Merge remote-tracking branch 'upstream/MK3' into MK3_translation_0121

This commit is contained in:
3d-gussner 2021-01-29 15:38:48 +01:00
commit d75a0fdcbd
21 changed files with 432 additions and 231 deletions

View File

@ -255,7 +255,7 @@ void MarlinSerial::print(double n, int digits)
void MarlinSerial::println(void)
{
print('\r');
// print('\r');
print('\n');
}

View File

@ -5729,10 +5729,16 @@ if(eSoundMode!=e_SOUND_MODE_SILENT)
/*!
### M20 - SD Card file list <a href="https://reprap.org/wiki/G-code#M20:_List_SD_card">M20: List SD card</a>
#### Usage
M20 [ L ]
#### Parameters
- `L` - Reports ling filenames instead of just short filenames. Requires host software parsing.
*/
case 20:
KEEPALIVE_STATE(NOT_BUSY); // do not send busy messages during listing. Inhibits the output of manage_heater()
SERIAL_PROTOCOLLNRPGM(_N("Begin file list"));////MSG_BEGIN_FILE_LIST
card.ls();
card.ls(code_seen('L'));
SERIAL_PROTOCOLLNRPGM(_N("End file list"));////MSG_END_FILE_LIST
break;

View File

@ -62,9 +62,10 @@ char *createFilename(char *buffer,const dir_t &p) //buffer>12characters
/**
+* Dive into a folder and recurse depth-first to perform a pre-set operation lsAction:
+* LS_Count - Add +1 to nrFiles for every file within the parent
+* LS_GetFilename - Get the filename of the file indexed by nrFiles
+* LS_SerialPrint - Print the full path and size of each file to serial output
+* LS_Count - Add +1 to nrFiles for every file within the parent
+* LS_GetFilename - Get the filename of the file indexed by nrFiles
+* LS_SerialPrint - Print the full path and size of each file to serial output
+* LS_SerialPrint_LFN - Print the full path, long filename and size of each file to serial output
+*/
void CardReader::lsDive(const char *prepend, SdFile parent, const char * const match/*=NULL*/) {
@ -90,9 +91,13 @@ void CardReader::lsDive(const char *prepend, SdFile parent, const char * const m
// Serial.print(path);
// Get a new directory object using the full path
// and dive recursively into it.
if (lsAction == LS_SerialPrint_LFN)
printf_P(PSTR("DIR_ENTER: %s \"%s\"\n"), path, longFilename[0] ? longFilename : lfilename);
SdFile dir;
if (!dir.open(parent, lfilename, O_READ)) {
if (lsAction == LS_SerialPrint) {
if (lsAction == LS_SerialPrint || lsAction == LS_SerialPrint_LFN) {
//SERIAL_ECHO_START();
//SERIAL_ECHOPGM(_i("Cannot open subdir"));////MSG_SD_CANT_OPEN_SUBDIR
//SERIAL_ECHOLN(lfilename);
@ -100,6 +105,9 @@ void CardReader::lsDive(const char *prepend, SdFile parent, const char * const m
}
lsDive(path, dir);
// close() is done automatically by destructor of SdFile
if (lsAction == LS_SerialPrint_LFN)
puts_P(PSTR("DIR_EXIT"));
}
else {
uint8_t pn0 = p.name[0];
@ -114,12 +122,18 @@ void CardReader::lsDive(const char *prepend, SdFile parent, const char * const m
nrFiles++;
break;
case LS_SerialPrint_LFN:
case LS_SerialPrint:
createFilename(filename, p);
SERIAL_PROTOCOL(prepend);
SERIAL_PROTOCOL(filename);
MYSERIAL.write(' ');
if (lsAction == LS_SerialPrint_LFN)
printf_P(PSTR("\"%s\" "), LONGEST_FILENAME);
SERIAL_PROTOCOLLN(p.fileSize);
manage_heater();
break;
case LS_GetFilename:
@ -160,9 +174,9 @@ void CardReader::lsDive(const char *prepend, SdFile parent, const char * const m
} // while readDir
}
void CardReader::ls()
void CardReader::ls(bool printLFN)
{
lsAction=LS_SerialPrint;
lsAction = printLFN ? LS_SerialPrint_LFN : LS_SerialPrint;
//if(lsAction==LS_Count)
//nrFiles=0;

View File

@ -6,7 +6,7 @@
#define MAX_DIR_DEPTH 10
#include "SdFile.h"
enum LsAction {LS_SerialPrint,LS_Count,LS_GetFilename};
enum LsAction {LS_SerialPrint,LS_SerialPrint_LFN,LS_Count,LS_GetFilename};
class CardReader
{
public:
@ -38,7 +38,7 @@ public:
uint16_t getWorkDirDepth();
void ls();
void ls(bool printLFN);
void chdir(const char * relpath);
void updir();
void setroot();

View File

@ -242,9 +242,11 @@ static_assert(sizeof(Sheets) == EEPROM_SHEETS_SIZEOF, "Sizeof(Sheets) is not EEP
| ^ | ^ | ^ | 00h 0 | ^ | Check mode for nozzle is: __none__ | ^ | ^
| 0x0DA7 3495 | uint8 | EEPROM_NOZZLE_DIAMETER | 28h 40 | ffh 255 | Nozzle diameter is: __40 or 0.40mm__ | LCD menu | D3 Ax0da7 C1
| ^ | ^ | ^ | 3ch 60 | ^ | Nozzle diameter is: __60 or 0.60mm__ | ^ | ^
| ^ | ^ | ^ | 3ch 80 | ^ | Nozzle diameter is: __80 or 0.80mm__ | ^ | ^
| ^ | ^ | ^ | 19h 25 | ^ | Nozzle diameter is: __25 or 0.25mm__ | ^ | ^
| 0x0DA5 3493 | uint16 | EEPROM_NOZZLE_DIAMETER_uM | 9001h | ff ffh 65535 | Nozzle diameter is: __400um__ | LCD menu | D3 Ax0da5 C2
| ^ | ^ | ^ | 5802h | ^ | Nozzle diameter is: __600um__ | ^ | ^
| ^ | ^ | ^ | 2003h | ^ | Nozzle diameter is: __800um__ | ^ | ^
| ^ | ^ | ^ | fa00h | ^ | Nozzle diameter is: __250um__ | ^ | ^
| 0x0DA4 3492 | uint8 | EEPROM_CHECK_MODEL | 01h 1 | ffh 255 | Check mode for printer model is: __warn__ | LCD menu | D3 Ax0da4 C1
| ^ | ^ | ^ | 02h 0 | ^ | Check mode for printer model is: __strict__ | ^ | ^

View File

@ -129,11 +129,15 @@ void sm4_set_dir_bits(uint8_t dir_bits)
void sm4_do_step(uint8_t axes_mask)
{
#if ((MOTHERBOARD == BOARD_RAMBO_MINI_1_0) || (MOTHERBOARD == BOARD_RAMBO_MINI_1_3) || (MOTHERBOARD == BOARD_EINSY_1_0a))
#ifdef TMC2130_DEDGE_STEPPING
PINC = (axes_mask & 0x0f); // toggle step signals by mask
#else
register uint8_t portC = PORTC & 0xf0;
PORTC = portC | (axes_mask & 0x0f); //set step signals by mask
asm("nop");
PORTC = portC; //set step signals to zero
asm("nop");
#endif
#endif //((MOTHERBOARD == BOARD_RAMBO_MINI_1_0) || (MOTHERBOARD == BOARD_RAMBO_MINI_1_3) || (MOTHERBOARD == BOARD_EINSY_1_0a))
}

View File

@ -1,57 +1,57 @@
//sm4.h - simple 4-axis stepper control
#ifndef _SM4_H
#define _SM4_H
#include <inttypes.h>
#include "config.h"
#if defined(__cplusplus)
extern "C" {
#endif //defined(__cplusplus)
// callback prototype for stop condition (return 0 - continue, return 1 - stop)
typedef uint8_t (*sm4_stop_cb_t)();
// callback prototype for updating position counters
typedef void (*sm4_update_pos_cb_t)(uint16_t dx, uint16_t dy, uint16_t dz, uint16_t de);
// callback prototype for calculating delay
typedef uint16_t (*sm4_calc_delay_cb_t)(uint16_t nd, uint16_t dd);
// callback pointer - stop
extern sm4_stop_cb_t sm4_stop_cb;
// callback pointer - update_pos
extern sm4_update_pos_cb_t sm4_update_pos_cb;
// callback pointer - calc_delay
extern sm4_calc_delay_cb_t sm4_calc_delay_cb;
// returns direction for single axis (0 - positive, 1 - negative)
extern uint8_t sm4_get_dir(uint8_t axis);
// set direction for single axis (0 - positive, 1 - negative)
extern void sm4_set_dir(uint8_t axis, uint8_t dir);
// returns direction of all axes as bitmask (0 - positive, 1 - negative)
extern uint8_t sm4_get_dir_bits(void);
// set direction for all axes as bitmask (0 - positive, 1 - negative)
extern void sm4_set_dir_bits(uint8_t dir_bits);
// step axes by bitmask
extern void sm4_do_step(uint8_t axes_mask);
// xyze linear-interpolated relative move, returns remaining diagonal steps (>0 means stoped)
extern uint16_t sm4_line_xyze_ui(uint16_t dx, uint16_t dy, uint16_t dz, uint16_t de);
extern uint16_t sm4_line_xyz_ui(uint16_t dx, uint16_t dy, uint16_t dz);
#if defined(__cplusplus)
}
#endif //defined(__cplusplus)
#endif //_SM4_H
//sm4.h - simple 4-axis stepper control
#ifndef _SM4_H
#define _SM4_H
#include <inttypes.h>
#include "config.h"
#if defined(__cplusplus)
extern "C" {
#endif //defined(__cplusplus)
// callback prototype for stop condition (return 0 - continue, return 1 - stop)
typedef uint8_t (*sm4_stop_cb_t)();
// callback prototype for updating position counters
typedef void (*sm4_update_pos_cb_t)(uint16_t dx, uint16_t dy, uint16_t dz, uint16_t de);
// callback prototype for calculating delay
typedef uint16_t (*sm4_calc_delay_cb_t)(uint16_t nd, uint16_t dd);
// callback pointer - stop
extern sm4_stop_cb_t sm4_stop_cb;
// callback pointer - update_pos
extern sm4_update_pos_cb_t sm4_update_pos_cb;
// callback pointer - calc_delay
extern sm4_calc_delay_cb_t sm4_calc_delay_cb;
// returns direction for single axis (0 - positive, 1 - negative)
extern uint8_t sm4_get_dir(uint8_t axis);
// set direction for single axis (0 - positive, 1 - negative)
extern void sm4_set_dir(uint8_t axis, uint8_t dir);
// returns direction of all axes as bitmask (0 - positive, 1 - negative)
extern uint8_t sm4_get_dir_bits(void);
// set direction for all axes as bitmask (0 - positive, 1 - negative)
extern void sm4_set_dir_bits(uint8_t dir_bits);
// step axes by bitmask
extern void sm4_do_step(uint8_t axes_mask);
// xyze linear-interpolated relative move, returns remaining diagonal steps (>0 means stoped)
extern uint16_t sm4_line_xyze_ui(uint16_t dx, uint16_t dy, uint16_t dz, uint16_t de);
extern uint16_t sm4_line_xyz_ui(uint16_t dx, uint16_t dy, uint16_t dz);
#if defined(__cplusplus)
}
#endif //defined(__cplusplus)
#endif //_SM4_H

View File

@ -48,6 +48,62 @@ int fsensor_counter; //counter for e-steps
uint16_t SP_min = 0x21FF;
#endif //DEBUG_STACK_MONITOR
/*
* Stepping macros
*/
#define _STEP_PIN_X_AXIS X_STEP_PIN
#define _STEP_PIN_Y_AXIS Y_STEP_PIN
#define _STEP_PIN_Z_AXIS Z_STEP_PIN
#define _STEP_PIN_E_AXIS E0_STEP_PIN
#ifdef DEBUG_XSTEP_DUP_PIN
#define _STEP_PIN_X_DUP_AXIS DEBUG_XSTEP_DUP_PIN
#endif
#ifdef DEBUG_YSTEP_DUP_PIN
#define _STEP_PIN_Y_DUP_AXIS DEBUG_YSTEP_DUP_PIN
#endif
#ifdef Y_DUAL_STEPPER_DRIVERS
#error Y_DUAL_STEPPER_DRIVERS not fully implemented
#define _STEP_PIN_Y2_AXIS Y2_STEP_PIN
#endif
#ifdef Z_DUAL_STEPPER_DRIVERS
#error Z_DUAL_STEPPER_DRIVERS not fully implemented
#define _STEP_PIN_Z2_AXIS Z2_STEP_PIN
#endif
#ifdef TMC2130
#define STEPPER_MINIMUM_PULSE TMC2130_MINIMUM_PULSE
#define STEPPER_SET_DIR_DELAY TMC2130_SET_DIR_DELAY
#define STEPPER_MINIMUM_DELAY TMC2130_MINIMUM_DELAY
#else
#define STEPPER_MINIMUM_PULSE 2
#define STEPPER_SET_DIR_DELAY 100
#define STEPPER_MINIMUM_DELAY delayMicroseconds(STEPPER_MINIMUM_PULSE)
#endif
#ifdef TMC2130_DEDGE_STEPPING
static_assert(TMC2130_MINIMUM_DELAY 1, // this will fail to compile when non-empty
"DEDGE implies/requires an empty TMC2130_MINIMUM_DELAY");
#define STEP_NC_HI(axis) TOGGLE(_STEP_PIN_##axis)
#define STEP_NC_LO(axis) //NOP
#else
#define _STEP_HI_X_AXIS !INVERT_X_STEP_PIN
#define _STEP_LO_X_AXIS INVERT_X_STEP_PIN
#define _STEP_HI_Y_AXIS !INVERT_Y_STEP_PIN
#define _STEP_LO_Y_AXIS INVERT_Y_STEP_PIN
#define _STEP_HI_Z_AXIS !INVERT_Z_STEP_PIN
#define _STEP_LO_Z_AXIS INVERT_Z_STEP_PIN
#define _STEP_HI_E_AXIS !INVERT_E_STEP_PIN
#define _STEP_LO_E_AXIS INVERT_E_STEP_PIN
#define STEP_NC_HI(axis) WRITE_NC(_STEP_PIN_##axis, _STEP_HI_##axis)
#define STEP_NC_LO(axis) WRITE_NC(_STEP_PIN_##axis, _STEP_LO_##axis)
#endif //TMC2130_DEDGE_STEPPING
//===========================================================================
//=============================public variables ============================
//===========================================================================
@ -296,13 +352,13 @@ FORCE_INLINE void stepper_next_block()
WRITE_NC(X_DIR_PIN, INVERT_X_DIR);
else
WRITE_NC(X_DIR_PIN, !INVERT_X_DIR);
_delay_us(100);
delayMicroseconds(STEPPER_SET_DIR_DELAY);
for (uint8_t i = 0; i < st_backlash_x; i++)
{
WRITE_NC(X_STEP_PIN, !INVERT_X_STEP_PIN);
_delay_us(100);
WRITE_NC(X_STEP_PIN, INVERT_X_STEP_PIN);
_delay_us(900);
STEP_NC_HI(X_AXIS);
STEPPER_MINIMUM_DELAY;
STEP_NC_LO(X_AXIS);
_delay_us(900); // hard-coded jerk! *bad*
}
}
last_dir_bits &= ~1;
@ -319,13 +375,13 @@ FORCE_INLINE void stepper_next_block()
WRITE_NC(Y_DIR_PIN, INVERT_Y_DIR);
else
WRITE_NC(Y_DIR_PIN, !INVERT_Y_DIR);
_delay_us(100);
delayMicroseconds(STEPPER_SET_DIR_DELAY);
for (uint8_t i = 0; i < st_backlash_y; i++)
{
WRITE_NC(Y_STEP_PIN, !INVERT_Y_STEP_PIN);
_delay_us(100);
WRITE_NC(Y_STEP_PIN, INVERT_Y_STEP_PIN);
_delay_us(900);
STEP_NC_HI(Y_AXIS);
STEPPER_MINIMUM_DELAY;
STEP_NC_LO(Y_AXIS);
_delay_us(900); // hard-coded jerk! *bad*
}
}
last_dir_bits &= ~2;
@ -603,44 +659,44 @@ FORCE_INLINE void stepper_tick_lowres()
// Step in X axis
counter_x.lo += current_block->steps_x.lo;
if (counter_x.lo > 0) {
WRITE_NC(X_STEP_PIN, !INVERT_X_STEP_PIN);
STEP_NC_HI(X_AXIS);
#ifdef DEBUG_XSTEP_DUP_PIN
WRITE_NC(DEBUG_XSTEP_DUP_PIN,!INVERT_X_STEP_PIN);
STEP_NC_HI(X_DUP_AXIS);
#endif //DEBUG_XSTEP_DUP_PIN
counter_x.lo -= current_block->step_event_count.lo;
count_position[X_AXIS]+=count_direction[X_AXIS];
WRITE_NC(X_STEP_PIN, INVERT_X_STEP_PIN);
STEP_NC_LO(X_AXIS);
#ifdef DEBUG_XSTEP_DUP_PIN
WRITE_NC(DEBUG_XSTEP_DUP_PIN,INVERT_X_STEP_PIN);
STEP_NC_LO(X_DUP_AXIS);
#endif //DEBUG_XSTEP_DUP_PIN
}
// Step in Y axis
counter_y.lo += current_block->steps_y.lo;
if (counter_y.lo > 0) {
WRITE_NC(Y_STEP_PIN, !INVERT_Y_STEP_PIN);
STEP_NC_HI(Y_AXIS);
#ifdef DEBUG_YSTEP_DUP_PIN
WRITE_NC(DEBUG_YSTEP_DUP_PIN,!INVERT_Y_STEP_PIN);
STEP_NC_HI(Y_DUP_AXIS);
#endif //DEBUG_YSTEP_DUP_PIN
counter_y.lo -= current_block->step_event_count.lo;
count_position[Y_AXIS]+=count_direction[Y_AXIS];
WRITE_NC(Y_STEP_PIN, INVERT_Y_STEP_PIN);
STEP_NC_LO(Y_AXIS);
#ifdef DEBUG_YSTEP_DUP_PIN
WRITE_NC(DEBUG_YSTEP_DUP_PIN,INVERT_Y_STEP_PIN);
STEP_NC_LO(Y_DUP_AXIS);
#endif //DEBUG_YSTEP_DUP_PIN
}
// Step in Z axis
counter_z.lo += current_block->steps_z.lo;
if (counter_z.lo > 0) {
WRITE_NC(Z_STEP_PIN, !INVERT_Z_STEP_PIN);
STEP_NC_HI(Z_AXIS);
counter_z.lo -= current_block->step_event_count.lo;
count_position[Z_AXIS]+=count_direction[Z_AXIS];
WRITE_NC(Z_STEP_PIN, INVERT_Z_STEP_PIN);
STEP_NC_LO(Z_AXIS);
}
// Step in E axis
counter_e.lo += current_block->steps_e.lo;
if (counter_e.lo > 0) {
#ifndef LIN_ADVANCE
WRITE(E0_STEP_PIN, !INVERT_E_STEP_PIN);
STEP_NC_HI(E_AXIS);
#endif /* LIN_ADVANCE */
counter_e.lo -= current_block->step_event_count.lo;
count_position[E_AXIS] += count_direction[E_AXIS];
@ -650,7 +706,7 @@ FORCE_INLINE void stepper_tick_lowres()
#ifdef FILAMENT_SENSOR
fsensor_counter += count_direction[E_AXIS];
#endif //FILAMENT_SENSOR
WRITE(E0_STEP_PIN, INVERT_E_STEP_PIN);
STEP_NC_LO(E_AXIS);
#endif
}
if(++ step_events_completed.lo >= current_block->step_event_count.lo)
@ -665,44 +721,44 @@ FORCE_INLINE void stepper_tick_highres()
// Step in X axis
counter_x.wide += current_block->steps_x.wide;
if (counter_x.wide > 0) {
WRITE_NC(X_STEP_PIN, !INVERT_X_STEP_PIN);
STEP_NC_HI(X_AXIS);
#ifdef DEBUG_XSTEP_DUP_PIN
WRITE_NC(DEBUG_XSTEP_DUP_PIN,!INVERT_X_STEP_PIN);
STEP_NC_HI(X_DUP_AXIS);
#endif //DEBUG_XSTEP_DUP_PIN
counter_x.wide -= current_block->step_event_count.wide;
count_position[X_AXIS]+=count_direction[X_AXIS];
WRITE_NC(X_STEP_PIN, INVERT_X_STEP_PIN);
STEP_NC_LO(X_AXIS);
#ifdef DEBUG_XSTEP_DUP_PIN
WRITE_NC(DEBUG_XSTEP_DUP_PIN,INVERT_X_STEP_PIN);
STEP_NC_LO(X_DUP_AXIS);
#endif //DEBUG_XSTEP_DUP_PIN
}
// Step in Y axis
counter_y.wide += current_block->steps_y.wide;
if (counter_y.wide > 0) {
WRITE_NC(Y_STEP_PIN, !INVERT_Y_STEP_PIN);
STEP_NC_HI(Y_AXIS);
#ifdef DEBUG_YSTEP_DUP_PIN
WRITE_NC(DEBUG_YSTEP_DUP_PIN,!INVERT_Y_STEP_PIN);
STEP_NC_HI(Y_DUP_AXIS);
#endif //DEBUG_YSTEP_DUP_PIN
counter_y.wide -= current_block->step_event_count.wide;
count_position[Y_AXIS]+=count_direction[Y_AXIS];
WRITE_NC(Y_STEP_PIN, INVERT_Y_STEP_PIN);
STEP_NC_LO(Y_AXIS);
#ifdef DEBUG_YSTEP_DUP_PIN
WRITE_NC(DEBUG_YSTEP_DUP_PIN,INVERT_Y_STEP_PIN);
STEP_NC_LO(Y_DUP_AXIS);
#endif //DEBUG_YSTEP_DUP_PIN
}
// Step in Z axis
counter_z.wide += current_block->steps_z.wide;
if (counter_z.wide > 0) {
WRITE_NC(Z_STEP_PIN, !INVERT_Z_STEP_PIN);
STEP_NC_HI(Z_AXIS);
counter_z.wide -= current_block->step_event_count.wide;
count_position[Z_AXIS]+=count_direction[Z_AXIS];
WRITE_NC(Z_STEP_PIN, INVERT_Z_STEP_PIN);
STEP_NC_LO(Z_AXIS);
}
// Step in E axis
counter_e.wide += current_block->steps_e.wide;
if (counter_e.wide > 0) {
#ifndef LIN_ADVANCE
WRITE(E0_STEP_PIN, !INVERT_E_STEP_PIN);
STEP_NC_HI(E_AXIS);
#endif /* LIN_ADVANCE */
counter_e.wide -= current_block->step_event_count.wide;
count_position[E_AXIS]+=count_direction[E_AXIS];
@ -712,7 +768,7 @@ FORCE_INLINE void stepper_tick_highres()
#ifdef FILAMENT_SENSOR
fsensor_counter += count_direction[E_AXIS];
#endif //FILAMENT_SENSOR
WRITE(E0_STEP_PIN, INVERT_E_STEP_PIN);
STEP_NC_LO(E_AXIS);
#endif
}
if(++ step_events_completed.wide >= current_block->step_event_count.wide)
@ -1014,9 +1070,9 @@ FORCE_INLINE void advance_isr_scheduler() {
bool rev = (e_steps < 0);
do
{
WRITE_NC(E0_STEP_PIN, !INVERT_E_STEP_PIN);
STEP_NC_HI(E_AXIS);
e_steps += (rev? 1: -1);
WRITE_NC(E0_STEP_PIN, INVERT_E_STEP_PIN);
STEP_NC_LO(E_AXIS);
#if defined(FILAMENT_SENSOR) && defined(PAT9125)
fsensor_counter += (rev? -1: 1);
#endif
@ -1389,89 +1445,106 @@ void quickStop()
#ifdef BABYSTEPPING
void babystep(const uint8_t axis,const bool direction)
{
//MUST ONLY BE CALLED BY A ISR, it depends on that no other ISR interrupts this
//store initial pin states
switch(axis)
{
case X_AXIS:
{
enable_x();
uint8_t old_x_dir_pin= READ(X_DIR_PIN); //if dualzstepper, both point to same direction.
//setup new step
WRITE(X_DIR_PIN,(INVERT_X_DIR)^direction);
//perform step
WRITE(X_STEP_PIN, !INVERT_X_STEP_PIN);
// MUST ONLY BE CALLED BY A ISR as stepper pins are manipulated directly.
// note: when switching direction no delay is inserted at the end when the
// original is restored. We assume enough time passes as the function
// returns and the stepper is manipulated again (to avoid dead times)
switch(axis)
{
case X_AXIS:
{
enable_x();
uint8_t old_x_dir_pin = READ(X_DIR_PIN); //if dualzstepper, both point to same direction.
uint8_t new_x_dir_pin = (INVERT_X_DIR)^direction;
//setup new step
if (new_x_dir_pin != old_x_dir_pin) {
WRITE_NC(X_DIR_PIN, new_x_dir_pin);
delayMicroseconds(STEPPER_SET_DIR_DELAY);
}
//perform step
STEP_NC_HI(X_AXIS);
#ifdef DEBUG_XSTEP_DUP_PIN
WRITE(DEBUG_XSTEP_DUP_PIN,!INVERT_X_STEP_PIN);
#endif //DEBUG_XSTEP_DUP_PIN
delayMicroseconds(1);
WRITE(X_STEP_PIN, INVERT_X_STEP_PIN);
STEP_NC_HI(X_DUP_AXIS);
#endif
STEPPER_MINIMUM_DELAY;
STEP_NC_LO(X_AXIS);
#ifdef DEBUG_XSTEP_DUP_PIN
WRITE(DEBUG_XSTEP_DUP_PIN,INVERT_X_STEP_PIN);
#endif //DEBUG_XSTEP_DUP_PIN
STEP_NC_LO(X_DUP_AXIS);
#endif
//get old pin state back.
WRITE(X_DIR_PIN,old_x_dir_pin);
}
break;
case Y_AXIS:
{
enable_y();
uint8_t old_y_dir_pin= READ(Y_DIR_PIN); //if dualzstepper, both point to same direction.
//setup new step
WRITE(Y_DIR_PIN,(INVERT_Y_DIR)^direction);
//perform step
WRITE(Y_STEP_PIN, !INVERT_Y_STEP_PIN);
//get old pin state back.
WRITE_NC(X_DIR_PIN, old_x_dir_pin);
}
break;
case Y_AXIS:
{
enable_y();
uint8_t old_y_dir_pin = READ(Y_DIR_PIN); //if dualzstepper, both point to same direction.
uint8_t new_y_dir_pin = (INVERT_Y_DIR)^direction;
//setup new step
if (new_y_dir_pin != old_y_dir_pin) {
WRITE_NC(Y_DIR_PIN, new_y_dir_pin);
delayMicroseconds(STEPPER_SET_DIR_DELAY);
}
//perform step
STEP_NC_HI(Y_AXIS);
#ifdef DEBUG_YSTEP_DUP_PIN
WRITE(DEBUG_YSTEP_DUP_PIN,!INVERT_Y_STEP_PIN);
#endif //DEBUG_YSTEP_DUP_PIN
delayMicroseconds(1);
WRITE(Y_STEP_PIN, INVERT_Y_STEP_PIN);
STEP_NC_HI(Y_DUP_AXIS);
#endif
STEPPER_MINIMUM_DELAY;
STEP_NC_LO(Y_AXIS);
#ifdef DEBUG_YSTEP_DUP_PIN
WRITE(DEBUG_YSTEP_DUP_PIN,INVERT_Y_STEP_PIN);
#endif //DEBUG_YSTEP_DUP_PIN
STEP_NC_LO(Y_DUP_AXIS);
#endif
//get old pin state back.
WRITE(Y_DIR_PIN,old_y_dir_pin);
//get old pin state back.
WRITE_NC(Y_DIR_PIN, old_y_dir_pin);
}
break;
}
break;
case Z_AXIS:
{
enable_z();
uint8_t old_z_dir_pin= READ(Z_DIR_PIN); //if dualzstepper, both point to same direction.
//setup new step
WRITE(Z_DIR_PIN,(INVERT_Z_DIR)^direction^BABYSTEP_INVERT_Z);
#ifdef Z_DUAL_STEPPER_DRIVERS
WRITE(Z2_DIR_PIN,(INVERT_Z_DIR)^direction^BABYSTEP_INVERT_Z);
#endif
//perform step
WRITE(Z_STEP_PIN, !INVERT_Z_STEP_PIN);
#ifdef Z_DUAL_STEPPER_DRIVERS
WRITE(Z2_STEP_PIN, !INVERT_Z_STEP_PIN);
#endif
delayMicroseconds(1);
WRITE(Z_STEP_PIN, INVERT_Z_STEP_PIN);
#ifdef Z_DUAL_STEPPER_DRIVERS
WRITE(Z2_STEP_PIN, INVERT_Z_STEP_PIN);
#endif
case Z_AXIS:
{
enable_z();
uint8_t old_z_dir_pin = READ(Z_DIR_PIN); //if dualzstepper, both point to same direction.
uint8_t new_z_dir_pin = (INVERT_Z_DIR)^direction^BABYSTEP_INVERT_Z;
//get old pin state back.
WRITE(Z_DIR_PIN,old_z_dir_pin);
#ifdef Z_DUAL_STEPPER_DRIVERS
WRITE(Z2_DIR_PIN,old_z_dir_pin);
#endif
//setup new step
if (new_z_dir_pin != old_z_dir_pin) {
WRITE_NC(Z_DIR_PIN, new_z_dir_pin);
#ifdef Z_DUAL_STEPPER_DRIVERS
WRITE_NC(Z2_DIR_PIN, new_z_dir_pin);
#endif
delayMicroseconds(STEPPER_SET_DIR_DELAY);
}
}
break;
default: break;
}
//perform step
STEP_NC_HI(Z_AXIS);
#ifdef Z_DUAL_STEPPER_DRIVERS
STEP_NC_HI(Z2_AXIS);
#endif
STEPPER_MINIMUM_DELAY;
STEP_NC_LO(Z_AXIS);
#ifdef Z_DUAL_STEPPER_DRIVERS
STEP_NC_LO(Z2_AXIS);
#endif
//get old pin state back.
if (new_z_dir_pin != old_z_dir_pin) {
WRITE_NC(Z_DIR_PIN, old_z_dir_pin);
#ifdef Z_DUAL_STEPPER_DRIVERS
WRITE_NC(Z2_DIR_PIN, old_z_dir_pin);
#endif
}
}
break;
default: break;
}
}
#endif //BABYSTEPPING

View File

@ -428,6 +428,11 @@ void tmc2130_check_overtemp()
void tmc2130_setup_chopper(uint8_t axis, uint8_t mres, uint8_t current_h, uint8_t current_r)
{
uint8_t intpol = (mres != 0); // intpol to 256 only if microsteps aren't 256
#ifdef TMC2130_DEDGE_STEPPING
uint8_t dedge = 1;
#else
uint8_t dedge = 0;
#endif
uint8_t toff = tmc2130_chopper_config[axis].toff; // toff = 3 (fchop = 27.778kHz)
uint8_t hstrt = tmc2130_chopper_config[axis].hstr; //initial 4, modified to 5
uint8_t hend = tmc2130_chopper_config[axis].hend; //original value = 1
@ -437,6 +442,9 @@ void tmc2130_setup_chopper(uint8_t axis, uint8_t mres, uint8_t current_h, uint8_
uint8_t tbl = tmc2130_chopper_config[axis].tbl; //blanking time, original value = 2
if (axis == E_AXIS)
{
#if defined(TMC2130_INTPOL_E) && (TMC2130_INTPOL_E == 0)
intpol = 0;
#endif
#ifdef TMC2130_CNSTOFF_E
// fd = 0 (slow decay only)
hstrt = 0; //fd0..2
@ -447,16 +455,26 @@ void tmc2130_setup_chopper(uint8_t axis, uint8_t mres, uint8_t current_h, uint8_
// toff = TMC2130_TOFF_E; // toff = 3-5
// rndtf = 1;
}
#if defined(TMC2130_INTPOL_XY) && (TMC2130_INTPOL_XY == 0)
else if (axis == X_AXIS || axis == Y_AXIS) {
intpol = 0;
}
#endif
#if defined(TMC2130_INTPOL_Z) && (TMC2130_INTPOL_Z == 0)
else if (axis == Z_AXIS) {
intpol = 0;
}
#endif
// DBG(_n("tmc2130_setup_chopper(axis=%hhd, mres=%hhd, curh=%hhd, curr=%hhd\n"), axis, mres, current_h, current_r);
// DBG(_n(" toff=%hhd, hstr=%hhd, hend=%hhd, tbl=%hhd\n"), toff, hstrt, hend, tbl);
if (current_r <= 31)
{
tmc2130_wr_CHOPCONF(axis, toff, hstrt, hend, fd3, 0, rndtf, chm, tbl, 1, 0, 0, 0, mres, intpol, 0, 0);
tmc2130_wr_CHOPCONF(axis, toff, hstrt, hend, fd3, 0, rndtf, chm, tbl, 1, 0, 0, 0, mres, intpol, dedge, 0);
tmc2130_wr(axis, TMC2130_REG_IHOLD_IRUN, 0x000f0000 | ((current_r & 0x1f) << 8) | (current_h & 0x1f));
}
else
{
tmc2130_wr_CHOPCONF(axis, toff, hstrt, hend, fd3, 0, rndtf, chm, tbl, 0, 0, 0, 0, mres, intpol, 0, 0);
tmc2130_wr_CHOPCONF(axis, toff, hstrt, hend, fd3, 0, rndtf, chm, tbl, 0, 0, 0, 0, mres, intpol, dedge, 0);
tmc2130_wr(axis, TMC2130_REG_IHOLD_IRUN, 0x000f0000 | (((current_r >> 1) & 0x1f) << 8) | ((current_h >> 1) & 0x1f));
}
}
@ -678,25 +696,32 @@ static uint8_t tmc2130_rx(uint8_t axis, uint8_t addr, uint32_t* rval)
#define _GET_PWR_Z (READ(Z_ENABLE_PIN) == Z_ENABLE_ON)
#define _GET_PWR_E (READ(E0_ENABLE_PIN) == E_ENABLE_ON)
#define _SET_PWR_X(ena) { WRITE(X_ENABLE_PIN, ena?X_ENABLE_ON:!X_ENABLE_ON); asm("nop"); }
#define _SET_PWR_Y(ena) { WRITE(Y_ENABLE_PIN, ena?Y_ENABLE_ON:!Y_ENABLE_ON); asm("nop"); }
#define _SET_PWR_Z(ena) { WRITE(Z_ENABLE_PIN, ena?Z_ENABLE_ON:!Z_ENABLE_ON); asm("nop"); }
#define _SET_PWR_E(ena) { WRITE(E0_ENABLE_PIN, ena?E_ENABLE_ON:!E_ENABLE_ON); asm("nop"); }
#define _SET_PWR_X(ena) WRITE(X_ENABLE_PIN, ena?X_ENABLE_ON:!X_ENABLE_ON)
#define _SET_PWR_Y(ena) WRITE(Y_ENABLE_PIN, ena?Y_ENABLE_ON:!Y_ENABLE_ON)
#define _SET_PWR_Z(ena) WRITE(Z_ENABLE_PIN, ena?Z_ENABLE_ON:!Z_ENABLE_ON)
#define _SET_PWR_E(ena) WRITE(E0_ENABLE_PIN, ena?E_ENABLE_ON:!E_ENABLE_ON)
#define _GET_DIR_X (READ(X_DIR_PIN) == INVERT_X_DIR)
#define _GET_DIR_Y (READ(Y_DIR_PIN) == INVERT_Y_DIR)
#define _GET_DIR_Z (READ(Z_DIR_PIN) == INVERT_Z_DIR)
#define _GET_DIR_E (READ(E0_DIR_PIN) == INVERT_E0_DIR)
#define _SET_DIR_X(dir) { WRITE(X_DIR_PIN, dir?INVERT_X_DIR:!INVERT_X_DIR); asm("nop"); }
#define _SET_DIR_Y(dir) { WRITE(Y_DIR_PIN, dir?INVERT_Y_DIR:!INVERT_Y_DIR); asm("nop"); }
#define _SET_DIR_Z(dir) { WRITE(Z_DIR_PIN, dir?INVERT_Z_DIR:!INVERT_Z_DIR); asm("nop"); }
#define _SET_DIR_E(dir) { WRITE(E0_DIR_PIN, dir?INVERT_E0_DIR:!INVERT_E0_DIR); asm("nop"); }
#define _SET_DIR_X(dir) WRITE(X_DIR_PIN, dir?INVERT_X_DIR:!INVERT_X_DIR)
#define _SET_DIR_Y(dir) WRITE(Y_DIR_PIN, dir?INVERT_Y_DIR:!INVERT_Y_DIR)
#define _SET_DIR_Z(dir) WRITE(Z_DIR_PIN, dir?INVERT_Z_DIR:!INVERT_Z_DIR)
#define _SET_DIR_E(dir) WRITE(E0_DIR_PIN, dir?INVERT_E0_DIR:!INVERT_E0_DIR)
#define _DO_STEP_X { WRITE(X_STEP_PIN, !INVERT_X_STEP_PIN); asm("nop"); WRITE(X_STEP_PIN, INVERT_X_STEP_PIN); asm("nop"); }
#define _DO_STEP_Y { WRITE(Y_STEP_PIN, !INVERT_Y_STEP_PIN); asm("nop"); WRITE(Y_STEP_PIN, INVERT_Y_STEP_PIN); asm("nop"); }
#define _DO_STEP_Z { WRITE(Z_STEP_PIN, !INVERT_Z_STEP_PIN); asm("nop"); WRITE(Z_STEP_PIN, INVERT_Z_STEP_PIN); asm("nop"); }
#define _DO_STEP_E { WRITE(E0_STEP_PIN, !INVERT_E_STEP_PIN); asm("nop"); WRITE(E0_STEP_PIN, INVERT_E_STEP_PIN); asm("nop"); }
#ifdef TMC2130_DEDGE_STEPPING
#define _DO_STEP_X TOGGLE(X_STEP_PIN)
#define _DO_STEP_Y TOGGLE(Y_STEP_PIN)
#define _DO_STEP_Z TOGGLE(Z_STEP_PIN)
#define _DO_STEP_E TOGGLE(E0_STEP_PIN)
#else
#define _DO_STEP_X { WRITE(X_STEP_PIN, !INVERT_X_STEP_PIN); TMC2130_MINIMUM_DELAY; WRITE(X_STEP_PIN, INVERT_X_STEP_PIN); }
#define _DO_STEP_Y { WRITE(Y_STEP_PIN, !INVERT_Y_STEP_PIN); TMC2130_MINIMUM_DELAY; WRITE(Y_STEP_PIN, INVERT_Y_STEP_PIN); }
#define _DO_STEP_Z { WRITE(Z_STEP_PIN, !INVERT_Z_STEP_PIN); TMC2130_MINIMUM_DELAY; WRITE(Z_STEP_PIN, INVERT_Z_STEP_PIN); }
#define _DO_STEP_E { WRITE(E0_STEP_PIN, !INVERT_E_STEP_PIN); TMC2130_MINIMUM_DELAY; WRITE(E0_STEP_PIN, INVERT_E_STEP_PIN); }
#endif
uint16_t tmc2130_get_res(uint8_t axis)
@ -737,6 +762,7 @@ void tmc2130_set_pwr(uint8_t axis, uint8_t pwr)
case Z_AXIS: _SET_PWR_Z(pwr); break;
case E_AXIS: _SET_PWR_E(pwr); break;
}
delayMicroseconds(TMC2130_SET_PWR_DELAY);
}
uint8_t tmc2130_get_inv(uint8_t axis)
@ -773,6 +799,7 @@ void tmc2130_set_dir(uint8_t axis, uint8_t dir)
case Z_AXIS: _SET_DIR_Z(dir); break;
case E_AXIS: _SET_DIR_E(dir); break;
}
delayMicroseconds(TMC2130_SET_DIR_DELAY);
}
void tmc2130_do_step(uint8_t axis)
@ -788,8 +815,8 @@ void tmc2130_do_step(uint8_t axis)
void tmc2130_do_steps(uint8_t axis, uint16_t steps, uint8_t dir, uint16_t delay_us)
{
tmc2130_set_dir(axis, dir);
delayMicroseconds(100);
if (tmc2130_get_dir(axis) != dir)
tmc2130_set_dir(axis, dir);
while (steps--)
{
tmc2130_do_step(axis);
@ -820,7 +847,6 @@ void tmc2130_goto_step(uint8_t axis, uint8_t step, uint8_t dir, uint16_t delay_u
cnt = steps;
}
tmc2130_set_dir(axis, dir);
delayMicroseconds(100);
mscnt = tmc2130_rd_MSCNT(axis);
while ((cnt--) && ((mscnt >> shift) != step))
{

View File

@ -29,6 +29,18 @@ extern uint8_t tmc2130_sg_homing_axes_mask;
#define TMC2130_WAVE_FAC1000_MAX 200
#define TMC2130_WAVE_FAC1000_STP 1
#define TMC2130_MINIMUM_PULSE 0 // minimum pulse width in uS
#define TMC2130_SET_DIR_DELAY 20 // minimum delay after setting direction in uS
#define TMC2130_SET_PWR_DELAY 0 // minimum delay after changing pwr mode in uS
#ifdef TMC2130_DEDGE_STEPPING
#define TMC2130_MINIMUM_DELAY //NOP
#elif TMC2130_MINIMUM_PULSE == 0
#define TMC2130_MINIMUM_DELAY asm("nop")
#else
#define TMC2130_MINIMUM_DELAY delayMicroseconds(TMC2130_MINIMUM_PULSE)
#endif
extern uint8_t tmc2130_home_enabled;
extern uint8_t tmc2130_home_origin[2];
extern uint8_t tmc2130_home_bsteps[2];

View File

@ -2489,6 +2489,12 @@ static void mFilamentItem_FLEX()
mFilamentItem(FLEX_PREHEAT_HOTEND_TEMP, FLEX_PREHEAT_HPB_TEMP);
}
static void mFilamentItem_PVB()
{
bFilamentPreheatState = false;
mFilamentItem(PVB_PREHEAT_HOTEND_TEMP, PVB_PREHEAT_HPB_TEMP);
}
void mFilamentBack()
{
menu_back();
@ -2525,6 +2531,7 @@ void lcd_generic_preheat_menu()
MENU_ITEM_SUBMENU_P(PSTR("PET - " STRINGIFY(PET_PREHEAT_HOTEND_TEMP) "/" STRINGIFY(PET_PREHEAT_HPB_TEMP)),mFilamentItem_PET);
MENU_ITEM_SUBMENU_P(PSTR("ASA - " STRINGIFY(ASA_PREHEAT_HOTEND_TEMP) "/" STRINGIFY(ASA_PREHEAT_HPB_TEMP)),mFilamentItem_ASA);
MENU_ITEM_SUBMENU_P(PSTR("PC - " STRINGIFY(PC_PREHEAT_HOTEND_TEMP) "/" STRINGIFY(PC_PREHEAT_HPB_TEMP)),mFilamentItem_PC);
MENU_ITEM_SUBMENU_P(PSTR("PVB - " STRINGIFY(PVB_PREHEAT_HOTEND_TEMP) "/" STRINGIFY(PVB_PREHEAT_HPB_TEMP)),mFilamentItem_PVB);
MENU_ITEM_SUBMENU_P(PSTR("ABS - " STRINGIFY(ABS_PREHEAT_HOTEND_TEMP) "/" STRINGIFY(ABS_PREHEAT_HPB_TEMP)),mFilamentItem_ABS);
MENU_ITEM_SUBMENU_P(PSTR("HIPS - " STRINGIFY(HIPS_PREHEAT_HOTEND_TEMP) "/" STRINGIFY(HIPS_PREHEAT_HPB_TEMP)),mFilamentItem_HIPS);
MENU_ITEM_SUBMENU_P(PSTR("PP - " STRINGIFY(PP_PREHEAT_HOTEND_TEMP) "/" STRINGIFY(PP_PREHEAT_HPB_TEMP)),mFilamentItem_PP);
@ -5388,30 +5395,31 @@ do\
}\
while (0)
static void lcd_nozzle_diameter_set(void)
{
uint16_t nDiameter;
switch(oNozzleDiameter)
{
case ClNozzleDiameter::_Diameter_250:
oNozzleDiameter=ClNozzleDiameter::_Diameter_400;
nDiameter=400;
break;
case ClNozzleDiameter::_Diameter_400:
oNozzleDiameter=ClNozzleDiameter::_Diameter_600;
nDiameter=600;
break;
case ClNozzleDiameter::_Diameter_600:
oNozzleDiameter=ClNozzleDiameter::_Diameter_250;
nDiameter=250;
break;
default:
oNozzleDiameter=ClNozzleDiameter::_Diameter_400;
nDiameter=400;
}
eeprom_update_byte((uint8_t*)EEPROM_NOZZLE_DIAMETER,(uint8_t)oNozzleDiameter);
eeprom_update_word((uint16_t*)EEPROM_NOZZLE_DIAMETER_uM,nDiameter);
static void lcd_nozzle_diameter_cycle(void) {
uint16_t nDiameter;
switch(oNozzleDiameter){
case ClNozzleDiameter::_Diameter_250:
oNozzleDiameter=ClNozzleDiameter::_Diameter_400;
nDiameter=400;
break;
case ClNozzleDiameter::_Diameter_400:
oNozzleDiameter=ClNozzleDiameter::_Diameter_600;
nDiameter=600;
break;
case ClNozzleDiameter::_Diameter_600:
oNozzleDiameter=ClNozzleDiameter::_Diameter_800;
nDiameter=800;
break;
case ClNozzleDiameter::_Diameter_800:
oNozzleDiameter=ClNozzleDiameter::_Diameter_250;
nDiameter=250;
break;
default:
oNozzleDiameter=ClNozzleDiameter::_Diameter_400;
nDiameter=400;
}
eeprom_update_byte((uint8_t*)EEPROM_NOZZLE_DIAMETER,(uint8_t)oNozzleDiameter);
eeprom_update_word((uint16_t*)EEPROM_NOZZLE_DIAMETER_uM,nDiameter);
}
#define SETTINGS_NOZZLE \
@ -5423,9 +5431,10 @@ do\
case ClNozzleDiameter::_Diameter_250: fNozzleDiam = 0.25f; break;\
case ClNozzleDiameter::_Diameter_400: fNozzleDiam = 0.4f; break;\
case ClNozzleDiameter::_Diameter_600: fNozzleDiam = 0.6f; break;\
case ClNozzleDiameter::_Diameter_800: fNozzleDiam = 0.8f; break;\
default: fNozzleDiam = 0.4f; break;\
}\
MENU_ITEM_TOGGLE(_T(MSG_NOZZLE_DIAMETER), ftostr12ns(fNozzleDiam), lcd_nozzle_diameter_set);\
MENU_ITEM_TOGGLE(_T(MSG_NOZZLE_DIAMETER), ftostr12ns(fNozzleDiam), lcd_nozzle_diameter_cycle);\
}\
while (0)
@ -6601,11 +6610,11 @@ static void lcd_main_menu()
if ( ( IS_SD_PRINTING || is_usb_printing || (lcd_commands_type == LcdCommands::Layer1Cal)) && (current_position[Z_AXIS] < Z_HEIGHT_HIDE_LIVE_ADJUST_MENU) && !homing_flag && !mesh_bed_leveling_flag)
{
if (farm_mode)
MENU_ITEM_FUNCTION_P(_T(MSG_FILAMENTCHANGE), lcd_colorprint_change);//8
MENU_ITEM_SUBMENU_P(_T(MSG_BABYSTEP_Z), lcd_babystep_z);//8
}
if (farm_mode)
MENU_ITEM_FUNCTION_P(_T(MSG_FILAMENTCHANGE), lcd_colorprint_change);//8
if ( moves_planned() || IS_SD_PRINTING || is_usb_printing || (lcd_commands_type == LcdCommands::Layer1Cal))
{

View File

@ -51,6 +51,7 @@ enum class ClNozzleDiameter:uint_least8_t
_Diameter_250=25,
_Diameter_400=40,
_Diameter_600=60,
_Diameter_800=80,
_Diameter_Undef=EEPROM_EMPTY_VALUE
};

View File

@ -326,6 +326,10 @@ PREHEAT SETTINGS
#define PLA_PREHEAT_HPB_TEMP 55
#define PLA_PREHEAT_FAN_SPEED 0
#define PVB_PREHEAT_HOTEND_TEMP 215
#define PVB_PREHEAT_HPB_TEMP 75
#define PVB_PREHEAT_FAN_SPEED 0
#define ASA_PREHEAT_HOTEND_TEMP 260
#define ASA_PREHEAT_HPB_TEMP 105
#define ASA_PREHEAT_FAN_SPEED 0

View File

@ -323,6 +323,9 @@ PREHEAT SETTINGS
#define PLA_PREHEAT_HOTEND_TEMP 215
#define PLA_PREHEAT_HPB_TEMP 55
#define PVB_PREHEAT_HOTEND_TEMP 215
#define PVB_PREHEAT_HPB_TEMP 75
#define ASA_PREHEAT_HOTEND_TEMP 260
#define ASA_PREHEAT_HPB_TEMP 105

View File

@ -384,6 +384,9 @@
#define PLA_PREHEAT_HOTEND_TEMP 215
#define PLA_PREHEAT_HPB_TEMP 60
#define PVB_PREHEAT_HOTEND_TEMP 215
#define PVB_PREHEAT_HPB_TEMP 75
#define ASA_PREHEAT_HOTEND_TEMP 260
#define ASA_PREHEAT_HPB_TEMP 105

View File

@ -385,6 +385,9 @@
#define PLA_PREHEAT_HOTEND_TEMP 215
#define PLA_PREHEAT_HPB_TEMP 60
#define PVB_PREHEAT_HOTEND_TEMP 215
#define PVB_PREHEAT_HPB_TEMP 75
#define ASA_PREHEAT_HOTEND_TEMP 260
#define ASA_PREHEAT_HPB_TEMP 105

View File

@ -384,6 +384,9 @@
#define PLA_PREHEAT_HOTEND_TEMP 215
#define PLA_PREHEAT_HPB_TEMP 60
#define PVB_PREHEAT_HOTEND_TEMP 215
#define PVB_PREHEAT_HPB_TEMP 75
#define ASA_PREHEAT_HOTEND_TEMP 260
#define ASA_PREHEAT_HPB_TEMP 105

View File

@ -385,6 +385,9 @@
#define PLA_PREHEAT_HOTEND_TEMP 215
#define PLA_PREHEAT_HPB_TEMP 60
#define PVB_PREHEAT_HOTEND_TEMP 215
#define PVB_PREHEAT_HPB_TEMP 75
#define ASA_PREHEAT_HOTEND_TEMP 260
#define ASA_PREHEAT_HPB_TEMP 105

View File

@ -268,6 +268,7 @@
#define TMC2130_CURRENTS_R_HOME {8, 10, 20, 18} // homing running currents for all axes
#define TMC2130_STEALTH_Z
#define TMC2130_DEDGE_STEPPING
//#define TMC2130_SERVICE_CODES_M910_M918
@ -497,6 +498,9 @@
#define PLA_PREHEAT_HOTEND_TEMP 215
#define PLA_PREHEAT_HPB_TEMP 60
#define PVB_PREHEAT_HOTEND_TEMP 215
#define PVB_PREHEAT_HPB_TEMP 75
#define ASA_PREHEAT_HOTEND_TEMP 260
#define ASA_PREHEAT_HPB_TEMP 105

View File

@ -270,6 +270,7 @@
#define TMC2130_CURRENTS_R_HOME {8, 10, 20, 18} // homing running currents for all axes
#define TMC2130_STEALTH_Z
#define TMC2130_DEDGE_STEPPING
//#define TMC2130_SERVICE_CODES_M910_M918
@ -501,6 +502,9 @@
#define PLA_PREHEAT_HOTEND_TEMP 215
#define PLA_PREHEAT_HPB_TEMP 60
#define PVB_PREHEAT_HOTEND_TEMP 215
#define PVB_PREHEAT_HPB_TEMP 75
#define ASA_PREHEAT_HOTEND_TEMP 260
#define ASA_PREHEAT_HPB_TEMP 105

View File

@ -56,7 +56,7 @@
# Some may argue that this is only used by a script, BUT as soon someone accidentally or on purpose starts Arduino IDE
# it will use the default Arduino IDE folders and so can corrupt the build environment.
#
# Version: 1.0.6-Build_33
# Version: 1.0.6-Build_36
# Change log:
# 12 Jan 2019, 3d-gussner, Fixed "compiler.c.elf.flags=-w -Os -Wl,-u,vfprintf -lprintf_flt -lm -Wl,--gc-sections" in 'platform.txt'
# 16 Jan 2019, 3d-gussner, Build_2, Added development check to modify 'Configuration.h' to prevent unwanted LCD messages that Firmware is unknown
@ -135,6 +135,7 @@
# Update exit numbers 1-13 for prepare build env 21-29 for prepare compiling 30-36 compiling
# 08 Jan 2021, 3d-gussner, Comment out 'sudo' auto installation
# Add '-?' '-h' help option
# 27 Jan 2021, 3d-gussner, Add `-c`, `-p` and `-n` options
#### Start check if OSTYPE is supported
OS_FOUND=$( command -v uname)
@ -451,7 +452,7 @@ if type git > /dev/null; then
git_available="1"
fi
while getopts v:l:d:b:o:?h flag
while getopts v:l:d:b:o:c:p:n:?h flag
do
case "${flag}" in
v) variant_flag=${OPTARG};;
@ -459,6 +460,9 @@ while getopts v:l:d:b:o:?h flag
d) devel_flag=${OPTARG};;
b) build_flag=${OPTARG};;
o) output_flag=${OPTARG};;
c) clean_flag=${OPTARG};;
p) prusa_flag=${OPTARG};;
n) new_build_flag=${OPTARG};;
?) help_flag=1;;
h) help_flag=1;;
esac
@ -469,6 +473,9 @@ while getopts v:l:d:b:o:?h flag
#echo "build_flag: $build_flag";
#echo "output_flag: $output_flag";
#echo "help_flag: $help_flag"
#echo "clean_flag: $clean_flag"
#echo "prusa_flag: $prusa_flag"
#echo "new_build_flag: $new_build_flag"
#
# '?' 'h' argument usage and help
@ -482,19 +489,23 @@ echo "$(tput setaf 2)-l$(tput sgr0) Languages '$(tput setaf 2)ALL$(tput sgr0)' f
echo "$(tput setaf 2)-d$(tput sgr0) Devel build '$(tput setaf 2)GOLD$(tput sgr0)', '$(tput setaf 2)RC$(tput sgr0)', '$(tput setaf 2)BETA$(tput sgr0)', '$(tput setaf 2)ALPHA$(tput sgr0)', '$(tput setaf 2)DEBUG$(tput sgr0)', '$(tput setaf 2)DEVEL$(tput sgr0)' and '$(tput setaf 2)UNKNOWN$(tput sgr0)'"
echo "$(tput setaf 2)-b$(tput sgr0) Build/commit number '$(tput setaf 2)Auto$(tput sgr0)' needs git or a number"
echo "$(tput setaf 2)-o$(tput sgr0) Output '$(tput setaf 2)1$(tput sgr0)' force or '$(tput setaf 2)0$(tput sgr0)' block output and delays"
echo "$(tput setaf 2)-c$(tput sgr0) Do not clean up lang build'$(tput setaf 2)0$(tput sgr0)' no '$(tput setaf 2)1$(tput sgr0)' yes"
echo "$(tput setaf 2)-p$(tput sgr0) Keep Configuration_prusa.h '$(tput setaf 2)0$(tput sgr0)' no '$(tput setaf 2)1$(tput sgr0)' yes"
echo "$(tput setaf 2)-n$(tput sgr0) New fresh build '$(tput setaf 2)0$(tput sgr0)' no '$(tput setaf 2)1$(tput sgr0)' yes"
echo "$(tput setaf 2)-?$(tput sgr0) Help"
echo "$(tput setaf 2)-h$(tput sgr0) Help"
echo
echo "Brief USAGE:"
echo " $(tput setaf 2)./PF-build.sh$(tput sgr0) [-v] [-l] [-d] [-b] [-o]"
echo " $(tput setaf 2)./PF-build.sh$(tput sgr0) [-v] [-l] [-d] [-b] [-o] [-c] [-p] [-n]"
echo
echo "Example:"
echo " $(tput setaf 2)./PF-build.sh -v All -l ALL -d GOLD$(tput sgr0)"
echo " Will build all variants as multi language and final GOLD version"
echo
echo " $(tput setaf 2) ./PF-build.sh -v 1_75mm_MK3S-EINSy10a-E3Dv6full.h -b Auto -l ALL -d GOLD -o 1$(tput sgr0)"
echo " $(tput setaf 2) ./PF-build.sh -v 1_75mm_MK3S-EINSy10a-E3Dv6full.h -b Auto -l ALL -d GOLD -o 1 -c 1 -p 1 -n 1$(tput sgr0)"
echo " Will build MK3S multi language final GOLD firmware "
echo " with current commit count number and output extra information"
echo " with current commit count number and output extra information,"
echo " not delete lang build temporary files, keep Configuration_prusa.h and build with new fresh build folder."
echo
exit
@ -807,6 +818,12 @@ do
if [ $OUTPUT == "1" ] ; then
sleep 2
fi
#New fresh PF-Firmware-build
if [ "$new_build_flag" == "1" ]; then
rm -r -f $BUILD_PATH/* || exit 36
fi
#$BUILD_ENV_PATH/arduino-builder -dump-prefs -debug-level 10 -compile -hardware $ARDUINO/hardware -hardware $ARDUINO/portable/packages -tools $ARDUINO/tools-builder -tools $ARDUINO/hardware/tools/avr -tools $ARDUINO/portable/packages -built-in-libraries $ARDUINO/libraries -libraries $ARDUINO/portable/sketchbook/libraries -fqbn=$BOARD_PACKAGE_NAME:avr:$BOARD -build-path=$BUILD_PATH -warnings=all $SCRIPT_PATH/Firmware/Firmware.ino || exit 14
$BUILD_ENV_PATH/arduino-builder -compile -hardware $ARDUINO/hardware -hardware $ARDUINO/portable/packages -tools $ARDUINO/tools-builder -tools $ARDUINO/hardware/tools/avr -tools $ARDUINO/portable/packages -built-in-libraries $ARDUINO/libraries -libraries $ARDUINO/portable/sketchbook/libraries -fqbn=$BOARD_PACKAGE_NAME:avr:$BOARD -build-path=$BUILD_PATH -warnings=all $SCRIPT_PATH/Firmware/Firmware.ino || exit 30
echo "$(tput sgr 0)"
@ -874,17 +891,21 @@ do
fi
fi
# Cleanup after build
echo "$(tput setaf 3)"
./fw-clean.sh || exit 34
./lang-clean.sh || exit 35
echo "$(tput sgr 0)"
if [[ -z "$clean_flag" || "$clean_flag" == "0" ]]; then
echo "$(tput setaf 3)"
./fw-clean.sh || exit 34
./lang-clean.sh || exit 35
echo "$(tput sgr 0)"
fi
else
echo "$(tput setaf 2)Copying English only firmware to PF-build-hex folder$(tput sgr 0)"
cp -f $BUILD_PATH/Firmware.ino.hex $SCRIPT_PATH/../$OUTPUT_FOLDER/FW$FW-Build$BUILD-$VARIANT-EN_ONLY.hex || exit 34
fi
# Cleanup Firmware
rm $SCRIPT_PATH/Firmware/Configuration_prusa.h || exit 36
if [[ -z "$prusa_flag" || "$prusa_flag" == "0" ]]; then
rm $SCRIPT_PATH/Firmware/Configuration_prusa.h || exit 36
fi
if find $SCRIPT_PATH/lang/ -name '*RAMBo10a*.txt' -printf 1 -quit | grep -q 1
then
rm $SCRIPT_PATH/lang/*RAMBo10a*.txt
@ -901,6 +922,12 @@ do
then
rm $SCRIPT_PATH/lang/not_used.txt
fi
#New fresh PF-Firmware-build
if [ "$new_build_flag" == "1" ]; then
rm -r -f $BUILD_PATH/* || exit 36
fi
# Restore files to previous state
sed -i -- "s/^#define FW_DEV_VERSION FW_VERSION_$DEV_STATUS/#define FW_DEV_VERSION FW_VERSION_UNKNOWN/g" $SCRIPT_PATH/Firmware/Configuration.h
sed -i -- 's/^#define FW_REPOSITORY "Prusa3d"/#define FW_REPOSITORY "Unknown"/g' $SCRIPT_PATH/Firmware/Configuration.h