diff --git a/Firmware/Marlin_main.cpp~RF6ca149ac.TMP b/Firmware/Marlin_main.cpp~RF6ca149ac.TMP deleted file mode 100644 index 239b5b34..00000000 --- a/Firmware/Marlin_main.cpp~RF6ca149ac.TMP +++ /dev/null @@ -1,9143 +0,0 @@ -/* -*- c++ -*- */ -/** - * @file - */ - -/** - * @mainpage Reprap 3D printer firmware based on Sprinter and grbl. - * - * @section intro_sec Introduction - * - * This firmware is a mashup between Sprinter and grbl. - * https://github.com/kliment/Sprinter - * https://github.com/simen/grbl/tree - * - * It has preliminary support for Matthew Roberts advance algorithm - * http://reprap.org/pipermail/reprap-dev/2011-May/003323.html - * - * Prusa Research s.r.o. https://www.prusa3d.cz - * - * @section copyright_sec Copyright - * - * Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm - * - * This program is free software: you can redistribute it and/or modify - * it under the terms of the GNU General Public License as published by - * the Free Software Foundation, either version 3 of the License, or - * (at your option) any later version. - * - * This program is distributed in the hope that it will be useful, - * but WITHOUT ANY WARRANTY; without even the implied warranty of - * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the - * GNU General Public License for more details. - * - * You should have received a copy of the GNU General Public License - * along with this program. If not, see . - * - * @section notes_sec Notes - * - * * Do not create static objects in global functions. - * Otherwise constructor guard against concurrent calls is generated costing - * about 8B RAM and 14B flash. - * - * - */ - -#include "Marlin.h" - -#ifdef ENABLE_AUTO_BED_LEVELING -#include "vector_3.h" - #ifdef AUTO_BED_LEVELING_GRID - #include "qr_solve.h" - #endif -#endif // ENABLE_AUTO_BED_LEVELING - -#ifdef MESH_BED_LEVELING - #include "mesh_bed_leveling.h" - #include "mesh_bed_calibration.h" -#endif - -#include "printers.h" - -#include "menu.h" -#include "ultralcd.h" - -#include "planner.h" -#include "stepper.h" -#include "temperature.h" -#include "motion_control.h" -#include "cardreader.h" -#include "ConfigurationStore.h" -#include "language.h" -#include "pins_arduino.h" -#include "math.h" -#include "util.h" -#include "Timer.h" -#include "uart2.h" - -#include -#include - -#include "Dcodes.h" - - -#ifdef SWSPI -#include "swspi.h" -#endif //SWSPI - -#include "spi.h" - -#ifdef SWI2C -#include "swi2c.h" -#endif //SWI2C - -#ifdef PAT9125 -#include "pat9125.h" -#include "fsensor.h" -#endif //PAT9125 - -#ifdef TMC2130 -#include "tmc2130.h" -#endif //TMC2130 - -#ifdef W25X20CL -#include "w25x20cl.h" -#include "optiboot_w25x20cl.h" -#endif //W25X20CL - -#ifdef BLINKM -#include "BlinkM.h" -#include "Wire.h" -#endif - -#ifdef ULTRALCD -#include "ultralcd.h" -#endif - -#if NUM_SERVOS > 0 -#include "Servo.h" -#endif - -#if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1 -#include -#endif - -#define VERSION_STRING "1.0.2" - - -#include "ultralcd.h" - -#include "cmdqueue.h" - -// Macros for bit masks -#define BIT(b) (1<<(b)) -#define TEST(n,b) (((n)&BIT(b))!=0) -#define SET_BIT(n,b,value) (n) ^= ((-value)^(n)) & (BIT(b)) - -//Macro for print fan speed -#define FAN_PULSE_WIDTH_LIMIT ((fanSpeed > 100) ? 3 : 4) //time in ms - -#define PRINTING_TYPE_SD 0 -#define PRINTING_TYPE_USB 1 - -// look here for descriptions of G-codes: http://linuxcnc.org/handbook/gcode/g-code.html -// http://objects.reprap.org/wiki/Mendel_User_Manual:_RepRapGCodes - -//Implemented Codes -//------------------- - -// PRUSA CODES -// P F - Returns FW versions -// P R - Returns revision of printer - -// G0 -> G1 -// G1 - Coordinated Movement X Y Z E -// G2 - CW ARC -// G3 - CCW ARC -// G4 - Dwell S or P -// G10 - retract filament according to settings of M207 -// G11 - retract recover filament according to settings of M208 -// G28 - Home all Axis -// G29 - Detailed Z-Probe, probes the bed at 3 or more points. Will fail if you haven't homed yet. -// G30 - Single Z Probe, probes bed at current XY location. -// G31 - Dock sled (Z_PROBE_SLED only) -// G32 - Undock sled (Z_PROBE_SLED only) -// G80 - Automatic mesh bed leveling -// G81 - Print bed profile -// G90 - Use Absolute Coordinates -// G91 - Use Relative Coordinates -// G92 - Set current position to coordinates given - -// M Codes -// M0 - Unconditional stop - Wait for user to press a button on the LCD -// M1 - Same as M0 -// M17 - Enable/Power all stepper motors -// M18 - Disable all stepper motors; same as M84 -// M20 - List SD card -// M21 - Init SD card -// M22 - Release SD card -// M23 - Select SD file (M23 filename.g) -// M24 - Start/resume SD print -// M25 - Pause SD print -// M26 - Set SD position in bytes (M26 S12345) -// M27 - Report SD print status -// M28 - Start SD write (M28 filename.g) -// M29 - Stop SD write -// M30 - Delete file from SD (M30 filename.g) -// M31 - Output time since last M109 or SD card start to serial -// M32 - Select file and start SD print (Can be used _while_ printing from SD card files): -// syntax "M32 /path/filename#", or "M32 S !filename#" -// Call gcode file : "M32 P !filename#" and return to caller file after finishing (similar to #include). -// The '#' is necessary when calling from within sd files, as it stops buffer prereading -// M42 - Change pin status via gcode Use M42 Px Sy to set pin x to value y, when omitting Px the onboard led will be used. -// M73 - Show percent done and print time remaining -// M80 - Turn on Power Supply -// M81 - Turn off Power Supply -// M82 - Set E codes absolute (default) -// M83 - Set E codes relative while in Absolute Coordinates (G90) mode -// M84 - Disable steppers until next move, -// or use S to specify an inactivity timeout, after which the steppers will be disabled. S0 to disable the timeout. -// M85 - Set inactivity shutdown timer with parameter S. To disable set zero (default) -// M86 - Set safety timer expiration time with parameter S; M86 S0 will disable safety timer -// M92 - Set axis_steps_per_unit - same syntax as G92 -// M104 - Set extruder target temp -// M105 - Read current temp -// M106 - Fan on -// M107 - Fan off -// M109 - Sxxx Wait for extruder current temp to reach target temp. Waits only when heating -// Rxxx Wait for extruder current temp to reach target temp. Waits when heating and cooling -// IF AUTOTEMP is enabled, S B F. Exit autotemp by any M109 without F -// M112 - Emergency stop -// M113 - Get or set the timeout interval for Host Keepalive "busy" messages -// M114 - Output current position to serial port -// M115 - Capabilities string -// M117 - display message -// M119 - Output Endstop status to serial port -// M126 - Solenoid Air Valve Open (BariCUDA support by jmil) -// M127 - Solenoid Air Valve Closed (BariCUDA vent to atmospheric pressure by jmil) -// M128 - EtoP Open (BariCUDA EtoP = electricity to air pressure transducer by jmil) -// M129 - EtoP Closed (BariCUDA EtoP = electricity to air pressure transducer by jmil) -// M140 - Set bed target temp -// M150 - Set BlinkM Color Output R: Red<0-255> U(!): Green<0-255> B: Blue<0-255> over i2c, G for green does not work. -// M190 - Sxxx Wait for bed current temp to reach target temp. Waits only when heating -// Rxxx Wait for bed current temp to reach target temp. Waits when heating and cooling -// M200 D- set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters). -// M201 - Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000) -// M202 - Set max acceleration in units/s^2 for travel moves (M202 X1000 Y1000) Unused in Marlin!! -// M203 - Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in mm/sec -// M204 - Set default acceleration: S normal moves T filament only moves (M204 S3000 T7000) in mm/sec^2 also sets minimum segment time in ms (B20000) to prevent buffer under-runs and M20 minimum feedrate -// M205 - advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk, E=maximum E jerk -// M206 - set additional homing offset -// M207 - set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop], stays in mm regardless of M200 setting -// M208 - set recover=unretract length S[positive mm surplus to the M207 S*] F[feedrate mm/sec] -// M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction. -// M218 - set hotend offset (in mm): T X Y -// M220 S- set speed factor override percentage -// M221 S- set extrude factor override percentage -// M226 P S- Wait until the specified pin reaches the state required -// M240 - Trigger a camera to take a photograph -// M250 - Set LCD contrast C (value 0..63) -// M280 - set servo position absolute. P: servo index, S: angle or microseconds -// M300 - Play beep sound S P -// M301 - Set PID parameters P I and D -// M302 - Allow cold extrudes, or set the minimum extrude S. -// M303 - PID relay autotune S sets the target temperature. (default target temperature = 150C) -// M304 - Set bed PID parameters P I and D -// M400 - Finish all moves -// M401 - Lower z-probe if present -// M402 - Raise z-probe if present -// M404 - N Enter the nominal filament width (3mm, 1.75mm ) or will display nominal filament width without parameters -// M405 - Turn on Filament Sensor extrusion control. Optional D to set delay in centimeters between sensor and extruder -// M406 - Turn off Filament Sensor extrusion control -// M407 - Displays measured filament diameter -// M500 - stores parameters in EEPROM -// M501 - reads parameters from EEPROM (if you need reset them after you changed them temporarily). -// M502 - reverts to the default "factory settings". You still need to store them in EEPROM afterwards if you want to. -// M503 - print the current settings (from memory not from EEPROM) -// M509 - force language selection on next restart -// M540 - Use S[0|1] to enable or disable the stop SD card print on endstop hit (requires ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED) -// M600 - Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal] -// M605 - Set dual x-carriage movement mode: S [ X R ] -// M860 - Wait for PINDA thermistor to reach target temperature. -// M861 - Set / Read PINDA temperature compensation offsets -// M900 - Set LIN_ADVANCE options, if enabled. See Configuration_adv.h for details. -// M907 - Set digital trimpot motor current using axis codes. -// M908 - Control digital trimpot directly. -// M350 - Set microstepping mode. -// M351 - Toggle MS1 MS2 pins directly. - -// M928 - Start SD logging (M928 filename.g) - ended by M29 -// M999 - Restart after being stopped by error - -//Stepper Movement Variables - -//=========================================================================== -//=============================imported variables============================ -//=========================================================================== - - -//=========================================================================== -//=============================public variables============================= -//=========================================================================== -#ifdef SDSUPPORT -CardReader card; -#endif - -unsigned long PingTime = millis(); -unsigned long NcTime; - -union Data -{ -byte b[2]; -int value; -}; - -float homing_feedrate[] = HOMING_FEEDRATE; -// Currently only the extruder axis may be switched to a relative mode. -// Other axes are always absolute or relative based on the common relative_mode flag. -bool axis_relative_modes[] = AXIS_RELATIVE_MODES; -int feedmultiply=100; //100->1 200->2 -int saved_feedmultiply; -int extrudemultiply=100; //100->1 200->2 -int extruder_multiply[EXTRUDERS] = {100 - #if EXTRUDERS > 1 - , 100 - #if EXTRUDERS > 2 - , 100 - #endif - #endif -}; - -int bowden_length[4] = {385, 385, 385, 385}; - -bool is_usb_printing = false; -bool homing_flag = false; - -bool temp_cal_active = false; - -unsigned long kicktime = millis()+100000; - -unsigned int usb_printing_counter; - -int lcd_change_fil_state = 0; - -int feedmultiplyBckp = 100; -float HotendTempBckp = 0; -int fanSpeedBckp = 0; -float pause_lastpos[4]; -unsigned long pause_time = 0; -unsigned long start_pause_print = millis(); -unsigned long t_fan_rising_edge = millis(); -static LongTimer safetyTimer; -static LongTimer crashDetTimer; - -//unsigned long load_filament_time; - -bool mesh_bed_leveling_flag = false; -bool mesh_bed_run_from_menu = false; - -int8_t FarmMode = 0; - -bool prusa_sd_card_upload = false; - -unsigned int status_number = 0; - -unsigned long total_filament_used; -unsigned int heating_status; -unsigned int heating_status_counter; -bool custom_message; -bool loading_flag = false; -unsigned int custom_message_type; -unsigned int custom_message_state; -char snmm_filaments_used = 0; - -bool fan_state[2]; -int fan_edge_counter[2]; -int fan_speed[2]; - -char dir_names[3][9]; - -bool sortAlpha = false; - -bool volumetric_enabled = false; -float filament_size[EXTRUDERS] = { DEFAULT_NOMINAL_FILAMENT_DIA - #if EXTRUDERS > 1 - , DEFAULT_NOMINAL_FILAMENT_DIA - #if EXTRUDERS > 2 - , DEFAULT_NOMINAL_FILAMENT_DIA - #endif - #endif -}; -float extruder_multiplier[EXTRUDERS] = {1.0 - #if EXTRUDERS > 1 - , 1.0 - #if EXTRUDERS > 2 - , 1.0 - #endif - #endif -}; - -float current_position[NUM_AXIS] = { 0.0, 0.0, 0.0, 0.0 }; -//shortcuts for more readable code -#define _x current_position[X_AXIS] -#define _y current_position[Y_AXIS] -#define _z current_position[Z_AXIS] -#define _e current_position[E_AXIS] - - -float add_homing[3]={0,0,0}; - -float min_pos[3] = { X_MIN_POS, Y_MIN_POS, Z_MIN_POS }; -float max_pos[3] = { X_MAX_POS, Y_MAX_POS, Z_MAX_POS }; -bool axis_known_position[3] = {false, false, false}; -float zprobe_zoffset; - -// Extruder offset -#if EXTRUDERS > 1 - #define NUM_EXTRUDER_OFFSETS 2 // only in XY plane -float extruder_offset[NUM_EXTRUDER_OFFSETS][EXTRUDERS] = { -#if defined(EXTRUDER_OFFSET_X) && defined(EXTRUDER_OFFSET_Y) - EXTRUDER_OFFSET_X, EXTRUDER_OFFSET_Y -#endif -}; -#endif - -uint8_t active_extruder = 0; -int fanSpeed=0; - -#ifdef FWRETRACT - bool autoretract_enabled=false; - bool retracted[EXTRUDERS]={false - #if EXTRUDERS > 1 - , false - #if EXTRUDERS > 2 - , false - #endif - #endif - }; - bool retracted_swap[EXTRUDERS]={false - #if EXTRUDERS > 1 - , false - #if EXTRUDERS > 2 - , false - #endif - #endif - }; - - float retract_length = RETRACT_LENGTH; - float retract_length_swap = RETRACT_LENGTH_SWAP; - float retract_feedrate = RETRACT_FEEDRATE; - float retract_zlift = RETRACT_ZLIFT; - float retract_recover_length = RETRACT_RECOVER_LENGTH; - float retract_recover_length_swap = RETRACT_RECOVER_LENGTH_SWAP; - float retract_recover_feedrate = RETRACT_RECOVER_FEEDRATE; -#endif - - #ifdef PS_DEFAULT_OFF - bool powersupply = false; - #else - bool powersupply = true; - #endif - -bool cancel_heatup = false ; - -#ifdef HOST_KEEPALIVE_FEATURE - - int busy_state = NOT_BUSY; - static long prev_busy_signal_ms = -1; - uint8_t host_keepalive_interval = HOST_KEEPALIVE_INTERVAL; -#else - #define host_keepalive(); - #define KEEPALIVE_STATE(n); -#endif - - -const char errormagic[] PROGMEM = "Error:"; -const char echomagic[] PROGMEM = "echo:"; - -bool no_response = false; -uint8_t important_status; -uint8_t saved_filament_type; - -// save/restore printing -bool saved_printing = false; - -// storing estimated time to end of print counted by slicer -uint8_t print_percent_done_normal = PRINT_PERCENT_DONE_INIT; -uint16_t print_time_remaining_normal = PRINT_TIME_REMAINING_INIT; //estimated remaining print time in minutes -uint8_t print_percent_done_silent = PRINT_PERCENT_DONE_INIT; -uint16_t print_time_remaining_silent = PRINT_TIME_REMAINING_INIT; //estimated remaining print time in minutes - -//=========================================================================== -//=============================Private Variables============================= -//=========================================================================== -const char axis_codes[NUM_AXIS] = {'X', 'Y', 'Z', 'E'}; -float destination[NUM_AXIS] = { 0.0, 0.0, 0.0, 0.0}; - -static float delta[3] = {0.0, 0.0, 0.0}; - -// For tracing an arc -static float offset[3] = {0.0, 0.0, 0.0}; -static float feedrate = 1500.0, next_feedrate, saved_feedrate; - -// Determines Absolute or Relative Coordinates. -// Also there is bool axis_relative_modes[] per axis flag. -static bool relative_mode = false; - -#ifndef _DISABLE_M42_M226 -const int sensitive_pins[] = SENSITIVE_PINS; // Sensitive pin list for M42 -#endif //_DISABLE_M42_M226 - -//static float tt = 0; -//static float bt = 0; - -//Inactivity shutdown variables -static unsigned long previous_millis_cmd = 0; -unsigned long max_inactive_time = 0; -static unsigned long stepper_inactive_time = DEFAULT_STEPPER_DEACTIVE_TIME*1000l; -static unsigned long safetytimer_inactive_time = DEFAULT_SAFETYTIMER_TIME_MINS*60*1000ul; - -unsigned long starttime=0; -unsigned long stoptime=0; -unsigned long _usb_timer = 0; - -static uint8_t tmp_extruder; - -bool extruder_under_pressure = true; - - -bool Stopped=false; - -#if NUM_SERVOS > 0 - Servo servos[NUM_SERVOS]; -#endif - -bool CooldownNoWait = true; -bool target_direction; - -//Insert variables if CHDK is defined -#ifdef CHDK -unsigned long chdkHigh = 0; -boolean chdkActive = false; -#endif - -// save/restore printing -static uint32_t saved_sdpos = 0; -static uint8_t saved_printing_type = PRINTING_TYPE_SD; -static float saved_pos[4] = { 0, 0, 0, 0 }; -// Feedrate hopefully derived from an active block of the planner at the time the print has been canceled, in mm/min. -static float saved_feedrate2 = 0; -static uint8_t saved_active_extruder = 0; -static bool saved_extruder_under_pressure = false; -static bool saved_extruder_relative_mode = false; - -//=========================================================================== -//=============================Routines====================================== -//=========================================================================== - -void get_arc_coordinates(); -bool setTargetedHotend(int code); - -void serial_echopair_P(const char *s_P, float v) - { serialprintPGM(s_P); SERIAL_ECHO(v); } -void serial_echopair_P(const char *s_P, double v) - { serialprintPGM(s_P); SERIAL_ECHO(v); } -void serial_echopair_P(const char *s_P, unsigned long v) - { serialprintPGM(s_P); SERIAL_ECHO(v); } - -#ifdef SDSUPPORT - #include "SdFatUtil.h" - int freeMemory() { return SdFatUtil::FreeRam(); } -#else - extern "C" { - extern unsigned int __bss_end; - extern unsigned int __heap_start; - extern void *__brkval; - - int freeMemory() { - int free_memory; - - if ((int)__brkval == 0) - free_memory = ((int)&free_memory) - ((int)&__bss_end); - else - free_memory = ((int)&free_memory) - ((int)__brkval); - - return free_memory; - } - } -#endif //!SDSUPPORT - -void setup_killpin() -{ - #if defined(KILL_PIN) && KILL_PIN > -1 - SET_INPUT(KILL_PIN); - WRITE(KILL_PIN,HIGH); - #endif -} - -// Set home pin -void setup_homepin(void) -{ -#if defined(HOME_PIN) && HOME_PIN > -1 - SET_INPUT(HOME_PIN); - WRITE(HOME_PIN,HIGH); -#endif -} - -void setup_photpin() -{ - #if defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1 - SET_OUTPUT(PHOTOGRAPH_PIN); - WRITE(PHOTOGRAPH_PIN, LOW); - #endif -} - -void setup_powerhold() -{ - #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1 - SET_OUTPUT(SUICIDE_PIN); - WRITE(SUICIDE_PIN, HIGH); - #endif - #if defined(PS_ON_PIN) && PS_ON_PIN > -1 - SET_OUTPUT(PS_ON_PIN); - #if defined(PS_DEFAULT_OFF) - WRITE(PS_ON_PIN, PS_ON_ASLEEP); - #else - WRITE(PS_ON_PIN, PS_ON_AWAKE); - #endif - #endif -} - -void suicide() -{ - #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1 - SET_OUTPUT(SUICIDE_PIN); - WRITE(SUICIDE_PIN, LOW); - #endif -} - -void servo_init() -{ - #if (NUM_SERVOS >= 1) && defined(SERVO0_PIN) && (SERVO0_PIN > -1) - servos[0].attach(SERVO0_PIN); - #endif - #if (NUM_SERVOS >= 2) && defined(SERVO1_PIN) && (SERVO1_PIN > -1) - servos[1].attach(SERVO1_PIN); - #endif - #if (NUM_SERVOS >= 3) && defined(SERVO2_PIN) && (SERVO2_PIN > -1) - servos[2].attach(SERVO2_PIN); - #endif - #if (NUM_SERVOS >= 4) && defined(SERVO3_PIN) && (SERVO3_PIN > -1) - servos[3].attach(SERVO3_PIN); - #endif - #if (NUM_SERVOS >= 5) - #error "TODO: enter initalisation code for more servos" - #endif -} - - -void stop_and_save_print_to_ram(float z_move, float e_move); -void restore_print_from_ram_and_continue(float e_move); - -bool fans_check_enabled = true; -bool filament_autoload_enabled = true; - - -#ifdef TMC2130 - -extern int8_t CrashDetectMenu; - -void crashdet_enable() -{ - tmc2130_sg_stop_on_crash = true; - eeprom_update_byte((uint8_t*)EEPROM_CRASH_DET, 0xFF); - CrashDetectMenu = 1; - -} - -void crashdet_disable() -{ - tmc2130_sg_stop_on_crash = false; - tmc2130_sg_crash = 0; - eeprom_update_byte((uint8_t*)EEPROM_CRASH_DET, 0x00); - CrashDetectMenu = 0; -} - -void crashdet_stop_and_save_print() -{ - stop_and_save_print_to_ram(10, -DEFAULT_RETRACTION); //XY - no change, Z 10mm up, E -1mm retract -} - -void crashdet_restore_print_and_continue() -{ - restore_print_from_ram_and_continue(DEFAULT_RETRACTION); //XYZ = orig, E +1mm unretract -// babystep_apply(); -} - - -void crashdet_stop_and_save_print2() -{ - cli(); - planner_abort_hard(); //abort printing - cmdqueue_reset(); //empty cmdqueue - card.sdprinting = false; - card.closefile(); - // Reset and re-enable the stepper timer just before the global interrupts are enabled. - st_reset_timer(); - sei(); -} - -void crashdet_detected(uint8_t mask) -{ -// printf("CRASH_DETECTED"); -/* while (!is_buffer_empty()) - { - process_commands(); - cmdqueue_pop_front(); - }*/ - st_synchronize(); - static uint8_t crashDet_counter = 0; - bool automatic_recovery_after_crash = true; - - if (crashDet_counter++ == 0) { - crashDetTimer.start(); - } - else if (crashDetTimer.expired(CRASHDET_TIMER * 1000ul)){ - crashDetTimer.stop(); - crashDet_counter = 0; - } - else if(crashDet_counter == CRASHDET_COUNTER_MAX){ - automatic_recovery_after_crash = false; - crashDetTimer.stop(); - crashDet_counter = 0; - } - else { - crashDetTimer.start(); - } - - lcd_update_enable(true); - lcd_clear(); - lcd_update(2); - - if (mask & X_AXIS_MASK) - { - eeprom_update_byte((uint8_t*)EEPROM_CRASH_COUNT_X, eeprom_read_byte((uint8_t*)EEPROM_CRASH_COUNT_X) + 1); - eeprom_update_word((uint16_t*)EEPROM_CRASH_COUNT_X_TOT, eeprom_read_word((uint16_t*)EEPROM_CRASH_COUNT_X_TOT) + 1); - } - if (mask & Y_AXIS_MASK) - { - eeprom_update_byte((uint8_t*)EEPROM_CRASH_COUNT_Y, eeprom_read_byte((uint8_t*)EEPROM_CRASH_COUNT_Y) + 1); - eeprom_update_word((uint16_t*)EEPROM_CRASH_COUNT_Y_TOT, eeprom_read_word((uint16_t*)EEPROM_CRASH_COUNT_Y_TOT) + 1); - } - - - - lcd_update_enable(true); - lcd_update(2); - lcd_setstatuspgm(_T(MSG_CRASH_DETECTED)); - gcode_G28(true, true, false); //home X and Y - st_synchronize(); - - if (automatic_recovery_after_crash) { - enquecommand_P(PSTR("CRASH_RECOVER")); - }else{ - HotendTempBckp = degTargetHotend(active_extruder); - setTargetHotend(0, active_extruder); - bool yesno = lcd_show_fullscreen_message_yes_no_and_wait_P(_i("Crash detected. Resume print?"), false); - lcd_update_enable(true); - if (yesno) - { - char cmd1[10]; - strcpy(cmd1, "M109 S"); - strcat(cmd1, ftostr3(HotendTempBckp)); - enquecommand(cmd1); - enquecommand_P(PSTR("CRASH_RECOVER")); - } - else - { - enquecommand_P(PSTR("CRASH_CANCEL")); - } - } -} - -void crashdet_recover() -{ - crashdet_restore_print_and_continue(); - tmc2130_sg_stop_on_crash = true; -} - -void crashdet_cancel() -{ - tmc2130_sg_stop_on_crash = true; - if (saved_printing_type == PRINTING_TYPE_SD) { - lcd_print_stop(); - }else if(saved_printing_type == PRINTING_TYPE_USB){ - SERIAL_ECHOLNPGM("// action:cancel"); //for Octoprint: works the same as clicking "Abort" button in Octoprint GUI - SERIAL_PROTOCOLLNRPGM(_T(MSG_OK)); - } -} - -#endif //TMC2130 - -void failstats_reset_print() -{ - eeprom_update_byte((uint8_t *)EEPROM_CRASH_COUNT_X, 0); - eeprom_update_byte((uint8_t *)EEPROM_CRASH_COUNT_Y, 0); - eeprom_update_byte((uint8_t *)EEPROM_FERROR_COUNT, 0); - eeprom_update_byte((uint8_t *)EEPROM_POWER_COUNT, 0); -} - - - -#ifdef MESH_BED_LEVELING - enum MeshLevelingState { MeshReport, MeshStart, MeshNext, MeshSet }; -#endif - - -// Factory reset function -// This function is used to erase parts or whole EEPROM memory which is used for storing calibration and and so on. -// Level input parameter sets depth of reset -// Quiet parameter masks all waitings for user interact. -int er_progress = 0; -void factory_reset(char level, bool quiet) -{ - lcd_clear(); - int cursor_pos = 0; - switch (level) { - - // Level 0: Language reset - case 0: - WRITE(BEEPER, HIGH); - _delay_ms(100); - WRITE(BEEPER, LOW); - lang_reset(); - break; - - //Level 1: Reset statistics - case 1: - WRITE(BEEPER, HIGH); - _delay_ms(100); - WRITE(BEEPER, LOW); - eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, 0); - eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, 0); - - eeprom_update_byte((uint8_t *)EEPROM_CRASH_COUNT_X, 0); - eeprom_update_byte((uint8_t *)EEPROM_CRASH_COUNT_Y, 0); - eeprom_update_byte((uint8_t *)EEPROM_FERROR_COUNT, 0); - eeprom_update_byte((uint8_t *)EEPROM_POWER_COUNT, 0); - - eeprom_update_word((uint16_t *)EEPROM_CRASH_COUNT_X_TOT, 0); - eeprom_update_word((uint16_t *)EEPROM_CRASH_COUNT_Y_TOT, 0); - eeprom_update_word((uint16_t *)EEPROM_FERROR_COUNT_TOT, 0); - eeprom_update_word((uint16_t *)EEPROM_POWER_COUNT_TOT, 0); - - lcd_menu_statistics(); - - break; - - // Level 2: Prepare for shipping - case 2: - //lcd_puts_P(PSTR("Factory RESET")); - //lcd_puts_at_P(1,2,PSTR("Shipping prep")); - - // Force language selection at the next boot up. - lang_reset(); - // Force the "Follow calibration flow" message at the next boot up. - calibration_status_store(CALIBRATION_STATUS_Z_CALIBRATION); - eeprom_write_byte((uint8_t*)EEPROM_WIZARD_ACTIVE, 1); //run wizard - farm_no = 0; - farm_mode = false; - eeprom_update_byte((uint8_t*)EEPROM_FARM_MODE, farm_mode); - EEPROM_save_B(EEPROM_FARM_NUMBER, &farm_no); - - eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, 0); - eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, 0); - eeprom_update_word((uint16_t *)EEPROM_CRASH_COUNT_X_TOT, 0); - eeprom_update_word((uint16_t *)EEPROM_CRASH_COUNT_Y_TOT, 0); - eeprom_update_word((uint16_t *)EEPROM_FERROR_COUNT_TOT, 0); - eeprom_update_word((uint16_t *)EEPROM_POWER_COUNT_TOT, 0); - - fsensor_enable(); - fautoload_set(true); - - WRITE(BEEPER, HIGH); - _delay_ms(100); - WRITE(BEEPER, LOW); - //_delay_ms(2000); - break; - - // Level 3: erase everything, whole EEPROM will be set to 0xFF - - case 3: - lcd_puts_P(PSTR("Factory RESET")); - lcd_puts_at_P(1, 2, PSTR("ERASING all data")); - - WRITE(BEEPER, HIGH); - _delay_ms(100); - WRITE(BEEPER, LOW); - - er_progress = 0; - lcd_puts_at_P(3, 3, PSTR(" ")); - lcd_set_cursor(3, 3); - lcd_print(er_progress); - - // Erase EEPROM - for (int i = 0; i < 4096; i++) { - eeprom_write_byte((uint8_t*)i, 0xFF); - - if (i % 41 == 0) { - er_progress++; - lcd_puts_at_P(3, 3, PSTR(" ")); - lcd_set_cursor(3, 3); - lcd_print(er_progress); - lcd_puts_P(PSTR("%")); - } - - } - - - break; - case 4: - bowden_menu(); - break; - - default: - break; - } - - -} - - -FILE _uartout = {0}; - -int uart_putchar(char c, FILE *stream) -{ - MYSERIAL.write(c); - return 0; -} - - -void lcd_splash() -{ -// lcd_puts_at_P(0, 1, PSTR(" Original Prusa ")); -// lcd_puts_at_P(0, 2, PSTR(" 3D Printers ")); -// lcd_puts_P(PSTR("\x1b[1;3HOriginal Prusa\x1b[2;4H3D Printers")); -// fputs_P(PSTR(ESC_2J ESC_H(1,1) "Original Prusa i3" ESC_H(3,2) "Prusa Research"), lcdout); - lcd_puts_P(PSTR(ESC_2J ESC_H(1,1) "Original Prusa i3" ESC_H(3,2) "Prusa Research")); -// lcd_printf_P(_N(ESC_2J "x:%.3f\ny:%.3f\nz:%.3f\ne:%.3f"), _x, _y, _z, _e); -} - - -void factory_reset() -{ - KEEPALIVE_STATE(PAUSED_FOR_USER); - if (!READ(BTN_ENC)) - { - _delay_ms(1000); - if (!READ(BTN_ENC)) - { - lcd_clear(); - - - lcd_puts_P(PSTR("Factory RESET")); - - - SET_OUTPUT(BEEPER); - WRITE(BEEPER, HIGH); - - while (!READ(BTN_ENC)); - - WRITE(BEEPER, LOW); - - - - _delay_ms(2000); - - char level = reset_menu(); - factory_reset(level, false); - - switch (level) { - case 0: _delay_ms(0); break; - case 1: _delay_ms(0); break; - case 2: _delay_ms(0); break; - case 3: _delay_ms(0); break; - } - // _delay_ms(100); - /* - #ifdef MESH_BED_LEVELING - _delay_ms(2000); - - if (!READ(BTN_ENC)) - { - WRITE(BEEPER, HIGH); - _delay_ms(100); - WRITE(BEEPER, LOW); - _delay_ms(200); - WRITE(BEEPER, HIGH); - _delay_ms(100); - WRITE(BEEPER, LOW); - - int _z = 0; - calibration_status_store(CALIBRATION_STATUS_CALIBRATED); - EEPROM_save_B(EEPROM_BABYSTEP_X, &_z); - EEPROM_save_B(EEPROM_BABYSTEP_Y, &_z); - EEPROM_save_B(EEPROM_BABYSTEP_Z, &_z); - } - else - { - - WRITE(BEEPER, HIGH); - _delay_ms(100); - WRITE(BEEPER, LOW); - } - #endif // mesh */ - - } - } - else - { - //_delay_ms(1000); // wait 1sec to display the splash screen // what's this and why do we need it?? - andre - } - KEEPALIVE_STATE(IN_HANDLER); -} - -void show_fw_version_warnings() { - if (FW_DEV_VERSION == FW_VERSION_GOLD || FW_DEV_VERSION == FW_VERSION_RC) return; - switch (FW_DEV_VERSION) { - case(FW_VERSION_ALPHA): lcd_show_fullscreen_message_and_wait_P(_i("You are using firmware alpha version. This is development version. Using this version is not recommended and may cause printer damage.")); break;////MSG_FW_VERSION_ALPHA c=20 r=8 - case(FW_VERSION_BETA): lcd_show_fullscreen_message_and_wait_P(_i("You are using firmware beta version. This is development version. Using this version is not recommended and may cause printer damage.")); break;////MSG_FW_VERSION_BETA c=20 r=8 - case(FW_VERSION_DEVEL): - case(FW_VERSION_DEBUG): - lcd_update_enable(false); - lcd_clear(); - #if FW_DEV_VERSION == FW_VERSION_DEVEL - lcd_puts_at_P(0, 0, PSTR("Development build !!")); - #else - lcd_puts_at_P(0, 0, PSTR("Debbugging build !!!")); - #endif - lcd_puts_at_P(0, 1, PSTR("May destroy printer!")); - lcd_puts_at_P(0, 2, PSTR("ver ")); lcd_puts_P(PSTR(FW_VERSION_FULL)); - lcd_puts_at_P(0, 3, PSTR(FW_REPOSITORY)); - lcd_wait_for_click(); - break; -// default: lcd_show_fullscreen_message_and_wait_P(_i("WARNING: This is an unofficial, unsupported build. Use at your own risk!")); break;////MSG_FW_VERSION_UNKNOWN c=20 r=8 - } - lcd_update_enable(true); -} - -uint8_t check_printer_version() -{ - uint8_t version_changed = 0; - uint16_t printer_type = eeprom_read_word((uint16_t*)EEPROM_PRINTER_TYPE); - uint16_t motherboard = eeprom_read_word((uint16_t*)EEPROM_BOARD_TYPE); - - if (printer_type != PRINTER_TYPE) { - if (printer_type == 0xffff) eeprom_write_word((uint16_t*)EEPROM_PRINTER_TYPE, PRINTER_TYPE); - else version_changed |= 0b10; - } - if (motherboard != MOTHERBOARD) { - if(motherboard == 0xffff) eeprom_write_word((uint16_t*)EEPROM_BOARD_TYPE, MOTHERBOARD); - else version_changed |= 0b01; - } - return version_changed; -} - -void erase_eeprom_section(uint16_t offset, uint16_t bytes) -{ - for (int i = offset; i < (offset+bytes); i++) eeprom_write_byte((uint8_t*)i, 0xFF); -} - - -#if (LANG_MODE != 0) //secondary language support - -#ifdef W25X20CL - -#include "bootapp.h" //bootloader support - -// language update from external flash -#define LANGBOOT_BLOCKSIZE 0x1000 -#define LANGBOOT_RAMBUFFER 0x0800 - -void update_sec_lang_from_external_flash() -{ - if ((boot_app_magic == BOOT_APP_MAGIC) && (boot_app_flags & BOOT_APP_FLG_USER0)) - { - uint8_t lang = boot_reserved >> 4; - uint8_t state = boot_reserved & 0xf; - lang_table_header_t header; - uint32_t src_addr; - if (lang_get_header(lang, &header, &src_addr)) - { - fputs_P(PSTR(ESC_H(1,3) "Language update."), lcdout); - for (uint8_t i = 0; i < state; i++) fputc('.', lcdout); - delay(100); - boot_reserved = (state + 1) | (lang << 4); - if ((state * LANGBOOT_BLOCKSIZE) < header.size) - { - cli(); - uint16_t size = header.size - state * LANGBOOT_BLOCKSIZE; - if (size > LANGBOOT_BLOCKSIZE) size = LANGBOOT_BLOCKSIZE; - w25x20cl_rd_data(src_addr + state * LANGBOOT_BLOCKSIZE, (uint8_t*)LANGBOOT_RAMBUFFER, size); - if (state == 0) - { - //TODO - check header integrity - } - bootapp_ram2flash(LANGBOOT_RAMBUFFER, _SEC_LANG_TABLE + state * LANGBOOT_BLOCKSIZE, size); - } - else - { - //TODO - check sec lang data integrity - eeprom_update_byte((unsigned char *)EEPROM_LANG, LANG_ID_SEC); - } - } - } - boot_app_flags &= ~BOOT_APP_FLG_USER0; -} - - -#ifdef DEBUG_W25X20CL - -uint8_t lang_xflash_enum_codes(uint16_t* codes) -{ - lang_table_header_t header; - uint8_t count = 0; - uint32_t addr = 0x00000; - while (1) - { - printf_P(_n("LANGTABLE%d:"), count); - w25x20cl_rd_data(addr, (uint8_t*)&header, sizeof(lang_table_header_t)); - if (header.magic != LANG_MAGIC) - { - printf_P(_n("NG!\n")); - break; - } - printf_P(_n("OK\n")); - printf_P(_n(" _lt_magic = 0x%08lx %S\n"), header.magic, (header.magic==LANG_MAGIC)?_n("OK"):_n("NA")); - printf_P(_n(" _lt_size = 0x%04x (%d)\n"), header.size, header.size); - printf_P(_n(" _lt_count = 0x%04x (%d)\n"), header.count, header.count); - printf_P(_n(" _lt_chsum = 0x%04x\n"), header.checksum); - printf_P(_n(" _lt_code = 0x%04x (%c%c)\n"), header.code, header.code >> 8, header.code & 0xff); - printf_P(_n(" _lt_sign = 0x%08lx\n"), header.signature); - - addr += header.size; - codes[count] = header.code; - count ++; - } - return count; -} - -void list_sec_lang_from_external_flash() -{ - uint16_t codes[8]; - uint8_t count = lang_xflash_enum_codes(codes); - printf_P(_n("XFlash lang count = %hhd\n"), count); -} - -#endif //DEBUG_W25X20CL - -#endif //W25X20CL - -#endif //(LANG_MODE != 0) - - -// "Setup" function is called by the Arduino framework on startup. -// Before startup, the Timers-functions (PWM)/Analog RW and HardwareSerial provided by the Arduino-code -// are initialized by the main() routine provided by the Arduino framework. -void setup() -{ - ultralcd_init(); - - spi_init(); - - lcd_splash(); - -#ifdef W25X20CL - // Enter an STK500 compatible Optiboot boot loader waiting for flashing the languages to an external flash memory. - // optiboot_w25x20cl_enter(); -#endif - -#if (LANG_MODE != 0) //secondary language support -#ifdef W25X20CL - if (w25x20cl_init()) - update_sec_lang_from_external_flash(); - else - kill(_i("External SPI flash W25X20CL not responding.")); -#endif //W25X20CL -#endif //(LANG_MODE != 0) - - setup_killpin(); - setup_powerhold(); - - farm_mode = eeprom_read_byte((uint8_t*)EEPROM_FARM_MODE); - EEPROM_read_B(EEPROM_FARM_NUMBER, &farm_no); - if ((farm_mode == 0xFF && farm_no == 0) || ((uint16_t)farm_no == 0xFFFF)) - farm_mode = false; //if farm_mode has not been stored to eeprom yet and farm number is set to zero or EEPROM is fresh, deactivate farm mode - if ((uint16_t)farm_no == 0xFFFF) farm_no = 0; - - selectedSerialPort = eeprom_read_byte((uint8_t*)EEPROM_SECOND_SERIAL_ACTIVE); - if (selectedSerialPort == 0xFF) selectedSerialPort = 0; - if (farm_mode) - { - no_response = true; //we need confirmation by recieving PRUSA thx - important_status = 8; - prusa_statistics(8); - selectedSerialPort = 1; -#ifdef TMC2130 - //increased extruder current (PFW363) - tmc2130_current_h[E_AXIS] = 36; - tmc2130_current_r[E_AXIS] = 36; -#endif //TMC2130 - //disabled filament autoload (PFW360) - filament_autoload_enabled = false; - eeprom_update_byte((uint8_t*)EEPROM_FSENS_AUTOLOAD_ENABLED, 0); - } - MYSERIAL.begin(BAUDRATE); - fdev_setup_stream(uartout, uart_putchar, NULL, _FDEV_SETUP_WRITE); //setup uart out stream - stdout = uartout; - SERIAL_PROTOCOLLNPGM("start"); - SERIAL_ECHO_START; - printf_P(PSTR(" " FW_VERSION_FULL "\n")); - - uart2_init(); - - -#ifdef DEBUG_SEC_LANG - lang_table_header_t header; - uint32_t src_addr = 0x00000; - if (lang_get_header(1, &header, &src_addr)) - { -//this is comparsion of some printing-methods regarding to flash space usage and code size/readability -#define LT_PRINT_TEST 2 -// flash usage -// total p.test -//0 252718 t+c text code -//1 253142 424 170 254 -//2 253040 322 164 158 -//3 253248 530 135 395 -#if (LT_PRINT_TEST==1) //not optimized printf - printf_P(_n(" _src_addr = 0x%08lx\n"), src_addr); - printf_P(_n(" _lt_magic = 0x%08lx %S\n"), header.magic, (header.magic==LANG_MAGIC)?_n("OK"):_n("NA")); - printf_P(_n(" _lt_size = 0x%04x (%d)\n"), header.size, header.size); - printf_P(_n(" _lt_count = 0x%04x (%d)\n"), header.count, header.count); - printf_P(_n(" _lt_chsum = 0x%04x\n"), header.checksum); - printf_P(_n(" _lt_code = 0x%04x (%c%c)\n"), header.code, header.code >> 8, header.code & 0xff); - printf_P(_n(" _lt_sign = 0x%08lx\n"), header.signature); -#elif (LT_PRINT_TEST==2) //optimized printf - printf_P( - _n( - " _src_addr = 0x%08lx\n" - " _lt_magic = 0x%08lx %S\n" - " _lt_size = 0x%04x (%d)\n" - " _lt_count = 0x%04x (%d)\n" - " _lt_chsum = 0x%04x\n" - " _lt_code = 0x%04x (%c%c)\n" - " _lt_resv1 = 0x%08lx\n" - ), - src_addr, - header.magic, (header.magic==LANG_MAGIC)?_n("OK"):_n("NA"), - header.size, header.size, - header.count, header.count, - header.checksum, - header.code, header.code >> 8, header.code & 0xff, - header.signature - ); -#elif (LT_PRINT_TEST==3) //arduino print/println (leading zeros not solved) - MYSERIAL.print(" _src_addr = 0x"); - MYSERIAL.println(src_addr, 16); - MYSERIAL.print(" _lt_magic = 0x"); - MYSERIAL.print(header.magic, 16); - MYSERIAL.println((header.magic==LANG_MAGIC)?" OK":" NA"); - MYSERIAL.print(" _lt_size = 0x"); - MYSERIAL.print(header.size, 16); - MYSERIAL.print(" ("); - MYSERIAL.print(header.size, 10); - MYSERIAL.println(")"); - MYSERIAL.print(" _lt_count = 0x"); - MYSERIAL.print(header.count, 16); - MYSERIAL.print(" ("); - MYSERIAL.print(header.count, 10); - MYSERIAL.println(")"); - MYSERIAL.print(" _lt_chsum = 0x"); - MYSERIAL.println(header.checksum, 16); - MYSERIAL.print(" _lt_code = 0x"); - MYSERIAL.print(header.code, 16); - MYSERIAL.print(" ("); - MYSERIAL.print((char)(header.code >> 8), 0); - MYSERIAL.print((char)(header.code & 0xff), 0); - MYSERIAL.println(")"); - MYSERIAL.print(" _lt_resv1 = 0x"); - MYSERIAL.println(header.signature, 16); -#endif //(LT_PRINT_TEST==) -#undef LT_PRINT_TEST - -#if 0 - w25x20cl_rd_data(0x25ba, (uint8_t*)&block_buffer, 1024); - for (uint16_t i = 0; i < 1024; i++) - { - if ((i % 16) == 0) printf_P(_n("%04x:"), 0x25ba+i); - printf_P(_n(" %02x"), ((uint8_t*)&block_buffer)[i]); - if ((i % 16) == 15) putchar('\n'); - } -#endif - uint16_t sum = 0; - for (uint16_t i = 0; i < header.size; i++) - sum += (uint16_t)pgm_read_byte((uint8_t*)(_SEC_LANG_TABLE + i)) << ((i & 1)?0:8); - printf_P(_n("_SEC_LANG_TABLE checksum = %04x\n"), sum); - sum -= header.checksum; //subtract checksum - printf_P(_n("_SEC_LANG_TABLE checksum = %04x\n"), sum); - sum = (sum >> 8) | ((sum & 0xff) << 8); //swap bytes - if (sum == header.checksum) - printf_P(_n("Checksum OK\n"), sum); - else - printf_P(_n("Checksum NG\n"), sum); - } - else - printf_P(_n("lang_get_header failed!\n")); - -#if 0 - for (uint16_t i = 0; i < 1024*10; i++) - { - if ((i % 16) == 0) printf_P(_n("%04x:"), _SEC_LANG_TABLE+i); - printf_P(_n(" %02x"), pgm_read_byte((uint8_t*)(_SEC_LANG_TABLE+i))); - if ((i % 16) == 15) putchar('\n'); - } -#endif - -#if 0 - SERIAL_ECHOLN("Reading eeprom from 0 to 100: start"); - for (int i = 0; i < 4096; ++i) { - int b = eeprom_read_byte((unsigned char*)i); - if (b != 255) { - SERIAL_ECHO(i); - SERIAL_ECHO(":"); - SERIAL_ECHO(b); - SERIAL_ECHOLN(""); - } - } - SERIAL_ECHOLN("Reading eeprom from 0 to 100: done"); -#endif - -#endif //DEBUG_SEC_LANG - - // Check startup - does nothing if bootloader sets MCUSR to 0 - byte mcu = MCUSR; -/* if (mcu & 1) SERIAL_ECHOLNRPGM(_T(MSG_POWERUP)); - if (mcu & 2) SERIAL_ECHOLNRPGM(MSG_EXTERNAL_RESET); - if (mcu & 4) SERIAL_ECHOLNRPGM(MSG_BROWNOUT_RESET); - if (mcu & 8) SERIAL_ECHOLNRPGM(MSG_WATCHDOG_RESET); - if (mcu & 32) SERIAL_ECHOLNRPGM(MSG_SOFTWARE_RESET);*/ - if (mcu & 1) puts_P(_T(MSG_POWERUP)); - if (mcu & 2) puts_P(MSG_EXTERNAL_RESET); - if (mcu & 4) puts_P(MSG_BROWNOUT_RESET); - if (mcu & 8) puts_P(MSG_WATCHDOG_RESET); - if (mcu & 32) puts_P(MSG_SOFTWARE_RESET); - MCUSR = 0; - - //SERIAL_ECHORPGM(MSG_MARLIN); - //SERIAL_ECHOLNRPGM(VERSION_STRING); - -#ifdef STRING_VERSION_CONFIG_H -#ifdef STRING_CONFIG_H_AUTHOR - SERIAL_ECHO_START; - SERIAL_ECHORPGM(_i(" Last Updated: "));////MSG_CONFIGURATION_VER c=0 r=0 - SERIAL_ECHOPGM(STRING_VERSION_CONFIG_H); - SERIAL_ECHORPGM(_n(" | Author: "));////MSG_AUTHOR c=0 r=0 - SERIAL_ECHOLNPGM(STRING_CONFIG_H_AUTHOR); - SERIAL_ECHOPGM("Compiled: "); - SERIAL_ECHOLNPGM(__DATE__); -#endif -#endif - - SERIAL_ECHO_START; - SERIAL_ECHORPGM(_i(" Free Memory: "));////MSG_FREE_MEMORY c=0 r=0 - SERIAL_ECHO(freeMemory()); - SERIAL_ECHORPGM(_i(" PlannerBufferBytes: "));////MSG_PLANNER_BUFFER_BYTES c=0 r=0 - SERIAL_ECHOLN((int)sizeof(block_t)*BLOCK_BUFFER_SIZE); - //lcd_update_enable(false); // why do we need this?? - andre - // loads data from EEPROM if available else uses defaults (and resets step acceleration rate) - - bool previous_settings_retrieved = false; - uint8_t hw_changed = check_printer_version(); - if (!(hw_changed & 0b10)) { //if printer version wasn't changed, check for eeprom version and retrieve settings from eeprom in case that version wasn't changed - previous_settings_retrieved = Config_RetrieveSettings(EEPROM_OFFSET); - } - else { //printer version was changed so use default settings - Config_ResetDefault(); - } - SdFatUtil::set_stack_guard(); //writes magic number at the end of static variables to protect against overwriting static memory by stack - - tp_init(); // Initialize temperature loop - - lcd_splash(); // we need to do this again, because tp_init() kills lcd - - plan_init(); // Initialize planner; - - factory_reset(); - -#ifdef TMC2130 - uint8_t silentMode = eeprom_read_byte((uint8_t*)EEPROM_SILENT); - if (silentMode == 0xff) silentMode = 0; -// tmc2130_mode = silentMode?TMC2130_MODE_SILENT:TMC2130_MODE_NORMAL; - tmc2130_mode = TMC2130_MODE_NORMAL; - uint8_t crashdet = eeprom_read_byte((uint8_t*)EEPROM_CRASH_DET); - if (crashdet && !farm_mode) - { - crashdet_enable(); - puts_P(_N("CrashDetect ENABLED!")); - } - else - { - crashdet_disable(); - puts_P(_N("CrashDetect DISABLED")); - } - -#ifdef TMC2130_LINEARITY_CORRECTION -#ifdef TMC2130_LINEARITY_CORRECTION_XYZ - tmc2130_wave_fac[X_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_WAVE_X_FAC); - tmc2130_wave_fac[Y_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_WAVE_Y_FAC); - tmc2130_wave_fac[Z_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_WAVE_Z_FAC); -#endif //TMC2130_LINEARITY_CORRECTION_XYZ - tmc2130_wave_fac[E_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_WAVE_E_FAC); - if (tmc2130_wave_fac[X_AXIS] == 0xff) tmc2130_wave_fac[X_AXIS] = 0; - if (tmc2130_wave_fac[Y_AXIS] == 0xff) tmc2130_wave_fac[Y_AXIS] = 0; - if (tmc2130_wave_fac[Z_AXIS] == 0xff) tmc2130_wave_fac[Z_AXIS] = 0; - if (tmc2130_wave_fac[E_AXIS] == 0xff) tmc2130_wave_fac[E_AXIS] = 0; -#endif //TMC2130_LINEARITY_CORRECTION - -#ifdef TMC2130_VARIABLE_RESOLUTION - tmc2130_mres[X_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_X_MRES); - tmc2130_mres[Y_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_Y_MRES); - tmc2130_mres[Z_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_Z_MRES); - tmc2130_mres[E_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_E_MRES); - if (tmc2130_mres[X_AXIS] == 0xff) tmc2130_mres[X_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_XY); - if (tmc2130_mres[Y_AXIS] == 0xff) tmc2130_mres[Y_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_XY); - if (tmc2130_mres[Z_AXIS] == 0xff) tmc2130_mres[Z_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_Z); - if (tmc2130_mres[E_AXIS] == 0xff) tmc2130_mres[E_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_E); - eeprom_update_byte((uint8_t*)EEPROM_TMC2130_X_MRES, tmc2130_mres[X_AXIS]); - eeprom_update_byte((uint8_t*)EEPROM_TMC2130_Y_MRES, tmc2130_mres[Y_AXIS]); - eeprom_update_byte((uint8_t*)EEPROM_TMC2130_Z_MRES, tmc2130_mres[Z_AXIS]); - eeprom_update_byte((uint8_t*)EEPROM_TMC2130_E_MRES, tmc2130_mres[E_AXIS]); -#else //TMC2130_VARIABLE_RESOLUTION - tmc2130_mres[X_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_XY); - tmc2130_mres[Y_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_XY); - tmc2130_mres[Z_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_Z); - tmc2130_mres[E_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_E); -#endif //TMC2130_VARIABLE_RESOLUTION - -#endif //TMC2130 - - - st_init(); // Initialize stepper, this enables interrupts! - -#ifdef TMC2130 - tmc2130_mode = silentMode?TMC2130_MODE_SILENT:TMC2130_MODE_NORMAL; - tmc2130_init(); -#endif //TMC2130 - - setup_photpin(); - - servo_init(); - // Reset the machine correction matrix. - // It does not make sense to load the correction matrix until the machine is homed. - world2machine_reset(); - -#ifdef PAT9125 - fsensor_init(); -#endif //PAT9125 - - -#if defined(CONTROLLERFAN_PIN) && (CONTROLLERFAN_PIN > -1) - SET_OUTPUT(CONTROLLERFAN_PIN); //Set pin used for driver cooling fan -#endif - - - setup_homepin(); - -#ifdef TMC2130 - - if (1) { - // try to run to zero phase before powering the Z motor. - // Move in negative direction - WRITE(Z_DIR_PIN,INVERT_Z_DIR); - // Round the current micro-micro steps to micro steps. - for (uint16_t phase = (tmc2130_rd_MSCNT(Z_AXIS) + 8) >> 4; phase > 0; -- phase) { - // Until the phase counter is reset to zero. - WRITE(Z_STEP_PIN, !INVERT_Z_STEP_PIN); - delay(2); - WRITE(Z_STEP_PIN, INVERT_Z_STEP_PIN); - delay(2); - } - } -#endif //TMC2130 - -#if defined(Z_AXIS_ALWAYS_ON) - enable_z(); -#endif - farm_mode = eeprom_read_byte((uint8_t*)EEPROM_FARM_MODE); - EEPROM_read_B(EEPROM_FARM_NUMBER, &farm_no); - if ((farm_mode == 0xFF && farm_no == 0) || (farm_no == 0xFFFF)) farm_mode = false; //if farm_mode has not been stored to eeprom yet and farm number is set to zero or EEPROM is fresh, deactivate farm mode - if (farm_no == 0xFFFF) farm_no = 0; - if (farm_mode) - { - prusa_statistics(8); - } - - // Enable Toshiba FlashAir SD card / WiFi enahanced card. - card.ToshibaFlashAir_enable(eeprom_read_byte((unsigned char*)EEPROM_TOSHIBA_FLASH_AIR_COMPATIBLITY) == 1); - - if (eeprom_read_dword((uint32_t*)(EEPROM_TOP - 4)) == 0x0ffffffff && - eeprom_read_dword((uint32_t*)(EEPROM_TOP - 8)) == 0x0ffffffff) { - // Maiden startup. The firmware has been loaded and first started on a virgin RAMBo board, - // where all the EEPROM entries are set to 0x0ff. - // Once a firmware boots up, it forces at least a language selection, which changes - // EEPROM_LANG to number lower than 0x0ff. - // 1) Set a high power mode. -#ifdef TMC2130 - eeprom_write_byte((uint8_t*)EEPROM_SILENT, 0); - tmc2130_mode = TMC2130_MODE_NORMAL; -#endif //TMC2130 - eeprom_write_byte((uint8_t*)EEPROM_WIZARD_ACTIVE, 1); //run wizard - } - - // Force SD card update. Otherwise the SD card update is done from loop() on card.checkautostart(false), - // but this times out if a blocking dialog is shown in setup(). - card.initsd(); -#ifdef DEBUG_SD_SPEED_TEST - if (card.cardOK) - { - uint8_t* buff = (uint8_t*)block_buffer; - uint32_t block = 0; - uint32_t sumr = 0; - uint32_t sumw = 0; - for (int i = 0; i < 1024; i++) - { - uint32_t u = micros(); - bool res = card.card.readBlock(i, buff); - u = micros() - u; - if (res) - { - printf_P(PSTR("readBlock %4d 512 bytes %lu us\n"), i, u); - sumr += u; - u = micros(); - res = card.card.writeBlock(i, buff); - u = micros() - u; - if (res) - { - printf_P(PSTR("writeBlock %4d 512 bytes %lu us\n"), i, u); - sumw += u; - } - else - { - printf_P(PSTR("writeBlock %4d error\n"), i); - break; - } - } - else - { - printf_P(PSTR("readBlock %4d error\n"), i); - break; - } - } - uint32_t avg_rspeed = (1024 * 1000000) / (sumr / 512); - uint32_t avg_wspeed = (1024 * 1000000) / (sumw / 512); - printf_P(PSTR("avg read speed %lu bytes/s\n"), avg_rspeed); - printf_P(PSTR("avg write speed %lu bytes/s\n"), avg_wspeed); - } - else - printf_P(PSTR("Card NG!\n")); -#endif //DEBUG_SD_SPEED_TEST - - if (eeprom_read_byte((uint8_t*)EEPROM_POWER_COUNT) == 0xff) eeprom_write_byte((uint8_t*)EEPROM_POWER_COUNT, 0); - if (eeprom_read_byte((uint8_t*)EEPROM_CRASH_COUNT_X) == 0xff) eeprom_write_byte((uint8_t*)EEPROM_CRASH_COUNT_X, 0); - if (eeprom_read_byte((uint8_t*)EEPROM_CRASH_COUNT_Y) == 0xff) eeprom_write_byte((uint8_t*)EEPROM_CRASH_COUNT_Y, 0); - if (eeprom_read_byte((uint8_t*)EEPROM_FERROR_COUNT) == 0xff) eeprom_write_byte((uint8_t*)EEPROM_FERROR_COUNT, 0); - if (eeprom_read_word((uint16_t*)EEPROM_POWER_COUNT_TOT) == 0xffff) eeprom_write_word((uint16_t*)EEPROM_POWER_COUNT_TOT, 0); - if (eeprom_read_word((uint16_t*)EEPROM_CRASH_COUNT_X_TOT) == 0xffff) eeprom_write_word((uint16_t*)EEPROM_CRASH_COUNT_X_TOT, 0); - if (eeprom_read_word((uint16_t*)EEPROM_CRASH_COUNT_Y_TOT) == 0xffff) eeprom_write_word((uint16_t*)EEPROM_CRASH_COUNT_Y_TOT, 0); - if (eeprom_read_word((uint16_t*)EEPROM_FERROR_COUNT_TOT) == 0xffff) eeprom_write_word((uint16_t*)EEPROM_FERROR_COUNT_TOT, 0); -#ifdef SNMM - if (eeprom_read_dword((uint32_t*)EEPROM_BOWDEN_LENGTH) == 0x0ffffffff) { //bowden length used for SNMM - int _z = BOWDEN_LENGTH; - for(int i = 0; i<4; i++) EEPROM_save_B(EEPROM_BOWDEN_LENGTH + i * 2, &_z); - } -#endif - - // In the future, somewhere here would one compare the current firmware version against the firmware version stored in the EEPROM. - // If they differ, an update procedure may need to be performed. At the end of this block, the current firmware version - // is being written into the EEPROM, so the update procedure will be triggered only once. - - -#if (LANG_MODE != 0) //secondary language support - -#ifdef DEBUG_W25X20CL - W25X20CL_SPI_ENTER(); - uint8_t uid[8]; // 64bit unique id - w25x20cl_rd_uid(uid); - puts_P(_n("W25X20CL UID=")); - for (uint8_t i = 0; i < 8; i ++) - printf_P(PSTR("%02hhx"), uid[i]); - putchar('\n'); - list_sec_lang_from_external_flash(); -#endif //DEBUG_W25X20CL - -// lang_reset(); - if (!lang_select(eeprom_read_byte((uint8_t*)EEPROM_LANG))) - lcd_language(); - -#ifdef DEBUG_SEC_LANG - - uint16_t sec_lang_code = lang_get_code(1); - uint16_t ui = _SEC_LANG_TABLE; //table pointer - printf_P(_n("lang_selected=%d\nlang_table=0x%04x\nSEC_LANG_CODE=0x%04x (%c%c)\n"), lang_selected, ui, sec_lang_code, sec_lang_code >> 8, sec_lang_code & 0xff); - -// lang_print_sec_lang(uartout); -#endif //DEBUG_SEC_LANG - -#endif //(LANG_MODE != 0) - - if (eeprom_read_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE) == 255) { - eeprom_write_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE, 0); - temp_cal_active = false; - } else temp_cal_active = eeprom_read_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE); - - if (eeprom_read_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA) == 255) { - //eeprom_write_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 0); - eeprom_write_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 1); - int16_t z_shift = 0; - for (uint8_t i = 0; i < 5; i++) EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i * 2, &z_shift); - eeprom_write_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE, 0); - temp_cal_active = false; - } - if (eeprom_read_byte((uint8_t*)EEPROM_UVLO) == 255) { - eeprom_write_byte((uint8_t*)EEPROM_UVLO, 0); - } - if (eeprom_read_byte((uint8_t*)EEPROM_SD_SORT) == 255) { - eeprom_write_byte((uint8_t*)EEPROM_SD_SORT, 0); - } - - check_babystep(); //checking if Z babystep is in allowed range - -#ifdef UVLO_SUPPORT - setup_uvlo_interrupt(); -#endif //UVLO_SUPPORT - -#if !defined(DEBUG_DISABLE_FANCHECK) && defined(FANCHECK) && defined(TACH_1) && TACH_1 >-1 - setup_fan_interrupt(); -#endif //DEBUG_DISABLE_FANCHECK - -#ifdef PAT9125 -#ifndef DEBUG_DISABLE_FSENSORCHECK - fsensor_setup_interrupt(); -#endif //DEBUG_DISABLE_FSENSORCHECK -#endif //PAT9125 - for (int i = 0; i<4; i++) EEPROM_read_B(EEPROM_BOWDEN_LENGTH + i * 2, &bowden_length[i]); - -#ifndef DEBUG_DISABLE_STARTMSGS - KEEPALIVE_STATE(PAUSED_FOR_USER); - - show_fw_version_warnings(); - - switch (hw_changed) { - //if motherboard or printer type was changed inform user as it can indicate flashing wrong firmware version - //if user confirms with knob, new hw version (printer and/or motherboard) is written to eeprom and message will be not shown next time - case(0b01): - lcd_show_fullscreen_message_and_wait_P(_i("Warning: motherboard type changed.")); ////MSG_CHANGED_MOTHERBOARD c=20 r=4 - eeprom_write_word((uint16_t*)EEPROM_BOARD_TYPE, MOTHERBOARD); - break; - case(0b10): - lcd_show_fullscreen_message_and_wait_P(_i("Warning: printer type changed.")); ////MSG_CHANGED_PRINTER c=20 r=4 - eeprom_write_word((uint16_t*)EEPROM_PRINTER_TYPE, PRINTER_TYPE); - break; - case(0b11): - lcd_show_fullscreen_message_and_wait_P(_i("Warning: both printer type and motherboard type changed.")); ////MSG_CHANGED_BOTH c=20 r=4 - eeprom_write_word((uint16_t*)EEPROM_PRINTER_TYPE, PRINTER_TYPE); - eeprom_write_word((uint16_t*)EEPROM_BOARD_TYPE, MOTHERBOARD); - break; - default: break; //no change, show no message - } - - if (!previous_settings_retrieved) { - lcd_show_fullscreen_message_and_wait_P(_i("Old settings found. Default PID, Esteps etc. will be set.")); //if EEPROM version or printer type was changed, inform user that default setting were loaded////MSG_DEFAULT_SETTINGS_LOADED c=20 r=4 - erase_eeprom_section(EEPROM_OFFSET, 156); //erase M500 part of eeprom - } - if (eeprom_read_byte((uint8_t*)EEPROM_WIZARD_ACTIVE) == 1) { - lcd_wizard(0); - } - if (eeprom_read_byte((uint8_t*)EEPROM_WIZARD_ACTIVE) == 0) { //dont show calibration status messages if wizard is currently active - if (calibration_status() == CALIBRATION_STATUS_ASSEMBLED || - calibration_status() == CALIBRATION_STATUS_UNKNOWN || - calibration_status() == CALIBRATION_STATUS_XYZ_CALIBRATION) { - // Reset the babystepping values, so the printer will not move the Z axis up when the babystepping is enabled. - eeprom_update_word((uint16_t*)EEPROM_BABYSTEP_Z, 0); - // Show the message. - lcd_show_fullscreen_message_and_wait_P(_T(MSG_FOLLOW_CALIBRATION_FLOW)); - } - else if (calibration_status() == CALIBRATION_STATUS_LIVE_ADJUST) { - // Show the message. - lcd_show_fullscreen_message_and_wait_P(_T(MSG_BABYSTEP_Z_NOT_SET)); - lcd_update_enable(true); - } - else if (calibration_status() == CALIBRATION_STATUS_CALIBRATED && temp_cal_active == true && calibration_status_pinda() == false) { - //lcd_show_fullscreen_message_and_wait_P(_i("Temperature calibration has not been run yet"));////MSG_PINDA_NOT_CALIBRATED c=20 r=4 - lcd_update_enable(true); - } - else if (calibration_status() == CALIBRATION_STATUS_Z_CALIBRATION) { - // Show the message. - lcd_show_fullscreen_message_and_wait_P(_T(MSG_FOLLOW_CALIBRATION_FLOW)); - } - } - -#if !defined (DEBUG_DISABLE_FORCE_SELFTEST) && defined (TMC2130) - if (force_selftest_if_fw_version() && calibration_status() < CALIBRATION_STATUS_ASSEMBLED) { - lcd_show_fullscreen_message_and_wait_P(_i("Selftest will be run to calibrate accurate sensorless rehoming."));////MSG_FORCE_SELFTEST c=20 r=8 - update_current_firmware_version_to_eeprom(); - lcd_selftest(); - } -#endif //TMC2130 && !DEBUG_DISABLE_FORCE_SELFTEST - - KEEPALIVE_STATE(IN_PROCESS); -#endif //DEBUG_DISABLE_STARTMSGS - lcd_update_enable(true); - lcd_clear(); - lcd_update(2); - // Store the currently running firmware into an eeprom, - // so the next time the firmware gets updated, it will know from which version it has been updated. - update_current_firmware_version_to_eeprom(); - -#ifdef TMC2130 - tmc2130_home_origin[X_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_X_ORIGIN); - tmc2130_home_bsteps[X_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_X_BSTEPS); - tmc2130_home_fsteps[X_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_X_FSTEPS); - if (tmc2130_home_origin[X_AXIS] == 0xff) tmc2130_home_origin[X_AXIS] = 0; - if (tmc2130_home_bsteps[X_AXIS] == 0xff) tmc2130_home_bsteps[X_AXIS] = 48; - if (tmc2130_home_fsteps[X_AXIS] == 0xff) tmc2130_home_fsteps[X_AXIS] = 48; - - tmc2130_home_origin[Y_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_Y_ORIGIN); - tmc2130_home_bsteps[Y_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_Y_BSTEPS); - tmc2130_home_fsteps[Y_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_Y_FSTEPS); - if (tmc2130_home_origin[Y_AXIS] == 0xff) tmc2130_home_origin[Y_AXIS] = 0; - if (tmc2130_home_bsteps[Y_AXIS] == 0xff) tmc2130_home_bsteps[Y_AXIS] = 48; - if (tmc2130_home_fsteps[Y_AXIS] == 0xff) tmc2130_home_fsteps[Y_AXIS] = 48; - - tmc2130_home_enabled = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_ENABLED); - if (tmc2130_home_enabled == 0xff) tmc2130_home_enabled = 0; -#endif //TMC2130 - -#ifdef UVLO_SUPPORT - if (eeprom_read_byte((uint8_t*)EEPROM_UVLO) == 1) { //previous print was terminated by UVLO -/* - if (lcd_show_fullscreen_message_yes_no_and_wait_P(_T(MSG_RECOVER_PRINT), false)) recover_print(); - else { - eeprom_update_byte((uint8_t*)EEPROM_UVLO, 0); - lcd_update_enable(true); - lcd_update(2); - lcd_setstatuspgm(_T(WELCOME_MSG)); - } -*/ - manage_heater(); // Update temperatures -#ifdef DEBUG_UVLO_AUTOMATIC_RECOVER - printf_P(_N("Power panic detected!\nCurrent bed temp:%d\nSaved bed temp:%d\n"), (int)degBed(), eeprom_read_byte((uint8_t*)EEPROM_UVLO_TARGET_BED)) -#endif - if ( degBed() > ( (float)eeprom_read_byte((uint8_t*)EEPROM_UVLO_TARGET_BED) - AUTOMATIC_UVLO_BED_TEMP_OFFSET) ){ - #ifdef DEBUG_UVLO_AUTOMATIC_RECOVER - puts_P(_N("Automatic recovery!")); - #endif - recover_print(1); - } - else{ - #ifdef DEBUG_UVLO_AUTOMATIC_RECOVER - puts_P(_N("Normal recovery!")); - #endif - if ( lcd_show_fullscreen_message_yes_no_and_wait_P(_T(MSG_RECOVER_PRINT), false) ) recover_print(0); - else { - eeprom_update_byte((uint8_t*)EEPROM_UVLO, 0); - lcd_update_enable(true); - lcd_update(2); - lcd_setstatuspgm(_T(WELCOME_MSG)); - } - - } - - } -#endif //UVLO_SUPPORT - - KEEPALIVE_STATE(NOT_BUSY); -#ifdef WATCHDOG - wdt_enable(WDTO_4S); -#endif //WATCHDOG -} - -#ifdef PAT9125 -void fsensor_init() { - int pat9125 = pat9125_init(); - printf_P(_N("PAT9125_init:%d\n"), pat9125); - uint8_t fsensor = eeprom_read_byte((uint8_t*)EEPROM_FSENSOR); - filament_autoload_enabled=eeprom_read_byte((uint8_t*)EEPROM_FSENS_AUTOLOAD_ENABLED); - if (!pat9125) - { - fsensor = 0; //disable sensor - fsensor_not_responding = true; - } - else { - fsensor_not_responding = false; - } - puts_P(PSTR("FSensor ")); - if (fsensor) - { - puts_P(PSTR("ENABLED\n")); - fsensor_enable(); - } - else - { - puts_P(PSTR("DISABLED\n")); - fsensor_disable(); - } -#ifdef DEBUG_DISABLE_FSENSORCHECK - filament_autoload_enabled = false; - fsensor_disable(); -#endif //DEBUG_DISABLE_FSENSORCHECK -} - -#endif //PAT9125 - -void trace(); - -#define CHUNK_SIZE 64 // bytes -#define SAFETY_MARGIN 1 -char chunk[CHUNK_SIZE+SAFETY_MARGIN]; -int chunkHead = 0; - -int serial_read_stream() { - - setTargetHotend(0, 0); - setTargetBed(0); - - lcd_clear(); - lcd_puts_P(PSTR(" Upload in progress")); - - // first wait for how many bytes we will receive - uint32_t bytesToReceive; - - // receive the four bytes - char bytesToReceiveBuffer[4]; - for (int i=0; i<4; i++) { - int data; - while ((data = MYSERIAL.read()) == -1) {}; - bytesToReceiveBuffer[i] = data; - - } - - // make it a uint32 - memcpy(&bytesToReceive, &bytesToReceiveBuffer, 4); - - // we're ready, notify the sender - MYSERIAL.write('+'); - - // lock in the routine - uint32_t receivedBytes = 0; - while (prusa_sd_card_upload) { - int i; - for (i=0; i 0) && ((millis()-_usb_timer) > 1000)) - { - is_usb_printing = true; - usb_printing_counter--; - _usb_timer = millis(); - } - if (usb_printing_counter == 0) - { - is_usb_printing = false; - } - - if (prusa_sd_card_upload) - { - //we read byte-by byte - serial_read_stream(); - } else - { - - get_command(); - - #ifdef SDSUPPORT - card.checkautostart(false); - #endif - if(buflen) - { - cmdbuffer_front_already_processed = false; - #ifdef SDSUPPORT - if(card.saving) - { - // Saving a G-code file onto an SD-card is in progress. - // Saving starts with M28, saving until M29 is seen. - if(strstr_P(CMDBUFFER_CURRENT_STRING, PSTR("M29")) == NULL) { - card.write_command(CMDBUFFER_CURRENT_STRING); - if(card.logging) - process_commands(); - else - SERIAL_PROTOCOLLNRPGM(_T(MSG_OK)); - } else { - card.closefile(); - SERIAL_PROTOCOLLNRPGM(MSG_FILE_SAVED); - } - } else { - process_commands(); - } - #else - process_commands(); - #endif //SDSUPPORT - - if (! cmdbuffer_front_already_processed && buflen) - { - // ptr points to the start of the block currently being processed. - // The first character in the block is the block type. - char *ptr = cmdbuffer + bufindr; - if (*ptr == CMDBUFFER_CURRENT_TYPE_SDCARD) { - // To support power panic, move the lenght of the command on the SD card to a planner buffer. - union { - struct { - char lo; - char hi; - } lohi; - uint16_t value; - } sdlen; - sdlen.value = 0; - { - // This block locks the interrupts globally for 3.25 us, - // which corresponds to a maximum repeat frequency of 307.69 kHz. - // This blocking is safe in the context of a 10kHz stepper driver interrupt - // or a 115200 Bd serial line receive interrupt, which will not trigger faster than 12kHz. - cli(); - // Reset the command to something, which will be ignored by the power panic routine, - // so this buffer length will not be counted twice. - *ptr ++ = CMDBUFFER_CURRENT_TYPE_TO_BE_REMOVED; - // Extract the current buffer length. - sdlen.lohi.lo = *ptr ++; - sdlen.lohi.hi = *ptr; - // and pass it to the planner queue. - planner_add_sd_length(sdlen.value); - sei(); - } - } - else if((*ptr == CMDBUFFER_CURRENT_TYPE_USB_WITH_LINENR) && !IS_SD_PRINTING){ - - cli(); - *ptr ++ = CMDBUFFER_CURRENT_TYPE_TO_BE_REMOVED; - // and one for each command to previous block in the planner queue. - planner_add_sd_length(1); - sei(); - } - // Now it is safe to release the already processed command block. If interrupted by the power panic now, - // this block's SD card length will not be counted twice as its command type has been replaced - // by CMDBUFFER_CURRENT_TYPE_TO_BE_REMOVED. - cmdqueue_pop_front(); - } - host_keepalive(); - } -} - //check heater every n milliseconds - manage_heater(); - isPrintPaused ? manage_inactivity(true) : manage_inactivity(false); - checkHitEndstops(); - lcd_update(0); -#ifdef PAT9125 - fsensor_update(); -#endif //PAT9125 -#ifdef TMC2130 - tmc2130_check_overtemp(); - if (tmc2130_sg_crash) - { - uint8_t crash = tmc2130_sg_crash; - tmc2130_sg_crash = 0; -// crashdet_stop_and_save_print(); - switch (crash) - { - case 1: enquecommand_P((PSTR("CRASH_DETECTEDX"))); break; - case 2: enquecommand_P((PSTR("CRASH_DETECTEDY"))); break; - case 3: enquecommand_P((PSTR("CRASH_DETECTEDXY"))); break; - } - } -#endif //TMC2130 - -} - -#define DEFINE_PGM_READ_ANY(type, reader) \ - static inline type pgm_read_any(const type *p) \ - { return pgm_read_##reader##_near(p); } - -DEFINE_PGM_READ_ANY(float, float); -DEFINE_PGM_READ_ANY(signed char, byte); - -#define XYZ_CONSTS_FROM_CONFIG(type, array, CONFIG) \ -static const PROGMEM type array##_P[3] = \ - { X_##CONFIG, Y_##CONFIG, Z_##CONFIG }; \ -static inline type array(int axis) \ - { return pgm_read_any(&array##_P[axis]); } \ -type array##_ext(int axis) \ - { return pgm_read_any(&array##_P[axis]); } - -XYZ_CONSTS_FROM_CONFIG(float, base_min_pos, MIN_POS); -XYZ_CONSTS_FROM_CONFIG(float, base_max_pos, MAX_POS); -XYZ_CONSTS_FROM_CONFIG(float, base_home_pos, HOME_POS); -XYZ_CONSTS_FROM_CONFIG(float, max_length, MAX_LENGTH); -XYZ_CONSTS_FROM_CONFIG(float, home_retract_mm, HOME_RETRACT_MM); -XYZ_CONSTS_FROM_CONFIG(signed char, home_dir, HOME_DIR); - -static void axis_is_at_home(int axis) { - current_position[axis] = base_home_pos(axis) + add_homing[axis]; - min_pos[axis] = base_min_pos(axis) + add_homing[axis]; - max_pos[axis] = base_max_pos(axis) + add_homing[axis]; -} - - -inline void set_current_to_destination() { memcpy(current_position, destination, sizeof(current_position)); } -inline void set_destination_to_current() { memcpy(destination, current_position, sizeof(destination)); } - - -static void setup_for_endstop_move(bool enable_endstops_now = true) { - saved_feedrate = feedrate; - saved_feedmultiply = feedmultiply; - feedmultiply = 100; - previous_millis_cmd = millis(); - - enable_endstops(enable_endstops_now); -} - -static void clean_up_after_endstop_move() { -#ifdef ENDSTOPS_ONLY_FOR_HOMING - enable_endstops(false); -#endif - - feedrate = saved_feedrate; - feedmultiply = saved_feedmultiply; - previous_millis_cmd = millis(); -} - - - -#ifdef ENABLE_AUTO_BED_LEVELING -#ifdef AUTO_BED_LEVELING_GRID -static void set_bed_level_equation_lsq(double *plane_equation_coefficients) -{ - vector_3 planeNormal = vector_3(-plane_equation_coefficients[0], -plane_equation_coefficients[1], 1); - planeNormal.debug("planeNormal"); - plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal); - //bedLevel.debug("bedLevel"); - - //plan_bed_level_matrix.debug("bed level before"); - //vector_3 uncorrected_position = plan_get_position_mm(); - //uncorrected_position.debug("position before"); - - vector_3 corrected_position = plan_get_position(); -// corrected_position.debug("position after"); - current_position[X_AXIS] = corrected_position.x; - current_position[Y_AXIS] = corrected_position.y; - current_position[Z_AXIS] = corrected_position.z; - - // put the bed at 0 so we don't go below it. - current_position[Z_AXIS] = zprobe_zoffset; // in the lsq we reach here after raising the extruder due to the loop structure - - plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]); -} - -#else // not AUTO_BED_LEVELING_GRID - -static void set_bed_level_equation_3pts(float z_at_pt_1, float z_at_pt_2, float z_at_pt_3) { - - plan_bed_level_matrix.set_to_identity(); - - vector_3 pt1 = vector_3(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, z_at_pt_1); - vector_3 pt2 = vector_3(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, z_at_pt_2); - vector_3 pt3 = vector_3(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, z_at_pt_3); - - vector_3 from_2_to_1 = (pt1 - pt2).get_normal(); - vector_3 from_2_to_3 = (pt3 - pt2).get_normal(); - vector_3 planeNormal = vector_3::cross(from_2_to_1, from_2_to_3).get_normal(); - planeNormal = vector_3(planeNormal.x, planeNormal.y, abs(planeNormal.z)); - - plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal); - - vector_3 corrected_position = plan_get_position(); - current_position[X_AXIS] = corrected_position.x; - current_position[Y_AXIS] = corrected_position.y; - current_position[Z_AXIS] = corrected_position.z; - - // put the bed at 0 so we don't go below it. - current_position[Z_AXIS] = zprobe_zoffset; - - plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]); - -} - -#endif // AUTO_BED_LEVELING_GRID - -static void run_z_probe() { - plan_bed_level_matrix.set_to_identity(); - feedrate = homing_feedrate[Z_AXIS]; - - // move down until you find the bed - float zPosition = -10; - plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder); - st_synchronize(); - - // we have to let the planner know where we are right now as it is not where we said to go. - zPosition = st_get_position_mm(Z_AXIS); - plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS]); - - // move up the retract distance - zPosition += home_retract_mm(Z_AXIS); - plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder); - st_synchronize(); - - // move back down slowly to find bed - feedrate = homing_feedrate[Z_AXIS]/4; - zPosition -= home_retract_mm(Z_AXIS) * 2; - plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder); - st_synchronize(); - - current_position[Z_AXIS] = st_get_position_mm(Z_AXIS); - // make sure the planner knows where we are as it may be a bit different than we last said to move to - plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]); -} - -static void do_blocking_move_to(float x, float y, float z) { - float oldFeedRate = feedrate; - - feedrate = homing_feedrate[Z_AXIS]; - - current_position[Z_AXIS] = z; - plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate/60, active_extruder); - st_synchronize(); - - feedrate = XY_TRAVEL_SPEED; - - current_position[X_AXIS] = x; - current_position[Y_AXIS] = y; - plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate/60, active_extruder); - st_synchronize(); - - feedrate = oldFeedRate; -} - -static void do_blocking_move_relative(float offset_x, float offset_y, float offset_z) { - do_blocking_move_to(current_position[X_AXIS] + offset_x, current_position[Y_AXIS] + offset_y, current_position[Z_AXIS] + offset_z); -} - - -/// Probe bed height at position (x,y), returns the measured z value -static float probe_pt(float x, float y, float z_before) { - // move to right place - do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], z_before); - do_blocking_move_to(x - X_PROBE_OFFSET_FROM_EXTRUDER, y - Y_PROBE_OFFSET_FROM_EXTRUDER, current_position[Z_AXIS]); - - run_z_probe(); - float measured_z = current_position[Z_AXIS]; - - SERIAL_PROTOCOLRPGM(_T(MSG_BED)); - SERIAL_PROTOCOLPGM(" x: "); - SERIAL_PROTOCOL(x); - SERIAL_PROTOCOLPGM(" y: "); - SERIAL_PROTOCOL(y); - SERIAL_PROTOCOLPGM(" z: "); - SERIAL_PROTOCOL(measured_z); - SERIAL_PROTOCOLPGM("\n"); - return measured_z; -} - -#endif // #ifdef ENABLE_AUTO_BED_LEVELING - -#ifdef LIN_ADVANCE - /** - * M900: Set and/or Get advance K factor and WH/D ratio - * - * K Set advance K factor - * R Set ratio directly (overrides WH/D) - * W H D Set ratio from WH/D - */ -inline void gcode_M900() { - st_synchronize(); - - const float newK = code_seen('K') ? code_value_float() : -1; - if (newK >= 0) extruder_advance_k = newK; - - float newR = code_seen('R') ? code_value_float() : -1; - if (newR < 0) { - const float newD = code_seen('D') ? code_value_float() : -1, - newW = code_seen('W') ? code_value_float() : -1, - newH = code_seen('H') ? code_value_float() : -1; - if (newD >= 0 && newW >= 0 && newH >= 0) - newR = newD ? (newW * newH) / (sq(newD * 0.5) * M_PI) : 0; - } - if (newR >= 0) advance_ed_ratio = newR; - - SERIAL_ECHO_START; - SERIAL_ECHOPGM("Advance K="); - SERIAL_ECHOLN(extruder_advance_k); - SERIAL_ECHOPGM(" E/D="); - const float ratio = advance_ed_ratio; - if (ratio) SERIAL_ECHOLN(ratio); else SERIAL_ECHOLNPGM("Auto"); - } -#endif // LIN_ADVANCE - -bool check_commands() { - bool end_command_found = false; - - while (buflen) - { - if ((code_seen("M84")) || (code_seen("M 84"))) end_command_found = true; - if (!cmdbuffer_front_already_processed) - cmdqueue_pop_front(); - cmdbuffer_front_already_processed = false; - } - return end_command_found; - -} - -#ifdef TMC2130 -bool calibrate_z_auto() -{ - //lcd_display_message_fullscreen_P(_T(MSG_CALIBRATE_Z_AUTO)); - lcd_clear(); - lcd_puts_at_P(0,1, _T(MSG_CALIBRATE_Z_AUTO)); - bool endstops_enabled = enable_endstops(true); - int axis_up_dir = -home_dir(Z_AXIS); - tmc2130_home_enter(Z_AXIS_MASK); - current_position[Z_AXIS] = 0; - plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]); - set_destination_to_current(); - destination[Z_AXIS] += (1.1 * max_length(Z_AXIS) * axis_up_dir); - feedrate = homing_feedrate[Z_AXIS]; - plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder); - st_synchronize(); -// current_position[axis] = 0; -// plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]); - tmc2130_home_exit(); - enable_endstops(false); - current_position[Z_AXIS] = 0; - plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]); - set_destination_to_current(); - destination[Z_AXIS] += 10 * axis_up_dir; //10mm up - feedrate = homing_feedrate[Z_AXIS] / 2; - plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder); - st_synchronize(); - enable_endstops(endstops_enabled); - current_position[Z_AXIS] = Z_MAX_POS+2.0; - plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]); - return true; -} -#endif //TMC2130 - -void homeaxis(int axis, uint8_t cnt, uint8_t* pstep) -{ - bool endstops_enabled = enable_endstops(true); //RP: endstops should be allways enabled durring homing -#define HOMEAXIS_DO(LETTER) \ -((LETTER##_MIN_PIN > -1 && LETTER##_HOME_DIR==-1) || (LETTER##_MAX_PIN > -1 && LETTER##_HOME_DIR==1)) - if ((axis==X_AXIS)?HOMEAXIS_DO(X):(axis==Y_AXIS)?HOMEAXIS_DO(Y):0) - { - int axis_home_dir = home_dir(axis); - feedrate = homing_feedrate[axis]; - -#ifdef TMC2130 - tmc2130_home_enter(X_AXIS_MASK << axis); -#endif //TMC2130 - - - // Move right a bit, so that the print head does not touch the left end position, - // and the following left movement has a chance to achieve the required velocity - // for the stall guard to work. - current_position[axis] = 0; - plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]); - set_destination_to_current(); -// destination[axis] = 11.f; - destination[axis] = 3.f; - plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder); - st_synchronize(); - // Move left away from the possible collision with the collision detection disabled. - endstops_hit_on_purpose(); - enable_endstops(false); - current_position[axis] = 0; - plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]); - destination[axis] = - 1.; - plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder); - st_synchronize(); - // Now continue to move up to the left end stop with the collision detection enabled. - enable_endstops(true); - destination[axis] = - 1.1 * max_length(axis); - plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder); - st_synchronize(); - for (uint8_t i = 0; i < cnt; i++) - { - // Move right from the collision to a known distance from the left end stop with the collision detection disabled. - endstops_hit_on_purpose(); - enable_endstops(false); - current_position[axis] = 0; - plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]); - destination[axis] = 10.f; - plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder); - st_synchronize(); - endstops_hit_on_purpose(); - // Now move left up to the collision, this time with a repeatable velocity. - enable_endstops(true); - destination[axis] = - 11.f; -#ifdef TMC2130 - feedrate = homing_feedrate[axis]; -#else //TMC2130 - feedrate = homing_feedrate[axis] / 2; -#endif //TMC2130 - plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder); - st_synchronize(); -#ifdef TMC2130 - uint16_t mscnt = tmc2130_rd_MSCNT(axis); - if (pstep) pstep[i] = mscnt >> 4; - printf_P(PSTR("%3d step=%2d mscnt=%4d\n"), i, mscnt >> 4, mscnt); -#endif //TMC2130 - } - endstops_hit_on_purpose(); - enable_endstops(false); - -#ifdef TMC2130 - uint8_t orig = tmc2130_home_origin[axis]; - uint8_t back = tmc2130_home_bsteps[axis]; - if (tmc2130_home_enabled && (orig <= 63)) - { - tmc2130_goto_step(axis, orig, 2, 1000, tmc2130_get_res(axis)); - if (back > 0) - tmc2130_do_steps(axis, back, 1, 1000); - } - else - tmc2130_do_steps(axis, 8, 2, 1000); - tmc2130_home_exit(); -#endif //TMC2130 - - axis_is_at_home(axis); - axis_known_position[axis] = true; - // Move from minimum -#ifdef TMC2130 - float dist = 0.01f * tmc2130_home_fsteps[axis]; -#else //TMC2130 - float dist = 0.01f * 64; -#endif //TMC2130 - current_position[axis] -= dist; - plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]); - current_position[axis] += dist; - destination[axis] = current_position[axis]; - plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], 0.5f*feedrate/60, active_extruder); - st_synchronize(); - - feedrate = 0.0; - } - else if ((axis==Z_AXIS)?HOMEAXIS_DO(Z):0) - { -#ifdef TMC2130 - FORCE_HIGH_POWER_START; -#endif - int axis_home_dir = home_dir(axis); - current_position[axis] = 0; - plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]); - destination[axis] = 1.5 * max_length(axis) * axis_home_dir; - feedrate = homing_feedrate[axis]; - plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder); - st_synchronize(); -#ifdef TMC2130 - if (READ(Z_TMC2130_DIAG) != 0) { //Z crash - FORCE_HIGH_POWER_END; - kill(_T(MSG_BED_LEVELING_FAILED_POINT_LOW)); - return; - } -#endif //TMC2130 - current_position[axis] = 0; - plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]); - destination[axis] = -home_retract_mm(axis) * axis_home_dir; - plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder); - st_synchronize(); - destination[axis] = 2*home_retract_mm(axis) * axis_home_dir; - feedrate = homing_feedrate[axis]/2 ; - plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder); - st_synchronize(); -#ifdef TMC2130 - if (READ(Z_TMC2130_DIAG) != 0) { //Z crash - FORCE_HIGH_POWER_END; - kill(_T(MSG_BED_LEVELING_FAILED_POINT_LOW)); - return; - } -#endif //TMC2130 - axis_is_at_home(axis); - destination[axis] = current_position[axis]; - feedrate = 0.0; - endstops_hit_on_purpose(); - axis_known_position[axis] = true; -#ifdef TMC2130 - FORCE_HIGH_POWER_END; -#endif - } - enable_endstops(endstops_enabled); -} - -/**/ -void home_xy() -{ - set_destination_to_current(); - homeaxis(X_AXIS); - homeaxis(Y_AXIS); - plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]); - endstops_hit_on_purpose(); -} - -void refresh_cmd_timeout(void) -{ - previous_millis_cmd = millis(); -} - -#ifdef FWRETRACT - void retract(bool retracting, bool swapretract = false) { - if(retracting && !retracted[active_extruder]) { - destination[X_AXIS]=current_position[X_AXIS]; - destination[Y_AXIS]=current_position[Y_AXIS]; - destination[Z_AXIS]=current_position[Z_AXIS]; - destination[E_AXIS]=current_position[E_AXIS]; - current_position[E_AXIS]+=(swapretract?retract_length_swap:retract_length)*float(extrudemultiply)*0.01f; - plan_set_e_position(current_position[E_AXIS]); - float oldFeedrate = feedrate; - feedrate=retract_feedrate*60; - retracted[active_extruder]=true; - prepare_move(); - current_position[Z_AXIS]-=retract_zlift; - plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]); - prepare_move(); - feedrate = oldFeedrate; - } else if(!retracting && retracted[active_extruder]) { - destination[X_AXIS]=current_position[X_AXIS]; - destination[Y_AXIS]=current_position[Y_AXIS]; - destination[Z_AXIS]=current_position[Z_AXIS]; - destination[E_AXIS]=current_position[E_AXIS]; - current_position[Z_AXIS]+=retract_zlift; - plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]); - current_position[E_AXIS]-=(swapretract?(retract_length_swap+retract_recover_length_swap):(retract_length+retract_recover_length))*float(extrudemultiply)*0.01f; - plan_set_e_position(current_position[E_AXIS]); - float oldFeedrate = feedrate; - feedrate=retract_recover_feedrate*60; - retracted[active_extruder]=false; - prepare_move(); - feedrate = oldFeedrate; - } - } //retract -#endif //FWRETRACT - -void trace() { - tone(BEEPER, 440); - delay(25); - noTone(BEEPER); - delay(20); -} -/* -void ramming() { -// float tmp[4] = DEFAULT_MAX_FEEDRATE; - if (current_temperature[0] < 230) { - //PLA - - max_feedrate[E_AXIS] = 50; - //current_position[E_AXIS] -= 8; - //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder); - //current_position[E_AXIS] += 8; - //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder); - current_position[E_AXIS] += 5.4; - plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2800 / 60, active_extruder); - current_position[E_AXIS] += 3.2; - plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder); - current_position[E_AXIS] += 3; - plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3400 / 60, active_extruder); - st_synchronize(); - max_feedrate[E_AXIS] = 80; - current_position[E_AXIS] -= 82; - plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 9500 / 60, active_extruder); - max_feedrate[E_AXIS] = 50;//tmp[E_AXIS]; - current_position[E_AXIS] -= 20; - plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 1200 / 60, active_extruder); - current_position[E_AXIS] += 5; - plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400 / 60, active_extruder); - current_position[E_AXIS] += 5; - plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder); - current_position[E_AXIS] -= 10; - st_synchronize(); - plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder); - current_position[E_AXIS] += 10; - plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder); - current_position[E_AXIS] -= 10; - plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder); - current_position[E_AXIS] += 10; - plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder); - current_position[E_AXIS] -= 10; - plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder); - st_synchronize(); - } - else { - //ABS - max_feedrate[E_AXIS] = 50; - //current_position[E_AXIS] -= 8; - //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder); - //current_position[E_AXIS] += 8; - //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder); - current_position[E_AXIS] += 3.1; - plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2000 / 60, active_extruder); - current_position[E_AXIS] += 3.1; - plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2500 / 60, active_extruder); - current_position[E_AXIS] += 4; - plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder); - st_synchronize(); - //current_position[X_AXIS] += 23; //delay - //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600/60, active_extruder); //delay - //current_position[X_AXIS] -= 23; //delay - //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600/60, active_extruder); //delay - delay(4700); - max_feedrate[E_AXIS] = 80; - current_position[E_AXIS] -= 92; - plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 9900 / 60, active_extruder); - max_feedrate[E_AXIS] = 50;//tmp[E_AXIS]; - current_position[E_AXIS] -= 5; - plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder); - current_position[E_AXIS] += 5; - plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400 / 60, active_extruder); - current_position[E_AXIS] -= 5; - plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder); - st_synchronize(); - current_position[E_AXIS] += 5; - plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder); - current_position[E_AXIS] -= 5; - plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder); - current_position[E_AXIS] += 5; - plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder); - current_position[E_AXIS] -= 5; - plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder); - st_synchronize(); - - } - } -*/ - -#ifdef TMC2130 -void force_high_power_mode(bool start_high_power_section) { - uint8_t silent; - silent = eeprom_read_byte((uint8_t*)EEPROM_SILENT); - if (silent == 1) { - //we are in silent mode, set to normal mode to enable crash detection - - // Wait for the planner queue to drain and for the stepper timer routine to reach an idle state. - st_synchronize(); - cli(); - tmc2130_mode = (start_high_power_section == true) ? TMC2130_MODE_NORMAL : TMC2130_MODE_SILENT; - tmc2130_init(); - // We may have missed a stepper timer interrupt due to the time spent in the tmc2130_init() routine. - // Be safe than sorry, reset the stepper timer before re-enabling interrupts. - st_reset_timer(); - sei(); - } -} -#endif //TMC2130 - -void gcode_G28(bool home_x_axis, bool home_y_axis, bool home_z_axis) { - gcode_G28(home_x_axis, 0, home_y_axis, 0, home_z_axis, 0, false, true); -} - -void gcode_G28(bool home_x_axis, long home_x_value, bool home_y_axis, long home_y_value, bool home_z_axis, long home_z_value, bool calib, bool without_mbl) { - st_synchronize(); - -#if 0 - SERIAL_ECHOPGM("G28, initial "); print_world_coordinates(); - SERIAL_ECHOPGM("G28, initial "); print_physical_coordinates(); -#endif - - // Flag for the display update routine and to disable the print cancelation during homing. - homing_flag = true; - - // Which axes should be homed? - bool home_x = home_x_axis; - bool home_y = home_y_axis; - bool home_z = home_z_axis; - - // Either all X,Y,Z codes are present, or none of them. - bool home_all_axes = home_x == home_y && home_x == home_z; - if (home_all_axes) - // No X/Y/Z code provided means to home all axes. - home_x = home_y = home_z = true; - - //if we are homing all axes, first move z higher to protect heatbed/steel sheet - if (home_all_axes) { - current_position[Z_AXIS] += MESH_HOME_Z_SEARCH; - feedrate = homing_feedrate[Z_AXIS]; - plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate / 60, active_extruder); - st_synchronize(); - } -#ifdef ENABLE_AUTO_BED_LEVELING - plan_bed_level_matrix.set_to_identity(); //Reset the plane ("erase" all leveling data) -#endif //ENABLE_AUTO_BED_LEVELING - - // Reset world2machine_rotation_and_skew and world2machine_shift, therefore - // the planner will not perform any adjustments in the XY plane. - // Wait for the motors to stop and update the current position with the absolute values. - world2machine_revert_to_uncorrected(); - - // For mesh bed leveling deactivate the matrix temporarily. - // It is necessary to disable the bed leveling for the X and Y homing moves, so that the move is performed - // in a single axis only. - // In case of re-homing the X or Y axes only, the mesh bed leveling is restored after G28. -#ifdef MESH_BED_LEVELING - uint8_t mbl_was_active = mbl.active; - mbl.active = 0; - current_position[Z_AXIS] = st_get_position_mm(Z_AXIS); -#endif - - // Reset baby stepping to zero, if the babystepping has already been loaded before. The babystepsTodo value will be - // consumed during the first movements following this statement. - if (home_z) - babystep_undo(); - - saved_feedrate = feedrate; - saved_feedmultiply = feedmultiply; - feedmultiply = 100; - previous_millis_cmd = millis(); - - enable_endstops(true); - - memcpy(destination, current_position, sizeof(destination)); - feedrate = 0.0; - - #if Z_HOME_DIR > 0 // If homing away from BED do Z first - if(home_z) - homeaxis(Z_AXIS); - #endif - - #ifdef QUICK_HOME - // In the quick mode, if both x and y are to be homed, a diagonal move will be performed initially. - if(home_x && home_y) //first diagonal move - { - current_position[X_AXIS] = 0;current_position[Y_AXIS] = 0; - - int x_axis_home_dir = home_dir(X_AXIS); - - plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]); - destination[X_AXIS] = 1.5 * max_length(X_AXIS) * x_axis_home_dir;destination[Y_AXIS] = 1.5 * max_length(Y_AXIS) * home_dir(Y_AXIS); - feedrate = homing_feedrate[X_AXIS]; - if(homing_feedrate[Y_AXIS] max_length(Y_AXIS)) { - feedrate *= sqrt(pow(max_length(Y_AXIS) / max_length(X_AXIS), 2) + 1); - } else { - feedrate *= sqrt(pow(max_length(X_AXIS) / max_length(Y_AXIS), 2) + 1); - } - plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder); - st_synchronize(); - - axis_is_at_home(X_AXIS); - axis_is_at_home(Y_AXIS); - plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]); - destination[X_AXIS] = current_position[X_AXIS]; - destination[Y_AXIS] = current_position[Y_AXIS]; - plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder); - feedrate = 0.0; - st_synchronize(); - endstops_hit_on_purpose(); - - current_position[X_AXIS] = destination[X_AXIS]; - current_position[Y_AXIS] = destination[Y_AXIS]; - current_position[Z_AXIS] = destination[Z_AXIS]; - } - #endif /* QUICK_HOME */ - -#ifdef TMC2130 - if(home_x) - { - if (!calib) - homeaxis(X_AXIS); - else - tmc2130_home_calibrate(X_AXIS); - } - - if(home_y) - { - if (!calib) - homeaxis(Y_AXIS); - else - tmc2130_home_calibrate(Y_AXIS); - } -#endif //TMC2130 - - - if(home_x_axis && home_x_value != 0) - current_position[X_AXIS]=home_x_value+add_homing[X_AXIS]; - - if(home_y_axis && home_y_value != 0) - current_position[Y_AXIS]=home_y_value+add_homing[Y_AXIS]; - - #if Z_HOME_DIR < 0 // If homing towards BED do Z last - #ifndef Z_SAFE_HOMING - if(home_z) { - #if defined (Z_RAISE_BEFORE_HOMING) && (Z_RAISE_BEFORE_HOMING > 0) - destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed - feedrate = max_feedrate[Z_AXIS]; - plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder); - st_synchronize(); - #endif // defined (Z_RAISE_BEFORE_HOMING) && (Z_RAISE_BEFORE_HOMING > 0) - #if (defined(MESH_BED_LEVELING) && !defined(MK1BP)) // If Mesh bed leveling, move X&Y to safe position for home - if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] )) - { - homeaxis(X_AXIS); - homeaxis(Y_AXIS); - } - // 1st mesh bed leveling measurement point, corrected. - world2machine_initialize(); - world2machine(pgm_read_float(bed_ref_points_4), pgm_read_float(bed_ref_points_4+1), destination[X_AXIS], destination[Y_AXIS]); - world2machine_reset(); - if (destination[Y_AXIS] < Y_MIN_POS) - destination[Y_AXIS] = Y_MIN_POS; - destination[Z_AXIS] = MESH_HOME_Z_SEARCH; // Set destination away from bed - feedrate = homing_feedrate[Z_AXIS]/10; - current_position[Z_AXIS] = 0; - enable_endstops(false); -#ifdef DEBUG_BUILD - SERIAL_ECHOLNPGM("plan_set_position()"); - MYSERIAL.println(current_position[X_AXIS]);MYSERIAL.println(current_position[Y_AXIS]); - MYSERIAL.println(current_position[Z_AXIS]);MYSERIAL.println(current_position[E_AXIS]); -#endif - plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]); -#ifdef DEBUG_BUILD - SERIAL_ECHOLNPGM("plan_buffer_line()"); - MYSERIAL.println(destination[X_AXIS]);MYSERIAL.println(destination[Y_AXIS]); - MYSERIAL.println(destination[Z_AXIS]);MYSERIAL.println(destination[E_AXIS]); - MYSERIAL.println(feedrate);MYSERIAL.println(active_extruder); -#endif - plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder); - st_synchronize(); - current_position[X_AXIS] = destination[X_AXIS]; - current_position[Y_AXIS] = destination[Y_AXIS]; - enable_endstops(true); - endstops_hit_on_purpose(); - homeaxis(Z_AXIS); - #else // MESH_BED_LEVELING - homeaxis(Z_AXIS); - #endif // MESH_BED_LEVELING - } - #else // defined(Z_SAFE_HOMING): Z Safe mode activated. - if(home_all_axes) { - destination[X_AXIS] = round(Z_SAFE_HOMING_X_POINT - X_PROBE_OFFSET_FROM_EXTRUDER); - destination[Y_AXIS] = round(Z_SAFE_HOMING_Y_POINT - Y_PROBE_OFFSET_FROM_EXTRUDER); - destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed - feedrate = XY_TRAVEL_SPEED/60; - current_position[Z_AXIS] = 0; - - plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]); - plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder); - st_synchronize(); - current_position[X_AXIS] = destination[X_AXIS]; - current_position[Y_AXIS] = destination[Y_AXIS]; - - homeaxis(Z_AXIS); - } - // Let's see if X and Y are homed and probe is inside bed area. - if(home_z) { - if ( (axis_known_position[X_AXIS]) && (axis_known_position[Y_AXIS]) \ - && (current_position[X_AXIS]+X_PROBE_OFFSET_FROM_EXTRUDER >= X_MIN_POS) \ - && (current_position[X_AXIS]+X_PROBE_OFFSET_FROM_EXTRUDER <= X_MAX_POS) \ - && (current_position[Y_AXIS]+Y_PROBE_OFFSET_FROM_EXTRUDER >= Y_MIN_POS) \ - && (current_position[Y_AXIS]+Y_PROBE_OFFSET_FROM_EXTRUDER <= Y_MAX_POS)) { - - current_position[Z_AXIS] = 0; - plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]); - destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed - feedrate = max_feedrate[Z_AXIS]; - plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder); - st_synchronize(); - - homeaxis(Z_AXIS); - } else if (!((axis_known_position[X_AXIS]) && (axis_known_position[Y_AXIS]))) { - LCD_MESSAGERPGM(MSG_POSITION_UNKNOWN); - SERIAL_ECHO_START; - SERIAL_ECHOLNRPGM(MSG_POSITION_UNKNOWN); - } else { - LCD_MESSAGERPGM(MSG_ZPROBE_OUT); - SERIAL_ECHO_START; - SERIAL_ECHOLNRPGM(MSG_ZPROBE_OUT); - } - } - #endif // Z_SAFE_HOMING - #endif // Z_HOME_DIR < 0 - - if(home_z_axis && home_z_value != 0) - current_position[Z_AXIS]=home_z_value+add_homing[Z_AXIS]; - #ifdef ENABLE_AUTO_BED_LEVELING - if(home_z) - current_position[Z_AXIS] += zprobe_zoffset; //Add Z_Probe offset (the distance is negative) - #endif - - // Set the planner and stepper routine positions. - // At this point the mesh bed leveling and world2machine corrections are disabled and current_position - // contains the machine coordinates. - plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]); - - #ifdef ENDSTOPS_ONLY_FOR_HOMING - enable_endstops(false); - #endif - - feedrate = saved_feedrate; - feedmultiply = saved_feedmultiply; - previous_millis_cmd = millis(); - endstops_hit_on_purpose(); -#ifndef MESH_BED_LEVELING - // If MESH_BED_LEVELING is not active, then it is the original Prusa i3. - // Offer the user to load the baby step value, which has been adjusted at the previous print session. - if(card.sdprinting && eeprom_read_word((uint16_t *)EEPROM_BABYSTEP_Z)) - lcd_adjust_z(); -#endif - - // Load the machine correction matrix - world2machine_initialize(); - // and correct the current_position XY axes to match the transformed coordinate system. - world2machine_update_current(); - -#if (defined(MESH_BED_LEVELING) && !defined(MK1BP)) - if (home_x_axis || home_y_axis || without_mbl || home_z_axis) - { - if (! home_z && mbl_was_active) { - // Re-enable the mesh bed leveling if only the X and Y axes were re-homed. - mbl.active = true; - // and re-adjust the current logical Z axis with the bed leveling offset applicable at the current XY position. - current_position[Z_AXIS] -= mbl.get_z(st_get_position_mm(X_AXIS), st_get_position_mm(Y_AXIS)); - } - } - else - { - st_synchronize(); - homing_flag = false; - } -#endif - - if (farm_mode) { prusa_statistics(20); }; - - homing_flag = false; -#if 0 - SERIAL_ECHOPGM("G28, final "); print_world_coordinates(); - SERIAL_ECHOPGM("G28, final "); print_physical_coordinates(); - SERIAL_ECHOPGM("G28, final "); print_mesh_bed_leveling_table(); -#endif -} - - -bool gcode_M45(bool onlyZ, int8_t verbosity_level) -{ - bool final_result = false; - #ifdef TMC2130 - FORCE_HIGH_POWER_START; - #endif // TMC2130 - // Only Z calibration? - if (!onlyZ) - { - setTargetBed(0); - setTargetHotend(0, 0); - setTargetHotend(0, 1); - setTargetHotend(0, 2); - adjust_bed_reset(); //reset bed level correction - } - - // Disable the default update procedure of the display. We will do a modal dialog. - lcd_update_enable(false); - // Let the planner use the uncorrected coordinates. - mbl.reset(); - // Reset world2machine_rotation_and_skew and world2machine_shift, therefore - // the planner will not perform any adjustments in the XY plane. - // Wait for the motors to stop and update the current position with the absolute values. - world2machine_revert_to_uncorrected(); - // Reset the baby step value applied without moving the axes. - babystep_reset(); - // Mark all axes as in a need for homing. - memset(axis_known_position, 0, sizeof(axis_known_position)); - - // Home in the XY plane. - //set_destination_to_current(); - setup_for_endstop_move(); - lcd_display_message_fullscreen_P(_T(MSG_AUTO_HOME)); - home_xy(); - - enable_endstops(false); - current_position[X_AXIS] += 5; - current_position[Y_AXIS] += 5; - plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder); - st_synchronize(); - - // Let the user move the Z axes up to the end stoppers. -#ifdef TMC2130 - if (calibrate_z_auto()) - { -#else //TMC2130 - if (lcd_calibrate_z_end_stop_manual(onlyZ)) - { -#endif //TMC2130 - refresh_cmd_timeout(); - #ifndef STEEL_SHEET - if (((degHotend(0) > MAX_HOTEND_TEMP_CALIBRATION) || (degBed() > MAX_BED_TEMP_CALIBRATION)) && (!onlyZ)) - { - lcd_wait_for_cool_down(); - } - #endif //STEEL_SHEET - if(!onlyZ) - { - KEEPALIVE_STATE(PAUSED_FOR_USER); - #ifdef STEEL_SHEET - bool result = lcd_show_fullscreen_message_yes_no_and_wait_P(_T(MSG_STEEL_SHEET_CHECK), false, false); - if(result) lcd_show_fullscreen_message_and_wait_P(_T(MSG_REMOVE_STEEL_SHEET)); - #endif //STEEL_SHEET - lcd_show_fullscreen_message_and_wait_P(_T(MSG_CONFIRM_NOZZLE_CLEAN)); - lcd_show_fullscreen_message_and_wait_P(_T(MSG_PAPER)); - KEEPALIVE_STATE(IN_HANDLER); - lcd_display_message_fullscreen_P(_T(MSG_FIND_BED_OFFSET_AND_SKEW_LINE1)); - lcd_set_cursor(0, 2); - lcd_print(1); - lcd_puts_P(_T(MSG_FIND_BED_OFFSET_AND_SKEW_LINE2)); - } - // Move the print head close to the bed. - current_position[Z_AXIS] = MESH_HOME_Z_SEARCH; - - bool endstops_enabled = enable_endstops(true); -#ifdef TMC2130 - tmc2130_home_enter(Z_AXIS_MASK); -#endif //TMC2130 - - plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder); - - st_synchronize(); -#ifdef TMC2130 - tmc2130_home_exit(); -#endif //TMC2130 - enable_endstops(endstops_enabled); - - if (st_get_position_mm(Z_AXIS) == MESH_HOME_Z_SEARCH) - { - - int8_t verbosity_level = 0; - if (code_seen('V')) - { - // Just 'V' without a number counts as V1. - char c = strchr_pointer[1]; - verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short(); - } - - if (onlyZ) - { - clean_up_after_endstop_move(); - // Z only calibration. - // Load the machine correction matrix - world2machine_initialize(); - // and correct the current_position to match the transformed coordinate system. - world2machine_update_current(); - //FIXME - bool result = sample_mesh_and_store_reference(); - if (result) - { - if (calibration_status() == CALIBRATION_STATUS_Z_CALIBRATION) - // Shipped, the nozzle height has been set already. The user can start printing now. - calibration_status_store(CALIBRATION_STATUS_CALIBRATED); - final_result = true; - // babystep_apply(); - } - } - else - { - // Reset the baby step value and the baby step applied flag. - calibration_status_store(CALIBRATION_STATUS_XYZ_CALIBRATION); - eeprom_update_word((uint16_t*)EEPROM_BABYSTEP_Z, 0); - // Complete XYZ calibration. - uint8_t point_too_far_mask = 0; - BedSkewOffsetDetectionResultType result = find_bed_offset_and_skew(verbosity_level, point_too_far_mask); - clean_up_after_endstop_move(); - // Print head up. - current_position[Z_AXIS] = MESH_HOME_Z_SEARCH; - plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder); - st_synchronize(); -//#ifndef NEW_XYZCAL - if (result >= 0) - { - #ifdef HEATBED_V2 - sample_z(); - #else //HEATBED_V2 - point_too_far_mask = 0; - // Second half: The fine adjustment. - // Let the planner use the uncorrected coordinates. - mbl.reset(); - world2machine_reset(); - // Home in the XY plane. - setup_for_endstop_move(); - home_xy(); - result = improve_bed_offset_and_skew(1, verbosity_level, point_too_far_mask); - clean_up_after_endstop_move(); - // Print head up. - current_position[Z_AXIS] = MESH_HOME_Z_SEARCH; - plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder); - st_synchronize(); - // if (result >= 0) babystep_apply(); - #endif //HEATBED_V2 - } -//#endif //NEW_XYZCAL - lcd_update_enable(true); - lcd_update(2); - - lcd_bed_calibration_show_result(result, point_too_far_mask); - if (result >= 0) - { - // Calibration valid, the machine should be able to print. Advise the user to run the V2Calibration.gcode. - calibration_status_store(CALIBRATION_STATUS_LIVE_ADJUST); - if (eeprom_read_byte((uint8_t*)EEPROM_WIZARD_ACTIVE) != 1) lcd_show_fullscreen_message_and_wait_P(_T(MSG_BABYSTEP_Z_NOT_SET)); - final_result = true; - } - } -#ifdef TMC2130 - tmc2130_home_exit(); -#endif - } - else - { - lcd_show_fullscreen_message_and_wait_P(PSTR("Calibration failed! Check the axes and run again.")); - final_result = false; - } - } - else - { - // Timeouted. - } - lcd_update_enable(true); -#ifdef TMC2130 - FORCE_HIGH_POWER_END; -#endif // TMC2130 - return final_result; -} - -void gcode_M114() -{ - SERIAL_PROTOCOLPGM("X:"); - SERIAL_PROTOCOL(current_position[X_AXIS]); - SERIAL_PROTOCOLPGM(" Y:"); - SERIAL_PROTOCOL(current_position[Y_AXIS]); - SERIAL_PROTOCOLPGM(" Z:"); - SERIAL_PROTOCOL(current_position[Z_AXIS]); - SERIAL_PROTOCOLPGM(" E:"); - SERIAL_PROTOCOL(current_position[E_AXIS]); - - SERIAL_PROTOCOLRPGM(_n(" Count X: "));////MSG_COUNT_X c=0 r=0 - SERIAL_PROTOCOL(float(st_get_position(X_AXIS)) / axis_steps_per_unit[X_AXIS]); - SERIAL_PROTOCOLPGM(" Y:"); - SERIAL_PROTOCOL(float(st_get_position(Y_AXIS)) / axis_steps_per_unit[Y_AXIS]); - SERIAL_PROTOCOLPGM(" Z:"); - SERIAL_PROTOCOL(float(st_get_position(Z_AXIS)) / axis_steps_per_unit[Z_AXIS]); - SERIAL_PROTOCOLPGM(" E:"); - SERIAL_PROTOCOL(float(st_get_position(E_AXIS)) / axis_steps_per_unit[E_AXIS]); - - SERIAL_PROTOCOLLN(""); -} - -void gcode_M701() -{ -#if defined (SNMM) || defined (SNMM_V2) - extr_adj(snmm_extruder);//loads current extruder -#else - enable_z(); - custom_message = true; - custom_message_type = 2; - - - - lcd_setstatuspgm(_T(MSG_LOADING_FILAMENT)); - current_position[E_AXIS] += 40; - plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400 / 60, active_extruder); //fast sequence - st_synchronize(); - - if (current_position[Z_AXIS] < 20) current_position[Z_AXIS] += 30; - current_position[E_AXIS] += 30; - plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400 / 60, active_extruder); //fast sequence - st_synchronize(); - current_position[E_AXIS] += 25; - plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 100 / 60, active_extruder); //slow sequence - st_synchronize(); - - tone(BEEPER, 500); - delay_keep_alive(50); - noTone(BEEPER); - - if (!farm_mode && loading_flag) { - bool clean = lcd_show_fullscreen_message_yes_no_and_wait_P(_T(MSG_FILAMENT_CLEAN), false, true); - - while (!clean) { - lcd_update_enable(true); - lcd_update(2); - current_position[E_AXIS] += 25; - plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 100 / 60, active_extruder); //slow sequence - st_synchronize(); - clean = lcd_show_fullscreen_message_yes_no_and_wait_P(_T(MSG_FILAMENT_CLEAN), false, true); - - } - - } - lcd_update_enable(true); - lcd_update(2); - lcd_setstatuspgm(_T(WELCOME_MSG)); - disable_z(); - loading_flag = false; - custom_message = false; - custom_message_type = 0; -#endif - -} -/** - * @brief Get serial number from 32U2 processor - * - * Typical format of S/N is:CZPX0917X003XC13518 - * - * Command operates only in farm mode, if not in farm mode, "Not in farm mode." is written to MYSERIAL. - * - * Send command ;S to serial port 0 to retrieve serial number stored in 32U2 processor, - * reply is transmitted to serial port 1 character by character. - * Operation takes typically 23 ms. If the retransmit is not finished until 100 ms, - * it is interrupted, so less, or no characters are retransmitted, only newline character is send - * in any case. - */ -static void gcode_PRUSA_SN() -{ - if (farm_mode) { - selectedSerialPort = 0; - putchar(';'); - putchar('S'); - int numbersRead = 0; - ShortTimer timeout; - timeout.start(); - - while (numbersRead < 19) { - while (MSerial.available() > 0) { - uint8_t serial_char = MSerial.read(); - selectedSerialPort = 1; - putchar(serial_char); - numbersRead++; - selectedSerialPort = 0; - } - if (timeout.expired(100u)) break; - } - selectedSerialPort = 1; - putchar('\n'); -#if 0 - for (int b = 0; b < 3; b++) { - tone(BEEPER, 110); - delay(50); - noTone(BEEPER); - delay(50); - } -#endif - } else { - puts_P(_N("Not in farm mode.")); - } -} - -#ifdef BACKLASH_X -extern uint8_t st_backlash_x; -#endif //BACKLASH_X -#ifdef BACKLASH_Y -extern uint8_t st_backlash_y; -#endif //BACKLASH_Y - -void process_commands() -{ - if (!buflen) return; //empty command - #ifdef FILAMENT_RUNOUT_SUPPORT - SET_INPUT(FR_SENS); - #endif - -#ifdef CMDBUFFER_DEBUG - SERIAL_ECHOPGM("Processing a GCODE command: "); - SERIAL_ECHO(cmdbuffer+bufindr+CMDHDRSIZE); - SERIAL_ECHOLNPGM(""); - SERIAL_ECHOPGM("In cmdqueue: "); - SERIAL_ECHO(buflen); - SERIAL_ECHOLNPGM(""); -#endif /* CMDBUFFER_DEBUG */ - - unsigned long codenum; //throw away variable - char *starpos = NULL; -#ifdef ENABLE_AUTO_BED_LEVELING - float x_tmp, y_tmp, z_tmp, real_z; -#endif - - // PRUSA GCODES - KEEPALIVE_STATE(IN_HANDLER); - -#ifdef SNMM - float tmp_motor[3] = DEFAULT_PWM_MOTOR_CURRENT; - float tmp_motor_loud[3] = DEFAULT_PWM_MOTOR_CURRENT_LOUD; - int8_t SilentMode; -#endif - - if (code_seen("M117")) { //moved to highest priority place to be able to to print strings which includes "G", "PRUSA" and "^" - starpos = (strchr(strchr_pointer + 5, '*')); - if (starpos != NULL) - *(starpos) = '\0'; - lcd_setstatus(strchr_pointer + 5); - } - -#ifdef TMC2130 - else if (strncmp_P(CMDBUFFER_CURRENT_STRING, PSTR("CRASH_"), 6) == 0) - { - if(code_seen("CRASH_DETECTED")) - { - uint8_t mask = 0; - if (code_seen("X")) mask |= X_AXIS_MASK; - if (code_seen("Y")) mask |= Y_AXIS_MASK; - crashdet_detected(mask); - } - else if(code_seen("CRASH_RECOVER")) - crashdet_recover(); - else if(code_seen("CRASH_CANCEL")) - crashdet_cancel(); - } - else if (strncmp_P(CMDBUFFER_CURRENT_STRING, PSTR("TMC_"), 4) == 0) - { - if (strncmp_P(CMDBUFFER_CURRENT_STRING + 4, PSTR("SET_WAVE_"), 9) == 0) - { - uint8_t axis = *(CMDBUFFER_CURRENT_STRING + 13); - axis = (axis == 'E')?3:(axis - 'X'); - if (axis < 4) - { - uint8_t fac = (uint8_t)strtol(CMDBUFFER_CURRENT_STRING + 14, NULL, 10); - tmc2130_set_wave(axis, 247, fac); - } - } - else if (strncmp_P(CMDBUFFER_CURRENT_STRING + 4, PSTR("SET_STEP_"), 9) == 0) - { - uint8_t axis = *(CMDBUFFER_CURRENT_STRING + 13); - axis = (axis == 'E')?3:(axis - 'X'); - if (axis < 4) - { - uint8_t step = (uint8_t)strtol(CMDBUFFER_CURRENT_STRING + 14, NULL, 10); - uint16_t res = tmc2130_get_res(axis); - tmc2130_goto_step(axis, step & (4*res - 1), 2, 1000, res); - } - } - else if (strncmp_P(CMDBUFFER_CURRENT_STRING + 4, PSTR("SET_CHOP_"), 9) == 0) - { - uint8_t axis = *(CMDBUFFER_CURRENT_STRING + 13); - axis = (axis == 'E')?3:(axis - 'X'); - if (axis < 4) - { - uint8_t chop0 = tmc2130_chopper_config[axis].toff; - uint8_t chop1 = tmc2130_chopper_config[axis].hstr; - uint8_t chop2 = tmc2130_chopper_config[axis].hend; - uint8_t chop3 = tmc2130_chopper_config[axis].tbl; - char* str_end = 0; - if (CMDBUFFER_CURRENT_STRING[14]) - { - chop0 = (uint8_t)strtol(CMDBUFFER_CURRENT_STRING + 14, &str_end, 10) & 15; - if (str_end && *str_end) - { - chop1 = (uint8_t)strtol(str_end, &str_end, 10) & 7; - if (str_end && *str_end) - { - chop2 = (uint8_t)strtol(str_end, &str_end, 10) & 15; - if (str_end && *str_end) - chop3 = (uint8_t)strtol(str_end, &str_end, 10) & 3; - } - } - } - tmc2130_chopper_config[axis].toff = chop0; - tmc2130_chopper_config[axis].hstr = chop1 & 7; - tmc2130_chopper_config[axis].hend = chop2 & 15; - tmc2130_chopper_config[axis].tbl = chop3 & 3; - tmc2130_setup_chopper(axis, tmc2130_mres[axis], tmc2130_current_h[axis], tmc2130_current_r[axis]); - //printf_P(_N("TMC_SET_CHOP_%c %hhd %hhd %hhd %hhd\n"), "xyze"[axis], chop0, chop1, chop2, chop3); - } - } - } -#ifdef BACKLASH_X - else if (strncmp_P(CMDBUFFER_CURRENT_STRING, PSTR("BACKLASH_X"), 10) == 0) - { - uint8_t bl = (uint8_t)strtol(CMDBUFFER_CURRENT_STRING + 10, NULL, 10); - st_backlash_x = bl; - printf_P(_N("st_backlash_x = %hhd\n"), st_backlash_x); - } -#endif //BACKLASH_X -#ifdef BACKLASH_Y - else if (strncmp_P(CMDBUFFER_CURRENT_STRING, PSTR("BACKLASH_Y"), 10) == 0) - { - uint8_t bl = (uint8_t)strtol(CMDBUFFER_CURRENT_STRING + 10, NULL, 10); - st_backlash_y = bl; - printf_P(_N("st_backlash_y = %hhd\n"), st_backlash_y); - } -#endif //BACKLASH_Y -#endif //TMC2130 - - else if(code_seen("PRUSA")){ - if (code_seen("Ping")) { //PRUSA Ping - if (farm_mode) { - PingTime = millis(); - //MYSERIAL.print(farm_no); MYSERIAL.println(": OK"); - } - } - else if (code_seen("PRN")) { - printf_P(_N("%d"), status_number); - - }else if (code_seen("FAN")) { - printf_P(_N("E0:%d RPM\nPRN0:%d RPM\n"), 60*fan_speed[0], 60*fan_speed[1]); - }else if (code_seen("fn")) { - if (farm_mode) { - printf_P(_N("%d"), farm_no); - } - else { - puts_P(_N("Not in farm mode.")); - } - - } - else if (code_seen("thx")) { - no_response = false; - } - else if (code_seen("MMURES")) { - fprintf_P(uart2io, PSTR("x0")); - } - else if (code_seen("RESET")) { - // careful! - if (farm_mode) { -#ifdef WATCHDOG - boot_app_magic = BOOT_APP_MAGIC; - boot_app_flags = BOOT_APP_FLG_RUN; - wdt_enable(WDTO_15MS); - cli(); - while(1); -#else //WATCHDOG - asm volatile("jmp 0x3E000"); -#endif //WATCHDOG - } - else { - MYSERIAL.println("Not in farm mode."); - } - }else if (code_seen("fv")) { - // get file version - #ifdef SDSUPPORT - card.openFile(strchr_pointer + 3,true); - while (true) { - uint16_t readByte = card.get(); - MYSERIAL.write(readByte); - if (readByte=='\n') { - break; - } - } - card.closefile(); - - #endif // SDSUPPORT - - } else if (code_seen("M28")) { - trace(); - prusa_sd_card_upload = true; - card.openFile(strchr_pointer+4,false); - - } else if (code_seen("SN")) { - gcode_PRUSA_SN(); - - } else if(code_seen("Fir")){ - - SERIAL_PROTOCOLLN(FW_VERSION); - - } else if(code_seen("Rev")){ - - SERIAL_PROTOCOLLN(FILAMENT_SIZE "-" ELECTRONICS "-" NOZZLE_TYPE ); - - } else if(code_seen("Lang")) { - lang_reset(); - - } else if(code_seen("Lz")) { - EEPROM_save_B(EEPROM_BABYSTEP_Z,0); - - } else if(code_seen("Beat")) { - // Kick farm link timer - kicktime = millis(); - - } else if(code_seen("FR")) { - // Factory full reset - factory_reset(0,true); - } - //else if (code_seen('Cal')) { - // lcd_calibration(); - // } - - } - else if (code_seen('^')) { - // nothing, this is a version line - } else if(code_seen('G')) - { - switch((int)code_value()) - { - case 0: // G0 -> G1 - case 1: // G1 - if(Stopped == false) { - - #ifdef FILAMENT_RUNOUT_SUPPORT - - if(READ(FR_SENS)){ - - feedmultiplyBckp=feedmultiply; - float target[4]; - float lastpos[4]; - target[X_AXIS]=current_position[X_AXIS]; - target[Y_AXIS]=current_position[Y_AXIS]; - target[Z_AXIS]=current_position[Z_AXIS]; - target[E_AXIS]=current_position[E_AXIS]; - lastpos[X_AXIS]=current_position[X_AXIS]; - lastpos[Y_AXIS]=current_position[Y_AXIS]; - lastpos[Z_AXIS]=current_position[Z_AXIS]; - lastpos[E_AXIS]=current_position[E_AXIS]; - //retract by E - - target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT ; - - plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder); - - - target[Z_AXIS]+= FILAMENTCHANGE_ZADD ; - - plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 300, active_extruder); - - target[X_AXIS]= FILAMENTCHANGE_XPOS ; - - target[Y_AXIS]= FILAMENTCHANGE_YPOS ; - - - plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder); - - target[E_AXIS]+= FILAMENTCHANGE_FINALRETRACT ; - - - plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder); - - //finish moves - st_synchronize(); - //disable extruder steppers so filament can be removed - disable_e0(); - disable_e1(); - disable_e2(); - delay(100); - - //LCD_ALERTMESSAGEPGM(_T(MSG_FILAMENTCHANGE)); - uint8_t cnt=0; - int counterBeep = 0; - lcd_wait_interact(); - while(!lcd_clicked()){ - cnt++; - manage_heater(); - manage_inactivity(true); - //lcd_update(0); - if(cnt==0) - { - #if BEEPER > 0 - - if (counterBeep== 500){ - counterBeep = 0; - - } - - - SET_OUTPUT(BEEPER); - if (counterBeep== 0){ - WRITE(BEEPER,HIGH); - } - - if (counterBeep== 20){ - WRITE(BEEPER,LOW); - } - - - - - counterBeep++; - #else - #endif - } - } - - WRITE(BEEPER,LOW); - - target[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ; - plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder); - - - target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ; - plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder); - - - - - - lcd_change_fil_state = 0; - lcd_loading_filament(); - while ((lcd_change_fil_state == 0)||(lcd_change_fil_state != 1)){ - - lcd_change_fil_state = 0; - lcd_alright(); - switch(lcd_change_fil_state){ - - case 2: - target[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ; - plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder); - - - target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ; - plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder); - - - lcd_loading_filament(); - break; - case 3: - target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ; - plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder); - lcd_loading_color(); - break; - - default: - lcd_change_success(); - break; - } - - } - - - - target[E_AXIS]+= 5; - plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder); - - target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT; - plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder); - - - //current_position[E_AXIS]=target[E_AXIS]; //the long retract of L is compensated by manual filament feeding - //plan_set_e_position(current_position[E_AXIS]); - plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder); //should do nothing - plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder); //move xy back - plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], 200, active_extruder); //move z back - - - target[E_AXIS]= target[E_AXIS] - FILAMENTCHANGE_FIRSTRETRACT; - - - - plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], 5, active_extruder); //final untretract - - - plan_set_e_position(lastpos[E_AXIS]); - - feedmultiply=feedmultiplyBckp; - - - - char cmd[9]; - - sprintf_P(cmd, PSTR("M220 S%i"), feedmultiplyBckp); - enquecommand(cmd); - - } - - - - #endif - - - get_coordinates(); // For X Y Z E F - if (total_filament_used > ((current_position[E_AXIS] - destination[E_AXIS]) * 100)) { //protection against total_filament_used overflow - total_filament_used = total_filament_used + ((destination[E_AXIS] - current_position[E_AXIS]) * 100); - } - #ifdef FWRETRACT - if(autoretract_enabled) - if( !(code_seen('X') || code_seen('Y') || code_seen('Z')) && code_seen('E')) { - float echange=destination[E_AXIS]-current_position[E_AXIS]; - - if((echange<-MIN_RETRACT && !retracted[active_extruder]) || (echange>MIN_RETRACT && retracted[active_extruder])) { //move appears to be an attempt to retract or recover - current_position[E_AXIS] = destination[E_AXIS]; //hide the slicer-generated retract/recover from calculations - plan_set_e_position(current_position[E_AXIS]); //AND from the planner - retract(!retracted[active_extruder]); - return; - } - - - } - #endif //FWRETRACT - prepare_move(); - //ClearToSend(); - } - break; - case 2: // G2 - CW ARC - if(Stopped == false) { - get_arc_coordinates(); - prepare_arc_move(true); - } - break; - case 3: // G3 - CCW ARC - if(Stopped == false) { - get_arc_coordinates(); - prepare_arc_move(false); - } - break; - case 4: // G4 dwell - codenum = 0; - if(code_seen('P')) codenum = code_value(); // milliseconds to wait - if(code_seen('S')) codenum = code_value() * 1000; // seconds to wait - if(codenum != 0) LCD_MESSAGERPGM(_i("Sleep..."));////MSG_DWELL c=0 r=0 - st_synchronize(); - codenum += millis(); // keep track of when we started waiting - previous_millis_cmd = millis(); - while(millis() < codenum) { - manage_heater(); - manage_inactivity(); - lcd_update(0); - } - break; - #ifdef FWRETRACT - case 10: // G10 retract - #if EXTRUDERS > 1 - retracted_swap[active_extruder]=(code_seen('S') && code_value_long() == 1); // checks for swap retract argument - retract(true,retracted_swap[active_extruder]); - #else - retract(true); - #endif - break; - case 11: // G11 retract_recover - #if EXTRUDERS > 1 - retract(false,retracted_swap[active_extruder]); - #else - retract(false); - #endif - break; - #endif //FWRETRACT - case 28: //G28 Home all Axis one at a time - { - long home_x_value = 0; - long home_y_value = 0; - long home_z_value = 0; - // Which axes should be homed? - bool home_x = code_seen(axis_codes[X_AXIS]); - home_x_value = code_value_long(); - bool home_y = code_seen(axis_codes[Y_AXIS]); - home_y_value = code_value_long(); - bool home_z = code_seen(axis_codes[Z_AXIS]); - home_z_value = code_value_long(); - bool without_mbl = code_seen('W'); - // calibrate? - bool calib = code_seen('C'); - gcode_G28(home_x, home_x_value, home_y, home_y_value, home_z, home_z_value, calib, without_mbl); - if ((home_x || home_y || without_mbl || home_z) == false) { - // Push the commands to the front of the message queue in the reverse order! - // There shall be always enough space reserved for these commands. - goto case_G80; - } - break; - } -#ifdef ENABLE_AUTO_BED_LEVELING - case 29: // G29 Detailed Z-Probe, probes the bed at 3 or more points. - { - #if Z_MIN_PIN == -1 - #error "You must have a Z_MIN endstop in order to enable Auto Bed Leveling feature! Z_MIN_PIN must point to a valid hardware pin." - #endif - - // Prevent user from running a G29 without first homing in X and Y - if (! (axis_known_position[X_AXIS] && axis_known_position[Y_AXIS]) ) - { - LCD_MESSAGERPGM(MSG_POSITION_UNKNOWN); - SERIAL_ECHO_START; - SERIAL_ECHOLNRPGM(MSG_POSITION_UNKNOWN); - break; // abort G29, since we don't know where we are - } - - st_synchronize(); - // make sure the bed_level_rotation_matrix is identity or the planner will get it incorectly - //vector_3 corrected_position = plan_get_position_mm(); - //corrected_position.debug("position before G29"); - plan_bed_level_matrix.set_to_identity(); - vector_3 uncorrected_position = plan_get_position(); - //uncorrected_position.debug("position durring G29"); - current_position[X_AXIS] = uncorrected_position.x; - current_position[Y_AXIS] = uncorrected_position.y; - current_position[Z_AXIS] = uncorrected_position.z; - plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]); - setup_for_endstop_move(); - - feedrate = homing_feedrate[Z_AXIS]; -#ifdef AUTO_BED_LEVELING_GRID - // probe at the points of a lattice grid - - int xGridSpacing = (RIGHT_PROBE_BED_POSITION - LEFT_PROBE_BED_POSITION) / (AUTO_BED_LEVELING_GRID_POINTS-1); - int yGridSpacing = (BACK_PROBE_BED_POSITION - FRONT_PROBE_BED_POSITION) / (AUTO_BED_LEVELING_GRID_POINTS-1); - - - // solve the plane equation ax + by + d = z - // A is the matrix with rows [x y 1] for all the probed points - // B is the vector of the Z positions - // the normal vector to the plane is formed by the coefficients of the plane equation in the standard form, which is Vx*x+Vy*y+Vz*z+d = 0 - // so Vx = -a Vy = -b Vz = 1 (we want the vector facing towards positive Z - - // "A" matrix of the linear system of equations - double eqnAMatrix[AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS*3]; - // "B" vector of Z points - double eqnBVector[AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS]; - - - int probePointCounter = 0; - bool zig = true; - - for (int yProbe=FRONT_PROBE_BED_POSITION; yProbe <= BACK_PROBE_BED_POSITION; yProbe += yGridSpacing) - { - int xProbe, xInc; - if (zig) - { - xProbe = LEFT_PROBE_BED_POSITION; - //xEnd = RIGHT_PROBE_BED_POSITION; - xInc = xGridSpacing; - zig = false; - } else // zag - { - xProbe = RIGHT_PROBE_BED_POSITION; - //xEnd = LEFT_PROBE_BED_POSITION; - xInc = -xGridSpacing; - zig = true; - } - - for (int xCount=0; xCount < AUTO_BED_LEVELING_GRID_POINTS; xCount++) - { - float z_before; - if (probePointCounter == 0) - { - // raise before probing - z_before = Z_RAISE_BEFORE_PROBING; - } else - { - // raise extruder - z_before = current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS; - } - - float measured_z = probe_pt(xProbe, yProbe, z_before); - - eqnBVector[probePointCounter] = measured_z; - - eqnAMatrix[probePointCounter + 0*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = xProbe; - eqnAMatrix[probePointCounter + 1*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = yProbe; - eqnAMatrix[probePointCounter + 2*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = 1; - probePointCounter++; - xProbe += xInc; - } - } - clean_up_after_endstop_move(); - - // solve lsq problem - double *plane_equation_coefficients = qr_solve(AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS, 3, eqnAMatrix, eqnBVector); - - SERIAL_PROTOCOLPGM("Eqn coefficients: a: "); - SERIAL_PROTOCOL(plane_equation_coefficients[0]); - SERIAL_PROTOCOLPGM(" b: "); - SERIAL_PROTOCOL(plane_equation_coefficients[1]); - SERIAL_PROTOCOLPGM(" d: "); - SERIAL_PROTOCOLLN(plane_equation_coefficients[2]); - - - set_bed_level_equation_lsq(plane_equation_coefficients); - - free(plane_equation_coefficients); - -#else // AUTO_BED_LEVELING_GRID not defined - - // Probe at 3 arbitrary points - // probe 1 - float z_at_pt_1 = probe_pt(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, Z_RAISE_BEFORE_PROBING); - - // probe 2 - float z_at_pt_2 = probe_pt(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS); - - // probe 3 - float z_at_pt_3 = probe_pt(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS); - - clean_up_after_endstop_move(); - - set_bed_level_equation_3pts(z_at_pt_1, z_at_pt_2, z_at_pt_3); - - -#endif // AUTO_BED_LEVELING_GRID - st_synchronize(); - - // The following code correct the Z height difference from z-probe position and hotend tip position. - // The Z height on homing is measured by Z-Probe, but the probe is quite far from the hotend. - // When the bed is uneven, this height must be corrected. - real_z = float(st_get_position(Z_AXIS))/axis_steps_per_unit[Z_AXIS]; //get the real Z (since the auto bed leveling is already correcting the plane) - x_tmp = current_position[X_AXIS] + X_PROBE_OFFSET_FROM_EXTRUDER; - y_tmp = current_position[Y_AXIS] + Y_PROBE_OFFSET_FROM_EXTRUDER; - z_tmp = current_position[Z_AXIS]; - - apply_rotation_xyz(plan_bed_level_matrix, x_tmp, y_tmp, z_tmp); //Apply the correction sending the probe offset - current_position[Z_AXIS] = z_tmp - real_z + current_position[Z_AXIS]; //The difference is added to current position and sent to planner. - plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]); - } - break; -#ifndef Z_PROBE_SLED - case 30: // G30 Single Z Probe - { - st_synchronize(); - // TODO: make sure the bed_level_rotation_matrix is identity or the planner will get set incorectly - setup_for_endstop_move(); - - feedrate = homing_feedrate[Z_AXIS]; - - run_z_probe(); - SERIAL_PROTOCOLPGM(_T(MSG_BED)); - SERIAL_PROTOCOLPGM(" X: "); - SERIAL_PROTOCOL(current_position[X_AXIS]); - SERIAL_PROTOCOLPGM(" Y: "); - SERIAL_PROTOCOL(current_position[Y_AXIS]); - SERIAL_PROTOCOLPGM(" Z: "); - SERIAL_PROTOCOL(current_position[Z_AXIS]); - SERIAL_PROTOCOLPGM("\n"); - - clean_up_after_endstop_move(); - } - break; -#else - case 31: // dock the sled - dock_sled(true); - break; - case 32: // undock the sled - dock_sled(false); - break; -#endif // Z_PROBE_SLED -#endif // ENABLE_AUTO_BED_LEVELING - -#ifdef MESH_BED_LEVELING - case 30: // G30 Single Z Probe - { - st_synchronize(); - // TODO: make sure the bed_level_rotation_matrix is identity or the planner will get set incorectly - setup_for_endstop_move(); - - feedrate = homing_feedrate[Z_AXIS]; - - find_bed_induction_sensor_point_z(-10.f, 3); - - printf_P(_N("%S X: %.5f Y: %.5f Z: %.5f\n"), _T(MSG_BED), _x, _y, _z); - - clean_up_after_endstop_move(); - } - break; - - - case 75: - { - for (int i = 40; i <= 110; i++) - printf_P(_N("%d %.2f"), i, temp_comp_interpolation(i)); - } - break; - - case 76: //PINDA probe temperature calibration - { -#ifdef PINDA_THERMISTOR - if (true) - { - - if (calibration_status() >= CALIBRATION_STATUS_XYZ_CALIBRATION) { - //we need to know accurate position of first calibration point - //if xyz calibration was not performed yet, interrupt temperature calibration and inform user that xyz cal. is needed - lcd_show_fullscreen_message_and_wait_P(_i("Please run XYZ calibration first.")); - break; - } - - if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS])) - { - // We don't know where we are! HOME! - // Push the commands to the front of the message queue in the reverse order! - // There shall be always enough space reserved for these commands. - repeatcommand_front(); // repeat G76 with all its parameters - enquecommand_front_P((PSTR("G28 W0"))); - break; - } - lcd_show_fullscreen_message_and_wait_P(_i("Stable ambient temperature 21-26C is needed a rigid stand is required."));////MSG_TEMP_CAL_WARNING c=20 r=4 - bool result = lcd_show_fullscreen_message_yes_no_and_wait_P(_T(MSG_STEEL_SHEET_CHECK), false, false); - - if (result) - { - current_position[Z_AXIS] = MESH_HOME_Z_SEARCH; - plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder); - current_position[Z_AXIS] = 50; - current_position[Y_AXIS] = 180; - plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder); - st_synchronize(); - lcd_show_fullscreen_message_and_wait_P(_T(MSG_REMOVE_STEEL_SHEET)); - current_position[Y_AXIS] = pgm_read_float(bed_ref_points_4 + 1); - current_position[X_AXIS] = pgm_read_float(bed_ref_points_4); - plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder); - st_synchronize(); - gcode_G28(false, false, true); - - } - if ((current_temperature_pinda > 35) && (farm_mode == false)) { - //waiting for PIDNA probe to cool down in case that we are not in farm mode - current_position[Z_AXIS] = 100; - plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder); - if (lcd_wait_for_pinda(35) == false) { //waiting for PINDA probe to cool, if this takes more then time expected, temp. cal. fails - lcd_temp_cal_show_result(false); - break; - } - } - lcd_update_enable(true); - KEEPALIVE_STATE(NOT_BUSY); //no need to print busy messages as we print current temperatures periodicaly - SERIAL_ECHOLNPGM("PINDA probe calibration start"); - - float zero_z; - int z_shift = 0; //unit: steps - float start_temp = 5 * (int)(current_temperature_pinda / 5); - if (start_temp < 35) start_temp = 35; - if (start_temp < current_temperature_pinda) start_temp += 5; - printf_P(_N("start temperature: %.1f\n"), start_temp); - -// setTargetHotend(200, 0); - setTargetBed(70 + (start_temp - 30)); - - custom_message = true; - custom_message_type = 4; - custom_message_state = 1; - custom_message = _T(MSG_TEMP_CALIBRATION); - current_position[Z_AXIS] = MESH_HOME_Z_SEARCH; - plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder); - current_position[X_AXIS] = PINDA_PREHEAT_X; - current_position[Y_AXIS] = PINDA_PREHEAT_Y; - plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder); - current_position[Z_AXIS] = PINDA_PREHEAT_Z; - plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder); - st_synchronize(); - - while (current_temperature_pinda < start_temp) - { - delay_keep_alive(1000); - serialecho_temperatures(); - } - - eeprom_update_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 0); //invalidate temp. calibration in case that in will be aborted during the calibration process - - current_position[Z_AXIS] = MESH_HOME_Z_SEARCH; - plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder); - current_position[X_AXIS] = pgm_read_float(bed_ref_points_4); - current_position[Y_AXIS] = pgm_read_float(bed_ref_points_4 + 1); - plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder); - st_synchronize(); - - bool find_z_result = find_bed_induction_sensor_point_z(-1.f); - if (find_z_result == false) { - lcd_temp_cal_show_result(find_z_result); - break; - } - zero_z = current_position[Z_AXIS]; - - printf_P(_N("\nZERO: %.3f\n"), current_position[Z_AXIS]); - - int i = -1; for (; i < 5; i++) - { - float temp = (40 + i * 5); - printf_P(_N("\nStep: %d/6 (skipped)\nPINDA temperature: %d Z shift (mm):0\n"), i + 2, (40 + i*5)); - if (i >= 0) EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i * 2, &z_shift); - if (start_temp <= temp) break; - } - - for (i++; i < 5; i++) - { - float temp = (40 + i * 5); - printf_P(_N("\nStep: %d/6\n"), i + 2); - custom_message_state = i + 2; - setTargetBed(50 + 10 * (temp - 30) / 5); -// setTargetHotend(255, 0); - current_position[Z_AXIS] = MESH_HOME_Z_SEARCH; - plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder); - current_position[X_AXIS] = PINDA_PREHEAT_X; - current_position[Y_AXIS] = PINDA_PREHEAT_Y; - plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder); - current_position[Z_AXIS] = PINDA_PREHEAT_Z; - plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder); - st_synchronize(); - while (current_temperature_pinda < temp) - { - delay_keep_alive(1000); - serialecho_temperatures(); - } - current_position[Z_AXIS] = MESH_HOME_Z_SEARCH; - plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder); - current_position[X_AXIS] = pgm_read_float(bed_ref_points_4); - current_position[Y_AXIS] = pgm_read_float(bed_ref_points_4 + 1); - plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder); - st_synchronize(); - find_z_result = find_bed_induction_sensor_point_z(-1.f); - if (find_z_result == false) { - lcd_temp_cal_show_result(find_z_result); - break; - } - z_shift = (int)((current_position[Z_AXIS] - zero_z)*axis_steps_per_unit[Z_AXIS]); - - printf_P(_N("\nPINDA temperature: %.1f Z shift (mm): %.3f"), current_temperature_pinda, current_position[Z_AXIS] - zero_z); - - EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i * 2, &z_shift); - - } - lcd_temp_cal_show_result(true); - - break; - } -#endif //PINDA_THERMISTOR - - setTargetBed(PINDA_MIN_T); - float zero_z; - int z_shift = 0; //unit: steps - int t_c; // temperature - - if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS])) { - // We don't know where we are! HOME! - // Push the commands to the front of the message queue in the reverse order! - // There shall be always enough space reserved for these commands. - repeatcommand_front(); // repeat G76 with all its parameters - enquecommand_front_P((PSTR("G28 W0"))); - break; - } - puts_P(_N("PINDA probe calibration start")); - custom_message = true; - custom_message_type = 4; - custom_message_state = 1; - custom_message = _T(MSG_TEMP_CALIBRATION); - current_position[X_AXIS] = PINDA_PREHEAT_X; - current_position[Y_AXIS] = PINDA_PREHEAT_Y; - current_position[Z_AXIS] = PINDA_PREHEAT_Z; - plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder); - st_synchronize(); - - while (abs(degBed() - PINDA_MIN_T) > 1) { - delay_keep_alive(1000); - serialecho_temperatures(); - } - - //enquecommand_P(PSTR("M190 S50")); - for (int i = 0; i < PINDA_HEAT_T; i++) { - delay_keep_alive(1000); - serialecho_temperatures(); - } - eeprom_update_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 0); //invalidate temp. calibration in case that in will be aborted during the calibration process - - current_position[Z_AXIS] = 5; - plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder); - - current_position[X_AXIS] = pgm_read_float(bed_ref_points); - current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 1); - plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder); - st_synchronize(); - - find_bed_induction_sensor_point_z(-1.f); - zero_z = current_position[Z_AXIS]; - - printf_P(_N("\nZERO: %.3f\n"), current_position[Z_AXIS]); - - for (int i = 0; i<5; i++) { - printf_P(_N("\nStep: %d/6\n"), i + 2); - custom_message_state = i + 2; - t_c = 60 + i * 10; - - setTargetBed(t_c); - current_position[X_AXIS] = PINDA_PREHEAT_X; - current_position[Y_AXIS] = PINDA_PREHEAT_Y; - current_position[Z_AXIS] = PINDA_PREHEAT_Z; - plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder); - st_synchronize(); - while (degBed() < t_c) { - delay_keep_alive(1000); - serialecho_temperatures(); - } - for (int i = 0; i < PINDA_HEAT_T; i++) { - delay_keep_alive(1000); - serialecho_temperatures(); - } - current_position[Z_AXIS] = 5; - plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder); - current_position[X_AXIS] = pgm_read_float(bed_ref_points); - current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 1); - plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder); - st_synchronize(); - find_bed_induction_sensor_point_z(-1.f); - z_shift = (int)((current_position[Z_AXIS] - zero_z)*axis_steps_per_unit[Z_AXIS]); - - printf_P(_N("\nTemperature: %d Z shift (mm): %.3f\n"), t_c, current_position[Z_AXIS] - zero_z); - - EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i*2, &z_shift); - - - } - custom_message_type = 0; - custom_message = false; - - eeprom_update_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 1); - puts_P(_N("Temperature calibration done.")); - disable_x(); - disable_y(); - disable_z(); - disable_e0(); - disable_e1(); - disable_e2(); - setTargetBed(0); //set bed target temperature back to 0 - lcd_show_fullscreen_message_and_wait_P(_T(MSG_TEMP_CALIBRATION_DONE)); - temp_cal_active = true; - eeprom_update_byte((unsigned char *)EEPROM_TEMP_CAL_ACTIVE, 1); - lcd_update_enable(true); - lcd_update(2); - - - - } - break; - -#ifdef DIS - case 77: - { - //G77 X200 Y150 XP100 YP15 XO10 Y015 - - //for 9 point mesh bed leveling G77 X203 Y196 XP3 YP3 XO0 YO0 - - - //G77 X232 Y218 XP116 YP109 XO-11 YO0 - - float dimension_x = 40; - float dimension_y = 40; - int points_x = 40; - int points_y = 40; - float offset_x = 74; - float offset_y = 33; - - if (code_seen('X')) dimension_x = code_value(); - if (code_seen('Y')) dimension_y = code_value(); - if (code_seen('XP')) points_x = code_value(); - if (code_seen('YP')) points_y = code_value(); - if (code_seen('XO')) offset_x = code_value(); - if (code_seen('YO')) offset_y = code_value(); - - bed_analysis(dimension_x,dimension_y,points_x,points_y,offset_x,offset_y); - - } break; - -#endif - - case 79: { - for (int i = 255; i > 0; i = i - 5) { - fanSpeed = i; - //delay_keep_alive(2000); - for (int j = 0; j < 100; j++) { - delay_keep_alive(100); - - } - fan_speed[1]; - printf_P(_N("%d: %d\n"), i, fan_speed[1]); - } - }break; - - /** - * G80: Mesh-based Z probe, probes a grid and produces a - * mesh to compensate for variable bed height - * - * The S0 report the points as below - * - * +----> X-axis - * | - * | - * v Y-axis - * - */ - - case 80: -#ifdef MK1BP - break; -#endif //MK1BP - case_G80: - { - mesh_bed_leveling_flag = true; - int8_t verbosity_level = 0; - static bool run = false; - - if (code_seen('V')) { - // Just 'V' without a number counts as V1. - char c = strchr_pointer[1]; - verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short(); - } - // Firstly check if we know where we are - if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS])) { - // We don't know where we are! HOME! - // Push the commands to the front of the message queue in the reverse order! - // There shall be always enough space reserved for these commands. - if (lcd_commands_type != LCD_COMMAND_STOP_PRINT) { - repeatcommand_front(); // repeat G80 with all its parameters - enquecommand_front_P((PSTR("G28 W0"))); - } - else { - mesh_bed_leveling_flag = false; - } - break; - } - - - bool temp_comp_start = true; -#ifdef PINDA_THERMISTOR - temp_comp_start = false; -#endif //PINDA_THERMISTOR - - if (temp_comp_start) - if (run == false && temp_cal_active == true && calibration_status_pinda() == true && target_temperature_bed >= 50) { - if (lcd_commands_type != LCD_COMMAND_STOP_PRINT) { - temp_compensation_start(); - run = true; - repeatcommand_front(); // repeat G80 with all its parameters - enquecommand_front_P((PSTR("G28 W0"))); - } - else { - mesh_bed_leveling_flag = false; - } - break; - } - run = false; - if (lcd_commands_type == LCD_COMMAND_STOP_PRINT) { - mesh_bed_leveling_flag = false; - break; - } - // Save custom message state, set a new custom message state to display: Calibrating point 9. - bool custom_message_old = custom_message; - unsigned int custom_message_type_old = custom_message_type; - unsigned int custom_message_state_old = custom_message_state; - custom_message = true; - custom_message_type = 1; - custom_message_state = (MESH_MEAS_NUM_X_POINTS * MESH_MEAS_NUM_Y_POINTS) + 10; - lcd_update(1); - - mbl.reset(); //reset mesh bed leveling - - // Reset baby stepping to zero, if the babystepping has already been loaded before. The babystepsTodo value will be - // consumed during the first movements following this statement. - babystep_undo(); - - // Cycle through all points and probe them - // First move up. During this first movement, the babystepping will be reverted. - current_position[Z_AXIS] = MESH_HOME_Z_SEARCH; - plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 60, active_extruder); - // The move to the first calibration point. - current_position[X_AXIS] = pgm_read_float(bed_ref_points); - current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 1); - bool clamped = world2machine_clamp(current_position[X_AXIS], current_position[Y_AXIS]); - - #ifdef SUPPORT_VERBOSITY - if (verbosity_level >= 1) { - clamped ? SERIAL_PROTOCOLPGM("First calibration point clamped.\n") : SERIAL_PROTOCOLPGM("No clamping for first calibration point.\n"); - } - #endif //SUPPORT_VERBOSITY - // mbl.get_meas_xy(0, 0, current_position[X_AXIS], current_position[Y_AXIS], false); - plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[X_AXIS] / 30, active_extruder); - // Wait until the move is finished. - st_synchronize(); - - int mesh_point = 0; //index number of calibration point - - int ix = 0; - int iy = 0; - - int XY_AXIS_FEEDRATE = homing_feedrate[X_AXIS] / 20; - int Z_PROBE_FEEDRATE = homing_feedrate[Z_AXIS] / 60; - int Z_LIFT_FEEDRATE = homing_feedrate[Z_AXIS] / 40; - bool has_z = is_bed_z_jitter_data_valid(); //checks if we have data from Z calibration (offsets of the Z heiths of the 8 calibration points from the first point) - #ifdef SUPPORT_VERBOSITY - if (verbosity_level >= 1) { - has_z ? SERIAL_PROTOCOLPGM("Z jitter data from Z cal. valid.\n") : SERIAL_PROTOCOLPGM("Z jitter data from Z cal. not valid.\n"); - } - #endif // SUPPORT_VERBOSITY - setup_for_endstop_move(false); //save feedrate and feedmultiply, sets feedmultiply to 100 - const char *kill_message = NULL; - while (mesh_point != MESH_MEAS_NUM_X_POINTS * MESH_MEAS_NUM_Y_POINTS) { - // Get coords of a measuring point. - ix = mesh_point % MESH_MEAS_NUM_X_POINTS; // from 0 to MESH_NUM_X_POINTS - 1 - iy = mesh_point / MESH_MEAS_NUM_X_POINTS; - if (iy & 1) ix = (MESH_MEAS_NUM_X_POINTS - 1) - ix; // Zig zag - float z0 = 0.f; - if (has_z && mesh_point > 0) { - uint16_t z_offset_u = eeprom_read_word((uint16_t*)(EEPROM_BED_CALIBRATION_Z_JITTER + 2 * (ix + iy * 3 - 1))); - z0 = mbl.z_values[0][0] + *reinterpret_cast(&z_offset_u) * 0.01; - //#if 0 - #ifdef SUPPORT_VERBOSITY - if (verbosity_level >= 1) { - SERIAL_ECHOLNPGM(""); - SERIAL_ECHOPGM("Bed leveling, point: "); - MYSERIAL.print(mesh_point); - SERIAL_ECHOPGM(", calibration z: "); - MYSERIAL.print(z0, 5); - SERIAL_ECHOLNPGM(""); - } - #endif // SUPPORT_VERBOSITY - //#endif - } - - // Move Z up to MESH_HOME_Z_SEARCH. - current_position[Z_AXIS] = MESH_HOME_Z_SEARCH; - plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], Z_LIFT_FEEDRATE, active_extruder); - st_synchronize(); - - // Move to XY position of the sensor point. - current_position[X_AXIS] = pgm_read_float(bed_ref_points + 2 * mesh_point); - current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 2 * mesh_point + 1); - - - - world2machine_clamp(current_position[X_AXIS], current_position[Y_AXIS]); - #ifdef SUPPORT_VERBOSITY - if (verbosity_level >= 1) { - - SERIAL_PROTOCOL(mesh_point); - clamped ? SERIAL_PROTOCOLPGM(": xy clamped.\n") : SERIAL_PROTOCOLPGM(": no xy clamping\n"); - } - #endif // SUPPORT_VERBOSITY - - plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], XY_AXIS_FEEDRATE, active_extruder); - st_synchronize(); - - // Go down until endstop is hit - const float Z_CALIBRATION_THRESHOLD = 1.f; - if (!find_bed_induction_sensor_point_z((has_z && mesh_point > 0) ? z0 - Z_CALIBRATION_THRESHOLD : -10.f)) { //if we have data from z calibration max allowed difference is 1mm for each point, if we dont have data max difference is 10mm from initial point - kill_message = _T(MSG_BED_LEVELING_FAILED_POINT_LOW); - break; - } - if (MESH_HOME_Z_SEARCH - current_position[Z_AXIS] < 0.1f) { - kill_message = _i("Bed leveling failed. Sensor disconnected or cable broken. Waiting for reset.");////MSG_BED_LEVELING_FAILED_PROBE_DISCONNECTED c=20 r=4 - break; - } - if (has_z && fabs(z0 - current_position[Z_AXIS]) > Z_CALIBRATION_THRESHOLD) { //if we have data from z calibration, max. allowed difference is 1mm for each point - kill_message = _i("Bed leveling failed. Sensor triggered too high. Waiting for reset.");////MSG_BED_LEVELING_FAILED_POINT_HIGH c=20 r=4 - break; - } - #ifdef SUPPORT_VERBOSITY - if (verbosity_level >= 10) { - SERIAL_ECHOPGM("X: "); - MYSERIAL.print(current_position[X_AXIS], 5); - SERIAL_ECHOLNPGM(""); - SERIAL_ECHOPGM("Y: "); - MYSERIAL.print(current_position[Y_AXIS], 5); - SERIAL_PROTOCOLPGM("\n"); - } - #endif // SUPPORT_VERBOSITY - float offset_z = 0; - -#ifdef PINDA_THERMISTOR - offset_z = temp_compensation_pinda_thermistor_offset(current_temperature_pinda); -#endif //PINDA_THERMISTOR -// #ifdef SUPPORT_VERBOSITY -/* if (verbosity_level >= 1) - { - SERIAL_ECHOPGM("mesh bed leveling: "); - MYSERIAL.print(current_position[Z_AXIS], 5); - SERIAL_ECHOPGM(" offset: "); - MYSERIAL.print(offset_z, 5); - SERIAL_ECHOLNPGM(""); - }*/ -// #endif // SUPPORT_VERBOSITY - mbl.set_z(ix, iy, current_position[Z_AXIS] - offset_z); //store measured z values z_values[iy][ix] = z - offset_z; - - custom_message_state--; - mesh_point++; - lcd_update(1); - } - current_position[Z_AXIS] = MESH_HOME_Z_SEARCH; - #ifdef SUPPORT_VERBOSITY - if (verbosity_level >= 20) { - SERIAL_ECHOLNPGM("Mesh bed leveling while loop finished."); - SERIAL_ECHOLNPGM("MESH_HOME_Z_SEARCH: "); - MYSERIAL.print(current_position[Z_AXIS], 5); - } - #endif // SUPPORT_VERBOSITY - plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], Z_LIFT_FEEDRATE, active_extruder); - st_synchronize(); - if (mesh_point != MESH_MEAS_NUM_X_POINTS * MESH_MEAS_NUM_Y_POINTS) { - kill(kill_message); - SERIAL_ECHOLNPGM("killed"); - } - clean_up_after_endstop_move(); -// SERIAL_ECHOLNPGM("clean up finished "); - - bool apply_temp_comp = true; -#ifdef PINDA_THERMISTOR - apply_temp_comp = false; -#endif - if (apply_temp_comp) - if(temp_cal_active == true && calibration_status_pinda() == true) temp_compensation_apply(); //apply PINDA temperature compensation - babystep_apply(); // Apply Z height correction aka baby stepping before mesh bed leveing gets activated. -// SERIAL_ECHOLNPGM("babystep applied"); - bool eeprom_bed_correction_valid = eeprom_read_byte((unsigned char*)EEPROM_BED_CORRECTION_VALID) == 1; - #ifdef SUPPORT_VERBOSITY - if (verbosity_level >= 1) { - eeprom_bed_correction_valid ? SERIAL_PROTOCOLPGM("Bed correction data valid\n") : SERIAL_PROTOCOLPGM("Bed correction data not valid\n"); - } - #endif // SUPPORT_VERBOSITY - - for (uint8_t i = 0; i < 4; ++i) { - unsigned char codes[4] = { 'L', 'R', 'F', 'B' }; - long correction = 0; - if (code_seen(codes[i])) - correction = code_value_long(); - else if (eeprom_bed_correction_valid) { - unsigned char *addr = (i < 2) ? - ((i == 0) ? (unsigned char*)EEPROM_BED_CORRECTION_LEFT : (unsigned char*)EEPROM_BED_CORRECTION_RIGHT) : - ((i == 2) ? (unsigned char*)EEPROM_BED_CORRECTION_FRONT : (unsigned char*)EEPROM_BED_CORRECTION_REAR); - correction = eeprom_read_int8(addr); - } - if (correction == 0) - continue; - float offset = float(correction) * 0.001f; - if (fabs(offset) > 0.101f) { - SERIAL_ERROR_START; - SERIAL_ECHOPGM("Excessive bed leveling correction: "); - SERIAL_ECHO(offset); - SERIAL_ECHOLNPGM(" microns"); - } - else { - switch (i) { - case 0: - for (uint8_t row = 0; row < 3; ++row) { - mbl.z_values[row][1] += 0.5f * offset; - mbl.z_values[row][0] += offset; - } - break; - case 1: - for (uint8_t row = 0; row < 3; ++row) { - mbl.z_values[row][1] += 0.5f * offset; - mbl.z_values[row][2] += offset; - } - break; - case 2: - for (uint8_t col = 0; col < 3; ++col) { - mbl.z_values[1][col] += 0.5f * offset; - mbl.z_values[0][col] += offset; - } - break; - case 3: - for (uint8_t col = 0; col < 3; ++col) { - mbl.z_values[1][col] += 0.5f * offset; - mbl.z_values[2][col] += offset; - } - break; - } - } - } -// SERIAL_ECHOLNPGM("Bed leveling correction finished"); - mbl.upsample_3x3(); //bilinear interpolation from 3x3 to 7x7 points while using the same array z_values[iy][ix] for storing (just coppying measured data to new destination and interpolating between them) -// SERIAL_ECHOLNPGM("Upsample finished"); - mbl.active = 1; //activate mesh bed leveling -// SERIAL_ECHOLNPGM("Mesh bed leveling activated"); - go_home_with_z_lift(); -// SERIAL_ECHOLNPGM("Go home finished"); - //unretract (after PINDA preheat retraction) - if (degHotend(active_extruder) > EXTRUDE_MINTEMP && temp_cal_active == true && calibration_status_pinda() == true && target_temperature_bed >= 50) { - current_position[E_AXIS] += DEFAULT_RETRACTION; - plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400, active_extruder); - } - KEEPALIVE_STATE(NOT_BUSY); - // Restore custom message state - lcd_setstatuspgm(_T(WELCOME_MSG)); - custom_message = custom_message_old; - custom_message_type = custom_message_type_old; - custom_message_state = custom_message_state_old; - mesh_bed_leveling_flag = false; - mesh_bed_run_from_menu = false; - lcd_update(2); - - } - break; - - /** - * G81: Print mesh bed leveling status and bed profile if activated - */ - case 81: - if (mbl.active) { - SERIAL_PROTOCOLPGM("Num X,Y: "); - SERIAL_PROTOCOL(MESH_NUM_X_POINTS); - SERIAL_PROTOCOLPGM(","); - SERIAL_PROTOCOL(MESH_NUM_Y_POINTS); - SERIAL_PROTOCOLPGM("\nZ search height: "); - SERIAL_PROTOCOL(MESH_HOME_Z_SEARCH); - SERIAL_PROTOCOLLNPGM("\nMeasured points:"); - for (int y = MESH_NUM_Y_POINTS-1; y >= 0; y--) { - for (int x = 0; x < MESH_NUM_X_POINTS; x++) { - SERIAL_PROTOCOLPGM(" "); - SERIAL_PROTOCOL_F(mbl.z_values[y][x], 5); - } - SERIAL_PROTOCOLPGM("\n"); - } - } - else - SERIAL_PROTOCOLLNPGM("Mesh bed leveling not active."); - break; - -#if 0 - /** - * G82: Single Z probe at current location - * - * WARNING! USE WITH CAUTION! If you'll try to probe where is no leveling pad, nasty things can happen! - * - */ - case 82: - SERIAL_PROTOCOLLNPGM("Finding bed "); - setup_for_endstop_move(); - find_bed_induction_sensor_point_z(); - clean_up_after_endstop_move(); - SERIAL_PROTOCOLPGM("Bed found at: "); - SERIAL_PROTOCOL_F(current_position[Z_AXIS], 5); - SERIAL_PROTOCOLPGM("\n"); - break; - - /** - * G83: Prusa3D specific: Babystep in Z and store to EEPROM - */ - case 83: - { - int babystepz = code_seen('S') ? code_value() : 0; - int BabyPosition = code_seen('P') ? code_value() : 0; - - if (babystepz != 0) { - //FIXME Vojtech: What shall be the index of the axis Z: 3 or 4? - // Is the axis indexed starting with zero or one? - if (BabyPosition > 4) { - SERIAL_PROTOCOLLNPGM("Index out of bounds"); - }else{ - // Save it to the eeprom - babystepLoadZ = babystepz; - EEPROM_save_B(EEPROM_BABYSTEP_Z0+(BabyPosition*2),&babystepLoadZ); - // adjust the Z - babystepsTodoZadd(babystepLoadZ); - } - - } - - } - break; - /** - * G84: Prusa3D specific: UNDO Babystep Z (move Z axis back) - */ - case 84: - babystepsTodoZsubtract(babystepLoadZ); - // babystepLoadZ = 0; - break; - - /** - * G85: Prusa3D specific: Pick best babystep - */ - case 85: - lcd_pick_babystep(); - break; -#endif - - /** - * G86: Prusa3D specific: Disable babystep correction after home. - * This G-code will be performed at the start of a calibration script. - */ - case 86: - calibration_status_store(CALIBRATION_STATUS_LIVE_ADJUST); - break; - /** - * G87: Prusa3D specific: Enable babystep correction after home - * This G-code will be performed at the end of a calibration script. - */ - case 87: - calibration_status_store(CALIBRATION_STATUS_CALIBRATED); - break; - - /** - * G88: Prusa3D specific: Don't know what it is for, it is in V2Calibration.gcode - */ - case 88: - break; - - -#endif // ENABLE_MESH_BED_LEVELING - - - case 90: // G90 - relative_mode = false; - break; - case 91: // G91 - relative_mode = true; - break; - case 92: // G92 - if(!code_seen(axis_codes[E_AXIS])) - st_synchronize(); - for(int8_t i=0; i < NUM_AXIS; i++) { - if(code_seen(axis_codes[i])) { - if(i == E_AXIS) { - current_position[i] = code_value(); - plan_set_e_position(current_position[E_AXIS]); - } - else { - current_position[i] = code_value()+add_homing[i]; - plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]); - } - } - } - break; - - case 98: // G98 (activate farm mode) - farm_mode = 1; - PingTime = millis(); - eeprom_update_byte((unsigned char *)EEPROM_FARM_MODE, farm_mode); - SilentModeMenu = SILENT_MODE_OFF; - eeprom_update_byte((unsigned char *)EEPROM_SILENT, SilentModeMenu); - break; - - case 99: // G99 (deactivate farm mode) - farm_mode = 0; - lcd_printer_connected(); - eeprom_update_byte((unsigned char *)EEPROM_FARM_MODE, farm_mode); - lcd_update(2); - break; - default: - printf_P(PSTR("Unknown G code: %s \n"), cmdbuffer + bufindr + CMDHDRSIZE); - } - } // end if(code_seen('G')) - - else if(code_seen('M')) - { - int index; - for (index = 1; *(strchr_pointer + index) == ' ' || *(strchr_pointer + index) == '\t'; index++); - - /*for (++strchr_pointer; *strchr_pointer == ' ' || *strchr_pointer == '\t'; ++strchr_pointer);*/ - if (*(strchr_pointer+index) < '0' || *(strchr_pointer+index) > '9') { - printf_P(PSTR("Invalid M code: %s \n"), cmdbuffer + bufindr + CMDHDRSIZE); - - } else - switch((int)code_value()) - { - - case 0: // M0 - Unconditional stop - Wait for user button press on LCD - case 1: // M1 - Conditional stop - Wait for user button press on LCD - { - char *src = strchr_pointer + 2; - - codenum = 0; - - bool hasP = false, hasS = false; - if (code_seen('P')) { - codenum = code_value(); // milliseconds to wait - hasP = codenum > 0; - } - if (code_seen('S')) { - codenum = code_value() * 1000; // seconds to wait - hasS = codenum > 0; - } - starpos = strchr(src, '*'); - if (starpos != NULL) *(starpos) = '\0'; - while (*src == ' ') ++src; - if (!hasP && !hasS && *src != '\0') { - lcd_setstatus(src); - } else { - LCD_MESSAGERPGM(_i("Wait for user..."));////MSG_USERWAIT c=0 r=0 - } - - lcd_ignore_click(); //call lcd_ignore_click aslo for else ??? - st_synchronize(); - previous_millis_cmd = millis(); - if (codenum > 0){ - codenum += millis(); // keep track of when we started waiting - KEEPALIVE_STATE(PAUSED_FOR_USER); - while(millis() < codenum && !lcd_clicked()){ - manage_heater(); - manage_inactivity(true); - lcd_update(0); - } - KEEPALIVE_STATE(IN_HANDLER); - lcd_ignore_click(false); - }else{ - KEEPALIVE_STATE(PAUSED_FOR_USER); - while(!lcd_clicked()){ - manage_heater(); - manage_inactivity(true); - lcd_update(0); - } - KEEPALIVE_STATE(IN_HANDLER); - } - if (IS_SD_PRINTING) - LCD_MESSAGERPGM(_T(MSG_RESUMING_PRINT)); - else - LCD_MESSAGERPGM(_T(WELCOME_MSG)); - } - break; - case 17: - LCD_MESSAGERPGM(_i("No move."));////MSG_NO_MOVE c=0 r=0 - enable_x(); - enable_y(); - enable_z(); - enable_e0(); - enable_e1(); - enable_e2(); - break; - -#ifdef SDSUPPORT - case 20: // M20 - list SD card - SERIAL_PROTOCOLLNRPGM(_N("Begin file list"));////MSG_BEGIN_FILE_LIST c=0 r=0 - card.ls(); - SERIAL_PROTOCOLLNRPGM(_N("End file list"));////MSG_END_FILE_LIST c=0 r=0 - break; - case 21: // M21 - init SD card - - card.initsd(); - - break; - case 22: //M22 - release SD card - card.release(); - - break; - case 23: //M23 - Select file - starpos = (strchr(strchr_pointer + 4,'*')); - if(starpos!=NULL) - *(starpos)='\0'; - card.openFile(strchr_pointer + 4,true); - break; - case 24: //M24 - Start SD print - if (!card.paused) - failstats_reset_print(); - card.startFileprint(); - starttime=millis(); - break; - case 25: //M25 - Pause SD print - card.pauseSDPrint(); - break; - case 26: //M26 - Set SD index - if(card.cardOK && code_seen('S')) { - card.setIndex(code_value_long()); - } - break; - case 27: //M27 - Get SD status - card.getStatus(); - break; - case 28: //M28 - Start SD write - starpos = (strchr(strchr_pointer + 4,'*')); - if(starpos != NULL){ - char* npos = strchr(CMDBUFFER_CURRENT_STRING, 'N'); - strchr_pointer = strchr(npos,' ') + 1; - *(starpos) = '\0'; - } - card.openFile(strchr_pointer+4,false); - break; - case 29: //M29 - Stop SD write - //processed in write to file routine above - //card,saving = false; - break; - case 30: //M30 Delete File - if (card.cardOK){ - card.closefile(); - starpos = (strchr(strchr_pointer + 4,'*')); - if(starpos != NULL){ - char* npos = strchr(CMDBUFFER_CURRENT_STRING, 'N'); - strchr_pointer = strchr(npos,' ') + 1; - *(starpos) = '\0'; - } - card.removeFile(strchr_pointer + 4); - } - break; - case 32: //M32 - Select file and start SD print - { - if(card.sdprinting) { - st_synchronize(); - - } - starpos = (strchr(strchr_pointer + 4,'*')); - - char* namestartpos = (strchr(strchr_pointer + 4,'!')); //find ! to indicate filename string start. - if(namestartpos==NULL) - { - namestartpos=strchr_pointer + 4; //default name position, 4 letters after the M - } - else - namestartpos++; //to skip the '!' - - if(starpos!=NULL) - *(starpos)='\0'; - - bool call_procedure=(code_seen('P')); - - if(strchr_pointer>namestartpos) - call_procedure=false; //false alert, 'P' found within filename - - if( card.cardOK ) - { - card.openFile(namestartpos,true,!call_procedure); - if(code_seen('S')) - if(strchr_pointer= 0 && pin_status <= 255) - pin_number = code_value(); - for(int8_t i = 0; i < (int8_t)(sizeof(sensitive_pins)/sizeof(int)); i++) - { - if (sensitive_pins[i] == pin_number) - { - pin_number = -1; - break; - } - } - #if defined(FAN_PIN) && FAN_PIN > -1 - if (pin_number == FAN_PIN) - fanSpeed = pin_status; - #endif - if (pin_number > -1) - { - pinMode(pin_number, OUTPUT); - digitalWrite(pin_number, pin_status); - analogWrite(pin_number, pin_status); - } - } - break; -#endif //_DISABLE_M42_M226 - case 44: // M44: Prusa3D: Reset the bed skew and offset calibration. - - // Reset the baby step value and the baby step applied flag. - calibration_status_store(CALIBRATION_STATUS_ASSEMBLED); - eeprom_update_word((uint16_t*)EEPROM_BABYSTEP_Z, 0); - - // Reset the skew and offset in both RAM and EEPROM. - reset_bed_offset_and_skew(); - // Reset world2machine_rotation_and_skew and world2machine_shift, therefore - // the planner will not perform any adjustments in the XY plane. - // Wait for the motors to stop and update the current position with the absolute values. - world2machine_revert_to_uncorrected(); - break; - - case 45: // M45: Prusa3D: bed skew and offset with manual Z up - { - int8_t verbosity_level = 0; - bool only_Z = code_seen('Z'); - #ifdef SUPPORT_VERBOSITY - if (code_seen('V')) - { - // Just 'V' without a number counts as V1. - char c = strchr_pointer[1]; - verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short(); - } - #endif //SUPPORT_VERBOSITY - gcode_M45(only_Z, verbosity_level); - } - break; - - /* - case 46: - { - // M46: Prusa3D: Show the assigned IP address. - uint8_t ip[4]; - bool hasIP = card.ToshibaFlashAir_GetIP(ip); - if (hasIP) { - SERIAL_ECHOPGM("Toshiba FlashAir current IP: "); - SERIAL_ECHO(int(ip[0])); - SERIAL_ECHOPGM("."); - SERIAL_ECHO(int(ip[1])); - SERIAL_ECHOPGM("."); - SERIAL_ECHO(int(ip[2])); - SERIAL_ECHOPGM("."); - SERIAL_ECHO(int(ip[3])); - SERIAL_ECHOLNPGM(""); - } else { - SERIAL_ECHOLNPGM("Toshiba FlashAir GetIP failed"); - } - break; - } - */ - - case 47: - // M47: Prusa3D: Show end stops dialog on the display. - KEEPALIVE_STATE(PAUSED_FOR_USER); - lcd_diag_show_end_stops(); - KEEPALIVE_STATE(IN_HANDLER); - break; - -#if 0 - case 48: // M48: scan the bed induction sensor points, print the sensor trigger coordinates to the serial line for visualization on the PC. - { - // Disable the default update procedure of the display. We will do a modal dialog. - lcd_update_enable(false); - // Let the planner use the uncorrected coordinates. - mbl.reset(); - // Reset world2machine_rotation_and_skew and world2machine_shift, therefore - // the planner will not perform any adjustments in the XY plane. - // Wait for the motors to stop and update the current position with the absolute values. - world2machine_revert_to_uncorrected(); - // Move the print head close to the bed. - current_position[Z_AXIS] = MESH_HOME_Z_SEARCH; - plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], homing_feedrate[Z_AXIS]/40, active_extruder); - st_synchronize(); - // Home in the XY plane. - set_destination_to_current(); - setup_for_endstop_move(); - home_xy(); - int8_t verbosity_level = 0; - if (code_seen('V')) { - // Just 'V' without a number counts as V1. - char c = strchr_pointer[1]; - verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short(); - } - bool success = scan_bed_induction_points(verbosity_level); - clean_up_after_endstop_move(); - // Print head up. - current_position[Z_AXIS] = MESH_HOME_Z_SEARCH; - plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], homing_feedrate[Z_AXIS]/40, active_extruder); - st_synchronize(); - lcd_update_enable(true); - break; - } -#endif - -// M48 Z-Probe repeatability measurement function. -// -// Usage: M48 -// -// This function assumes the bed has been homed. Specificaly, that a G28 command -// as been issued prior to invoking the M48 Z-Probe repeatability measurement function. -// Any information generated by a prior G29 Bed leveling command will be lost and need to be -// regenerated. -// -// The number of samples will default to 10 if not specified. You can use upper or lower case -// letters for any of the options EXCEPT n. n must be in lower case because Marlin uses a capital -// N for its communication protocol and will get horribly confused if you send it a capital N. -// - -#ifdef ENABLE_AUTO_BED_LEVELING -#ifdef Z_PROBE_REPEATABILITY_TEST - - case 48: // M48 Z-Probe repeatability - { - #if Z_MIN_PIN == -1 - #error "You must have a Z_MIN endstop in order to enable calculation of Z-Probe repeatability." - #endif - - double sum=0.0; - double mean=0.0; - double sigma=0.0; - double sample_set[50]; - int verbose_level=1, n=0, j, n_samples = 10, n_legs=0; - double X_current, Y_current, Z_current; - double X_probe_location, Y_probe_location, Z_start_location, ext_position; - - if (code_seen('V') || code_seen('v')) { - verbose_level = code_value(); - if (verbose_level<0 || verbose_level>4 ) { - SERIAL_PROTOCOLPGM("?Verbose Level not plausable.\n"); - goto Sigma_Exit; - } - } - - if (verbose_level > 0) { - SERIAL_PROTOCOLPGM("M48 Z-Probe Repeatability test. Version 2.00\n"); - SERIAL_PROTOCOLPGM("Full support at: http://3dprintboard.com/forum.php\n"); - } - - if (code_seen('n')) { - n_samples = code_value(); - if (n_samples<4 || n_samples>50 ) { - SERIAL_PROTOCOLPGM("?Specified sample size not plausable.\n"); - goto Sigma_Exit; - } - } - - X_current = X_probe_location = st_get_position_mm(X_AXIS); - Y_current = Y_probe_location = st_get_position_mm(Y_AXIS); - Z_current = st_get_position_mm(Z_AXIS); - Z_start_location = st_get_position_mm(Z_AXIS) + Z_RAISE_BEFORE_PROBING; - ext_position = st_get_position_mm(E_AXIS); - - if (code_seen('X') || code_seen('x') ) { - X_probe_location = code_value() - X_PROBE_OFFSET_FROM_EXTRUDER; - if (X_probe_locationX_MAX_POS ) { - SERIAL_PROTOCOLPGM("?Specified X position out of range.\n"); - goto Sigma_Exit; - } - } - - if (code_seen('Y') || code_seen('y') ) { - Y_probe_location = code_value() - Y_PROBE_OFFSET_FROM_EXTRUDER; - if (Y_probe_locationY_MAX_POS ) { - SERIAL_PROTOCOLPGM("?Specified Y position out of range.\n"); - goto Sigma_Exit; - } - } - - if (code_seen('L') || code_seen('l') ) { - n_legs = code_value(); - if ( n_legs==1 ) - n_legs = 2; - if ( n_legs<0 || n_legs>15 ) { - SERIAL_PROTOCOLPGM("?Specified number of legs in movement not plausable.\n"); - goto Sigma_Exit; - } - } - -// -// Do all the preliminary setup work. First raise the probe. -// - - st_synchronize(); - plan_bed_level_matrix.set_to_identity(); - plan_buffer_line( X_current, Y_current, Z_start_location, - ext_position, - homing_feedrate[Z_AXIS]/60, - active_extruder); - st_synchronize(); - -// -// Now get everything to the specified probe point So we can safely do a probe to -// get us close to the bed. If the Z-Axis is far from the bed, we don't want to -// use that as a starting point for each probe. -// - if (verbose_level > 2) - SERIAL_PROTOCOL("Positioning probe for the test.\n"); - - plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location, - ext_position, - homing_feedrate[X_AXIS]/60, - active_extruder); - st_synchronize(); - - current_position[X_AXIS] = X_current = st_get_position_mm(X_AXIS); - current_position[Y_AXIS] = Y_current = st_get_position_mm(Y_AXIS); - current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS); - current_position[E_AXIS] = ext_position = st_get_position_mm(E_AXIS); - -// -// OK, do the inital probe to get us close to the bed. -// Then retrace the right amount and use that in subsequent probes -// - - setup_for_endstop_move(); - run_z_probe(); - - current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS); - Z_start_location = st_get_position_mm(Z_AXIS) + Z_RAISE_BEFORE_PROBING; - - plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location, - ext_position, - homing_feedrate[X_AXIS]/60, - active_extruder); - st_synchronize(); - current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS); - - for( n=0; nX_MAX_POS) - X_current = X_MAX_POS; - - if ( Y_currentY_MAX_POS) - Y_current = Y_MAX_POS; - - if (verbose_level>3 ) { - SERIAL_ECHOPAIR("x: ", X_current); - SERIAL_ECHOPAIR("y: ", Y_current); - SERIAL_PROTOCOLLNPGM(""); - } - - do_blocking_move_to( X_current, Y_current, Z_current ); - } - do_blocking_move_to( X_probe_location, Y_probe_location, Z_start_location); // Go back to the probe location - } - - setup_for_endstop_move(); - run_z_probe(); - - sample_set[n] = current_position[Z_AXIS]; - -// -// Get the current mean for the data points we have so far -// - sum=0.0; - for( j=0; j<=n; j++) { - sum = sum + sample_set[j]; - } - mean = sum / (double (n+1)); -// -// Now, use that mean to calculate the standard deviation for the -// data points we have so far -// - - sum=0.0; - for( j=0; j<=n; j++) { - sum = sum + (sample_set[j]-mean) * (sample_set[j]-mean); - } - sigma = sqrt( sum / (double (n+1)) ); - - if (verbose_level > 1) { - SERIAL_PROTOCOL(n+1); - SERIAL_PROTOCOL(" of "); - SERIAL_PROTOCOL(n_samples); - SERIAL_PROTOCOLPGM(" z: "); - SERIAL_PROTOCOL_F(current_position[Z_AXIS], 6); - } - - if (verbose_level > 2) { - SERIAL_PROTOCOL(" mean: "); - SERIAL_PROTOCOL_F(mean,6); - - SERIAL_PROTOCOL(" sigma: "); - SERIAL_PROTOCOL_F(sigma,6); - } - - if (verbose_level > 0) - SERIAL_PROTOCOLPGM("\n"); - - plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location, - current_position[E_AXIS], homing_feedrate[Z_AXIS]/60, active_extruder); - st_synchronize(); - - } - - delay(1000); - - clean_up_after_endstop_move(); - -// enable_endstops(true); - - if (verbose_level > 0) { - SERIAL_PROTOCOLPGM("Mean: "); - SERIAL_PROTOCOL_F(mean, 6); - SERIAL_PROTOCOLPGM("\n"); - } - -SERIAL_PROTOCOLPGM("Standard Deviation: "); -SERIAL_PROTOCOL_F(sigma, 6); -SERIAL_PROTOCOLPGM("\n\n"); - -Sigma_Exit: - break; - } -#endif // Z_PROBE_REPEATABILITY_TEST -#endif // ENABLE_AUTO_BED_LEVELING - case 73: //M73 show percent done and time remaining - if(code_seen('P')) print_percent_done_normal = code_value(); - if(code_seen('R')) print_time_remaining_normal = code_value(); - if(code_seen('Q')) print_percent_done_silent = code_value(); - if(code_seen('S')) print_time_remaining_silent = code_value(); - - { - const char* _msg_mode_done_remain = _N("%S MODE: Percent done: %d; print time remaining in mins: %d\n"); - printf_P(_msg_mode_done_remain, _N("NORMAL"), int(print_percent_done_normal), print_time_remaining_normal); - printf_P(_msg_mode_done_remain, _N("SILENT"), int(print_percent_done_silent), print_time_remaining_silent); - } - break; - - case 104: // M104 - if(setTargetedHotend(104)){ - break; - } - if (code_seen('S')) setTargetHotend(code_value(), tmp_extruder); - setWatch(); - break; - case 112: // M112 -Emergency Stop - kill(_n(""), 3); - break; - case 140: // M140 set bed temp - if (code_seen('S')) setTargetBed(code_value()); - break; - case 105 : // M105 - if(setTargetedHotend(105)){ - break; - } - #if defined(TEMP_0_PIN) && TEMP_0_PIN > -1 - SERIAL_PROTOCOLPGM("ok T:"); - SERIAL_PROTOCOL_F(degHotend(tmp_extruder),1); - SERIAL_PROTOCOLPGM(" /"); - SERIAL_PROTOCOL_F(degTargetHotend(tmp_extruder),1); - #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1 - SERIAL_PROTOCOLPGM(" B:"); - SERIAL_PROTOCOL_F(degBed(),1); - SERIAL_PROTOCOLPGM(" /"); - SERIAL_PROTOCOL_F(degTargetBed(),1); - #endif //TEMP_BED_PIN - for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) { - SERIAL_PROTOCOLPGM(" T"); - SERIAL_PROTOCOL(cur_extruder); - SERIAL_PROTOCOLPGM(":"); - SERIAL_PROTOCOL_F(degHotend(cur_extruder),1); - SERIAL_PROTOCOLPGM(" /"); - SERIAL_PROTOCOL_F(degTargetHotend(cur_extruder),1); - } - #else - SERIAL_ERROR_START; - SERIAL_ERRORLNRPGM(_i("No thermistors - no temperature"));////MSG_ERR_NO_THERMISTORS c=0 r=0 - #endif - - SERIAL_PROTOCOLPGM(" @:"); - #ifdef EXTRUDER_WATTS - SERIAL_PROTOCOL((EXTRUDER_WATTS * getHeaterPower(tmp_extruder))/127); - SERIAL_PROTOCOLPGM("W"); - #else - SERIAL_PROTOCOL(getHeaterPower(tmp_extruder)); - #endif - - SERIAL_PROTOCOLPGM(" B@:"); - #ifdef BED_WATTS - SERIAL_PROTOCOL((BED_WATTS * getHeaterPower(-1))/127); - SERIAL_PROTOCOLPGM("W"); - #else - SERIAL_PROTOCOL(getHeaterPower(-1)); - #endif - -#ifdef PINDA_THERMISTOR - SERIAL_PROTOCOLPGM(" P:"); - SERIAL_PROTOCOL_F(current_temperature_pinda,1); -#endif //PINDA_THERMISTOR - -#ifdef AMBIENT_THERMISTOR - SERIAL_PROTOCOLPGM(" A:"); - SERIAL_PROTOCOL_F(current_temperature_ambient,1); -#endif //AMBIENT_THERMISTOR - - - #ifdef SHOW_TEMP_ADC_VALUES - {float raw = 0.0; - - #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1 - SERIAL_PROTOCOLPGM(" ADC B:"); - SERIAL_PROTOCOL_F(degBed(),1); - SERIAL_PROTOCOLPGM("C->"); - raw = rawBedTemp(); - SERIAL_PROTOCOL_F(raw/OVERSAMPLENR,5); - SERIAL_PROTOCOLPGM(" Rb->"); - SERIAL_PROTOCOL_F(100 * (1 + (PtA * (raw/OVERSAMPLENR)) + (PtB * sq((raw/OVERSAMPLENR)))), 5); - SERIAL_PROTOCOLPGM(" Rxb->"); - SERIAL_PROTOCOL_F(raw, 5); - #endif - for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) { - SERIAL_PROTOCOLPGM(" T"); - SERIAL_PROTOCOL(cur_extruder); - SERIAL_PROTOCOLPGM(":"); - SERIAL_PROTOCOL_F(degHotend(cur_extruder),1); - SERIAL_PROTOCOLPGM("C->"); - raw = rawHotendTemp(cur_extruder); - SERIAL_PROTOCOL_F(raw/OVERSAMPLENR,5); - SERIAL_PROTOCOLPGM(" Rt"); - SERIAL_PROTOCOL(cur_extruder); - SERIAL_PROTOCOLPGM("->"); - SERIAL_PROTOCOL_F(100 * (1 + (PtA * (raw/OVERSAMPLENR)) + (PtB * sq((raw/OVERSAMPLENR)))), 5); - SERIAL_PROTOCOLPGM(" Rx"); - SERIAL_PROTOCOL(cur_extruder); - SERIAL_PROTOCOLPGM("->"); - SERIAL_PROTOCOL_F(raw, 5); - }} - #endif - SERIAL_PROTOCOLLN(""); - KEEPALIVE_STATE(NOT_BUSY); - return; - break; - case 109: - {// M109 - Wait for extruder heater to reach target. - if(setTargetedHotend(109)){ - break; - } - LCD_MESSAGERPGM(_T(MSG_HEATING)); - heating_status = 1; - if (farm_mode) { prusa_statistics(1); }; - -#ifdef AUTOTEMP - autotemp_enabled=false; - #endif - if (code_seen('S')) { - setTargetHotend(code_value(), tmp_extruder); - CooldownNoWait = true; - } else if (code_seen('R')) { - setTargetHotend(code_value(), tmp_extruder); - CooldownNoWait = false; - } - #ifdef AUTOTEMP - if (code_seen('S')) autotemp_min=code_value(); - if (code_seen('B')) autotemp_max=code_value(); - if (code_seen('F')) - { - autotemp_factor=code_value(); - autotemp_enabled=true; - } - #endif - - setWatch(); - codenum = millis(); - - /* See if we are heating up or cooling down */ - target_direction = isHeatingHotend(tmp_extruder); // true if heating, false if cooling - - KEEPALIVE_STATE(NOT_BUSY); - - cancel_heatup = false; - - wait_for_heater(codenum); //loops until target temperature is reached - - LCD_MESSAGERPGM(_T(MSG_HEATING_COMPLETE)); - KEEPALIVE_STATE(IN_HANDLER); - heating_status = 2; - if (farm_mode) { prusa_statistics(2); }; - - //starttime=millis(); - previous_millis_cmd = millis(); - } - break; - case 190: // M190 - Wait for bed heater to reach target. - #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1 - LCD_MESSAGERPGM(_T(MSG_BED_HEATING)); - heating_status = 3; - if (farm_mode) { prusa_statistics(1); }; - if (code_seen('S')) - { - setTargetBed(code_value()); - CooldownNoWait = true; - } - else if (code_seen('R')) - { - setTargetBed(code_value()); - CooldownNoWait = false; - } - codenum = millis(); - - cancel_heatup = false; - target_direction = isHeatingBed(); // true if heating, false if cooling - - KEEPALIVE_STATE(NOT_BUSY); - while ( (target_direction)&&(!cancel_heatup) ? (isHeatingBed()) : (isCoolingBed()&&(CooldownNoWait==false)) ) - { - if(( millis() - codenum) > 1000 ) //Print Temp Reading every 1 second while heating up. - { - if (!farm_mode) { - float tt = degHotend(active_extruder); - SERIAL_PROTOCOLPGM("T:"); - SERIAL_PROTOCOL(tt); - SERIAL_PROTOCOLPGM(" E:"); - SERIAL_PROTOCOL((int)active_extruder); - SERIAL_PROTOCOLPGM(" B:"); - SERIAL_PROTOCOL_F(degBed(), 1); - SERIAL_PROTOCOLLN(""); - } - codenum = millis(); - - } - manage_heater(); - manage_inactivity(); - lcd_update(0); - } - LCD_MESSAGERPGM(_T(MSG_BED_DONE)); - KEEPALIVE_STATE(IN_HANDLER); - heating_status = 4; - - previous_millis_cmd = millis(); - #endif - break; - - #if defined(FAN_PIN) && FAN_PIN > -1 - case 106: //M106 Fan On - if (code_seen('S')){ - fanSpeed=constrain(code_value(),0,255); - } - else { - fanSpeed=255; - } - break; - case 107: //M107 Fan Off - fanSpeed = 0; - break; - #endif //FAN_PIN - - #if defined(PS_ON_PIN) && PS_ON_PIN > -1 - case 80: // M80 - Turn on Power Supply - SET_OUTPUT(PS_ON_PIN); //GND - WRITE(PS_ON_PIN, PS_ON_AWAKE); - - // If you have a switch on suicide pin, this is useful - // if you want to start another print with suicide feature after - // a print without suicide... - #if defined SUICIDE_PIN && SUICIDE_PIN > -1 - SET_OUTPUT(SUICIDE_PIN); - WRITE(SUICIDE_PIN, HIGH); - #endif - - powersupply = true; - LCD_MESSAGERPGM(_T(WELCOME_MSG)); - lcd_update(0); - break; - #endif - - case 81: // M81 - Turn off Power Supply - disable_heater(); - st_synchronize(); - disable_e0(); - disable_e1(); - disable_e2(); - finishAndDisableSteppers(); - fanSpeed = 0; - delay(1000); // Wait a little before to switch off - #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1 - st_synchronize(); - suicide(); - #elif defined(PS_ON_PIN) && PS_ON_PIN > -1 - SET_OUTPUT(PS_ON_PIN); - WRITE(PS_ON_PIN, PS_ON_ASLEEP); - #endif - powersupply = false; - LCD_MESSAGERPGM(CAT4(CUSTOM_MENDEL_NAME,PSTR(" "),MSG_OFF,PSTR("."))); - lcd_update(0); - break; - - case 82: - axis_relative_modes[3] = false; - break; - case 83: - axis_relative_modes[3] = true; - break; - case 18: //compatibility - case 84: // M84 - if(code_seen('S')){ - stepper_inactive_time = code_value() * 1000; - } - else - { - bool all_axis = !((code_seen(axis_codes[X_AXIS])) || (code_seen(axis_codes[Y_AXIS])) || (code_seen(axis_codes[Z_AXIS]))|| (code_seen(axis_codes[E_AXIS]))); - if(all_axis) - { - st_synchronize(); - disable_e0(); - disable_e1(); - disable_e2(); - finishAndDisableSteppers(); - } - else - { - st_synchronize(); - if (code_seen('X')) disable_x(); - if (code_seen('Y')) disable_y(); - if (code_seen('Z')) disable_z(); -#if ((E0_ENABLE_PIN != X_ENABLE_PIN) && (E1_ENABLE_PIN != Y_ENABLE_PIN)) // Only enable on boards that have seperate ENABLE_PINS - if (code_seen('E')) { - disable_e0(); - disable_e1(); - disable_e2(); - } - #endif - } - } - //in the end of print set estimated time to end of print and extruders used during print to default values for next print - print_time_remaining_init(); - snmm_filaments_used = 0; - break; - case 85: // M85 - if(code_seen('S')) { - max_inactive_time = code_value() * 1000; - } - break; -#ifdef SAFETYTIMER - case 86: // M86 - set safety timer expiration time in seconds; M86 S0 will disable safety timer - //when safety timer expires heatbed and nozzle target temperatures are set to zero - if (code_seen('S')) { - safetytimer_inactive_time = code_value() * 1000; - safetyTimer.start(); - } - break; -#endif - case 92: // M92 - for(int8_t i=0; i < NUM_AXIS; i++) - { - if(code_seen(axis_codes[i])) - { - if(i == 3) { // E - float value = code_value(); - if(value < 20.0) { - float factor = axis_steps_per_unit[i] / value; // increase e constants if M92 E14 is given for netfab. - max_jerk[E_AXIS] *= factor; - max_feedrate[i] *= factor; - axis_steps_per_sqr_second[i] *= factor; - } - axis_steps_per_unit[i] = value; - } - else { - axis_steps_per_unit[i] = code_value(); - } - } - } - break; - case 110: // M110 - reset line pos - if (code_seen('N')) - gcode_LastN = code_value_long(); - break; -#ifdef HOST_KEEPALIVE_FEATURE - case 113: // M113 - Get or set Host Keepalive interval - if (code_seen('S')) { - host_keepalive_interval = (uint8_t)code_value_short(); -// NOMORE(host_keepalive_interval, 60); - } - else { - SERIAL_ECHO_START; - SERIAL_ECHOPAIR("M113 S", (unsigned long)host_keepalive_interval); - SERIAL_PROTOCOLLN(""); - } - break; -#endif - case 115: // M115 - if (code_seen('V')) { - // Report the Prusa version number. - SERIAL_PROTOCOLLNRPGM(FW_VERSION_STR_P()); - } else if (code_seen('U')) { - // Check the firmware version provided. If the firmware version provided by the U code is higher than the currently running firmware, - // pause the print and ask the user to upgrade the firmware. - show_upgrade_dialog_if_version_newer(++ strchr_pointer); - } else { - SERIAL_ECHOPGM("FIRMWARE_NAME:Prusa-Firmware "); - SERIAL_ECHORPGM(FW_VERSION_STR_P()); - SERIAL_ECHOPGM(" based on Marlin FIRMWARE_URL:https://github.com/prusa3d/Prusa-Firmware PROTOCOL_VERSION:"); - SERIAL_ECHOPGM(PROTOCOL_VERSION); - SERIAL_ECHOPGM(" MACHINE_TYPE:"); - SERIAL_ECHOPGM(CUSTOM_MENDEL_NAME); - SERIAL_ECHOPGM(" EXTRUDER_COUNT:"); - SERIAL_ECHOPGM(STRINGIFY(EXTRUDERS)); - SERIAL_ECHOPGM(" UUID:"); - SERIAL_ECHOLNPGM(MACHINE_UUID); - } - break; -/* case 117: // M117 display message - starpos = (strchr(strchr_pointer + 5,'*')); - if(starpos!=NULL) - *(starpos)='\0'; - lcd_setstatus(strchr_pointer + 5); - break;*/ - case 114: // M114 - gcode_M114(); - break; - case 120: // M120 - enable_endstops(false) ; - break; - case 121: // M121 - enable_endstops(true) ; - break; - case 119: // M119 - SERIAL_PROTOCOLRPGM(_N("Reporting endstop status"));////MSG_M119_REPORT c=0 r=0 - SERIAL_PROTOCOLLN(""); - #if defined(X_MIN_PIN) && X_MIN_PIN > -1 - SERIAL_PROTOCOLRPGM(_n("x_min: "));////MSG_X_MIN c=0 r=0 - if(READ(X_MIN_PIN)^X_MIN_ENDSTOP_INVERTING){ - SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_HIT)); - }else{ - SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_OPEN)); - } - SERIAL_PROTOCOLLN(""); - #endif - #if defined(X_MAX_PIN) && X_MAX_PIN > -1 - SERIAL_PROTOCOLRPGM(_n("x_max: "));////MSG_X_MAX c=0 r=0 - if(READ(X_MAX_PIN)^X_MAX_ENDSTOP_INVERTING){ - SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_HIT)); - }else{ - SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_OPEN)); - } - SERIAL_PROTOCOLLN(""); - #endif - #if defined(Y_MIN_PIN) && Y_MIN_PIN > -1 - SERIAL_PROTOCOLRPGM(_n("y_min: "));////MSG_Y_MIN c=0 r=0 - if(READ(Y_MIN_PIN)^Y_MIN_ENDSTOP_INVERTING){ - SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_HIT)); - }else{ - SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_OPEN)); - } - SERIAL_PROTOCOLLN(""); - #endif - #if defined(Y_MAX_PIN) && Y_MAX_PIN > -1 - SERIAL_PROTOCOLRPGM(_n("y_max: "));////MSG_Y_MAX c=0 r=0 - if(READ(Y_MAX_PIN)^Y_MAX_ENDSTOP_INVERTING){ - SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_HIT)); - }else{ - SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_OPEN)); - } - SERIAL_PROTOCOLLN(""); - #endif - #if defined(Z_MIN_PIN) && Z_MIN_PIN > -1 - SERIAL_PROTOCOLRPGM(MSG_Z_MIN); - if(READ(Z_MIN_PIN)^Z_MIN_ENDSTOP_INVERTING){ - SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_HIT)); - }else{ - SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_OPEN)); - } - SERIAL_PROTOCOLLN(""); - #endif - #if defined(Z_MAX_PIN) && Z_MAX_PIN > -1 - SERIAL_PROTOCOLRPGM(MSG_Z_MAX); - if(READ(Z_MAX_PIN)^Z_MAX_ENDSTOP_INVERTING){ - SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_HIT)); - }else{ - SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_OPEN)); - } - SERIAL_PROTOCOLLN(""); - #endif - break; - //TODO: update for all axis, use for loop - #ifdef BLINKM - case 150: // M150 - { - byte red; - byte grn; - byte blu; - - if(code_seen('R')) red = code_value(); - if(code_seen('U')) grn = code_value(); - if(code_seen('B')) blu = code_value(); - - SendColors(red,grn,blu); - } - break; - #endif //BLINKM - case 200: // M200 D set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters). - { - - tmp_extruder = active_extruder; - if(code_seen('T')) { - tmp_extruder = code_value(); - if(tmp_extruder >= EXTRUDERS) { - SERIAL_ECHO_START; - SERIAL_ECHO(_i("M200 Invalid extruder "));////MSG_M200_INVALID_EXTRUDER c=0 r=0 - break; - } - } - - float area = .0; - if(code_seen('D')) { - float diameter = (float)code_value(); - if (diameter == 0.0) { - // setting any extruder filament size disables volumetric on the assumption that - // slicers either generate in extruder values as cubic mm or as as filament feeds - // for all extruders - volumetric_enabled = false; - } else { - filament_size[tmp_extruder] = (float)code_value(); - // make sure all extruders have some sane value for the filament size - filament_size[0] = (filament_size[0] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : filament_size[0]); - #if EXTRUDERS > 1 - filament_size[1] = (filament_size[1] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : filament_size[1]); - #if EXTRUDERS > 2 - filament_size[2] = (filament_size[2] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : filament_size[2]); - #endif - #endif - volumetric_enabled = true; - } - } else { - //reserved for setting filament diameter via UFID or filament measuring device - break; - } - calculate_extruder_multipliers(); - } - break; - case 201: // M201 - for(int8_t i=0; i < NUM_AXIS; i++) - { - if(code_seen(axis_codes[i])) - { - max_acceleration_units_per_sq_second[i] = code_value(); - } - } - // steps per sq second need to be updated to agree with the units per sq second (as they are what is used in the planner) - reset_acceleration_rates(); - break; - #if 0 // Not used for Sprinter/grbl gen6 - case 202: // M202 - for(int8_t i=0; i < NUM_AXIS; i++) { - if(code_seen(axis_codes[i])) axis_travel_steps_per_sqr_second[i] = code_value() * axis_steps_per_unit[i]; - } - break; - #endif - case 203: // M203 max feedrate mm/sec - for(int8_t i=0; i < NUM_AXIS; i++) { - if(code_seen(axis_codes[i])) max_feedrate[i] = code_value(); - } - break; - case 204: // M204 acclereration S normal moves T filmanent only moves - { - if(code_seen('S')) acceleration = code_value() ; - if(code_seen('T')) retract_acceleration = code_value() ; - } - break; - case 205: //M205 advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk - { - if(code_seen('S')) minimumfeedrate = code_value(); - if(code_seen('T')) mintravelfeedrate = code_value(); - if(code_seen('B')) minsegmenttime = code_value() ; - if(code_seen('X')) max_jerk[X_AXIS] = max_jerk[Y_AXIS] = code_value(); - if(code_seen('Y')) max_jerk[Y_AXIS] = code_value(); - if(code_seen('Z')) max_jerk[Z_AXIS] = code_value(); - if(code_seen('E')) max_jerk[E_AXIS] = code_value(); - if (max_jerk[X_AXIS] > DEFAULT_XJERK) max_jerk[X_AXIS] = DEFAULT_XJERK; - if (max_jerk[Y_AXIS] > DEFAULT_YJERK) max_jerk[Y_AXIS] = DEFAULT_YJERK; - } - break; - case 206: // M206 additional homing offset - for(int8_t i=0; i < 3; i++) - { - if(code_seen(axis_codes[i])) add_homing[i] = code_value(); - } - break; - #ifdef FWRETRACT - case 207: //M207 - set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop] - { - if(code_seen('S')) - { - retract_length = code_value() ; - } - if(code_seen('F')) - { - retract_feedrate = code_value()/60 ; - } - if(code_seen('Z')) - { - retract_zlift = code_value() ; - } - }break; - case 208: // M208 - set retract recover length S[positive mm surplus to the M207 S*] F[feedrate mm/min] - { - if(code_seen('S')) - { - retract_recover_length = code_value() ; - } - if(code_seen('F')) - { - retract_recover_feedrate = code_value()/60 ; - } - }break; - case 209: // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction. - { - if(code_seen('S')) - { - int t= code_value() ; - switch(t) - { - case 0: - { - autoretract_enabled=false; - retracted[0]=false; - #if EXTRUDERS > 1 - retracted[1]=false; - #endif - #if EXTRUDERS > 2 - retracted[2]=false; - #endif - }break; - case 1: - { - autoretract_enabled=true; - retracted[0]=false; - #if EXTRUDERS > 1 - retracted[1]=false; - #endif - #if EXTRUDERS > 2 - retracted[2]=false; - #endif - }break; - default: - SERIAL_ECHO_START; - SERIAL_ECHORPGM(MSG_UNKNOWN_COMMAND); - SERIAL_ECHO(CMDBUFFER_CURRENT_STRING); - SERIAL_ECHOLNPGM("\"(1)"); - } - } - - }break; - #endif // FWRETRACT - #if EXTRUDERS > 1 - case 218: // M218 - set hotend offset (in mm), T X Y - { - if(setTargetedHotend(218)){ - break; - } - if(code_seen('X')) - { - extruder_offset[X_AXIS][tmp_extruder] = code_value(); - } - if(code_seen('Y')) - { - extruder_offset[Y_AXIS][tmp_extruder] = code_value(); - } - SERIAL_ECHO_START; - SERIAL_ECHORPGM(MSG_HOTEND_OFFSET); - for(tmp_extruder = 0; tmp_extruder < EXTRUDERS; tmp_extruder++) - { - SERIAL_ECHO(" "); - SERIAL_ECHO(extruder_offset[X_AXIS][tmp_extruder]); - SERIAL_ECHO(","); - SERIAL_ECHO(extruder_offset[Y_AXIS][tmp_extruder]); - } - SERIAL_ECHOLN(""); - }break; - #endif - case 220: // M220 S- set speed factor override percentage - { - if(code_seen('S')) - { - feedmultiply = code_value() ; - } - } - break; - case 221: // M221 S- set extrude factor override percentage - { - if(code_seen('S')) - { - int tmp_code = code_value(); - if (code_seen('T')) - { - if(setTargetedHotend(221)){ - break; - } - extruder_multiply[tmp_extruder] = tmp_code; - } - else - { - extrudemultiply = tmp_code ; - } - } - calculate_extruder_multipliers(); - } - break; - -#ifndef _DISABLE_M42_M226 - case 226: // M226 P S- Wait until the specified pin reaches the state required - { - if(code_seen('P')){ - int pin_number = code_value(); // pin number - int pin_state = -1; // required pin state - default is inverted - - if(code_seen('S')) pin_state = code_value(); // required pin state - - if(pin_state >= -1 && pin_state <= 1){ - - for(int8_t i = 0; i < (int8_t)(sizeof(sensitive_pins)/sizeof(int)); i++) - { - if (sensitive_pins[i] == pin_number) - { - pin_number = -1; - break; - } - } - - if (pin_number > -1) - { - int target = LOW; - - st_synchronize(); - - pinMode(pin_number, INPUT); - - switch(pin_state){ - case 1: - target = HIGH; - break; - - case 0: - target = LOW; - break; - - case -1: - target = !digitalRead(pin_number); - break; - } - - while(digitalRead(pin_number) != target){ - manage_heater(); - manage_inactivity(); - lcd_update(0); - } - } - } - } - } - break; -#endif //_DISABLE_M42_M226 - - #if NUM_SERVOS > 0 - case 280: // M280 - set servo position absolute. P: servo index, S: angle or microseconds - { - int servo_index = -1; - int servo_position = 0; - if (code_seen('P')) - servo_index = code_value(); - if (code_seen('S')) { - servo_position = code_value(); - if ((servo_index >= 0) && (servo_index < NUM_SERVOS)) { -#if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0) - servos[servo_index].attach(0); -#endif - servos[servo_index].write(servo_position); -#if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0) - delay(PROBE_SERVO_DEACTIVATION_DELAY); - servos[servo_index].detach(); -#endif - } - else { - SERIAL_ECHO_START; - SERIAL_ECHO("Servo "); - SERIAL_ECHO(servo_index); - SERIAL_ECHOLN(" out of range"); - } - } - else if (servo_index >= 0) { - SERIAL_PROTOCOL(_T(MSG_OK)); - SERIAL_PROTOCOL(" Servo "); - SERIAL_PROTOCOL(servo_index); - SERIAL_PROTOCOL(": "); - SERIAL_PROTOCOL(servos[servo_index].read()); - SERIAL_PROTOCOLLN(""); - } - } - break; - #endif // NUM_SERVOS > 0 - - #if (LARGE_FLASH == true && ( BEEPER > 0 || defined(ULTRALCD) || defined(LCD_USE_I2C_BUZZER))) - case 300: // M300 - { - int beepS = code_seen('S') ? code_value() : 110; - int beepP = code_seen('P') ? code_value() : 1000; - if (beepS > 0) - { - #if BEEPER > 0 - tone(BEEPER, beepS); - delay(beepP); - noTone(BEEPER); - #endif - } - else - { - delay(beepP); - } - } - break; - #endif // M300 - - #ifdef PIDTEMP - case 301: // M301 - { - if(code_seen('P')) Kp = code_value(); - if(code_seen('I')) Ki = scalePID_i(code_value()); - if(code_seen('D')) Kd = scalePID_d(code_value()); - - #ifdef PID_ADD_EXTRUSION_RATE - if(code_seen('C')) Kc = code_value(); - #endif - - updatePID(); - SERIAL_PROTOCOLRPGM(_T(MSG_OK)); - SERIAL_PROTOCOL(" p:"); - SERIAL_PROTOCOL(Kp); - SERIAL_PROTOCOL(" i:"); - SERIAL_PROTOCOL(unscalePID_i(Ki)); - SERIAL_PROTOCOL(" d:"); - SERIAL_PROTOCOL(unscalePID_d(Kd)); - #ifdef PID_ADD_EXTRUSION_RATE - SERIAL_PROTOCOL(" c:"); - //Kc does not have scaling applied above, or in resetting defaults - SERIAL_PROTOCOL(Kc); - #endif - SERIAL_PROTOCOLLN(""); - } - break; - #endif //PIDTEMP - #ifdef PIDTEMPBED - case 304: // M304 - { - if(code_seen('P')) bedKp = code_value(); - if(code_seen('I')) bedKi = scalePID_i(code_value()); - if(code_seen('D')) bedKd = scalePID_d(code_value()); - - updatePID(); - SERIAL_PROTOCOLRPGM(_T(MSG_OK)); - SERIAL_PROTOCOL(" p:"); - SERIAL_PROTOCOL(bedKp); - SERIAL_PROTOCOL(" i:"); - SERIAL_PROTOCOL(unscalePID_i(bedKi)); - SERIAL_PROTOCOL(" d:"); - SERIAL_PROTOCOL(unscalePID_d(bedKd)); - SERIAL_PROTOCOLLN(""); - } - break; - #endif //PIDTEMP - case 240: // M240 Triggers a camera by emulating a Canon RC-1 : http://www.doc-diy.net/photo/rc-1_hacked/ - { - #ifdef CHDK - - SET_OUTPUT(CHDK); - WRITE(CHDK, HIGH); - chdkHigh = millis(); - chdkActive = true; - - #else - - #if defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1 - const uint8_t NUM_PULSES=16; - const float PULSE_LENGTH=0.01524; - for(int i=0; i < NUM_PULSES; i++) { - WRITE(PHOTOGRAPH_PIN, HIGH); - _delay_ms(PULSE_LENGTH); - WRITE(PHOTOGRAPH_PIN, LOW); - _delay_ms(PULSE_LENGTH); - } - delay(7.33); - for(int i=0; i < NUM_PULSES; i++) { - WRITE(PHOTOGRAPH_PIN, HIGH); - _delay_ms(PULSE_LENGTH); - WRITE(PHOTOGRAPH_PIN, LOW); - _delay_ms(PULSE_LENGTH); - } - #endif - #endif //chdk end if - } - break; - #ifdef PREVENT_DANGEROUS_EXTRUDE - case 302: // allow cold extrudes, or set the minimum extrude temperature - { - float temp = .0; - if (code_seen('S')) temp=code_value(); - set_extrude_min_temp(temp); - } - break; - #endif - case 303: // M303 PID autotune - { - float temp = 150.0; - int e=0; - int c=5; - if (code_seen('E')) e=code_value(); - if (e<0) - temp=70; - if (code_seen('S')) temp=code_value(); - if (code_seen('C')) c=code_value(); - PID_autotune(temp, e, c); - } - break; - case 400: // M400 finish all moves - { - st_synchronize(); - } - break; - - case 500: // M500 Store settings in EEPROM - { - Config_StoreSettings(EEPROM_OFFSET); - } - break; - case 501: // M501 Read settings from EEPROM - { - Config_RetrieveSettings(EEPROM_OFFSET); - } - break; - case 502: // M502 Revert to default settings - { - Config_ResetDefault(); - } - break; - case 503: // M503 print settings currently in memory - { - Config_PrintSettings(); - } - break; - case 509: //M509 Force language selection - { - lang_reset(); - SERIAL_ECHO_START; - SERIAL_PROTOCOLPGM(("LANG SEL FORCED")); - } - break; - #ifdef ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED - case 540: - { - if(code_seen('S')) abort_on_endstop_hit = code_value() > 0; - } - break; - #endif - - #ifdef CUSTOM_M_CODE_SET_Z_PROBE_OFFSET - case CUSTOM_M_CODE_SET_Z_PROBE_OFFSET: - { - float value; - if (code_seen('Z')) - { - value = code_value(); - if ((Z_PROBE_OFFSET_RANGE_MIN <= value) && (value <= Z_PROBE_OFFSET_RANGE_MAX)) - { - zprobe_zoffset = -value; // compare w/ line 278 of ConfigurationStore.cpp - SERIAL_ECHO_START; - SERIAL_ECHOLNRPGM(CAT4(MSG_ZPROBE_ZOFFSET, " ", _T(MSG_OK),PSTR(""))); - SERIAL_PROTOCOLLN(""); - } - else - { - SERIAL_ECHO_START; - SERIAL_ECHORPGM(MSG_ZPROBE_ZOFFSET); - SERIAL_ECHORPGM(MSG_Z_MIN); - SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MIN); - SERIAL_ECHORPGM(MSG_Z_MAX); - SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MAX); - SERIAL_PROTOCOLLN(""); - } - } - else - { - SERIAL_ECHO_START; - SERIAL_ECHOLNRPGM(CAT2(MSG_ZPROBE_ZOFFSET, PSTR(" : "))); - SERIAL_ECHO(-zprobe_zoffset); - SERIAL_PROTOCOLLN(""); - } - break; - } - #endif // CUSTOM_M_CODE_SET_Z_PROBE_OFFSET - - #ifdef FILAMENTCHANGEENABLE - case 600: //Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal] - { -#ifdef PAT9125 - bool old_fsensor_enabled = fsensor_enabled; - fsensor_enabled = false; //temporary solution for unexpected restarting -#endif //PAT9125 - - st_synchronize(); - float target[4]; - float lastpos[4]; - - if (farm_mode) - - { - - prusa_statistics(22); - - } - - feedmultiplyBckp=feedmultiply; - int8_t TooLowZ = 0; - - float HotendTempBckp = degTargetHotend(active_extruder); - int fanSpeedBckp = fanSpeed; - target[X_AXIS]=current_position[X_AXIS]; - target[Y_AXIS]=current_position[Y_AXIS]; - target[Z_AXIS]=current_position[Z_AXIS]; - target[E_AXIS]=current_position[E_AXIS]; - lastpos[X_AXIS]=current_position[X_AXIS]; - lastpos[Y_AXIS]=current_position[Y_AXIS]; - lastpos[Z_AXIS]=current_position[Z_AXIS]; - lastpos[E_AXIS]=current_position[E_AXIS]; - - //Restract extruder - if(code_seen('E')) - { - target[E_AXIS]+= code_value(); - } - else - { - #ifdef FILAMENTCHANGE_FIRSTRETRACT - target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT ; - #endif - } - plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder); - - //Lift Z - if(code_seen('Z')) - { - target[Z_AXIS]+= code_value(); - } - else - { - #ifdef FILAMENTCHANGE_ZADD - target[Z_AXIS]+= FILAMENTCHANGE_ZADD ; - if(target[Z_AXIS] < 10){ - target[Z_AXIS]+= 10 ; - TooLowZ = 1; - }else{ - TooLowZ = 0; - } - #endif - - - } - plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_ZFEED, active_extruder); - - //Move XY to side - if(code_seen('X')) - { - target[X_AXIS]+= code_value(); - } - else - { - #ifdef FILAMENTCHANGE_XPOS - target[X_AXIS]= FILAMENTCHANGE_XPOS ; - #endif - } - if(code_seen('Y')) - { - target[Y_AXIS]= code_value(); - } - else - { - #ifdef FILAMENTCHANGE_YPOS - target[Y_AXIS]= FILAMENTCHANGE_YPOS ; - #endif - } - plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_XYFEED, active_extruder); - st_synchronize(); - KEEPALIVE_STATE(PAUSED_FOR_USER); - - uint8_t cnt = 0; - int counterBeep = 0; - fanSpeed = 0; - unsigned long waiting_start_time = millis(); - uint8_t wait_for_user_state = 0; - lcd_display_message_fullscreen_P(_T(MSG_PRESS_TO_UNLOAD)); - while (!(wait_for_user_state == 0 && lcd_clicked())){ - - //cnt++; - manage_heater(); - manage_inactivity(true); - - /*#ifdef SNMM - target[E_AXIS] += 0.002; - plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 500, active_extruder); - - #endif // SNMM*/ - - //if (cnt == 0) - { -#if BEEPER > 0 - if (counterBeep == 500) { - counterBeep = 0; - } - SET_OUTPUT(BEEPER); - if (counterBeep == 0) { - WRITE(BEEPER, HIGH); - } - if (counterBeep == 20) { - WRITE(BEEPER, LOW); - } - - counterBeep++; -#else -#endif - } - - switch (wait_for_user_state) { - case 0: - delay_keep_alive(4); - - if (millis() > waiting_start_time + (unsigned long)M600_TIMEOUT * 1000) { - lcd_display_message_fullscreen_P(_i("Press knob to preheat nozzle and continue."));////MSG_PRESS_TO_PREHEAT c=20 r=4 - wait_for_user_state = 1; - setTargetHotend(0, 0); - setTargetHotend(0, 1); - setTargetHotend(0, 2); - st_synchronize(); - disable_e0(); - disable_e1(); - disable_e2(); - } - break; - case 1: - delay_keep_alive(4); - - if (lcd_clicked()) { - setTargetHotend(HotendTempBckp, active_extruder); - lcd_wait_for_heater(); - - wait_for_user_state = 2; - } - break; - case 2: - - if (abs(degTargetHotend(active_extruder) - degHotend(active_extruder)) < 1) { - lcd_display_message_fullscreen_P(_T(MSG_PRESS_TO_UNLOAD)); - waiting_start_time = millis(); - wait_for_user_state = 0; - } - else { - counterBeep = 20; //beeper will be inactive during waiting for nozzle preheat - lcd_set_cursor(1, 4); - lcd_print(ftostr3(degHotend(active_extruder))); - } - break; - - } - - } - WRITE(BEEPER, LOW); - - lcd_change_fil_state = 0; - - - // Unload filament - lcd_display_message_fullscreen_P(_T(MSG_UNLOADING_FILAMENT)); - KEEPALIVE_STATE(IN_HANDLER); - custom_message = true; - lcd_setstatuspgm(_T(MSG_UNLOADING_FILAMENT)); - - if (code_seen('L')) - { - target[E_AXIS] += code_value(); - } - else - { -#ifdef SNMM - -#else -#ifdef FILAMENTCHANGE_FINALRETRACT - target[E_AXIS] += FILAMENTCHANGE_FINALRETRACT; -#endif -#endif // SNMM - } - -#ifdef SNMM - target[E_AXIS] += 12; - plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 3500, active_extruder); - target[E_AXIS] += 6; - plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 5000, active_extruder); - target[E_AXIS] += (FIL_LOAD_LENGTH * -1); - plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 5000, active_extruder); - st_synchronize(); - target[E_AXIS] += (FIL_COOLING); - plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 50, active_extruder); - target[E_AXIS] += (FIL_COOLING*-1); - plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 50, active_extruder); - target[E_AXIS] += (bowden_length[snmm_extruder] * -1); - plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 3000, active_extruder); - st_synchronize(); - -#else - // plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder); - //plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 3500 / 60, active_extruder); - - target[E_AXIS] -= FILAMENTCHANGE_FINALRETRACT; - st_synchronize(); -#ifdef TMC2130 - uint8_t tmc2130_current_r_bckp = tmc2130_current_r[E_AXIS]; - tmc2130_set_current_r(E_AXIS, TMC2130_UNLOAD_CURRENT_R); -#else - - st_current_set(2, 200); //set lower E motor current for unload to protect filament sensor and ptfe tube - float tmp_motor[3] = DEFAULT_PWM_MOTOR_CURRENT; - float tmp_motor_loud[3] = DEFAULT_PWM_MOTOR_CURRENT_LOUD; - -#endif //TMC2130 - - target[E_AXIS] -= 45; - plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 5200 / 60, active_extruder); - st_synchronize(); - target[E_AXIS] -= 15; - plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 1000 / 60, active_extruder); - st_synchronize(); - target[E_AXIS] -= 20; - plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 1000 / 60, active_extruder); - st_synchronize(); - -#ifdef TMC2130 - tmc2130_set_current_r(E_AXIS, tmc2130_current_r_bckp); -#else - uint8_t silentMode = eeprom_read_byte((uint8_t*)EEPROM_SILENT); - if(silentMode != SILENT_MODE_POWER) st_current_set(2, tmp_motor[2]); //set E back to normal operation currents - else st_current_set(2, tmp_motor_loud[2]); -#endif //TMC2130 - -#endif // SNMM - - - //finish moves - st_synchronize(); - - lcd_display_message_fullscreen_P(_T(MSG_PULL_OUT_FILAMENT)); - - //disable extruder steppers so filament can be removed - disable_e0(); - disable_e1(); - disable_e2(); - delay(100); - - - WRITE(BEEPER, HIGH); - counterBeep = 0; - while(!lcd_clicked() && (counterBeep < 50)) { - if(counterBeep > 5) WRITE(BEEPER, LOW); - delay_keep_alive(100); - counterBeep++; - } - WRITE(BEEPER, LOW); - - KEEPALIVE_STATE(PAUSED_FOR_USER); - lcd_change_fil_state = lcd_show_fullscreen_message_yes_no_and_wait_P(_i("Was filament unload successful?"), false, true);////MSG_UNLOAD_SUCCESSFUL c=20 r=2 - if (lcd_change_fil_state == 0) lcd_show_fullscreen_message_and_wait_P(_i("Please open idler and remove filament manually."));////MSG_CHECK_IDLER c=20 r=4 - //lcd_return_to_status(); - lcd_update_enable(true); - - //Wait for user to insert filament - lcd_wait_interact(); - //load_filament_time = millis(); - KEEPALIVE_STATE(PAUSED_FOR_USER); - -#ifdef PAT9125 - if (filament_autoload_enabled && (old_fsensor_enabled || fsensor_M600)) fsensor_autoload_check_start(); -#endif //PAT9125 -// printf_P(PSTR("M600 PAT9125 filament_autoload_enabled=%d, old_fsensor_enabled=%d, fsensor_M600=%d"), filament_autoload_enabled, old_fsensor_enabled, fsensor_M600); - while(!lcd_clicked()) - { - manage_heater(); - manage_inactivity(true); -#ifdef PAT9125 - if (filament_autoload_enabled && (old_fsensor_enabled || fsensor_M600) && fsensor_check_autoload()) - { - tone(BEEPER, 1000); - delay_keep_alive(50); - noTone(BEEPER); - break; - } -#endif //PAT9125 -/*#ifdef SNMM - target[E_AXIS] += 0.002; - plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 500, active_extruder); - -#endif // SNMM*/ - - } -#ifdef PAT9125 - if (filament_autoload_enabled && (old_fsensor_enabled || fsensor_M600)) fsensor_autoload_check_stop(); -#endif //PAT9125 - //WRITE(BEEPER, LOW); - KEEPALIVE_STATE(IN_HANDLER); - - -#ifdef SNMM - display_loading(); - KEEPALIVE_STATE(PAUSED_FOR_USER); - do { - target[E_AXIS] += 0.002; - plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 500, active_extruder); - delay_keep_alive(2); - } while (!lcd_clicked()); - KEEPALIVE_STATE(IN_HANDLER); - /*if (millis() - load_filament_time > 2) { - load_filament_time = millis(); - target[E_AXIS] += 0.001; - plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 1000, active_extruder); - }*/ - - //Filament inserted - //Feed the filament to the end of nozzle quickly - st_synchronize(); - target[E_AXIS] += bowden_length[snmm_extruder]; - plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 3000, active_extruder); - target[E_AXIS] += FIL_LOAD_LENGTH - 60; - plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 1400, active_extruder); - target[E_AXIS] += 40; - plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder); - target[E_AXIS] += 10; - plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 50, active_extruder); -#else - target[E_AXIS] += FILAMENTCHANGE_FIRSTFEED; - plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EFEED, active_extruder); -#endif // SNMM - - //Extrude some filament - target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ; - plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EXFEED, active_extruder); - - //Wait for user to check the state - lcd_change_fil_state = 0; - lcd_loading_filament(); - - tone(BEEPER, 500); - delay_keep_alive(50); - noTone(BEEPER); - - while ((lcd_change_fil_state == 0)||(lcd_change_fil_state != 1)){ - lcd_change_fil_state = 0; - KEEPALIVE_STATE(PAUSED_FOR_USER); - lcd_alright(); - KEEPALIVE_STATE(IN_HANDLER); - switch(lcd_change_fil_state){ - - // Filament failed to load so load it again - case 2: -#ifdef SNMM - display_loading(); - do { - target[E_AXIS] += 0.002; - plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 500, active_extruder); - delay_keep_alive(2); - } while (!lcd_clicked()); - - st_synchronize(); - target[E_AXIS] += bowden_length[snmm_extruder]; - plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 3000, active_extruder); - target[E_AXIS] += FIL_LOAD_LENGTH - 60; - plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 1400, active_extruder); - target[E_AXIS] += 40; - plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder); - target[E_AXIS] += 10; - plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 50, active_extruder); - -#else - target[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ; - plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EFEED, active_extruder); -#endif - target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ; - plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EXFEED, active_extruder); - - lcd_loading_filament(); - - break; - - // Filament loaded properly but color is not clear - case 3: - target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ; - plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder); - lcd_loading_color(); - break; - - // Everything good - default: - lcd_change_success(); - lcd_update_enable(true); - break; - } - - } - - - //Not let's go back to print - fanSpeed = fanSpeedBckp; - - //Feed a little of filament to stabilize pressure - target[E_AXIS]+= FILAMENTCHANGE_RECFEED; - plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EXFEED, active_extruder); - - //Retract - target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT; - plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder); - - - - //plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder); //should do nothing - - //Move XY back - plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_XYFEED, active_extruder); - - //Move Z back - plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_ZFEED, active_extruder); - - - target[E_AXIS]= target[E_AXIS] - FILAMENTCHANGE_FIRSTRETRACT; - - //Unretract - plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder); - - //Set E position to original - plan_set_e_position(lastpos[E_AXIS]); - - //Recover feed rate - feedmultiply=feedmultiplyBckp; - char cmd[9]; - sprintf_P(cmd, PSTR("M220 S%i"), feedmultiplyBckp); - enquecommand(cmd); - - lcd_setstatuspgm(_T(WELCOME_MSG)); - custom_message = false; - custom_message_type = 0; - -#ifdef PAT9125 - fsensor_enabled = old_fsensor_enabled; //temporary solution for unexpected restarting - - if (fsensor_M600) - { - cmdqueue_pop_front(); //hack because M600 repeated 2x when enqueued to front - st_synchronize(); - while (!is_buffer_empty()) - { - process_commands(); - cmdqueue_pop_front(); - } - KEEPALIVE_STATE(IN_HANDLER); - fsensor_enable(); - fsensor_restore_print_and_continue(); - } - -#endif //PAT9125 - - } - break; - #endif //FILAMENTCHANGEENABLE - case 601: { - if(lcd_commands_type == 0) lcd_commands_type = LCD_COMMAND_LONG_PAUSE; - } - break; - - case 602: { - if(lcd_commands_type == 0) lcd_commands_type = LCD_COMMAND_LONG_PAUSE_RESUME; - } - break; - -#ifdef PINDA_THERMISTOR - case 860: // M860 - Wait for PINDA thermistor to reach target temperature. - { - int set_target_pinda = 0; - - if (code_seen('S')) { - set_target_pinda = code_value(); - } - else { - break; - } - - LCD_MESSAGERPGM(_T(MSG_PLEASE_WAIT)); - - SERIAL_PROTOCOLPGM("Wait for PINDA target temperature:"); - SERIAL_PROTOCOL(set_target_pinda); - SERIAL_PROTOCOLLN(""); - - codenum = millis(); - cancel_heatup = false; - - bool is_pinda_cooling = false; - if ((degTargetBed() == 0) && (degTargetHotend(0) == 0)) { - is_pinda_cooling = true; - } - - while ( ((!is_pinda_cooling) && (!cancel_heatup) && (current_temperature_pinda < set_target_pinda)) || (is_pinda_cooling && (current_temperature_pinda > set_target_pinda)) ) { - if ((millis() - codenum) > 1000) //Print Temp Reading every 1 second while waiting. - { - SERIAL_PROTOCOLPGM("P:"); - SERIAL_PROTOCOL_F(current_temperature_pinda, 1); - SERIAL_PROTOCOLPGM("/"); - SERIAL_PROTOCOL(set_target_pinda); - SERIAL_PROTOCOLLN(""); - codenum = millis(); - } - manage_heater(); - manage_inactivity(); - lcd_update(0); - } - LCD_MESSAGERPGM(_T(MSG_OK)); - - break; - } - - case 861: // M861 - Set/Read PINDA temperature compensation offsets - if (code_seen('?')) { // ? - Print out current EEPROM offset values - uint8_t cal_status = calibration_status_pinda(); - int16_t usteps = 0; - cal_status ? SERIAL_PROTOCOLLN("PINDA cal status: 1") : SERIAL_PROTOCOLLN("PINDA cal status: 0"); - SERIAL_PROTOCOLLN("index, temp, ustep, um"); - for (uint8_t i = 0; i < 6; i++) - { - if(i>0) EEPROM_read_B(EEPROM_PROBE_TEMP_SHIFT + (i-1) * 2, &usteps); - float mm = ((float)usteps) / axis_steps_per_unit[Z_AXIS]; - i == 0 ? SERIAL_PROTOCOLPGM("n/a") : SERIAL_PROTOCOL(i - 1); - SERIAL_PROTOCOLPGM(", "); - SERIAL_PROTOCOL(35 + (i * 5)); - SERIAL_PROTOCOLPGM(", "); - SERIAL_PROTOCOL(usteps); - SERIAL_PROTOCOLPGM(", "); - SERIAL_PROTOCOL(mm * 1000); - SERIAL_PROTOCOLLN(""); - } - } - else if (code_seen('!')) { // ! - Set factory default values - eeprom_write_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 1); - int16_t z_shift = 8; //40C - 20um - 8usteps - EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT, &z_shift); - z_shift = 24; //45C - 60um - 24usteps - EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + 2, &z_shift); - z_shift = 48; //50C - 120um - 48usteps - EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + 4, &z_shift); - z_shift = 80; //55C - 200um - 80usteps - EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + 6, &z_shift); - z_shift = 120; //60C - 300um - 120usteps - EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + 8, &z_shift); - SERIAL_PROTOCOLLN("factory restored"); - } - else if (code_seen('Z')) { // Z - Set all values to 0 (effectively disabling PINDA temperature compensation) - eeprom_write_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 1); - int16_t z_shift = 0; - for (uint8_t i = 0; i < 5; i++) EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i * 2, &z_shift); - SERIAL_PROTOCOLLN("zerorized"); - } - else if (code_seen('S')) { // Sxxx Iyyy - Set compensation ustep value S for compensation table index I - int16_t usteps = code_value(); - if (code_seen('I')) { - byte index = code_value(); - if ((index >= 0) && (index < 5)) { - EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + index * 2, &usteps); - SERIAL_PROTOCOLLN("OK"); - SERIAL_PROTOCOLLN("index, temp, ustep, um"); - for (uint8_t i = 0; i < 6; i++) - { - usteps = 0; - if (i>0) EEPROM_read_B(EEPROM_PROBE_TEMP_SHIFT + (i - 1) * 2, &usteps); - float mm = ((float)usteps) / axis_steps_per_unit[Z_AXIS]; - i == 0 ? SERIAL_PROTOCOLPGM("n/a") : SERIAL_PROTOCOL(i - 1); - SERIAL_PROTOCOLPGM(", "); - SERIAL_PROTOCOL(35 + (i * 5)); - SERIAL_PROTOCOLPGM(", "); - SERIAL_PROTOCOL(usteps); - SERIAL_PROTOCOLPGM(", "); - SERIAL_PROTOCOL(mm * 1000); - SERIAL_PROTOCOLLN(""); - } - } - } - } - else { - SERIAL_PROTOCOLPGM("no valid command"); - } - break; - -#endif //PINDA_THERMISTOR - -#ifdef LIN_ADVANCE - case 900: // M900: Set LIN_ADVANCE options. - gcode_M900(); - break; -#endif - - case 907: // M907 Set digital trimpot motor current using axis codes. - { - #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1 - for(int i=0;i -1 - uint8_t channel,current; - if(code_seen('P')) channel=code_value(); - if(code_seen('S')) current=code_value(); - digitalPotWrite(channel, current); - #endif - } - break; - -#ifdef TMC2130 - - case 910: // M910 TMC2130 init - { - tmc2130_init(); - } - break; - - case 911: // M911 Set TMC2130 holding currents - { - if (code_seen('X')) tmc2130_set_current_h(0, code_value()); - if (code_seen('Y')) tmc2130_set_current_h(1, code_value()); - if (code_seen('Z')) tmc2130_set_current_h(2, code_value()); - if (code_seen('E')) tmc2130_set_current_h(3, code_value()); - } - break; - - case 912: // M912 Set TMC2130 running currents - { - if (code_seen('X')) tmc2130_set_current_r(0, code_value()); - if (code_seen('Y')) tmc2130_set_current_r(1, code_value()); - if (code_seen('Z')) tmc2130_set_current_r(2, code_value()); - if (code_seen('E')) tmc2130_set_current_r(3, code_value()); - } - break; - - case 913: // M913 Print TMC2130 currents - { - tmc2130_print_currents(); - } - break; - - case 914: // M914 Set normal mode - { - tmc2130_mode = TMC2130_MODE_NORMAL; - tmc2130_init(); - } - break; - - case 915: // M915 Set silent mode - { - tmc2130_mode = TMC2130_MODE_SILENT; - tmc2130_init(); - } - break; - - case 916: // M916 Set sg_thrs - { - if (code_seen('X')) tmc2130_sg_thr[X_AXIS] = code_value(); - if (code_seen('Y')) tmc2130_sg_thr[Y_AXIS] = code_value(); - if (code_seen('Z')) tmc2130_sg_thr[Z_AXIS] = code_value(); - if (code_seen('E')) tmc2130_sg_thr[E_AXIS] = code_value(); - for (uint8_t a = X_AXIS; a <= E_AXIS; a++) - printf_P(_N("tmc2130_sg_thr[%c]=%d\n"), "XYZE"[a], tmc2130_sg_thr[a]); - } - break; - - case 917: // M917 Set TMC2130 pwm_ampl - { - if (code_seen('X')) tmc2130_set_pwm_ampl(0, code_value()); - if (code_seen('Y')) tmc2130_set_pwm_ampl(1, code_value()); - if (code_seen('Z')) tmc2130_set_pwm_ampl(2, code_value()); - if (code_seen('E')) tmc2130_set_pwm_ampl(3, code_value()); - } - break; - - case 918: // M918 Set TMC2130 pwm_grad - { - if (code_seen('X')) tmc2130_set_pwm_grad(0, code_value()); - if (code_seen('Y')) tmc2130_set_pwm_grad(1, code_value()); - if (code_seen('Z')) tmc2130_set_pwm_grad(2, code_value()); - if (code_seen('E')) tmc2130_set_pwm_grad(3, code_value()); - } - break; - -#endif //TMC2130 - - case 350: // M350 Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers. - { - #ifdef TMC2130 - if(code_seen('E')) - { - uint16_t res_new = code_value(); - if ((res_new == 8) || (res_new == 16) || (res_new == 32) || (res_new == 64) || (res_new == 128)) - { - st_synchronize(); - uint8_t axis = E_AXIS; - uint16_t res = tmc2130_get_res(axis); - tmc2130_set_res(axis, res_new); - if (res_new > res) - { - uint16_t fac = (res_new / res); - axis_steps_per_unit[axis] *= fac; - position[E_AXIS] *= fac; - } - else - { - uint16_t fac = (res / res_new); - axis_steps_per_unit[axis] /= fac; - position[E_AXIS] /= fac; - } - } - } - #else //TMC2130 - #if defined(X_MS1_PIN) && X_MS1_PIN > -1 - if(code_seen('S')) for(int i=0;i<=4;i++) microstep_mode(i,code_value()); - for(int i=0;i -1 - if(code_seen('S')) switch((int)code_value()) - { - case 1: - for(int i=0;i 5) WRITE(BEEPER, LOW); - delay_keep_alive(100); - counterBeep++; - } - WRITE(BEEPER, LOW); - st_synchronize(); - while (lcd_clicked()) delay_keep_alive(100); - - lcd_update_enable(true); - - lcd_setstatuspgm(_T(WELCOME_MSG)); - custom_message = false; - custom_message_type = 0; -#ifdef PAT9125 - fsensor_enabled = old_fsensor_enabled; -#endif //PAT9125 -#endif - } - break; - - case 999: // M999: Restart after being stopped - Stopped = false; - lcd_reset_alert_level(); - gcode_LastN = Stopped_gcode_LastN; - FlushSerialRequestResend(); - break; - default: - printf_P(PSTR("Unknown M code: %s \n"), cmdbuffer + bufindr + CMDHDRSIZE); - } - - } // end if(code_seen('M')) (end of M codes) - - else if(code_seen('T')) - { - int index; - st_synchronize(); - for (index = 1; *(strchr_pointer + index) == ' ' || *(strchr_pointer + index) == '\t'; index++); - - if ((*(strchr_pointer + index) < '0' || *(strchr_pointer + index) > '9') && *(strchr_pointer + index) != '?') { - SERIAL_ECHOLNPGM("Invalid T code."); - } - else { - if (*(strchr_pointer + index) == '?') { - tmp_extruder = choose_extruder_menu(); - } - else { - tmp_extruder = code_value(); - } - snmm_filaments_used |= (1 << tmp_extruder); //for stop print - -#ifdef SNMM_V2 - printf_P(PSTR("T code: %d \n"), tmp_extruder); - switch (tmp_extruder) - { - case 1: - - fprintf_P(uart2io, PSTR("T1\n")); - break; - case 2: - - fprintf_P(uart2io, PSTR("T2\n")); - break; - case 3: - - fprintf_P(uart2io, PSTR("T3\n")); - break; - case 4: - - fprintf_P(uart2io, PSTR("T4\n")); - break; - default: - - fprintf_P(uart2io, PSTR("T0\n")); - break; - } - - - - - // get response - uart2_rx_clr(); - while (!uart2_rx_ok()) - { - //printf_P(PSTR("waiting..\n")); - delay_keep_alive(100); - } - snmm_extruder = tmp_extruder; //filament change is finished - - if (*(strchr_pointer + index) == '?') { // for single material usage with mmu - bool saved_e_relative_mode = axis_relative_modes[E_AXIS]; - if (!saved_e_relative_mode) { - enquecommand_front_P(PSTR("M82")); // set extruder to relative mode - } - enquecommand_front_P((PSTR("G1 E7.2000 F562"))); - enquecommand_front_P((PSTR("G1 E14.4000 F871"))); - enquecommand_front_P((PSTR("G1 E36.0000 F1393"))); - enquecommand_front_P((PSTR("G1 E14.4000 F871"))); - if (!saved_e_relative_mode) { - enquecommand_front_P(PSTR("M83")); // set extruder to relative mode - } - } -#endif - -#ifdef SNMM - - #ifdef LIN_ADVANCE - if (snmm_extruder != tmp_extruder) - clear_current_adv_vars(); //Check if the selected extruder is not the active one and reset LIN_ADVANCE variables if so. - #endif - - snmm_extruder = tmp_extruder; - - - delay(100); - - disable_e0(); - disable_e1(); - disable_e2(); - - pinMode(E_MUX0_PIN, OUTPUT); - pinMode(E_MUX1_PIN, OUTPUT); - - delay(100); - SERIAL_ECHO_START; - SERIAL_ECHO("T:"); - SERIAL_ECHOLN((int)tmp_extruder); - switch (tmp_extruder) { - case 1: - WRITE(E_MUX0_PIN, HIGH); - WRITE(E_MUX1_PIN, LOW); - - break; - case 2: - WRITE(E_MUX0_PIN, LOW); - WRITE(E_MUX1_PIN, HIGH); - - break; - case 3: - WRITE(E_MUX0_PIN, HIGH); - WRITE(E_MUX1_PIN, HIGH); - - break; - default: - WRITE(E_MUX0_PIN, LOW); - WRITE(E_MUX1_PIN, LOW); - - break; - } - delay(100); - -#else - if (tmp_extruder >= EXTRUDERS) { - SERIAL_ECHO_START; - SERIAL_ECHOPGM("T"); - SERIAL_PROTOCOLLN((int)tmp_extruder); - SERIAL_ECHOLNRPGM(_n("Invalid extruder"));////MSG_INVALID_EXTRUDER c=0 r=0 - } - else { - boolean make_move = false; - if (code_seen('F')) { - make_move = true; - next_feedrate = code_value(); - if (next_feedrate > 0.0) { - feedrate = next_feedrate; - } - } -#if EXTRUDERS > 1 - if (tmp_extruder != active_extruder) { - // Save current position to return to after applying extruder offset - memcpy(destination, current_position, sizeof(destination)); - // Offset extruder (only by XY) - int i; - for (i = 0; i < 2; i++) { - current_position[i] = current_position[i] - - extruder_offset[i][active_extruder] + - extruder_offset[i][tmp_extruder]; - } - // Set the new active extruder and position - active_extruder = tmp_extruder; - plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]); - // Move to the old position if 'F' was in the parameters - if (make_move && Stopped == false) { - prepare_move(); - } - } -#endif - SERIAL_ECHO_START; - SERIAL_ECHORPGM(_n("Active Extruder: "));////MSG_ACTIVE_EXTRUDER c=0 r=0 - SERIAL_PROTOCOLLN((int)active_extruder); - } - -#endif - } - } // end if(code_seen('T')) (end of T codes) - -#ifdef DEBUG_DCODES - else if (code_seen('D')) // D codes (debug) - { - switch((int)code_value()) - { - case -1: // D-1 - Endless loop - dcode__1(); break; - case 0: // D0 - Reset - dcode_0(); break; - case 1: // D1 - Clear EEPROM - dcode_1(); break; - case 2: // D2 - Read/Write RAM - dcode_2(); break; - case 3: // D3 - Read/Write EEPROM - dcode_3(); break; - case 4: // D4 - Read/Write PIN - dcode_4(); break; - case 5: // D5 - Read/Write FLASH -// dcode_5(); break; - break; - case 6: // D6 - Read/Write external FLASH - dcode_6(); break; - case 7: // D7 - Read/Write Bootloader - dcode_7(); break; - case 8: // D8 - Read/Write PINDA - dcode_8(); break; - case 9: // D9 - Read/Write ADC - dcode_9(); break; - - case 10: // D10 - XYZ calibration = OK - dcode_10(); break; - - -#ifdef TMC2130 - case 2130: // D9125 - TMC2130 - dcode_2130(); break; -#endif //TMC2130 - -#ifdef PAT9125 - case 9125: // D9125 - PAT9125 - dcode_9125(); break; -#endif //PAT9125 - - } - } -#endif //DEBUG_DCODES - - else - { - SERIAL_ECHO_START; - SERIAL_ECHORPGM(MSG_UNKNOWN_COMMAND); - SERIAL_ECHO(CMDBUFFER_CURRENT_STRING); - SERIAL_ECHOLNPGM("\"(2)"); - } - KEEPALIVE_STATE(NOT_BUSY); - ClearToSend(); -} - -void FlushSerialRequestResend() -{ - //char cmdbuffer[bufindr][100]="Resend:"; - MYSERIAL.flush(); - printf_P(_N("%S: %ld\n%S\n"), _i("Resend"), gcode_LastN + 1, _T(MSG_OK)); -} - -// Confirm the execution of a command, if sent from a serial line. -// Execution of a command from a SD card will not be confirmed. -void ClearToSend() -{ - previous_millis_cmd = millis(); - if ((CMDBUFFER_CURRENT_TYPE == CMDBUFFER_CURRENT_TYPE_USB) || (CMDBUFFER_CURRENT_TYPE == CMDBUFFER_CURRENT_TYPE_USB_WITH_LINENR)) - SERIAL_PROTOCOLLNRPGM(_T(MSG_OK)); -} - -#if MOTHERBOARD == BOARD_RAMBO_MINI_1_0 || MOTHERBOARD == BOARD_RAMBO_MINI_1_3 -void update_currents() { - float current_high[3] = DEFAULT_PWM_MOTOR_CURRENT_LOUD; - float current_low[3] = DEFAULT_PWM_MOTOR_CURRENT; - float tmp_motor[3]; - - //SERIAL_ECHOLNPGM("Currents updated: "); - - if (destination[Z_AXIS] < Z_SILENT) { - //SERIAL_ECHOLNPGM("LOW"); - for (uint8_t i = 0; i < 3; i++) { - st_current_set(i, current_low[i]); - /*MYSERIAL.print(int(i)); - SERIAL_ECHOPGM(": "); - MYSERIAL.println(current_low[i]);*/ - } - } - else if (destination[Z_AXIS] > Z_HIGH_POWER) { - //SERIAL_ECHOLNPGM("HIGH"); - for (uint8_t i = 0; i < 3; i++) { - st_current_set(i, current_high[i]); - /*MYSERIAL.print(int(i)); - SERIAL_ECHOPGM(": "); - MYSERIAL.println(current_high[i]);*/ - } - } - else { - for (uint8_t i = 0; i < 3; i++) { - float q = current_low[i] - Z_SILENT*((current_high[i] - current_low[i]) / (Z_HIGH_POWER - Z_SILENT)); - tmp_motor[i] = ((current_high[i] - current_low[i]) / (Z_HIGH_POWER - Z_SILENT))*destination[Z_AXIS] + q; - st_current_set(i, tmp_motor[i]); - /*MYSERIAL.print(int(i)); - SERIAL_ECHOPGM(": "); - MYSERIAL.println(tmp_motor[i]);*/ - } - } -} -#endif //MOTHERBOARD == BOARD_RAMBO_MINI_1_0 || MOTHERBOARD == BOARD_RAMBO_MINI_1_3 - -void get_coordinates() -{ - bool seen[4]={false,false,false,false}; - for(int8_t i=0; i < NUM_AXIS; i++) { - if(code_seen(axis_codes[i])) - { - bool relative = axis_relative_modes[i] || relative_mode; - destination[i] = (float)code_value(); - if (i == E_AXIS) { - float emult = extruder_multiplier[active_extruder]; - if (emult != 1.) { - if (! relative) { - destination[i] -= current_position[i]; - relative = true; - } - destination[i] *= emult; - } - } - if (relative) - destination[i] += current_position[i]; - seen[i]=true; -#if MOTHERBOARD == BOARD_RAMBO_MINI_1_0 || MOTHERBOARD == BOARD_RAMBO_MINI_1_3 - if (i == Z_AXIS && SilentModeMenu == SILENT_MODE_AUTO) update_currents(); -#endif //MOTHERBOARD == BOARD_RAMBO_MINI_1_0 || MOTHERBOARD == BOARD_RAMBO_MINI_1_3 - } - else destination[i] = current_position[i]; //Are these else lines really needed? - } - if(code_seen('F')) { - next_feedrate = code_value(); -#ifdef MAX_SILENT_FEEDRATE - if (tmc2130_mode == TMC2130_MODE_SILENT) - if (next_feedrate > MAX_SILENT_FEEDRATE) next_feedrate = MAX_SILENT_FEEDRATE; -#endif //MAX_SILENT_FEEDRATE - if(next_feedrate > 0.0) feedrate = next_feedrate; - if (!seen[0] && !seen[1] && !seen[2] && seen[3]) - { -// float e_max_speed = -// printf_P(PSTR("E MOVE speed %7.3f\n"), feedrate / 60) - } - } -} - -void get_arc_coordinates() -{ -#ifdef SF_ARC_FIX - bool relative_mode_backup = relative_mode; - relative_mode = true; -#endif - get_coordinates(); -#ifdef SF_ARC_FIX - relative_mode=relative_mode_backup; -#endif - - if(code_seen('I')) { - offset[0] = code_value(); - } - else { - offset[0] = 0.0; - } - if(code_seen('J')) { - offset[1] = code_value(); - } - else { - offset[1] = 0.0; - } -} - -void clamp_to_software_endstops(float target[3]) -{ -#ifdef DEBUG_DISABLE_SWLIMITS - return; -#endif //DEBUG_DISABLE_SWLIMITS - world2machine_clamp(target[0], target[1]); - - // Clamp the Z coordinate. - if (min_software_endstops) { - float negative_z_offset = 0; - #ifdef ENABLE_AUTO_BED_LEVELING - if (Z_PROBE_OFFSET_FROM_EXTRUDER < 0) negative_z_offset = negative_z_offset + Z_PROBE_OFFSET_FROM_EXTRUDER; - if (add_homing[Z_AXIS] < 0) negative_z_offset = negative_z_offset + add_homing[Z_AXIS]; - #endif - if (target[Z_AXIS] < min_pos[Z_AXIS]+negative_z_offset) target[Z_AXIS] = min_pos[Z_AXIS]+negative_z_offset; - } - if (max_software_endstops) { - if (target[Z_AXIS] > max_pos[Z_AXIS]) target[Z_AXIS] = max_pos[Z_AXIS]; - } -} - -#ifdef MESH_BED_LEVELING - void mesh_plan_buffer_line(const float &x, const float &y, const float &z, const float &e, const float &feed_rate, const uint8_t extruder) { - float dx = x - current_position[X_AXIS]; - float dy = y - current_position[Y_AXIS]; - float dz = z - current_position[Z_AXIS]; - int n_segments = 0; - - if (mbl.active) { - float len = abs(dx) + abs(dy); - if (len > 0) - // Split to 3cm segments or shorter. - n_segments = int(ceil(len / 30.f)); - } - - if (n_segments > 1) { - float de = e - current_position[E_AXIS]; - for (int i = 1; i < n_segments; ++ i) { - float t = float(i) / float(n_segments); - if (saved_printing || (mbl.active == false)) return; - plan_buffer_line( - current_position[X_AXIS] + t * dx, - current_position[Y_AXIS] + t * dy, - current_position[Z_AXIS] + t * dz, - current_position[E_AXIS] + t * de, - feed_rate, extruder); - } - } - // The rest of the path. - plan_buffer_line(x, y, z, e, feed_rate, extruder); - current_position[X_AXIS] = x; - current_position[Y_AXIS] = y; - current_position[Z_AXIS] = z; - current_position[E_AXIS] = e; - } -#endif // MESH_BED_LEVELING - -void prepare_move() -{ - clamp_to_software_endstops(destination); - previous_millis_cmd = millis(); - - // Do not use feedmultiply for E or Z only moves - if( (current_position[X_AXIS] == destination [X_AXIS]) && (current_position[Y_AXIS] == destination [Y_AXIS])) { - plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder); - } - else { -#ifdef MESH_BED_LEVELING - mesh_plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate*feedmultiply*(1./(60.f*100.f)), active_extruder); -#else - plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate*feedmultiply*(1./(60.f*100.f)), active_extruder); -#endif - } - - for(int8_t i=0; i < NUM_AXIS; i++) { - current_position[i] = destination[i]; - } -} - -void prepare_arc_move(char isclockwise) { - float r = hypot(offset[X_AXIS], offset[Y_AXIS]); // Compute arc radius for mc_arc - - // Trace the arc - mc_arc(current_position, destination, offset, X_AXIS, Y_AXIS, Z_AXIS, feedrate*feedmultiply/60/100.0, r, isclockwise, active_extruder); - - // As far as the parser is concerned, the position is now == target. In reality the - // motion control system might still be processing the action and the real tool position - // in any intermediate location. - for(int8_t i=0; i < NUM_AXIS; i++) { - current_position[i] = destination[i]; - } - previous_millis_cmd = millis(); -} - -#if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1 - -#if defined(FAN_PIN) - #if CONTROLLERFAN_PIN == FAN_PIN - #error "You cannot set CONTROLLERFAN_PIN equal to FAN_PIN" - #endif -#endif - -unsigned long lastMotor = 0; //Save the time for when a motor was turned on last -unsigned long lastMotorCheck = 0; - -void controllerFan() -{ - if ((millis() - lastMotorCheck) >= 2500) //Not a time critical function, so we only check every 2500ms - { - lastMotorCheck = millis(); - - if(!READ(X_ENABLE_PIN) || !READ(Y_ENABLE_PIN) || !READ(Z_ENABLE_PIN) || (soft_pwm_bed > 0) - #if EXTRUDERS > 2 - || !READ(E2_ENABLE_PIN) - #endif - #if EXTRUDER > 1 - #if defined(X2_ENABLE_PIN) && X2_ENABLE_PIN > -1 - || !READ(X2_ENABLE_PIN) - #endif - || !READ(E1_ENABLE_PIN) - #endif - || !READ(E0_ENABLE_PIN)) //If any of the drivers are enabled... - { - lastMotor = millis(); //... set time to NOW so the fan will turn on - } - - if ((millis() - lastMotor) >= (CONTROLLERFAN_SECS*1000UL) || lastMotor == 0) //If the last time any driver was enabled, is longer since than CONTROLLERSEC... - { - digitalWrite(CONTROLLERFAN_PIN, 0); - analogWrite(CONTROLLERFAN_PIN, 0); - } - else - { - // allows digital or PWM fan output to be used (see M42 handling) - digitalWrite(CONTROLLERFAN_PIN, CONTROLLERFAN_SPEED); - analogWrite(CONTROLLERFAN_PIN, CONTROLLERFAN_SPEED); - } - } -} -#endif - -#ifdef TEMP_STAT_LEDS -static bool blue_led = false; -static bool red_led = false; -static uint32_t stat_update = 0; - -void handle_status_leds(void) { - float max_temp = 0.0; - if(millis() > stat_update) { - stat_update += 500; // Update every 0.5s - for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) { - max_temp = max(max_temp, degHotend(cur_extruder)); - max_temp = max(max_temp, degTargetHotend(cur_extruder)); - } - #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1 - max_temp = max(max_temp, degTargetBed()); - max_temp = max(max_temp, degBed()); - #endif - if((max_temp > 55.0) && (red_led == false)) { - digitalWrite(STAT_LED_RED, 1); - digitalWrite(STAT_LED_BLUE, 0); - red_led = true; - blue_led = false; - } - if((max_temp < 54.0) && (blue_led == false)) { - digitalWrite(STAT_LED_RED, 0); - digitalWrite(STAT_LED_BLUE, 1); - red_led = false; - blue_led = true; - } - } -} -#endif - -#ifdef SAFETYTIMER -/** - * @brief Turn off heating after safetytimer_inactive_time milliseconds of inactivity - * - * Full screen blocking notification message is shown after heater turning off. - * Paused print is not considered inactivity, as nozzle is cooled anyway and bed cooling would - * damage print. - * - * If safetytimer_inactive_time is zero, feature is disabled (heating is never turned off because of inactivity) - */ -static void handleSafetyTimer() -{ -#if (EXTRUDERS > 1) -#error Implemented only for one extruder. -#endif //(EXTRUDERS > 1) - if ((PRINTER_ACTIVE) || (!degTargetBed() && !degTargetHotend(0)) || (!safetytimer_inactive_time)) - { - safetyTimer.stop(); - } - else if ((degTargetBed() || degTargetHotend(0)) && (!safetyTimer.running())) - { - safetyTimer.start(); - } - else if (safetyTimer.expired(safetytimer_inactive_time)) - { - setTargetBed(0); - setTargetHotend(0, 0); - lcd_show_fullscreen_message_and_wait_P(_i("Heating disabled by safety timer."));////MSG_BED_HEATING_SAFETY_DISABLED c=0 r=0 - } -} -#endif //SAFETYTIMER - -void manage_inactivity(bool ignore_stepper_queue/*=false*/) //default argument set in Marlin.h -{ -#ifdef PAT9125 - if (fsensor_enabled && filament_autoload_enabled && !fsensor_M600 && !moves_planned() && !IS_SD_PRINTING && !is_usb_printing && (lcd_commands_type != LCD_COMMAND_V2_CAL)) - { - if (fsensor_autoload_enabled) - { - if (fsensor_check_autoload()) - { - - if (degHotend0() > EXTRUDE_MINTEMP) - { - fsensor_autoload_check_stop(); - tone(BEEPER, 1000); - delay_keep_alive(50); - noTone(BEEPER); - loading_flag = true; - enquecommand_front_P((PSTR("M701"))); - } - else - { - lcd_update_enable(false); - lcd_clear(); - lcd_set_cursor(0, 0); - lcd_puts_P(_T(MSG_ERROR)); - lcd_set_cursor(0, 2); - lcd_puts_P(_T(MSG_PREHEAT_NOZZLE)); - delay(2000); - lcd_clear(); - lcd_update_enable(true); - } - - } - } - else - fsensor_autoload_check_start(); - } - else - if (fsensor_autoload_enabled) - fsensor_autoload_check_stop(); -#endif //PAT9125 - -#ifdef SAFETYTIMER - handleSafetyTimer(); -#endif //SAFETYTIMER - -#if defined(KILL_PIN) && KILL_PIN > -1 - static int killCount = 0; // make the inactivity button a bit less responsive - const int KILL_DELAY = 10000; -#endif - - if(buflen < (BUFSIZE-1)){ - get_command(); - } - - if( (millis() - previous_millis_cmd) > max_inactive_time ) - if(max_inactive_time) - kill(_n(""), 4); - if(stepper_inactive_time) { - if( (millis() - previous_millis_cmd) > stepper_inactive_time ) - { - if(blocks_queued() == false && ignore_stepper_queue == false) { - disable_x(); -// SERIAL_ECHOLNPGM("manage_inactivity - disable Y"); - disable_y(); - disable_z(); - disable_e0(); - disable_e1(); - disable_e2(); - } - } - } - - #ifdef CHDK //Check if pin should be set to LOW after M240 set it to HIGH - if (chdkActive && (millis() - chdkHigh > CHDK_DELAY)) - { - chdkActive = false; - WRITE(CHDK, LOW); - } - #endif - - #if defined(KILL_PIN) && KILL_PIN > -1 - - // Check if the kill button was pressed and wait just in case it was an accidental - // key kill key press - // ------------------------------------------------------------------------------- - if( 0 == READ(KILL_PIN) ) - { - killCount++; - } - else if (killCount > 0) - { - killCount--; - } - // Exceeded threshold and we can confirm that it was not accidental - // KILL the machine - // ---------------------------------------------------------------- - if ( killCount >= KILL_DELAY) - { - kill("", 5); - } - #endif - - #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1 - controllerFan(); //Check if fan should be turned on to cool stepper drivers down - #endif - #ifdef EXTRUDER_RUNOUT_PREVENT - if( (millis() - previous_millis_cmd) > EXTRUDER_RUNOUT_SECONDS*1000 ) - if(degHotend(active_extruder)>EXTRUDER_RUNOUT_MINTEMP) - { - bool oldstatus=READ(E0_ENABLE_PIN); - enable_e0(); - float oldepos=current_position[E_AXIS]; - float oldedes=destination[E_AXIS]; - plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], - destination[E_AXIS]+EXTRUDER_RUNOUT_EXTRUDE*EXTRUDER_RUNOUT_ESTEPS/axis_steps_per_unit[E_AXIS], - EXTRUDER_RUNOUT_SPEED/60.*EXTRUDER_RUNOUT_ESTEPS/axis_steps_per_unit[E_AXIS], active_extruder); - current_position[E_AXIS]=oldepos; - destination[E_AXIS]=oldedes; - plan_set_e_position(oldepos); - previous_millis_cmd=millis(); - st_synchronize(); - WRITE(E0_ENABLE_PIN,oldstatus); - } - #endif - #ifdef TEMP_STAT_LEDS - handle_status_leds(); - #endif - check_axes_activity(); -} - -void kill(const char *full_screen_message, unsigned char id) -{ - printf_P(_N("KILL: %d\n"), id); - //return; - cli(); // Stop interrupts - disable_heater(); - - disable_x(); -// SERIAL_ECHOLNPGM("kill - disable Y"); - disable_y(); - disable_z(); - disable_e0(); - disable_e1(); - disable_e2(); - -#if defined(PS_ON_PIN) && PS_ON_PIN > -1 - pinMode(PS_ON_PIN,INPUT); -#endif - SERIAL_ERROR_START; - SERIAL_ERRORLNRPGM(_i("Printer halted. kill() called!"));////MSG_ERR_KILLED c=0 r=0 - if (full_screen_message != NULL) { - SERIAL_ERRORLNRPGM(full_screen_message); - lcd_display_message_fullscreen_P(full_screen_message); - } else { - LCD_ALERTMESSAGERPGM(_i("KILLED. "));////MSG_KILLED c=0 r=0 - } - - // FMC small patch to update the LCD before ending - sei(); // enable interrupts - for ( int i=5; i--; lcd_update(0)) - { - delay(200); - } - cli(); // disable interrupts - suicide(); - while(1) - { -#ifdef WATCHDOG - wdt_reset(); -#endif //WATCHDOG - /* Intentionally left empty */ - - } // Wait for reset -} - -void Stop() -{ - disable_heater(); - if(Stopped == false) { - Stopped = true; - Stopped_gcode_LastN = gcode_LastN; // Save last g_code for restart - SERIAL_ERROR_START; - SERIAL_ERRORLNRPGM(_T(MSG_ERR_STOPPED)); - LCD_MESSAGERPGM(_T(MSG_STOPPED)); - } -} - -bool IsStopped() { return Stopped; }; - -#ifdef FAST_PWM_FAN -void setPwmFrequency(uint8_t pin, int val) -{ - val &= 0x07; - switch(digitalPinToTimer(pin)) - { - - #if defined(TCCR0A) - case TIMER0A: - case TIMER0B: -// TCCR0B &= ~(_BV(CS00) | _BV(CS01) | _BV(CS02)); -// TCCR0B |= val; - break; - #endif - - #if defined(TCCR1A) - case TIMER1A: - case TIMER1B: -// TCCR1B &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12)); -// TCCR1B |= val; - break; - #endif - - #if defined(TCCR2) - case TIMER2: - case TIMER2: - TCCR2 &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12)); - TCCR2 |= val; - break; - #endif - - #if defined(TCCR2A) - case TIMER2A: - case TIMER2B: - TCCR2B &= ~(_BV(CS20) | _BV(CS21) | _BV(CS22)); - TCCR2B |= val; - break; - #endif - - #if defined(TCCR3A) - case TIMER3A: - case TIMER3B: - case TIMER3C: - TCCR3B &= ~(_BV(CS30) | _BV(CS31) | _BV(CS32)); - TCCR3B |= val; - break; - #endif - - #if defined(TCCR4A) - case TIMER4A: - case TIMER4B: - case TIMER4C: - TCCR4B &= ~(_BV(CS40) | _BV(CS41) | _BV(CS42)); - TCCR4B |= val; - break; - #endif - - #if defined(TCCR5A) - case TIMER5A: - case TIMER5B: - case TIMER5C: - TCCR5B &= ~(_BV(CS50) | _BV(CS51) | _BV(CS52)); - TCCR5B |= val; - break; - #endif - - } -} -#endif //FAST_PWM_FAN - -bool setTargetedHotend(int code){ - tmp_extruder = active_extruder; - if(code_seen('T')) { - tmp_extruder = code_value(); - if(tmp_extruder >= EXTRUDERS) { - SERIAL_ECHO_START; - switch(code){ - case 104: - SERIAL_ECHORPGM(_i("M104 Invalid extruder "));////MSG_M104_INVALID_EXTRUDER c=0 r=0 - break; - case 105: - SERIAL_ECHO(_i("M105 Invalid extruder "));////MSG_M105_INVALID_EXTRUDER c=0 r=0 - break; - case 109: - SERIAL_ECHO(_i("M109 Invalid extruder "));////MSG_M109_INVALID_EXTRUDER c=0 r=0 - break; - case 218: - SERIAL_ECHO(_i("M218 Invalid extruder "));////MSG_M218_INVALID_EXTRUDER c=0 r=0 - break; - case 221: - SERIAL_ECHO(_i("M221 Invalid extruder "));////MSG_M221_INVALID_EXTRUDER c=0 r=0 - break; - } - SERIAL_PROTOCOLLN((int)tmp_extruder); - return true; - } - } - return false; -} - -void save_statistics(unsigned long _total_filament_used, unsigned long _total_print_time) //_total_filament_used unit: mm/100; print time in s -{ - if (eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 1) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 2) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 3) == 255) - { - eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, 0); - eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, 0); - } - - unsigned long _previous_filament = eeprom_read_dword((uint32_t *)EEPROM_FILAMENTUSED); //_previous_filament unit: cm - unsigned long _previous_time = eeprom_read_dword((uint32_t *)EEPROM_TOTALTIME); //_previous_time unit: min - - eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, _previous_time + (_total_print_time/60)); //EEPROM_TOTALTIME unit: min - eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, _previous_filament + (_total_filament_used / 1000)); - - total_filament_used = 0; - -} - -float calculate_extruder_multiplier(float diameter) { - float out = 1.f; - if (volumetric_enabled && diameter > 0.f) { - float area = M_PI * diameter * diameter * 0.25; - out = 1.f / area; - } - if (extrudemultiply != 100) - out *= float(extrudemultiply) * 0.01f; - return out; -} - -void calculate_extruder_multipliers() { - extruder_multiplier[0] = calculate_extruder_multiplier(filament_size[0]); -#if EXTRUDERS > 1 - extruder_multiplier[1] = calculate_extruder_multiplier(filament_size[1]); -#if EXTRUDERS > 2 - extruder_multiplier[2] = calculate_extruder_multiplier(filament_size[2]); -#endif -#endif -} - -void delay_keep_alive(unsigned int ms) -{ - for (;;) { - manage_heater(); - // Manage inactivity, but don't disable steppers on timeout. - manage_inactivity(true); - lcd_update(0); - if (ms == 0) - break; - else if (ms >= 50) { - delay(50); - ms -= 50; - } else { - delay(ms); - ms = 0; - } - } -} - -void wait_for_heater(long codenum) { - -#ifdef TEMP_RESIDENCY_TIME - long residencyStart; - residencyStart = -1; - /* continue to loop until we have reached the target temp - _and_ until TEMP_RESIDENCY_TIME hasn't passed since we reached it */ - while ((!cancel_heatup) && ((residencyStart == -1) || - (residencyStart >= 0 && (((unsigned int)(millis() - residencyStart)) < (TEMP_RESIDENCY_TIME * 1000UL))))) { -#else - while (target_direction ? (isHeatingHotend(tmp_extruder)) : (isCoolingHotend(tmp_extruder) && (CooldownNoWait == false))) { -#endif //TEMP_RESIDENCY_TIME - if ((millis() - codenum) > 1000UL) - { //Print Temp Reading and remaining time every 1 second while heating up/cooling down - if (!farm_mode) { - SERIAL_PROTOCOLPGM("T:"); - SERIAL_PROTOCOL_F(degHotend(tmp_extruder), 1); - SERIAL_PROTOCOLPGM(" E:"); - SERIAL_PROTOCOL((int)tmp_extruder); - -#ifdef TEMP_RESIDENCY_TIME - SERIAL_PROTOCOLPGM(" W:"); - if (residencyStart > -1) - { - codenum = ((TEMP_RESIDENCY_TIME * 1000UL) - (millis() - residencyStart)) / 1000UL; - SERIAL_PROTOCOLLN(codenum); - } - else - { - SERIAL_PROTOCOLLN("?"); - } - } -#else - SERIAL_PROTOCOLLN(""); -#endif - codenum = millis(); - } - manage_heater(); - manage_inactivity(); - lcd_update(0); -#ifdef TEMP_RESIDENCY_TIME - /* start/restart the TEMP_RESIDENCY_TIME timer whenever we reach target temp for the first time - or when current temp falls outside the hysteresis after target temp was reached */ - if ((residencyStart == -1 && target_direction && (degHotend(tmp_extruder) >= (degTargetHotend(tmp_extruder) - TEMP_WINDOW))) || - (residencyStart == -1 && !target_direction && (degHotend(tmp_extruder) <= (degTargetHotend(tmp_extruder) + TEMP_WINDOW))) || - (residencyStart > -1 && labs(degHotend(tmp_extruder) - degTargetHotend(tmp_extruder)) > TEMP_HYSTERESIS)) - { - residencyStart = millis(); - } -#endif //TEMP_RESIDENCY_TIME - } -} - -void check_babystep() { - int babystep_z; - EEPROM_read_B(EEPROM_BABYSTEP_Z, &babystep_z); - if ((babystep_z < Z_BABYSTEP_MIN) || (babystep_z > Z_BABYSTEP_MAX)) { - babystep_z = 0; //if babystep value is out of min max range, set it to 0 - SERIAL_ECHOLNPGM("Z live adjust out of range. Setting to 0"); - EEPROM_save_B(EEPROM_BABYSTEP_Z, &babystep_z); - lcd_show_fullscreen_message_and_wait_P(PSTR("Z live adjust out of range. Setting to 0. Click to continue.")); - lcd_update_enable(true); - } -} -#ifdef DIS -void d_setup() -{ - pinMode(D_DATACLOCK, INPUT_PULLUP); - pinMode(D_DATA, INPUT_PULLUP); - pinMode(D_REQUIRE, OUTPUT); - digitalWrite(D_REQUIRE, HIGH); -} - - -float d_ReadData() -{ - int digit[13]; - String mergeOutput; - float output; - - digitalWrite(D_REQUIRE, HIGH); - for (int i = 0; i<13; i++) - { - for (int j = 0; j < 4; j++) - { - while (digitalRead(D_DATACLOCK) == LOW) {} - while (digitalRead(D_DATACLOCK) == HIGH) {} - bitWrite(digit[i], j, digitalRead(D_DATA)); - } - } - - digitalWrite(D_REQUIRE, LOW); - mergeOutput = ""; - output = 0; - for (int r = 5; r <= 10; r++) //Merge digits - { - mergeOutput += digit[r]; - } - output = mergeOutput.toFloat(); - - if (digit[4] == 8) //Handle sign - { - output *= -1; - } - - for (int i = digit[11]; i > 0; i--) //Handle floating point - { - output /= 10; - } - - return output; - -} - -void bed_analysis(float x_dimension, float y_dimension, int x_points_num, int y_points_num, float shift_x, float shift_y) { - int t1 = 0; - int t_delay = 0; - int digit[13]; - int m; - char str[3]; - //String mergeOutput; - char mergeOutput[15]; - float output; - - int mesh_point = 0; //index number of calibration point - float bed_zero_ref_x = (-22.f + X_PROBE_OFFSET_FROM_EXTRUDER); //shift between zero point on bed and target and between probe and nozzle - float bed_zero_ref_y = (-0.6f + Y_PROBE_OFFSET_FROM_EXTRUDER); - - float mesh_home_z_search = 4; - float row[x_points_num]; - int ix = 0; - int iy = 0; - - char* filename_wldsd = "wldsd.txt"; - char data_wldsd[70]; - char numb_wldsd[10]; - - d_setup(); - - if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS])) { - // We don't know where we are! HOME! - // Push the commands to the front of the message queue in the reverse order! - // There shall be always enough space reserved for these commands. - repeatcommand_front(); // repeat G80 with all its parameters - - enquecommand_front_P((PSTR("G28 W0"))); - enquecommand_front_P((PSTR("G1 Z5"))); - return; - } - bool custom_message_old = custom_message; - unsigned int custom_message_type_old = custom_message_type; - unsigned int custom_message_state_old = custom_message_state; - custom_message = true; - custom_message_type = 1; - custom_message_state = (x_points_num * y_points_num) + 10; - lcd_update(1); - - mbl.reset(); - babystep_undo(); - - card.openFile(filename_wldsd, false); - - current_position[Z_AXIS] = mesh_home_z_search; - plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 60, active_extruder); - - int XY_AXIS_FEEDRATE = homing_feedrate[X_AXIS] / 20; - int Z_PROBE_FEEDRATE = homing_feedrate[Z_AXIS] / 60; - int Z_LIFT_FEEDRATE = homing_feedrate[Z_AXIS] / 40; - - setup_for_endstop_move(false); - - SERIAL_PROTOCOLPGM("Num X,Y: "); - SERIAL_PROTOCOL(x_points_num); - SERIAL_PROTOCOLPGM(","); - SERIAL_PROTOCOL(y_points_num); - SERIAL_PROTOCOLPGM("\nZ search height: "); - SERIAL_PROTOCOL(mesh_home_z_search); - SERIAL_PROTOCOLPGM("\nDimension X,Y: "); - SERIAL_PROTOCOL(x_dimension); - SERIAL_PROTOCOLPGM(","); - SERIAL_PROTOCOL(y_dimension); - SERIAL_PROTOCOLLNPGM("\nMeasured points:"); - - while (mesh_point != x_points_num * y_points_num) { - ix = mesh_point % x_points_num; // from 0 to MESH_NUM_X_POINTS - 1 - iy = mesh_point / x_points_num; - if (iy & 1) ix = (x_points_num - 1) - ix; // Zig zag - float z0 = 0.f; - current_position[Z_AXIS] = mesh_home_z_search; - plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], Z_LIFT_FEEDRATE, active_extruder); - st_synchronize(); - - - current_position[X_AXIS] = 13.f + ix * (x_dimension / (x_points_num - 1)) - bed_zero_ref_x + shift_x; - current_position[Y_AXIS] = 6.4f + iy * (y_dimension / (y_points_num - 1)) - bed_zero_ref_y + shift_y; - - plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], XY_AXIS_FEEDRATE, active_extruder); - st_synchronize(); - - if (!find_bed_induction_sensor_point_z(-10.f)) { //if we have data from z calibration max allowed difference is 1mm for each point, if we dont have data max difference is 10mm from initial point - break; - card.closefile(); - } - - - //memset(numb_wldsd, 0, sizeof(numb_wldsd)); - //dtostrf(d_ReadData(), 8, 5, numb_wldsd); - //strcat(data_wldsd, numb_wldsd); - - - - //MYSERIAL.println(data_wldsd); - //delay(1000); - //delay(3000); - //t1 = millis(); - - //while (digitalRead(D_DATACLOCK) == LOW) {} - //while (digitalRead(D_DATACLOCK) == HIGH) {} - memset(digit, 0, sizeof(digit)); - //cli(); - digitalWrite(D_REQUIRE, LOW); - - for (int i = 0; i<13; i++) - { - //t1 = millis(); - for (int j = 0; j < 4; j++) - { - while (digitalRead(D_DATACLOCK) == LOW) {} - while (digitalRead(D_DATACLOCK) == HIGH) {} - bitWrite(digit[i], j, digitalRead(D_DATA)); - } - //t_delay = (millis() - t1); - //SERIAL_PROTOCOLPGM(" "); - //SERIAL_PROTOCOL_F(t_delay, 5); - //SERIAL_PROTOCOLPGM(" "); - } - //sei(); - digitalWrite(D_REQUIRE, HIGH); - mergeOutput[0] = '\0'; - output = 0; - for (int r = 5; r <= 10; r++) //Merge digits - { - sprintf(str, "%d", digit[r]); - strcat(mergeOutput, str); - } - - output = atof(mergeOutput); - - if (digit[4] == 8) //Handle sign - { - output *= -1; - } - - for (int i = digit[11]; i > 0; i--) //Handle floating point - { - output *= 0.1; - } - - - //output = d_ReadData(); - - //row[ix] = current_position[Z_AXIS]; - - memset(data_wldsd, 0, sizeof(data_wldsd)); - - for (int i = 0; i <3; i++) { - memset(numb_wldsd, 0, sizeof(numb_wldsd)); - dtostrf(current_position[i], 8, 5, numb_wldsd); - strcat(data_wldsd, numb_wldsd); - strcat(data_wldsd, ";"); - - } - memset(numb_wldsd, 0, sizeof(numb_wldsd)); - dtostrf(output, 8, 5, numb_wldsd); - strcat(data_wldsd, numb_wldsd); - //strcat(data_wldsd, ";"); - card.write_command(data_wldsd); - - - //row[ix] = d_ReadData(); - - row[ix] = output; // current_position[Z_AXIS]; - - if (iy % 2 == 1 ? ix == 0 : ix == x_points_num - 1) { - for (int i = 0; i < x_points_num; i++) { - SERIAL_PROTOCOLPGM(" "); - SERIAL_PROTOCOL_F(row[i], 5); - - - } - SERIAL_PROTOCOLPGM("\n"); - } - custom_message_state--; - mesh_point++; - lcd_update(1); - - } - card.closefile(); - -} -#endif - -void temp_compensation_start() { - - custom_message = true; - custom_message_type = 5; - custom_message_state = PINDA_HEAT_T + 1; - lcd_update(2); - if (degHotend(active_extruder) > EXTRUDE_MINTEMP) { - current_position[E_AXIS] -= DEFAULT_RETRACTION; - } - plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400, active_extruder); - - current_position[X_AXIS] = PINDA_PREHEAT_X; - current_position[Y_AXIS] = PINDA_PREHEAT_Y; - current_position[Z_AXIS] = PINDA_PREHEAT_Z; - plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder); - st_synchronize(); - while (fabs(degBed() - target_temperature_bed) > 1) delay_keep_alive(1000); - - for (int i = 0; i < PINDA_HEAT_T; i++) { - delay_keep_alive(1000); - custom_message_state = PINDA_HEAT_T - i; - if (custom_message_state == 99 || custom_message_state == 9) lcd_update(2); //force whole display redraw if number of digits changed - else lcd_update(1); - } - custom_message_type = 0; - custom_message_state = 0; - custom_message = false; -} - -void temp_compensation_apply() { - int i_add; - int compensation_value; - int z_shift = 0; - float z_shift_mm; - - if (calibration_status() == CALIBRATION_STATUS_CALIBRATED) { - if (target_temperature_bed % 10 == 0 && target_temperature_bed >= 60 && target_temperature_bed <= 100) { - i_add = (target_temperature_bed - 60) / 10; - EEPROM_read_B(EEPROM_PROBE_TEMP_SHIFT + i_add * 2, &z_shift); - z_shift_mm = z_shift / axis_steps_per_unit[Z_AXIS]; - }else { - //interpolation - z_shift_mm = temp_comp_interpolation(target_temperature_bed) / axis_steps_per_unit[Z_AXIS]; - } - printf_P(_N("\nZ shift applied:%.3f\n"), z_shift_mm); - plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS] - z_shift_mm, current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder); - st_synchronize(); - plan_set_z_position(current_position[Z_AXIS]); - } - else { - //we have no temp compensation data - } -} - -float temp_comp_interpolation(float inp_temperature) { - - //cubic spline interpolation - - int n, i, j, k; - float h[10], a, b, c, d, sum, s[10] = { 0 }, x[10], F[10], f[10], m[10][10] = { 0 }, temp; - int shift[10]; - int temp_C[10]; - - n = 6; //number of measured points - - shift[0] = 0; - for (i = 0; i < n; i++) { - if (i>0) EEPROM_read_B(EEPROM_PROBE_TEMP_SHIFT + (i-1) * 2, &shift[i]); //read shift in steps from EEPROM - temp_C[i] = 50 + i * 10; //temperature in C -#ifdef PINDA_THERMISTOR - temp_C[i] = 35 + i * 5; //temperature in C -#else - temp_C[i] = 50 + i * 10; //temperature in C -#endif - x[i] = (float)temp_C[i]; - f[i] = (float)shift[i]; - } - if (inp_temperature < x[0]) return 0; - - - for (i = n - 1; i>0; i--) { - F[i] = (f[i] - f[i - 1]) / (x[i] - x[i - 1]); - h[i - 1] = x[i] - x[i - 1]; - } - //*********** formation of h, s , f matrix ************** - for (i = 1; i0; i--) { - sum = 0; - for (j = i; j <= n - 2; j++) - sum += m[i][j] * s[j]; - s[i] = (m[i][n - 1] - sum) / m[i][i]; - } - - for (i = 0; i x[i + 1])) { - a = (s[i + 1] - s[i]) / (6 * h[i]); - b = s[i] / 2; - c = (f[i + 1] - f[i]) / h[i] - (2 * h[i] * s[i] + s[i + 1] * h[i]) / 6; - d = f[i]; - sum = a*pow((inp_temperature - x[i]), 3) + b*pow((inp_temperature - x[i]), 2) + c*(inp_temperature - x[i]) + d; - } - - return sum; - -} - -#ifdef PINDA_THERMISTOR -float temp_compensation_pinda_thermistor_offset(float temperature_pinda) -{ - if (!temp_cal_active) return 0; - if (!calibration_status_pinda()) return 0; - return temp_comp_interpolation(temperature_pinda) / axis_steps_per_unit[Z_AXIS]; -} -#endif //PINDA_THERMISTOR - -void long_pause() //long pause print -{ - st_synchronize(); - - //save currently set parameters to global variables - saved_feedmultiply = feedmultiply; - HotendTempBckp = degTargetHotend(active_extruder); - fanSpeedBckp = fanSpeed; - start_pause_print = millis(); - - - //save position - pause_lastpos[X_AXIS] = current_position[X_AXIS]; - pause_lastpos[Y_AXIS] = current_position[Y_AXIS]; - pause_lastpos[Z_AXIS] = current_position[Z_AXIS]; - pause_lastpos[E_AXIS] = current_position[E_AXIS]; - - //retract - current_position[E_AXIS] -= DEFAULT_RETRACTION; - plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400, active_extruder); - - //lift z - current_position[Z_AXIS] += Z_PAUSE_LIFT; - if (current_position[Z_AXIS] > Z_MAX_POS) current_position[Z_AXIS] = Z_MAX_POS; - plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 15, active_extruder); - - //set nozzle target temperature to 0 - setTargetHotend(0, 0); - setTargetHotend(0, 1); - setTargetHotend(0, 2); - - //Move XY to side - current_position[X_AXIS] = X_PAUSE_POS; - current_position[Y_AXIS] = Y_PAUSE_POS; - plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 50, active_extruder); - - // Turn off the print fan - fanSpeed = 0; - - st_synchronize(); -} - -void serialecho_temperatures() { - float tt = degHotend(active_extruder); - SERIAL_PROTOCOLPGM("T:"); - SERIAL_PROTOCOL(tt); - SERIAL_PROTOCOLPGM(" E:"); - SERIAL_PROTOCOL((int)active_extruder); - SERIAL_PROTOCOLPGM(" B:"); - SERIAL_PROTOCOL_F(degBed(), 1); - SERIAL_PROTOCOLLN(""); -} - -extern uint32_t sdpos_atomic; - -#ifdef UVLO_SUPPORT - -void uvlo_() -{ - unsigned long time_start = millis(); - bool sd_print = card.sdprinting; - // Conserve power as soon as possible. - disable_x(); - disable_y(); - -#ifdef TMC2130 - tmc2130_set_current_h(Z_AXIS, 20); - tmc2130_set_current_r(Z_AXIS, 20); - tmc2130_set_current_h(E_AXIS, 20); - tmc2130_set_current_r(E_AXIS, 20); -#endif //TMC2130 - - - // Indicate that the interrupt has been triggered. - // SERIAL_ECHOLNPGM("UVLO"); - - // Read out the current Z motor microstep counter. This will be later used - // for reaching the zero full step before powering off. - uint16_t z_microsteps = 0; -#ifdef TMC2130 - z_microsteps = tmc2130_rd_MSCNT(Z_TMC2130_CS); -#endif //TMC2130 - - // Calculate the file position, from which to resume this print. - long sd_position = sdpos_atomic; //atomic sd position of last command added in queue - { - uint16_t sdlen_planner = planner_calc_sd_length(); //length of sd commands in planner - sd_position -= sdlen_planner; - uint16_t sdlen_cmdqueue = cmdqueue_calc_sd_length(); //length of sd commands in cmdqueue - sd_position -= sdlen_cmdqueue; - if (sd_position < 0) sd_position = 0; - } - - // Backup the feedrate in mm/min. - int feedrate_bckp = blocks_queued() ? (block_buffer[block_buffer_tail].nominal_speed * 60.f) : feedrate; - - // After this call, the planner queue is emptied and the current_position is set to a current logical coordinate. - // The logical coordinate will likely differ from the machine coordinate if the skew calibration and mesh bed leveling - // are in action. - planner_abort_hard(); - - // Store the current extruder position. - eeprom_update_float((float*)(EEPROM_UVLO_CURRENT_POSITION_E), st_get_position_mm(E_AXIS)); - eeprom_update_byte((uint8_t*)EEPROM_UVLO_E_ABS, axis_relative_modes[3]?0:1); - - // Clean the input command queue. - cmdqueue_reset(); - card.sdprinting = false; -// card.closefile(); - - // Enable stepper driver interrupt to move Z axis. - // This should be fine as the planner and command queues are empty and the SD card printing is disabled. - //FIXME one may want to disable serial lines at this point of time to avoid interfering with the command queue, - // though it should not happen that the command queue is touched as the plan_buffer_line always succeed without blocking. - sei(); - plan_buffer_line( - current_position[X_AXIS], - current_position[Y_AXIS], - current_position[Z_AXIS], - current_position[E_AXIS] - DEFAULT_RETRACTION, - 95, active_extruder); - - st_synchronize(); - disable_e0(); - - plan_buffer_line( - current_position[X_AXIS], - current_position[Y_AXIS], - current_position[Z_AXIS] + UVLO_Z_AXIS_SHIFT + float((1024 - z_microsteps + 7) >> 4) / axis_steps_per_unit[Z_AXIS], - current_position[E_AXIS] - DEFAULT_RETRACTION, - 40, active_extruder); - - st_synchronize(); - disable_e0(); - - plan_buffer_line( - current_position[X_AXIS], - current_position[Y_AXIS], - current_position[Z_AXIS] + UVLO_Z_AXIS_SHIFT + float((1024 - z_microsteps + 7) >> 4) / axis_steps_per_unit[Z_AXIS], - current_position[E_AXIS] - DEFAULT_RETRACTION, - 40, active_extruder); - st_synchronize(); - disable_e0(); - disable_z(); - - // Move Z up to the next 0th full step. - // Write the file position. - eeprom_update_dword((uint32_t*)(EEPROM_FILE_POSITION), sd_position); - // Store the mesh bed leveling offsets. This is 2*9=18 bytes, which takes 18*3.4us=52us in worst case. - for (int8_t mesh_point = 0; mesh_point < 9; ++ mesh_point) { - uint8_t ix = mesh_point % MESH_MEAS_NUM_X_POINTS; // from 0 to MESH_NUM_X_POINTS - 1 - uint8_t iy = mesh_point / MESH_MEAS_NUM_X_POINTS; - // Scale the z value to 1u resolution. - int16_t v = mbl.active ? int16_t(floor(mbl.z_values[iy*3][ix*3] * 1000.f + 0.5f)) : 0; - eeprom_update_word((uint16_t*)(EEPROM_UVLO_MESH_BED_LEVELING+2*mesh_point), *reinterpret_cast(&v)); - } - // Read out the current Z motor microstep counter. This will be later used - // for reaching the zero full step before powering off. - eeprom_update_word((uint16_t*)(EEPROM_UVLO_Z_MICROSTEPS), z_microsteps); - // Store the current position. - eeprom_update_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 0), current_position[X_AXIS]); - eeprom_update_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 4), current_position[Y_AXIS]); - eeprom_update_float((float*)(EEPROM_UVLO_CURRENT_POSITION_Z), current_position[Z_AXIS]); - // Store the current feed rate, temperatures, fan speed and extruder multipliers (flow rates) - EEPROM_save_B(EEPROM_UVLO_FEEDRATE, &feedrate_bckp); - eeprom_update_byte((uint8_t*)EEPROM_UVLO_TARGET_HOTEND, target_temperature[active_extruder]); - eeprom_update_byte((uint8_t*)EEPROM_UVLO_TARGET_BED, target_temperature_bed); - eeprom_update_byte((uint8_t*)EEPROM_UVLO_FAN_SPEED, fanSpeed); - eeprom_update_float((float*)(EEPROM_EXTRUDER_MULTIPLIER_0), extruder_multiplier[0]); -#if EXTRUDERS > 1 - eeprom_update_float((float*)(EEPROM_EXTRUDER_MULTIPLIER_1), extruder_multiplier[1]); -#if EXTRUDERS > 2 - eeprom_update_float((float*)(EEPROM_EXTRUDER_MULTIPLIER_2), extruder_multiplier[2]); -#endif -#endif - eeprom_update_word((uint16_t*)(EEPROM_EXTRUDEMULTIPLY), (uint16_t)extrudemultiply); - - // Finaly store the "power outage" flag. - if(sd_print) eeprom_update_byte((uint8_t*)EEPROM_UVLO, 1); - - st_synchronize(); - printf_P(_N("stps%d\n"), tmc2130_rd_MSCNT(Z_AXIS)); - - disable_z(); - - // Increment power failure counter - eeprom_update_byte((uint8_t*)EEPROM_POWER_COUNT, eeprom_read_byte((uint8_t*)EEPROM_POWER_COUNT) + 1); - eeprom_update_word((uint16_t*)EEPROM_POWER_COUNT_TOT, eeprom_read_word((uint16_t*)EEPROM_POWER_COUNT_TOT) + 1); - - printf_P(_N("UVLO - end %d\n"), millis() - time_start); - -#if 0 - // Move the print head to the side of the print until all the power stored in the power supply capacitors is depleted. - current_position[X_AXIS] = (current_position[X_AXIS] < 0.5f * (X_MIN_POS + X_MAX_POS)) ? X_MIN_POS : X_MAX_POS; - plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 500, active_extruder); - st_synchronize(); -#endif - - - cli(); - volatile unsigned int ppcount = 0; - SET_OUTPUT(BEEPER); - WRITE(BEEPER, HIGH); - for(ppcount = 0; ppcount < 2000; ppcount ++){ - asm("nop");//50ns on 20Mhz, 62.5ns on 16Mhz - } - WRITE(BEEPER, LOW); - while(1){ -#if 1 - WRITE(BEEPER, LOW); - for(ppcount = 0; ppcount < 8000; ppcount ++){ - asm("nop");//50ns on 20Mhz, 62.5ns on 16Mhz - } -#endif - - }; -} -#endif //UVLO_SUPPORT - -#if (defined(FANCHECK) && defined(TACH_1) && (TACH_1 >-1)) - -void setup_fan_interrupt() { -//INT7 - DDRE &= ~(1 << 7); //input pin - PORTE &= ~(1 << 7); //no internal pull-up - - //start with sensing rising edge - EICRB &= ~(1 << 6); - EICRB |= (1 << 7); - - //enable INT7 interrupt - EIMSK |= (1 << 7); -} - -// The fan interrupt is triggered at maximum 325Hz (may be a bit more due to component tollerances), -// and it takes 4.24 us to process (the interrupt invocation overhead not taken into account). -ISR(INT7_vect) { - //measuring speed now works for fanSpeed > 18 (approximately), which is sufficient because MIN_PRINT_FAN_SPEED is higher - - if (fanSpeed < MIN_PRINT_FAN_SPEED) return; - if ((1 << 6) & EICRB) { //interrupt was triggered by rising edge - t_fan_rising_edge = millis_nc(); - } - else { //interrupt was triggered by falling edge - if ((millis_nc() - t_fan_rising_edge) >= FAN_PULSE_WIDTH_LIMIT) {//this pulse was from sensor and not from pwm - fan_edge_counter[1] += 2; //we are currently counting all edges so lets count two edges for one pulse - } - } - EICRB ^= (1 << 6); //change edge -} - -#endif - -#ifdef UVLO_SUPPORT -void setup_uvlo_interrupt() { - DDRE &= ~(1 << 4); //input pin - PORTE &= ~(1 << 4); //no internal pull-up - - //sensing falling edge - EICRB |= (1 << 0); - EICRB &= ~(1 << 1); - - //enable INT4 interrupt - EIMSK |= (1 << 4); -} - -ISR(INT4_vect) { - EIMSK &= ~(1 << 4); //disable INT4 interrupt to make sure that this code will be executed just once - SERIAL_ECHOLNPGM("INT4"); - if (IS_SD_PRINTING) uvlo_(); -} - -void recover_print(uint8_t automatic) { - char cmd[30]; - lcd_update_enable(true); - lcd_update(2); - lcd_setstatuspgm(_i("Recovering print "));////MSG_RECOVERING_PRINT c=20 r=1 - - recover_machine_state_after_power_panic(); //recover position, temperatures and extrude_multipliers - - // Lift the print head, so one may remove the excess priming material. - if (current_position[Z_AXIS] < 25) - enquecommand_P(PSTR("G1 Z25 F800")); - // Home X and Y axes. Homing just X and Y shall not touch the babystep and the world2machine transformation status. - enquecommand_P(PSTR("G28 X Y")); - // Set the target bed and nozzle temperatures and wait. - sprintf_P(cmd, PSTR("M109 S%d"), target_temperature[active_extruder]); - enquecommand(cmd); - sprintf_P(cmd, PSTR("M190 S%d"), target_temperature_bed); - enquecommand(cmd); - enquecommand_P(PSTR("M83")); //E axis relative mode - //enquecommand_P(PSTR("G1 E5 F120")); //Extrude some filament to stabilize pessure - // If not automatically recoreverd (long power loss), extrude extra filament to stabilize - if(automatic == 0){ - enquecommand_P(PSTR("G1 E5 F120")); //Extrude some filament to stabilize pessure - } - enquecommand_P(PSTR("G1 E" STRINGIFY(-DEFAULT_RETRACTION)" F480")); - - // Mark the power panic status as inactive. - eeprom_update_byte((uint8_t*)EEPROM_UVLO, 0); - /*while ((abs(degHotend(0)- target_temperature[0])>5) || (abs(degBed() -target_temperature_bed)>3)) { //wait for heater and bed to reach target temp - delay_keep_alive(1000); - }*/ - - printf_P(_N("After waiting for temp:\nCurrent pos X_AXIS:%.3f\nCurrent pos Y_AXIS:%.3f\n"), current_position[X_AXIS], current_position[Y_AXIS]); - - // Restart the print. - restore_print_from_eeprom(); - - printf_P(_N("Current pos Z_AXIS:%.3f\nCurrent pos E_AXIS:%.3f\n"), current_position[Z_AXIS], current_position[E_AXIS]); -} - -void recover_machine_state_after_power_panic() -{ - char cmd[30]; - // 1) Recover the logical cordinates at the time of the power panic. - // The logical XY coordinates are needed to recover the machine Z coordinate corrected by the mesh bed leveling. - current_position[X_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 0)); - current_position[Y_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 4)); - // Recover the logical coordinate of the Z axis at the time of the power panic. - // The current position after power panic is moved to the next closest 0th full step. - current_position[Z_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION_Z)) + - UVLO_Z_AXIS_SHIFT + float((1024 - eeprom_read_word((uint16_t*)(EEPROM_UVLO_Z_MICROSTEPS)) + 7) >> 4) / axis_steps_per_unit[Z_AXIS]; - if (eeprom_read_byte((uint8_t*)EEPROM_UVLO_E_ABS)) { - current_position[E_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION_E)); - sprintf_P(cmd, PSTR("G92 E")); - dtostrf(current_position[E_AXIS], 6, 3, cmd + strlen(cmd)); - enquecommand(cmd); - } - - memcpy(destination, current_position, sizeof(destination)); - - SERIAL_ECHOPGM("recover_machine_state_after_power_panic, initial "); - print_world_coordinates(); - - // 2) Initialize the logical to physical coordinate system transformation. - world2machine_initialize(); - - // 3) Restore the mesh bed leveling offsets. This is 2*9=18 bytes, which takes 18*3.4us=52us in worst case. - mbl.active = false; - for (int8_t mesh_point = 0; mesh_point < 9; ++ mesh_point) { - uint8_t ix = mesh_point % MESH_MEAS_NUM_X_POINTS; // from 0 to MESH_NUM_X_POINTS - 1 - uint8_t iy = mesh_point / MESH_MEAS_NUM_X_POINTS; - // Scale the z value to 10u resolution. - int16_t v; - eeprom_read_block(&v, (void*)(EEPROM_UVLO_MESH_BED_LEVELING+2*mesh_point), 2); - if (v != 0) - mbl.active = true; - mbl.z_values[iy][ix] = float(v) * 0.001f; - } - if (mbl.active) - mbl.upsample_3x3(); -// SERIAL_ECHOPGM("recover_machine_state_after_power_panic, initial "); -// print_mesh_bed_leveling_table(); - - // 4) Load the baby stepping value, which is expected to be active at the time of power panic. - // The baby stepping value is used to reset the physical Z axis when rehoming the Z axis. - babystep_load(); - - // 5) Set the physical positions from the logical positions using the world2machine transformation and the active bed leveling. - plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]); - - // 6) Power up the motors, mark their positions as known. - //FIXME Verfiy, whether the X and Y axes should be powered up here, as they will later be re-homed anyway. - axis_known_position[X_AXIS] = true; enable_x(); - axis_known_position[Y_AXIS] = true; enable_y(); - axis_known_position[Z_AXIS] = true; enable_z(); - - SERIAL_ECHOPGM("recover_machine_state_after_power_panic, initial "); - print_physical_coordinates(); - - // 7) Recover the target temperatures. - target_temperature[active_extruder] = eeprom_read_byte((uint8_t*)EEPROM_UVLO_TARGET_HOTEND); - target_temperature_bed = eeprom_read_byte((uint8_t*)EEPROM_UVLO_TARGET_BED); - - // 8) Recover extruder multipilers - extruder_multiplier[0] = eeprom_read_float((float*)(EEPROM_EXTRUDER_MULTIPLIER_0)); -#if EXTRUDERS > 1 - extruder_multiplier[1] = eeprom_read_float((float*)(EEPROM_EXTRUDER_MULTIPLIER_1)); -#if EXTRUDERS > 2 - extruder_multiplier[2] = eeprom_read_float((float*)(EEPROM_EXTRUDER_MULTIPLIER_2)); -#endif -#endif - extrudemultiply = (int)eeprom_read_word((uint16_t*)(EEPROM_EXTRUDEMULTIPLY)); -} - -void restore_print_from_eeprom() { - float x_rec, y_rec, z_pos; - int feedrate_rec; - uint8_t fan_speed_rec; - char cmd[30]; - char* c; - char filename[13]; - uint8_t depth = 0; - char dir_name[9]; - - fan_speed_rec = eeprom_read_byte((uint8_t*)EEPROM_UVLO_FAN_SPEED); - EEPROM_read_B(EEPROM_UVLO_FEEDRATE, &feedrate_rec); - SERIAL_ECHOPGM("Feedrate:"); - MYSERIAL.println(feedrate_rec); - - depth = eeprom_read_byte((uint8_t*)EEPROM_DIR_DEPTH); - - MYSERIAL.println(int(depth)); - for (int i = 0; i < depth; i++) { - for (int j = 0; j < 8; j++) { - dir_name[j] = eeprom_read_byte((uint8_t*)EEPROM_DIRS + j + 8 * i); - } - dir_name[8] = '\0'; - MYSERIAL.println(dir_name); - strcpy(dir_names[i], dir_name); - card.chdir(dir_name); - } - - for (int i = 0; i < 8; i++) { - filename[i] = eeprom_read_byte((uint8_t*)EEPROM_FILENAME + i); - } - filename[8] = '\0'; - - MYSERIAL.print(filename); - strcat_P(filename, PSTR(".gco")); - sprintf_P(cmd, PSTR("M23 %s"), filename); - enquecommand(cmd); - uint32_t position = eeprom_read_dword((uint32_t*)(EEPROM_FILE_POSITION)); - SERIAL_ECHOPGM("Position read from eeprom:"); - MYSERIAL.println(position); - - // E axis relative mode. - enquecommand_P(PSTR("M83")); - // Move to the XY print position in logical coordinates, where the print has been killed. - strcpy_P(cmd, PSTR("G1 X")); strcat(cmd, ftostr32(eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 0)))); - strcat_P(cmd, PSTR(" Y")); strcat(cmd, ftostr32(eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 4)))); - strcat_P(cmd, PSTR(" F2000")); - enquecommand(cmd); - // Move the Z axis down to the print, in logical coordinates. - strcpy_P(cmd, PSTR("G1 Z")); strcat(cmd, ftostr32(eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION_Z)))); - enquecommand(cmd); - // Unretract. - enquecommand_P(PSTR("G1 E" STRINGIFY(2*DEFAULT_RETRACTION)" F480")); - // Set the feedrate saved at the power panic. - sprintf_P(cmd, PSTR("G1 F%d"), feedrate_rec); - enquecommand(cmd); - if (eeprom_read_byte((uint8_t*)EEPROM_UVLO_E_ABS)) - { - float extruder_abs_pos = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION_E)); - enquecommand_P(PSTR("M82")); //E axis abslute mode - } - // Set the fan speed saved at the power panic. - strcpy_P(cmd, PSTR("M106 S")); - strcat(cmd, itostr3(int(fan_speed_rec))); - enquecommand(cmd); - - // Set a position in the file. - sprintf_P(cmd, PSTR("M26 S%lu"), position); - enquecommand(cmd); - // Start SD print. - enquecommand_P(PSTR("M24")); -} -#endif //UVLO_SUPPORT - - -//////////////////////////////////////////////////////////////////////////////// -// save/restore printing - -void stop_and_save_print_to_ram(float z_move, float e_move) -{ - if (saved_printing) return; - unsigned char nplanner_blocks; - unsigned char nlines; - uint16_t sdlen_planner; - uint16_t sdlen_cmdqueue; - - - cli(); - if (card.sdprinting) { - nplanner_blocks = number_of_blocks(); - saved_sdpos = sdpos_atomic; //atomic sd position of last command added in queue - sdlen_planner = planner_calc_sd_length(); //length of sd commands in planner - saved_sdpos -= sdlen_planner; - sdlen_cmdqueue = cmdqueue_calc_sd_length(); //length of sd commands in cmdqueue - saved_sdpos -= sdlen_cmdqueue; - saved_printing_type = PRINTING_TYPE_SD; - - } - else if (is_usb_printing) { //reuse saved_sdpos for storing line number - saved_sdpos = gcode_LastN; //start with line number of command added recently to cmd queue - //reuse planner_calc_sd_length function for getting number of lines of commands in planner: - nlines = planner_calc_sd_length(); //number of lines of commands in planner - saved_sdpos -= nlines; - saved_sdpos -= buflen; //number of blocks in cmd buffer - saved_printing_type = PRINTING_TYPE_USB; - } - else { - //not sd printing nor usb printing - } - -#if 0 - SERIAL_ECHOPGM("SDPOS_ATOMIC="); MYSERIAL.println(sdpos_atomic, DEC); - SERIAL_ECHOPGM("SDPOS="); MYSERIAL.println(card.get_sdpos(), DEC); - SERIAL_ECHOPGM("SDLEN_PLAN="); MYSERIAL.println(sdlen_planner, DEC); - SERIAL_ECHOPGM("SDLEN_CMDQ="); MYSERIAL.println(sdlen_cmdqueue, DEC); - SERIAL_ECHOPGM("PLANNERBLOCKS="); MYSERIAL.println(int(nplanner_blocks), DEC); - SERIAL_ECHOPGM("SDSAVED="); MYSERIAL.println(saved_sdpos, DEC); - //SERIAL_ECHOPGM("SDFILELEN="); MYSERIAL.println(card.fileSize(), DEC); - - - { - card.setIndex(saved_sdpos); - SERIAL_ECHOLNPGM("Content of planner buffer: "); - for (unsigned int idx = 0; idx < sdlen_planner; ++ idx) - MYSERIAL.print(char(card.get())); - SERIAL_ECHOLNPGM("Content of command buffer: "); - for (unsigned int idx = 0; idx < sdlen_cmdqueue; ++ idx) - MYSERIAL.print(char(card.get())); - SERIAL_ECHOLNPGM("End of command buffer"); - } - { - // Print the content of the planner buffer, line by line: - card.setIndex(saved_sdpos); - int8_t iline = 0; - for (unsigned char idx = block_buffer_tail; idx != block_buffer_head; idx = (idx + 1) & (BLOCK_BUFFER_SIZE - 1), ++ iline) { - SERIAL_ECHOPGM("Planner line (from file): "); - MYSERIAL.print(int(iline), DEC); - SERIAL_ECHOPGM(", length: "); - MYSERIAL.print(block_buffer[idx].sdlen, DEC); - SERIAL_ECHOPGM(", steps: ("); - MYSERIAL.print(block_buffer[idx].steps_x, DEC); - SERIAL_ECHOPGM(","); - MYSERIAL.print(block_buffer[idx].steps_y, DEC); - SERIAL_ECHOPGM(","); - MYSERIAL.print(block_buffer[idx].steps_z, DEC); - SERIAL_ECHOPGM(","); - MYSERIAL.print(block_buffer[idx].steps_e, DEC); - SERIAL_ECHOPGM("), events: "); - MYSERIAL.println(block_buffer[idx].step_event_count, DEC); - for (int len = block_buffer[idx].sdlen; len > 0; -- len) - MYSERIAL.print(char(card.get())); - } - } - { - // Print the content of the command buffer, line by line: - int8_t iline = 0; - union { - struct { - char lo; - char hi; - } lohi; - uint16_t value; - } sdlen_single; - int _bufindr = bufindr; - for (int _buflen = buflen; _buflen > 0; ++ iline) { - if (cmdbuffer[_bufindr] == CMDBUFFER_CURRENT_TYPE_SDCARD) { - sdlen_single.lohi.lo = cmdbuffer[_bufindr + 1]; - sdlen_single.lohi.hi = cmdbuffer[_bufindr + 2]; - } - SERIAL_ECHOPGM("Buffer line (from buffer): "); - MYSERIAL.print(int(iline), DEC); - SERIAL_ECHOPGM(", type: "); - MYSERIAL.print(int(cmdbuffer[_bufindr]), DEC); - SERIAL_ECHOPGM(", len: "); - MYSERIAL.println(sdlen_single.value, DEC); - // Print the content of the buffer line. - MYSERIAL.println(cmdbuffer + _bufindr + CMDHDRSIZE); - - SERIAL_ECHOPGM("Buffer line (from file): "); - MYSERIAL.println(int(iline), DEC); - for (; sdlen_single.value > 0; -- sdlen_single.value) - MYSERIAL.print(char(card.get())); - - if (-- _buflen == 0) - break; - // First skip the current command ID and iterate up to the end of the string. - for (_bufindr += CMDHDRSIZE; cmdbuffer[_bufindr] != 0; ++ _bufindr) ; - // Second, skip the end of string null character and iterate until a nonzero command ID is found. - for (++ _bufindr; _bufindr < sizeof(cmdbuffer) && cmdbuffer[_bufindr] == 0; ++ _bufindr) ; - // If the end of the buffer was empty, - if (_bufindr == sizeof(cmdbuffer)) { - // skip to the start and find the nonzero command. - for (_bufindr = 0; cmdbuffer[_bufindr] == 0; ++ _bufindr) ; - } - } - } -#endif - -#if 0 - saved_feedrate2 = feedrate; //save feedrate -#else - // Try to deduce the feedrate from the first block of the planner. - // Speed is in mm/min. - saved_feedrate2 = blocks_queued() ? (block_buffer[block_buffer_tail].nominal_speed * 60.f) : feedrate; -#endif - - planner_abort_hard(); //abort printing - memcpy(saved_pos, current_position, sizeof(saved_pos)); - saved_active_extruder = active_extruder; //save active_extruder - - saved_extruder_under_pressure = extruder_under_pressure; //extruder under pressure flag - currently unused - saved_extruder_relative_mode = axis_relative_modes[E_AXIS]; - cmdqueue_reset(); //empty cmdqueue - card.sdprinting = false; -// card.closefile(); - saved_printing = true; - // We may have missed a stepper timer interrupt. Be safe than sorry, reset the stepper timer before re-enabling interrupts. - st_reset_timer(); - sei(); - if ((z_move != 0) || (e_move != 0)) { // extruder or z move -#if 1 - // Rather than calling plan_buffer_line directly, push the move into the command queue, - char buf[48]; - - // First unretract (relative extrusion) - if(!saved_extruder_relative_mode){ - strcpy_P(buf, PSTR("M83")); - enquecommand(buf, false); - } - - //retract 45mm/s - strcpy_P(buf, PSTR("G1 E")); - dtostrf(e_move, 6, 3, buf + strlen(buf)); - strcat_P(buf, PSTR(" F")); - dtostrf(2700, 8, 3, buf + strlen(buf)); - enquecommand(buf, false); - - // Then lift Z axis - strcpy_P(buf, PSTR("G1 Z")); - dtostrf(saved_pos[Z_AXIS] + z_move, 8, 3, buf + strlen(buf)); - strcat_P(buf, PSTR(" F")); - dtostrf(homing_feedrate[Z_AXIS], 8, 3, buf + strlen(buf)); - // At this point the command queue is empty. - enquecommand(buf, false); - // If this call is invoked from the main Arduino loop() function, let the caller know that the command - // in the command queue is not the original command, but a new one, so it should not be removed from the queue. - repeatcommand_front(); -#else - plan_buffer_line(saved_pos[X_AXIS], saved_pos[Y_AXIS], saved_pos[Z_AXIS] + z_move, saved_pos[E_AXIS] + e_move, homing_feedrate[Z_AXIS], active_extruder); - st_synchronize(); //wait moving - memcpy(current_position, saved_pos, sizeof(saved_pos)); - memcpy(destination, current_position, sizeof(destination)); -#endif - } -} - -void restore_print_from_ram_and_continue(float e_move) -{ - if (!saved_printing) return; -// for (int axis = X_AXIS; axis <= E_AXIS; axis++) -// current_position[axis] = st_get_position_mm(axis); - active_extruder = saved_active_extruder; //restore active_extruder - feedrate = saved_feedrate2; //restore feedrate - axis_relative_modes[E_AXIS] = saved_extruder_relative_mode; - float e = saved_pos[E_AXIS] - e_move; - plan_set_e_position(e); - //first move print head in XY to the saved position: - plan_buffer_line(saved_pos[X_AXIS], saved_pos[Y_AXIS], current_position[Z_AXIS], saved_pos[E_AXIS] - e_move, homing_feedrate[Z_AXIS]/13, active_extruder); - st_synchronize(); - //then move Z - plan_buffer_line(saved_pos[X_AXIS], saved_pos[Y_AXIS], saved_pos[Z_AXIS], saved_pos[E_AXIS] - e_move, homing_feedrate[Z_AXIS]/13, active_extruder); - st_synchronize(); - //and finaly unretract (35mm/s) - plan_buffer_line(saved_pos[X_AXIS], saved_pos[Y_AXIS], saved_pos[Z_AXIS], saved_pos[E_AXIS], 35, active_extruder); - st_synchronize(); - - memcpy(current_position, saved_pos, sizeof(saved_pos)); - memcpy(destination, current_position, sizeof(destination)); - if (saved_printing_type == PRINTING_TYPE_SD) { //was sd printing - card.setIndex(saved_sdpos); - sdpos_atomic = saved_sdpos; - card.sdprinting = true; - printf_P(PSTR("ok\n")); //dummy response because of octoprint is waiting for this - } - else if (saved_printing_type == PRINTING_TYPE_USB) { //was usb printing - gcode_LastN = saved_sdpos; //saved_sdpos was reused for storing line number when usb printing - serial_count = 0; - FlushSerialRequestResend(); - } - else { - //not sd printing nor usb printing - } - lcd_setstatuspgm(_T(WELCOME_MSG)); - saved_printing = false; -} - -void print_world_coordinates() -{ - printf_P(_N("world coordinates: (%.3f, %.3f, %.3f)\n"), current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS]); -} - -void print_physical_coordinates() -{ - printf_P(_N("physical coordinates: (%.3f, %.3f, %.3f)\n"), st_get_position_mm[X_AXIS], st_get_position_mm[Y_AXIS], st_get_position_mm[Z_AXIS]); -} - -void print_mesh_bed_leveling_table() -{ - SERIAL_ECHOPGM("mesh bed leveling: "); - for (int8_t y = 0; y < MESH_NUM_Y_POINTS; ++ y) - for (int8_t x = 0; x < MESH_NUM_Y_POINTS; ++ x) { - MYSERIAL.print(mbl.z_values[y][x], 3); - SERIAL_ECHOPGM(" "); - } - SERIAL_ECHOLNPGM(""); -} - -uint16_t print_time_remaining() { - uint16_t print_t = PRINT_TIME_REMAINING_INIT; - if (SilentModeMenu == SILENT_MODE_OFF) print_t = print_time_remaining_normal; - else print_t = print_time_remaining_silent; - if ((print_t != PRINT_TIME_REMAINING_INIT) && (feedmultiply != 0)) print_t = 100 * print_t / feedmultiply; - return print_t; -} - -uint8_t print_percent_done() { - //in case that we have information from M73 gcode return percentage counted by slicer, else return percentage counted as byte_printed/filesize - uint8_t percent_done = 0; - if (SilentModeMenu == SILENT_MODE_OFF && print_percent_done_normal <= 100) { - percent_done = print_percent_done_normal; - } - else if (print_percent_done_silent <= 100) { - percent_done = print_percent_done_silent; - } - else { - percent_done = card.percentDone(); - } - return percent_done; -} - -static void print_time_remaining_init() { - print_time_remaining_normal = PRINT_TIME_REMAINING_INIT; - print_time_remaining_silent = PRINT_TIME_REMAINING_INIT; - print_percent_done_normal = PRINT_PERCENT_DONE_INIT; - print_percent_done_silent = PRINT_PERCENT_DONE_INIT; -} - -#define FIL_LOAD_LENGTH 60