Use fabs() instead of abs() when using floats
This saves 514 bytes of flash memory
This commit is contained in:
parent
31b913cddb
commit
d853c19a21
@ -5503,7 +5503,7 @@ if(eSoundMode!=e_SOUND_MODE_SILENT)
|
||||
plan_buffer_line_curposXYZE(3000 / 60);
|
||||
st_synchronize();
|
||||
|
||||
while (abs(degBed() - PINDA_MIN_T) > 1) {
|
||||
while (fabs(degBed() - PINDA_MIN_T) > 1) {
|
||||
delay_keep_alive(1000);
|
||||
serialecho_temperatures();
|
||||
}
|
||||
@ -9694,7 +9694,7 @@ void mesh_plan_buffer_line(const float &x, const float &y, const float &z, const
|
||||
int n_segments = 0;
|
||||
|
||||
if (mbl.active) {
|
||||
float len = abs(dx) + abs(dy);
|
||||
float len = fabs(dx) + fabs(dy);
|
||||
if (len > 0)
|
||||
// Split to 3cm segments or shorter.
|
||||
n_segments = int(ceil(len / 30.f));
|
||||
@ -11240,7 +11240,7 @@ void uvlo_tiny()
|
||||
planner_abort_hard();
|
||||
|
||||
// Allow for small roundoffs to be ignored
|
||||
if(abs(current_position[Z_AXIS] - eeprom_read_float((float*)(EEPROM_UVLO_TINY_CURRENT_POSITION_Z))) >= 1.f/cs.axis_steps_per_unit[Z_AXIS])
|
||||
if(fabs(current_position[Z_AXIS] - eeprom_read_float((float*)(EEPROM_UVLO_TINY_CURRENT_POSITION_Z))) >= 1.f/cs.axis_steps_per_unit[Z_AXIS])
|
||||
{
|
||||
// Clean the input command queue, inhibit serial processing using saved_printing
|
||||
cmdqueue_reset();
|
||||
@ -12028,7 +12028,7 @@ void M600_wait_for_user(float HotendTempBckp) {
|
||||
break;
|
||||
case 2: //waiting for nozzle to reach target temperature
|
||||
|
||||
if (abs(degTargetHotend(active_extruder) - degHotend(active_extruder)) < 1) {
|
||||
if (fabs(degTargetHotend(active_extruder) - degHotend(active_extruder)) < 1) {
|
||||
lcd_display_message_fullscreen_P(_T(MSG_PRESS_TO_UNLOAD));
|
||||
waiting_start_time = _millis();
|
||||
wait_for_user_state = 0;
|
||||
|
@ -993,7 +993,7 @@ bool find_bed_induction_sensor_point_z(float minimum_z, uint8_t n_iter, int
|
||||
// we have to let the planner know where we are right now as it is not where we said to go.
|
||||
update_current_position_z();
|
||||
//printf_P(PSTR("Zs: %f, Z: %f, delta Z: %f"), z_bckp, current_position[Z_AXIS], (z_bckp - current_position[Z_AXIS]));
|
||||
if (abs(current_position[Z_AXIS] - z_bckp) < 0.025) {
|
||||
if (fabs(current_position[Z_AXIS] - z_bckp) < 0.025) {
|
||||
//printf_P(PSTR("PINDA triggered immediately, move Z higher and repeat measurement\n"));
|
||||
current_position[Z_AXIS] += 0.5;
|
||||
go_to_current(homing_feedrate[Z_AXIS]/60);
|
||||
@ -1019,7 +1019,7 @@ bool find_bed_induction_sensor_point_z(float minimum_z, uint8_t n_iter, int
|
||||
// SERIAL_ECHOPGM("Bed find_bed_induction_sensor_point_z low, height: ");
|
||||
// MYSERIAL.print(current_position[Z_AXIS], 5);
|
||||
// SERIAL_ECHOLNPGM("");
|
||||
float dz = i?abs(current_position[Z_AXIS] - (z / i)):0;
|
||||
float dz = i?fabs(current_position[Z_AXIS] - (z / i)):0;
|
||||
z += current_position[Z_AXIS];
|
||||
//printf_P(PSTR("Z[%d] = %d, dz=%d\n"), i, (int)(current_position[Z_AXIS] * 1000), (int)(dz * 1000));
|
||||
//printf_P(PSTR("Z- measurement deviation from avg value %f um\n"), dz);
|
||||
|
@ -1095,7 +1095,7 @@ Having the real displacement of the head, we can calculate the total movement le
|
||||
*/
|
||||
block->use_advance_lead = extruder_advance_K > 0
|
||||
&& delta_mm[E_AXIS] >= 0
|
||||
&& abs(delta_mm[Z_AXIS]) < 0.5;
|
||||
&& fabs(delta_mm[Z_AXIS]) < 0.5;
|
||||
if (block->use_advance_lead) {
|
||||
#ifdef LA_FLOWADJ
|
||||
// M221/FLOW should change uniformly the extrusion thickness
|
||||
|
@ -472,7 +472,7 @@ void __attribute__((noinline)) PID_autotune(float temp, int extruder, int ncycle
|
||||
//SERIAL_ECHOPGM("s. Difference between current and ambient T: ");
|
||||
//MYSERIAL.println(input - temp_ambient);
|
||||
|
||||
if (abs(input - temp_ambient) < 5.0) {
|
||||
if (fabs(input - temp_ambient) < 5.0) {
|
||||
temp_runaway_stop(false, (extruder<0));
|
||||
pid_tuning_finished = true;
|
||||
return;
|
||||
|
@ -4794,7 +4794,7 @@ static void wait_preheat()
|
||||
delay_keep_alive(2000);
|
||||
lcd_display_message_fullscreen_P(_T(MSG_WIZARD_HEATING));
|
||||
lcd_set_custom_characters();
|
||||
while (abs(degHotend(0) - degTargetHotend(0)) > 3) {
|
||||
while (fabs(degHotend(0) - degTargetHotend(0)) > 3) {
|
||||
lcd_display_message_fullscreen_P(_T(MSG_WIZARD_HEATING));
|
||||
|
||||
lcd_set_cursor(0, 4);
|
||||
@ -7760,7 +7760,7 @@ static bool lcd_selfcheck_axis_sg(unsigned char axis) {
|
||||
eeprom_write_word(((uint16_t*)((axis == X_AXIS)?EEPROM_BELTSTATUS_X:EEPROM_BELTSTATUS_Y)), sg1);
|
||||
|
||||
current_position_final = st_get_position_mm(axis);
|
||||
measured_axis_length[0] = abs(current_position_final - current_position_init);
|
||||
measured_axis_length[0] = fabs(current_position_final - current_position_init);
|
||||
|
||||
|
||||
// first measurement end and second measurement begin
|
||||
@ -7777,7 +7777,7 @@ static bool lcd_selfcheck_axis_sg(unsigned char axis) {
|
||||
|
||||
current_position_init = st_get_position_mm(axis);
|
||||
|
||||
measured_axis_length[1] = abs(current_position_final - current_position_init);
|
||||
measured_axis_length[1] = fabs(current_position_final - current_position_init);
|
||||
|
||||
tmc2130_home_exit();
|
||||
|
||||
@ -7785,7 +7785,7 @@ static bool lcd_selfcheck_axis_sg(unsigned char axis) {
|
||||
|
||||
for(uint_least8_t i = 0; i < 2; i++){ //check if measured axis length corresponds to expected length
|
||||
printf_P(_N("Measured axis length:%.3f\n"), measured_axis_length[i]);
|
||||
if (abs(measured_axis_length[i] - axis_length) > max_error_mm) {
|
||||
if (fabs(measured_axis_length[i] - axis_length) > max_error_mm) {
|
||||
enable_endstops(false);
|
||||
|
||||
const char *_error_1;
|
||||
@ -7804,9 +7804,9 @@ static bool lcd_selfcheck_axis_sg(unsigned char axis) {
|
||||
}
|
||||
}
|
||||
|
||||
printf_P(_N("Axis length difference:%.3f\n"), abs(measured_axis_length[0] - measured_axis_length[1]));
|
||||
printf_P(_N("Axis length difference:%.3f\n"), fabs(measured_axis_length[0] - measured_axis_length[1]));
|
||||
|
||||
if (abs(measured_axis_length[0] - measured_axis_length[1]) > 1) { //check if difference between first and second measurement is low
|
||||
if (fabs(measured_axis_length[0] - measured_axis_length[1]) > 1) { //check if difference between first and second measurement is low
|
||||
//loose pulleys
|
||||
const char *_error_1;
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user