commit
d807eb92c0
@ -506,4 +506,6 @@ const bool Z_MIN_ENDSTOP_INVERTING = false; // set to true to invert the logic o
|
||||
|
||||
#define HEATBED_V2
|
||||
|
||||
//#define SUPPORT_VERBOSITY
|
||||
|
||||
#endif //__CONFIGURATION_PRUSA_H
|
||||
|
@ -2972,9 +2972,11 @@ void process_commands()
|
||||
current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 1);
|
||||
bool clamped = world2machine_clamp(current_position[X_AXIS], current_position[Y_AXIS]);
|
||||
|
||||
#ifdef SUPPORT_VERBOSITY
|
||||
if (verbosity_level >= 1) {
|
||||
clamped ? SERIAL_PROTOCOLPGM("First calibration point clamped.\n") : SERIAL_PROTOCOLPGM("No clamping for first calibration point.\n");
|
||||
}
|
||||
#endif //SUPPORT_VERBOSITY
|
||||
// mbl.get_meas_xy(0, 0, current_position[X_AXIS], current_position[Y_AXIS], false);
|
||||
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[X_AXIS] / 30, active_extruder);
|
||||
// Wait until the move is finished.
|
||||
@ -2989,13 +2991,14 @@ void process_commands()
|
||||
int Z_PROBE_FEEDRATE = homing_feedrate[Z_AXIS] / 60;
|
||||
int Z_LIFT_FEEDRATE = homing_feedrate[Z_AXIS] / 40;
|
||||
bool has_z = is_bed_z_jitter_data_valid(); //checks if we have data from Z calibration (offsets of the Z heiths of the 8 calibration points from the first point)
|
||||
#ifdef SUPPORT_VERBOSITY
|
||||
if (verbosity_level >= 1) {
|
||||
has_z ? SERIAL_PROTOCOLPGM("Z jitter data from Z cal. valid.\n") : SERIAL_PROTOCOLPGM("Z jitter data from Z cal. not valid.\n");
|
||||
}
|
||||
#endif // SUPPORT_VERBOSITY
|
||||
setup_for_endstop_move(false); //save feedrate and feedmultiply, sets feedmultiply to 100
|
||||
const char *kill_message = NULL;
|
||||
while (mesh_point != MESH_MEAS_NUM_X_POINTS * MESH_MEAS_NUM_Y_POINTS) {
|
||||
if (verbosity_level >= 1) SERIAL_ECHOLNPGM("");
|
||||
// Get coords of a measuring point.
|
||||
ix = mesh_point % MESH_MEAS_NUM_X_POINTS; // from 0 to MESH_NUM_X_POINTS - 1
|
||||
iy = mesh_point / MESH_MEAS_NUM_X_POINTS;
|
||||
@ -3005,13 +3008,16 @@ void process_commands()
|
||||
uint16_t z_offset_u = eeprom_read_word((uint16_t*)(EEPROM_BED_CALIBRATION_Z_JITTER + 2 * (ix + iy * 3 - 1)));
|
||||
z0 = mbl.z_values[0][0] + *reinterpret_cast<int16_t*>(&z_offset_u) * 0.01;
|
||||
//#if 0
|
||||
#ifdef SUPPORT_VERBOSITY
|
||||
if (verbosity_level >= 1) {
|
||||
SERIAL_ECHOLNPGM("");
|
||||
SERIAL_ECHOPGM("Bed leveling, point: ");
|
||||
MYSERIAL.print(mesh_point);
|
||||
SERIAL_ECHOPGM(", calibration z: ");
|
||||
MYSERIAL.print(z0, 5);
|
||||
SERIAL_ECHOLNPGM("");
|
||||
}
|
||||
#endif // SUPPORT_VERBOSITY
|
||||
//#endif
|
||||
}
|
||||
|
||||
@ -3027,12 +3033,13 @@ void process_commands()
|
||||
|
||||
|
||||
world2machine_clamp(current_position[X_AXIS], current_position[Y_AXIS]);
|
||||
#ifdef SUPPORT_VERBOSITY
|
||||
if (verbosity_level >= 1) {
|
||||
|
||||
SERIAL_PROTOCOL(mesh_point);
|
||||
clamped ? SERIAL_PROTOCOLPGM(": xy clamped.\n") : SERIAL_PROTOCOLPGM(": no xy clamping\n");
|
||||
}
|
||||
|
||||
#endif // SUPPORT_VERBOSITY
|
||||
|
||||
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], XY_AXIS_FEEDRATE, active_extruder);
|
||||
st_synchronize();
|
||||
@ -3051,7 +3058,7 @@ void process_commands()
|
||||
kill_message = MSG_BED_LEVELING_FAILED_POINT_HIGH;
|
||||
break;
|
||||
}
|
||||
|
||||
#ifdef SUPPORT_VERBOSITY
|
||||
if (verbosity_level >= 10) {
|
||||
SERIAL_ECHOPGM("X: ");
|
||||
MYSERIAL.print(current_position[X_AXIS], 5);
|
||||
@ -3060,13 +3067,13 @@ void process_commands()
|
||||
MYSERIAL.print(current_position[Y_AXIS], 5);
|
||||
SERIAL_PROTOCOLPGM("\n");
|
||||
}
|
||||
|
||||
#endif // SUPPORT_VERBOSITY
|
||||
float offset_z = 0;
|
||||
|
||||
#ifdef PINDA_THERMISTOR
|
||||
offset_z = temp_compensation_pinda_thermistor_offset();
|
||||
#endif //PINDA_THERMISTOR
|
||||
|
||||
#ifdef SUPPORT_VERBOSITY
|
||||
if (verbosity_level >= 1) {
|
||||
SERIAL_ECHOPGM("mesh bed leveling: ");
|
||||
MYSERIAL.print(current_position[Z_AXIS], 5);
|
||||
@ -3074,18 +3081,21 @@ void process_commands()
|
||||
MYSERIAL.print(offset_z, 5);
|
||||
SERIAL_ECHOLNPGM("");
|
||||
}
|
||||
#endif // SUPPORT_VERBOSITY
|
||||
mbl.set_z(ix, iy, current_position[Z_AXIS] - offset_z); //store measured z values z_values[iy][ix] = z - offset_z;
|
||||
|
||||
custom_message_state--;
|
||||
mesh_point++;
|
||||
lcd_update(1);
|
||||
}
|
||||
if (verbosity_level >= 20) SERIAL_ECHOLNPGM("Mesh bed leveling while loop finished.");
|
||||
current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
|
||||
#ifdef SUPPORT_VERBOSITY
|
||||
if (verbosity_level >= 20) {
|
||||
SERIAL_ECHOLNPGM("Mesh bed leveling while loop finished.");
|
||||
SERIAL_ECHOLNPGM("MESH_HOME_Z_SEARCH: ");
|
||||
MYSERIAL.print(current_position[Z_AXIS], 5);
|
||||
}
|
||||
#endif // SUPPORT_VERBOSITY
|
||||
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
|
||||
st_synchronize();
|
||||
if (mesh_point != MESH_MEAS_NUM_X_POINTS * MESH_MEAS_NUM_Y_POINTS) {
|
||||
@ -3104,10 +3114,11 @@ void process_commands()
|
||||
babystep_apply(); // Apply Z height correction aka baby stepping before mesh bed leveing gets activated.
|
||||
SERIAL_ECHOLNPGM("babystep applied");
|
||||
bool eeprom_bed_correction_valid = eeprom_read_byte((unsigned char*)EEPROM_BED_CORRECTION_VALID) == 1;
|
||||
|
||||
#ifdef SUPPORT_VERBOSITY
|
||||
if (verbosity_level >= 1) {
|
||||
eeprom_bed_correction_valid ? SERIAL_PROTOCOLPGM("Bed correction data valid\n") : SERIAL_PROTOCOLPGM("Bed correction data not valid\n");
|
||||
}
|
||||
#endif // SUPPORT_VERBOSITY
|
||||
|
||||
for (uint8_t i = 0; i < 4; ++i) {
|
||||
unsigned char codes[4] = { 'L', 'R', 'F', 'B' };
|
||||
|
@ -177,6 +177,7 @@ BedSkewOffsetDetectionResultType calculate_machine_skew_and_offset_LS(
|
||||
)
|
||||
{
|
||||
float angleDiff;
|
||||
#ifdef SUPPORT_VERBOSITY
|
||||
if (verbosity_level >= 10) {
|
||||
SERIAL_ECHOLNPGM("calculate machine skew and offset LS");
|
||||
|
||||
@ -218,6 +219,7 @@ BedSkewOffsetDetectionResultType calculate_machine_skew_and_offset_LS(
|
||||
}
|
||||
delay_keep_alive(100);
|
||||
}
|
||||
#endif // SUPPORT_VERBOSITY
|
||||
|
||||
// Run some iterations of the Gauss-Newton method of non-linear least squares.
|
||||
// Initial set of parameters:
|
||||
@ -318,6 +320,7 @@ BedSkewOffsetDetectionResultType calculate_machine_skew_and_offset_LS(
|
||||
a1 += h[2];
|
||||
a2 += h[3];
|
||||
|
||||
#ifdef SUPPORT_VERBOSITY
|
||||
if (verbosity_level >= 20) {
|
||||
SERIAL_ECHOPGM("iteration: ");
|
||||
MYSERIAL.print(int(iter));
|
||||
@ -341,6 +344,7 @@ BedSkewOffsetDetectionResultType calculate_machine_skew_and_offset_LS(
|
||||
MYSERIAL.print(180.f * a2 / M_PI, 5);
|
||||
SERIAL_ECHOLNPGM("");
|
||||
}
|
||||
#endif // SUPPORT_VERBOSITY
|
||||
}
|
||||
|
||||
vec_x[0] = cos(a1) * MACHINE_AXIS_SCALE_X;
|
||||
@ -360,7 +364,7 @@ BedSkewOffsetDetectionResultType calculate_machine_skew_and_offset_LS(
|
||||
fabs(a2) > bed_skew_angle_extreme)
|
||||
result = BED_SKEW_OFFSET_DETECTION_SKEW_EXTREME;
|
||||
}
|
||||
|
||||
#ifdef SUPPORT_VERBOSITY
|
||||
if (verbosity_level >= 1) {
|
||||
SERIAL_ECHOPGM("correction angles: ");
|
||||
MYSERIAL.print(180.f * a1 / M_PI, 5);
|
||||
@ -392,7 +396,7 @@ BedSkewOffsetDetectionResultType calculate_machine_skew_and_offset_LS(
|
||||
|
||||
SERIAL_ECHOLNPGM("Error after correction: ");
|
||||
}
|
||||
|
||||
#endif // SUPPORT_VERBOSITY
|
||||
// Measure the error after correction.
|
||||
for (uint8_t i = 0; i < npts; ++i) {
|
||||
float x = vec_x[0] * measured_pts[i * 2] + vec_y[0] * measured_pts[i * 2 + 1] + cntr[0];
|
||||
@ -400,33 +404,44 @@ BedSkewOffsetDetectionResultType calculate_machine_skew_and_offset_LS(
|
||||
float errX = sqr(pgm_read_float(true_pts + i * 2) - x);
|
||||
float errY = sqr(pgm_read_float(true_pts + i * 2 + 1) - y);
|
||||
float err = sqrt(errX + errY);
|
||||
#ifdef SUPPORT_VERBOSITY
|
||||
if (verbosity_level >= 10) {
|
||||
SERIAL_ECHOPGM("point #");
|
||||
MYSERIAL.print(int(i));
|
||||
SERIAL_ECHOLNPGM(":");
|
||||
}
|
||||
#endif // SUPPORT_VERBOSITY
|
||||
|
||||
if (point_on_1st_row(i)) {
|
||||
#ifdef SUPPORT_VERBOSITY
|
||||
if(verbosity_level >= 20) SERIAL_ECHOPGM("Point on first row");
|
||||
#endif // SUPPORT_VERBOSITY
|
||||
float w = point_weight_y(i, npts, measured_pts[2 * i + 1]);
|
||||
if (sqrt(errX) > BED_CALIBRATION_POINT_OFFSET_MAX_1ST_ROW_X ||
|
||||
(w != 0.f && sqrt(errY) > BED_CALIBRATION_POINT_OFFSET_MAX_1ST_ROW_Y)) {
|
||||
result = BED_SKEW_OFFSET_DETECTION_FITTING_FAILED;
|
||||
#ifdef SUPPORT_VERBOSITY
|
||||
if (verbosity_level >= 20) {
|
||||
SERIAL_ECHOPGM(", weigth Y: ");
|
||||
MYSERIAL.print(w);
|
||||
if (sqrt(errX) > BED_CALIBRATION_POINT_OFFSET_MAX_1ST_ROW_X) SERIAL_ECHOPGM(", error X > max. error X");
|
||||
if (w != 0.f && sqrt(errY) > BED_CALIBRATION_POINT_OFFSET_MAX_1ST_ROW_Y) SERIAL_ECHOPGM(", error Y > max. error Y");
|
||||
}
|
||||
#endif // SUPPORT_VERBOSITY
|
||||
}
|
||||
}
|
||||
else {
|
||||
#ifdef SUPPORT_VERBOSITY
|
||||
if(verbosity_level >=20 ) SERIAL_ECHOPGM("Point not on first row");
|
||||
#endif // SUPPORT_VERBOSITY
|
||||
if (err > BED_CALIBRATION_POINT_OFFSET_MAX_EUCLIDIAN) {
|
||||
result = BED_SKEW_OFFSET_DETECTION_FITTING_FAILED;
|
||||
#ifdef SUPPORT_VERBOSITY
|
||||
if(verbosity_level >= 20) SERIAL_ECHOPGM(", error > max. error euclidian");
|
||||
#endif // SUPPORT_VERBOSITY
|
||||
}
|
||||
}
|
||||
#ifdef SUPPORT_VERBOSITY
|
||||
if (verbosity_level >= 10) {
|
||||
SERIAL_ECHOLNPGM("");
|
||||
SERIAL_ECHOPGM("measured: (");
|
||||
@ -451,7 +466,9 @@ BedSkewOffsetDetectionResultType calculate_machine_skew_and_offset_LS(
|
||||
SERIAL_ECHOLNPGM("");
|
||||
SERIAL_ECHOLNPGM("");
|
||||
}
|
||||
#endif // SUPPORT_VERBOSITY
|
||||
}
|
||||
#ifdef SUPPORT_VERBOSITY
|
||||
if (verbosity_level >= 20) {
|
||||
SERIAL_ECHOLNPGM("Max. errors:");
|
||||
SERIAL_ECHOPGM("Max. error X:");
|
||||
@ -462,11 +479,14 @@ BedSkewOffsetDetectionResultType calculate_machine_skew_and_offset_LS(
|
||||
MYSERIAL.println(BED_CALIBRATION_POINT_OFFSET_MAX_EUCLIDIAN);
|
||||
SERIAL_ECHOLNPGM("");
|
||||
}
|
||||
#endif // SUPPORT_VERBOSITY
|
||||
|
||||
#if 0
|
||||
if (result == BED_SKEW_OFFSET_DETECTION_PERFECT && fabs(a1) < bed_skew_angle_mild && fabs(a2) < bed_skew_angle_mild) {
|
||||
if (verbosity_level > 0)
|
||||
#ifdef SUPPORT_VERBOSITY
|
||||
if (verbosity_level > 0)
|
||||
SERIAL_ECHOLNPGM("Very little skew detected. Disabling skew correction.");
|
||||
#endif // SUPPORT_VERBOSITY
|
||||
// Just disable the skew correction.
|
||||
vec_x[0] = MACHINE_AXIS_SCALE_X;
|
||||
vec_x[1] = 0.f;
|
||||
@ -475,9 +495,11 @@ BedSkewOffsetDetectionResultType calculate_machine_skew_and_offset_LS(
|
||||
}
|
||||
#else
|
||||
if (result == BED_SKEW_OFFSET_DETECTION_PERFECT) {
|
||||
if (verbosity_level > 0)
|
||||
#ifdef SUPPORT_VERBOSITY
|
||||
if (verbosity_level > 0)
|
||||
SERIAL_ECHOLNPGM("Very little skew detected. Orthogonalizing the axes.");
|
||||
// Orthogonalize the axes.
|
||||
#endif // SUPPORT_VERBOSITY
|
||||
// Orthogonalize the axes.
|
||||
a1 = 0.5f * (a1 + a2);
|
||||
vec_x[0] = cos(a1) * MACHINE_AXIS_SCALE_X;
|
||||
vec_x[1] = sin(a1) * MACHINE_AXIS_SCALE_X;
|
||||
@ -494,6 +516,7 @@ BedSkewOffsetDetectionResultType calculate_machine_skew_and_offset_LS(
|
||||
float w = point_weight_x(i, npts, y);
|
||||
cntr[0] += w * (pgm_read_float(true_pts + i * 2) - x);
|
||||
wx += w;
|
||||
#ifdef SUPPORT_VERBOSITY
|
||||
if (verbosity_level >= 20) {
|
||||
MYSERIAL.print(i);
|
||||
SERIAL_ECHOLNPGM("");
|
||||
@ -506,10 +529,11 @@ BedSkewOffsetDetectionResultType calculate_machine_skew_and_offset_LS(
|
||||
SERIAL_ECHOLNPGM("wx:");
|
||||
MYSERIAL.print(wx);
|
||||
}
|
||||
#endif // SUPPORT_VERBOSITY
|
||||
w = point_weight_y(i, npts, y);
|
||||
cntr[1] += w * (pgm_read_float(true_pts + i * 2 + 1) - y);
|
||||
wy += w;
|
||||
|
||||
#ifdef SUPPORT_VERBOSITY
|
||||
if (verbosity_level >= 20) {
|
||||
SERIAL_ECHOLNPGM("");
|
||||
SERIAL_ECHOLNPGM("Weight_y:");
|
||||
@ -523,9 +547,12 @@ BedSkewOffsetDetectionResultType calculate_machine_skew_and_offset_LS(
|
||||
SERIAL_ECHOLNPGM("");
|
||||
SERIAL_ECHOLNPGM("");
|
||||
}
|
||||
#endif // SUPPORT_VERBOSITY
|
||||
|
||||
}
|
||||
cntr[0] /= wx;
|
||||
cntr[1] /= wy;
|
||||
#ifdef SUPPORT_VERBOSITY
|
||||
if (verbosity_level >= 20) {
|
||||
SERIAL_ECHOLNPGM("");
|
||||
SERIAL_ECHOLNPGM("Final cntr values:");
|
||||
@ -536,7 +563,7 @@ BedSkewOffsetDetectionResultType calculate_machine_skew_and_offset_LS(
|
||||
MYSERIAL.print(cntr[1]);
|
||||
SERIAL_ECHOLNPGM("");
|
||||
}
|
||||
|
||||
#endif // SUPPORT_VERBOSITY
|
||||
}
|
||||
#endif
|
||||
|
||||
@ -558,7 +585,7 @@ BedSkewOffsetDetectionResultType calculate_machine_skew_and_offset_LS(
|
||||
cntr[0] = cntrInv[0];
|
||||
cntr[1] = cntrInv[1];
|
||||
}
|
||||
|
||||
#ifdef SUPPORT_VERBOSITY
|
||||
if (verbosity_level >= 1) {
|
||||
// Show the adjusted state, before the fitting.
|
||||
SERIAL_ECHOPGM("X vector, adjusted: ");
|
||||
@ -613,6 +640,8 @@ BedSkewOffsetDetectionResultType calculate_machine_skew_and_offset_LS(
|
||||
}
|
||||
delay_keep_alive(100);
|
||||
}
|
||||
#endif // SUPPORT_VERBOSITY
|
||||
|
||||
|
||||
return result;
|
||||
}
|
||||
@ -825,8 +854,10 @@ static inline void update_current_position_z()
|
||||
// At the current position, find the Z stop.
|
||||
inline bool find_bed_induction_sensor_point_z(float minimum_z, uint8_t n_iter, int verbosity_level)
|
||||
{
|
||||
#ifdef SUPPORT_VERBOSITY
|
||||
if(verbosity_level >= 10) SERIAL_ECHOLNPGM("find bed induction sensor point z");
|
||||
bool endstops_enabled = enable_endstops(true);
|
||||
#endif // SUPPORT_VERBOSITY
|
||||
bool endstops_enabled = enable_endstops(true);
|
||||
bool endstop_z_enabled = enable_z_endstop(false);
|
||||
float z = 0.f;
|
||||
endstop_z_hit_on_purpose();
|
||||
@ -880,8 +911,10 @@ error:
|
||||
#define FIND_BED_INDUCTION_SENSOR_POINT_Z_STEP (0.2f)
|
||||
inline bool find_bed_induction_sensor_point_xy(int verbosity_level)
|
||||
{
|
||||
#ifdef SUPPORT_VERBOSITY
|
||||
if(verbosity_level >= 10) MYSERIAL.println("find bed induction sensor point xy");
|
||||
float feedrate = homing_feedrate[X_AXIS] / 60.f;
|
||||
#endif // SUPPORT_VERBOSITY
|
||||
float feedrate = homing_feedrate[X_AXIS] / 60.f;
|
||||
bool found = false;
|
||||
|
||||
{
|
||||
@ -893,19 +926,27 @@ inline bool find_bed_induction_sensor_point_xy(int verbosity_level)
|
||||
uint8_t i;
|
||||
if (x0 < X_MIN_POS) {
|
||||
x0 = X_MIN_POS;
|
||||
#ifdef SUPPORT_VERBOSITY
|
||||
if (verbosity_level >= 20) SERIAL_ECHOLNPGM("X searching radius lower than X_MIN. Clamping was done.");
|
||||
#endif // SUPPORT_VERBOSITY
|
||||
}
|
||||
if (x1 > X_MAX_POS) {
|
||||
x1 = X_MAX_POS;
|
||||
#ifdef SUPPORT_VERBOSITY
|
||||
if (verbosity_level >= 20) SERIAL_ECHOLNPGM("X searching radius higher than X_MAX. Clamping was done.");
|
||||
#endif // SUPPORT_VERBOSITY
|
||||
}
|
||||
if (y0 < Y_MIN_POS_FOR_BED_CALIBRATION) {
|
||||
y0 = Y_MIN_POS_FOR_BED_CALIBRATION;
|
||||
#ifdef SUPPORT_VERBOSITY
|
||||
if (verbosity_level >= 20) SERIAL_ECHOLNPGM("Y searching radius lower than Y_MIN. Clamping was done.");
|
||||
#endif // SUPPORT_VERBOSITY
|
||||
}
|
||||
if (y1 > Y_MAX_POS) {
|
||||
y1 = Y_MAX_POS;
|
||||
#ifdef SUPPORT_VERBOSITY
|
||||
if (verbosity_level >= 20) SERIAL_ECHOLNPGM("Y searching radius higher than X_MAX. Clamping was done.");
|
||||
#endif // SUPPORT_VERBOSITY
|
||||
}
|
||||
nsteps_y = int(ceil((y1 - y0) / FIND_BED_INDUCTION_SENSOR_POINT_XY_STEP));
|
||||
|
||||
@ -1210,11 +1251,13 @@ inline bool improve_bed_induction_sensor_point2(bool lift_z_on_min_y, int8_t ver
|
||||
}
|
||||
b = current_position[X_AXIS];
|
||||
if (b - a < MIN_BED_SENSOR_POINT_RESPONSE_DMR) {
|
||||
#ifdef SUPPORT_VERBOSITY
|
||||
if (verbosity_level >= 5) {
|
||||
SERIAL_ECHOPGM("Point width too small: ");
|
||||
SERIAL_ECHO(b - a);
|
||||
SERIAL_ECHOLNPGM("");
|
||||
}
|
||||
#endif // SUPPORT_VERBOSITY
|
||||
// We force the calibration routine to move the Z axis slightly down to make the response more pronounced.
|
||||
if (b - a < 0.5f * MIN_BED_SENSOR_POINT_RESPONSE_DMR) {
|
||||
// Don't use the new X value.
|
||||
@ -1225,10 +1268,12 @@ inline bool improve_bed_induction_sensor_point2(bool lift_z_on_min_y, int8_t ver
|
||||
point_small = true;
|
||||
}
|
||||
}
|
||||
#ifdef SUPPORT_VERBOSITY
|
||||
if (verbosity_level >= 5) {
|
||||
debug_output_point(PSTR("left" ), a, current_position[Y_AXIS], current_position[Z_AXIS]);
|
||||
debug_output_point(PSTR("right"), b, current_position[Y_AXIS], current_position[Z_AXIS]);
|
||||
}
|
||||
#endif // SUPPORT_VERBOSITY
|
||||
|
||||
// Go to the center.
|
||||
enable_z_endstop(false);
|
||||
@ -1281,11 +1326,13 @@ inline bool improve_bed_induction_sensor_point2(bool lift_z_on_min_y, int8_t ver
|
||||
b = current_position[Y_AXIS];
|
||||
if (b - a < MIN_BED_SENSOR_POINT_RESPONSE_DMR) {
|
||||
// We force the calibration routine to move the Z axis slightly down to make the response more pronounced.
|
||||
if (verbosity_level >= 5) {
|
||||
#ifdef SUPPORT_VERBOSITY
|
||||
if (verbosity_level >= 5) {
|
||||
SERIAL_ECHOPGM("Point height too small: ");
|
||||
SERIAL_ECHO(b - a);
|
||||
SERIAL_ECHOLNPGM("");
|
||||
}
|
||||
#endif // SUPPORT_VERBOSITY
|
||||
if (b - a < 0.5f * MIN_BED_SENSOR_POINT_RESPONSE_DMR) {
|
||||
// Don't use the new Y value.
|
||||
current_position[Y_AXIS] = center_old_y;
|
||||
@ -1295,10 +1342,12 @@ inline bool improve_bed_induction_sensor_point2(bool lift_z_on_min_y, int8_t ver
|
||||
point_small = true;
|
||||
}
|
||||
}
|
||||
#ifdef SUPPORT_VERBOSITY
|
||||
if (verbosity_level >= 5) {
|
||||
debug_output_point(PSTR("top" ), current_position[X_AXIS], a, current_position[Z_AXIS]);
|
||||
debug_output_point(PSTR("bottom"), current_position[X_AXIS], b, current_position[Z_AXIS]);
|
||||
}
|
||||
#endif // SUPPORT_VERBOSITY
|
||||
|
||||
// Go to the center.
|
||||
enable_z_endstop(false);
|
||||
@ -1331,8 +1380,9 @@ inline bool improve_bed_induction_sensor_point3(int verbosity_level)
|
||||
float center_old_y = current_position[Y_AXIS];
|
||||
float a, b;
|
||||
bool result = true;
|
||||
|
||||
#ifdef SUPPORT_VERBOSITY
|
||||
if (verbosity_level >= 20) MYSERIAL.println("Improve bed induction sensor point3");
|
||||
#endif // SUPPORT_VERBOSITY
|
||||
// Was the sensor point detected too far in the minus Y axis?
|
||||
// If yes, the center of the induction point cannot be reached by the machine.
|
||||
{
|
||||
@ -1350,7 +1400,7 @@ inline bool improve_bed_induction_sensor_point3(int verbosity_level)
|
||||
y0 = Y_MIN_POS_FOR_BED_CALIBRATION;
|
||||
if (y1 > Y_MAX_POS)
|
||||
y1 = Y_MAX_POS;
|
||||
|
||||
#ifdef SUPPORT_VERBOSITY
|
||||
if (verbosity_level >= 20) {
|
||||
SERIAL_ECHOPGM("Initial position: ");
|
||||
SERIAL_ECHO(center_old_x);
|
||||
@ -1358,6 +1408,7 @@ inline bool improve_bed_induction_sensor_point3(int verbosity_level)
|
||||
SERIAL_ECHO(center_old_y);
|
||||
SERIAL_ECHOLNPGM("");
|
||||
}
|
||||
#endif // SUPPORT_VERBOSITY
|
||||
|
||||
// Search in the positive Y direction, until a maximum diameter is found.
|
||||
// (the next diameter is smaller than the current one.)
|
||||
@ -1389,10 +1440,12 @@ inline bool improve_bed_induction_sensor_point3(int verbosity_level)
|
||||
// goto canceled;
|
||||
}
|
||||
b = current_position[X_AXIS];
|
||||
#ifdef SUPPORT_VERBOSITY
|
||||
if (verbosity_level >= 5) {
|
||||
debug_output_point(PSTR("left" ), a, current_position[Y_AXIS], current_position[Z_AXIS]);
|
||||
debug_output_point(PSTR("right"), b, current_position[Y_AXIS], current_position[Z_AXIS]);
|
||||
}
|
||||
#endif // SUPPORT_VERBOSITY
|
||||
float d = b - a;
|
||||
if (d > dmax) {
|
||||
xmax1 = 0.5f * (a + b);
|
||||
@ -1403,9 +1456,11 @@ inline bool improve_bed_induction_sensor_point3(int verbosity_level)
|
||||
}
|
||||
}
|
||||
if (dmax == 0.) {
|
||||
#ifdef SUPPORT_VERBOSITY
|
||||
if (verbosity_level > 0)
|
||||
SERIAL_PROTOCOLPGM("failed - not found\n");
|
||||
current_position[X_AXIS] = center_old_x;
|
||||
#endif // SUPPORT_VERBOSITY
|
||||
current_position[X_AXIS] = center_old_x;
|
||||
current_position[Y_AXIS] = center_old_y;
|
||||
goto canceled;
|
||||
}
|
||||
@ -1421,9 +1476,11 @@ inline bool improve_bed_induction_sensor_point3(int verbosity_level)
|
||||
current_position[Y_AXIS] = center_old_y;
|
||||
goto canceled;
|
||||
}
|
||||
#ifdef SUPPORT_VERBOSITY
|
||||
if (verbosity_level >= 5)
|
||||
debug_output_point(PSTR("top" ), current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS]);
|
||||
y1 = current_position[Y_AXIS];
|
||||
#endif // SUPPORT_VERBOSITY
|
||||
y1 = current_position[Y_AXIS];
|
||||
}
|
||||
|
||||
if (y1 <= y0) {
|
||||
@ -1465,10 +1522,12 @@ inline bool improve_bed_induction_sensor_point3(int verbosity_level)
|
||||
*/
|
||||
}
|
||||
b = current_position[X_AXIS];
|
||||
#ifdef SUPPORT_VERBOSITY
|
||||
if (verbosity_level >= 5) {
|
||||
debug_output_point(PSTR("left" ), a, current_position[Y_AXIS], current_position[Z_AXIS]);
|
||||
debug_output_point(PSTR("right"), b, current_position[Y_AXIS], current_position[Z_AXIS]);
|
||||
}
|
||||
#endif // SUPPORT_VERBOSITY
|
||||
float d = b - a;
|
||||
if (d > dmax) {
|
||||
xmax2 = 0.5f * (a + b);
|
||||
@ -1516,10 +1575,12 @@ inline bool improve_bed_induction_sensor_point3(int verbosity_level)
|
||||
*/
|
||||
}
|
||||
b = current_position[X_AXIS];
|
||||
#ifdef SUPPORT_VERBOSITY
|
||||
if (verbosity_level >= 5) {
|
||||
debug_output_point(PSTR("left" ), a, current_position[Y_AXIS], current_position[Z_AXIS]);
|
||||
debug_output_point(PSTR("right"), b, current_position[Y_AXIS], current_position[Z_AXIS]);
|
||||
}
|
||||
#endif // SUPPORT_VERBOSITY
|
||||
float d = b - a;
|
||||
if (d > dmax) {
|
||||
xmax = 0.5f * (a + b);
|
||||
@ -1541,24 +1602,29 @@ inline bool improve_bed_induction_sensor_point3(int verbosity_level)
|
||||
current_position[Y_AXIS] = center_old_y;
|
||||
goto canceled;
|
||||
}
|
||||
#ifdef SUPPORT_VERBOSITY
|
||||
if (verbosity_level >= 5)
|
||||
debug_output_point(PSTR("top" ), current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS]);
|
||||
if (current_position[Y_AXIS] - Y_MIN_POS_FOR_BED_CALIBRATION < 0.5f * dmax) {
|
||||
#endif // SUPPORT_VERBOSITY
|
||||
if (current_position[Y_AXIS] - Y_MIN_POS_FOR_BED_CALIBRATION < 0.5f * dmax) {
|
||||
// Probably not even a half circle was detected. The induction point is likely too far in the minus Y direction.
|
||||
// First verify, if the measurement has been done at a sufficient height. If no, lower the Z axis a bit.
|
||||
if (current_position[Y_AXIS] < ymax || dmax < 0.5f * MIN_BED_SENSOR_POINT_RESPONSE_DMR) {
|
||||
if (verbosity_level >= 5) {
|
||||
#ifdef SUPPORT_VERBOSITY
|
||||
if (verbosity_level >= 5) {
|
||||
SERIAL_ECHOPGM("Partial point diameter too small: ");
|
||||
SERIAL_ECHO(dmax);
|
||||
SERIAL_ECHOLNPGM("");
|
||||
}
|
||||
#endif // SUPPORT_VERBOSITY
|
||||
result = false;
|
||||
} else {
|
||||
// Estimate the circle radius from the maximum diameter and height:
|
||||
float h = current_position[Y_AXIS] - ymax;
|
||||
float r = dmax * dmax / (8.f * h) + 0.5f * h;
|
||||
if (r < 0.8f * MIN_BED_SENSOR_POINT_RESPONSE_DMR) {
|
||||
if (verbosity_level >= 5) {
|
||||
#ifdef SUPPORT_VERBOSITY
|
||||
if (verbosity_level >= 5) {
|
||||
SERIAL_ECHOPGM("Partial point estimated radius too small: ");
|
||||
SERIAL_ECHO(r);
|
||||
SERIAL_ECHOPGM(", dmax:");
|
||||
@ -1567,6 +1633,7 @@ inline bool improve_bed_induction_sensor_point3(int verbosity_level)
|
||||
SERIAL_ECHO(h);
|
||||
SERIAL_ECHOLNPGM("");
|
||||
}
|
||||
#endif // SUPPORT_VERBOSITY
|
||||
result = false;
|
||||
} else {
|
||||
// The point may end up outside of the machine working space.
|
||||
@ -1593,6 +1660,7 @@ inline bool improve_bed_induction_sensor_point3(int verbosity_level)
|
||||
enable_z_endstop(false);
|
||||
current_position[X_AXIS] = xmax;
|
||||
current_position[Y_AXIS] = ymax;
|
||||
#ifdef SUPPORT_VERBOSITY
|
||||
if (verbosity_level >= 20) {
|
||||
SERIAL_ECHOPGM("Adjusted position: ");
|
||||
SERIAL_ECHO(current_position[X_AXIS]);
|
||||
@ -1600,6 +1668,7 @@ inline bool improve_bed_induction_sensor_point3(int verbosity_level)
|
||||
SERIAL_ECHO(current_position[Y_AXIS]);
|
||||
SERIAL_ECHOLNPGM("");
|
||||
}
|
||||
#endif // SUPPORT_VERBOSITY
|
||||
|
||||
// Don't clamp current_position[Y_AXIS], because the out-of-reach Y coordinate may actually be true.
|
||||
// Only clamp the coordinate to go.
|
||||
@ -1690,6 +1759,7 @@ BedSkewOffsetDetectionResultType find_bed_offset_and_skew(int8_t verbosity_level
|
||||
|
||||
SERIAL_ECHOPGM("Iteration: ");
|
||||
MYSERIAL.println(int(iteration + 1));
|
||||
#ifdef SUPPORT_VERBOSITY
|
||||
if (verbosity_level >= 20) {
|
||||
SERIAL_ECHOLNPGM("Vectors: ");
|
||||
|
||||
@ -1712,6 +1782,7 @@ BedSkewOffsetDetectionResultType find_bed_offset_and_skew(int8_t verbosity_level
|
||||
MYSERIAL.print(cntr[1], 5);
|
||||
SERIAL_ECHOLNPGM("");
|
||||
}
|
||||
#endif // SUPPORT_VERBOSITY
|
||||
#ifdef MESH_BED_CALIBRATION_SHOW_LCD
|
||||
uint8_t next_line;
|
||||
lcd_display_message_fullscreen_P(MSG_FIND_BED_OFFSET_AND_SKEW_LINE1, next_line);
|
||||
@ -1737,6 +1808,7 @@ BedSkewOffsetDetectionResultType find_bed_offset_and_skew(int8_t verbosity_level
|
||||
// Go up to z_initial.
|
||||
|
||||
go_to_current(homing_feedrate[Z_AXIS] / 60.f);
|
||||
#ifdef SUPPORT_VERBOSITY
|
||||
if (verbosity_level >= 20) {
|
||||
// Go to Y0, wait, then go to Y-4.
|
||||
current_position[Y_AXIS] = 0.f;
|
||||
@ -1748,6 +1820,7 @@ BedSkewOffsetDetectionResultType find_bed_offset_and_skew(int8_t verbosity_level
|
||||
SERIAL_ECHOLNPGM("At Y-4");
|
||||
delay_keep_alive(5000);
|
||||
}
|
||||
#endif // SUPPORT_VERBOSITY
|
||||
// Go to the measurement point position.
|
||||
//if (iteration == 0) {
|
||||
current_position[X_AXIS] = pgm_read_float(bed_ref_points_4 + k * 2);
|
||||
@ -1765,6 +1838,7 @@ BedSkewOffsetDetectionResultType find_bed_offset_and_skew(int8_t verbosity_level
|
||||
current_position[Y_AXIS] = Y_MIN_POS_FOR_BED_CALIBRATION;
|
||||
|
||||
}*/
|
||||
#ifdef SUPPORT_VERBOSITY
|
||||
if (verbosity_level >= 20) {
|
||||
SERIAL_ECHOPGM("current_position[X_AXIS]:");
|
||||
MYSERIAL.print(current_position[X_AXIS], 5);
|
||||
@ -1776,11 +1850,13 @@ BedSkewOffsetDetectionResultType find_bed_offset_and_skew(int8_t verbosity_level
|
||||
MYSERIAL.print(current_position[Z_AXIS], 5);
|
||||
SERIAL_ECHOLNPGM("");
|
||||
}
|
||||
|
||||
#endif // SUPPORT_VERBOSITY
|
||||
|
||||
go_to_current(homing_feedrate[X_AXIS] / 60.f);
|
||||
#ifdef SUPPORT_VERBOSITY
|
||||
if (verbosity_level >= 10)
|
||||
delay_keep_alive(3000);
|
||||
#endif // SUPPORT_VERBOSITY
|
||||
if (!find_bed_induction_sensor_point_xy(verbosity_level))
|
||||
return BED_SKEW_OFFSET_DETECTION_POINT_NOT_FOUND;
|
||||
#if 1
|
||||
@ -1805,15 +1881,19 @@ BedSkewOffsetDetectionResultType find_bed_offset_and_skew(int8_t verbosity_level
|
||||
return BED_SKEW_OFFSET_DETECTION_POINT_NOT_FOUND;
|
||||
}
|
||||
#endif
|
||||
#ifdef SUPPORT_VERBOSITY
|
||||
if (verbosity_level >= 10)
|
||||
delay_keep_alive(3000);
|
||||
#endif // SUPPORT_VERBOSITY
|
||||
// Save the detected point position and then clamp the Y coordinate, which may have been estimated
|
||||
// to lie outside the machine working space.
|
||||
#ifdef SUPPORT_VERBOSITY
|
||||
if (verbosity_level >= 20) {
|
||||
SERIAL_ECHOLNPGM("Measured:");
|
||||
MYSERIAL.println(current_position[X_AXIS]);
|
||||
MYSERIAL.println(current_position[Y_AXIS]);
|
||||
}
|
||||
#endif // SUPPORT_VERBOSITY
|
||||
pt[0] = (pt[0] * iteration) / (iteration + 1);
|
||||
pt[0] += (current_position[X_AXIS]/(iteration + 1)); //count average
|
||||
pt[1] = (pt[1] * iteration) / (iteration + 1);
|
||||
@ -1826,6 +1906,7 @@ BedSkewOffsetDetectionResultType find_bed_offset_and_skew(int8_t verbosity_level
|
||||
//pt[1] += current_position[Y_AXIS];
|
||||
//if (iteration > 0) pt[1] = pt[1] / 2;
|
||||
|
||||
#ifdef SUPPORT_VERBOSITY
|
||||
if (verbosity_level >= 20) {
|
||||
SERIAL_ECHOLNPGM("");
|
||||
SERIAL_ECHOPGM("pt[0]:");
|
||||
@ -1833,6 +1914,7 @@ BedSkewOffsetDetectionResultType find_bed_offset_and_skew(int8_t verbosity_level
|
||||
SERIAL_ECHOPGM("pt[1]:");
|
||||
MYSERIAL.println(pt[1]);
|
||||
}
|
||||
#endif // SUPPORT_VERBOSITY
|
||||
|
||||
if (current_position[Y_AXIS] < Y_MIN_POS)
|
||||
current_position[Y_AXIS] = Y_MIN_POS;
|
||||
@ -1840,14 +1922,17 @@ BedSkewOffsetDetectionResultType find_bed_offset_and_skew(int8_t verbosity_level
|
||||
current_position[Z_AXIS] += 3.f + FIND_BED_INDUCTION_SENSOR_POINT_Z_STEP * iteration * 0.3;
|
||||
//cntr[0] += pt[0];
|
||||
//cntr[1] += pt[1];
|
||||
#ifdef SUPPORT_VERBOSITY
|
||||
if (verbosity_level >= 10 && k == 0) {
|
||||
// Show the zero. Test, whether the Y motor skipped steps.
|
||||
current_position[Y_AXIS] = MANUAL_Y_HOME_POS;
|
||||
go_to_current(homing_feedrate[X_AXIS] / 60.f);
|
||||
delay_keep_alive(3000);
|
||||
}
|
||||
#endif // SUPPORT_VERBOSITY
|
||||
}
|
||||
|
||||
#ifdef SUPPORT_VERBOSITY
|
||||
if (verbosity_level >= 20) {
|
||||
// Test the positions. Are the positions reproducible? Now the calibration is active in the planner.
|
||||
delay_keep_alive(3000);
|
||||
@ -1862,7 +1947,7 @@ BedSkewOffsetDetectionResultType find_bed_offset_and_skew(int8_t verbosity_level
|
||||
delay_keep_alive(3000);
|
||||
}
|
||||
}
|
||||
|
||||
#endif // SUPPORT_VERBOSITY
|
||||
if (pts[1] < Y_MIN_POS_CALIBRATION_POINT_OUT_OF_REACH) {
|
||||
too_far_mask |= 1 << 1; //front center point is out of reach
|
||||
SERIAL_ECHOLNPGM("");
|
||||
@ -1884,6 +1969,7 @@ BedSkewOffsetDetectionResultType find_bed_offset_and_skew(int8_t verbosity_level
|
||||
eeprom_update_float((float*)(EEPROM_BED_CALIBRATION_VEC_Y + 0), vec_y[0]);
|
||||
eeprom_update_float((float*)(EEPROM_BED_CALIBRATION_VEC_Y + 4), vec_y[1]);
|
||||
#endif
|
||||
#ifdef SUPPORT_VERBOSITY
|
||||
if (verbosity_level >= 10) {
|
||||
// Length of the vec_x
|
||||
float l = sqrt(vec_x[0] * vec_x[0] + vec_x[1] * vec_x[1]);
|
||||
@ -1905,10 +1991,11 @@ BedSkewOffsetDetectionResultType find_bed_offset_and_skew(int8_t verbosity_level
|
||||
MYSERIAL.println(fabs(l));
|
||||
SERIAL_ECHOLNPGM("Saving bed calibration vectors to EEPROM");
|
||||
}
|
||||
#endif // SUPPORT_VERBOSITY
|
||||
// Correct the current_position to match the transformed coordinate system after world2machine_rotation_and_skew and world2machine_shift were set.
|
||||
world2machine_update_current();
|
||||
|
||||
|
||||
#ifdef SUPPORT_VERBOSITY
|
||||
if (verbosity_level >= 20) {
|
||||
// Test the positions. Are the positions reproducible? Now the calibration is active in the planner.
|
||||
delay_keep_alive(3000);
|
||||
@ -1923,6 +2010,7 @@ BedSkewOffsetDetectionResultType find_bed_offset_and_skew(int8_t verbosity_level
|
||||
delay_keep_alive(3000);
|
||||
}
|
||||
}
|
||||
#endif // SUPPORT_VERBOSITY
|
||||
return result;
|
||||
}
|
||||
if (result == BED_SKEW_OFFSET_DETECTION_FITTING_FAILED && too_far_mask == 2) return result; //if fitting failed and front center point is out of reach, terminate calibration and inform user
|
||||
@ -1946,9 +2034,9 @@ BedSkewOffsetDetectionResultType improve_bed_offset_and_skew(int8_t method, int8
|
||||
float *vec_y = vec_x + 2;
|
||||
float *cntr = vec_y + 2;
|
||||
memset(pts, 0, sizeof(float) * 7 * 7);
|
||||
|
||||
#ifdef SUPPORT_VERBOSITY
|
||||
if (verbosity_level >= 10) SERIAL_ECHOLNPGM("Improving bed offset and skew");
|
||||
|
||||
#endif // SUPPORT_VERBOSITY
|
||||
// Cache the current correction matrix.
|
||||
world2machine_initialize();
|
||||
vec_x[0] = world2machine_rotation_and_skew[0][0];
|
||||
@ -1986,6 +2074,7 @@ BedSkewOffsetDetectionResultType improve_bed_offset_and_skew(int8_t method, int8
|
||||
enable_endstops(false);
|
||||
enable_z_endstop(false);
|
||||
go_to_current(homing_feedrate[Z_AXIS]/60);
|
||||
#ifdef SUPPORT_VERBOSITY
|
||||
if (verbosity_level >= 20) {
|
||||
// Go to Y0, wait, then go to Y-4.
|
||||
current_position[Y_AXIS] = 0.f;
|
||||
@ -1997,6 +2086,7 @@ BedSkewOffsetDetectionResultType improve_bed_offset_and_skew(int8_t method, int8
|
||||
SERIAL_ECHOLNPGM("At Y_MIN_POS");
|
||||
delay_keep_alive(5000);
|
||||
}
|
||||
#endif // SUPPORT_VERBOSITY
|
||||
// Go to the measurement point.
|
||||
// Use the coorrected coordinate, which is a result of find_bed_offset_and_skew().
|
||||
current_position[X_AXIS] = vec_x[0] * pgm_read_float(bed_ref_points_4+mesh_point*2) + vec_y[0] * pgm_read_float(bed_ref_points_4+mesh_point*2+1) + cntr[0];
|
||||
@ -2004,25 +2094,32 @@ BedSkewOffsetDetectionResultType improve_bed_offset_and_skew(int8_t method, int8
|
||||
// The calibration points are very close to the min Y.
|
||||
if (current_position[Y_AXIS] < Y_MIN_POS_FOR_BED_CALIBRATION){
|
||||
current_position[Y_AXIS] = Y_MIN_POS_FOR_BED_CALIBRATION;
|
||||
#ifdef SUPPORT_VERBOSITY
|
||||
if (verbosity_level >= 20) {
|
||||
SERIAL_ECHOPGM("Calibration point ");
|
||||
SERIAL_ECHO(mesh_point);
|
||||
SERIAL_ECHOPGM("lower than Ymin. Y coordinate clamping was used.");
|
||||
SERIAL_ECHOLNPGM("");
|
||||
}
|
||||
}
|
||||
#endif // SUPPORT_VERBOSITY
|
||||
}
|
||||
go_to_current(homing_feedrate[X_AXIS]/60);
|
||||
// Find its Z position by running the normal vertical search.
|
||||
if (verbosity_level >= 10)
|
||||
#ifdef SUPPORT_VERBOSITY
|
||||
if (verbosity_level >= 10)
|
||||
delay_keep_alive(3000);
|
||||
find_bed_induction_sensor_point_z();
|
||||
if (verbosity_level >= 10)
|
||||
#endif // SUPPORT_VERBOSITY
|
||||
find_bed_induction_sensor_point_z();
|
||||
#ifdef SUPPORT_VERBOSITY
|
||||
if (verbosity_level >= 10)
|
||||
delay_keep_alive(3000);
|
||||
// Try to move the Z axis down a bit to increase a chance of the sensor to trigger.
|
||||
#endif // SUPPORT_VERBOSITY
|
||||
// Try to move the Z axis down a bit to increase a chance of the sensor to trigger.
|
||||
current_position[Z_AXIS] -= 0.025f;
|
||||
// Improve the point position by searching its center in a current plane.
|
||||
int8_t n_errors = 3;
|
||||
for (int8_t iter = 0; iter < 8; ) {
|
||||
#ifdef SUPPORT_VERBOSITY
|
||||
if (verbosity_level > 20) {
|
||||
SERIAL_ECHOPGM("Improving bed point ");
|
||||
SERIAL_ECHO(mesh_point);
|
||||
@ -2032,6 +2129,7 @@ BedSkewOffsetDetectionResultType improve_bed_offset_and_skew(int8_t method, int8
|
||||
MYSERIAL.print(current_position[Z_AXIS], 5);
|
||||
SERIAL_ECHOLNPGM("");
|
||||
}
|
||||
#endif // SUPPORT_VERBOSITY
|
||||
bool found = false;
|
||||
if (mesh_point < 2) {
|
||||
// Because the sensor cannot move in front of the first row
|
||||
@ -2065,6 +2163,7 @@ BedSkewOffsetDetectionResultType improve_bed_offset_and_skew(int8_t method, int8
|
||||
enable_endstops(false);
|
||||
enable_z_endstop(false);
|
||||
go_to_current(homing_feedrate[Z_AXIS]);
|
||||
#ifdef SUPPORT_VERBOSITY
|
||||
if (verbosity_level >= 5) {
|
||||
SERIAL_ECHOPGM("Improving bed point ");
|
||||
SERIAL_ECHO(mesh_point);
|
||||
@ -2074,10 +2173,13 @@ BedSkewOffsetDetectionResultType improve_bed_offset_and_skew(int8_t method, int8
|
||||
MYSERIAL.print(current_position[Z_AXIS], 5);
|
||||
SERIAL_ECHOLNPGM("");
|
||||
}
|
||||
#endif // SUPPORT_VERBOSITY
|
||||
}
|
||||
}
|
||||
#ifdef SUPPORT_VERBOSITY
|
||||
if (verbosity_level >= 10)
|
||||
delay_keep_alive(3000);
|
||||
#endif // SUPPORT_VERBOSITY
|
||||
}
|
||||
// Don't let the manage_inactivity() function remove power from the motors.
|
||||
refresh_cmd_timeout();
|
||||
@ -2089,6 +2191,7 @@ BedSkewOffsetDetectionResultType improve_bed_offset_and_skew(int8_t method, int8
|
||||
enable_endstops(false);
|
||||
enable_z_endstop(false);
|
||||
|
||||
#ifdef SUPPORT_VERBOSITY
|
||||
if (verbosity_level >= 5) {
|
||||
// Test the positions. Are the positions reproducible?
|
||||
current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
|
||||
@ -2112,6 +2215,7 @@ BedSkewOffsetDetectionResultType improve_bed_offset_and_skew(int8_t method, int8
|
||||
SERIAL_ECHOLNPGM("");
|
||||
}
|
||||
}
|
||||
#endif // SUPPORT_VERBOSITY
|
||||
|
||||
{
|
||||
// First fill in the too_far_mask from the measured points.
|
||||
@ -2127,6 +2231,7 @@ BedSkewOffsetDetectionResultType improve_bed_offset_and_skew(int8_t method, int8
|
||||
for (uint8_t mesh_point = 0; mesh_point < 2; ++ mesh_point) {
|
||||
float y = vec_x[1] * pgm_read_float(bed_ref_points_4+mesh_point*2) + vec_y[1] * pgm_read_float(bed_ref_points_4+mesh_point*2+1) + cntr[1];
|
||||
distance_from_min[mesh_point] = (y - Y_MIN_POS_CALIBRATION_POINT_OUT_OF_REACH);
|
||||
#ifdef SUPPORT_VERBOSITY
|
||||
if (verbosity_level >= 20) {
|
||||
SERIAL_ECHOLNPGM("");
|
||||
SERIAL_ECHOPGM("Distance from min:");
|
||||
@ -2136,6 +2241,7 @@ BedSkewOffsetDetectionResultType improve_bed_offset_and_skew(int8_t method, int8
|
||||
MYSERIAL.print(y);
|
||||
SERIAL_ECHOLNPGM("");
|
||||
}
|
||||
#endif // SUPPORT_VERBOSITY
|
||||
if (y < Y_MIN_POS_CALIBRATION_POINT_OUT_OF_REACH)
|
||||
too_far_mask |= 1 << mesh_point;
|
||||
}
|
||||
@ -2157,7 +2263,7 @@ BedSkewOffsetDetectionResultType improve_bed_offset_and_skew(int8_t method, int8
|
||||
|
||||
enable_endstops(false);
|
||||
enable_z_endstop(false);
|
||||
|
||||
#ifdef SUPPORT_VERBOSITY
|
||||
if (verbosity_level >= 5) {
|
||||
// Test the positions. Are the positions reproducible? Now the calibration is active in the planner.
|
||||
delay_keep_alive(3000);
|
||||
@ -2186,6 +2292,7 @@ BedSkewOffsetDetectionResultType improve_bed_offset_and_skew(int8_t method, int8
|
||||
}
|
||||
}
|
||||
}
|
||||
#endif // SUPPORT_VERBOSITY
|
||||
|
||||
// Sample Z heights for the mesh bed leveling.
|
||||
// In addition, store the results into an eeprom, to be used later for verification of the bed leveling process.
|
||||
|
Loading…
Reference in New Issue
Block a user