char snmm_filaments_used = 0; + +float distance_from_min[3]; +float angleDiff; + +bool fan_state[2]; +int fan_edge_counter[2]; +int fan_speed[2]; + + +bool volumetric_enabled = false; +float filament_size[EXTRUDERS] = { DEFAULT_NOMINAL_FILAMENT_DIA + #if EXTRUDERS > 1 + , DEFAULT_NOMINAL_FILAMENT_DIA + #if EXTRUDERS > 2 + , DEFAULT_NOMINAL_FILAMENT_DIA + #endif + #endif +}; +float volumetric_multiplier[EXTRUDERS] = {1.0 + #if EXTRUDERS > 1 + , 1.0 + #if EXTRUDERS > 2 + , 1.0 + #endif + #endif +}; +float current_position[NUM_AXIS] = { 0.0, 0.0, 0.0, 0.0 }; +float add_homing[3]={0,0,0}; + +float min_pos[3] = { X_MIN_POS, Y_MIN_POS, Z_MIN_POS }; +float max_pos[3] = { X_MAX_POS, Y_MAX_POS, Z_MAX_POS }; +bool axis_known_position[3] = {false, false, false}; +float zprobe_zoffset; + +// Extruder offset +#if EXTRUDERS > 1 + #define NUM_EXTRUDER_OFFSETS 2 // only in XY plane +float extruder_offset[NUM_EXTRUDER_OFFSETS][EXTRUDERS] = { +#if defined(EXTRUDER_OFFSET_X) && defined(EXTRUDER_OFFSET_Y) + EXTRUDER_OFFSET_X, EXTRUDER_OFFSET_Y +#endif +}; +#endif + +uint8_t active_extruder = 0; +int fanSpeed=0; + +#ifdef FWRETRACT + bool autoretract_enabled=false; + bool retracted[EXTRUDERS]={false + #if EXTRUDERS > 1 + , false + #if EXTRUDERS > 2 + , false + #endif + #endif + }; + bool retracted_swap[EXTRUDERS]={false + #if EXTRUDERS > 1 + , false + #if EXTRUDERS > 2 + , false + #endif + #endif + }; + + float retract_length = RETRACT_LENGTH; + float retract_length_swap = RETRACT_LENGTH_SWAP; + float retract_feedrate = RETRACT_FEEDRATE; + float retract_zlift = RETRACT_ZLIFT; + float retract_recover_length = RETRACT_RECOVER_LENGTH; + float retract_recover_length_swap = RETRACT_RECOVER_LENGTH_SWAP; + float retract_recover_feedrate = RETRACT_RECOVER_FEEDRATE; +#endif + +#ifdef ULTIPANEL + #ifdef PS_DEFAULT_OFF + bool powersupply = false; + #else + bool powersupply = true; + #endif +#endif + +bool cancel_heatup = false ; + +#ifdef FILAMENT_SENSOR + //Variables for Filament Sensor input + float filament_width_nominal=DEFAULT_NOMINAL_FILAMENT_DIA; //Set nominal filament width, can be changed with M404 + bool filament_sensor=false; //M405 turns on filament_sensor control, M406 turns it off + float filament_width_meas=DEFAULT_MEASURED_FILAMENT_DIA; //Stores the measured filament diameter + signed char measurement_delay[MAX_MEASUREMENT_DELAY+1]; //ring buffer to delay measurement store extruder factor after subtracting 100 + int delay_index1=0; //index into ring buffer + int delay_index2=-1; //index into ring buffer - set to -1 on startup to indicate ring buffer needs to be initialized + float delay_dist=0; //delay distance counter + int meas_delay_cm = MEASUREMENT_DELAY_CM; //distance delay setting +#endif + +const char errormagic[] PROGMEM = "Error:"; +const char echomagic[] PROGMEM = "echo:"; + +//=========================================================================== +//=============================Private Variables============================= +//=========================================================================== +const char axis_codes[NUM_AXIS] = {'X', 'Y', 'Z', 'E'}; +float destination[NUM_AXIS] = { 0.0, 0.0, 0.0, 0.0}; + +static float delta[3] = {0.0, 0.0, 0.0}; + +// For tracing an arc +static float offset[3] = {0.0, 0.0, 0.0}; +static float feedrate = 1500.0, next_feedrate, saved_feedrate; + +// Determines Absolute or Relative Coordinates. +// Also there is bool axis_relative_modes[] per axis flag. +static bool relative_mode = false; + +const int sensitive_pins[] = SENSITIVE_PINS; // Sensitive pin list for M42 + +//static float tt = 0; +//static float bt = 0; + +//Inactivity shutdown variables +static unsigned long previous_millis_cmd = 0; +unsigned long max_inactive_time = 0; +static unsigned long stepper_inactive_time = DEFAULT_STEPPER_DEACTIVE_TIME*1000l; + +unsigned long starttime=0; +unsigned long stoptime=0; +unsigned long _usb_timer = 0; + +static uint8_t tmp_extruder; + +bool extruder_under_pressure = true; + + +bool Stopped=false; + +#if NUM_SERVOS > 0 + Servo servos[NUM_SERVOS]; +#endif + +bool CooldownNoWait = true; +bool target_direction; + +//Insert variables if CHDK is defined +#ifdef CHDK +unsigned long chdkHigh = 0; +boolean chdkActive = false; +#endif + +//=========================================================================== +//=============================Routines====================================== +//=========================================================================== + +void get_arc_coordinates(); +bool setTargetedHotend(int code); + +void serial_echopair_P(const char *s_P, float v) + { serialprintPGM(s_P); SERIAL_ECHO(v); } +void serial_echopair_P(const char *s_P, double v) + { serialprintPGM(s_P); SERIAL_ECHO(v); } +void serial_echopair_P(const char *s_P, unsigned long v) + { serialprintPGM(s_P); SERIAL_ECHO(v); } + +#ifdef SDSUPPORT + #include "SdFatUtil.h" + int freeMemory() { return SdFatUtil::FreeRam(); } +#else + extern "C" { + extern unsigned int __bss_end; + extern unsigned int __heap_start; + extern void *__brkval; + + int freeMemory() { + int free_memory; + + if ((int)__brkval == 0) + free_memory = ((int)&free_memory) - ((int)&__bss_end); + else + free_memory = ((int)&free_memory) - ((int)__brkval); + + return free_memory; + } + } +#endif //!SDSUPPORT + +void setup_killpin() +{ + #if defined(KILL_PIN) && KILL_PIN > -1 + SET_INPUT(KILL_PIN); + WRITE(KILL_PIN,HIGH); + #endif +} + +// Set home pin +void setup_homepin(void) +{ +#if defined(HOME_PIN) && HOME_PIN > -1 + SET_INPUT(HOME_PIN); + WRITE(HOME_PIN,HIGH); +#endif +} + +void setup_photpin() +{ + #if defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1 + SET_OUTPUT(PHOTOGRAPH_PIN); + WRITE(PHOTOGRAPH_PIN, LOW); + #endif +} + +void setup_powerhold() +{ + #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1 + SET_OUTPUT(SUICIDE_PIN); + WRITE(SUICIDE_PIN, HIGH); + #endif + #if defined(PS_ON_PIN) && PS_ON_PIN > -1 + SET_OUTPUT(PS_ON_PIN); + #if defined(PS_DEFAULT_OFF) + WRITE(PS_ON_PIN, PS_ON_ASLEEP); + #else + WRITE(PS_ON_PIN, PS_ON_AWAKE); + #endif + #endif +} + +void suicide() +{ + #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1 + SET_OUTPUT(SUICIDE_PIN); + WRITE(SUICIDE_PIN, LOW); + #endif +} + +void servo_init() +{ + #if (NUM_SERVOS >= 1) && defined(SERVO0_PIN) && (SERVO0_PIN > -1) + servos[0].attach(SERVO0_PIN); + #endif + #if (NUM_SERVOS >= 2) && defined(SERVO1_PIN) && (SERVO1_PIN > -1) + servos[1].attach(SERVO1_PIN); + #endif + #if (NUM_SERVOS >= 3) && defined(SERVO2_PIN) && (SERVO2_PIN > -1) + servos[2].attach(SERVO2_PIN); + #endif + #if (NUM_SERVOS >= 4) && defined(SERVO3_PIN) && (SERVO3_PIN > -1) + servos[3].attach(SERVO3_PIN); + #endif + #if (NUM_SERVOS >= 5) + #error "TODO: enter initalisation code for more servos" + #endif +} + +static void lcd_language_menu(); + +void stop_and_save_print_to_ram(float z_move, float e_move); +void restore_print_from_ram_and_continue(float e_move); + +extern int8_t CrashDetectMenu; + + +void crashdet_enable() +{ + MYSERIAL.println("crashdet_enable"); + tmc2130_sg_stop_on_crash = true; + eeprom_update_byte((uint8_t*)EEPROM_CRASH_DET, 0xFF); + CrashDetectMenu = 1; + +} + +void crashdet_disable() +{ + MYSERIAL.println("crashdet_disable"); + tmc2130_sg_stop_on_crash = false; + eeprom_update_byte((uint8_t*)EEPROM_CRASH_DET, 0x00); + CrashDetectMenu = 0; +} + +void crashdet_stop_and_save_print() +{ + stop_and_save_print_to_ram(10, 0); //XY - no change, Z 10mm up, E - no change +} + +void crashdet_restore_print_and_continue() +{ + restore_print_from_ram_and_continue(0); //XYZ = orig, E - no change +// babystep_apply(); +} + + +void crashdet_stop_and_save_print2() +{ + cli(); + planner_abort_hard(); //abort printing + cmdqueue_reset(); //empty cmdqueue + card.sdprinting = false; + card.closefile(); + sei(); +} + + + +#ifdef MESH_BED_LEVELING + enum MeshLevelingState { MeshReport, MeshStart, MeshNext, MeshSet }; +#endif + + +// Factory reset function +// This function is used to erase parts or whole EEPROM memory which is used for storing calibration and and so on. +// Level input parameter sets depth of reset +// Quiet parameter masks all waitings for user interact. +int er_progress = 0; +void factory_reset(char level, bool quiet) +{ + lcd_implementation_clear(); + int cursor_pos = 0; + switch (level) { + + // Level 0: Language reset + case 0: + WRITE(BEEPER, HIGH); + _delay_ms(100); + WRITE(BEEPER, LOW); + + lcd_force_language_selection(); + break; + + //Level 1: Reset statistics + case 1: + WRITE(BEEPER, HIGH); + _delay_ms(100); + WRITE(BEEPER, LOW); + eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, 0); + eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, 0); + lcd_menu_statistics(); + + break; + + // Level 2: Prepare for shipping + case 2: + //lcd_printPGM(PSTR("Factory RESET")); + //lcd_print_at_PGM(1,2,PSTR("Shipping prep")); + + // Force language selection at the next boot up. + lcd_force_language_selection(); + // Force the "Follow calibration flow" message at the next boot up. + calibration_status_store(CALIBRATION_STATUS_Z_CALIBRATION); + farm_no = 0; + farm_mode == false; + eeprom_update_byte((uint8_t*)EEPROM_FARM_MODE, farm_mode); + EEPROM_save_B(EEPROM_FARM_NUMBER, &farm_no); + + WRITE(BEEPER, HIGH); + _delay_ms(100); + WRITE(BEEPER, LOW); + //_delay_ms(2000); + break; + + // Level 3: erase everything, whole EEPROM will be set to 0xFF + + case 3: + lcd_printPGM(PSTR("Factory RESET")); + lcd_print_at_PGM(1, 2, PSTR("ERASING all data")); + + WRITE(BEEPER, HIGH); + _delay_ms(100); + WRITE(BEEPER, LOW); + + er_progress = 0; + lcd_print_at_PGM(3, 3, PSTR(" ")); + lcd_implementation_print_at(3, 3, er_progress); + + // Erase EEPROM + for (int i = 0; i < 4096; i++) { + eeprom_write_byte((uint8_t*)i, 0xFF); + + if (i % 41 == 0) { + er_progress++; + lcd_print_at_PGM(3, 3, PSTR(" ")); + lcd_implementation_print_at(3, 3, er_progress); + lcd_printPGM(PSTR("%")); + } + + } + + + break; + case 4: + bowden_menu(); + break; + + default: + break; + } + + +} + + +// "Setup" function is called by the Arduino framework on startup. +// Before startup, the Timers-functions (PWM)/Analog RW and HardwareSerial provided by the Arduino-code +// are initialized by the main() routine provided by the Arduino framework. +void setup() +{ + lcd_init(); + lcd_print_at_PGM(0, 1, PSTR(" Original Prusa ")); + lcd_print_at_PGM(0, 2, PSTR(" 3D Printers ")); + setup_killpin(); + setup_powerhold(); + farm_mode = eeprom_read_byte((uint8_t*)EEPROM_FARM_MODE); + EEPROM_read_B(EEPROM_FARM_NUMBER, &farm_no); + if ((farm_mode == 0xFF && farm_no == 0) || (farm_no == 0xFFFF)) farm_mode = false; //if farm_mode has not been stored to eeprom yet and farm number is set to zero or EEPROM is fresh, deactivate farm mode + if (farm_no == 0xFFFF) farm_no = 0; + if (farm_mode) + { + prusa_statistics(8); + selectedSerialPort = 1; + } + else + selectedSerialPort = 0; + MYSERIAL.begin(BAUDRATE); + SERIAL_PROTOCOLLNPGM("start"); + SERIAL_ECHO_START; + +#if 0 + SERIAL_ECHOLN("Reading eeprom from 0 to 100: start"); + for (int i = 0; i < 4096; ++i) { + int b = eeprom_read_byte((unsigned char*)i); + if (b != 255) { + SERIAL_ECHO(i); + SERIAL_ECHO(":"); + SERIAL_ECHO(b); + SERIAL_ECHOLN(""); + } + } + SERIAL_ECHOLN("Reading eeprom from 0 to 100: done"); +#endif + + // Check startup - does nothing if bootloader sets MCUSR to 0 + byte mcu = MCUSR; + if (mcu & 1) SERIAL_ECHOLNRPGM(MSG_POWERUP); + if (mcu & 2) SERIAL_ECHOLNRPGM(MSG_EXTERNAL_RESET); + if (mcu & 4) SERIAL_ECHOLNRPGM(MSG_BROWNOUT_RESET); + if (mcu & 8) SERIAL_ECHOLNRPGM(MSG_WATCHDOG_RESET); + if (mcu & 32) SERIAL_ECHOLNRPGM(MSG_SOFTWARE_RESET); + MCUSR = 0; + + //SERIAL_ECHORPGM(MSG_MARLIN); + //SERIAL_ECHOLNRPGM(VERSION_STRING); + +#ifdef STRING_VERSION_CONFIG_H +#ifdef STRING_CONFIG_H_AUTHOR + SERIAL_ECHO_START; + SERIAL_ECHORPGM(MSG_CONFIGURATION_VER); + SERIAL_ECHOPGM(STRING_VERSION_CONFIG_H); + SERIAL_ECHORPGM(MSG_AUTHOR); + SERIAL_ECHOLNPGM(STRING_CONFIG_H_AUTHOR); + SERIAL_ECHOPGM("Compiled: "); + SERIAL_ECHOLNPGM(__DATE__); +#endif +#endif + + SERIAL_ECHO_START; + SERIAL_ECHORPGM(MSG_FREE_MEMORY); + SERIAL_ECHO(freeMemory()); + SERIAL_ECHORPGM(MSG_PLANNER_BUFFER_BYTES); + SERIAL_ECHOLN((int)sizeof(block_t)*BLOCK_BUFFER_SIZE); + //lcd_update_enable(false); // why do we need this?? - andre + // loads data from EEPROM if available else uses defaults (and resets step acceleration rate) + Config_RetrieveSettings(EEPROM_OFFSET); + SdFatUtil::set_stack_guard(); //writes magic number at the end of static variables to protect against overwriting static memory by stack + tp_init(); // Initialize temperature loop + plan_init(); // Initialize planner; + watchdog_init(); + +#ifdef TMC2130 + uint8_t silentMode = eeprom_read_byte((uint8_t*)EEPROM_SILENT); + tmc2130_mode = silentMode?TMC2130_MODE_SILENT:TMC2130_MODE_NORMAL; + uint8_t crashdet = eeprom_read_byte((uint8_t*)EEPROM_CRASH_DET); + if (crashdet) + { + crashdet_enable(); + MYSERIAL.println("CrashDetect ENABLED!"); + } + else + { + crashdet_disable(); + MYSERIAL.println("CrashDetect DISABLED"); + } + +#endif //TMC2130 + +#ifdef PAT9125 + MYSERIAL.print("PAT9125_init:"); + int pat9125 = pat9125_init(200, 200); + MYSERIAL.println(pat9125); + uint8_t fsensor = eeprom_read_byte((uint8_t*)EEPROM_FSENSOR); + if (!pat9125) fsensor = 0; //disable sensor + if (fsensor) + { + fsensor_enable(); + MYSERIAL.println("Filament Sensor ENABLED!"); + } + else + { + fsensor_disable(); + MYSERIAL.println("Filament Sensor DISABLED"); + } + +#endif //PAT9125 + + st_init(); // Initialize stepper, this enables interrupts! + + setup_photpin(); + lcd_print_at_PGM(0, 1, PSTR(" Original Prusa ")); // we need to do this again for some reason, no time to research + lcd_print_at_PGM(0, 2, PSTR(" 3D Printers ")); + servo_init(); + // Reset the machine correction matrix. + // It does not make sense to load the correction matrix until the machine is homed. + world2machine_reset(); + + if (!READ(BTN_ENC)) + { + _delay_ms(1000); + if (!READ(BTN_ENC)) + { + lcd_implementation_clear(); + + + lcd_printPGM(PSTR("Factory RESET")); + + + SET_OUTPUT(BEEPER); + WRITE(BEEPER, HIGH); + + while (!READ(BTN_ENC)); + + WRITE(BEEPER, LOW); + + + + _delay_ms(2000); + + char level = reset_menu(); + factory_reset(level, false); + + switch (level) { + case 0: _delay_ms(0); break; + case 1: _delay_ms(0); break; + case 2: _delay_ms(0); break; + case 3: _delay_ms(0); break; + } + // _delay_ms(100); + /* + #ifdef MESH_BED_LEVELING + _delay_ms(2000); + + if (!READ(BTN_ENC)) + { + WRITE(BEEPER, HIGH); + _delay_ms(100); + WRITE(BEEPER, LOW); + _delay_ms(200); + WRITE(BEEPER, HIGH); + _delay_ms(100); + WRITE(BEEPER, LOW); + + int _z = 0; + calibration_status_store(CALIBRATION_STATUS_CALIBRATED); + EEPROM_save_B(EEPROM_BABYSTEP_X, &_z); + EEPROM_save_B(EEPROM_BABYSTEP_Y, &_z); + EEPROM_save_B(EEPROM_BABYSTEP_Z, &_z); + } + else + { + + WRITE(BEEPER, HIGH); + _delay_ms(100); + WRITE(BEEPER, LOW); + } + #endif // mesh */ + + } + } + else + { + //_delay_ms(1000); // wait 1sec to display the splash screen // what's this and why do we need it?? - andre + } + + + + +#if defined(CONTROLLERFAN_PIN) && (CONTROLLERFAN_PIN > -1) + SET_OUTPUT(CONTROLLERFAN_PIN); //Set pin used for driver cooling fan +#endif + +#if defined(LCD_PWM_PIN) && (LCD_PWM_PIN > -1) + SET_OUTPUT(LCD_PWM_PIN); //Set pin used for driver cooling fan +#endif + +#ifdef DIGIPOT_I2C + digipot_i2c_init(); +#endif + setup_homepin(); + + if (1) { + SERIAL_ECHOPGM("initial zsteps on power up: "); MYSERIAL.println(tmc2130_rd_MSCNT(Z_TMC2130_CS)); + // try to run to zero phase before powering the Z motor. + // Move in negative direction + WRITE(Z_DIR_PIN,INVERT_Z_DIR); + // Round the current micro-micro steps to micro steps. + for (uint16_t phase = (tmc2130_rd_MSCNT(Z_TMC2130_CS) + 8) >> 4; phase > 0; -- phase) { + // Until the phase counter is reset to zero. + WRITE(Z_STEP_PIN, !INVERT_Z_STEP_PIN); + delay(2); + WRITE(Z_STEP_PIN, INVERT_Z_STEP_PIN); + delay(2); + } + SERIAL_ECHOPGM("initial zsteps after reset: "); MYSERIAL.println(tmc2130_rd_MSCNT(Z_TMC2130_CS)); + } + +#if defined(Z_AXIS_ALWAYS_ON) + enable_z(); +#endif + farm_mode = eeprom_read_byte((uint8_t*)EEPROM_FARM_MODE); + EEPROM_read_B(EEPROM_FARM_NUMBER, &farm_no); + if ((farm_mode == 0xFF && farm_no == 0) || (farm_no == 0xFFFF)) farm_mode = false; //if farm_mode has not been stored to eeprom yet and farm number is set to zero or EEPROM is fresh, deactivate farm mode + if (farm_no == 0xFFFF) farm_no = 0; + if (farm_mode) + { + prusa_statistics(8); + } + + // Enable Toshiba FlashAir SD card / WiFi enahanced card. + card.ToshibaFlashAir_enable(eeprom_read_byte((unsigned char*)EEPROM_TOSHIBA_FLASH_AIR_COMPATIBLITY) == 1); + // Force SD card update. Otherwise the SD card update is done from loop() on card.checkautostart(false), + // but this times out if a blocking dialog is shown in setup(). + card.initsd(); + + if (eeprom_read_dword((uint32_t*)(EEPROM_TOP - 4)) == 0x0ffffffff && + eeprom_read_dword((uint32_t*)(EEPROM_TOP - 8)) == 0x0ffffffff && + eeprom_read_dword((uint32_t*)(EEPROM_TOP - 12)) == 0x0ffffffff) { + // Maiden startup. The firmware has been loaded and first started on a virgin RAMBo board, + // where all the EEPROM entries are set to 0x0ff. + // Once a firmware boots up, it forces at least a language selection, which changes + // EEPROM_LANG to number lower than 0x0ff. + // 1) Set a high power mode. + eeprom_write_byte((uint8_t*)EEPROM_SILENT, 0); + } +#ifdef SNMM + if (eeprom_read_dword((uint32_t*)EEPROM_BOWDEN_LENGTH) == 0x0ffffffff) { //bowden length used for SNMM + int _z = BOWDEN_LENGTH; + for(int i = 0; i<4; i++) EEPROM_save_B(EEPROM_BOWDEN_LENGTH + i * 2, &_z); + } +#endif + + // In the future, somewhere here would one compare the current firmware version against the firmware version stored in the EEPROM. + // If they differ, an update procedure may need to be performed. At the end of this block, the current firmware version + // is being written into the EEPROM, so the update procedure will be triggered only once. + lang_selected = eeprom_read_byte((uint8_t*)EEPROM_LANG); + if (lang_selected >= LANG_NUM){ + lcd_mylang(); + } + + if (eeprom_read_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE) == 255) { + eeprom_write_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE, 0); + temp_cal_active = false; + } else temp_cal_active = eeprom_read_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE); + + if (eeprom_read_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA) == 255) { + eeprom_write_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 0); + } + if (eeprom_read_byte((uint8_t*)EEPROM_UVLO) == 255) { + eeprom_write_byte((uint8_t*)EEPROM_UVLO, 0); + } + + check_babystep(); //checking if Z babystep is in allowed range + setup_uvlo_interrupt(); + setup_fan_interrupt(); + fsensor_setup_interrupt(); + + +#ifndef DEBUG_DISABLE_STARTMSGS + + if (calibration_status() == CALIBRATION_STATUS_ASSEMBLED || + calibration_status() == CALIBRATION_STATUS_UNKNOWN) { + // Reset the babystepping values, so the printer will not move the Z axis up when the babystepping is enabled. + eeprom_update_word((uint16_t*)EEPROM_BABYSTEP_Z, 0); + // Show the message. + lcd_show_fullscreen_message_and_wait_P(MSG_FOLLOW_CALIBRATION_FLOW); + } else if (calibration_status() == CALIBRATION_STATUS_LIVE_ADJUST) { + // Show the message. + lcd_show_fullscreen_message_and_wait_P(MSG_BABYSTEP_Z_NOT_SET); + lcd_update_enable(true); + } else if (calibration_status() == CALIBRATION_STATUS_CALIBRATED && temp_cal_active == true && calibration_status_pinda() == false) { + lcd_show_fullscreen_message_and_wait_P(MSG_PINDA_NOT_CALIBRATED); + lcd_update_enable(true); + } else if (calibration_status() == CALIBRATION_STATUS_Z_CALIBRATION) { + // Show the message. + lcd_show_fullscreen_message_and_wait_P(MSG_FOLLOW_CALIBRATION_FLOW); + } +#endif //DEBUG_DISABLE_STARTMSGS + for (int i = 0; i<4; i++) EEPROM_read_B(EEPROM_BOWDEN_LENGTH + i * 2, &bowden_length[i]); + lcd_update_enable(true); + lcd_implementation_clear(); + lcd_update(2); + // Store the currently running firmware into an eeprom, + // so the next time the firmware gets updated, it will know from which version it has been updated. + update_current_firmware_version_to_eeprom(); + if (eeprom_read_byte((uint8_t*)EEPROM_UVLO) == 1) { //previous print was terminated by UVLO +/* + if (lcd_show_fullscreen_message_yes_no_and_wait_P(MSG_RECOVER_PRINT, false)) recover_print(); + else { + eeprom_update_byte((uint8_t*)EEPROM_UVLO, 0); + lcd_update_enable(true); + lcd_update(2); + lcd_setstatuspgm(WELCOME_MSG); + } +*/ + manage_heater(); // Update temperatures +#ifdef DEBUG_UVLO_AUTOMATIC_RECOVER + MYSERIAL.println("Power panic detected!"); + MYSERIAL.print("Current bed temp:"); + MYSERIAL.println(degBed()); + MYSERIAL.print("Saved bed temp:"); + MYSERIAL.println((float)eeprom_read_byte((uint8_t*)EEPROM_UVLO_TARGET_BED)); +#endif + if ( degBed() > ( (float)eeprom_read_byte((uint8_t*)EEPROM_UVLO_TARGET_BED) - AUTOMATIC_UVLO_BED_TEMP_OFFSET) ){ + #ifdef DEBUG_UVLO_AUTOMATIC_RECOVER + MYSERIAL.println("Automatic recovery!"); + #endif + recover_print(1); + } + else{ + #ifdef DEBUG_UVLO_AUTOMATIC_RECOVER + MYSERIAL.println("Normal recovery!"); + #endif + if ( lcd_show_fullscreen_message_yes_no_and_wait_P(MSG_RECOVER_PRINT, false) ) recover_print(0); + else { + eeprom_update_byte((uint8_t*)EEPROM_UVLO, 0); + lcd_update_enable(true); + lcd_update(2); + lcd_setstatuspgm(WELCOME_MSG); + } + + } + + } + +} + +void trace(); + +#define CHUNK_SIZE 64 // bytes +#define SAFETY_MARGIN 1 +char chunk[CHUNK_SIZE+SAFETY_MARGIN]; +int chunkHead = 0; + +int serial_read_stream() { + + setTargetHotend(0, 0); + setTargetBed(0); + + lcd_implementation_clear(); + lcd_printPGM(PSTR(" Upload in progress")); + + // first wait for how many bytes we will receive + uint32_t bytesToReceive; + + // receive the four bytes + char bytesToReceiveBuffer[4]; + for (int i=0; i<4; i++) { + int data; + while ((data = MYSERIAL.read()) == -1) {}; + bytesToReceiveBuffer[i] = data; + + } + + // make it a uint32 + memcpy(&bytesToReceive, &bytesToReceiveBuffer, 4); + + // we're ready, notify the sender + MYSERIAL.write('+'); + + // lock in the routine + uint32_t receivedBytes = 0; + while (prusa_sd_card_upload) { + int i; + for (i=0; i 0 && millis()-_usb_timer > 1000) + { + is_usb_printing = true; + usb_printing_counter--; + _usb_timer = millis(); + } + if (usb_printing_counter == 0) + { + is_usb_printing = false; + } + + if (prusa_sd_card_upload) + { + //we read byte-by byte + serial_read_stream(); + } else + { + + get_command(); + + #ifdef SDSUPPORT + card.checkautostart(false); + #endif + if(buflen) + { + cmdbuffer_front_already_processed = false; + #ifdef SDSUPPORT + if(card.saving) + { + // Saving a G-code file onto an SD-card is in progress. + // Saving starts with M28, saving until M29 is seen. + if(strstr_P(CMDBUFFER_CURRENT_STRING, PSTR("M29")) == NULL) { + card.write_command(CMDBUFFER_CURRENT_STRING); + if(card.logging) + process_commands(); + else + SERIAL_PROTOCOLLNRPGM(MSG_OK); + } else { + card.closefile(); + SERIAL_PROTOCOLLNRPGM(MSG_FILE_SAVED); + } + } else { + process_commands(); + } + #else + process_commands(); + #endif //SDSUPPORT + + if (! cmdbuffer_front_already_processed && buflen) + { + cli(); + union { + struct { + char lo; + char hi; + } lohi; + uint16_t value; + } sdlen; + sdlen.value = 0; + if (CMDBUFFER_CURRENT_TYPE == CMDBUFFER_CURRENT_TYPE_SDCARD) { + sdlen.lohi.lo = cmdbuffer[bufindr + 1]; + sdlen.lohi.hi = cmdbuffer[bufindr + 2]; + } + cmdqueue_pop_front(); + planner_add_sd_length(sdlen.value); + sei(); + } + } +} + //check heater every n milliseconds + manage_heater(); + isPrintPaused ? manage_inactivity(true) : manage_inactivity(false); + checkHitEndstops(); + lcd_update(); +#ifdef PAT9125 + fsensor_update(); +#endif //PAT9125 +#ifdef TMC2130 + tmc2130_check_overtemp(); + if (tmc2130_sg_crash) + { + tmc2130_sg_crash = false; +// crashdet_stop_and_save_print(); + enquecommand_P((PSTR("D999"))); + } +#endif //TMC2130 +} + +#define DEFINE_PGM_READ_ANY(type, reader) \ + static inline type pgm_read_any(const type *p) \ + { return pgm_read_##reader##_near(p); } + +DEFINE_PGM_READ_ANY(float, float); +DEFINE_PGM_READ_ANY(signed char, byte); + +#define XYZ_CONSTS_FROM_CONFIG(type, array, CONFIG) \ +static const PROGMEM type array##_P[3] = \ + { X_##CONFIG, Y_##CONFIG, Z_##CONFIG }; \ +static inline type array(int axis) \ + { return pgm_read_any(&array##_P[axis]); } \ +type array##_ext(int axis) \ + { return pgm_read_any(&array##_P[axis]); } + +XYZ_CONSTS_FROM_CONFIG(float, base_min_pos, MIN_POS); +XYZ_CONSTS_FROM_CONFIG(float, base_max_pos, MAX_POS); +XYZ_CONSTS_FROM_CONFIG(float, base_home_pos, HOME_POS); +XYZ_CONSTS_FROM_CONFIG(float, max_length, MAX_LENGTH); +XYZ_CONSTS_FROM_CONFIG(float, home_retract_mm, HOME_RETRACT_MM); +XYZ_CONSTS_FROM_CONFIG(signed char, home_dir, HOME_DIR); + +static void axis_is_at_home(int axis) { + current_position[axis] = base_home_pos(axis) + add_homing[axis]; + min_pos[axis] = base_min_pos(axis) + add_homing[axis]; + max_pos[axis] = base_max_pos(axis) + add_homing[axis]; +} + + +inline void set_current_to_destination() { memcpy(current_position, destination, sizeof(current_position)); } +inline void set_destination_to_current() { memcpy(destination, current_position, sizeof(destination)); } + + +static void setup_for_endstop_move(bool enable_endstops_now = true) { + saved_feedrate = feedrate; + saved_feedmultiply = feedmultiply; + feedmultiply = 100; + previous_millis_cmd = millis(); + + enable_endstops(enable_endstops_now); +} + +static void clean_up_after_endstop_move() { +#ifdef ENDSTOPS_ONLY_FOR_HOMING + enable_endstops(false); +#endif + + feedrate = saved_feedrate; + feedmultiply = saved_feedmultiply; + previous_millis_cmd = millis(); +} + + + +#ifdef ENABLE_AUTO_BED_LEVELING +#ifdef AUTO_BED_LEVELING_GRID +static void set_bed_level_equation_lsq(double *plane_equation_coefficients) +{ + vector_3 planeNormal = vector_3(-plane_equation_coefficients[0], -plane_equation_coefficients[1], 1); + planeNormal.debug("planeNormal"); + plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal); + //bedLevel.debug("bedLevel"); + + //plan_bed_level_matrix.debug("bed level before"); + //vector_3 uncorrected_position = plan_get_position_mm(); + //uncorrected_position.debug("position before"); + + vector_3 corrected_position = plan_get_position(); +// corrected_position.debug("position after"); + current_position[X_AXIS] = corrected_position.x; + current_position[Y_AXIS] = corrected_position.y; + current_position[Z_AXIS] = corrected_position.z; + + // put the bed at 0 so we don't go below it. + current_position[Z_AXIS] = zprobe_zoffset; // in the lsq we reach here after raising the extruder due to the loop structure + + plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]); +} + +#else // not AUTO_BED_LEVELING_GRID + +static void set_bed_level_equation_3pts(float z_at_pt_1, float z_at_pt_2, float z_at_pt_3) { + + plan_bed_level_matrix.set_to_identity(); + + vector_3 pt1 = vector_3(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, z_at_pt_1); + vector_3 pt2 = vector_3(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, z_at_pt_2); + vector_3 pt3 = vector_3(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, z_at_pt_3); + + vector_3 from_2_to_1 = (pt1 - pt2).get_normal(); + vector_3 from_2_to_3 = (pt3 - pt2).get_normal(); + vector_3 planeNormal = vector_3::cross(from_2_to_1, from_2_to_3).get_normal(); + planeNormal = vector_3(planeNormal.x, planeNormal.y, abs(planeNormal.z)); + + plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal); + + vector_3 corrected_position = plan_get_position(); + current_position[X_AXIS] = corrected_position.x; + current_position[Y_AXIS] = corrected_position.y; + current_position[Z_AXIS] = corrected_position.z; + + // put the bed at 0 so we don't go below it. + current_position[Z_AXIS] = zprobe_zoffset; + + plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]); + +} + +#endif // AUTO_BED_LEVELING_GRID + +static void run_z_probe() { + plan_bed_level_matrix.set_to_identity(); + feedrate = homing_feedrate[Z_AXIS]; + + // move down until you find the bed + float zPosition = -10; + plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder); + st_synchronize(); + + // we have to let the planner know where we are right now as it is not where we said to go. + zPosition = st_get_position_mm(Z_AXIS); + plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS]); + + // move up the retract distance + zPosition += home_retract_mm(Z_AXIS); + plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder); + st_synchronize(); + + // move back down slowly to find bed + feedrate = homing_feedrate[Z_AXIS]/4; + zPosition -= home_retract_mm(Z_AXIS) * 2; + plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder); + st_synchronize(); + + current_position[Z_AXIS] = st_get_position_mm(Z_AXIS); + // make sure the planner knows where we are as it may be a bit different than we last said to move to + plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]); +} + +static void do_blocking_move_to(float x, float y, float z) { + float oldFeedRate = feedrate; + + feedrate = homing_feedrate[Z_AXIS]; + + current_position[Z_AXIS] = z; + plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate/60, active_extruder); + st_synchronize(); + + feedrate = XY_TRAVEL_SPEED; + + current_position[X_AXIS] = x; + current_position[Y_AXIS] = y; + plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate/60, active_extruder); + st_synchronize(); + + feedrate = oldFeedRate; +} + +static void do_blocking_move_relative(float offset_x, float offset_y, float offset_z) { + do_blocking_move_to(current_position[X_AXIS] + offset_x, current_position[Y_AXIS] + offset_y, current_position[Z_AXIS] + offset_z); +} + + +/// Probe bed height at position (x,y), returns the measured z value +static float probe_pt(float x, float y, float z_before) { + // move to right place + do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], z_before); + do_blocking_move_to(x - X_PROBE_OFFSET_FROM_EXTRUDER, y - Y_PROBE_OFFSET_FROM_EXTRUDER, current_position[Z_AXIS]); + + run_z_probe(); + float measured_z = current_position[Z_AXIS]; + + SERIAL_PROTOCOLRPGM(MSG_BED); + SERIAL_PROTOCOLPGM(" x: "); + SERIAL_PROTOCOL(x); + SERIAL_PROTOCOLPGM(" y: "); + SERIAL_PROTOCOL(y); + SERIAL_PROTOCOLPGM(" z: "); + SERIAL_PROTOCOL(measured_z); + SERIAL_PROTOCOLPGM("\n"); + return measured_z; +} + +#endif // #ifdef ENABLE_AUTO_BED_LEVELING + + +#ifdef LIN_ADVANCE + /** + * M900: Set and/or Get advance K factor and WH/D ratio + * + * K Set advance K factor + * R Set ratio directly (overrides WH/D) + * W H D Set ratio from WH/D + */ +inline void gcode_M900() { + st_synchronize(); + + const float newK = code_seen('K') ? code_value_float() : -1; + if (newK >= 0) extruder_advance_k = newK; + + float newR = code_seen('R') ? code_value_float() : -1; + if (newR < 0) { + const float newD = code_seen('D') ? code_value_float() : -1, + newW = code_seen('W') ? code_value_float() : -1, + newH = code_seen('H') ? code_value_float() : -1; + if (newD >= 0 && newW >= 0 && newH >= 0) + newR = newD ? (newW * newH) / (sq(newD * 0.5) * M_PI) : 0; + } + if (newR >= 0) advance_ed_ratio = newR; + + SERIAL_ECHO_START; + SERIAL_ECHOPGM("Advance K="); + SERIAL_ECHOLN(extruder_advance_k); + SERIAL_ECHOPGM(" E/D="); + const float ratio = advance_ed_ratio; + if (ratio) SERIAL_ECHOLN(ratio); else SERIAL_ECHOLNPGM("Auto"); + } +#endif // LIN_ADVANCE + +#ifdef TMC2130 +bool calibrate_z_auto() +{ + lcd_display_message_fullscreen_P(MSG_CALIBRATE_Z_AUTO); + bool endstops_enabled = enable_endstops(true); + int axis_up_dir = -home_dir(Z_AXIS); + tmc2130_home_enter(Z_AXIS_MASK); + current_position[Z_AXIS] = 0; + plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]); + set_destination_to_current(); + destination[Z_AXIS] += (1.1 * max_length(Z_AXIS) * axis_up_dir); + feedrate = homing_feedrate[Z_AXIS]; + plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder); + tmc2130_home_restart(Z_AXIS); + st_synchronize(); +// current_position[axis] = 0; +// plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]); + tmc2130_home_exit(); + enable_endstops(false); + current_position[Z_AXIS] = 0; + plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]); + set_destination_to_current(); + destination[Z_AXIS] += 10 * axis_up_dir; //10mm up + feedrate = homing_feedrate[Z_AXIS] / 2; + plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder); + st_synchronize(); + enable_endstops(endstops_enabled); + current_position[Z_AXIS] = Z_MAX_POS-3.f; + plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]); + return true; +} +#endif //TMC2130 + +void homeaxis(int axis) +{ + bool endstops_enabled = enable_endstops(true); //RP: endstops should be allways enabled durring homming +#define HOMEAXIS_DO(LETTER) \ +((LETTER##_MIN_PIN > -1 && LETTER##_HOME_DIR==-1) || (LETTER##_MAX_PIN > -1 && LETTER##_HOME_DIR==1)) + if ((axis==X_AXIS)?HOMEAXIS_DO(X):(axis==Y_AXIS)?HOMEAXIS_DO(Y):0) + { + int axis_home_dir = home_dir(axis); + feedrate = homing_feedrate[axis]; + +#ifdef TMC2130 + tmc2130_home_enter(X_AXIS_MASK << axis); +#endif + + // Move right a bit, so that the print head does not touch the left end position, + // and the following left movement has a chance to achieve the required velocity + // for the stall guard to work. + current_position[axis] = 0; + plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]); +// destination[axis] = 11.f; + destination[axis] = 3.f; + plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder); + st_synchronize(); + // Move left away from the possible collision with the collision detection disabled. + endstops_hit_on_purpose(); + enable_endstops(false); + current_position[axis] = 0; + plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]); + destination[axis] = - 1.; + plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder); + st_synchronize(); + // Now continue to move up to the left end stop with the collision detection enabled. + enable_endstops(true); + destination[axis] = - 1.1 * max_length(axis); + plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder); + st_synchronize(); + // Move right from the collision to a known distance from the left end stop with the collision detection disabled. + endstops_hit_on_purpose(); + enable_endstops(false); + current_position[axis] = 0; + plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]); + destination[axis] = 10.f; + plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder); + st_synchronize(); + endstops_hit_on_purpose(); + // Now move left up to the collision, this time with a repeatable velocity. + enable_endstops(true); + destination[axis] = - 15.f; + feedrate = homing_feedrate[axis]/2; + plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder); + st_synchronize(); + + axis_is_at_home(axis); + axis_known_position[axis] = true; + +#ifdef TMC2130 + tmc2130_home_exit(); +#endif + // Move the X carriage away from the collision. + // If this is not done, the X cariage will jump from the collision at the instant the Trinamic driver reduces power on idle. + endstops_hit_on_purpose(); + enable_endstops(false); + { + // Two full periods (4 full steps). + float gap = 0.32f * 2.f; + current_position[axis] -= gap; + plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]); + current_position[axis] += gap; + } + destination[axis] = current_position[axis]; + plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], 0.3f*feedrate/60, active_extruder); + st_synchronize(); + + feedrate = 0.0; + } + else if ((axis==Z_AXIS)?HOMEAXIS_DO(Z):0) + { + int axis_home_dir = home_dir(axis); + current_position[axis] = 0; + plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]); + destination[axis] = 1.5 * max_length(axis) * axis_home_dir; + feedrate = homing_feedrate[axis]; + plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder); + st_synchronize(); + current_position[axis] = 0; + plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]); + destination[axis] = -home_retract_mm(axis) * axis_home_dir; + plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder); + st_synchronize(); + destination[axis] = 2*home_retract_mm(axis) * axis_home_dir; + feedrate = homing_feedrate[axis]/2 ; + plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder); + st_synchronize(); + axis_is_at_home(axis); + destination[axis] = current_position[axis]; + feedrate = 0.0; + endstops_hit_on_purpose(); + axis_known_position[axis] = true; + } + enable_endstops(endstops_enabled); +} + +/**/ +void home_xy() +{ + set_destination_to_current(); + homeaxis(X_AXIS); + homeaxis(Y_AXIS); + plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]); + endstops_hit_on_purpose(); +} + +void refresh_cmd_timeout(void) +{ + previous_millis_cmd = millis(); +} + +#ifdef FWRETRACT + void retract(bool retracting, bool swapretract = false) { + if(retracting && !retracted[active_extruder]) { + destination[X_AXIS]=current_position[X_AXIS]; + destination[Y_AXIS]=current_position[Y_AXIS]; + destination[Z_AXIS]=current_position[Z_AXIS]; + destination[E_AXIS]=current_position[E_AXIS]; + if (swapretract) { + current_position[E_AXIS]+=retract_length_swap/volumetric_multiplier[active_extruder]; + } else { + current_position[E_AXIS]+=retract_length/volumetric_multiplier[active_extruder]; + } + plan_set_e_position(current_position[E_AXIS]); + float oldFeedrate = feedrate; + feedrate=retract_feedrate*60; + retracted[active_extruder]=true; + prepare_move(); + current_position[Z_AXIS]-=retract_zlift; + plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]); + prepare_move(); + feedrate = oldFeedrate; + } else if(!retracting && retracted[active_extruder]) { + destination[X_AXIS]=current_position[X_AXIS]; + destination[Y_AXIS]=current_position[Y_AXIS]; + destination[Z_AXIS]=current_position[Z_AXIS]; + destination[E_AXIS]=current_position[E_AXIS]; + current_position[Z_AXIS]+=retract_zlift; + plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]); + //prepare_move(); + if (swapretract) { + current_position[E_AXIS]-=(retract_length_swap+retract_recover_length_swap)/volumetric_multiplier[active_extruder]; + } else { + current_position[E_AXIS]-=(retract_length+retract_recover_length)/volumetric_multiplier[active_extruder]; + } + plan_set_e_position(current_position[E_AXIS]); + float oldFeedrate = feedrate; + feedrate=retract_recover_feedrate*60; + retracted[active_extruder]=false; + prepare_move(); + feedrate = oldFeedrate; + } + } //retract +#endif //FWRETRACT + +void trace() { + tone(BEEPER, 440); + delay(25); + noTone(BEEPER); + delay(20); +} +/* +void ramming() { +// float tmp[4] = DEFAULT_MAX_FEEDRATE; + if (current_temperature[0] < 230) { + //PLA + + max_feedrate[E_AXIS] = 50; + //current_position[E_AXIS] -= 8; + //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder); + //current_position[E_AXIS] += 8; + //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder); + current_position[E_AXIS] += 5.4; + plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2800 / 60, active_extruder); + current_position[E_AXIS] += 3.2; + plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder); + current_position[E_AXIS] += 3; + plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3400 / 60, active_extruder); + st_synchronize(); + max_feedrate[E_AXIS] = 80; + current_position[E_AXIS] -= 82; + plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 9500 / 60, active_extruder); + max_feedrate[E_AXIS] = 50;//tmp[E_AXIS]; + current_position[E_AXIS] -= 20; + plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 1200 / 60, active_extruder); + current_position[E_AXIS] += 5; + plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400 / 60, active_extruder); + current_position[E_AXIS] += 5; + plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder); + current_position[E_AXIS] -= 10; + st_synchronize(); + plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder); + current_position[E_AXIS] += 10; + plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder); + current_position[E_AXIS] -= 10; + plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder); + current_position[E_AXIS] += 10; + plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder); + current_position[E_AXIS] -= 10; + plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder); + st_synchronize(); + } + else { + //ABS + max_feedrate[E_AXIS] = 50; + //current_position[E_AXIS] -= 8; + //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder); + //current_position[E_AXIS] += 8; + //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder); + current_position[E_AXIS] += 3.1; + plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2000 / 60, active_extruder); + current_position[E_AXIS] += 3.1; + plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2500 / 60, active_extruder); + current_position[E_AXIS] += 4; + plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder); + st_synchronize(); + //current_position[X_AXIS] += 23; //delay + //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600/60, active_extruder); //delay + //current_position[X_AXIS] -= 23; //delay + //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600/60, active_extruder); //delay + delay(4700); + max_feedrate[E_AXIS] = 80; + current_position[E_AXIS] -= 92; + plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 9900 / 60, active_extruder); + max_feedrate[E_AXIS] = 50;//tmp[E_AXIS]; + current_position[E_AXIS] -= 5; + plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder); + current_position[E_AXIS] += 5; + plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400 / 60, active_extruder); + current_position[E_AXIS] -= 5; + plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder); + st_synchronize(); + current_position[E_AXIS] += 5; + plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder); + current_position[E_AXIS] -= 5; + plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder); + current_position[E_AXIS] += 5; + plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder); + current_position[E_AXIS] -= 5; + plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder); + st_synchronize(); + + } + } +*/ +void process_commands() +{ + #ifdef FILAMENT_RUNOUT_SUPPORT + SET_INPUT(FR_SENS); + #endif + +#ifdef CMDBUFFER_DEBUG + SERIAL_ECHOPGM("Processing a GCODE command: "); + SERIAL_ECHO(cmdbuffer+bufindr+CMDHDRSIZE); + SERIAL_ECHOLNPGM(""); + SERIAL_ECHOPGM("In cmdqueue: "); + SERIAL_ECHO(buflen); + SERIAL_ECHOLNPGM(""); +#endif /* CMDBUFFER_DEBUG */ + + unsigned long codenum; //throw away variable + char *starpos = NULL; +#ifdef ENABLE_AUTO_BED_LEVELING + float x_tmp, y_tmp, z_tmp, real_z; +#endif + + // PRUSA GCODES + +#ifdef SNMM + float tmp_motor[3] = DEFAULT_PWM_MOTOR_CURRENT; + float tmp_motor_loud[3] = DEFAULT_PWM_MOTOR_CURRENT_LOUD; + int8_t SilentMode; +#endif + if (code_seen("M117")) { //moved to highest priority place to be able to to print strings which includes "G", "PRUSA" and "^" + starpos = (strchr(strchr_pointer + 5, '*')); + if (starpos != NULL) + *(starpos) = '\0'; + lcd_setstatus(strchr_pointer + 5); + } + else if(code_seen("PRUSA")){ + if (code_seen("Ping")) { //PRUSA Ping + if (farm_mode) { + PingTime = millis(); + //MYSERIAL.print(farm_no); MYSERIAL.println(": OK"); + } + } + else if (code_seen("PRN")) { + MYSERIAL.println(status_number); + + }else if (code_seen("fn")) { + if (farm_mode) { + MYSERIAL.println(farm_no); + } + else { + MYSERIAL.println("Not in farm mode."); + } + + }else if (code_seen("fv")) { + // get file version + #ifdef SDSUPPORT + card.openFile(strchr_pointer + 3,true); + while (true) { + uint16_t readByte = card.get(); + MYSERIAL.write(readByte); + if (readByte=='\n') { + break; + } + } + card.closefile(); + + #endif // SDSUPPORT + + } else if (code_seen("M28")) { + trace(); + prusa_sd_card_upload = true; + card.openFile(strchr_pointer+4,false); + } else if (code_seen("SN")) { + if (farm_mode) { + selectedSerialPort = 0; + MSerial.write(";S"); + // S/N is:CZPX0917X003XC13518 + int numbersRead = 0; + + while (numbersRead < 19) { + while (MSerial.available() > 0) { + uint8_t serial_char = MSerial.read(); + selectedSerialPort = 1; + MSerial.write(serial_char); + numbersRead++; + selectedSerialPort = 0; + } + } + selectedSerialPort = 1; + MSerial.write('\n'); + /*for (int b = 0; b < 3; b++) { + tone(BEEPER, 110); + delay(50); + noTone(BEEPER); + delay(50); + }*/ + } else { + MYSERIAL.println("Not in farm mode."); + } + + } else if(code_seen("Fir")){ + + SERIAL_PROTOCOLLN(FW_version); + + } else if(code_seen("Rev")){ + + SERIAL_PROTOCOLLN(FILAMENT_SIZE "-" ELECTRONICS "-" NOZZLE_TYPE ); + + } else if(code_seen("Lang")) { + lcd_force_language_selection(); + } else if(code_seen("Lz")) { + EEPROM_save_B(EEPROM_BABYSTEP_Z,0); + + } else if (code_seen("SERIAL LOW")) { + MYSERIAL.println("SERIAL LOW"); + MYSERIAL.begin(BAUDRATE); + return; + } else if (code_seen("SERIAL HIGH")) { + MYSERIAL.println("SERIAL HIGH"); + MYSERIAL.begin(1152000); + return; + } else if(code_seen("Beat")) { + // Kick farm link timer + kicktime = millis(); + + } else if(code_seen("FR")) { + // Factory full reset + factory_reset(0,true); + } + //else if (code_seen('Cal')) { + // lcd_calibration(); + // } + + } + else if (code_seen('^')) { + // nothing, this is a version line + } else if(code_seen('G')) + { + switch((int)code_value()) + { + case 0: // G0 -> G1 + case 1: // G1 + if(Stopped == false) { + + #ifdef FILAMENT_RUNOUT_SUPPORT + + if(READ(FR_SENS)){ + + feedmultiplyBckp=feedmultiply; + float target[4]; + float lastpos[4]; + target[X_AXIS]=current_position[X_AXIS]; + target[Y_AXIS]=current_position[Y_AXIS]; + target[Z_AXIS]=current_position[Z_AXIS]; + target[E_AXIS]=current_position[E_AXIS]; + lastpos[X_AXIS]=current_position[X_AXIS]; + lastpos[Y_AXIS]=current_position[Y_AXIS]; + lastpos[Z_AXIS]=current_position[Z_AXIS]; + lastpos[E_AXIS]=current_position[E_AXIS]; + //retract by E + + target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT ; + + plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder); + + + target[Z_AXIS]+= FILAMENTCHANGE_ZADD ; + + plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 300, active_extruder); + + target[X_AXIS]= FILAMENTCHANGE_XPOS ; + + target[Y_AXIS]= FILAMENTCHANGE_YPOS ; + + + plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder); + + target[E_AXIS]+= FILAMENTCHANGE_FINALRETRACT ; + + + plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder); + + //finish moves + st_synchronize(); + //disable extruder steppers so filament can be removed + disable_e0(); + disable_e1(); + disable_e2(); + delay(100); + + //LCD_ALERTMESSAGEPGM(MSG_FILAMENTCHANGE); + uint8_t cnt=0; + int counterBeep = 0; + lcd_wait_interact(); + while(!lcd_clicked()){ + cnt++; + manage_heater(); + manage_inactivity(true); + //lcd_update(); + if(cnt==0) + { + #if BEEPER > 0 + + if (counterBeep== 500){ + counterBeep = 0; + + } + + + SET_OUTPUT(BEEPER); + if (counterBeep== 0){ + WRITE(BEEPER,HIGH); + } + + if (counterBeep== 20){ + WRITE(BEEPER,LOW); + } + + + + + counterBeep++; + #else + #if !defined(LCD_FEEDBACK_FREQUENCY_HZ) || !defined(LCD_FEEDBACK_FREQUENCY_DURATION_MS) + lcd_buzz(1000/6,100); + #else + lcd_buzz(LCD_FEEDBACK_FREQUENCY_DURATION_MS,LCD_FEEDBACK_FREQUENCY_HZ); + #endif + #endif + } + } + + WRITE(BEEPER,LOW); + + target[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ; + plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder); + + + target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ; + plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder); + + + + + + lcd_change_fil_state = 0; + lcd_loading_filament(); + while ((lcd_change_fil_state == 0)||(lcd_change_fil_state != 1)){ + + lcd_change_fil_state = 0; + lcd_alright(); + switch(lcd_change_fil_state){ + + case 2: + target[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ; + plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder); + + + target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ; + plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder); + + + lcd_loading_filament(); + break; + case 3: + target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ; + plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder); + lcd_loading_color(); + break; + + default: + lcd_change_success(); + break; + } + + } + + + + target[E_AXIS]+= 5; + plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder); + + target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT; + plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder); + + + //current_position[E_AXIS]=target[E_AXIS]; //the long retract of L is compensated by manual filament feeding + //plan_set_e_position(current_position[E_AXIS]); + plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder); //should do nothing + plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder); //move xy back + plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], 200, active_extruder); //move z back + + + target[E_AXIS]= target[E_AXIS] - FILAMENTCHANGE_FIRSTRETRACT; + + + + plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], 5, active_extruder); //final untretract + + + plan_set_e_position(lastpos[E_AXIS]); + + feedmultiply=feedmultiplyBckp; + + + + char cmd[9]; + + sprintf_P(cmd, PSTR("M220 S%i"), feedmultiplyBckp); + enquecommand(cmd); + + } + + + + #endif + + + get_coordinates(); // For X Y Z E F + if (total_filament_used > ((current_position[E_AXIS] - destination[E_AXIS]) * 100)) { //protection against total_filament_used overflow + total_filament_used = total_filament_used + ((destination[E_AXIS] - current_position[E_AXIS]) * 100); + } + #ifdef FWRETRACT + if(autoretract_enabled) + if( !(code_seen('X') || code_seen('Y') || code_seen('Z')) && code_seen('E')) { + float echange=destination[E_AXIS]-current_position[E_AXIS]; + + if((echange<-MIN_RETRACT && !retracted) || (echange>MIN_RETRACT && retracted)) { //move appears to be an attempt to retract or recover + current_position[E_AXIS] = destination[E_AXIS]; //hide the slicer-generated retract/recover from calculations + plan_set_e_position(current_position[E_AXIS]); //AND from the planner + retract(!retracted); + return; + } + + + } + #endif //FWRETRACT + prepare_move(); + //ClearToSend(); + } + break; + case 2: // G2 - CW ARC + if(Stopped == false) { + get_arc_coordinates(); + prepare_arc_move(true); + } + break; + case 3: // G3 - CCW ARC + if(Stopped == false) { + get_arc_coordinates(); + prepare_arc_move(false); + } + break; + case 4: // G4 dwell + codenum = 0; + if(code_seen('P')) codenum = code_value(); // milliseconds to wait + if(code_seen('S')) codenum = code_value() * 1000; // seconds to wait + if(codenum != 0) LCD_MESSAGERPGM(MSG_DWELL); + st_synchronize(); + codenum += millis(); // keep track of when we started waiting + previous_millis_cmd = millis(); + while(millis() < codenum) { + manage_heater(); + manage_inactivity(); + lcd_update(); + } + break; + #ifdef FWRETRACT + case 10: // G10 retract + #if EXTRUDERS > 1 + retracted_swap[active_extruder]=(code_seen('S') && code_value_long() == 1); // checks for swap retract argument + retract(true,retracted_swap[active_extruder]); + #else + retract(true); + #endif + break; + case 11: // G11 retract_recover + #if EXTRUDERS > 1 + retract(false,retracted_swap[active_extruder]); + #else + retract(false); + #endif + break; + #endif //FWRETRACT + case 28: //G28 Home all Axis one at a time + { + st_synchronize(); + +#if 1 + SERIAL_ECHOPGM("G28, initial "); print_world_coordinates(); + SERIAL_ECHOPGM("G28, initial "); print_physical_coordinates(); +#endif + + // Flag for the display update routine and to disable the print cancelation during homing. + homing_flag = true; + + // Which axes should be homed? + bool home_x = code_seen(axis_codes[X_AXIS]); + bool home_y = code_seen(axis_codes[Y_AXIS]); + bool home_z = code_seen(axis_codes[Z_AXIS]); + // Either all X,Y,Z codes are present, or none of them. + bool home_all_axes = home_x == home_y && home_x == home_z; + if (home_all_axes) + // No X/Y/Z code provided means to home all axes. + home_x = home_y = home_z = true; + +#ifdef ENABLE_AUTO_BED_LEVELING + plan_bed_level_matrix.set_to_identity(); //Reset the plane ("erase" all leveling data) +#endif //ENABLE_AUTO_BED_LEVELING + + // Reset world2machine_rotation_and_skew and world2machine_shift, therefore + // the planner will not perform any adjustments in the XY plane. + // Wait for the motors to stop and update the current position with the absolute values. + world2machine_revert_to_uncorrected(); + + // For mesh bed leveling deactivate the matrix temporarily. + // It is necessary to disable the bed leveling for the X and Y homing moves, so that the move is performed + // in a single axis only. + // In case of re-homing the X or Y axes only, the mesh bed leveling is restored after G28. +#ifdef MESH_BED_LEVELING + uint8_t mbl_was_active = mbl.active; + mbl.active = 0; + current_position[Z_AXIS] = st_get_position_mm(Z_AXIS); +#endif + + // Reset baby stepping to zero, if the babystepping has already been loaded before. The babystepsTodo value will be + // consumed during the first movements following this statement. + if (home_z) + babystep_undo(); + + saved_feedrate = feedrate; + saved_feedmultiply = feedmultiply; + feedmultiply = 100; + previous_millis_cmd = millis(); + + enable_endstops(true); + + memcpy(destination, current_position, sizeof(destination)); + feedrate = 0.0; + + #if Z_HOME_DIR > 0 // If homing away from BED do Z first + if(home_z) + homeaxis(Z_AXIS); + #endif + + #ifdef QUICK_HOME + // In the quick mode, if both x and y are to be homed, a diagonal move will be performed initially. + if(home_x && home_y) //first diagonal move + { + current_position[X_AXIS] = 0;current_position[Y_AXIS] = 0; + + int x_axis_home_dir = home_dir(X_AXIS); + + plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]); + destination[X_AXIS] = 1.5 * max_length(X_AXIS) * x_axis_home_dir;destination[Y_AXIS] = 1.5 * max_length(Y_AXIS) * home_dir(Y_AXIS); + feedrate = homing_feedrate[X_AXIS]; + if(homing_feedrate[Y_AXIS] max_length(Y_AXIS)) { + feedrate *= sqrt(pow(max_length(Y_AXIS) / max_length(X_AXIS), 2) + 1); + } else { + feedrate *= sqrt(pow(max_length(X_AXIS) / max_length(Y_AXIS), 2) + 1); + } + plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder); + st_synchronize(); + + axis_is_at_home(X_AXIS); + axis_is_at_home(Y_AXIS); + plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]); + destination[X_AXIS] = current_position[X_AXIS]; + destination[Y_AXIS] = current_position[Y_AXIS]; + plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder); + feedrate = 0.0; + st_synchronize(); + endstops_hit_on_purpose(); + + current_position[X_AXIS] = destination[X_AXIS]; + current_position[Y_AXIS] = destination[Y_AXIS]; + current_position[Z_AXIS] = destination[Z_AXIS]; + } + #endif /* QUICK_HOME */ + + + if(home_x) + homeaxis(X_AXIS); + + if(home_y) + homeaxis(Y_AXIS); + + if(code_seen(axis_codes[X_AXIS]) && code_value_long() != 0) + current_position[X_AXIS]=code_value()+add_homing[X_AXIS]; + + if(code_seen(axis_codes[Y_AXIS]) && code_value_long() != 0) + current_position[Y_AXIS]=code_value()+add_homing[Y_AXIS]; + + #if Z_HOME_DIR < 0 // If homing towards BED do Z last + #ifndef Z_SAFE_HOMING + if(home_z) { + #if defined (Z_RAISE_BEFORE_HOMING) && (Z_RAISE_BEFORE_HOMING > 0) + destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed + feedrate = max_feedrate[Z_AXIS]; + plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder); + st_synchronize(); + #endif // defined (Z_RAISE_BEFORE_HOMING) && (Z_RAISE_BEFORE_HOMING > 0) + #if (defined(MESH_BED_LEVELING) && !defined(MK1BP)) // If Mesh bed leveling, moxve X&Y to safe position for home + if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] )) + { + homeaxis(X_AXIS); + homeaxis(Y_AXIS); + } + // 1st mesh bed leveling measurement point, corrected. + world2machine_initialize(); + world2machine(pgm_read_float(bed_ref_points), pgm_read_float(bed_ref_points+1), destination[X_AXIS], destination[Y_AXIS]); + world2machine_reset(); + if (destination[Y_AXIS] < Y_MIN_POS) + destination[Y_AXIS] = Y_MIN_POS; + destination[Z_AXIS] = MESH_HOME_Z_SEARCH; // Set destination away from bed + feedrate = homing_feedrate[Z_AXIS]/10; + current_position[Z_AXIS] = 0; + enable_endstops(false); + plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]); + plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder); + st_synchronize(); + current_position[X_AXIS] = destination[X_AXIS]; + current_position[Y_AXIS] = destination[Y_AXIS]; + enable_endstops(true); + endstops_hit_on_purpose(); + homeaxis(Z_AXIS); + #else // MESH_BED_LEVELING + homeaxis(Z_AXIS); + #endif // MESH_BED_LEVELING + } + #else // defined(Z_SAFE_HOMING): Z Safe mode activated. + if(home_all_axes) { + destination[X_AXIS] = round(Z_SAFE_HOMING_X_POINT - X_PROBE_OFFSET_FROM_EXTRUDER); + destination[Y_AXIS] = round(Z_SAFE_HOMING_Y_POINT - Y_PROBE_OFFSET_FROM_EXTRUDER); + destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed + feedrate = XY_TRAVEL_SPEED/60; + current_position[Z_AXIS] = 0; + + plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]); + plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder); + st_synchronize(); + current_position[X_AXIS] = destination[X_AXIS]; + current_position[Y_AXIS] = destination[Y_AXIS]; + + homeaxis(Z_AXIS); + } + // Let's see if X and Y are homed and probe is inside bed area. + if(home_z) { + if ( (axis_known_position[X_AXIS]) && (axis_known_position[Y_AXIS]) \ + && (current_position[X_AXIS]+X_PROBE_OFFSET_FROM_EXTRUDER >= X_MIN_POS) \ + && (current_position[X_AXIS]+X_PROBE_OFFSET_FROM_EXTRUDER <= X_MAX_POS) \ + && (current_position[Y_AXIS]+Y_PROBE_OFFSET_FROM_EXTRUDER >= Y_MIN_POS) \ + && (current_position[Y_AXIS]+Y_PROBE_OFFSET_FROM_EXTRUDER <= Y_MAX_POS)) { + + current_position[Z_AXIS] = 0; + plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]); + destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed + feedrate = max_feedrate[Z_AXIS]; + plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder); + st_synchronize(); + + homeaxis(Z_AXIS); + } else if (!((axis_known_position[X_AXIS]) && (axis_known_position[Y_AXIS]))) { + LCD_MESSAGERPGM(MSG_POSITION_UNKNOWN); + SERIAL_ECHO_START; + SERIAL_ECHOLNRPGM(MSG_POSITION_UNKNOWN); + } else { + LCD_MESSAGERPGM(MSG_ZPROBE_OUT); + SERIAL_ECHO_START; + SERIAL_ECHOLNRPGM(MSG_ZPROBE_OUT); + } + } + #endif // Z_SAFE_HOMING + #endif // Z_HOME_DIR < 0 + + if(code_seen(axis_codes[Z_AXIS]) && code_value_long() != 0) + current_position[Z_AXIS]=code_value()+add_homing[Z_AXIS]; + #ifdef ENABLE_AUTO_BED_LEVELING + if(home_z) + current_position[Z_AXIS] += zprobe_zoffset; //Add Z_Probe offset (the distance is negative) + #endif + + // Set the planner and stepper routine positions. + // At this point the mesh bed leveling and world2machine corrections are disabled and current_position + // contains the machine coordinates. + plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]); + + #ifdef ENDSTOPS_ONLY_FOR_HOMING + enable_endstops(false); + #endif + + feedrate = saved_feedrate; + feedmultiply = saved_feedmultiply; + previous_millis_cmd = millis(); + endstops_hit_on_purpose(); +#ifndef MESH_BED_LEVELING + // If MESH_BED_LEVELING is not active, then it is the original Prusa i3. + // Offer the user to load the baby step value, which has been adjusted at the previous print session. + if(card.sdprinting && eeprom_read_word((uint16_t *)EEPROM_BABYSTEP_Z)) + lcd_adjust_z(); +#endif + + // Load the machine correction matrix + world2machine_initialize(); + // and correct the current_position XY axes to match the transformed coordinate system. + world2machine_update_current(); + +#if (defined(MESH_BED_LEVELING) && !defined(MK1BP)) + if (code_seen(axis_codes[X_AXIS]) || code_seen(axis_codes[Y_AXIS]) || code_seen('W') || code_seen(axis_codes[Z_AXIS])) + { + if (! home_z && mbl_was_active) { + // Re-enable the mesh bed leveling if only the X and Y axes were re-homed. + mbl.active = true; + // and re-adjust the current logical Z axis with the bed leveling offset applicable at the current XY position. + current_position[Z_AXIS] -= mbl.get_z(st_get_position_mm(X_AXIS), st_get_position_mm(Y_AXIS)); + } + } + else + { + st_synchronize(); + homing_flag = false; + // Push the commands to the front of the message queue in the reverse order! + // There shall be always enough space reserved for these commands. + // enquecommand_front_P((PSTR("G80"))); + goto case_G80; + } +#endif + + if (farm_mode) { prusa_statistics(20); }; + + homing_flag = false; + + SERIAL_ECHOPGM("G28, final "); print_world_coordinates(); + SERIAL_ECHOPGM("G28, final "); print_physical_coordinates(); + SERIAL_ECHOPGM("G28, final "); print_mesh_bed_leveling_table(); + break; + } +#ifdef ENABLE_AUTO_BED_LEVELING + case 29: // G29 Detailed Z-Probe, probes the bed at 3 or more points. + { + #if Z_MIN_PIN == -1 + #error "You must have a Z_MIN endstop in order to enable Auto Bed Leveling feature! Z_MIN_PIN must point to a valid hardware pin." + #endif + + // Prevent user from running a G29 without first homing in X and Y + if (! (axis_known_position[X_AXIS] && axis_known_position[Y_AXIS]) ) + { + LCD_MESSAGERPGM(MSG_POSITION_UNKNOWN); + SERIAL_ECHO_START; + SERIAL_ECHOLNRPGM(MSG_POSITION_UNKNOWN); + break; // abort G29, since we don't know where we are + } + + st_synchronize(); + // make sure the bed_level_rotation_matrix is identity or the planner will get it incorectly + //vector_3 corrected_position = plan_get_position_mm(); + //corrected_position.debug("position before G29"); + plan_bed_level_matrix.set_to_identity(); + vector_3 uncorrected_position = plan_get_position(); + //uncorrected_position.debug("position durring G29"); + current_position[X_AXIS] = uncorrected_position.x; + current_position[Y_AXIS] = uncorrected_position.y; + current_position[Z_AXIS] = uncorrected_position.z; + plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]); + setup_for_endstop_move(); + + feedrate = homing_feedrate[Z_AXIS]; +#ifdef AUTO_BED_LEVELING_GRID + // probe at the points of a lattice grid + + int xGridSpacing = (RIGHT_PROBE_BED_POSITION - LEFT_PROBE_BED_POSITION) / (AUTO_BED_LEVELING_GRID_POINTS-1); + int yGridSpacing = (BACK_PROBE_BED_POSITION - FRONT_PROBE_BED_POSITION) / (AUTO_BED_LEVELING_GRID_POINTS-1); + + + // solve the plane equation ax + by + d = z + // A is the matrix with rows [x y 1] for all the probed points + // B is the vector of the Z positions + // the normal vector to the plane is formed by the coefficients of the plane equation in the standard form, which is Vx*x+Vy*y+Vz*z+d = 0 + // so Vx = -a Vy = -b Vz = 1 (we want the vector facing towards positive Z + + // "A" matrix of the linear system of equations + double eqnAMatrix[AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS*3]; + // "B" vector of Z points + double eqnBVector[AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS]; + + + int probePointCounter = 0; + bool zig = true; + + for (int yProbe=FRONT_PROBE_BED_POSITION; yProbe <= BACK_PROBE_BED_POSITION; yProbe += yGridSpacing) + { + int xProbe, xInc; + if (zig) + { + xProbe = LEFT_PROBE_BED_POSITION; + //xEnd = RIGHT_PROBE_BED_POSITION; + xInc = xGridSpacing; + zig = false; + } else // zag + { + xProbe = RIGHT_PROBE_BED_POSITION; + //xEnd = LEFT_PROBE_BED_POSITION; + xInc = -xGridSpacing; + zig = true; + } + + for (int xCount=0; xCount < AUTO_BED_LEVELING_GRID_POINTS; xCount++) + { + float z_before; + if (probePointCounter == 0) + { + // raise before probing + z_before = Z_RAISE_BEFORE_PROBING; + } else + { + // raise extruder + z_before = current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS; + } + + float measured_z = probe_pt(xProbe, yProbe, z_before); + + eqnBVector[probePointCounter] = measured_z; + + eqnAMatrix[probePointCounter + 0*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = xProbe; + eqnAMatrix[probePointCounter + 1*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = yProbe; + eqnAMatrix[probePointCounter + 2*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = 1; + probePointCounter++; + xProbe += xInc; + } + } + clean_up_after_endstop_move(); + + // solve lsq problem + double *plane_equation_coefficients = qr_solve(AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS, 3, eqnAMatrix, eqnBVector); + + SERIAL_PROTOCOLPGM("Eqn coefficients: a: "); + SERIAL_PROTOCOL(plane_equation_coefficients[0]); + SERIAL_PROTOCOLPGM(" b: "); + SERIAL_PROTOCOL(plane_equation_coefficients[1]); + SERIAL_PROTOCOLPGM(" d: "); + SERIAL_PROTOCOLLN(plane_equation_coefficients[2]); + + + set_bed_level_equation_lsq(plane_equation_coefficients); + + free(plane_equation_coefficients); + +#else // AUTO_BED_LEVELING_GRID not defined + + // Probe at 3 arbitrary points + // probe 1 + float z_at_pt_1 = probe_pt(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, Z_RAISE_BEFORE_PROBING); + + // probe 2 + float z_at_pt_2 = probe_pt(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS); + + // probe 3 + float z_at_pt_3 = probe_pt(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS); + + clean_up_after_endstop_move(); + + set_bed_level_equation_3pts(z_at_pt_1, z_at_pt_2, z_at_pt_3); + + +#endif // AUTO_BED_LEVELING_GRID + st_synchronize(); + + // The following code correct the Z height difference from z-probe position and hotend tip position. + // The Z height on homing is measured by Z-Probe, but the probe is quite far from the hotend. + // When the bed is uneven, this height must be corrected. + real_z = float(st_get_position(Z_AXIS))/axis_steps_per_unit[Z_AXIS]; //get the real Z (since the auto bed leveling is already correcting the plane) + x_tmp = current_position[X_AXIS] + X_PROBE_OFFSET_FROM_EXTRUDER; + y_tmp = current_position[Y_AXIS] + Y_PROBE_OFFSET_FROM_EXTRUDER; + z_tmp = current_position[Z_AXIS]; + + apply_rotation_xyz(plan_bed_level_matrix, x_tmp, y_tmp, z_tmp); //Apply the correction sending the probe offset + current_position[Z_AXIS] = z_tmp - real_z + current_position[Z_AXIS]; //The difference is added to current position and sent to planner. + plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]); + } + break; +#ifndef Z_PROBE_SLED + case 30: // G30 Single Z Probe + { + st_synchronize(); + // TODO: make sure the bed_level_rotation_matrix is identity or the planner will get set incorectly + setup_for_endstop_move(); + + feedrate = homing_feedrate[Z_AXIS]; + + run_z_probe(); + SERIAL_PROTOCOLPGM(MSG_BED); + SERIAL_PROTOCOLPGM(" X: "); + SERIAL_PROTOCOL(current_position[X_AXIS]); + SERIAL_PROTOCOLPGM(" Y: "); + SERIAL_PROTOCOL(current_position[Y_AXIS]); + SERIAL_PROTOCOLPGM(" Z: "); + SERIAL_PROTOCOL(current_position[Z_AXIS]); + SERIAL_PROTOCOLPGM("\n"); + + clean_up_after_endstop_move(); + } + break; +#else + case 31: // dock the sled + dock_sled(true); + break; + case 32: // undock the sled + dock_sled(false); + break; +#endif // Z_PROBE_SLED +#endif // ENABLE_AUTO_BED_LEVELING + +#ifdef MESH_BED_LEVELING + case 30: // G30 Single Z Probe + { + st_synchronize(); + // TODO: make sure the bed_level_rotation_matrix is identity or the planner will get set incorectly + setup_for_endstop_move(); + + feedrate = homing_feedrate[Z_AXIS]; + + find_bed_induction_sensor_point_z(-10.f, 3); + SERIAL_PROTOCOLRPGM(MSG_BED); + SERIAL_PROTOCOLPGM(" X: "); + MYSERIAL.print(current_position[X_AXIS], 5); + SERIAL_PROTOCOLPGM(" Y: "); + MYSERIAL.print(current_position[Y_AXIS], 5); + SERIAL_PROTOCOLPGM(" Z: "); + MYSERIAL.print(current_position[Z_AXIS], 5); + SERIAL_PROTOCOLPGM("\n"); + clean_up_after_endstop_move(); + } + break; + + + case 75: + { + for (int i = 40; i <= 110; i++) { + MYSERIAL.print(i); + MYSERIAL.print(" "); + MYSERIAL.println(temp_comp_interpolation(i));// / axis_steps_per_unit[Z_AXIS]); + } + } + break; + + case 76: //PINDA probe temperature calibration + { +#ifdef PINDA_THERMISTOR + if (true) + { + if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS])) { + // We don't know where we are! HOME! + // Push the commands to the front of the message queue in the reverse order! + // There shall be always enough space reserved for these commands. + repeatcommand_front(); // repeat G76 with all its parameters + enquecommand_front_P((PSTR("G28 W0"))); + break; + } + SERIAL_ECHOLNPGM("PINDA probe calibration start"); + + float zero_z; + int z_shift = 0; //unit: steps + float start_temp = 5 * (int)(current_temperature_pinda / 5); + if (start_temp < 35) start_temp = 35; + if (start_temp < current_temperature_pinda) start_temp += 5; + SERIAL_ECHOPGM("start temperature: "); + MYSERIAL.println(start_temp); + +// setTargetHotend(200, 0); + setTargetBed(50 + 10 * (start_temp - 30) / 5); + + custom_message = true; + custom_message_type = 4; + custom_message_state = 1; + custom_message = MSG_TEMP_CALIBRATION; + current_position[X_AXIS] = PINDA_PREHEAT_X; + current_position[Y_AXIS] = PINDA_PREHEAT_Y; + current_position[Z_AXIS] = PINDA_PREHEAT_Z; + plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder); + st_synchronize(); + + while (current_temperature_pinda < start_temp) + { + delay_keep_alive(1000); + serialecho_temperatures(); + } + + eeprom_update_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 0); //invalidate temp. calibration in case that in will be aborted during the calibration process + + current_position[Z_AXIS] = 5; + plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder); + + current_position[X_AXIS] = pgm_read_float(bed_ref_points); + current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 1); + plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder); + st_synchronize(); + + find_bed_induction_sensor_point_z(-1.f); + zero_z = current_position[Z_AXIS]; + + //current_position[Z_AXIS] + SERIAL_ECHOLNPGM(""); + SERIAL_ECHOPGM("ZERO: "); + MYSERIAL.print(current_position[Z_AXIS]); + SERIAL_ECHOLNPGM(""); + + int i = -1; for (; i < 5; i++) + { + float temp = (40 + i * 5); + SERIAL_ECHOPGM("Step: "); + MYSERIAL.print(i + 2); + SERIAL_ECHOLNPGM("/6 (skipped)"); + SERIAL_ECHOPGM("PINDA temperature: "); + MYSERIAL.print((40 + i*5)); + SERIAL_ECHOPGM(" Z shift (mm):"); + MYSERIAL.print(0); + SERIAL_ECHOLNPGM(""); + if (i >= 0) EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i * 2, &z_shift); + if (start_temp <= temp) break; + } + + for (i++; i < 5; i++) + { + float temp = (40 + i * 5); + SERIAL_ECHOPGM("Step: "); + MYSERIAL.print(i + 2); + SERIAL_ECHOLNPGM("/6"); + custom_message_state = i + 2; + setTargetBed(50 + 10 * (temp - 30) / 5); +// setTargetHotend(255, 0); + current_position[X_AXIS] = PINDA_PREHEAT_X; + current_position[Y_AXIS] = PINDA_PREHEAT_Y; + current_position[Z_AXIS] = PINDA_PREHEAT_Z; + plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder); + st_synchronize(); + while (current_temperature_pinda < temp) + { + delay_keep_alive(1000); + serialecho_temperatures(); + } + current_position[Z_AXIS] = 5; + plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder); + current_position[X_AXIS] = pgm_read_float(bed_ref_points); + current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 1); + plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder); + st_synchronize(); + find_bed_induction_sensor_point_z(-1.f); + z_shift = (int)((current_position[Z_AXIS] - zero_z)*axis_steps_per_unit[Z_AXIS]); + + SERIAL_ECHOLNPGM(""); + SERIAL_ECHOPGM("PINDA temperature: "); + MYSERIAL.print(current_temperature_pinda); + SERIAL_ECHOPGM(" Z shift (mm):"); + MYSERIAL.print(current_position[Z_AXIS] - zero_z); + SERIAL_ECHOLNPGM(""); + + EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i * 2, &z_shift); + + } + custom_message_type = 0; + custom_message = false; + + eeprom_update_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 1); + SERIAL_ECHOLNPGM("Temperature calibration done. Continue with pressing the knob."); + disable_x(); + disable_y(); + disable_z(); + disable_e0(); + disable_e1(); + disable_e2(); + lcd_show_fullscreen_message_and_wait_P(MSG_TEMP_CALIBRATION_DONE); + lcd_update_enable(true); + lcd_update(2); + + setTargetBed(0); //set bed target temperature back to 0 +// setTargetHotend(0,0); //set hotend target temperature back to 0 + break; + } +#endif //PINDA_THERMISTOR + + setTargetBed(PINDA_MIN_T); + float zero_z; + int z_shift = 0; //unit: steps + int t_c; // temperature + + if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS])) { + // We don't know where we are! HOME! + // Push the commands to the front of the message queue in the reverse order! + // There shall be always enough space reserved for these commands. + repeatcommand_front(); // repeat G76 with all its parameters + enquecommand_front_P((PSTR("G28 W0"))); + break; + } + SERIAL_ECHOLNPGM("PINDA probe calibration start"); + custom_message = true; + custom_message_type = 4; + custom_message_state = 1; + custom_message = MSG_TEMP_CALIBRATION; + current_position[X_AXIS] = PINDA_PREHEAT_X; + current_position[Y_AXIS] = PINDA_PREHEAT_Y; + current_position[Z_AXIS] = PINDA_PREHEAT_Z; + plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder); + st_synchronize(); + + while (abs(degBed() - PINDA_MIN_T) > 1) { + delay_keep_alive(1000); + serialecho_temperatures(); + } + + //enquecommand_P(PSTR("M190 S50")); + for (int i = 0; i < PINDA_HEAT_T; i++) { + delay_keep_alive(1000); + serialecho_temperatures(); + } + eeprom_update_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 0); //invalidate temp. calibration in case that in will be aborted during the calibration process + + current_position[Z_AXIS] = 5; + plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder); + + current_position[X_AXIS] = pgm_read_float(bed_ref_points); + current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 1); + plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder); + st_synchronize(); + + find_bed_induction_sensor_point_z(-1.f); + zero_z = current_position[Z_AXIS]; + + //current_position[Z_AXIS] + SERIAL_ECHOLNPGM(""); + SERIAL_ECHOPGM("ZERO: "); + MYSERIAL.print(current_position[Z_AXIS]); + SERIAL_ECHOLNPGM(""); + + for (int i = 0; i<5; i++) { + SERIAL_ECHOPGM("Step: "); + MYSERIAL.print(i+2); + SERIAL_ECHOLNPGM("/6"); + custom_message_state = i + 2; + t_c = 60 + i * 10; + + setTargetBed(t_c); + current_position[X_AXIS] = PINDA_PREHEAT_X; + current_position[Y_AXIS] = PINDA_PREHEAT_Y; + current_position[Z_AXIS] = PINDA_PREHEAT_Z; + plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder); + st_synchronize(); + while (degBed() < t_c) { + delay_keep_alive(1000); + serialecho_temperatures(); + } + for (int i = 0; i < PINDA_HEAT_T; i++) { + delay_keep_alive(1000); + serialecho_temperatures(); + } + current_position[Z_AXIS] = 5; + plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder); + current_position[X_AXIS] = pgm_read_float(bed_ref_points); + current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 1); + plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder); + st_synchronize(); + find_bed_induction_sensor_point_z(-1.f); + z_shift = (int)((current_position[Z_AXIS] - zero_z)*axis_steps_per_unit[Z_AXIS]); + + SERIAL_ECHOLNPGM(""); + SERIAL_ECHOPGM("Temperature: "); + MYSERIAL.print(t_c); + SERIAL_ECHOPGM(" Z shift (mm):"); + MYSERIAL.print(current_position[Z_AXIS] - zero_z); + SERIAL_ECHOLNPGM(""); + + EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i*2, &z_shift); + + + } + custom_message_type = 0; + custom_message = false; + + eeprom_update_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 1); + SERIAL_ECHOLNPGM("Temperature calibration done. Continue with pressing the knob."); + disable_x(); + disable_y(); + disable_z(); + disable_e0(); + disable_e1(); + disable_e2(); + setTargetBed(0); //set bed target temperature back to 0 + lcd_show_fullscreen_message_and_wait_P(MSG_TEMP_CALIBRATION_DONE); + lcd_update_enable(true); + lcd_update(2); + + + + } + break; + +#ifdef DIS + case 77: + { + //G77 X200 Y150 XP100 YP15 XO10 Y015 + + //for 9 point mesh bed leveling G77 X203 Y196 XP3 YP3 XO0 YO0 + + + //G77 X232 Y218 XP116 YP109 XO-11 YO0 + + float dimension_x = 40; + float dimension_y = 40; + int points_x = 40; + int points_y = 40; + float offset_x = 74; + float offset_y = 33; + + if (code_seen('X')) dimension_x = code_value(); + if (code_seen('Y')) dimension_y = code_value(); + if (code_seen('XP')) points_x = code_value(); + if (code_seen('YP')) points_y = code_value(); + if (code_seen('XO')) offset_x = code_value(); + if (code_seen('YO')) offset_y = code_value(); + + bed_analysis(dimension_x,dimension_y,points_x,points_y,offset_x,offset_y); + + } break; + +#endif + + case 79: { + for (int i = 255; i > 0; i = i - 5) { + fanSpeed = i; + //delay_keep_alive(2000); + for (int j = 0; j < 100; j++) { + delay_keep_alive(100); + + } + fan_speed[1]; + MYSERIAL.print(i); SERIAL_ECHOPGM(": "); MYSERIAL.println(fan_speed[1]); + } + }break; + + /** + * G80: Mesh-based Z probe, probes a grid and produces a + * mesh to compensate for variable bed height + * + * The S0 report the points as below + * + * +----> X-axis + * | + * | + * v Y-axis + * + */ + + case 80: +#ifdef MK1BP + break; +#endif //MK1BP + case_G80: + { + mesh_bed_leveling_flag = true; + int8_t verbosity_level = 0; + static bool run = false; + + if (code_seen('V')) { + // Just 'V' without a number counts as V1. + char c = strchr_pointer[1]; + verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short(); + } + // Firstly check if we know where we are + if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS])) { + // We don't know where we are! HOME! + // Push the commands to the front of the message queue in the reverse order! + // There shall be always enough space reserved for these commands. + if (lcd_commands_type != LCD_COMMAND_STOP_PRINT) { + repeatcommand_front(); // repeat G80 with all its parameters + enquecommand_front_P((PSTR("G28 W0"))); + } + else { + mesh_bed_leveling_flag = false; + } + break; + } + + + bool temp_comp_start = true; +#ifdef PINDA_THERMISTOR + temp_comp_start = false; +#endif //PINDA_THERMISTOR + + if (temp_comp_start) + if (run == false && temp_cal_active == true && calibration_status_pinda() == true && target_temperature_bed >= 50) { + if (lcd_commands_type != LCD_COMMAND_STOP_PRINT) { + temp_compensation_start(); + run = true; + repeatcommand_front(); // repeat G80 with all its parameters + enquecommand_front_P((PSTR("G28 W0"))); + } + else { + mesh_bed_leveling_flag = false; + } + break; + } + run = false; + if (lcd_commands_type == LCD_COMMAND_STOP_PRINT) { + mesh_bed_leveling_flag = false; + break; + } + // Save custom message state, set a new custom message state to display: Calibrating point 9. + bool custom_message_old = custom_message; + unsigned int custom_message_type_old = custom_message_type; + unsigned int custom_message_state_old = custom_message_state; + custom_message = true; + custom_message_type = 1; + custom_message_state = (MESH_MEAS_NUM_X_POINTS * MESH_MEAS_NUM_Y_POINTS) + 10; + lcd_update(1); + + mbl.reset(); //reset mesh bed leveling + + // Reset baby stepping to zero, if the babystepping has already been loaded before. The babystepsTodo value will be + // consumed during the first movements following this statement. + babystep_undo(); + + // Cycle through all points and probe them + // First move up. During this first movement, the babystepping will be reverted. + current_position[Z_AXIS] = MESH_HOME_Z_SEARCH; + plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 60, active_extruder); + // The move to the first calibration point. + current_position[X_AXIS] = pgm_read_float(bed_ref_points); + current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 1); + bool clamped = world2machine_clamp(current_position[X_AXIS], current_position[Y_AXIS]); + + if (verbosity_level >= 1) { + clamped ? SERIAL_PROTOCOLPGM("First calibration point clamped.\n") : SERIAL_PROTOCOLPGM("No clamping for first calibration point.\n"); + } + // mbl.get_meas_xy(0, 0, current_position[X_AXIS], current_position[Y_AXIS], false); + plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[X_AXIS] / 30, active_extruder); + // Wait until the move is finished. + st_synchronize(); + + int mesh_point = 0; //index number of calibration point + + int ix = 0; + int iy = 0; + + int XY_AXIS_FEEDRATE = homing_feedrate[X_AXIS] / 20; + int Z_PROBE_FEEDRATE = homing_feedrate[Z_AXIS] / 60; + int Z_LIFT_FEEDRATE = homing_feedrate[Z_AXIS] / 40; + bool has_z = is_bed_z_jitter_data_valid(); //checks if we have data from Z calibration (offsets of the Z heiths of the 8 calibration points from the first point) + if (verbosity_level >= 1) { + has_z ? SERIAL_PROTOCOLPGM("Z jitter data from Z cal. valid.\n") : SERIAL_PROTOCOLPGM("Z jitter data from Z cal. not valid.\n"); + } + setup_for_endstop_move(false); //save feedrate and feedmultiply, sets feedmultiply to 100 + const char *kill_message = NULL; + while (mesh_point != MESH_MEAS_NUM_X_POINTS * MESH_MEAS_NUM_Y_POINTS) { + if (verbosity_level >= 1) SERIAL_ECHOLNPGM(""); + // Get coords of a measuring point. + ix = mesh_point % MESH_MEAS_NUM_X_POINTS; // from 0 to MESH_NUM_X_POINTS - 1 + iy = mesh_point / MESH_MEAS_NUM_X_POINTS; + if (iy & 1) ix = (MESH_MEAS_NUM_X_POINTS - 1) - ix; // Zig zag + float z0 = 0.f; + if (has_z && mesh_point > 0) { + uint16_t z_offset_u = eeprom_read_word((uint16_t*)(EEPROM_BED_CALIBRATION_Z_JITTER + 2 * (ix + iy * 3 - 1))); + z0 = mbl.z_values[0][0] + *reinterpret_cast(&z_offset_u) * 0.01; + //#if 0 + if (verbosity_level >= 1) { + SERIAL_ECHOPGM("Bed leveling, point: "); + MYSERIAL.print(mesh_point); + SERIAL_ECHOPGM(", calibration z: "); + MYSERIAL.print(z0, 5); + SERIAL_ECHOLNPGM(""); + } + //#endif + } + + // Move Z up to MESH_HOME_Z_SEARCH. + current_position[Z_AXIS] = MESH_HOME_Z_SEARCH; + plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], Z_LIFT_FEEDRATE, active_extruder); + st_synchronize(); + + // Move to XY position of the sensor point. + current_position[X_AXIS] = pgm_read_float(bed_ref_points + 2 * mesh_point); + current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 2 * mesh_point + 1); + + + + world2machine_clamp(current_position[X_AXIS], current_position[Y_AXIS]); + if (verbosity_level >= 1) { + + SERIAL_PROTOCOL(mesh_point); + clamped ? SERIAL_PROTOCOLPGM(": xy clamped.\n") : SERIAL_PROTOCOLPGM(": no xy clamping\n"); + } + + + plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], XY_AXIS_FEEDRATE, active_extruder); + st_synchronize(); + + // Go down until endstop is hit + const float Z_CALIBRATION_THRESHOLD = 1.f; + if (!find_bed_induction_sensor_point_z((has_z && mesh_point > 0) ? z0 - Z_CALIBRATION_THRESHOLD : -10.f)) { //if we have data from z calibration max allowed difference is 1mm for each point, if we dont have data max difference is 10mm from initial point + kill_message = MSG_BED_LEVELING_FAILED_POINT_LOW; + break; + } + if (MESH_HOME_Z_SEARCH - current_position[Z_AXIS] < 0.1f) { + kill_message = MSG_BED_LEVELING_FAILED_PROBE_DISCONNECTED; + break; + } + if (has_z && fabs(z0 - current_position[Z_AXIS]) > Z_CALIBRATION_THRESHOLD) { //if we have data from z calibration, max. allowed difference is 1mm for each point + kill_message = MSG_BED_LEVELING_FAILED_POINT_HIGH; + break; + } + + if (verbosity_level >= 10) { + SERIAL_ECHOPGM("X: "); + MYSERIAL.print(current_position[X_AXIS], 5); + SERIAL_ECHOLNPGM(""); + SERIAL_ECHOPGM("Y: "); + MYSERIAL.print(current_position[Y_AXIS], 5); + SERIAL_PROTOCOLPGM("\n"); + } + + float offset_z = 0; + +#ifdef PINDA_THERMISTOR + offset_z = temp_compensation_pinda_thermistor_offset(); +#endif //PINDA_THERMISTOR + + if (verbosity_level >= 1) { + SERIAL_ECHOPGM("mesh bed leveling: "); + MYSERIAL.print(current_position[Z_AXIS], 5); + SERIAL_ECHOPGM(" offset: "); + MYSERIAL.print(offset_z, 5); + SERIAL_ECHOLNPGM(""); + } + mbl.set_z(ix, iy, current_position[Z_AXIS] - offset_z); //store measured z values z_values[iy][ix] = z - offset_z; + + custom_message_state--; + mesh_point++; + lcd_update(1); + } + if (verbosity_level >= 20) SERIAL_ECHOLNPGM("Mesh bed leveling while loop finished."); + current_position[Z_AXIS] = MESH_HOME_Z_SEARCH; + if (verbosity_level >= 20) { + SERIAL_ECHOLNPGM("MESH_HOME_Z_SEARCH: "); + MYSERIAL.print(current_position[Z_AXIS], 5); + } + plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], Z_LIFT_FEEDRATE, active_extruder); + st_synchronize(); + if (mesh_point != MESH_MEAS_NUM_X_POINTS * MESH_MEAS_NUM_Y_POINTS) { + kill(kill_message); + SERIAL_ECHOLNPGM("killed"); + } + clean_up_after_endstop_move(); + SERIAL_ECHOLNPGM("clean up finished "); + + bool apply_temp_comp = true; +#ifdef PINDA_THERMISTOR + apply_temp_comp = false; +#endif + if (apply_temp_comp) + if(temp_cal_active == true && calibration_status_pinda() == true) temp_compensation_apply(); //apply PINDA temperature compensation + babystep_apply(); // Apply Z height correction aka baby stepping before mesh bed leveing gets activated. + SERIAL_ECHOLNPGM("babystep applied"); + bool eeprom_bed_correction_valid = eeprom_read_byte((unsigned char*)EEPROM_BED_CORRECTION_VALID) == 1; + + if (verbosity_level >= 1) { + eeprom_bed_correction_valid ? SERIAL_PROTOCOLPGM("Bed correction data valid\n") : SERIAL_PROTOCOLPGM("Bed correction data not valid\n"); + } + + for (uint8_t i = 0; i < 4; ++i) { + unsigned char codes[4] = { 'L', 'R', 'F', 'B' }; + long correction = 0; + if (code_seen(codes[i])) + correction = code_value_long(); + else if (eeprom_bed_correction_valid) { + unsigned char *addr = (i < 2) ? + ((i == 0) ? (unsigned char*)EEPROM_BED_CORRECTION_LEFT : (unsigned char*)EEPROM_BED_CORRECTION_RIGHT) : + ((i == 2) ? (unsigned char*)EEPROM_BED_CORRECTION_FRONT : (unsigned char*)EEPROM_BED_CORRECTION_REAR); + correction = eeprom_read_int8(addr); + } + if (correction == 0) + continue; + float offset = float(correction) * 0.001f; + if (fabs(offset) > 0.101f) { + SERIAL_ERROR_START; + SERIAL_ECHOPGM("Excessive bed leveling correction: "); + SERIAL_ECHO(offset); + SERIAL_ECHOLNPGM(" microns"); + } + else { + switch (i) { + case 0: + for (uint8_t row = 0; row < 3; ++row) { + mbl.z_values[row][1] += 0.5f * offset; + mbl.z_values[row][0] += offset; + } + break; + case 1: + for (uint8_t row = 0; row < 3; ++row) { + mbl.z_values[row][1] += 0.5f * offset; + mbl.z_values[row][2] += offset; + } + break; + case 2: + for (uint8_t col = 0; col < 3; ++col) { + mbl.z_values[1][col] += 0.5f * offset; + mbl.z_values[0][col] += offset; + } + break; + case 3: + for (uint8_t col = 0; col < 3; ++col) { + mbl.z_values[1][col] += 0.5f * offset; + mbl.z_values[2][col] += offset; + } + break; + } + } + } + SERIAL_ECHOLNPGM("Bed leveling correction finished"); + mbl.upsample_3x3(); //bilinear interpolation from 3x3 to 7x7 points while using the same array z_values[iy][ix] for storing (just coppying measured data to new destination and interpolating between them) + SERIAL_ECHOLNPGM("Upsample finished"); + mbl.active = 1; //activate mesh bed leveling + SERIAL_ECHOLNPGM("Mesh bed leveling activated"); + go_home_with_z_lift(); + SERIAL_ECHOLNPGM("Go home finished"); + //unretract (after PINDA preheat retraction) + if (degHotend(active_extruder) > EXTRUDE_MINTEMP && temp_cal_active == true && calibration_status_pinda() == true && target_temperature_bed >= 50) { + current_position[E_AXIS] += DEFAULT_RETRACTION; + plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400, active_extruder); + } + // Restore custom message state + custom_message = custom_message_old; + custom_message_type = custom_message_type_old; + custom_message_state = custom_message_state_old; + mesh_bed_leveling_flag = false; + mesh_bed_run_from_menu = false; + lcd_update(2); + + } + break; + + /** + * G81: Print mesh bed leveling status and bed profile if activated + */ + case 81: + if (mbl.active) { + SERIAL_PROTOCOLPGM("Num X,Y: "); + SERIAL_PROTOCOL(MESH_NUM_X_POINTS); + SERIAL_PROTOCOLPGM(","); + SERIAL_PROTOCOL(MESH_NUM_Y_POINTS); + SERIAL_PROTOCOLPGM("\nZ search height: "); + SERIAL_PROTOCOL(MESH_HOME_Z_SEARCH); + SERIAL_PROTOCOLLNPGM("\nMeasured points:"); + for (int y = MESH_NUM_Y_POINTS-1; y >= 0; y--) { + for (int x = 0; x < MESH_NUM_X_POINTS; x++) { + SERIAL_PROTOCOLPGM(" "); + SERIAL_PROTOCOL_F(mbl.z_values[y][x], 5); + } + SERIAL_PROTOCOLPGM("\n"); + } + } + else + SERIAL_PROTOCOLLNPGM("Mesh bed leveling not active."); + break; + +#if 0 + /** + * G82: Single Z probe at current location + * + * WARNING! USE WITH CAUTION! If you'll try to probe where is no leveling pad, nasty things can happen! + * + */ + case 82: + SERIAL_PROTOCOLLNPGM("Finding bed "); + setup_for_endstop_move(); + find_bed_induction_sensor_point_z(); + clean_up_after_endstop_move(); + SERIAL_PROTOCOLPGM("Bed found at: "); + SERIAL_PROTOCOL_F(current_position[Z_AXIS], 5); + SERIAL_PROTOCOLPGM("\n"); + break; + + /** + * G83: Prusa3D specific: Babystep in Z and store to EEPROM + */ + case 83: + { + int babystepz = code_seen('S') ? code_value() : 0; + int BabyPosition = code_seen('P') ? code_value() : 0; + + if (babystepz != 0) { + //FIXME Vojtech: What shall be the index of the axis Z: 3 or 4? + // Is the axis indexed starting with zero or one? + if (BabyPosition > 4) { + SERIAL_PROTOCOLLNPGM("Index out of bounds"); + }else{ + // Save it to the eeprom + babystepLoadZ = babystepz; + EEPROM_save_B(EEPROM_BABYSTEP_Z0+(BabyPosition*2),&babystepLoadZ); + // adjust the Z + babystepsTodoZadd(babystepLoadZ); + } + + } + + } + break; + /** + * G84: Prusa3D specific: UNDO Babystep Z (move Z axis back) + */ + case 84: + babystepsTodoZsubtract(babystepLoadZ); + // babystepLoadZ = 0; + break; + + /** + * G85: Prusa3D specific: Pick best babystep + */ + case 85: + lcd_pick_babystep(); + break; +#endif + + /** + * G86: Prusa3D specific: Disable babystep correction after home. + * This G-code will be performed at the start of a calibration script. + */ + case 86: + calibration_status_store(CALIBRATION_STATUS_LIVE_ADJUST); + break; + /** + * G87: Prusa3D specific: Enable babystep correction after home + * This G-code will be performed at the end of a calibration script. + */ + case 87: + calibration_status_store(CALIBRATION_STATUS_CALIBRATED); + break; + + /** + * G88: Prusa3D specific: Don't know what it is for, it is in V2Calibration.gcode + */ + case 88: + break; + + +#endif // ENABLE_MESH_BED_LEVELING + + + case 90: // G90 + relative_mode = false; + break; + case 91: // G91 + relative_mode = true; + break; + case 92: // G92 + if(!code_seen(axis_codes[E_AXIS])) + st_synchronize(); + for(int8_t i=0; i < NUM_AXIS; i++) { + if(code_seen(axis_codes[i])) { + if(i == E_AXIS) { + current_position[i] = code_value(); + plan_set_e_position(current_position[E_AXIS]); + } + else { + current_position[i] = code_value()+add_homing[i]; + plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]); + } + } + } + break; + + case 98: //activate farm mode + farm_mode = 1; + PingTime = millis(); + eeprom_update_byte((unsigned char *)EEPROM_FARM_MODE, farm_mode); + break; + + case 99: //deactivate farm mode + farm_mode = 0; + lcd_printer_connected(); + eeprom_update_byte((unsigned char *)EEPROM_FARM_MODE, farm_mode); + lcd_update(2); + break; + + + + + + + + } + } // end if(code_seen('G')) + + else if(code_seen('M')) + { + int index; + for (index = 1; *(strchr_pointer + index) == ' ' || *(strchr_pointer + index) == '\t'; index++); + + /*for (++strchr_pointer; *strchr_pointer == ' ' || *strchr_pointer == '\t'; ++strchr_pointer);*/ + if (*(strchr_pointer+index) < '0' || *(strchr_pointer+index) > '9') { + SERIAL_ECHOLNPGM("Invalid M code"); + } else + switch((int)code_value()) + { +#ifdef ULTIPANEL + + case 0: // M0 - Unconditional stop - Wait for user button press on LCD + case 1: // M1 - Conditional stop - Wait for user button press on LCD + { + char *src = strchr_pointer + 2; + + codenum = 0; + + bool hasP = false, hasS = false; + if (code_seen('P')) { + codenum = code_value(); // milliseconds to wait + hasP = codenum > 0; + } + if (code_seen('S')) { + codenum = code_value() * 1000; // seconds to wait + hasS = codenum > 0; + } + starpos = strchr(src, '*'); + if (starpos != NULL) *(starpos) = '\0'; + while (*src == ' ') ++src; + if (!hasP && !hasS && *src != '\0') { + lcd_setstatus(src); + } else { + LCD_MESSAGERPGM(MSG_USERWAIT); + } + + lcd_ignore_click(); //call lcd_ignore_click aslo for else ??? + st_synchronize(); + previous_millis_cmd = millis(); + if (codenum > 0){ + codenum += millis(); // keep track of when we started waiting + while(millis() < codenum && !lcd_clicked()){ + manage_heater(); + manage_inactivity(true); + lcd_update(); + } + lcd_ignore_click(false); + }else{ + if (!lcd_detected()) + break; + while(!lcd_clicked()){ + manage_heater(); + manage_inactivity(true); + lcd_update(); + } + } + if (IS_SD_PRINTING) + LCD_MESSAGERPGM(MSG_RESUMING); + else + LCD_MESSAGERPGM(WELCOME_MSG); + } + break; +#endif + case 17: + LCD_MESSAGERPGM(MSG_NO_MOVE); + enable_x(); + enable_y(); + enable_z(); + enable_e0(); + enable_e1(); + enable_e2(); + break; + +#ifdef SDSUPPORT + case 20: // M20 - list SD card + SERIAL_PROTOCOLLNRPGM(MSG_BEGIN_FILE_LIST); + card.ls(); + SERIAL_PROTOCOLLNRPGM(MSG_END_FILE_LIST); + break; + case 21: // M21 - init SD card + + card.initsd(); + + break; + case 22: //M22 - release SD card + card.release(); + + break; + case 23: //M23 - Select file + starpos = (strchr(strchr_pointer + 4,'*')); + if(starpos!=NULL) + *(starpos)='\0'; + card.openFile(strchr_pointer + 4,true); + break; + case 24: //M24 - Start SD print + card.startFileprint(); + starttime=millis(); + break; + case 25: //M25 - Pause SD print + card.pauseSDPrint(); + break; + case 26: //M26 - Set SD index + if(card.cardOK && code_seen('S')) { + card.setIndex(code_value_long()); + } + break; + case 27: //M27 - Get SD status + card.getStatus(); + break; + case 28: //M28 - Start SD write + starpos = (strchr(strchr_pointer + 4,'*')); + if(starpos != NULL){ + char* npos = strchr(CMDBUFFER_CURRENT_STRING, 'N'); + strchr_pointer = strchr(npos,' ') + 1; + *(starpos) = '\0'; + } + card.openFile(strchr_pointer+4,false); + break; + case 29: //M29 - Stop SD write + //processed in write to file routine above + //card,saving = false; + break; + case 30: //M30 Delete File + if (card.cardOK){ + card.closefile(); + starpos = (strchr(strchr_pointer + 4,'*')); + if(starpos != NULL){ + char* npos = strchr(CMDBUFFER_CURRENT_STRING, 'N'); + strchr_pointer = strchr(npos,' ') + 1; + *(starpos) = '\0'; + } + card.removeFile(strchr_pointer + 4); + } + break; + case 32: //M32 - Select file and start SD print + { + if(card.sdprinting) { + st_synchronize(); + + } + starpos = (strchr(strchr_pointer + 4,'*')); + + char* namestartpos = (strchr(strchr_pointer + 4,'!')); //find ! to indicate filename string start. + if(namestartpos==NULL) + { + namestartpos=strchr_pointer + 4; //default name position, 4 letters after the M + } + else + namestartpos++; //to skip the '!' + + if(starpos!=NULL) + *(starpos)='\0'; + + bool call_procedure=(code_seen('P')); + + if(strchr_pointer>namestartpos) + call_procedure=false; //false alert, 'P' found within filename + + if( card.cardOK ) + { + card.openFile(namestartpos,true,!call_procedure); + if(code_seen('S')) + if(strchr_pointer= 0 && pin_status <= 255) + pin_number = code_value(); + for(int8_t i = 0; i < (int8_t)(sizeof(sensitive_pins)/sizeof(int)); i++) + { + if (sensitive_pins[i] == pin_number) + { + pin_number = -1; + break; + } + } + #if defined(FAN_PIN) && FAN_PIN > -1 + if (pin_number == FAN_PIN) + fanSpeed = pin_status; + #endif + if (pin_number > -1) + { + pinMode(pin_number, OUTPUT); + digitalWrite(pin_number, pin_status); + analogWrite(pin_number, pin_status); + } + } + break; + + case 44: // M44: Prusa3D: Reset the bed skew and offset calibration. + + // Reset the baby step value and the baby step applied flag. + calibration_status_store(CALIBRATION_STATUS_ASSEMBLED); + eeprom_update_word((uint16_t*)EEPROM_BABYSTEP_Z, 0); + + // Reset the skew and offset in both RAM and EEPROM. + reset_bed_offset_and_skew(); + // Reset world2machine_rotation_and_skew and world2machine_shift, therefore + // the planner will not perform any adjustments in the XY plane. + // Wait for the motors to stop and update the current position with the absolute values. + world2machine_revert_to_uncorrected(); + break; + + case 45: // M45: Prusa3D: bed skew and offset with manual Z up + { + // Only Z calibration? + bool onlyZ = code_seen('Z'); + + if (!onlyZ) { + setTargetBed(0); + setTargetHotend(0, 0); + setTargetHotend(0, 1); + setTargetHotend(0, 2); + adjust_bed_reset(); //reset bed level correction + } + + // Disable the default update procedure of the display. We will do a modal dialog. + lcd_update_enable(false); + // Let the planner use the uncorrected coordinates. + mbl.reset(); + // Reset world2machine_rotation_and_skew and world2machine_shift, therefore + // the planner will not perform any adjustments in the XY plane. + // Wait for the motors to stop and update the current position with the absolute values. + world2machine_revert_to_uncorrected(); + // Reset the baby step value applied without moving the axes. + babystep_reset(); + // Mark all axes as in a need for homing. + memset(axis_known_position, 0, sizeof(axis_known_position)); + + // Home in the XY plane. + //set_destination_to_current(); + setup_for_endstop_move(); + lcd_display_message_fullscreen_P(MSG_AUTO_HOME); + home_xy(); + + // Let the user move the Z axes up to the end stoppers. +#ifdef TMC2130 + if (calibrate_z_auto()) { +#else //TMC2130 + if (lcd_calibrate_z_end_stop_manual( onlyZ )) { +#endif //TMC2130 + refresh_cmd_timeout(); + if (((degHotend(0) > MAX_HOTEND_TEMP_CALIBRATION) || (degBed() > MAX_BED_TEMP_CALIBRATION)) && (!onlyZ)) { + lcd_wait_for_cool_down(); + lcd_show_fullscreen_message_and_wait_P(MSG_PAPER); + lcd_display_message_fullscreen_P(MSG_FIND_BED_OFFSET_AND_SKEW_LINE1); + lcd_implementation_print_at(0, 2, 1); + lcd_printPGM(MSG_FIND_BED_OFFSET_AND_SKEW_LINE2); + } + + // Move the print head close to the bed. + current_position[Z_AXIS] = MESH_HOME_Z_SEARCH; + plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], homing_feedrate[Z_AXIS]/40, active_extruder); + st_synchronize(); + + +//#ifdef TMC2130 +// tmc2130_home_enter(X_AXIS_MASK | Y_AXIS_MASK); +//#endif + + int8_t verbosity_level = 0; + if (code_seen('V')) { + // Just 'V' without a number counts as V1. + char c = strchr_pointer[1]; + verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short(); + } + + if (onlyZ) { + clean_up_after_endstop_move(); + // Z only calibration. + // Load the machine correction matrix + world2machine_initialize(); + // and correct the current_position to match the transformed coordinate system. + world2machine_update_current(); + //FIXME + bool result = sample_mesh_and_store_reference(); + if (result) { + if (calibration_status() == CALIBRATION_STATUS_Z_CALIBRATION) + // Shipped, the nozzle height has been set already. The user can start printing now. + calibration_status_store(CALIBRATION_STATUS_CALIBRATED); + // babystep_apply(); + } + } else { + // Reset the baby step value and the baby step applied flag. + calibration_status_store(CALIBRATION_STATUS_ASSEMBLED); + eeprom_update_word((uint16_t*)EEPROM_BABYSTEP_Z, 0); + // Complete XYZ calibration. + uint8_t point_too_far_mask = 0; + BedSkewOffsetDetectionResultType result = find_bed_offset_and_skew(verbosity_level, point_too_far_mask); + clean_up_after_endstop_move(); + // Print head up. + current_position[Z_AXIS] = MESH_HOME_Z_SEARCH; + plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], homing_feedrate[Z_AXIS]/40, active_extruder); + st_synchronize(); + if (result >= 0) { + point_too_far_mask = 0; + // Second half: The fine adjustment. + // Let the planner use the uncorrected coordinates. + mbl.reset(); + world2machine_reset(); + // Home in the XY plane. + setup_for_endstop_move(); + home_xy(); + result = improve_bed_offset_and_skew(1, verbosity_level, point_too_far_mask); + clean_up_after_endstop_move(); + // Print head up. + current_position[Z_AXIS] = MESH_HOME_Z_SEARCH; + plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], homing_feedrate[Z_AXIS]/40, active_extruder); + st_synchronize(); + // if (result >= 0) babystep_apply(); + } + lcd_bed_calibration_show_result(result, point_too_far_mask); + if (result >= 0) { + // Calibration valid, the machine should be able to print. Advise the user to run the V2Calibration.gcode. + calibration_status_store(CALIBRATION_STATUS_LIVE_ADJUST); + lcd_show_fullscreen_message_and_wait_P(MSG_BABYSTEP_Z_NOT_SET); + } + } +#ifdef TMC2130 + tmc2130_home_exit(); +#endif + } else { + // Timeouted. + } + + + lcd_update_enable(true); + break; + } + + /* + case 46: + { + // M46: Prusa3D: Show the assigned IP address. + uint8_t ip[4]; + bool hasIP = card.ToshibaFlashAir_GetIP(ip); + if (hasIP) { + SERIAL_ECHOPGM("Toshiba FlashAir current IP: "); + SERIAL_ECHO(int(ip[0])); + SERIAL_ECHOPGM("."); + SERIAL_ECHO(int(ip[1])); + SERIAL_ECHOPGM("."); + SERIAL_ECHO(int(ip[2])); + SERIAL_ECHOPGM("."); + SERIAL_ECHO(int(ip[3])); + SERIAL_ECHOLNPGM(""); + } else { + SERIAL_ECHOLNPGM("Toshiba FlashAir GetIP failed"); + } + break; + } + */ + + case 47: + // M47: Prusa3D: Show end stops dialog on the display. + lcd_diag_show_end_stops(); + break; + +#if 0 + case 48: // M48: scan the bed induction sensor points, print the sensor trigger coordinates to the serial line for visualization on the PC. + { + // Disable the default update procedure of the display. We will do a modal dialog. + lcd_update_enable(false); + // Let the planner use the uncorrected coordinates. + mbl.reset(); + // Reset world2machine_rotation_and_skew and world2machine_shift, therefore + // the planner will not perform any adjustments in the XY plane. + // Wait for the motors to stop and update the current position with the absolute values. + world2machine_revert_to_uncorrected(); + // Move the print head close to the bed. + current_position[Z_AXIS] = MESH_HOME_Z_SEARCH; + plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], homing_feedrate[Z_AXIS]/40, active_extruder); + st_synchronize(); + // Home in the XY plane. + set_destination_to_current(); + setup_for_endstop_move(); + home_xy(); + int8_t verbosity_level = 0; + if (code_seen('V')) { + // Just 'V' without a number counts as V1. + char c = strchr_pointer[1]; + verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short(); + } + bool success = scan_bed_induction_points(verbosity_level); + clean_up_after_endstop_move(); + // Print head up. + current_position[Z_AXIS] = MESH_HOME_Z_SEARCH; + plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], homing_feedrate[Z_AXIS]/40, active_extruder); + st_synchronize(); + lcd_update_enable(true); + break; + } +#endif + +// M48 Z-Probe repeatability measurement function. +// +// Usage: M48 +// +// This function assumes the bed has been homed. Specificaly, that a G28 command +// as been issued prior to invoking the M48 Z-Probe repeatability measurement function. +// Any information generated by a prior G29 Bed leveling command will be lost and need to be +// regenerated. +// +// The number of samples will default to 10 if not specified. You can use upper or lower case +// letters for any of the options EXCEPT n. n must be in lower case because Marlin uses a capital +// N for its communication protocol and will get horribly confused if you send it a capital N. +// + +#ifdef ENABLE_AUTO_BED_LEVELING +#ifdef Z_PROBE_REPEATABILITY_TEST + + case 48: // M48 Z-Probe repeatability + { + #if Z_MIN_PIN == -1 + #error "You must have a Z_MIN endstop in order to enable calculation of Z-Probe repeatability." + #endif + + double sum=0.0; + double mean=0.0; + double sigma=0.0; + double sample_set[50]; + int verbose_level=1, n=0, j, n_samples = 10, n_legs=0; + double X_current, Y_current, Z_current; + double X_probe_location, Y_probe_location, Z_start_location, ext_position; + + if (code_seen('V') || code_seen('v')) { + verbose_level = code_value(); + if (verbose_level<0 || verbose_level>4 ) { + SERIAL_PROTOCOLPGM("?Verbose Level not plausable.\n"); + goto Sigma_Exit; + } + } + + if (verbose_level > 0) { + SERIAL_PROTOCOLPGM("M48 Z-Probe Repeatability test. Version 2.00\n"); + SERIAL_PROTOCOLPGM("Full support at: http://3dprintboard.com/forum.php\n"); + } + + if (code_seen('n')) { + n_samples = code_value(); + if (n_samples<4 || n_samples>50 ) { + SERIAL_PROTOCOLPGM("?Specified sample size not plausable.\n"); + goto Sigma_Exit; + } + } + + X_current = X_probe_location = st_get_position_mm(X_AXIS); + Y_current = Y_probe_location = st_get_position_mm(Y_AXIS); + Z_current = st_get_position_mm(Z_AXIS); + Z_start_location = st_get_position_mm(Z_AXIS) + Z_RAISE_BEFORE_PROBING; + ext_position = st_get_position_mm(E_AXIS); + + if (code_seen('X') || code_seen('x') ) { + X_probe_location = code_value() - X_PROBE_OFFSET_FROM_EXTRUDER; + if (X_probe_locationX_MAX_POS ) { + SERIAL_PROTOCOLPGM("?Specified X position out of range.\n"); + goto Sigma_Exit; + } + } + + if (code_seen('Y') || code_seen('y') ) { + Y_probe_location = code_value() - Y_PROBE_OFFSET_FROM_EXTRUDER; + if (Y_probe_locationY_MAX_POS ) { + SERIAL_PROTOCOLPGM("?Specified Y position out of range.\n"); + goto Sigma_Exit; + } + } + + if (code_seen('L') || code_seen('l') ) { + n_legs = code_value(); + if ( n_legs==1 ) + n_legs = 2; + if ( n_legs<0 || n_legs>15 ) { + SERIAL_PROTOCOLPGM("?Specified number of legs in movement not plausable.\n"); + goto Sigma_Exit; + } + } + +// +// Do all the preliminary setup work. First raise the probe. +// + + st_synchronize(); + plan_bed_level_matrix.set_to_identity(); + plan_buffer_line( X_current, Y_current, Z_start_location, + ext_position, + homing_feedrate[Z_AXIS]/60, + active_extruder); + st_synchronize(); + +// +// Now get everything to the specified probe point So we can safely do a probe to +// get us close to the bed. If the Z-Axis is far from the bed, we don't want to +// use that as a starting point for each probe. +// + if (verbose_level > 2) + SERIAL_PROTOCOL("Positioning probe for the test.\n"); + + plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location, + ext_position, + homing_feedrate[X_AXIS]/60, + active_extruder); + st_synchronize(); + + current_position[X_AXIS] = X_current = st_get_position_mm(X_AXIS); + current_position[Y_AXIS] = Y_current = st_get_position_mm(Y_AXIS); + current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS); + current_position[E_AXIS] = ext_position = st_get_position_mm(E_AXIS); + +// +// OK, do the inital probe to get us close to the bed. +// Then retrace the right amount and use that in subsequent probes +// + + setup_for_endstop_move(); + run_z_probe(); + + current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS); + Z_start_location = st_get_position_mm(Z_AXIS) + Z_RAISE_BEFORE_PROBING; + + plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location, + ext_position, + homing_feedrate[X_AXIS]/60, + active_extruder); + st_synchronize(); + current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS); + + for( n=0; nX_MAX_POS) + X_current = X_MAX_POS; + + if ( Y_currentY_MAX_POS) + Y_current = Y_MAX_POS; + + if (verbose_level>3 ) { + SERIAL_ECHOPAIR("x: ", X_current); + SERIAL_ECHOPAIR("y: ", Y_current); + SERIAL_PROTOCOLLNPGM(""); + } + + do_blocking_move_to( X_current, Y_current, Z_current ); + } + do_blocking_move_to( X_probe_location, Y_probe_location, Z_start_location); // Go back to the probe location + } + + setup_for_endstop_move(); + run_z_probe(); + + sample_set[n] = current_position[Z_AXIS]; + +// +// Get the current mean for the data points we have so far +// + sum=0.0; + for( j=0; j<=n; j++) { + sum = sum + sample_set[j]; + } + mean = sum / (double (n+1)); +// +// Now, use that mean to calculate the standard deviation for the +// data points we have so far +// + + sum=0.0; + for( j=0; j<=n; j++) { + sum = sum + (sample_set[j]-mean) * (sample_set[j]-mean); + } + sigma = sqrt( sum / (double (n+1)) ); + + if (verbose_level > 1) { + SERIAL_PROTOCOL(n+1); + SERIAL_PROTOCOL(" of "); + SERIAL_PROTOCOL(n_samples); + SERIAL_PROTOCOLPGM(" z: "); + SERIAL_PROTOCOL_F(current_position[Z_AXIS], 6); + } + + if (verbose_level > 2) { + SERIAL_PROTOCOL(" mean: "); + SERIAL_PROTOCOL_F(mean,6); + + SERIAL_PROTOCOL(" sigma: "); + SERIAL_PROTOCOL_F(sigma,6); + } + + if (verbose_level > 0) + SERIAL_PROTOCOLPGM("\n"); + + plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location, + current_position[E_AXIS], homing_feedrate[Z_AXIS]/60, active_extruder); + st_synchronize(); + + } + + delay(1000); + + clean_up_after_endstop_move(); + +// enable_endstops(true); + + if (verbose_level > 0) { + SERIAL_PROTOCOLPGM("Mean: "); + SERIAL_PROTOCOL_F(mean, 6); + SERIAL_PROTOCOLPGM("\n"); + } + +SERIAL_PROTOCOLPGM("Standard Deviation: "); +SERIAL_PROTOCOL_F(sigma, 6); +SERIAL_PROTOCOLPGM("\n\n"); + +Sigma_Exit: + break; + } +#endif // Z_PROBE_REPEATABILITY_TEST +#endif // ENABLE_AUTO_BED_LEVELING + + case 104: // M104 + if(setTargetedHotend(104)){ + break; + } + if (code_seen('S')) setTargetHotend(code_value(), tmp_extruder); + setWatch(); + break; + case 112: // M112 -Emergency Stop + kill("", 3); + break; + case 140: // M140 set bed temp + if (code_seen('S')) setTargetBed(code_value()); + break; + case 105 : // M105 + if(setTargetedHotend(105)){ + break; + } + #if defined(TEMP_0_PIN) && TEMP_0_PIN > -1 + SERIAL_PROTOCOLPGM("ok T:"); + SERIAL_PROTOCOL_F(degHotend(tmp_extruder),1); + SERIAL_PROTOCOLPGM(" /"); + SERIAL_PROTOCOL_F(degTargetHotend(tmp_extruder),1); + #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1 + SERIAL_PROTOCOLPGM(" B:"); + SERIAL_PROTOCOL_F(degBed(),1); + SERIAL_PROTOCOLPGM(" /"); + SERIAL_PROTOCOL_F(degTargetBed(),1); + #endif //TEMP_BED_PIN + for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) { + SERIAL_PROTOCOLPGM(" T"); + SERIAL_PROTOCOL(cur_extruder); + SERIAL_PROTOCOLPGM(":"); + SERIAL_PROTOCOL_F(degHotend(cur_extruder),1); + SERIAL_PROTOCOLPGM(" /"); + SERIAL_PROTOCOL_F(degTargetHotend(cur_extruder),1); + } + #else + SERIAL_ERROR_START; + SERIAL_ERRORLNRPGM(MSG_ERR_NO_THERMISTORS); + #endif + + SERIAL_PROTOCOLPGM(" @:"); + #ifdef EXTRUDER_WATTS + SERIAL_PROTOCOL((EXTRUDER_WATTS * getHeaterPower(tmp_extruder))/127); + SERIAL_PROTOCOLPGM("W"); + #else + SERIAL_PROTOCOL(getHeaterPower(tmp_extruder)); + #endif + + SERIAL_PROTOCOLPGM(" B@:"); + #ifdef BED_WATTS + SERIAL_PROTOCOL((BED_WATTS * getHeaterPower(-1))/127); + SERIAL_PROTOCOLPGM("W"); + #else + SERIAL_PROTOCOL(getHeaterPower(-1)); + #endif + +#ifdef PINDA_THERMISTOR + SERIAL_PROTOCOLPGM(" P:"); + SERIAL_PROTOCOL_F(current_temperature_pinda,1); +#endif //PINDA_THERMISTOR + +#ifdef AMBIENT_THERMISTOR + SERIAL_PROTOCOLPGM(" A:"); + SERIAL_PROTOCOL_F(current_temperature_ambient,1); +#endif //AMBIENT_THERMISTOR + + + #ifdef SHOW_TEMP_ADC_VALUES + {float raw = 0.0; + + #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1 + SERIAL_PROTOCOLPGM(" ADC B:"); + SERIAL_PROTOCOL_F(degBed(),1); + SERIAL_PROTOCOLPGM("C->"); + raw = rawBedTemp(); + SERIAL_PROTOCOL_F(raw/OVERSAMPLENR,5); + SERIAL_PROTOCOLPGM(" Rb->"); + SERIAL_PROTOCOL_F(100 * (1 + (PtA * (raw/OVERSAMPLENR)) + (PtB * sq((raw/OVERSAMPLENR)))), 5); + SERIAL_PROTOCOLPGM(" Rxb->"); + SERIAL_PROTOCOL_F(raw, 5); + #endif + for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) { + SERIAL_PROTOCOLPGM(" T"); + SERIAL_PROTOCOL(cur_extruder); + SERIAL_PROTOCOLPGM(":"); + SERIAL_PROTOCOL_F(degHotend(cur_extruder),1); + SERIAL_PROTOCOLPGM("C->"); + raw = rawHotendTemp(cur_extruder); + SERIAL_PROTOCOL_F(raw/OVERSAMPLENR,5); + SERIAL_PROTOCOLPGM(" Rt"); + SERIAL_PROTOCOL(cur_extruder); + SERIAL_PROTOCOLPGM("->"); + SERIAL_PROTOCOL_F(100 * (1 + (PtA * (raw/OVERSAMPLENR)) + (PtB * sq((raw/OVERSAMPLENR)))), 5); + SERIAL_PROTOCOLPGM(" Rx"); + SERIAL_PROTOCOL(cur_extruder); + SERIAL_PROTOCOLPGM("->"); + SERIAL_PROTOCOL_F(raw, 5); + }} + #endif + SERIAL_PROTOCOLLN(""); + return; + break; + case 109: + {// M109 - Wait for extruder heater to reach target. + if(setTargetedHotend(109)){ + break; + } + LCD_MESSAGERPGM(MSG_HEATING); + heating_status = 1; + if (farm_mode) { prusa_statistics(1); }; + +#ifdef AUTOTEMP + autotemp_enabled=false; + #endif + if (code_seen('S')) { + setTargetHotend(code_value(), tmp_extruder); + CooldownNoWait = true; + } else if (code_seen('R')) { + setTargetHotend(code_value(), tmp_extruder); + CooldownNoWait = false; + } + #ifdef AUTOTEMP + if (code_seen('S')) autotemp_min=code_value(); + if (code_seen('B')) autotemp_max=code_value(); + if (code_seen('F')) + { + autotemp_factor=code_value(); + autotemp_enabled=true; + } + #endif + + setWatch(); + codenum = millis(); + + /* See if we are heating up or cooling down */ + target_direction = isHeatingHotend(tmp_extruder); // true if heating, false if cooling + + cancel_heatup = false; + + wait_for_heater(codenum); //loops until target temperature is reached + + LCD_MESSAGERPGM(MSG_HEATING_COMPLETE); + heating_status = 2; + if (farm_mode) { prusa_statistics(2); }; + + //starttime=millis(); + previous_millis_cmd = millis(); + } + break; + case 190: // M190 - Wait for bed heater to reach target. + #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1 + LCD_MESSAGERPGM(MSG_BED_HEATING); + heating_status = 3; + if (farm_mode) { prusa_statistics(1); }; + if (code_seen('S')) + { + setTargetBed(code_value()); + CooldownNoWait = true; + } + else if (code_seen('R')) + { + setTargetBed(code_value()); + CooldownNoWait = false; + } + codenum = millis(); + + cancel_heatup = false; + target_direction = isHeatingBed(); // true if heating, false if cooling + + while ( (target_direction)&&(!cancel_heatup) ? (isHeatingBed()) : (isCoolingBed()&&(CooldownNoWait==false)) ) + { + if(( millis() - codenum) > 1000 ) //Print Temp Reading every 1 second while heating up. + { + if (!farm_mode) { + float tt = degHotend(active_extruder); + SERIAL_PROTOCOLPGM("T:"); + SERIAL_PROTOCOL(tt); + SERIAL_PROTOCOLPGM(" E:"); + SERIAL_PROTOCOL((int)active_extruder); + SERIAL_PROTOCOLPGM(" B:"); + SERIAL_PROTOCOL_F(degBed(), 1); + SERIAL_PROTOCOLLN(""); + } + codenum = millis(); + + } + manage_heater(); + manage_inactivity(); + lcd_update(); + } + LCD_MESSAGERPGM(MSG_BED_DONE); + heating_status = 4; + + previous_millis_cmd = millis(); + #endif + break; + + #if defined(FAN_PIN) && FAN_PIN > -1 + case 106: //M106 Fan On + if (code_seen('S')){ + fanSpeed=constrain(code_value(),0,255); + } + else { + fanSpeed=255; + } + break; + case 107: //M107 Fan Off + fanSpeed = 0; + break; + #endif //FAN_PIN + + #if defined(PS_ON_PIN) && PS_ON_PIN > -1 + case 80: // M80 - Turn on Power Supply + SET_OUTPUT(PS_ON_PIN); //GND + WRITE(PS_ON_PIN, PS_ON_AWAKE); + + // If you have a switch on suicide pin, this is useful + // if you want to start another print with suicide feature after + // a print without suicide... + #if defined SUICIDE_PIN && SUICIDE_PIN > -1 + SET_OUTPUT(SUICIDE_PIN); + WRITE(SUICIDE_PIN, HIGH); + #endif + + #ifdef ULTIPANEL + powersupply = true; + LCD_MESSAGERPGM(WELCOME_MSG); + lcd_update(); + #endif + break; + #endif + + case 81: // M81 - Turn off Power Supply + disable_heater(); + st_synchronize(); + disable_e0(); + disable_e1(); + disable_e2(); + finishAndDisableSteppers(); + fanSpeed = 0; + delay(1000); // Wait a little before to switch off + #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1 + st_synchronize(); + suicide(); + #elif defined(PS_ON_PIN) && PS_ON_PIN > -1 + SET_OUTPUT(PS_ON_PIN); + WRITE(PS_ON_PIN, PS_ON_ASLEEP); + #endif + #ifdef ULTIPANEL + powersupply = false; + LCD_MESSAGERPGM(CAT4(CUSTOM_MENDEL_NAME,PSTR(" "),MSG_OFF,PSTR("."))); //!! + + /* + MACHNAME = "Prusa i3" + MSGOFF = "Vypnuto" + "Prusai3"" ""vypnuto""." + + "Prusa i3"" "MSG_ALL[lang_selected][50]"." + */ + lcd_update(); + #endif + break; + + case 82: + axis_relative_modes[3] = false; + break; + case 83: + axis_relative_modes[3] = true; + break; + case 18: //compatibility + case 84: // M84 + if(code_seen('S')){ + stepper_inactive_time = code_value() * 1000; + } + else + { + bool all_axis = !((code_seen(axis_codes[X_AXIS])) || (code_seen(axis_codes[Y_AXIS])) || (code_seen(axis_codes[Z_AXIS]))|| (code_seen(axis_codes[E_AXIS]))); + if(all_axis) + { + st_synchronize(); + disable_e0(); + disable_e1(); + disable_e2(); + finishAndDisableSteppers(); + } + else + { + st_synchronize(); + if (code_seen('X')) disable_x(); + if (code_seen('Y')) disable_y(); + if (code_seen('Z')) disable_z(); +#if ((E0_ENABLE_PIN != X_ENABLE_PIN) && (E1_ENABLE_PIN != Y_ENABLE_PIN)) // Only enable on boards that have seperate ENABLE_PINS + if (code_seen('E')) { + disable_e0(); + disable_e1(); + disable_e2(); + } + #endif + } + } + snmm_filaments_used = 0; + break; + case 85: // M85 + if(code_seen('S')) { + max_inactive_time = code_value() * 1000; + } + break; + case 92: // M92 + for(int8_t i=0; i < NUM_AXIS; i++) + { + if(code_seen(axis_codes[i])) + { + if(i == 3) { // E + float value = code_value(); + if(value < 20.0) { + float factor = axis_steps_per_unit[i] / value; // increase e constants if M92 E14 is given for netfab. + max_jerk[E_AXIS] *= factor; + max_feedrate[i] *= factor; + axis_steps_per_sqr_second[i] *= factor; + } + axis_steps_per_unit[i] = value; + } + else { + axis_steps_per_unit[i] = code_value(); + } + } + } + break; + case 115: // M115 + if (code_seen('V')) { + // Report the Prusa version number. + SERIAL_PROTOCOLLNRPGM(FW_VERSION_STR_P()); + } else if (code_seen('U')) { + // Check the firmware version provided. If the firmware version provided by the U code is higher than the currently running firmware, + // pause the print and ask the user to upgrade the firmware. + show_upgrade_dialog_if_version_newer(++ strchr_pointer); + } else { + SERIAL_PROTOCOLRPGM(MSG_M115_REPORT); + } + break; +/* case 117: // M117 display message + starpos = (strchr(strchr_pointer + 5,'*')); + if(starpos!=NULL) + *(starpos)='\0'; + lcd_setstatus(strchr_pointer + 5); + break;*/ + case 114: // M114 + SERIAL_PROTOCOLPGM("X:"); + SERIAL_PROTOCOL(current_position[X_AXIS]); + SERIAL_PROTOCOLPGM(" Y:"); + SERIAL_PROTOCOL(current_position[Y_AXIS]); + SERIAL_PROTOCOLPGM(" Z:"); + SERIAL_PROTOCOL(current_position[Z_AXIS]); + SERIAL_PROTOCOLPGM(" E:"); + SERIAL_PROTOCOL(current_position[E_AXIS]); + + SERIAL_PROTOCOLRPGM(MSG_COUNT_X); + SERIAL_PROTOCOL(float(st_get_position(X_AXIS))/axis_steps_per_unit[X_AXIS]); + SERIAL_PROTOCOLPGM(" Y:"); + SERIAL_PROTOCOL(float(st_get_position(Y_AXIS))/axis_steps_per_unit[Y_AXIS]); + SERIAL_PROTOCOLPGM(" Z:"); + SERIAL_PROTOCOL(float(st_get_position(Z_AXIS))/axis_steps_per_unit[Z_AXIS]); + SERIAL_PROTOCOLPGM(" E:"); + SERIAL_PROTOCOL(float(st_get_position(E_AXIS))/axis_steps_per_unit[E_AXIS]); + + SERIAL_PROTOCOLLN(""); + break; + case 120: // M120 + enable_endstops(false) ; + break; + case 121: // M121 + enable_endstops(true) ; + break; + case 119: // M119 + SERIAL_PROTOCOLRPGM(MSG_M119_REPORT); + SERIAL_PROTOCOLLN(""); + #if defined(X_MIN_PIN) && X_MIN_PIN > -1 + SERIAL_PROTOCOLRPGM(MSG_X_MIN); + if(READ(X_MIN_PIN)^X_MIN_ENDSTOP_INVERTING){ + SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT); + }else{ + SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN); + } + SERIAL_PROTOCOLLN(""); + #endif + #if defined(X_MAX_PIN) && X_MAX_PIN > -1 + SERIAL_PROTOCOLRPGM(MSG_X_MAX); + if(READ(X_MAX_PIN)^X_MAX_ENDSTOP_INVERTING){ + SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT); + }else{ + SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN); + } + SERIAL_PROTOCOLLN(""); + #endif + #if defined(Y_MIN_PIN) && Y_MIN_PIN > -1 + SERIAL_PROTOCOLRPGM(MSG_Y_MIN); + if(READ(Y_MIN_PIN)^Y_MIN_ENDSTOP_INVERTING){ + SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT); + }else{ + SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN); + } + SERIAL_PROTOCOLLN(""); + #endif + #if defined(Y_MAX_PIN) && Y_MAX_PIN > -1 + SERIAL_PROTOCOLRPGM(MSG_Y_MAX); + if(READ(Y_MAX_PIN)^Y_MAX_ENDSTOP_INVERTING){ + SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT); + }else{ + SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN); + } + SERIAL_PROTOCOLLN(""); + #endif + #if defined(Z_MIN_PIN) && Z_MIN_PIN > -1 + SERIAL_PROTOCOLRPGM(MSG_Z_MIN); + if(READ(Z_MIN_PIN)^Z_MIN_ENDSTOP_INVERTING){ + SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT); + }else{ + SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN); + } + SERIAL_PROTOCOLLN(""); + #endif + #if defined(Z_MAX_PIN) && Z_MAX_PIN > -1 + SERIAL_PROTOCOLRPGM(MSG_Z_MAX); + if(READ(Z_MAX_PIN)^Z_MAX_ENDSTOP_INVERTING){ + SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT); + }else{ + SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN); + } + SERIAL_PROTOCOLLN(""); + #endif + break; + //TODO: update for all axis, use for loop + #ifdef BLINKM + case 150: // M150 + { + byte red; + byte grn; + byte blu; + + if(code_seen('R')) red = code_value(); + if(code_seen('U')) grn = code_value(); + if(code_seen('B')) blu = code_value(); + + SendColors(red,grn,blu); + } + break; + #endif //BLINKM + case 200: // M200 D set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters). + { + + tmp_extruder = active_extruder; + if(code_seen('T')) { + tmp_extruder = code_value(); + if(tmp_extruder >= EXTRUDERS) { + SERIAL_ECHO_START; + SERIAL_ECHO(MSG_M200_INVALID_EXTRUDER); + break; + } + } + + float area = .0; + if(code_seen('D')) { + float diameter = (float)code_value(); + if (diameter == 0.0) { + // setting any extruder filament size disables volumetric on the assumption that + // slicers either generate in extruder values as cubic mm or as as filament feeds + // for all extruders + volumetric_enabled = false; + } else { + filament_size[tmp_extruder] = (float)code_value(); + // make sure all extruders have some sane value for the filament size + filament_size[0] = (filament_size[0] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : filament_size[0]); + #if EXTRUDERS > 1 + filament_size[1] = (filament_size[1] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : filament_size[1]); + #if EXTRUDERS > 2 + filament_size[2] = (filament_size[2] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : filament_size[2]); + #endif + #endif + volumetric_enabled = true; + } + } else { + //reserved for setting filament diameter via UFID or filament measuring device + break; + } + calculate_volumetric_multipliers(); + } + break; + case 201: // M201 + for(int8_t i=0; i < NUM_AXIS; i++) + { + if(code_seen(axis_codes[i])) + { + max_acceleration_units_per_sq_second[i] = code_value(); + } + } + // steps per sq second need to be updated to agree with the units per sq second (as they are what is used in the planner) + reset_acceleration_rates(); + break; + #if 0 // Not used for Sprinter/grbl gen6 + case 202: // M202 + for(int8_t i=0; i < NUM_AXIS; i++) { + if(code_seen(axis_codes[i])) axis_travel_steps_per_sqr_second[i] = code_value() * axis_steps_per_unit[i]; + } + break; + #endif + case 203: // M203 max feedrate mm/sec + for(int8_t i=0; i < NUM_AXIS; i++) { + if(code_seen(axis_codes[i])) max_feedrate[i] = code_value(); + } + break; + case 204: // M204 acclereration S normal moves T filmanent only moves + { + if(code_seen('S')) acceleration = code_value() ; + if(code_seen('T')) retract_acceleration = code_value() ; + } + break; + case 205: //M205 advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk + { + if(code_seen('S')) minimumfeedrate = code_value(); + if(code_seen('T')) mintravelfeedrate = code_value(); + if(code_seen('B')) minsegmenttime = code_value() ; + if(code_seen('X')) max_jerk[X_AXIS] = max_jerk[Y_AXIS] = code_value(); + if(code_seen('Y')) max_jerk[Y_AXIS] = code_value(); + if(code_seen('Z')) max_jerk[Z_AXIS] = code_value(); + if(code_seen('E')) max_jerk[E_AXIS] = code_value(); + } + break; + case 206: // M206 additional homing offset + for(int8_t i=0; i < 3; i++) + { + if(code_seen(axis_codes[i])) add_homing[i] = code_value(); + } + break; + #ifdef FWRETRACT + case 207: //M207 - set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop] + { + if(code_seen('S')) + { + retract_length = code_value() ; + } + if(code_seen('F')) + { + retract_feedrate = code_value()/60 ; + } + if(code_seen('Z')) + { + retract_zlift = code_value() ; + } + }break; + case 208: // M208 - set retract recover length S[positive mm surplus to the M207 S*] F[feedrate mm/min] + { + if(code_seen('S')) + { + retract_recover_length = code_value() ; + } + if(code_seen('F')) + { + retract_recover_feedrate = code_value()/60 ; + } + }break; + case 209: // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction. + { + if(code_seen('S')) + { + int t= code_value() ; + switch(t) + { + case 0: + { + autoretract_enabled=false; + retracted[0]=false; + #if EXTRUDERS > 1 + retracted[1]=false; + #endif + #if EXTRUDERS > 2 + retracted[2]=false; + #endif + }break; + case 1: + { + autoretract_enabled=true; + retracted[0]=false; + #if EXTRUDERS > 1 + retracted[1]=false; + #endif + #if EXTRUDERS > 2 + retracted[2]=false; + #endif + }break; + default: + SERIAL_ECHO_START; + SERIAL_ECHORPGM(MSG_UNKNOWN_COMMAND); + SERIAL_ECHO(CMDBUFFER_CURRENT_STRING); + SERIAL_ECHOLNPGM("\"(1)"); + } + } + + }break; + #endif // FWRETRACT + #if EXTRUDERS > 1 + case 218: // M218 - set hotend offset (in mm), T X Y + { + if(setTargetedHotend(218)){ + break; + } + if(code_seen('X')) + { + extruder_offset[X_AXIS][tmp_extruder] = code_value(); + } + if(code_seen('Y')) + { + extruder_offset[Y_AXIS][tmp_extruder] = code_value(); + } + SERIAL_ECHO_START; + SERIAL_ECHORPGM(MSG_HOTEND_OFFSET); + for(tmp_extruder = 0; tmp_extruder < EXTRUDERS; tmp_extruder++) + { + SERIAL_ECHO(" "); + SERIAL_ECHO(extruder_offset[X_AXIS][tmp_extruder]); + SERIAL_ECHO(","); + SERIAL_ECHO(extruder_offset[Y_AXIS][tmp_extruder]); + } + SERIAL_ECHOLN(""); + }break; + #endif + case 220: // M220 S- set speed factor override percentage + { + if(code_seen('S')) + { + feedmultiply = code_value() ; + } + } + break; + case 221: // M221 S- set extrude factor override percentage + { + if(code_seen('S')) + { + int tmp_code = code_value(); + if (code_seen('T')) + { + if(setTargetedHotend(221)){ + break; + } + extruder_multiply[tmp_extruder] = tmp_code; + } + else + { + extrudemultiply = tmp_code ; + } + } + } + break; + + case 226: // M226 P S- Wait until the specified pin reaches the state required + { + if(code_seen('P')){ + int pin_number = code_value(); // pin number + int pin_state = -1; // required pin state - default is inverted + + if(code_seen('S')) pin_state = code_value(); // required pin state + + if(pin_state >= -1 && pin_state <= 1){ + + for(int8_t i = 0; i < (int8_t)(sizeof(sensitive_pins)/sizeof(int)); i++) + { + if (sensitive_pins[i] == pin_number) + { + pin_number = -1; + break; + } + } + + if (pin_number > -1) + { + int target = LOW; + + st_synchronize(); + + pinMode(pin_number, INPUT); + + switch(pin_state){ + case 1: + target = HIGH; + break; + + case 0: + target = LOW; + break; + + case -1: + target = !digitalRead(pin_number); + break; + } + + while(digitalRead(pin_number) != target){ + manage_heater(); + manage_inactivity(); + lcd_update(); + } + } + } + } + } + break; + + #if NUM_SERVOS > 0 + case 280: // M280 - set servo position absolute. P: servo index, S: angle or microseconds + { + int servo_index = -1; + int servo_position = 0; + if (code_seen('P')) + servo_index = code_value(); + if (code_seen('S')) { + servo_position = code_value(); + if ((servo_index >= 0) && (servo_index < NUM_SERVOS)) { +#if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0) + servos[servo_index].attach(0); +#endif + servos[servo_index].write(servo_position); +#if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0) + delay(PROBE_SERVO_DEACTIVATION_DELAY); + servos[servo_index].detach(); +#endif + } + else { + SERIAL_ECHO_START; + SERIAL_ECHO("Servo "); + SERIAL_ECHO(servo_index); + SERIAL_ECHOLN(" out of range"); + } + } + else if (servo_index >= 0) { + SERIAL_PROTOCOL(MSG_OK); + SERIAL_PROTOCOL(" Servo "); + SERIAL_PROTOCOL(servo_index); + SERIAL_PROTOCOL(": "); + SERIAL_PROTOCOL(servos[servo_index].read()); + SERIAL_PROTOCOLLN(""); + } + } + break; + #endif // NUM_SERVOS > 0 + + #if (LARGE_FLASH == true && ( BEEPER > 0 || defined(ULTRALCD) || defined(LCD_USE_I2C_BUZZER))) + case 300: // M300 + { + int beepS = code_seen('S') ? code_value() : 110; + int beepP = code_seen('P') ? code_value() : 1000; + if (beepS > 0) + { + #if BEEPER > 0 + tone(BEEPER, beepS); + delay(beepP); + noTone(BEEPER); + #elif defined(ULTRALCD) + lcd_buzz(beepS, beepP); + #elif defined(LCD_USE_I2C_BUZZER) + lcd_buzz(beepP, beepS); + #endif + } + else + { + delay(beepP); + } + } + break; + #endif // M300 + + #ifdef PIDTEMP + case 301: // M301 + { + if(code_seen('P')) Kp = code_value(); + if(code_seen('I')) Ki = scalePID_i(code_value()); + if(code_seen('D')) Kd = scalePID_d(code_value()); + + #ifdef PID_ADD_EXTRUSION_RATE + if(code_seen('C')) Kc = code_value(); + #endif + + updatePID(); + SERIAL_PROTOCOLRPGM(MSG_OK); + SERIAL_PROTOCOL(" p:"); + SERIAL_PROTOCOL(Kp); + SERIAL_PROTOCOL(" i:"); + SERIAL_PROTOCOL(unscalePID_i(Ki)); + SERIAL_PROTOCOL(" d:"); + SERIAL_PROTOCOL(unscalePID_d(Kd)); + #ifdef PID_ADD_EXTRUSION_RATE + SERIAL_PROTOCOL(" c:"); + //Kc does not have scaling applied above, or in resetting defaults + SERIAL_PROTOCOL(Kc); + #endif + SERIAL_PROTOCOLLN(""); + } + break; + #endif //PIDTEMP + #ifdef PIDTEMPBED + case 304: // M304 + { + if(code_seen('P')) bedKp = code_value(); + if(code_seen('I')) bedKi = scalePID_i(code_value()); + if(code_seen('D')) bedKd = scalePID_d(code_value()); + + updatePID(); + SERIAL_PROTOCOLRPGM(MSG_OK); + SERIAL_PROTOCOL(" p:"); + SERIAL_PROTOCOL(bedKp); + SERIAL_PROTOCOL(" i:"); + SERIAL_PROTOCOL(unscalePID_i(bedKi)); + SERIAL_PROTOCOL(" d:"); + SERIAL_PROTOCOL(unscalePID_d(bedKd)); + SERIAL_PROTOCOLLN(""); + } + break; + #endif //PIDTEMP + case 240: // M240 Triggers a camera by emulating a Canon RC-1 : http://www.doc-diy.net/photo/rc-1_hacked/ + { + #ifdef CHDK + + SET_OUTPUT(CHDK); + WRITE(CHDK, HIGH); + chdkHigh = millis(); + chdkActive = true; + + #else + + #if defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1 + const uint8_t NUM_PULSES=16; + const float PULSE_LENGTH=0.01524; + for(int i=0; i < NUM_PULSES; i++) { + WRITE(PHOTOGRAPH_PIN, HIGH); + _delay_ms(PULSE_LENGTH); + WRITE(PHOTOGRAPH_PIN, LOW); + _delay_ms(PULSE_LENGTH); + } + delay(7.33); + for(int i=0; i < NUM_PULSES; i++) { + WRITE(PHOTOGRAPH_PIN, HIGH); + _delay_ms(PULSE_LENGTH); + WRITE(PHOTOGRAPH_PIN, LOW); + _delay_ms(PULSE_LENGTH); + } + #endif + #endif //chdk end if + } + break; +#ifdef DOGLCD + case 250: // M250 Set LCD contrast value: C (value 0..63) + { + if (code_seen('C')) { + lcd_setcontrast( ((int)code_value())&63 ); + } + SERIAL_PROTOCOLPGM("lcd contrast value: "); + SERIAL_PROTOCOL(lcd_contrast); + SERIAL_PROTOCOLLN(""); + } + break; +#endif + #ifdef PREVENT_DANGEROUS_EXTRUDE + case 302: // allow cold extrudes, or set the minimum extrude temperature + { + float temp = .0; + if (code_seen('S')) temp=code_value(); + set_extrude_min_temp(temp); + } + break; + #endif + case 303: // M303 PID autotune + { + float temp = 150.0; + int e=0; + int c=5; + if (code_seen('E')) e=code_value(); + if (e<0) + temp=70; + if (code_seen('S')) temp=code_value(); + if (code_seen('C')) c=code_value(); + PID_autotune(temp, e, c); + } + break; + case 400: // M400 finish all moves + { + st_synchronize(); + } + break; + +#ifdef FILAMENT_SENSOR +case 404: //M404 Enter the nominal filament width (3mm, 1.75mm ) N<3.0> or display nominal filament width + { + #if (FILWIDTH_PIN > -1) + if(code_seen('N')) filament_width_nominal=code_value(); + else{ + SERIAL_PROTOCOLPGM("Filament dia (nominal mm):"); + SERIAL_PROTOCOLLN(filament_width_nominal); + } + #endif + } + break; + + case 405: //M405 Turn on filament sensor for control + { + + + if(code_seen('D')) meas_delay_cm=code_value(); + + if(meas_delay_cm> MAX_MEASUREMENT_DELAY) + meas_delay_cm = MAX_MEASUREMENT_DELAY; + + if(delay_index2 == -1) //initialize the ring buffer if it has not been done since startup + { + int temp_ratio = widthFil_to_size_ratio(); + + for (delay_index1=0; delay_index1<(MAX_MEASUREMENT_DELAY+1); ++delay_index1 ){ + measurement_delay[delay_index1]=temp_ratio-100; //subtract 100 to scale within a signed byte + } + delay_index1=0; + delay_index2=0; + } + + filament_sensor = true ; + + //SERIAL_PROTOCOLPGM("Filament dia (measured mm):"); + //SERIAL_PROTOCOL(filament_width_meas); + //SERIAL_PROTOCOLPGM("Extrusion ratio(%):"); + //SERIAL_PROTOCOL(extrudemultiply); + } + break; + + case 406: //M406 Turn off filament sensor for control + { + filament_sensor = false ; + } + break; + + case 407: //M407 Display measured filament diameter + { + + + + SERIAL_PROTOCOLPGM("Filament dia (measured mm):"); + SERIAL_PROTOCOLLN(filament_width_meas); + } + break; + #endif + + + + + + case 500: // M500 Store settings in EEPROM + { + Config_StoreSettings(EEPROM_OFFSET); + } + break; + case 501: // M501 Read settings from EEPROM + { + Config_RetrieveSettings(EEPROM_OFFSET); + } + break; + case 502: // M502 Revert to default settings + { + Config_ResetDefault(); + } + break; + case 503: // M503 print settings currently in memory + { + Config_PrintSettings(); + } + break; + case 509: //M509 Force language selection + { + lcd_force_language_selection(); + SERIAL_ECHO_START; + SERIAL_PROTOCOLPGM(("LANG SEL FORCED")); + } + break; + #ifdef ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED + case 540: + { + if(code_seen('S')) abort_on_endstop_hit = code_value() > 0; + } + break; + #endif + + #ifdef CUSTOM_M_CODE_SET_Z_PROBE_OFFSET + case CUSTOM_M_CODE_SET_Z_PROBE_OFFSET: + { + float value; + if (code_seen('Z')) + { + value = code_value(); + if ((Z_PROBE_OFFSET_RANGE_MIN <= value) && (value <= Z_PROBE_OFFSET_RANGE_MAX)) + { + zprobe_zoffset = -value; // compare w/ line 278 of ConfigurationStore.cpp + SERIAL_ECHO_START; + SERIAL_ECHOLNRPGM(CAT4(MSG_ZPROBE_ZOFFSET, " ", MSG_OK,PSTR(""))); + SERIAL_PROTOCOLLN(""); + } + else + { + SERIAL_ECHO_START; + SERIAL_ECHORPGM(MSG_ZPROBE_ZOFFSET); + SERIAL_ECHORPGM(MSG_Z_MIN); + SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MIN); + SERIAL_ECHORPGM(MSG_Z_MAX); + SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MAX); + SERIAL_PROTOCOLLN(""); + } + } + else + { + SERIAL_ECHO_START; + SERIAL_ECHOLNRPGM(CAT2(MSG_ZPROBE_ZOFFSET, PSTR(" : "))); + SERIAL_ECHO(-zprobe_zoffset); + SERIAL_PROTOCOLLN(""); + } + break; + } + #endif // CUSTOM_M_CODE_SET_Z_PROBE_OFFSET + + #ifdef FILAMENTCHANGEENABLE + case 600: //Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal] + { + MYSERIAL.println("!!!!M600!!!!"); + + st_synchronize(); + float target[4]; + float lastpos[4]; + + if (farm_mode) + + { + + prusa_statistics(22); + + } + + feedmultiplyBckp=feedmultiply; + int8_t TooLowZ = 0; + + target[X_AXIS]=current_position[X_AXIS]; + target[Y_AXIS]=current_position[Y_AXIS]; + target[Z_AXIS]=current_position[Z_AXIS]; + target[E_AXIS]=current_position[E_AXIS]; + lastpos[X_AXIS]=current_position[X_AXIS]; + lastpos[Y_AXIS]=current_position[Y_AXIS]; + lastpos[Z_AXIS]=current_position[Z_AXIS]; + lastpos[E_AXIS]=current_position[E_AXIS]; + + //Restract extruder + if(code_seen('E')) + { + target[E_AXIS]+= code_value(); + } + else + { + #ifdef FILAMENTCHANGE_FIRSTRETRACT + target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT ; + #endif + } + plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder); + + //Lift Z + if(code_seen('Z')) + { + target[Z_AXIS]+= code_value(); + } + else + { + #ifdef FILAMENTCHANGE_ZADD + target[Z_AXIS]+= FILAMENTCHANGE_ZADD ; + if(target[Z_AXIS] < 10){ + target[Z_AXIS]+= 10 ; + TooLowZ = 1; + }else{ + TooLowZ = 0; + } + #endif + + + } + plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_ZFEED, active_extruder); + + //Move XY to side + if(code_seen('X')) + { + target[X_AXIS]+= code_value(); + } + else + { + #ifdef FILAMENTCHANGE_XPOS + target[X_AXIS]= FILAMENTCHANGE_XPOS ; + #endif + } + if(code_seen('Y')) + { + target[Y_AXIS]= code_value(); + } + else + { + #ifdef FILAMENTCHANGE_YPOS + target[Y_AXIS]= FILAMENTCHANGE_YPOS ; + #endif + } + plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_XYFEED, active_extruder); + st_synchronize(); + custom_message = true; + lcd_setstatuspgm(MSG_UNLOADING_FILAMENT); + + // Unload filament + if(code_seen('L')) + { + target[E_AXIS]+= code_value(); + } + else + { + #ifdef SNMM + + #else + #ifdef FILAMENTCHANGE_FINALRETRACT + target[E_AXIS] += FILAMENTCHANGE_FINALRETRACT; + #endif + #endif // SNMM + } + +#ifdef SNMM + target[E_AXIS] += 12; + plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 3500, active_extruder); + target[E_AXIS] += 6; + plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 5000, active_extruder); + target[E_AXIS] += (FIL_LOAD_LENGTH * -1); + plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 5000, active_extruder); + st_synchronize(); + target[E_AXIS] += (FIL_COOLING); + plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 50, active_extruder); + target[E_AXIS] += (FIL_COOLING*-1); + plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 50, active_extruder); + target[E_AXIS] += (bowden_length[snmm_extruder] *-1); + plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 3000, active_extruder); + st_synchronize(); + +#else + plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder); +#endif // SNMM + + + //finish moves + st_synchronize(); + //disable extruder steppers so filament can be removed + disable_e0(); + disable_e1(); + disable_e2(); + delay(100); + + //Wait for user to insert filament + uint8_t cnt=0; + int counterBeep = 0; + lcd_wait_interact(); + load_filament_time = millis(); + while(!lcd_clicked()){ + + cnt++; + manage_heater(); + manage_inactivity(true); + +/*#ifdef SNMM + target[E_AXIS] += 0.002; + plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 500, active_extruder); + +#endif // SNMM*/ + + if(cnt==0) + { + #if BEEPER > 0 + if (counterBeep== 500){ + counterBeep = 0; + } + SET_OUTPUT(BEEPER); + if (counterBeep== 0){ + WRITE(BEEPER,HIGH); + } + if (counterBeep== 20){ + WRITE(BEEPER,LOW); + } + counterBeep++; + #else + #if !defined(LCD_FEEDBACK_FREQUENCY_HZ) || !defined(LCD_FEEDBACK_FREQUENCY_DURATION_MS) + lcd_buzz(1000/6,100); + #else + lcd_buzz(LCD_FEEDBACK_FREQUENCY_DURATION_MS,LCD_FEEDBACK_FREQUENCY_HZ); + #endif + #endif + } + + } +#ifdef SNMM + display_loading(); + do { + target[E_AXIS] += 0.002; + plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 500, active_extruder); + delay_keep_alive(2); + } while (!lcd_clicked()); + /*if (millis() - load_filament_time > 2) { + load_filament_time = millis(); + target[E_AXIS] += 0.001; + plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 1000, active_extruder); + }*/ +#endif + //Filament inserted + + WRITE(BEEPER,LOW); + + //Feed the filament to the end of nozzle quickly +#ifdef SNMM + + st_synchronize(); + target[E_AXIS] += bowden_length[snmm_extruder]; + plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 3000, active_extruder); + target[E_AXIS] += FIL_LOAD_LENGTH - 60; + plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 1400, active_extruder); + target[E_AXIS] += 40; + plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder); + target[E_AXIS] += 10; + plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 50, active_extruder); +#else + target[E_AXIS] += FILAMENTCHANGE_FIRSTFEED; + plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EFEED, active_extruder); +#endif // SNMM + + //Extrude some filament + target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ; + plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EXFEED, active_extruder); + + + + + //Wait for user to check the state + lcd_change_fil_state = 0; + lcd_loading_filament(); + while ((lcd_change_fil_state == 0)||(lcd_change_fil_state != 1)){ + lcd_change_fil_state = 0; + lcd_alright(); + switch(lcd_change_fil_state){ + + // Filament failed to load so load it again + case 2: +#ifdef SNMM + display_loading(); + do { + target[E_AXIS] += 0.002; + plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 500, active_extruder); + delay_keep_alive(2); + } while (!lcd_clicked()); + + st_synchronize(); + target[E_AXIS] += bowden_length[snmm_extruder]; + plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 3000, active_extruder); + target[E_AXIS] += FIL_LOAD_LENGTH - 60; + plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 1400, active_extruder); + target[E_AXIS] += 40; + plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder); + target[E_AXIS] += 10; + plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 50, active_extruder); + +#else + target[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ; + plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EFEED, active_extruder); +#endif + target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ; + plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EXFEED, active_extruder); + + lcd_loading_filament(); + + break; + + // Filament loaded properly but color is not clear + case 3: + target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ; + plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder); + lcd_loading_color(); + break; + + // Everything good + default: + lcd_change_success(); + lcd_update_enable(true); + break; + } + + } + + + //Not let's go back to print + + //Feed a little of filament to stabilize pressure + target[E_AXIS]+= FILAMENTCHANGE_RECFEED; + plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EXFEED, active_extruder); + + //Retract + target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT; + plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder); + + + + //plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder); //should do nothing + + //Move XY back + plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_XYFEED, active_extruder); + + //Move Z back + plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_ZFEED, active_extruder); + + + target[E_AXIS]= target[E_AXIS] - FILAMENTCHANGE_FIRSTRETRACT; + + //Unretract + plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder); + + //Set E position to original + plan_set_e_position(lastpos[E_AXIS]); + + //Recover feed rate + feedmultiply=feedmultiplyBckp; + char cmd[9]; + sprintf_P(cmd, PSTR("M220 S%i"), feedmultiplyBckp); + enquecommand(cmd); + + lcd_setstatuspgm(WELCOME_MSG); + custom_message = false; + custom_message_type = 0; +#ifdef PAT9125 + if (fsensor_M600) + { + cmdqueue_pop_front(); //hack because M600 repeated 2x when enqueued to front + st_synchronize(); + while (!is_buffer_empty()) + { + process_commands(); + cmdqueue_pop_front(); + } + fsensor_enable(); + fsensor_restore_print_and_continue(); + } +#endif //PAT9125 + + } + break; + #endif //FILAMENTCHANGEENABLE + case 601: { + if(lcd_commands_type == 0) lcd_commands_type = LCD_COMMAND_LONG_PAUSE; + } + break; + + case 602: { + if(lcd_commands_type == 0) lcd_commands_type = LCD_COMMAND_LONG_PAUSE_RESUME; + } + break; + +#ifdef LIN_ADVANCE + case 900: // M900: Set LIN_ADVANCE options. + gcode_M900(); + break; +#endif + + case 907: // M907 Set digital trimpot motor current using axis codes. + { + #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1 + for(int i=0;i -1 + uint8_t channel,current; + if(code_seen('P')) channel=code_value(); + if(code_seen('S')) current=code_value(); + digitalPotWrite(channel, current); + #endif + } + break; + + case 910: // M910 TMC2130 init + { + tmc2130_init(); + } + break; + + case 911: // M911 Set TMC2130 holding currents + { + if (code_seen('X')) tmc2130_set_current_h(0, code_value()); + if (code_seen('Y')) tmc2130_set_current_h(1, code_value()); + if (code_seen('Z')) tmc2130_set_current_h(2, code_value()); + if (code_seen('E')) tmc2130_set_current_h(3, code_value()); + } + break; + + case 912: // M912 Set TMC2130 running currents + { + if (code_seen('X')) tmc2130_set_current_r(0, code_value()); + if (code_seen('Y')) tmc2130_set_current_r(1, code_value()); + if (code_seen('Z')) tmc2130_set_current_r(2, code_value()); + if (code_seen('E')) tmc2130_set_current_r(3, code_value()); + } + break; + + case 913: // M913 Print TMC2130 currents + { + tmc2130_print_currents(); + } + break; + + case 914: // M914 Set normal mode + { + tmc2130_mode = TMC2130_MODE_NORMAL; + tmc2130_init(); + } + break; + + case 915: // M915 Set silent mode + { + tmc2130_mode = TMC2130_MODE_SILENT; + tmc2130_init(); + } + break; + + case 916: // M916 Set sg_thrs + { + if (code_seen('X')) tmc2130_sg_thr[X_AXIS] = code_value(); + if (code_seen('Y')) tmc2130_sg_thr[Y_AXIS] = code_value(); + if (code_seen('Z')) tmc2130_sg_thr[Z_AXIS] = code_value(); + if (code_seen('E')) tmc2130_sg_thr[E_AXIS] = code_value(); + MYSERIAL.print("tmc2130_sg_thr[X]="); + MYSERIAL.println(tmc2130_sg_thr[X_AXIS], DEC); + MYSERIAL.print("tmc2130_sg_thr[Y]="); + MYSERIAL.println(tmc2130_sg_thr[Y_AXIS], DEC); + MYSERIAL.print("tmc2130_sg_thr[Z]="); + MYSERIAL.println(tmc2130_sg_thr[Z_AXIS], DEC); + MYSERIAL.print("tmc2130_sg_thr[E]="); + MYSERIAL.println(tmc2130_sg_thr[E_AXIS], DEC); + } + break; + + case 917: // M917 Set TMC2130 pwm_ampl + { + if (code_seen('X')) tmc2130_set_pwm_ampl(0, code_value()); + if (code_seen('Y')) tmc2130_set_pwm_ampl(1, code_value()); + if (code_seen('Z')) tmc2130_set_pwm_ampl(2, code_value()); + if (code_seen('E')) tmc2130_set_pwm_ampl(3, code_value()); + } + break; + + case 918: // M918 Set TMC2130 pwm_grad + { + if (code_seen('X')) tmc2130_set_pwm_grad(0, code_value()); + if (code_seen('Y')) tmc2130_set_pwm_grad(1, code_value()); + if (code_seen('Z')) tmc2130_set_pwm_grad(2, code_value()); + if (code_seen('E')) tmc2130_set_pwm_grad(3, code_value()); + } + break; + + case 350: // M350 Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers. + { + #if defined(X_MS1_PIN) && X_MS1_PIN > -1 + if(code_seen('S')) for(int i=0;i<=4;i++) microstep_mode(i,code_value()); + for(int i=0;i -1 + if(code_seen('S')) switch((int)code_value()) + { + case 1: + for(int i=0;i '9') && *(strchr_pointer + index) != '?') { + SERIAL_ECHOLNPGM("Invalid T code."); + } + else { + if (*(strchr_pointer + index) == '?') { + tmp_extruder = choose_extruder_menu(); + } + else { + tmp_extruder = code_value(); + } + snmm_filaments_used |= (1 << tmp_extruder); //for stop print +#ifdef SNMM + + #ifdef LIN_ADVANCE + if (snmm_extruder != tmp_extruder) + clear_current_adv_vars(); //Check if the selected extruder is not the active one and reset LIN_ADVANCE variables if so. + #endif + + snmm_extruder = tmp_extruder; + + st_synchronize(); + delay(100); + + disable_e0(); + disable_e1(); + disable_e2(); + + pinMode(E_MUX0_PIN, OUTPUT); + pinMode(E_MUX1_PIN, OUTPUT); + pinMode(E_MUX2_PIN, OUTPUT); + + delay(100); + SERIAL_ECHO_START; + SERIAL_ECHO("T:"); + SERIAL_ECHOLN((int)tmp_extruder); + switch (tmp_extruder) { + case 1: + WRITE(E_MUX0_PIN, HIGH); + WRITE(E_MUX1_PIN, LOW); + WRITE(E_MUX2_PIN, LOW); + + break; + case 2: + WRITE(E_MUX0_PIN, LOW); + WRITE(E_MUX1_PIN, HIGH); + WRITE(E_MUX2_PIN, LOW); + + break; + case 3: + WRITE(E_MUX0_PIN, HIGH); + WRITE(E_MUX1_PIN, HIGH); + WRITE(E_MUX2_PIN, LOW); + + break; + default: + WRITE(E_MUX0_PIN, LOW); + WRITE(E_MUX1_PIN, LOW); + WRITE(E_MUX2_PIN, LOW); + + break; + } + delay(100); + +#else + if (tmp_extruder >= EXTRUDERS) { + SERIAL_ECHO_START; + SERIAL_ECHOPGM("T"); + SERIAL_PROTOCOLLN((int)tmp_extruder); + SERIAL_ECHOLNRPGM(MSG_INVALID_EXTRUDER); + } + else { + boolean make_move = false; + if (code_seen('F')) { + make_move = true; + next_feedrate = code_value(); + if (next_feedrate > 0.0) { + feedrate = next_feedrate; + } + } +#if EXTRUDERS > 1 + if (tmp_extruder != active_extruder) { + // Save current position to return to after applying extruder offset + memcpy(destination, current_position, sizeof(destination)); + // Offset extruder (only by XY) + int i; + for (i = 0; i < 2; i++) { + current_position[i] = current_position[i] - + extruder_offset[i][active_extruder] + + extruder_offset[i][tmp_extruder]; + } + // Set the new active extruder and position + active_extruder = tmp_extruder; + plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]); + // Move to the old position if 'F' was in the parameters + if (make_move && Stopped == false) { + prepare_move(); + } + } +#endif + SERIAL_ECHO_START; + SERIAL_ECHORPGM(MSG_ACTIVE_EXTRUDER); + SERIAL_PROTOCOLLN((int)active_extruder); + } + +#endif + } + } // end if(code_seen('T')) (end of T codes) + +#ifdef DEBUG_DCODES + else if (code_seen('D')) // D codes (debug) + { + switch((int)code_value()) + { + case 0: // D0 - Reset + dcode_0(); break; + case 1: // D1 - Clear EEPROM + dcode_1(); break; + case 2: // D2 - Read/Write RAM + dcode_2(); break; + case 3: // D3 - Read/Write EEPROM + dcode_3(); break; + case 4: // D4 - Read/Write PIN + dcode_4(); break; + case 9125: // D9125 - PAT9125 + dcode_9125(); break; + case 5: + MYSERIAL.println("D5 - Test"); + if (code_seen('P')) + selectedSerialPort = (int)code_value(); + MYSERIAL.print("selectedSerialPort = "); + MYSERIAL.println(selectedSerialPort, DEC); + break; + case 10: // D10 - Tell the printer that XYZ calibration went OK + calibration_status_store(CALIBRATION_STATUS_LIVE_ADJUST); + break; + + case 12: //D12 - Reset Filament error, Power loss and crash counter ( Do it before every print and you can get stats for the print ) + eeprom_update_byte((uint8_t*)EEPROM_CRASH_COUNT, 0x00); + eeprom_update_byte((uint8_t*)EEPROM_FERROR_COUNT, 0x00); + eeprom_update_byte((uint8_t*)EEPROM_POWER_COUNT, 0x00); + case 999: + { + MYSERIAL.println("D999 - crash"); + +/* while (!is_buffer_empty()) + { + process_commands(); + cmdqueue_pop_front(); + }*/ + st_synchronize(); + + lcd_update_enable(true); + lcd_implementation_clear(); + lcd_update(2); + + // Increment crash counter + uint8_t crash_count = eeprom_read_byte((uint8_t*)EEPROM_CRASH_COUNT); + crash_count++; + eeprom_update_byte((uint8_t*)EEPROM_CRASH_COUNT, crash_count); + +#ifdef AUTOMATIC_RECOVERY_AFTER_CRASH + bool yesno = true; +#else + bool yesno = lcd_show_fullscreen_message_yes_no_and_wait_P(MSG_CRASH_DETECTED, false); +#endif + lcd_update_enable(true); + lcd_update(2); + lcd_setstatuspgm(WELCOME_MSG); + if (yesno) + { + enquecommand_P(PSTR("G28 X")); + enquecommand_P(PSTR("G28 Y")); + enquecommand_P(PSTR("D1000")); + } + else + { + enquecommand_P(PSTR("D1001")); + } + } + break; + case 1000: + crashdet_restore_print_and_continue(); + tmc2130_sg_stop_on_crash = true; + break; + case 1001: + card.sdprinting = false; + card.closefile(); + tmc2130_sg_stop_on_crash = true; + break; +/* case 4: + { + MYSERIAL.println("D4 - Test"); + uint8_t data[16]; + int cnt = parse_hex(strchr_pointer + 2, data, 16); + MYSERIAL.println(cnt, DEC); + for (int i = 0; i < cnt; i++) + { + serial_print_hex_byte(data[i]); + MYSERIAL.write(' '); + } + MYSERIAL.write('\n'); + } + break; +/* case 3: + if (code_seen('L')) // lcd pwm (0-255) + { + lcdSoftPwm = (int)code_value(); + } + if (code_seen('B')) // lcd blink delay (0-255) + { + lcdBlinkDelay = (int)code_value(); + } +// calibrate_z_auto(); +/* MYSERIAL.print("fsensor_enable()"); +#ifdef PAT9125 + fsensor_enable(); +#endif*/ + break; +// case 4: +// lcdBlinkDelay = 10; +/* MYSERIAL.print("fsensor_disable()"); +#ifdef PAT9125 + fsensor_disable(); +#endif + break;*/ +// break; +/* case 5: + { + MYSERIAL.print("tmc2130_rd_MSCNT(0)="); + int val = tmc2130_rd_MSCNT(tmc2130_cs[0]); + MYSERIAL.println(val); + homeaxis(0); + } + break;*/ + case 6: + { +/* MYSERIAL.print("tmc2130_rd_MSCNT(1)="); + int val = tmc2130_rd_MSCNT(tmc2130_cs[1]); + MYSERIAL.println(val);*/ + homeaxis(1); + } + break; + case 7: + { + MYSERIAL.print("pat9125_init="); + MYSERIAL.println(pat9125_init(200, 200)); + } + break; + case 8: + { + MYSERIAL.print("swi2c_check="); + MYSERIAL.println(swi2c_check(0x75)); + } + break; + } + } +#endif //DEBUG_DCODES + + else + { + SERIAL_ECHO_START; + SERIAL_ECHORPGM(MSG_UNKNOWN_COMMAND); + SERIAL_ECHO(CMDBUFFER_CURRENT_STRING); + SERIAL_ECHOLNPGM("\"(2)"); + } + + ClearToSend(); +} + +void FlushSerialRequestResend() +{ + //char cmdbuffer[bufindr][100]="Resend:"; + MYSERIAL.flush(); + SERIAL_PROTOCOLRPGM(MSG_RESEND); + SERIAL_PROTOCOLLN(gcode_LastN + 1); + ClearToSend(); +} + +// Confirm the execution of a command, if sent from a serial line. +// Execution of a command from a SD card will not be confirmed. +void ClearToSend() +{ + previous_millis_cmd = millis(); + if (CMDBUFFER_CURRENT_TYPE == CMDBUFFER_CURRENT_TYPE_USB) + SERIAL_PROTOCOLLNRPGM(MSG_OK); +} + +void get_coordinates() +{ + bool seen[4]={false,false,false,false}; + for(int8_t i=0; i < NUM_AXIS; i++) { + if(code_seen(axis_codes[i])) + { + destination[i] = (float)code_value() + (axis_relative_modes[i] || relative_mode)*current_position[i]; + seen[i]=true; + } + else destination[i] = current_position[i]; //Are these else lines really needed? + } + if(code_seen('F')) { + next_feedrate = code_value(); +#ifdef MAX_SILENT_FEEDRATE + if (tmc2130_mode == TMC2130_MODE_SILENT) + if (next_feedrate > MAX_SILENT_FEEDRATE) next_feedrate = MAX_SILENT_FEEDRATE; +#endif //MAX_SILENT_FEEDRATE + if(next_feedrate > 0.0) feedrate = next_feedrate; + } +} + +void get_arc_coordinates() +{ +#ifdef SF_ARC_FIX + bool relative_mode_backup = relative_mode; + relative_mode = true; +#endif + get_coordinates(); +#ifdef SF_ARC_FIX + relative_mode=relative_mode_backup; +#endif + + if(code_seen('I')) { + offset[0] = code_value(); + } + else { + offset[0] = 0.0; + } + if(code_seen('J')) { + offset[1] = code_value(); + } + else { + offset[1] = 0.0; + } +} + +void clamp_to_software_endstops(float target[3]) +{ +#ifdef DEBUG_DISABLE_SWLIMITS + return; +#endif //DEBUG_DISABLE_SWLIMITS + world2machine_clamp(target[0], target[1]); + + // Clamp the Z coordinate. + if (min_software_endstops) { + float negative_z_offset = 0; + #ifdef ENABLE_AUTO_BED_LEVELING + if (Z_PROBE_OFFSET_FROM_EXTRUDER < 0) negative_z_offset = negative_z_offset + Z_PROBE_OFFSET_FROM_EXTRUDER; + if (add_homing[Z_AXIS] < 0) negative_z_offset = negative_z_offset + add_homing[Z_AXIS]; + #endif + if (target[Z_AXIS] < min_pos[Z_AXIS]+negative_z_offset) target[Z_AXIS] = min_pos[Z_AXIS]+negative_z_offset; + } + if (max_software_endstops) { + if (target[Z_AXIS] > max_pos[Z_AXIS]) target[Z_AXIS] = max_pos[Z_AXIS]; + } +} + +#ifdef MESH_BED_LEVELING + void mesh_plan_buffer_line(const float &x, const float &y, const float &z, const float &e, const float &feed_rate, const uint8_t extruder) { + float dx = x - current_position[X_AXIS]; + float dy = y - current_position[Y_AXIS]; + float dz = z - current_position[Z_AXIS]; + int n_segments = 0; + + if (mbl.active) { + float len = abs(dx) + abs(dy); + if (len > 0) + // Split to 3cm segments or shorter. + n_segments = int(ceil(len / 30.f)); + } + + if (n_segments > 1) { + float de = e - current_position[E_AXIS]; + for (int i = 1; i < n_segments; ++ i) { + float t = float(i) / float(n_segments); + plan_buffer_line( + current_position[X_AXIS] + t * dx, + current_position[Y_AXIS] + t * dy, + current_position[Z_AXIS] + t * dz, + current_position[E_AXIS] + t * de, + feed_rate, extruder); + } + } + // The rest of the path. + plan_buffer_line(x, y, z, e, feed_rate, extruder); + current_position[X_AXIS] = x; + current_position[Y_AXIS] = y; + current_position[Z_AXIS] = z; + current_position[E_AXIS] = e; + } +#endif // MESH_BED_LEVELING + +void prepare_move() +{ + clamp_to_software_endstops(destination); + previous_millis_cmd = millis(); + + // Do not use feedmultiply for E or Z only moves + if( (current_position[X_AXIS] == destination [X_AXIS]) && (current_position[Y_AXIS] == destination [Y_AXIS])) { + plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder); + } + else { +#ifdef MESH_BED_LEVELING + mesh_plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate*feedmultiply*(1./(60.f*100.f)), active_extruder); +#else + plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate*feedmultiply*(1./(60.f*100.f)), active_extruder); +#endif + } + + for(int8_t i=0; i < NUM_AXIS; i++) { + current_position[i] = destination[i]; + } +} + +void prepare_arc_move(char isclockwise) { + float r = hypot(offset[X_AXIS], offset[Y_AXIS]); // Compute arc radius for mc_arc + + // Trace the arc + mc_arc(current_position, destination, offset, X_AXIS, Y_AXIS, Z_AXIS, feedrate*feedmultiply/60/100.0, r, isclockwise, active_extruder); + + // As far as the parser is concerned, the position is now == target. In reality the + // motion control system might still be processing the action and the real tool position + // in any intermediate location. + for(int8_t i=0; i < NUM_AXIS; i++) { + current_position[i] = destination[i]; + } + previous_millis_cmd = millis(); +} + +#if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1 + +#if defined(FAN_PIN) + #if CONTROLLERFAN_PIN == FAN_PIN + #error "You cannot set CONTROLLERFAN_PIN equal to FAN_PIN" + #endif +#endif + +unsigned long lastMotor = 0; //Save the time for when a motor was turned on last +unsigned long lastMotorCheck = 0; + +void controllerFan() +{ + if ((millis() - lastMotorCheck) >= 2500) //Not a time critical function, so we only check every 2500ms + { + lastMotorCheck = millis(); + + if(!READ(X_ENABLE_PIN) || !READ(Y_ENABLE_PIN) || !READ(Z_ENABLE_PIN) || (soft_pwm_bed > 0) + #if EXTRUDERS > 2 + || !READ(E2_ENABLE_PIN) + #endif + #if EXTRUDER > 1 + #if defined(X2_ENABLE_PIN) && X2_ENABLE_PIN > -1 + || !READ(X2_ENABLE_PIN) + #endif + || !READ(E1_ENABLE_PIN) + #endif + || !READ(E0_ENABLE_PIN)) //If any of the drivers are enabled... + { + lastMotor = millis(); //... set time to NOW so the fan will turn on + } + + if ((millis() - lastMotor) >= (CONTROLLERFAN_SECS*1000UL) || lastMotor == 0) //If the last time any driver was enabled, is longer since than CONTROLLERSEC... + { + digitalWrite(CONTROLLERFAN_PIN, 0); + analogWrite(CONTROLLERFAN_PIN, 0); + } + else + { + // allows digital or PWM fan output to be used (see M42 handling) + digitalWrite(CONTROLLERFAN_PIN, CONTROLLERFAN_SPEED); + analogWrite(CONTROLLERFAN_PIN, CONTROLLERFAN_SPEED); + } + } +} +#endif + +#ifdef TEMP_STAT_LEDS +static bool blue_led = false; +static bool red_led = false; +static uint32_t stat_update = 0; + +void handle_status_leds(void) { + float max_temp = 0.0; + if(millis() > stat_update) { + stat_update += 500; // Update every 0.5s + for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) { + max_temp = max(max_temp, degHotend(cur_extruder)); + max_temp = max(max_temp, degTargetHotend(cur_extruder)); + } + #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1 + max_temp = max(max_temp, degTargetBed()); + max_temp = max(max_temp, degBed()); + #endif + if((max_temp > 55.0) && (red_led == false)) { + digitalWrite(STAT_LED_RED, 1); + digitalWrite(STAT_LED_BLUE, 0); + red_led = true; + blue_led = false; + } + if((max_temp < 54.0) && (blue_led == false)) { + digitalWrite(STAT_LED_RED, 0); + digitalWrite(STAT_LED_BLUE, 1); + red_led = false; + blue_led = true; + } + } +} +#endif + +void manage_inactivity(bool ignore_stepper_queue/*=false*/) //default argument set in Marlin.h +{ + +#if defined(KILL_PIN) && KILL_PIN > -1 + static int killCount = 0; // make the inactivity button a bit less responsive + const int KILL_DELAY = 10000; +#endif + + if(buflen < (BUFSIZE-1)){ + get_command(); + } + + if( (millis() - previous_millis_cmd) > max_inactive_time ) + if(max_inactive_time) + kill("", 4); + if(stepper_inactive_time) { + if( (millis() - previous_millis_cmd) > stepper_inactive_time ) + { + if(blocks_queued() == false && ignore_stepper_queue == false) { + disable_x(); +// SERIAL_ECHOLNPGM("manage_inactivity - disable Y"); + disable_y(); + disable_z(); + disable_e0(); + disable_e1(); + disable_e2(); + } + } + } + + #ifdef CHDK //Check if pin should be set to LOW after M240 set it to HIGH + if (chdkActive && (millis() - chdkHigh > CHDK_DELAY)) + { + chdkActive = false; + WRITE(CHDK, LOW); + } + #endif + + #if defined(KILL_PIN) && KILL_PIN > -1 + + // Check if the kill button was pressed and wait just in case it was an accidental + // key kill key press + // ------------------------------------------------------------------------------- + if( 0 == READ(KILL_PIN) ) + { + killCount++; + } + else if (killCount > 0) + { + killCount--; + } + // Exceeded threshold and we can confirm that it was not accidental + // KILL the machine + // ---------------------------------------------------------------- + if ( killCount >= KILL_DELAY) + { + kill("", 5); + } + #endif + + #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1 + controllerFan(); //Check if fan should be turned on to cool stepper drivers down + #endif + #ifdef EXTRUDER_RUNOUT_PREVENT + if( (millis() - previous_millis_cmd) > EXTRUDER_RUNOUT_SECONDS*1000 ) + if(degHotend(active_extruder)>EXTRUDER_RUNOUT_MINTEMP) + { + bool oldstatus=READ(E0_ENABLE_PIN); + enable_e0(); + float oldepos=current_position[E_AXIS]; + float oldedes=destination[E_AXIS]; + plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], + destination[E_AXIS]+EXTRUDER_RUNOUT_EXTRUDE*EXTRUDER_RUNOUT_ESTEPS/axis_steps_per_unit[E_AXIS], + EXTRUDER_RUNOUT_SPEED/60.*EXTRUDER_RUNOUT_ESTEPS/axis_steps_per_unit[E_AXIS], active_extruder); + current_position[E_AXIS]=oldepos; + destination[E_AXIS]=oldedes; + plan_set_e_position(oldepos); + previous_millis_cmd=millis(); + st_synchronize(); + WRITE(E0_ENABLE_PIN,oldstatus); + } + #endif + #ifdef TEMP_STAT_LEDS + handle_status_leds(); + #endif + check_axes_activity(); +} + +void kill(const char *full_screen_message, unsigned char id) +{ + SERIAL_ECHOPGM("KILL: "); + MYSERIAL.println(int(id)); + //return; + cli(); // Stop interrupts + disable_heater(); + + disable_x(); +// SERIAL_ECHOLNPGM("kill - disable Y"); + disable_y(); + disable_z(); + disable_e0(); + disable_e1(); + disable_e2(); + +#if defined(PS_ON_PIN) && PS_ON_PIN > -1 + pinMode(PS_ON_PIN,INPUT); +#endif + SERIAL_ERROR_START; + SERIAL_ERRORLNRPGM(MSG_ERR_KILLED); + if (full_screen_message != NULL) { + SERIAL_ERRORLNRPGM(full_screen_message); + lcd_display_message_fullscreen_P(full_screen_message); + } else { + LCD_ALERTMESSAGERPGM(MSG_KILLED); + } + + // FMC small patch to update the LCD before ending + sei(); // enable interrupts + for ( int i=5; i--; lcd_update()) + { + delay(200); + } + cli(); // disable interrupts + suicide(); + while(1) { /* Intentionally left empty */ } // Wait for reset +} + +void Stop() +{ + disable_heater(); + if(Stopped == false) { + Stopped = true; + Stopped_gcode_LastN = gcode_LastN; // Save last g_code for restart + SERIAL_ERROR_START; + SERIAL_ERRORLNRPGM(MSG_ERR_STOPPED); + LCD_MESSAGERPGM(MSG_STOPPED); + } +} + +bool IsStopped() { return Stopped; }; + +#ifdef FAST_PWM_FAN +void setPwmFrequency(uint8_t pin, int val) +{ + val &= 0x07; + switch(digitalPinToTimer(pin)) + { + + #if defined(TCCR0A) + case TIMER0A: + case TIMER0B: +// TCCR0B &= ~(_BV(CS00) | _BV(CS01) | _BV(CS02)); +// TCCR0B |= val; + break; + #endif + + #if defined(TCCR1A) + case TIMER1A: + case TIMER1B: +// TCCR1B &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12)); +// TCCR1B |= val; + break; + #endif + + #if defined(TCCR2) + case TIMER2: + case TIMER2: + TCCR2 &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12)); + TCCR2 |= val; + break; + #endif + + #if defined(TCCR2A) + case TIMER2A: + case TIMER2B: + TCCR2B &= ~(_BV(CS20) | _BV(CS21) | _BV(CS22)); + TCCR2B |= val; + break; + #endif + + #if defined(TCCR3A) + case TIMER3A: + case TIMER3B: + case TIMER3C: + TCCR3B &= ~(_BV(CS30) | _BV(CS31) | _BV(CS32)); + TCCR3B |= val; + break; + #endif + + #if defined(TCCR4A) + case TIMER4A: + case TIMER4B: + case TIMER4C: + TCCR4B &= ~(_BV(CS40) | _BV(CS41) | _BV(CS42)); + TCCR4B |= val; + break; + #endif + + #if defined(TCCR5A) + case TIMER5A: + case TIMER5B: + case TIMER5C: + TCCR5B &= ~(_BV(CS50) | _BV(CS51) | _BV(CS52)); + TCCR5B |= val; + break; + #endif + + } +} +#endif //FAST_PWM_FAN + +bool setTargetedHotend(int code){ + tmp_extruder = active_extruder; + if(code_seen('T')) { + tmp_extruder = code_value(); + if(tmp_extruder >= EXTRUDERS) { + SERIAL_ECHO_START; + switch(code){ + case 104: + SERIAL_ECHORPGM(MSG_M104_INVALID_EXTRUDER); + break; + case 105: + SERIAL_ECHO(MSG_M105_INVALID_EXTRUDER); + break; + case 109: + SERIAL_ECHO(MSG_M109_INVALID_EXTRUDER); + break; + case 218: + SERIAL_ECHO(MSG_M218_INVALID_EXTRUDER); + break; + case 221: + SERIAL_ECHO(MSG_M221_INVALID_EXTRUDER); + break; + } + SERIAL_PROTOCOLLN((int)tmp_extruder); + return true; + } + } + return false; +} + +void save_statistics(unsigned long _total_filament_used, unsigned long _total_print_time) //_total_filament_used unit: mm/100; print time in s +{ + if (eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 1) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 2) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 3) == 255) + { + eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, 0); + eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, 0); + } + + unsigned long _previous_filament = eeprom_read_dword((uint32_t *)EEPROM_FILAMENTUSED); //_previous_filament unit: cm + unsigned long _previous_time = eeprom_read_dword((uint32_t *)EEPROM_TOTALTIME); //_previous_time unit: min + + eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, _previous_time + (_total_print_time/60)); //EEPROM_TOTALTIME unit: min + eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, _previous_filament + (_total_filament_used / 1000)); + + total_filament_used = 0; + +} + +float calculate_volumetric_multiplier(float diameter) { + float area = .0; + float radius = .0; + + radius = diameter * .5; + if (! volumetric_enabled || radius == 0) { + area = 1; + } + else { + area = M_PI * pow(radius, 2); + } + + return 1.0 / area; +} + +void calculate_volumetric_multipliers() { + volumetric_multiplier[0] = calculate_volumetric_multiplier(filament_size[0]); +#if EXTRUDERS > 1 + volumetric_multiplier[1] = calculate_volumetric_multiplier(filament_size[1]); +#if EXTRUDERS > 2 + volumetric_multiplier[2] = calculate_volumetric_multiplier(filament_size[2]); +#endif +#endif +} + +void delay_keep_alive(unsigned int ms) +{ + for (;;) { + manage_heater(); + // Manage inactivity, but don't disable steppers on timeout. + manage_inactivity(true); + lcd_update(); + if (ms == 0) + break; + else if (ms >= 50) { + delay(50); + ms -= 50; + } else { + delay(ms); + ms = 0; + } + } +} + +void wait_for_heater(long codenum) { + +#ifdef TEMP_RESIDENCY_TIME + long residencyStart; + residencyStart = -1; + /* continue to loop until we have reached the target temp + _and_ until TEMP_RESIDENCY_TIME hasn't passed since we reached it */ + while ((!cancel_heatup) && ((residencyStart == -1) || + (residencyStart >= 0 && (((unsigned int)(millis() - residencyStart)) < (TEMP_RESIDENCY_TIME * 1000UL))))) { +#else + while (target_direction ? (isHeatingHotend(tmp_extruder)) : (isCoolingHotend(tmp_extruder) && (CooldownNoWait == false))) { +#endif //TEMP_RESIDENCY_TIME + if ((millis() - codenum) > 1000UL) + { //Print Temp Reading and remaining time every 1 second while heating up/cooling down + if (!farm_mode) { + SERIAL_PROTOCOLPGM("T:"); + SERIAL_PROTOCOL_F(degHotend(tmp_extruder), 1); + SERIAL_PROTOCOLPGM(" E:"); + SERIAL_PROTOCOL((int)tmp_extruder); + +#ifdef TEMP_RESIDENCY_TIME + SERIAL_PROTOCOLPGM(" W:"); + if (residencyStart > -1) + { + codenum = ((TEMP_RESIDENCY_TIME * 1000UL) - (millis() - residencyStart)) / 1000UL; + SERIAL_PROTOCOLLN(codenum); + } + else + { + SERIAL_PROTOCOLLN("?"); + } + } +#else + SERIAL_PROTOCOLLN(""); +#endif + codenum = millis(); + } + manage_heater(); + manage_inactivity(); + lcd_update(); +#ifdef TEMP_RESIDENCY_TIME + /* start/restart the TEMP_RESIDENCY_TIME timer whenever we reach target temp for the first time + or when current temp falls outside the hysteresis after target temp was reached */ + if ((residencyStart == -1 && target_direction && (degHotend(tmp_extruder) >= (degTargetHotend(tmp_extruder) - TEMP_WINDOW))) || + (residencyStart == -1 && !target_direction && (degHotend(tmp_extruder) <= (degTargetHotend(tmp_extruder) + TEMP_WINDOW))) || + (residencyStart > -1 && labs(degHotend(tmp_extruder) - degTargetHotend(tmp_extruder)) > TEMP_HYSTERESIS)) + { + residencyStart = millis(); + } +#endif //TEMP_RESIDENCY_TIME + } +} + +void check_babystep() { + int babystep_z; + EEPROM_read_B(EEPROM_BABYSTEP_Z, &babystep_z); + if ((babystep_z < Z_BABYSTEP_MIN) || (babystep_z > Z_BABYSTEP_MAX)) { + babystep_z = 0; //if babystep value is out of min max range, set it to 0 + SERIAL_ECHOLNPGM("Z live adjust out of range. Setting to 0"); + EEPROM_save_B(EEPROM_BABYSTEP_Z, &babystep_z); + lcd_show_fullscreen_message_and_wait_P(PSTR("Z live adjust out of range. Setting to 0. Click to continue.")); + lcd_update_enable(true); + } +} +#ifdef DIS +void d_setup() +{ + pinMode(D_DATACLOCK, INPUT_PULLUP); + pinMode(D_DATA, INPUT_PULLUP); + pinMode(D_REQUIRE, OUTPUT); + digitalWrite(D_REQUIRE, HIGH); +} + + +float d_ReadData() +{ + int digit[13]; + String mergeOutput; + float output; + + digitalWrite(D_REQUIRE, HIGH); + for (int i = 0; i<13; i++) + { + for (int j = 0; j < 4; j++) + { + while (digitalRead(D_DATACLOCK) == LOW) {} + while (digitalRead(D_DATACLOCK) == HIGH) {} + bitWrite(digit[i], j, digitalRead(D_DATA)); + } + } + + digitalWrite(D_REQUIRE, LOW); + mergeOutput = ""; + output = 0; + for (int r = 5; r <= 10; r++) //Merge digits + { + mergeOutput += digit[r]; + } + output = mergeOutput.toFloat(); + + if (digit[4] == 8) //Handle sign + { + output *= -1; + } + + for (int i = digit[11]; i > 0; i--) //Handle floating point + { + output /= 10; + } + + return output; + +} + +void bed_analysis(float x_dimension, float y_dimension, int x_points_num, int y_points_num, float shift_x, float shift_y) { + int t1 = 0; + int t_delay = 0; + int digit[13]; + int m; + char str[3]; + //String mergeOutput; + char mergeOutput[15]; + float output; + + int mesh_point = 0; //index number of calibration point + float bed_zero_ref_x = (-22.f + X_PROBE_OFFSET_FROM_EXTRUDER); //shift between zero point on bed and target and between probe and nozzle + float bed_zero_ref_y = (-0.6f + Y_PROBE_OFFSET_FROM_EXTRUDER); + + float mesh_home_z_search = 4; + float row[x_points_num]; + int ix = 0; + int iy = 0; + + char* filename_wldsd = "wldsd.txt"; + char data_wldsd[70]; + char numb_wldsd[10]; + + d_setup(); + + if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS])) { + // We don't know where we are! HOME! + // Push the commands to the front of the message queue in the reverse order! + // There shall be always enough space reserved for these commands. + repeatcommand_front(); // repeat G80 with all its parameters + + enquecommand_front_P((PSTR("G28 W0"))); + enquecommand_front_P((PSTR("G1 Z5"))); + return; + } + bool custom_message_old = custom_message; + unsigned int custom_message_type_old = custom_message_type; + unsigned int custom_message_state_old = custom_message_state; + custom_message = true; + custom_message_type = 1; + custom_message_state = (x_points_num * y_points_num) + 10; + lcd_update(1); + + mbl.reset(); + babystep_undo(); + + card.openFile(filename_wldsd, false); + + current_position[Z_AXIS] = mesh_home_z_search; + plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 60, active_extruder); + + int XY_AXIS_FEEDRATE = homing_feedrate[X_AXIS] / 20; + int Z_PROBE_FEEDRATE = homing_feedrate[Z_AXIS] / 60; + int Z_LIFT_FEEDRATE = homing_feedrate[Z_AXIS] / 40; + + setup_for_endstop_move(false); + + SERIAL_PROTOCOLPGM("Num X,Y: "); + SERIAL_PROTOCOL(x_points_num); + SERIAL_PROTOCOLPGM(","); + SERIAL_PROTOCOL(y_points_num); + SERIAL_PROTOCOLPGM("\nZ search height: "); + SERIAL_PROTOCOL(mesh_home_z_search); + SERIAL_PROTOCOLPGM("\nDimension X,Y: "); + SERIAL_PROTOCOL(x_dimension); + SERIAL_PROTOCOLPGM(","); + SERIAL_PROTOCOL(y_dimension); + SERIAL_PROTOCOLLNPGM("\nMeasured points:"); + + while (mesh_point != x_points_num * y_points_num) { + ix = mesh_point % x_points_num; // from 0 to MESH_NUM_X_POINTS - 1 + iy = mesh_point / x_points_num; + if (iy & 1) ix = (x_points_num - 1) - ix; // Zig zag + float z0 = 0.f; + current_position[Z_AXIS] = mesh_home_z_search; + plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], Z_LIFT_FEEDRATE, active_extruder); + st_synchronize(); + + + current_position[X_AXIS] = 13.f + ix * (x_dimension / (x_points_num - 1)) - bed_zero_ref_x + shift_x; + current_position[Y_AXIS] = 6.4f + iy * (y_dimension / (y_points_num - 1)) - bed_zero_ref_y + shift_y; + + plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], XY_AXIS_FEEDRATE, active_extruder); + st_synchronize(); + + if (!find_bed_induction_sensor_point_z(-10.f)) { //if we have data from z calibration max allowed difference is 1mm for each point, if we dont have data max difference is 10mm from initial point + break; + card.closefile(); + } + + + //memset(numb_wldsd, 0, sizeof(numb_wldsd)); + //dtostrf(d_ReadData(), 8, 5, numb_wldsd); + //strcat(data_wldsd, numb_wldsd); + + + + //MYSERIAL.println(data_wldsd); + //delay(1000); + //delay(3000); + //t1 = millis(); + + //while (digitalRead(D_DATACLOCK) == LOW) {} + //while (digitalRead(D_DATACLOCK) == HIGH) {} + memset(digit, 0, sizeof(digit)); + //cli(); + digitalWrite(D_REQUIRE, LOW); + + for (int i = 0; i<13; i++) + { + //t1 = millis(); + for (int j = 0; j < 4; j++) + { + while (digitalRead(D_DATACLOCK) == LOW) {} + while (digitalRead(D_DATACLOCK) == HIGH) {} + bitWrite(digit[i], j, digitalRead(D_DATA)); + } + //t_delay = (millis() - t1); + //SERIAL_PROTOCOLPGM(" "); + //SERIAL_PROTOCOL_F(t_delay, 5); + //SERIAL_PROTOCOLPGM(" "); + } + //sei(); + digitalWrite(D_REQUIRE, HIGH); + mergeOutput[0] = '\0'; + output = 0; + for (int r = 5; r <= 10; r++) //Merge digits + { + sprintf(str, "%d", digit[r]); + strcat(mergeOutput, str); + } + + output = atof(mergeOutput); + + if (digit[4] == 8) //Handle sign + { + output *= -1; + } + + for (int i = digit[11]; i > 0; i--) //Handle floating point + { + output *= 0.1; + } + + + //output = d_ReadData(); + + //row[ix] = current_position[Z_AXIS]; + + memset(data_wldsd, 0, sizeof(data_wldsd)); + + for (int i = 0; i <3; i++) { + memset(numb_wldsd, 0, sizeof(numb_wldsd)); + dtostrf(current_position[i], 8, 5, numb_wldsd); + strcat(data_wldsd, numb_wldsd); + strcat(data_wldsd, ";"); + + } + memset(numb_wldsd, 0, sizeof(numb_wldsd)); + dtostrf(output, 8, 5, numb_wldsd); + strcat(data_wldsd, numb_wldsd); + //strcat(data_wldsd, ";"); + card.write_command(data_wldsd); + + + //row[ix] = d_ReadData(); + + row[ix] = output; // current_position[Z_AXIS]; + + if (iy % 2 == 1 ? ix == 0 : ix == x_points_num - 1) { + for (int i = 0; i < x_points_num; i++) { + SERIAL_PROTOCOLPGM(" "); + SERIAL_PROTOCOL_F(row[i], 5); + + + } + SERIAL_PROTOCOLPGM("\n"); + } + custom_message_state--; + mesh_point++; + lcd_update(1); + + } + card.closefile(); + +} +#endif + +void temp_compensation_start() { + + custom_message = true; + custom_message_type = 5; + custom_message_state = PINDA_HEAT_T + 1; + lcd_update(2); + if (degHotend(active_extruder) > EXTRUDE_MINTEMP) { + current_position[E_AXIS] -= DEFAULT_RETRACTION; + } + plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400, active_extruder); + + current_position[X_AXIS] = PINDA_PREHEAT_X; + current_position[Y_AXIS] = PINDA_PREHEAT_Y; + current_position[Z_AXIS] = PINDA_PREHEAT_Z; + plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder); + st_synchronize(); + while (fabs(degBed() - target_temperature_bed) > 1) delay_keep_alive(1000); + + for (int i = 0; i < PINDA_HEAT_T; i++) { + delay_keep_alive(1000); + custom_message_state = PINDA_HEAT_T - i; + if (custom_message_state == 99 || custom_message_state == 9) lcd_update(2); //force whole display redraw if number of digits changed + else lcd_update(1); + } + custom_message_type = 0; + custom_message_state = 0; + custom_message = false; +} + +void temp_compensation_apply() { + int i_add; + int compensation_value; + int z_shift = 0; + float z_shift_mm; + + if (calibration_status() == CALIBRATION_STATUS_CALIBRATED) { + if (target_temperature_bed % 10 == 0 && target_temperature_bed >= 60 && target_temperature_bed <= 100) { + i_add = (target_temperature_bed - 60) / 10; + EEPROM_read_B(EEPROM_PROBE_TEMP_SHIFT + i_add * 2, &z_shift); + z_shift_mm = z_shift / axis_steps_per_unit[Z_AXIS]; + }else { + //interpolation + z_shift_mm = temp_comp_interpolation(target_temperature_bed) / axis_steps_per_unit[Z_AXIS]; + } + SERIAL_PROTOCOLPGM("\n"); + SERIAL_PROTOCOLPGM("Z shift applied:"); + MYSERIAL.print(z_shift_mm); + plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS] - z_shift_mm, current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder); + st_synchronize(); + plan_set_z_position(current_position[Z_AXIS]); + } + else { + //we have no temp compensation data + } +} + +float temp_comp_interpolation(float inp_temperature) { + + //cubic spline interpolation + + int n, i, j, k; + float h[10], a, b, c, d, sum, s[10] = { 0 }, x[10], F[10], f[10], m[10][10] = { 0 }, temp; + int shift[10]; + int temp_C[10]; + + n = 6; //number of measured points + + shift[0] = 0; + for (i = 0; i < n; i++) { + if (i>0) EEPROM_read_B(EEPROM_PROBE_TEMP_SHIFT + (i-1) * 2, &shift[i]); //read shift in steps from EEPROM + temp_C[i] = 50 + i * 10; //temperature in C +#ifdef PINDA_THERMISTOR + temp_C[i] = 35 + i * 5; //temperature in C +#else + temp_C[i] = 50 + i * 10; //temperature in C +#endif + x[i] = (float)temp_C[i]; + f[i] = (float)shift[i]; + } + if (inp_temperature < x[0]) return 0; + + + for (i = n - 1; i>0; i--) { + F[i] = (f[i] - f[i - 1]) / (x[i] - x[i - 1]); + h[i - 1] = x[i] - x[i - 1]; + } + //*********** formation of h, s , f matrix ************** + for (i = 1; i0; i--) { + sum = 0; + for (j = i; j <= n - 2; j++) + sum += m[i][j] * s[j]; + s[i] = (m[i][n - 1] - sum) / m[i][i]; + } + + for (i = 0; i x[i + 1])) { + a = (s[i + 1] - s[i]) / (6 * h[i]); + b = s[i] / 2; + c = (f[i + 1] - f[i]) / h[i] - (2 * h[i] * s[i] + s[i + 1] * h[i]) / 6; + d = f[i]; + sum = a*pow((inp_temperature - x[i]), 3) + b*pow((inp_temperature - x[i]), 2) + c*(inp_temperature - x[i]) + d; + } + + return sum; + +} + +#ifdef PINDA_THERMISTOR +float temp_compensation_pinda_thermistor_offset() +{ + if (!temp_cal_active) return 0; + if (!calibration_status_pinda()) return 0; + return temp_comp_interpolation(current_temperature_pinda) / axis_steps_per_unit[Z_AXIS]; +} +#endif //PINDA_THERMISTOR + +void long_pause() //long pause print +{ + st_synchronize(); + + //save currently set parameters to global variables + saved_feedmultiply = feedmultiply; + HotendTempBckp = degTargetHotend(active_extruder); + fanSpeedBckp = fanSpeed; + start_pause_print = millis(); + + + //save position + pause_lastpos[X_AXIS] = current_position[X_AXIS]; + pause_lastpos[Y_AXIS] = current_position[Y_AXIS]; + pause_lastpos[Z_AXIS] = current_position[Z_AXIS]; + pause_lastpos[E_AXIS] = current_position[E_AXIS]; + + //retract + current_position[E_AXIS] -= DEFAULT_RETRACTION; + plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400, active_extruder); + + //lift z + current_position[Z_AXIS] += Z_PAUSE_LIFT; + if (current_position[Z_AXIS] > Z_MAX_POS) current_position[Z_AXIS] = Z_MAX_POS; + plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 15, active_extruder); + + //set nozzle target temperature to 0 + setTargetHotend(0, 0); + setTargetHotend(0, 1); + setTargetHotend(0, 2); + + //Move XY to side + current_position[X_AXIS] = X_PAUSE_POS; + current_position[Y_AXIS] = Y_PAUSE_POS; + plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 50, active_extruder); + + // Turn off the print fan + fanSpeed = 0; + + st_synchronize(); +} + +void serialecho_temperatures() { + float tt = degHotend(active_extruder); + SERIAL_PROTOCOLPGM("T:"); + SERIAL_PROTOCOL(tt); + SERIAL_PROTOCOLPGM(" E:"); + SERIAL_PROTOCOL((int)active_extruder); + SERIAL_PROTOCOLPGM(" B:"); + SERIAL_PROTOCOL_F(degBed(), 1); + SERIAL_PROTOCOLLN(""); +} + +extern uint32_t sdpos_atomic; + +void uvlo_() +{ + // Conserve power as soon as possible. + disable_x(); + disable_y(); + + // Indicate that the interrupt has been triggered. + SERIAL_ECHOLNPGM("UVLO"); + + // Read out the current Z motor microstep counter. This will be later used + // for reaching the zero full step before powering off. + uint16_t z_microsteps = tmc2130_rd_MSCNT(Z_TMC2130_CS); + + // Calculate the file position, from which to resume this print. + long sd_position = sdpos_atomic; //atomic sd position of last command added in queue + { + uint16_t sdlen_planner = planner_calc_sd_length(); //length of sd commands in planner + sd_position -= sdlen_planner; + uint16_t sdlen_cmdqueue = cmdqueue_calc_sd_length(); //length of sd commands in cmdqueue + sd_position -= sdlen_cmdqueue; + if (sd_position < 0) sd_position = 0; + } + + // Backup the feedrate in mm/min. + int feedrate_bckp = blocks_queued() ? (block_buffer[block_buffer_tail].nominal_speed * 60.f) : feedrate; + + // After this call, the planner queue is emptied and the current_position is set to a current logical coordinate. + // The logical coordinate will likely differ from the machine coordinate if the skew calibration and mesh bed leveling + // are in action. + planner_abort_hard(); + + // Clean the input command queue. + cmdqueue_reset(); + card.sdprinting = false; +// card.closefile(); + + // Enable stepper driver interrupt to move Z axis. + // This should be fine as the planner and command queues are empty and the SD card printing is disabled. + //FIXME one may want to disable serial lines at this point of time to avoid interfering with the command queue, + // though it should not happen that the command queue is touched as the plan_buffer_line always succeed without blocking. + sei(); + plan_buffer_line( + current_position[X_AXIS], + current_position[Y_AXIS], + current_position[Z_AXIS], + current_position[E_AXIS] - DEFAULT_RETRACTION, + 400, active_extruder); + plan_buffer_line( + current_position[X_AXIS], + current_position[Y_AXIS], + current_position[Z_AXIS] + UVLO_Z_AXIS_SHIFT + float((1024 - z_microsteps + 7) >> 4) / axis_steps_per_unit[Z_AXIS], + current_position[E_AXIS] - DEFAULT_RETRACTION, + 40, active_extruder); + + // Move Z up to the next 0th full step. + // Write the file position. + eeprom_update_dword((uint32_t*)(EEPROM_FILE_POSITION), sd_position); + // Store the mesh bed leveling offsets. This is 2*9=18 bytes, which takes 18*3.4us=52us in worst case. + for (int8_t mesh_point = 0; mesh_point < 9; ++ mesh_point) { + uint8_t ix = mesh_point % MESH_MEAS_NUM_X_POINTS; // from 0 to MESH_NUM_X_POINTS - 1 + uint8_t iy = mesh_point / MESH_MEAS_NUM_X_POINTS; + // Scale the z value to 1u resolution. + int16_t v = mbl.active ? int16_t(floor(mbl.z_values[iy*3][ix*3] * 1000.f + 0.5f)) : 0; + eeprom_update_word((uint16_t*)(EEPROM_UVLO_MESH_BED_LEVELING+2*mesh_point), *reinterpret_cast(&v)); + } + // Read out the current Z motor microstep counter. This will be later used + // for reaching the zero full step before powering off. + eeprom_update_word((uint16_t*)(EEPROM_UVLO_Z_MICROSTEPS), z_microsteps); + // Store the current position. + eeprom_update_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 0), current_position[X_AXIS]); + eeprom_update_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 4), current_position[Y_AXIS]); + eeprom_update_float((float*)(EEPROM_UVLO_CURRENT_POSITION_Z), current_position[Z_AXIS]); + // Store the current feed rate, temperatures and fan speed. + EEPROM_save_B(EEPROM_UVLO_FEEDRATE, &feedrate_bckp); + eeprom_update_byte((uint8_t*)EEPROM_UVLO_TARGET_HOTEND, target_temperature[active_extruder]); + eeprom_update_byte((uint8_t*)EEPROM_UVLO_TARGET_BED, target_temperature_bed); + eeprom_update_byte((uint8_t*)EEPROM_UVLO_FAN_SPEED, fanSpeed); + // Finaly store the "power outage" flag. + eeprom_update_byte((uint8_t*)EEPROM_UVLO, 1); + + st_synchronize(); + SERIAL_ECHOPGM("stps"); + MYSERIAL.println(tmc2130_rd_MSCNT(Z_TMC2130_CS)); +#if 0 + // Move the print head to the side of the print until all the power stored in the power supply capacitors is depleted. + current_position[X_AXIS] = (current_position[X_AXIS] < 0.5f * (X_MIN_POS + X_MAX_POS)) ? X_MIN_POS : X_MAX_POS; + plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 500, active_extruder); + st_synchronize(); +#endif + disable_z(); + + // Increment power failure counter + uint8_t power_count = eeprom_read_byte((uint8_t*)EEPROM_POWER_COUNT); + power_count++; + eeprom_update_byte((uint8_t*)EEPROM_POWER_COUNT, power_count); + + SERIAL_ECHOLNPGM("UVLO - end"); + cli(); + while(1); +} + +void setup_fan_interrupt() { +//INT7 + DDRE &= ~(1 << 7); //input pin + PORTE &= ~(1 << 7); //no internal pull-up + + //start with sensing rising edge + EICRB &= ~(1 << 6); + EICRB |= (1 << 7); + + //enable INT7 interrupt + EIMSK |= (1 << 7); +} + +ISR(INT7_vect) { + //measuring speed now works for fanSpeed > 18 (approximately), which is sufficient because MIN_PRINT_FAN_SPEED is higher + + if (fanSpeed < MIN_PRINT_FAN_SPEED) return; + if ((1 << 6) & EICRB) { //interrupt was triggered by rising edge + t_fan_rising_edge = millis(); + } + else { //interrupt was triggered by falling edge + if ((millis() - t_fan_rising_edge) >= FAN_PULSE_WIDTH_LIMIT) {//this pulse was from sensor and not from pwm + fan_edge_counter[1] += 2; //we are currently counting all edges so lets count two edges for one pulse + } + } + EICRB ^= (1 << 6); //change edge +} + +void setup_uvlo_interrupt() { + DDRE &= ~(1 << 4); //input pin + PORTE &= ~(1 << 4); //no internal pull-up + + //sensing falling edge + EICRB |= (1 << 0); + EICRB &= ~(1 << 1); + + //enable INT4 interrupt + EIMSK |= (1 << 4); +} + +ISR(INT4_vect) { + EIMSK &= ~(1 << 4); //disable INT4 interrupt to make sure that this code will be executed just once + SERIAL_ECHOLNPGM("INT4"); + if (IS_SD_PRINTING) uvlo_(); +} + +void recover_print(uint8_t automatic) { + char cmd[30]; + lcd_update_enable(true); + lcd_update(2); + lcd_setstatuspgm(MSG_RECOVERING_PRINT); + + recover_machine_state_after_power_panic(); + + // Set the target bed and nozzle temperatures. + sprintf_P(cmd, PSTR("M104 S%d"), target_temperature[active_extruder]); + enquecommand(cmd); + sprintf_P(cmd, PSTR("M140 S%d"), target_temperature_bed); + enquecommand(cmd); + + // Lift the print head, so one may remove the excess priming material. + if (current_position[Z_AXIS] < 25) + enquecommand_P(PSTR("G1 Z25 F800")); + // Home X and Y axes. Homing just X and Y shall not touch the babystep and the world2machine transformation status. + enquecommand_P(PSTR("G28 X Y")); + // Set the target bed and nozzle temperatures and wait. + sprintf_P(cmd, PSTR("M109 S%d"), target_temperature[active_extruder]); + enquecommand(cmd); + sprintf_P(cmd, PSTR("M190 S%d"), target_temperature_bed); + enquecommand(cmd); + enquecommand_P(PSTR("M83")); //E axis relative mode + //enquecommand_P(PSTR("G1 E5 F120")); //Extrude some filament to stabilize pessure + // If not automatically recoreverd (long power loss), extrude extra filament to stabilize + if(automatic == 0){ + enquecommand_P(PSTR("G1 E5 F120")); //Extrude some filament to stabilize pessure + } + enquecommand_P(PSTR("G1 E" STRINGIFY(-DEFAULT_RETRACTION)" F480")); + // Mark the power panic status as inactive. + eeprom_update_byte((uint8_t*)EEPROM_UVLO, 0); + /*while ((abs(degHotend(0)- target_temperature[0])>5) || (abs(degBed() -target_temperature_bed)>3)) { //wait for heater and bed to reach target temp + delay_keep_alive(1000); + }*/ + SERIAL_ECHOPGM("After waiting for temp:"); + SERIAL_ECHOPGM("Current position X_AXIS:"); + MYSERIAL.println(current_position[X_AXIS]); + SERIAL_ECHOPGM("Current position Y_AXIS:"); + MYSERIAL.println(current_position[Y_AXIS]); + + // Restart the print. + restore_print_from_eeprom(); + + SERIAL_ECHOPGM("current_position[Z_AXIS]:"); + MYSERIAL.print(current_position[Z_AXIS]); +} + +void recover_machine_state_after_power_panic() +{ + // 1) Recover the logical cordinates at the time of the power panic. + // The logical XY coordinates are needed to recover the machine Z coordinate corrected by the mesh bed leveling. + current_position[X_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 0)); + current_position[Y_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 4)); + // Recover the logical coordinate of the Z axis at the time of the power panic. + // The current position after power panic is moved to the next closest 0th full step. + current_position[Z_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION_Z)) + + UVLO_Z_AXIS_SHIFT + float((1024 - eeprom_read_word((uint16_t*)(EEPROM_UVLO_Z_MICROSTEPS)) + 7) >> 4) / axis_steps_per_unit[Z_AXIS]; + memcpy(destination, current_position, sizeof(destination)); + + SERIAL_ECHOPGM("recover_machine_state_after_power_panic, initial "); + print_world_coordinates(); + + // 2) Initialize the logical to physical coordinate system transformation. + world2machine_initialize(); + + // 3) Restore the mesh bed leveling offsets. This is 2*9=18 bytes, which takes 18*3.4us=52us in worst case. + mbl.active = false; + for (int8_t mesh_point = 0; mesh_point < 9; ++ mesh_point) { + uint8_t ix = mesh_point % MESH_MEAS_NUM_X_POINTS; // from 0 to MESH_NUM_X_POINTS - 1 + uint8_t iy = mesh_point / MESH_MEAS_NUM_X_POINTS; + // Scale the z value to 10u resolution. + int16_t v; + eeprom_read_block(&v, (void*)(EEPROM_UVLO_MESH_BED_LEVELING+2*mesh_point), 2); + if (v != 0) + mbl.active = true; + mbl.z_values[iy][ix] = float(v) * 0.001f; + } + if (mbl.active) + mbl.upsample_3x3(); + SERIAL_ECHOPGM("recover_machine_state_after_power_panic, initial "); + print_mesh_bed_leveling_table(); + + // 4) Load the baby stepping value, which is expected to be active at the time of power panic. + // The baby stepping value is used to reset the physical Z axis when rehoming the Z axis. + babystep_load(); + + // 5) Set the physical positions from the logical positions using the world2machine transformation and the active bed leveling. + plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]); + + // 6) Power up the motors, mark their positions as known. + //FIXME Verfiy, whether the X and Y axes should be powered up here, as they will later be re-homed anyway. + axis_known_position[X_AXIS] = true; enable_x(); + axis_known_position[Y_AXIS] = true; enable_y(); + axis_known_position[Z_AXIS] = true; enable_z(); + + SERIAL_ECHOPGM("recover_machine_state_after_power_panic, initial "); + print_physical_coordinates(); + + // 7) Recover the target temperatures. + target_temperature[active_extruder] = eeprom_read_byte((uint8_t*)EEPROM_UVLO_TARGET_HOTEND); + target_temperature_bed = eeprom_read_byte((uint8_t*)EEPROM_UVLO_TARGET_BED); +} + +void restore_print_from_eeprom() { + float x_rec, y_rec, z_pos; + int feedrate_rec; + uint8_t fan_speed_rec; + char cmd[30]; + char* c; + char filename[13]; + + fan_speed_rec = eeprom_read_byte((uint8_t*)EEPROM_UVLO_FAN_SPEED); + EEPROM_read_B(EEPROM_UVLO_FEEDRATE, &feedrate_rec); + SERIAL_ECHOPGM("Feedrate:"); + MYSERIAL.println(feedrate_rec); + for (int i = 0; i < 8; i++) { + filename[i] = eeprom_read_byte((uint8_t*)EEPROM_FILENAME + i); + + } + filename[8] = '\0'; + + MYSERIAL.print(filename); + strcat_P(filename, PSTR(".gco")); + sprintf_P(cmd, PSTR("M23 %s"), filename); + for (c = &cmd[4]; *c; c++) + *c = tolower(*c); + enquecommand(cmd); + uint32_t position = eeprom_read_dword((uint32_t*)(EEPROM_FILE_POSITION)); + SERIAL_ECHOPGM("Position read from eeprom:"); + MYSERIAL.println(position); + + // E axis relative mode. + enquecommand_P(PSTR("M83")); + // Move to the XY print position in logical coordinates, where the print has been killed. + strcpy_P(cmd, PSTR("G1 X")); strcat(cmd, ftostr32(eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 0)))); + strcat_P(cmd, PSTR(" Y")); strcat(cmd, ftostr32(eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 4)))); + strcat_P(cmd, PSTR(" F2000")); + enquecommand(cmd); + // Move the Z axis down to the print, in logical coordinates. + strcpy_P(cmd, PSTR("G1 Z")); strcat(cmd, ftostr32(eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION_Z)))); + enquecommand(cmd); + // Unretract. + enquecommand_P(PSTR("G1 E" STRINGIFY(DEFAULT_RETRACTION)" F480")); + // Set the feedrate saved at the power panic. + sprintf_P(cmd, PSTR("G1 F%d"), feedrate_rec); + enquecommand(cmd); + // Set the fan speed saved at the power panic. + strcpy_P(cmd, PSTR("M106 S")); + strcat(cmd, itostr3(int(fan_speed_rec))); + enquecommand(cmd); + + // Set a position in the file. + sprintf_P(cmd, PSTR("M26 S%lu"), position); + enquecommand(cmd); + // Start SD print. + enquecommand_P(PSTR("M24")); +} + + +//////////////////////////////////////////////////////////////////////////////// +// new save/restore printing + +//extern uint32_t sdpos_atomic; + +bool saved_printing = false; +uint32_t saved_sdpos = 0; +float saved_pos[4] = {0, 0, 0, 0}; +// Feedrate hopefully derived from an active block of the planner at the time the print has been canceled, in mm/min. +float saved_feedrate2 = 0; +uint8_t saved_active_extruder = 0; +bool saved_extruder_under_pressure = false; + +void stop_and_save_print_to_ram(float z_move, float e_move) +{ + if (saved_printing) return; + cli(); + unsigned char nplanner_blocks = number_of_blocks(); + saved_sdpos = sdpos_atomic; //atomic sd position of last command added in queue + uint16_t sdlen_planner = planner_calc_sd_length(); //length of sd commands in planner + saved_sdpos -= sdlen_planner; + uint16_t sdlen_cmdqueue = cmdqueue_calc_sd_length(); //length of sd commands in cmdqueue + saved_sdpos -= sdlen_cmdqueue; + +#if 0 + SERIAL_ECHOPGM("SDPOS_ATOMIC="); MYSERIAL.println(sdpos_atomic, DEC); + SERIAL_ECHOPGM("SDPOS="); MYSERIAL.println(card.get_sdpos(), DEC); + SERIAL_ECHOPGM("SDLEN_PLAN="); MYSERIAL.println(sdlen_planner, DEC); + SERIAL_ECHOPGM("SDLEN_CMDQ="); MYSERIAL.println(sdlen_cmdqueue, DEC); + SERIAL_ECHOPGM("PLANNERBLOCKS="); MYSERIAL.println(int(nplanner_blocks), DEC); + SERIAL_ECHOPGM("SDSAVED="); MYSERIAL.println(saved_sdpos, DEC); + SERIAL_ECHOPGM("SDFILELEN="); MYSERIAL.println(card.fileSize(), DEC); + + { + card.setIndex(saved_sdpos); + SERIAL_ECHOLNPGM("Content of planner buffer: "); + for (unsigned int idx = 0; idx < sdlen_planner; ++ idx) + MYSERIAL.print(char(card.get())); + SERIAL_ECHOLNPGM("Content of command buffer: "); + for (unsigned int idx = 0; idx < sdlen_cmdqueue; ++ idx) + MYSERIAL.print(char(card.get())); + SERIAL_ECHOLNPGM("End of command buffer"); + } + + { + // Print the content of the planner buffer, line by line: + card.setIndex(saved_sdpos); + int8_t iline = 0; + for (unsigned char idx = block_buffer_tail; idx != block_buffer_head; idx = (idx + 1) & (BLOCK_BUFFER_SIZE - 1), ++ iline) { + SERIAL_ECHOPGM("Planner line (from file): "); + MYSERIAL.print(int(iline), DEC); + SERIAL_ECHOPGM(", length: "); + MYSERIAL.print(block_buffer[idx].sdlen, DEC); + SERIAL_ECHOPGM(", steps: ("); + MYSERIAL.print(block_buffer[idx].steps_x, DEC); + SERIAL_ECHOPGM(","); + MYSERIAL.print(block_buffer[idx].steps_y, DEC); + SERIAL_ECHOPGM(","); + MYSERIAL.print(block_buffer[idx].steps_z, DEC); + SERIAL_ECHOPGM(","); + MYSERIAL.print(block_buffer[idx].steps_e, DEC); + SERIAL_ECHOPGM("), events: "); + MYSERIAL.println(block_buffer[idx].step_event_count, DEC); + for (int len = block_buffer[idx].sdlen; len > 0; -- len) + MYSERIAL.print(char(card.get())); + } + } + { + // Print the content of the command buffer, line by line: + int8_t iline = 0; + union { + struct { + char lo; + char hi; + } lohi; + uint16_t value; + } sdlen_single; + int _bufindr = bufindr; + for (int _buflen = buflen; _buflen > 0; ++ iline) { + if (cmdbuffer[_bufindr] == CMDBUFFER_CURRENT_TYPE_SDCARD) { + sdlen_single.lohi.lo = cmdbuffer[_bufindr + 1]; + sdlen_single.lohi.hi = cmdbuffer[_bufindr + 2]; + } + SERIAL_ECHOPGM("Buffer line (from buffer): "); + MYSERIAL.print(int(iline), DEC); + SERIAL_ECHOPGM(", type: "); + MYSERIAL.print(int(cmdbuffer[_bufindr]), DEC); + SERIAL_ECHOPGM(", len: "); + MYSERIAL.println(sdlen_single.value, DEC); + // Print the content of the buffer line. + MYSERIAL.println(cmdbuffer + _bufindr + CMDHDRSIZE); + + SERIAL_ECHOPGM("Buffer line (from file): "); + MYSERIAL.print(int(iline), DEC); + MYSERIAL.println(int(iline), DEC); + for (; sdlen_single.value > 0; -- sdlen_single.value) + MYSERIAL.print(char(card.get())); + + if (-- _buflen == 0) + break; + // First skip the current command ID and iterate up to the end of the string. + for (_bufindr += CMDHDRSIZE; cmdbuffer[_bufindr] != 0; ++ _bufindr) ; + // Second, skip the end of string null character and iterate until a nonzero command ID is found. + for (++ _bufindr; _bufindr < sizeof(cmdbuffer) && cmdbuffer[_bufindr] == 0; ++ _bufindr) ; + // If the end of the buffer was empty, + if (_bufindr == sizeof(cmdbuffer)) { + // skip to the start and find the nonzero command. + for (_bufindr = 0; cmdbuffer[_bufindr] == 0; ++ _bufindr) ; + } + } + } +#endif + +#if 0 + saved_feedrate2 = feedrate; //save feedrate +#else + // Try to deduce the feedrate from the first block of the planner. + // Speed is in mm/min. + saved_feedrate2 = blocks_queued() ? (block_buffer[block_buffer_tail].nominal_speed * 60.f) : feedrate; +#endif + + planner_abort_hard(); //abort printing + memcpy(saved_pos, current_position, sizeof(saved_pos)); + saved_active_extruder = active_extruder; //save active_extruder + + saved_extruder_under_pressure = extruder_under_pressure; //extruder under pressure flag - currently unused + + cmdqueue_reset(); //empty cmdqueue + card.sdprinting = false; +// card.closefile(); + saved_printing = true; + sei(); + if ((z_move != 0) || (e_move != 0)) { // extruder or z move +#if 1 + // Rather than calling plan_buffer_line directly, push the move into the command queue, + char buf[48]; + strcpy_P(buf, PSTR("G1 Z")); + dtostrf(saved_pos[Z_AXIS] + z_move, 8, 3, buf + strlen(buf)); + strcat_P(buf, PSTR(" E")); + // Relative extrusion + dtostrf(e_move, 6, 3, buf + strlen(buf)); + strcat_P(buf, PSTR(" F")); + dtostrf(homing_feedrate[Z_AXIS], 8, 3, buf + strlen(buf)); + // At this point the command queue is empty. + enquecommand(buf, false); + // If this call is invoked from the main Arduino loop() function, let the caller know that the command + // in the command queue is not the original command, but a new one, so it should not be removed from the queue. + repeatcommand_front(); +#else + plan_buffer_line(saved_pos[X_AXIS], saved_pos[Y_AXIS], saved_pos[Z_AXIS] + z_move, saved_pos[E_AXIS] + e_move, homing_feedrate[Z_AXIS], active_extruder); + st_synchronize(); //wait moving + memcpy(current_position, saved_pos, sizeof(saved_pos)); + memcpy(destination, current_position, sizeof(destination)); +#endif + } +} + +void restore_print_from_ram_and_continue(float e_move) +{ + if (!saved_printing) return; +// for (int axis = X_AXIS; axis <= E_AXIS; axis++) +// current_position[axis] = st_get_position_mm(axis); + active_extruder = saved_active_extruder; //restore active_extruder + feedrate = saved_feedrate2; //restore feedrate + float e = saved_pos[E_AXIS] - e_move; + plan_set_e_position(e); + plan_buffer_line(saved_pos[X_AXIS], saved_pos[Y_AXIS], saved_pos[Z_AXIS], saved_pos[E_AXIS], homing_feedrate[Z_AXIS]/13, active_extruder); + st_synchronize(); + memcpy(current_position, saved_pos, sizeof(saved_pos)); + memcpy(destination, current_position, sizeof(destination)); + card.setIndex(saved_sdpos); + sdpos_atomic = saved_sdpos; + card.sdprinting = true; + saved_printing = false; +} + +void print_world_coordinates() +{ + SERIAL_ECHOPGM("world coordinates: ("); + MYSERIAL.print(current_position[X_AXIS], 3); + SERIAL_ECHOPGM(", "); + MYSERIAL.print(current_position[Y_AXIS], 3); + SERIAL_ECHOPGM(", "); + MYSERIAL.print(current_position[Z_AXIS], 3); + SERIAL_ECHOLNPGM(")"); +} + +void print_physical_coordinates() +{ + SERIAL_ECHOPGM("physical coordinates: ("); + MYSERIAL.print(st_get_position_mm(X_AXIS), 3); + SERIAL_ECHOPGM(", "); + MYSERIAL.print(st_get_position_mm(Y_AXIS), 3); + SERIAL_ECHOPGM(", "); + MYSERIAL.print(st_get_position_mm(Z_AXIS), 3); + SERIAL_ECHOLNPGM(")"); +} + +void print_mesh_bed_leveling_table() +{ + SERIAL_ECHOPGM("mesh bed leveling: "); + for (int8_t y = 0; y < MESH_NUM_Y_POINTS; ++ y) + for (int8_t x = 0; x < MESH_NUM_Y_POINTS; ++ x) { + MYSERIAL.print(mbl.z_values[y][x], 3); + SERIAL_ECHOPGM(" "); + } + SERIAL_ECHOLNPGM(""); +}