Merge pull request #1026 from mkbel/MK3_dev

Merge 'MK3' into MK3_dev
This commit is contained in:
mkbel 2018-08-09 23:10:51 +02:00 committed by GitHub
commit f25cad4ba5
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
9 changed files with 197 additions and 694 deletions

View File

@ -469,7 +469,7 @@ void gcode_M701();
void proc_commands(); void proc_commands();
void manage_response(bool move_axes, bool turn_off_nozzle); void manage_response(bool move_axes, bool turn_off_nozzle);
bool mmu_get_response(bool timeout, bool clear); bool mmu_get_response(bool timeout);
void mmu_not_responding(); void mmu_not_responding();
void mmu_load_to_nozzle(); void mmu_load_to_nozzle();
void M600_load_filament(); void M600_load_filament();

View File

@ -73,7 +73,6 @@
#include "math.h" #include "math.h"
#include "util.h" #include "util.h"
#include "Timer.h" #include "Timer.h"
#include "uart2.h"
#include <avr/wdt.h> #include <avr/wdt.h>
#include <avr/pgmspace.h> #include <avr/pgmspace.h>
@ -1214,8 +1213,6 @@ void setup()
SERIAL_ECHO_START; SERIAL_ECHO_START;
printf_P(PSTR(" " FW_VERSION_FULL "\n")); printf_P(PSTR(" " FW_VERSION_FULL "\n"));
uart2_init();
#ifdef DEBUG_SEC_LANG #ifdef DEBUG_SEC_LANG
lang_table_header_t header; lang_table_header_t header;
@ -1770,7 +1767,8 @@ void setup()
lcd_setstatuspgm(_T(WELCOME_MSG)); lcd_setstatuspgm(_T(WELCOME_MSG));
} }
} }
} }
#endif //UVLO_SUPPORT #endif //UVLO_SUPPORT
@ -1779,6 +1777,12 @@ void setup()
#ifdef WATCHDOG #ifdef WATCHDOG
wdt_enable(WDTO_4S); wdt_enable(WDTO_4S);
#endif //WATCHDOG #endif //WATCHDOG
puts_P(_N("Checking MMU unit..."));
if (mmu_init())
printf_P(_N("MMU ENABLED, finda=%hhd, version=%d\n"), mmu_finda, mmu_version);
else
puts_P(_N("MMU DISABLED"));
} }
@ -3190,7 +3194,7 @@ void gcode_M701()
printf_P(PSTR("gcode_M701 begin\n")); printf_P(PSTR("gcode_M701 begin\n"));
if (mmu_enabled) if (mmu_enabled)
extr_adj(snmm_extruder);//loads current extruder extr_adj(mmu_extruder);//loads current extruder
else else
{ {
enable_z(); enable_z();
@ -3459,17 +3463,26 @@ void process_commands()
} }
} }
else if (code_seen("thx")) { else if (code_seen("thx"))
{
no_response = false; no_response = false;
} }
else if (code_seen("uvlo")) { else if (code_seen("uvlo"))
{
eeprom_update_byte((uint8_t*)EEPROM_UVLO,0); eeprom_update_byte((uint8_t*)EEPROM_UVLO,0);
enquecommand_P(PSTR("M24")); enquecommand_P(PSTR("M24"));
} }
else if (code_seen("MMURES")) { else if (code_seen("MMURES"))
{
printf_P(PSTR("X0\n")); mmu_reset();
fprintf_P(uart2io, PSTR("X0\n")); }
else if (code_seen("MMUFIN"))
{
mmu_read_finda();
}
else if (code_seen("MMUVER"))
{
mmu_read_version();
} }
else if (code_seen("RESET")) { else if (code_seen("RESET")) {
// careful! // careful!
@ -6334,7 +6347,7 @@ if((eSoundMode==e_SOUND_MODE_LOUD)||(eSoundMode==e_SOUND_MODE_ONCE))
default: printf_P(PSTR("Default\n")); break; default: printf_P(PSTR("Default\n")); break;
} }
printf_P(PSTR("F%d%d\n"), extruder, filament); printf_P(PSTR("F%d%d\n"), extruder, filament);
fprintf_P(uart2io, PSTR("F%d%d\n"), extruder, filament); mmu_printf_P(PSTR("F%d%d\n"), extruder, filament);
} }
break; break;
@ -6785,7 +6798,7 @@ if((eSoundMode==e_SOUND_MODE_LOUD)||(eSoundMode==e_SOUND_MODE_ONCE))
case 701: //M701: load filament case 701: //M701: load filament
{ {
if (mmu_enabled && code_seen('E')) if (mmu_enabled && code_seen('E'))
snmm_extruder = code_value(); mmu_extruder = code_value();
gcode_M701(); gcode_M701();
} }
break; break;
@ -6840,11 +6853,11 @@ if((eSoundMode==e_SOUND_MODE_LOUD)||(eSoundMode==e_SOUND_MODE_ONCE))
if (mmu_enabled) if (mmu_enabled)
{ {
printf_P(PSTR("T code: %d \n"), tmp_extruder); printf_P(PSTR("T code: %d \n"), tmp_extruder);
fprintf_P(uart2io, PSTR("T%d\n"), tmp_extruder); mmu_printf_P(PSTR("T%d\n"), tmp_extruder);
manage_response(true, true); manage_response(true, true);
snmm_extruder = tmp_extruder; //filament change is finished mmu_extruder = tmp_extruder; //filament change is finished
if (*(strchr_pointer + index) == '?')// for single material usage with mmu if (*(strchr_pointer + index) == '?')// for single material usage with mmu
mmu_load_to_nozzle(); mmu_load_to_nozzle();
@ -6854,11 +6867,11 @@ else
#ifdef SNMM #ifdef SNMM
#ifdef LIN_ADVANCE #ifdef LIN_ADVANCE
if (snmm_extruder != tmp_extruder) if (mmu_extruder != tmp_extruder)
clear_current_adv_vars(); //Check if the selected extruder is not the active one and reset LIN_ADVANCE variables if so. clear_current_adv_vars(); //Check if the selected extruder is not the active one and reset LIN_ADVANCE variables if so.
#endif #endif
snmm_extruder = tmp_extruder; mmu_extruder = tmp_extruder;
delay(100); delay(100);
@ -8878,16 +8891,15 @@ static void print_time_remaining_init() {
print_percent_done_silent = PRINT_PERCENT_DONE_INIT; print_percent_done_silent = PRINT_PERCENT_DONE_INIT;
} }
bool mmu_get_response(bool timeout, bool clear) { bool mmu_get_response(bool timeout) {
//waits for "ok" from mmu //waits for "ok" from mmu
//function returns true if "ok" was received //function returns true if "ok" was received
//if timeout is set to true function return false if there is no "ok" received before timeout //if timeout is set to true function return false if there is no "ok" received before timeout
bool response = true; bool response = true;
LongTimer mmu_get_reponse_timeout; LongTimer mmu_get_reponse_timeout;
if (clear) uart2_rx_clr();
KEEPALIVE_STATE(IN_PROCESS); KEEPALIVE_STATE(IN_PROCESS);
mmu_get_reponse_timeout.start(); mmu_get_reponse_timeout.start();
while (!uart2_rx_ok()) while (mmu_rx_ok() <= 0)
{ {
delay_keep_alive(100); delay_keep_alive(100);
if (timeout && mmu_get_reponse_timeout.expired(5 * 60 * 1000ul)) { //5 minutes timeout if (timeout && mmu_get_reponse_timeout.expired(5 * 60 * 1000ul)) { //5 minutes timeout
@ -8909,7 +8921,7 @@ void manage_response(bool move_axes, bool turn_off_nozzle) {
float x_position_bckp = current_position[X_AXIS]; float x_position_bckp = current_position[X_AXIS];
float y_position_bckp = current_position[Y_AXIS]; float y_position_bckp = current_position[Y_AXIS];
while(!response) { while(!response) {
response = mmu_get_response(true, !mmu_print_saved); //wait for "ok" from mmu response = mmu_get_response(true); //wait for "ok" from mmu
if (!response) { //no "ok" was received in reserved time frame, user will fix the issue on mmu unit if (!response) { //no "ok" was received in reserved time frame, user will fix the issue on mmu unit
if (!mmu_print_saved) { //first occurence, we are saving current position, park print head in certain position and disable nozzle heater if (!mmu_print_saved) { //first occurence, we are saving current position, park print head in certain position and disable nozzle heater
if (lcd_update_enabled) { if (lcd_update_enabled) {
@ -9116,7 +9128,7 @@ void mmu_M600_load_filament(bool automatic)
{ {
yes = lcd_show_fullscreen_message_yes_no_and_wait_P(_i("Do you want to switch extruder?"), false); yes = lcd_show_fullscreen_message_yes_no_and_wait_P(_i("Do you want to switch extruder?"), false);
if (yes) tmp_extruder = choose_extruder_menu(); if (yes) tmp_extruder = choose_extruder_menu();
else tmp_extruder = snmm_extruder; else tmp_extruder = mmu_extruder;
} }
else else
{ {
@ -9129,9 +9141,9 @@ void mmu_M600_load_filament(bool automatic)
lcd_print(tmp_extruder + 1); lcd_print(tmp_extruder + 1);
snmm_filaments_used |= (1 << tmp_extruder); //for stop print snmm_filaments_used |= (1 << tmp_extruder); //for stop print
printf_P(PSTR("T code: %d \n"), tmp_extruder); printf_P(PSTR("T code: %d \n"), tmp_extruder);
fprintf_P(uart2io, PSTR("T%d\n"), tmp_extruder); mmu_printf_P(PSTR("T%d\n"), tmp_extruder);
manage_response(false, true); manage_response(false, true);
snmm_extruder = tmp_extruder; //filament change is finished mmu_extruder = tmp_extruder; //filament change is finished
mmu_load_to_nozzle(); mmu_load_to_nozzle();
st_synchronize(); st_synchronize();
@ -9151,7 +9163,7 @@ void M600_load_filament_movements()
} }
while (!lcd_clicked()); while (!lcd_clicked());
st_synchronize(); st_synchronize();
current_position[E_AXIS] += bowden_length[snmm_extruder]; current_position[E_AXIS] += bowden_length[mmu_extruder];
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000, active_extruder); plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000, active_extruder);
current_position[E_AXIS] += FIL_LOAD_LENGTH - 60; current_position[E_AXIS] += FIL_LOAD_LENGTH - 60;
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 1400, active_extruder); plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 1400, active_extruder);

View File

@ -12,13 +12,99 @@
extern const char* lcd_display_message_fullscreen_P(const char *msg); extern const char* lcd_display_message_fullscreen_P(const char *msg);
extern void lcd_return_to_status(); extern void lcd_return_to_status();
#ifdef SNMM_V2 #define MMU_TIMEOUT 100
bool mmu_enabled = true;
#else //SNMM_V2
bool mmu_enabled = false;
#endif //SNMM_V2
uint8_t snmm_extruder = 0; bool mmu_enabled = false;
uint8_t mmu_extruder = 0;
int8_t mmu_finda = -1;
int16_t mmu_version = -1;
//clear rx buffer
void mmu_clr_rx_buf(void)
{
while (fgetc(uart2io) >= 0);
}
//send command - puts
int mmu_puts_P(const char* str)
{
mmu_clr_rx_buf(); //clear rx buffer
return fputs_P(str, uart2io); //send command
}
//send command - printf
int mmu_printf_P(const char* format, ...)
{
va_list args;
va_start(args, format);
mmu_clr_rx_buf(); //clear rx buffer
int r = vfprintf_P(uart2io, format, args); //send command
va_end(args);
return r;
}
//check 'ok' response
int8_t mmu_rx_ok(void)
{
return uart2_rx_str_P(PSTR("ok\n"));
}
//check 'start' response
int8_t mmu_rx_start(void)
{
return uart2_rx_str_P(PSTR("start\n"));
}
//initialize mmu_unit
bool mmu_init(void)
{
uart2_init(); //init uart2
_delay_ms(10); //wait 10ms for sure
if (mmu_reset()) //reset mmu
{
mmu_read_finda();
mmu_read_version();
return true;
}
return false;
}
bool mmu_reset(void)
{
mmu_puts_P(PSTR("X0\n")); //send command
unsigned char timeout = 10; //timeout = 10x100ms
while ((mmu_rx_start() <= 0) && (--timeout))
delay_keep_alive(MMU_TIMEOUT);
mmu_enabled = timeout?true:false;
return mmu_enabled;
}
int8_t mmu_read_finda(void)
{
mmu_puts_P(PSTR("P0\n"));
unsigned char timeout = 10; //10x100ms
while ((mmu_rx_ok() <= 0) && (--timeout))
delay_keep_alive(MMU_TIMEOUT);
mmu_finda = -1;
if (timeout)
fscanf_P(uart2io, PSTR("%hhu"), &mmu_finda);
return mmu_finda;
}
int16_t mmu_read_version(void)
{
mmu_puts_P(PSTR("S1\n"));
unsigned char timeout = 10; //10x100ms
while ((mmu_rx_ok() <= 0) && (--timeout))
delay_keep_alive(MMU_TIMEOUT);
if (timeout)
fscanf_P(uart2io, PSTR("%u"), &mmu_version);
return mmu_version;
}
void extr_mov(float shift, float feed_rate) void extr_mov(float shift, float feed_rate)
{ //move extruder no matter what the current heater temperature is { //move extruder no matter what the current heater temperature is
@ -42,7 +128,7 @@ void change_extr(int
disable_e1(); disable_e1();
disable_e2(); disable_e2();
snmm_extruder = extr; mmu_extruder = extr;
pinMode(E_MUX0_PIN, OUTPUT); pinMode(E_MUX0_PIN, OUTPUT);
pinMode(E_MUX1_PIN, OUTPUT); pinMode(E_MUX1_PIN, OUTPUT);
@ -76,7 +162,7 @@ void change_extr(int
int get_ext_nr() int get_ext_nr()
{ //reads multiplexer input pins and return current extruder number (counted from 0) { //reads multiplexer input pins and return current extruder number (counted from 0)
#ifndef SNMM #ifndef SNMM
return(snmm_extruder); //update needed return(mmu_extruder); //update needed
#else #else
return(2 * READ(E_MUX1_PIN) + READ(E_MUX0_PIN)); return(2 * READ(E_MUX1_PIN) + READ(E_MUX0_PIN));
#endif #endif
@ -85,7 +171,7 @@ int get_ext_nr()
void display_loading() void display_loading()
{ {
switch (snmm_extruder) switch (mmu_extruder)
{ {
case 1: lcd_display_message_fullscreen_P(_T(MSG_FILAMENT_LOADING_T1)); break; case 1: lcd_display_message_fullscreen_P(_T(MSG_FILAMENT_LOADING_T1)); break;
case 2: lcd_display_message_fullscreen_P(_T(MSG_FILAMENT_LOADING_T2)); break; case 2: lcd_display_message_fullscreen_P(_T(MSG_FILAMENT_LOADING_T2)); break;
@ -108,7 +194,7 @@ void extr_adj(int extruder) //loading filament for SNMM
//if(strlen(_T(MSG_LOADING_FILAMENT))>18) lcd.setCursor(0, 1); //if(strlen(_T(MSG_LOADING_FILAMENT))>18) lcd.setCursor(0, 1);
//else lcd.print(" "); //else lcd.print(" ");
lcd_print(" "); lcd_print(" ");
lcd_print(snmm_extruder + 1); lcd_print(mmu_extruder + 1);
// get response // get response
manage_response(false, false); manage_response(false, false);
@ -148,7 +234,7 @@ void extr_adj(int extruder) //loading filament for SNMM
lcd_set_cursor(0, 0); lcd_puts_P(_T(MSG_LOADING_FILAMENT)); lcd_set_cursor(0, 0); lcd_puts_P(_T(MSG_LOADING_FILAMENT));
if(strlen(_T(MSG_LOADING_FILAMENT))>18) lcd_set_cursor(0, 1); if(strlen(_T(MSG_LOADING_FILAMENT))>18) lcd_set_cursor(0, 1);
else lcd_print(" "); else lcd_print(" ");
lcd_print(snmm_extruder + 1); lcd_print(mmu_extruder + 1);
lcd_set_cursor(0, 2); lcd_puts_P(_T(MSG_PLEASE_WAIT)); lcd_set_cursor(0, 2); lcd_puts_P(_T(MSG_PLEASE_WAIT));
st_synchronize(); st_synchronize();
max_feedrate[E_AXIS] = 50; max_feedrate[E_AXIS] = 50;
@ -177,7 +263,7 @@ void extr_unload()
lcd_clear(); lcd_clear();
lcd_set_cursor(0, 1); lcd_puts_P(_T(MSG_UNLOADING_FILAMENT)); lcd_set_cursor(0, 1); lcd_puts_P(_T(MSG_UNLOADING_FILAMENT));
lcd_print(" "); lcd_print(" ");
lcd_print(snmm_extruder + 1); lcd_print(mmu_extruder + 1);
current_position[E_AXIS] -= 80; current_position[E_AXIS] -= 80;
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2500 / 60, active_extruder); plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2500 / 60, active_extruder);
@ -196,7 +282,7 @@ void extr_unload()
max_feedrate[E_AXIS] = 50; max_feedrate[E_AXIS] = 50;
lcd_set_cursor(0, 0); lcd_puts_P(_T(MSG_UNLOADING_FILAMENT)); lcd_set_cursor(0, 0); lcd_puts_P(_T(MSG_UNLOADING_FILAMENT));
lcd_print(" "); lcd_print(" ");
lcd_print(snmm_extruder + 1); lcd_print(mmu_extruder + 1);
lcd_set_cursor(0, 2); lcd_puts_P(_T(MSG_PLEASE_WAIT)); lcd_set_cursor(0, 2); lcd_puts_P(_T(MSG_PLEASE_WAIT));
if (current_position[Z_AXIS] < 15) { if (current_position[Z_AXIS] < 15) {
current_position[Z_AXIS] += 15; //lifting in Z direction to make space for extrusion current_position[Z_AXIS] += 15; //lifting in Z direction to make space for extrusion
@ -229,9 +315,9 @@ void extr_unload()
} }
max_feedrate[E_AXIS] = 80; max_feedrate[E_AXIS] = 80;
current_position[E_AXIS] -= (bowden_length[snmm_extruder] + 60 + FIL_LOAD_LENGTH) / 2; current_position[E_AXIS] -= (bowden_length[mmu_extruder] + 60 + FIL_LOAD_LENGTH) / 2;
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 500, active_extruder); plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 500, active_extruder);
current_position[E_AXIS] -= (bowden_length[snmm_extruder] + 60 + FIL_LOAD_LENGTH) / 2; current_position[E_AXIS] -= (bowden_length[mmu_extruder] + 60 + FIL_LOAD_LENGTH) / 2;
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 500, active_extruder); plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 500, active_extruder);
st_synchronize(); st_synchronize();
//st_current_init(); //st_current_init();

View File

@ -2,8 +2,31 @@
#include <inttypes.h> #include <inttypes.h>
extern bool mmu_enabled; extern bool mmu_enabled;
extern uint8_t snmm_extruder;
extern uint8_t mmu_extruder;
extern int8_t mmu_finda;
extern int16_t mmu_version;
extern int mmu_puts_P(const char* str);
extern int mmu_printf_P(const char* format, ...);
extern int8_t mmu_rx_ok(void);
extern bool mmu_init(void);
extern bool mmu_reset(void);
extern int8_t mmu_read_finda(void);
extern int16_t mmu_read_version(void);
extern void extr_mov(float shift, float feed_rate); extern void extr_mov(float shift, float feed_rate);
extern void change_extr(int extr); extern void change_extr(int extr);

View File

@ -526,7 +526,7 @@ FORCE_INLINE void stepper_next_block()
#ifndef LIN_ADVANCE #ifndef LIN_ADVANCE
WRITE(E0_DIR_PIN, WRITE(E0_DIR_PIN,
#ifdef SNMM #ifdef SNMM
(snmm_extruder == 0 || snmm_extruder == 2) ? !INVERT_E0_DIR : (mmu_extruder == 0 || mmu_extruder == 2) ? !INVERT_E0_DIR :
#endif // SNMM #endif // SNMM
INVERT_E0_DIR); INVERT_E0_DIR);
#endif /* LIN_ADVANCE */ #endif /* LIN_ADVANCE */
@ -535,7 +535,7 @@ FORCE_INLINE void stepper_next_block()
#ifndef LIN_ADVANCE #ifndef LIN_ADVANCE
WRITE(E0_DIR_PIN, WRITE(E0_DIR_PIN,
#ifdef SNMM #ifdef SNMM
(snmm_extruder == 0 || snmm_extruder == 2) ? INVERT_E0_DIR : (mmu_extruder == 0 || mmu_extruder == 2) ? INVERT_E0_DIR :
#endif // SNMM #endif // SNMM
!INVERT_E0_DIR); !INVERT_E0_DIR);
#endif /* LIN_ADVANCE */ #endif /* LIN_ADVANCE */
@ -876,7 +876,7 @@ FORCE_INLINE void isr() {
bool neg = e_steps < 0; bool neg = e_steps < 0;
bool dir = bool dir =
#ifdef SNMM #ifdef SNMM
(neg == (snmm_extruder & 1)) (neg == (mmu_extruder & 1))
#else #else
neg neg
#endif #endif

View File

@ -11,7 +11,7 @@
#define uart2_txcomplete (UCSR2A & (1 << TXC2)) #define uart2_txcomplete (UCSR2A & (1 << TXC2))
#define uart2_txready (UCSR2A & (1 << UDRE2)) #define uart2_txready (UCSR2A & (1 << UDRE2))
uint8_t uart2_ibuf[10] = {0, 0}; uint8_t uart2_ibuf[14] = {0, 0};
FILE _uart2io = {0}; FILE _uart2io = {0};
@ -31,9 +31,10 @@ int uart2_getchar(FILE *stream __attribute__((unused)))
return rbuf_get(uart2_ibuf); return rbuf_get(uart2_ibuf);
} }
//uart init (io + FILE stream)
void uart2_init(void) void uart2_init(void)
{ {
rbuf_ini(uart2_ibuf, 6); rbuf_ini(uart2_ibuf, sizeof(uart2_ibuf) - 4);
UCSR2A |= (1 << U2X2); // baudrate multiplier UCSR2A |= (1 << U2X2); // baudrate multiplier
UBRR2L = UART_BAUD_SELECT(UART2_BAUD, F_CPU); // select baudrate UBRR2L = UART_BAUD_SELECT(UART2_BAUD, F_CPU); // select baudrate
UCSR2B = (1 << RXEN2) | (1 << TXEN2); // enable receiver and transmitter UCSR2B = (1 << RXEN2) | (1 << TXEN2); // enable receiver and transmitter
@ -41,39 +42,41 @@ void uart2_init(void)
fdev_setup_stream(uart2io, uart2_putchar, uart2_getchar, _FDEV_SETUP_WRITE | _FDEV_SETUP_READ); //setup uart2 i/o stream fdev_setup_stream(uart2io, uart2_putchar, uart2_getchar, _FDEV_SETUP_WRITE | _FDEV_SETUP_READ); //setup uart2 i/o stream
} }
void uart2_rx_clr(void) //returns 1 if chars in input buffer match to str
//returns -1 if chars does not match and 0 for empty buffer
int8_t uart2_rx_str_P(const char* str)
{ {
rbuf_w(uart2_ibuf) = 0; uint8_t r = rbuf_r(uart2_ibuf); //get read index
rbuf_r(uart2_ibuf) = 0; uint8_t w = rbuf_w(uart2_ibuf); //get write index
} // printf_P(PSTR("uart2_rx_str_P r=%d w=%d\n"), r, w);
uint8_t uart2_rx_ok(void)
{
//printf_P(PSTR("uart2_rx_ok %hhu %hhu %hhu %hhu %hhu %hhu %hhu %hhu %hhu %hhu\n"), uart2_ibuf[0], uart2_ibuf[1], uart2_ibuf[2], uart2_ibuf[3], uart2_ibuf[4], uart2_ibuf[5], uart2_ibuf[6], uart2_ibuf[7], uart2_ibuf[8], uart2_ibuf[9]);
// return 0;
// _lock(); //lock
uint8_t i = rbuf_w(uart2_ibuf); //get write index
// _unlock(); //unlock
uint8_t e = rbuf_l(uart2_ibuf) - 1; //get end index uint8_t e = rbuf_l(uart2_ibuf) - 1; //get end index
// printf_P(PSTR("%d %d \n"), i, e); uint8_t len = strlen_P(str); //get string length
// return 0; str += len; //last char will be compared first
if ((i--) == 255) i = e; //decrement index // printf_P(PSTR(" len=%d\n"), len);
if ((uart2_ibuf[4 + i] != '\n') && while (len--) //loop over all chars
(uart2_ibuf[4 + i] != '\r')) return 0; //no match - exit {
if ((i--) == 255) i = e; //decrement index if (w == r) return 0; //empty buffer - return 0
if (uart2_ibuf[4 + i] != 'k') return 0; //no match - exit if ((--w) == 255) w = e; //decrement index
if ((i--) == 255) i = e; //decrement index char c0 = pgm_read_byte(--str); //read char from str
if (uart2_ibuf[4 + i] != 'o') return 0; //no match - exit char c1 = uart2_ibuf[4 + w]; //read char from input buffer
uart2_ibuf[4 + i] = 0; //discard char // printf_P(PSTR(" uart2_rx_str_P w=%d l=%d c0=%02x c1=%02x\n"), w, len, c0, c1);
return 1; //match "ok\n" if (c0 == c1) continue; //if match, continue with next char
if ((c0 == '\r') && (c1 == '\n')) //match cr as lf
continue;
if ((c0 == '\n') && (c1 == '\r')) //match lf as cr
continue;
return -1; //no match - return -1
}
return 1; //all characters match - return 1
} }
ISR(USART2_RX_vect) ISR(USART2_RX_vect)
{ {
//printf_P(PSTR("USART2_RX_vect \n") ); //printf_P(PSTR("USART2_RX_vect \n") );
if (rbuf_put(uart2_ibuf, UDR2) < 0) // put received byte to buffer if (rbuf_put(uart2_ibuf, UDR2) < 0) // put received byte to buffer
{ { //rx buffer full
//rx buffer full //uart2_rx_clr(); //for sure, clear input buffer
printf_P(PSTR("USART2 rx Full!!!\n"));
} }
} }

View File

@ -14,13 +14,10 @@ extern "C" {
extern FILE _uart2io; extern FILE _uart2io;
#define uart2io (&_uart2io) #define uart2io (&_uart2io)
//extern uint8_t uart2_ibuf[10];
extern void uart2_init(void); extern void uart2_init(void);
extern void uart2_rx_clr(void); extern int8_t uart2_rx_str_P(const char* str);
extern uint8_t uart2_rx_ok(void);
#if defined(__cplusplus) #if defined(__cplusplus)

View File

@ -33,8 +33,6 @@
#include "sound.h" #include "sound.h"
#include "uart2.h"
#include "mmu.h" #include "mmu.h"
extern bool fans_check_enabled; extern bool fans_check_enabled;

View File

@ -1,616 +0,0 @@
#ifndef CONFIGURATION_PRUSA_H
#define CONFIGURATION_PRUSA_H
/*------------------------------------
GENERAL SETTINGS
*------------------------------------*/
// Printer revision
#define PRINTER_TYPE PRINTER_MK3
#define FILAMENT_SIZE "1_75mm_MK3"
#define NOZZLE_TYPE "E3Dv6full"
// Developer flag
#define DEVELOPER
// Printer name
#define CUSTOM_MENDEL_NAME "Prusa i3 MK3"
// Electronics
#define MOTHERBOARD BOARD_EINSY_1_0a
#define STEEL_SHEET
#define HAS_SECOND_SERIAL_PORT
#define SNMM_V2
// Uncomment the below for the E3D PT100 temperature sensor (with or without PT100 Amplifier)
//#define E3D_PT100_EXTRUDER_WITH_AMP
//#define E3D_PT100_EXTRUDER_NO_AMP
//#define E3D_PT100_BED_WITH_AMP
//#define E3D_PT100_BED_NO_AMP
/*------------------------------------
AXIS SETTINGS
*------------------------------------*/
// Steps per unit {X,Y,Z,E}
//#define DEFAULT_AXIS_STEPS_PER_UNIT {100,100,3200/8,140}
#define DEFAULT_AXIS_STEPS_PER_UNIT {100,100,3200/8,280}
//#define DEFAULT_AXIS_STEPS_PER_UNIT {100,100,3200/8,560}
// Endstop inverting
#define X_MIN_ENDSTOP_INVERTING 0 // set to 1 to invert the logic of the endstop.
#define Y_MIN_ENDSTOP_INVERTING 0 // set to 1 to invert the logic of the endstop.
#define Z_MIN_ENDSTOP_INVERTING 0 // set to 1 to invert the logic of the endstop.
// Direction inverting
#define INVERT_X_DIR 1 // for Mendel set to 0, for Orca set to 1
#define INVERT_Y_DIR 0 // for Mendel set to 1, for Orca set to 0
#define INVERT_Z_DIR 1 // for Mendel set to 0, for Orca set to 1
#define INVERT_E0_DIR 0 // for direct drive extruder v9 set to 1, for geared extruder set to 0
#define INVERT_E1_DIR 0 // for direct drive extruder v9 set to 1, for geared extruder set to 0
#define INVERT_E2_DIR 0 // for direct drive extruder v9 set to 1, for geared extruder set to 0
// Home position
#define MANUAL_X_HOME_POS 0
#define MANUAL_Y_HOME_POS -2.2
#define MANUAL_Z_HOME_POS 0.2
// Travel limits after homing
#define X_MAX_POS 255
#define X_MIN_POS 0
#define Y_MAX_POS 212.5
#define Y_MIN_POS -4 //orig -4
#define Z_MAX_POS 210
#define Z_MIN_POS 0.15
// Canceled home position
#define X_CANCEL_POS 50
#define Y_CANCEL_POS 190
//Pause print position
#define X_PAUSE_POS 50
#define Y_PAUSE_POS 190
#define Z_PAUSE_LIFT 20
#define NUM_AXIS 4 // The axis order in all axis related arrays is X, Y, Z, E
#define HOMING_FEEDRATE {3000, 3000, 800, 0} // set the homing speeds (mm/min) // 3000 is also valid for stallGuard homing. Valid range: 2200 - 3000
//#define DEFAULT_Y_OFFSET 4.f // Default distance of Y_MIN_POS point from endstop, when the printer is not calibrated.
/**
* [0,0] steel sheet print area point X coordinate in bed print area coordinates
*/
#define SHEET_PRINT_ZERO_REF_X 0.f
/**
* [0,0] steel sheet print area point Y coordinate in bed print area coordinates
*/
#define SHEET_PRINT_ZERO_REF_Y -2.f
#define DEFAULT_MAX_FEEDRATE {200, 200, 12, 120} // (mm/sec) max feedrate (M203)
#define DEFAULT_MAX_FEEDRATE_SILENT {172, 172, 12, 120} // (mm/sec) max feedrate (M203), silent mode
#define DEFAULT_MAX_ACCELERATION {1000, 1000, 200, 5000} // (mm/sec^2) max acceleration (M201)
#define DEFAULT_MAX_ACCELERATION_SILENT {960, 960, 200, 5000} // (mm/sec^2) max acceleration (M201), silent mode
#define DEFAULT_ACCELERATION 1250 // X, Y, Z and E max acceleration in mm/s^2 for printing moves (M204S)
#define DEFAULT_RETRACT_ACCELERATION 1250 // X, Y, Z and E max acceleration in mm/s^2 for retracts (M204T)
#define MANUAL_FEEDRATE {2700, 2700, 1000, 100} // set the speeds for manual moves (mm/min)
//Silent mode limits
#define SILENT_MAX_ACCEL_XY 960ul // max acceleration in silent mode in mm/s^2
#define SILENT_MAX_FEEDRATE_XY 172 // max feedrate in mm/s
//Normal mode limits
#define NORMAL_MAX_ACCEL_XY 2500ul // max acceleration in normal mode in mm/s^2
#define NORMAL_MAX_FEEDRATE_XY 200 // max feedrate in mm/s
//number of bytes from end of the file to start check
#define END_FILE_SECTION 20000
#define Z_AXIS_ALWAYS_ON 1
//Crash detection
#define CRASHDET_TIMER 45 //seconds
#define CRASHDET_COUNTER_MAX 3
// New XYZ calibration
#define NEW_XYZCAL
// Watchdog support
#define WATCHDOG
// Power panic
#define UVLO_SUPPORT
// Fan check
#define FANCHECK
// Safety timer
#define SAFETYTIMER
#define DEFAULT_SAFETYTIMER_TIME_MINS 30
// Filament sensor
#define PAT9125
//#define FILAMENT_SENSOR
// Backlash -
//#define BACKLASH_X
//#define BACKLASH_Y
// Minimum ambient temperature limit to start triggering MINTEMP errors [C]
// this value is litlebit higher that real limit, because ambient termistor is on the board and is temperated from it,
// temperature inside the case is around 31C for ambient temperature 25C, when the printer is powered on long time and idle
// the real limit is 15C (same as MINTEMP limit), this is because 15C is end of scale for both used thermistors (bed, heater)
#define MINTEMP_MINAMBIENT 25
#define MINTEMP_MINAMBIENT_RAW 978
//#define DEBUG_BUILD
//#define DEBUG_SEC_LANG //secondary language debug output at startup
//#define DEBUG_W25X20CL //debug external spi flash
#ifdef DEBUG_BUILD
//#define _NO_ASM
#define DEBUG_DCODES //D codes
#define DEBUG_STACK_MONITOR //Stack monitor in stepper ISR
//#define DEBUG_FSENSOR_LOG //Reports fsensor status to serial
//#define DEBUG_CRASHDET_COUNTERS //Display crash-detection counters on LCD
//#define DEBUG_RESUME_PRINT //Resume/save print debug enable
//#define DEBUG_UVLO_AUTOMATIC_RECOVER // Power panic automatic recovery debug output
//#define DEBUG_DISABLE_XMINLIMIT //x min limit ignored
//#define DEBUG_DISABLE_XMAXLIMIT //x max limit ignored
//#define DEBUG_DISABLE_YMINLIMIT //y min limit ignored
//#define DEBUG_DISABLE_YMAXLIMIT //y max limit ignored
//#define DEBUG_DISABLE_ZMINLIMIT //z min limit ignored
//#define DEBUG_DISABLE_ZMAXLIMIT //z max limit ignored
#define DEBUG_DISABLE_STARTMSGS //no startup messages
//#define DEBUG_DISABLE_MINTEMP //mintemp error ignored
//#define DEBUG_DISABLE_SWLIMITS //sw limits ignored
//#define DEBUG_DISABLE_LCD_STATUS_LINE //empty four lcd line
//#define DEBUG_DISABLE_PREVENT_EXTRUDER //cold extrusion and long extrusion allowed
//#define DEBUG_DISABLE_PRUSA_STATISTICS //disable prusa_statistics() mesages
//#define DEBUG_DISABLE_FORCE_SELFTEST //disable force selftest
//#define DEBUG_XSTEP_DUP_PIN 21 //duplicate x-step output to pin 21 (SCL on P3)
//#define DEBUG_YSTEP_DUP_PIN 21 //duplicate y-step output to pin 21 (SCL on P3)
//#define DEBUG_BLINK_ACTIVE
//#define DEBUG_DISABLE_FANCHECK //disable fan check (no ISR INT7, check disabled)
//#define DEBUG_DISABLE_FSENSORCHECK //disable fsensor check (no ISR INT7, check disabled)
#define DEBUG_DUMP_TO_2ND_SERIAL //dump received characters to 2nd serial line
#define DEBUG_STEPPER_TIMER_MISSED // Stop on stepper timer overflow, beep and display a message.
#define PLANNER_DIAGNOSTICS // Show the planner queue status on printer display.
#define CMD_DIAGNOSTICS //Show cmd queue length on printer display
#endif /* DEBUG_BUILD */
//#define EXPERIMENTAL_FEATURES
#define TMC2130_LINEARITY_CORRECTION
#define TMC2130_LINEARITY_CORRECTION_XYZ
//#define TMC2130_VARIABLE_RESOLUTION
/*------------------------------------
TMC2130 default settings
*------------------------------------*/
#define TMC2130_FCLK 12000000 // fclk = 12MHz
#define TMC2130_USTEPS_XY 16 // microstep resolution for XY axes
#define TMC2130_USTEPS_Z 16 // microstep resolution for Z axis
#define TMC2130_USTEPS_E 32 // microstep resolution for E axis
#define TMC2130_INTPOL_XY 1 // extrapolate 256 for XY axes
#define TMC2130_INTPOL_Z 1 // extrapolate 256 for Z axis
#define TMC2130_INTPOL_E 1 // extrapolate 256 for E axis
#define TMC2130_PWM_GRAD_X 2 // PWMCONF
#define TMC2130_PWM_AMPL_X 230 // PWMCONF
#define TMC2130_PWM_AUTO_X 1 // PWMCONF
#define TMC2130_PWM_FREQ_X 2 // PWMCONF
#define TMC2130_PWM_GRAD_Y 2 // PWMCONF
#define TMC2130_PWM_AMPL_Y 235 // PWMCONF
#define TMC2130_PWM_AUTO_Y 1 // PWMCONF
#define TMC2130_PWM_FREQ_Y 2 // PWMCONF
#define TMC2130_PWM_GRAD_Z 4 // PWMCONF
#define TMC2130_PWM_AMPL_Z 200 // PWMCONF
#define TMC2130_PWM_AUTO_Z 1 // PWMCONF
#define TMC2130_PWM_FREQ_Z 2 // PWMCONF
#define TMC2130_PWM_GRAD_E 4 // PWMCONF
#define TMC2130_PWM_AMPL_E 240 // PWMCONF
#define TMC2130_PWM_AUTO_E 1 // PWMCONF
#define TMC2130_PWM_FREQ_E 2 // PWMCONF
#define TMC2130_TOFF_XYZ 3 // CHOPCONF // fchop = 27.778kHz
#define TMC2130_TOFF_E 3 // CHOPCONF // fchop = 27.778kHz
//#define TMC2130_TOFF_E 4 // CHOPCONF // fchop = 21.429kHz
//#define TMC2130_TOFF_E 5 // CHOPCONF // fchop = 17.442kHz
//#define TMC2130_STEALTH_E // Extruder stealthChop mode
//#define TMC2130_CNSTOFF_E // Extruder constant-off-time mode (similar to MK2)
//#define TMC2130_PWM_DIV 683 // PWM frequency divider (1024, 683, 512, 410)
#define TMC2130_PWM_DIV 512 // PWM frequency divider (1024, 683, 512, 410)
#define TMC2130_PWM_CLK (2 * TMC2130_FCLK / TMC2130_PWM_DIV) // PWM frequency (23.4kHz, 35.1kHz, 46.9kHz, 58.5kHz for 12MHz fclk)
#define TMC2130_TPWMTHRS 0 // TPWMTHRS - Sets the switching speed threshold based on TSTEP from stealthChop to spreadCycle mode
#define TMC2130_THIGH 0 // THIGH - unused
//#define TMC2130_TCOOLTHRS_X 450 // TCOOLTHRS - coolstep treshold
//#define TMC2130_TCOOLTHRS_Y 450 // TCOOLTHRS - coolstep treshold
#define TMC2130_TCOOLTHRS_X 430 // TCOOLTHRS - coolstep treshold
#define TMC2130_TCOOLTHRS_Y 430 // TCOOLTHRS - coolstep treshold
#define TMC2130_TCOOLTHRS_Z 500 // TCOOLTHRS - coolstep treshold
#define TMC2130_TCOOLTHRS_E 500 // TCOOLTHRS - coolstep treshold
#define TMC2130_SG_HOMING 1 // stallguard homing
#define TMC2130_SG_THRS_X 3 // stallguard sensitivity for X axis
#define TMC2130_SG_THRS_Y 3 // stallguard sensitivity for Y axis
#define TMC2130_SG_THRS_Z 4 // stallguard sensitivity for Z axis
#define TMC2130_SG_THRS_E 3 // stallguard sensitivity for E axis
//new settings is possible for vsense = 1, running current value > 31 set vsense to zero and shift both currents by 1 bit right (Z axis only)
#define TMC2130_CURRENTS_H {16, 20, 35, 30} // default holding currents for all axes
#define TMC2130_CURRENTS_R {16, 20, 35, 30} // default running currents for all axes
#define TMC2130_UNLOAD_CURRENT_R 12 // lowe current for M600 to protect filament sensor
#define TMC2130_STEALTH_Z
//#define TMC2130_DEBUG
//#define TMC2130_DEBUG_WR
//#define TMC2130_DEBUG_RD
/*------------------------------------
EXTRUDER SETTINGS
*------------------------------------*/
// Mintemps
#define HEATER_0_MINTEMP 15
#define HEATER_1_MINTEMP 5
#define HEATER_2_MINTEMP 5
#define BED_MINTEMP 15
// Maxtemps
#if defined(E3D_PT100_EXTRUDER_WITH_AMP) || defined(E3D_PT100_EXTRUDER_NO_AMP)
#define HEATER_0_MAXTEMP 410
#else
#define HEATER_0_MAXTEMP 305
#endif
#define HEATER_1_MAXTEMP 305
#define HEATER_2_MAXTEMP 305
#define BED_MAXTEMP 125
#if defined(E3D_PT100_EXTRUDER_WITH_AMP) || defined(E3D_PT100_EXTRUDER_NO_AMP)
// Define PID constants for extruder with PT100
#define DEFAULT_Kp 21.70
#define DEFAULT_Ki 1.60
#define DEFAULT_Kd 73.76
#else
// Define PID constants for extruder
//#define DEFAULT_Kp 40.925
//#define DEFAULT_Ki 4.875
//#define DEFAULT_Kd 86.085
#define DEFAULT_Kp 16.13
#define DEFAULT_Ki 1.1625
#define DEFAULT_Kd 56.23
#endif
// Extrude mintemp
#define EXTRUDE_MINTEMP 190
// Extruder cooling fans
#define EXTRUDER_0_AUTO_FAN_PIN 8
#define EXTRUDER_1_AUTO_FAN_PIN -1
#define EXTRUDER_2_AUTO_FAN_PIN -1
#define EXTRUDER_AUTO_FAN_TEMPERATURE 50
#define EXTRUDER_AUTO_FAN_SPEED 255 // == full speed
/*------------------------------------
LOAD/UNLOAD FILAMENT SETTINGS
*------------------------------------*/
// Load filament commands
#define LOAD_FILAMENT_0 "M83"
#define LOAD_FILAMENT_1 "G1 E70 F400"
#define LOAD_FILAMENT_2 "G1 E40 F100"
// Unload filament commands
#define UNLOAD_FILAMENT_0 "M83"
#define UNLOAD_FILAMENT_1 "G1 E-80 F7000"
/*------------------------------------
CHANGE FILAMENT SETTINGS
*------------------------------------*/
// Filament change configuration
#define FILAMENTCHANGEENABLE
#ifdef FILAMENTCHANGEENABLE
#define FILAMENTCHANGE_XPOS 211
#define FILAMENTCHANGE_YPOS 0
#define FILAMENTCHANGE_ZADD 2
#define FILAMENTCHANGE_FIRSTRETRACT -2
#define FILAMENTCHANGE_FINALRETRACT -80
#define FILAMENTCHANGE_FIRSTFEED 70
#define FILAMENTCHANGE_FINALFEED 50
#define FILAMENTCHANGE_RECFEED 5
#define FILAMENTCHANGE_XYFEED 50
#define FILAMENTCHANGE_EFEED 20
//#define FILAMENTCHANGE_RFEED 400
#define FILAMENTCHANGE_RFEED 7000 / 60
#define FILAMENTCHANGE_EXFEED 2
#define FILAMENTCHANGE_ZFEED 15
#endif
/*------------------------------------
ADDITIONAL FEATURES SETTINGS
*------------------------------------*/
// Define Prusa filament runout sensor
//#define FILAMENT_RUNOUT_SUPPORT
#ifdef FILAMENT_RUNOUT_SUPPORT
#define FILAMENT_RUNOUT_SENSOR 1
#endif
// temperature runaway
#define TEMP_RUNAWAY_BED_HYSTERESIS 5
#define TEMP_RUNAWAY_BED_TIMEOUT 360
#define TEMP_RUNAWAY_EXTRUDER_HYSTERESIS 15
#define TEMP_RUNAWAY_EXTRUDER_TIMEOUT 45
/*------------------------------------
MOTOR CURRENT SETTINGS
*------------------------------------*/
// Motor Current setting for BIG RAMBo
#define DIGIPOT_MOTOR_CURRENT {135,135,135,135,135} // Values 0-255 (RAMBO 135 = ~0.75A, 185 = ~1A)
#define DIGIPOT_MOTOR_CURRENT_LOUD {135,135,135,135,135}
// Motor Current settings for RAMBo mini PWM value = MotorCurrentSetting * 255 / range
#if MOTHERBOARD == BOARD_RAMBO_MINI_1_0 || MOTHERBOARD == BOARD_RAMBO_MINI_1_3
#define MOTOR_CURRENT_PWM_RANGE 2000
#define DEFAULT_PWM_MOTOR_CURRENT {400, 750, 750} // {XY,Z,E}
#define DEFAULT_PWM_MOTOR_CURRENT_LOUD {400, 750, 750} // {XY,Z,E}
#endif
/*------------------------------------
BED SETTINGS
*------------------------------------*/
// Define Mesh Bed Leveling system to enable it
#define MESH_BED_LEVELING
#ifdef MESH_BED_LEVELING
#define MBL_Z_STEP 0.01
// Mesh definitions
#define MESH_MIN_X 35
#define MESH_MAX_X 238
#define MESH_MIN_Y 6
#define MESH_MAX_Y 202
// Mesh upsample definition
#define MESH_NUM_X_POINTS 7
#define MESH_NUM_Y_POINTS 7
// Mesh measure definition
#define MESH_MEAS_NUM_X_POINTS 3
#define MESH_MEAS_NUM_Y_POINTS 3
#define MESH_HOME_Z_CALIB 0.2
#define MESH_HOME_Z_SEARCH 5 //Z lift for homing, mesh bed leveling etc.
#define X_PROBE_OFFSET_FROM_EXTRUDER 23 // Z probe to nozzle X offset: -left +right
#define Y_PROBE_OFFSET_FROM_EXTRUDER 5 // Z probe to nozzle Y offset: -front +behind
#define Z_PROBE_OFFSET_FROM_EXTRUDER -0.4 // Z probe to nozzle Z offset: -below (always!)
#endif
// Bed Temperature Control
// Select PID or bang-bang with PIDTEMPBED. If bang-bang, BED_LIMIT_SWITCHING will enable hysteresis
//
// Uncomment this to enable PID on the bed. It uses the same frequency PWM as the extruder.
// If your PID_dT above is the default, and correct for your hardware/configuration, that means 7.689Hz,
// which is fine for driving a square wave into a resistive load and does not significantly impact you FET heating.
// This also works fine on a Fotek SSR-10DA Solid State Relay into a 250W heater.
// If your configuration is significantly different than this and you don't understand the issues involved, you probably
// shouldn't use bed PID until someone else verifies your hardware works.
// If this is enabled, find your own PID constants below.
#define PIDTEMPBED
//
//#define BED_LIMIT_SWITCHING
// This sets the max power delivered to the bed, and replaces the HEATER_BED_DUTY_CYCLE_DIVIDER option.
// all forms of bed control obey this (PID, bang-bang, bang-bang with hysteresis)
// setting this to anything other than 255 enables a form of PWM to the bed just like HEATER_BED_DUTY_CYCLE_DIVIDER did,
// so you shouldn't use it unless you are OK with PWM on your bed. (see the comment on enabling PIDTEMPBED)
#define MAX_BED_POWER 255 // limits duty cycle to bed; 255=full current
// Bed temperature compensation settings
#define BED_OFFSET 10
#define BED_OFFSET_START 40
#define BED_OFFSET_CENTER 50
#ifdef PIDTEMPBED
//120v 250W silicone heater into 4mm borosilicate (MendelMax 1.5+)
//from FOPDT model - kp=.39 Tp=405 Tdead=66, Tc set to 79.2, aggressive factor of .15 (vs .1, 1, 10)
#if defined(E3D_PT100_BED_WITH_AMP) || defined(E3D_PT100_BED_NO_AMP)
// Define PID constants for extruder with PT100
#define DEFAULT_bedKp 21.70
#define DEFAULT_bedKi 1.60
#define DEFAULT_bedKd 73.76
#else
#define DEFAULT_bedKp 126.13
#define DEFAULT_bedKi 4.30
#define DEFAULT_bedKd 924.76
#endif
//120v 250W silicone heater into 4mm borosilicate (MendelMax 1.5+)
//from pidautotune
// #define DEFAULT_bedKp 97.1
// #define DEFAULT_bedKi 1.41
// #define DEFAULT_bedKd 1675.16
// FIND YOUR OWN: "M303 E-1 C8 S90" to run autotune on the bed at 90 degreesC for 8 cycles.
#endif // PIDTEMPBED
//connect message when communication with monitoring broken
//#define FARM_CONNECT_MESSAGE
/*-----------------------------------
PREHEAT SETTINGS
*------------------------------------*/
#define FARM_PREHEAT_HOTEND_TEMP 250
#define FARM_PREHEAT_HPB_TEMP 60
#define FARM_PREHEAT_FAN_SPEED 0
#define PLA_PREHEAT_HOTEND_TEMP 215
#define PLA_PREHEAT_HPB_TEMP 60
#define PLA_PREHEAT_FAN_SPEED 0
#define ABS_PREHEAT_HOTEND_TEMP 255
#define ABS_PREHEAT_HPB_TEMP 100
#define ABS_PREHEAT_FAN_SPEED 0
#define HIPS_PREHEAT_HOTEND_TEMP 220
#define HIPS_PREHEAT_HPB_TEMP 100
#define HIPS_PREHEAT_FAN_SPEED 0
#define PP_PREHEAT_HOTEND_TEMP 254
#define PP_PREHEAT_HPB_TEMP 100
#define PP_PREHEAT_FAN_SPEED 0
#define PET_PREHEAT_HOTEND_TEMP 230
#define PET_PREHEAT_HPB_TEMP 85
#define PET_PREHEAT_FAN_SPEED 0
#define FLEX_PREHEAT_HOTEND_TEMP 240
#define FLEX_PREHEAT_HPB_TEMP 50
#define FLEX_PREHEAT_FAN_SPEED 0
/*------------------------------------
THERMISTORS SETTINGS
*------------------------------------*/
//
//--NORMAL IS 4.7kohm PULLUP!-- 1kohm pullup can be used on hotend sensor, using correct resistor and table
//
//// Temperature sensor settings:
// -2 is thermocouple with MAX6675 (only for sensor 0)
// -1 is thermocouple with AD595
// 0 is not used
// 1 is 100k thermistor - best choice for EPCOS 100k (4.7k pullup)
// 2 is 200k thermistor - ATC Semitec 204GT-2 (4.7k pullup)
// 3 is Mendel-parts thermistor (4.7k pullup)
// 4 is 10k thermistor !! do not use it for a hotend. It gives bad resolution at high temp. !!
// 5 is 100K thermistor - ATC Semitec 104GT-2 (Used in ParCan & J-Head) (4.7k pullup)
// 6 is 100k EPCOS - Not as accurate as table 1 (created using a fluke thermocouple) (4.7k pullup)
// 7 is 100k Honeywell thermistor 135-104LAG-J01 (4.7k pullup)
// 71 is 100k Honeywell thermistor 135-104LAF-J01 (4.7k pullup)
// 8 is 100k 0603 SMD Vishay NTCS0603E3104FXT (4.7k pullup)
// 9 is 100k GE Sensing AL03006-58.2K-97-G1 (4.7k pullup)
// 10 is 100k RS thermistor 198-961 (4.7k pullup)
// 11 is 100k beta 3950 1% thermistor (4.7k pullup)
// 12 is 100k 0603 SMD Vishay NTCS0603E3104FXT (4.7k pullup) (calibrated for Makibox hot bed)
// 13 is 100k Hisens 3950 1% up to 300°C for hotend "Simple ONE " & "Hotend "All In ONE"
// 20 is the PT100 circuit found in the Ultimainboard V2.x
// 60 is 100k Maker's Tool Works Kapton Bed Thermistor beta=3950
//
// 1k ohm pullup tables - This is not normal, you would have to have changed out your 4.7k for 1k
// (but gives greater accuracy and more stable PID)
// 51 is 100k thermistor - EPCOS (1k pullup)
// 52 is 200k thermistor - ATC Semitec 204GT-2 (1k pullup)
// 55 is 100k thermistor - ATC Semitec 104GT-2 (Used in ParCan & J-Head) (1k pullup)
//
// 1047 is Pt1000 with 4k7 pullup
// 1010 is Pt1000 with 1k pullup (non standard)
// 147 is Pt100 with 4k7 pullup
// 148 is E3D Pt100 with 4k7 pullup and no PT100 Amplifier on a MiniRambo 1.3a
// 247 is Pt100 with 4k7 pullup and PT100 Amplifier
// 110 is Pt100 with 1k pullup (non standard)
#if defined(E3D_PT100_EXTRUDER_WITH_AMP)
#define TEMP_SENSOR_0 247
#elif defined(E3D_PT100_EXTRUDER_NO_AMP)
#define TEMP_SENSOR_0 148
#else
#define TEMP_SENSOR_0 5
#endif
#define TEMP_SENSOR_1 0
#define TEMP_SENSOR_2 0
#if defined(E3D_PT100_BED_WITH_AMP)
#define TEMP_SENSOR_BED 247
#elif defined(E3D_PT100_BED_NO_AMP)
#define TEMP_SENSOR_BED 148
#else
#define TEMP_SENSOR_BED 1
#endif
#define TEMP_SENSOR_PINDA 1
#define TEMP_SENSOR_AMBIENT 2000
#define STACK_GUARD_TEST_VALUE 0xA2A2
#define MAX_BED_TEMP_CALIBRATION 50
#define MAX_HOTEND_TEMP_CALIBRATION 50
#define MAX_E_STEPS_PER_UNIT 250
#define MIN_E_STEPS_PER_UNIT 100
#define Z_BABYSTEP_MIN -3999
#define Z_BABYSTEP_MAX 0
#define PINDA_PREHEAT_X 20
#define PINDA_PREHEAT_Y 60
#define PINDA_PREHEAT_Z 0.15
/*
#define PINDA_PREHEAT_X 70
#define PINDA_PREHEAT_Y -3
#define PINDA_PREHEAT_Z 1*/
#define PINDA_HEAT_T 120 //time in s
#define PINDA_MIN_T 50
#define PINDA_STEP_T 10
#define PINDA_MAX_T 100
#define PING_TIME 60 //time in s
#define PING_TIME_LONG 600 //10 min; used when length of commands buffer > 0 to avoid 0 triggering when dealing with long gcodes
#define PING_ALLERT_PERIOD 60 //time in s
#define NC_TIME 10 //time in s for periodic important status messages sending which needs reponse from monitoring
#define NC_BUTTON_LONG_PRESS 15 //time in s
#define LONG_PRESS_TIME 1000 //time in ms for button long press
#define BUTTON_BLANKING_TIME 200 //time in ms for blanking after button release
#define DEFAULT_PID_TEMP 210
#define MIN_PRINT_FAN_SPEED 75
// How much shall the print head be lifted on power panic?
// Ideally the Z axis will reach a zero phase of the stepper driver on power outage. To simplify this,
// UVLO_Z_AXIS_SHIFT shall be an integer multiply of the stepper driver cycle, that is 4x full step.
// For example, the Prusa i3 MK2 with 16 microsteps per full step has Z stepping of 400 microsteps per mm.
// At 400 microsteps per mm, a full step lifts the Z axis by 0.04mm, and a stepper driver cycle is 0.16mm.
// The following example, 12 * (4 * 16 / 400) = 12 * 0.16mm = 1.92mm.
//#define UVLO_Z_AXIS_SHIFT 1.92
#define UVLO_Z_AXIS_SHIFT 0.64
// If power panic occured, and the current temperature is higher then target temperature before interrupt minus this offset, print will be recovered automatically.
#define AUTOMATIC_UVLO_BED_TEMP_OFFSET 5
#define HEATBED_V2
#define M600_TIMEOUT 600 //seconds
//#define SUPPORT_VERBOSITY
#endif //__CONFIGURATION_PRUSA_H