Merge pull request #30 from XPila/MK3

PINDA thermistor + extruder current adjust.
This commit is contained in:
XPila 2017-08-30 21:57:28 +02:00 committed by GitHub
commit dd2de5266e
8 changed files with 235 additions and 12 deletions

View file

@ -744,4 +744,6 @@ enum CalibrationStatus
#include "Configuration_adv.h"
#include "thermistortables.h"
#define PINDA_THERMISTOR
#endif //__CONFIGURATION_H

View file

@ -361,6 +361,11 @@ void bed_analysis(float x_dimension, float y_dimension, int x_points_num, int y_
float temp_comp_interpolation(float temperature);
void temp_compensation_apply();
void temp_compensation_start();
#ifdef PINDA_THERMISTOR
float temp_compensation_pinda_thermistor_offset();
#endif //PINDA_THERMISTOR
void wait_for_heater(long codenum);
void serialecho_temperatures();

View file

@ -3050,6 +3050,139 @@ void process_commands()
case 76: //PINDA probe temperature calibration
{
#ifdef PINDA_THERMISTOR
if (farm_mode && temp_cal_active)
{
if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS])) {
// We don't know where we are! HOME!
// Push the commands to the front of the message queue in the reverse order!
// There shall be always enough space reserved for these commands.
repeatcommand_front(); // repeat G76 with all its parameters
enquecommand_front_P((PSTR("G28 W0")));
break;
}
SERIAL_ECHOLNPGM("PINDA probe calibration start");
float zero_z;
int z_shift = 0; //unit: steps
float start_temp = 5 * (int)(current_temperature_pinda / 5);
if (start_temp < 35) start_temp = 35;
if (start_temp < current_temperature_pinda) start_temp += 5;
SERIAL_ECHOPGM("start temperature: ");
MYSERIAL.println(start_temp);
setTargetHotend(200, 0);
setTargetBed(50 + 10 * (start_temp - 30) / 5);
custom_message = true;
custom_message_type = 4;
custom_message_state = 1;
custom_message = MSG_TEMP_CALIBRATION;
current_position[X_AXIS] = PINDA_PREHEAT_X;
current_position[Y_AXIS] = PINDA_PREHEAT_Y;
current_position[Z_AXIS] = PINDA_PREHEAT_Z;
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
st_synchronize();
while (current_temperature_pinda < start_temp)
{
delay_keep_alive(1000);
serialecho_temperatures();
}
eeprom_update_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 0); //invalidate temp. calibration in case that in will be aborted during the calibration process
current_position[Z_AXIS] = 5;
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
current_position[X_AXIS] = pgm_read_float(bed_ref_points);
current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 1);
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
st_synchronize();
find_bed_induction_sensor_point_z(-1.f);
zero_z = current_position[Z_AXIS];
//current_position[Z_AXIS]
SERIAL_ECHOLNPGM("");
SERIAL_ECHOPGM("ZERO: ");
MYSERIAL.print(current_position[Z_AXIS]);
SERIAL_ECHOLNPGM("");
int i = -1; for (; i < 5; i++)
{
float temp = (40 + i * 5);
SERIAL_ECHOPGM("Step: ");
MYSERIAL.print(i + 2);
SERIAL_ECHOLNPGM("/6 (skipped)");
SERIAL_ECHOPGM("PINDA temperature: ");
MYSERIAL.print((40 + i*5));
SERIAL_ECHOPGM(" Z shift (mm):");
MYSERIAL.print(0);
SERIAL_ECHOLNPGM("");
if (i >= 0) EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i * 2, &z_shift);
if (start_temp <= temp) break;
}
for (i++; i < 5; i++)
{
float temp = (40 + i * 5);
SERIAL_ECHOPGM("Step: ");
MYSERIAL.print(i + 2);
SERIAL_ECHOLNPGM("/6");
custom_message_state = i + 2;
setTargetBed(50 + 10 * (temp - 30) / 5);
setTargetHotend(255, 0);
current_position[X_AXIS] = PINDA_PREHEAT_X;
current_position[Y_AXIS] = PINDA_PREHEAT_Y;
current_position[Z_AXIS] = PINDA_PREHEAT_Z;
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
st_synchronize();
while (current_temperature_pinda < temp)
{
delay_keep_alive(1000);
serialecho_temperatures();
}
current_position[Z_AXIS] = 5;
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
current_position[X_AXIS] = pgm_read_float(bed_ref_points);
current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 1);
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
st_synchronize();
find_bed_induction_sensor_point_z(-1.f);
z_shift = (int)((current_position[Z_AXIS] - zero_z)*axis_steps_per_unit[Z_AXIS]);
SERIAL_ECHOLNPGM("");
SERIAL_ECHOPGM("PINDA temperature: ");
MYSERIAL.print(current_temperature_pinda);
SERIAL_ECHOPGM(" Z shift (mm):");
MYSERIAL.print(current_position[Z_AXIS] - zero_z);
SERIAL_ECHOLNPGM("");
EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i * 2, &z_shift);
}
custom_message_type = 0;
custom_message = false;
eeprom_update_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 1);
SERIAL_ECHOLNPGM("Temperature calibration done. Continue with pressing the knob.");
disable_x();
disable_y();
disable_z();
disable_e0();
disable_e1();
disable_e2();
lcd_show_fullscreen_message_and_wait_P(MSG_TEMP_CALIBRATION_DONE);
lcd_update_enable(true);
lcd_update(2);
setTargetBed(0); //set bed target temperature back to 0
setTargetHotend(0,0); //set hotend target temperature back to 0
break;
}
#endif //PINDA_THERMISTOR
setTargetBed(PINDA_MIN_T);
float zero_z;
int z_shift = 0; //unit: steps
@ -3238,6 +3371,16 @@ void process_commands()
break;
}
bool temp_comp_start = true;
#ifdef PINDA_THERMISTOR
if (farm_mode && temp_cal_active)
{
temp_comp_start = false;
}
#endif //PINDA_THERMISTOR
if (temp_comp_start)
if (run == false && temp_cal_active == true && calibration_status_pinda() == true && target_temperature_bed >= 50) {
if (lcd_commands_type != LCD_COMMAND_STOP_PRINT) {
temp_compensation_start();
@ -3368,12 +3511,21 @@ void process_commands()
SERIAL_PROTOCOLPGM("\n");
}
float offset_z = 0;
#ifdef PINDA_THERMISTOR
if (farm_mode && temp_cal_active)
offset_z = temp_compensation_pinda_thermistor_offset();
#endif //PINDA_THERMISTOR
if (verbosity_level >= 1) {
SERIAL_ECHOPGM("mesh bed leveling: ");
MYSERIAL.print(current_position[Z_AXIS], 5);
SERIAL_ECHOPGM(" offset: ");
MYSERIAL.print(offset_z, 5);
SERIAL_ECHOLNPGM("");
}
mbl.set_z(ix, iy, current_position[Z_AXIS]); //store measured z values z_values[iy][ix] = z;
mbl.set_z(ix, iy, current_position[Z_AXIS] - offset_z); //store measured z values z_values[iy][ix] = z - offset_z;
custom_message_state--;
mesh_point++;
@ -3393,6 +3545,15 @@ void process_commands()
}
clean_up_after_endstop_move();
SERIAL_ECHOLNPGM("clean up finished ");
bool apply_temp_comp = true;
#ifdef PINDA_THERMISTOR
if (farm_mode && temp_cal_active)
{
apply_temp_comp = false;
}
#endif
if (apply_temp_comp)
if(temp_cal_active == true && calibration_status_pinda() == true) temp_compensation_apply(); //apply PINDA temperature compensation
babystep_apply(); // Apply Z height correction aka baby stepping before mesh bed leveing gets activated.
SERIAL_ECHOLNPGM("babystep applied");
@ -4334,6 +4495,12 @@ Sigma_Exit:
SERIAL_PROTOCOL_F(degHotend(tmp_extruder),1);
SERIAL_PROTOCOLPGM(" /");
SERIAL_PROTOCOL_F(degTargetHotend(tmp_extruder),1);
#ifdef PINDA_THERMISTOR
SERIAL_PROTOCOLPGM(" T1:");
SERIAL_PROTOCOL_F(current_temperature_pinda, 1);
SERIAL_PROTOCOLPGM(" /");
SERIAL_PROTOCOL_F(degTargetBed(), 1);
#endif // PINDA_THERMISTOR
#if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
SERIAL_PROTOCOLPGM(" B:");
SERIAL_PROTOCOL_F(degBed(),1);
@ -7016,7 +7183,11 @@ float temp_comp_interpolation(float inp_temperature) {
for (i = 0; i < n; i++) {
if (i>0) EEPROM_read_B(EEPROM_PROBE_TEMP_SHIFT + (i-1) * 2, &shift[i]); //read shift in steps from EEPROM
temp_C[i] = 50 + i * 10; //temperature in C
#ifdef PINDA_THERMISTOR
temp_C[i] = 35 + i * 5; //temperature in C
#else
temp_C[i] = 50 + i * 10; //temperature in C
#endif
x[i] = (float)temp_C[i];
f[i] = (float)shift[i];
}
@ -7063,6 +7234,15 @@ float temp_comp_interpolation(float inp_temperature) {
}
#ifdef PINDA_THERMISTOR
float temp_compensation_pinda_thermistor_offset()
{
if (!temp_cal_active) return 0;
if (!calibration_status_pinda()) return 0;
return temp_comp_interpolation(current_temperature_pinda) / axis_steps_per_unit[Z_AXIS];
}
#endif //PINDA_THERMISTOR
void long_pause() //long pause print
{
st_synchronize();
@ -7111,6 +7291,10 @@ void serialecho_temperatures() {
SERIAL_PROTOCOL(tt);
SERIAL_PROTOCOLPGM(" E:");
SERIAL_PROTOCOL((int)active_extruder);
#ifdef PINDA_THERMISTOR
SERIAL_PROTOCOLPGM(" T1:");
SERIAL_PROTOCOL(current_temperature_pinda);
#endif
SERIAL_PROTOCOLPGM(" B:");
SERIAL_PROTOCOL_F(degBed(), 1);
SERIAL_PROTOCOLLN("");

View file

@ -45,6 +45,10 @@ int target_temperature[EXTRUDERS] = { 0 };
int target_temperature_bed = 0;
int current_temperature_raw[EXTRUDERS] = { 0 };
float current_temperature[EXTRUDERS] = { 0.0 };
#ifdef PINDA_THERMISTOR
int current_temperature_raw_pinda = 0 ;
float current_temperature_pinda = 0.0;
#endif //PINDA_THERMISTOR
int current_temperature_bed_raw = 0;
float current_temperature_bed = 0.0;
#ifdef TEMP_SENSOR_1_AS_REDUNDANT
@ -864,6 +868,9 @@ static void updateTemperaturesFromRawValues()
{
current_temperature[e] = analog2temp(current_temperature_raw[e], e);
}
#ifdef PINDA_THERMISTOR
current_temperature_pinda = analog2tempBed(current_temperature_raw_pinda); //thermistor for pinda is the same as for bed
#endif
current_temperature_bed = analog2tempBed(current_temperature_bed_raw);
@ -1944,16 +1951,20 @@ ISR(TIMER0_COMPB_vect)
if (!temp_meas_ready) //Only update the raw values if they have been read. Else we could be updating them during reading.
{
current_temperature_raw[0] = raw_temp_0_value;
#if EXTRUDERS > 1
#ifdef PINDA_THERMISTOR
current_temperature_raw_pinda = raw_temp_1_value;
#else
#if EXTRUDERS > 1
current_temperature_raw[1] = raw_temp_1_value;
#endif
#ifdef TEMP_SENSOR_1_AS_REDUNDANT
#endif
#ifdef TEMP_SENSOR_1_AS_REDUNDANT
redundant_temperature_raw = raw_temp_1_value;
#endif
#if EXTRUDERS > 2
#endif
#if EXTRUDERS > 2
current_temperature_raw[2] = raw_temp_2_value;
#endif
current_temperature_bed_raw = raw_temp_bed_value;
#endif
#endif //PINDA_THERMISTOR
current_temperature_bed_raw = raw_temp_bed_value;
}
//Add similar code for Filament Sensor - can be read any time since IIR filtering is used

View file

@ -49,6 +49,12 @@ extern float current_temperature[EXTRUDERS];
#endif
extern int target_temperature_bed;
extern float current_temperature_bed;
#ifdef PINDA_THERMISTOR
extern int current_temperature_raw_pinda;
extern float current_temperature_pinda;
#endif
#ifdef TEMP_SENSOR_1_AS_REDUNDANT
extern float redundant_temperature;
#endif

View file

@ -734,7 +734,21 @@ static void lcd_implementation_status_screen()
planner_queue_min_reset();
}
#endif
bool print_sd_status = true;
#ifdef PINDA_THERMISTOR
// if (farm_mode && (custom_message_type == 4))
{
lcd.setCursor(0, 2);
lcd_printPGM(PSTR("P"));
lcd.print(ftostr3(current_temperature_pinda));
lcd_printPGM(PSTR(LCD_STR_DEGREE " "));
print_sd_status = false;
}
#endif //PINDA_THERMISTOR
if (print_sd_status)
{
//Print SD status
lcd.setCursor(0, 2);
if (is_usb_printing)
@ -762,7 +776,8 @@ static void lcd_implementation_status_screen()
lcd.print('%');
}
}
}
// Farm number display
if (farm_mode)
{

View file

@ -144,7 +144,7 @@ const bool Z_MIN_ENDSTOP_INVERTING = false; // set to true to invert the logic o
//new settings is possible for vsense = 1, running current value > 31 set vsense to zero and shift both currents by 1 bit right (Z axis only)
#define TMC2130_CURRENTS_H {3, 3, 5, 8} // default holding currents for all axes
#define TMC2130_CURRENTS_R {13, 13, 20, 20} // default running currents for all axes
#define TMC2130_CURRENTS_R {13, 13, 20, 22} // default running currents for all axes
//#define TMC2130_DEBUG
//#define TMC2130_DEBUG_WR

View file

@ -144,7 +144,7 @@ const bool Z_MIN_ENDSTOP_INVERTING = false; // set to true to invert the logic o
//new settings is possible for vsense = 1, running current value > 31 set vsense to zero and shift both currents by 1 bit right (Z axis only)
#define TMC2130_CURRENTS_H {3, 3, 5, 8} // default holding currents for all axes
#define TMC2130_CURRENTS_R {13, 13, 20, 20} // default running currents for all axes
#define TMC2130_CURRENTS_R {13, 13, 20, 22} // default running currents for all axes
//#define TMC2130_DEBUG
//#define TMC2130_DEBUG_WR